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Abstract  
As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant 
roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of 
adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal 
utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and 
respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coord-
inate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators re-
sponsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is 
operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting 
findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concern-
ing the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights ob-
tained from this knowledge may guide future research endeavors in sustainable agriculture. 

Introduction 
Phosphorus (P) is a macronutrient that is indispensable for 
growth, development, and reproduction because it is an es-
sential component of several important biomolecules, such 
as DNA, RNA, ATP, NADPH, and phospholipids, and is also 
involved in respiration and photosynthesis (Raghothama 
1999; Jiang et al. 2019a). Orthophosphate (Pi, H2PO4

−/HPO4
2−) 

is the predominant form of P absorbed by plant roots through 
loading into the xylem and translocation into shoots. Still, it is 
quickly fixed by Fe3+ and Al3+ at low pH (<5 or acidic soils) or 
by tricalcium at high pH (>7 or alkaline soils), resulting in low 
availability and mobility in the soil (Holford 1997; Prathap et al. 
2022). Modern agriculture leans heavily on P fertilizer to cope 

with the low available soil Pi. However, due to the low efficiency 
of applied P absorbed by plants and the finite nature of P fer-
tilizer, which is resourced from natural P rock reserves, increas-
ing the P use efficiency (PUE) of crops has become an 
important issue to fulfill the demand for food security and agri-
cultural sustainability (Baker et al. 2015; van de Wiel et al. 2016;  
Heuer et al. 2017). Endeavors to increase PUE will rely on 
knowledge of how plants sense and respond to environmental 
P levels. 

In response to P deficiency, plants have developed sophis-
ticated mechanisms to enhance the external acquisition and 
improve the internal utilization of P (Fig. 1), designated as P 
starvation responses (PSRs). Local PSRs are regulated by the 
external P concentration in the soil surrounding the root 
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and are responsible for enhancing the acquisition of external 
P. Systemic PSRs depend on the adjustment of internal P con-
centration and improve the utilization of internal P through 
P recycling and reallocation via coordinating with external P 
availability (Bates and Lynch 1996; Thibaud et al. 2010; Lin 
et al. 2014; Chien et al. 2018). Regarding the enhanced acqui-
sition of external P, the modification of the root system archi-
tecture, including an increase in the number of lateral roots 
and root hairs and a reduction of the primary root growth, 
allows plants to forage for P in the topsoil and enlarge root- 
soil surface efficiently (Bates and Lynch 2001; López-Bucio 
et al. 2003; Lynch 2011). In addition, increased high-affinity 
Pi transporter (PHT1) activity in the root surface facilitates 
Pi uptake. The organic acids, nucleases, and phosphatase se-
creted from the root enable Pi release from insoluble or or-
ganic matter (Taylor et al. 1993; Bariola et al. 1994;  
Raghothama 1999; Plaxton and Tran 2011). Interactions 
with beneficial microorganisms triggered by P starvation 
could also promote P acquisition (Oldroyd and Leyser 
2020). Regarding the improved utilization of internal P, an in-
crease in the root-to-shoot growth ratio, a reduction in shoot 
branching, and an increase in the erectness of leaves could 
allow plants to adjust growth and photosynthetic efficiency 
to adapt to P deficiency (Ruan et al. 2018; López-Bucio et al. 
2003). The increase in the xylem loading activity of Pi facili-
tates root-to-shoot Pi reallocation (Hamburger et al. 2002). 
The replacement of phospholipids by galacto- and sulfolipids, 
the activation of metabolic bypasses to conserve ATP, and 

the maintenance of cytosolic Pi homeostasis by modulating 
vacuolar Pi storage and release also occur (Härtel et al. 
2001; Kelly and Dörmann 2002; Gaude et al. 2008; Plaxton 
and Tran 2011; Wang et al. 2012; Nakamura 2013; Okazaki 
et al. 2013; Liu et al. 2015, 2016; Wang et al. 2015; Xu et al. 
2019). 

In this review, we first summarize the historical key discov-
eries pertaining to the molecular players involved in P sens-
ing, signaling, uptake, and utilization in plants since PHT1 
Pi transporters were identified in 1996 (Fig. 2). We then high-
light the major players and regulators in Pi uptake and trans-
location in coordinating PSRs. We illustrate local P sensing at 
the root tip, systemic P signaling, and intracellular P sensing. 
Furthermore, the recent exciting findings about P in plant- 
microbe interactions are discussed. Finally, the remaining 
challenges and perspectives on crosstalk with other nutrients 
and how to improve PUE are presented. 

Historical overview—the key players in P 
transport, sensing, and signaling 
This section briefly introduces the discoveries of key players 
in Pi transport, sensing, and signaling chronologically (Fig. 2). 
The details are elaborated afterward. 

Since the identification of the genes encoding Pi transpor-
ters, molecular studies on P acquisition and its regulation 
have been inspired and enthusiastically pursued. Members 

l RSA modification

l Increase Pi release 
and uptake

l Facilitate interactions 
with beneficial microbes

l Increase the root-to-
shoot growth ratio

l Facilitate root-to-shoot 
Pi reallocation

l Replace phospholipids

l Activate metabolic 
bypasses to conserve 
ATP

l Modulate vacuolar Pi 
storage and release

Enhanced the acquisition of external P Improved utilization of internal P

Figure 1. An overview of adaptive P starvation responses in plants. There are 2 major categories of adaptive PSRs. One is to enhance the acquisition 
of external P, including root system architecture (RSA) modification; increased Pi release via acid/enzyme secretion; elevated Pi uptake through 
PHT1 transporters; and facilitated interactions with beneficial microbes such as arbuscular mycorrhizal fungi. The other is to improve utilization 
of internal P, including increased root-to-shoot growth ratio, PHO1-mediated root-to-shoot Pi reallocation, phospholipid replacement with galacto- 
and sulfolipids, ATP-conserving metabolic bypasses, and regulation of vacuolar Pi storage/release by PHT5 and VPE. Created with BioRender.com.   

2 | THE PLANT CELL 2024: Page 1 of 20                                                                                                                           Yang et al. 

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koad326/7504365 by guest on 25 April 2024



of the plasma membrane–localized Pi transporter PHT1 fam-
ily were first identified from Arabidopsis by yeast functional 
complementation in 1996 (Muchhal et al. 1996), followed by 
the second Pi transporter PHT2 in 1999, which is localized in 
the chloroplast (Daram et al. 1999). Later, in 2002, 
PHOSPHATE 1 (PHO1) was identified as a Pi efflux transport-
er mediating root-to-shoot Pi translocation (Hamburger 
et al. 2002). Then, in 2017, an additional group of Pi transpor-
ters belonging to the family of sulfate transporters (SULTRs), 
named SULTR-like phosphorus distribution transporter 
(SPDT), was uncovered (Yamaji et al. 2017). More recently, 
Pi transporters facilitating Pi translocation between the 
cytoplasm and vacuole have been identified, including 
Arabidopsis PHT5;1/VPT1 (VACUOLAR PHOSPHATE 
TRANSPORTER), a Pi influx transporter; and rice VPE1 and 
VPE2 (VACUOLAR PHOSPHATE EFFLUX), Pi efflux transpor-
ters (Liu et al. 2015, 2016; Xu et al. 2019). After uncovering the 
molecular identity of these Pi transporters, their regulation at 
the transcriptional and posttranslational levels was revealed. 
For example, upregulation of PHT1 transcription by low P 
is mediated by PHOSPHATE STARVATION RESPONSE 
(PHR) proteins binding to PHR1 binding sequence (P1BS, 
GNATATNC) (Rubio et al. 2001; Zhou et al. 2008), the 
proper targeting of PHT1 Pi transporters to plasma mem-
branes requires PHOSPHATE TRANSPORTER TRAFFIC 
FACILITATOR 1 (PHF1) (Gonzalez et al. 2005), and the pro-
tein abundance of PHT1 and PHO1 in response to Pi avail-
ability is controlled by PHOSPHATE 2 (PHO2/UBC24), a 
ubiquitin E2 conjugase, (Aung et al. 2006; Bari et al. 2006;  

Liu et al. 2012; Huang et al. 2013), and/or NITROGEN 
LIMITATION ADAPTATION (NLA), a RING-type E3 ligase 
(Lin et al. 2013). It is worth mentioning that PHO1 and 
PHO2 were identified initially from genetic screenings 
through having significantly reduced or increased shoot Pi 
content, respectively (Poirier et al. 1991; Delhaize and 
Randall 1995). 

To coordinate the P acquisition in the roots and P utiliza-
tion at the whole-plant level for optimizing plant growth and 
development, sensing and signaling P availability are requis-
ite. P sensing and signaling can be classified into local and sys-
temic. The local signaling to sense external P at the root tips 
was shown to be mediated by Low Phosphate Root1 (LPR1) 
and LPR2, 2 multicopper oxidases (Svistoonoff et al. 2007). 
Other components, such as PHOSPHATE DEFICIENCY 
RESPONSES 2 (PDR2) and ALUMINUM ACTIVATED 
MALATE TRANSPORTER 1 (ALMT1), were later found to 
work together with LPR1 to regulate root meristem differen-
tiation (Ticconi et al. 2009; Balzergue et al. 2017). On the 
other hand, systemic signaling plays an essential role in the 
improved utilization of internal P. From 1997 to 2000, non-
coding RNAs (TPSI1, Mt4, At4 and IPS1) were discovered in 
different plant species that are highly induced by P starvation 
and share a conserved 22-nucleotide sequence (Liu et al. 
1997; Burleigh and Harrison 1999; Martín et al. 2000; Shin 
et al. 2006). Their biological function remained unknown un-
til the discovery of microRNA399 (miR399), the first miRNA 
identified to be involved in P starvation response (Fujii et al. 
2005). Upon P starvation, miR399 is upregulated, which 

LPR1-dependent redox

PP-InsPs as a P signal

InsP8 as a P signal

PHR/SPX in AM 
symbiosisVPE

STOP1-ALMT1
Role of PHR1 in immunity

NLA-mediated 
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LPR1-PDR2

PHT1 PHT2

AtPHR1
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PHRs as central transcriptional regulators of PSR
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Figure 2. Milestones in understanding the genes involved in P transport, sensing, and signaling pathways. The genes with different roles in Pi uptake 
and translocation; local (root tip), systemic, and intracellular P sensing and signaling; and P-mediated plant-microbe interactions are depicted along 
the timeline and chronologically arranged according to the original publication dates.   

Advances in P transport, sensing, and signaling                                                                      THE PLANT CELL 2024: Page 1 of 20 | 3 

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koad326/7504365 by guest on 25 April 2024



suppresses PHO2 expression and leads to the activation of Pi 
uptake and translocation (Aung et al. 2006; Bari et al. 2006;  
Chiou et al. 2006). AT4/IPS1 homologs function to modulate 
the action of miR399 by sequestering miR399 through the 22 
conserved nucleotides via a mechanism of target mimicry 
(Franco-Zorrilla et al. 2007). Interestingly, miR399 was found 
to serve as a shoot-to-root systemic signal (Lin et al. 2008;  
Pant et al. 2008). 

With regard to intracellular Pi sensing and signaling, SPX 
proteins were discovered to be involved in regulating PSR 
genes in 2008 (Duan et al. 2008), and their role as P sensors 
through SPX-PHR interaction was reported in 2014 (Puga 
et al. 2014; Wang et al. 2014b). SPX proteins function as re-
pressors to sequester PHRs from transcriptional activation 
of PSRs. Notably, a structure-function analysis revealed that 
inositol polyphosphate (InsP) and inositol pyrophosphate 
(PP-InsP) rather than Pi could be bound by SPX in vitro, 
but PP-InsPs could potentially serve as the pertinent signal-
ing molecules in vivo (Wild et al. 2016). Later genetic analyses 
revealed that bis-diphosphoinositol tetrakisphosphate 
1,5(PP)2-InsP4 (1,5-InsP8) acts as a bona fide intracellular sig-
naling molecule to regulate PSRs in plants (Dong et al. 2019a;  
Zhu et al. 2019). 

Plants actively modulate the interactions with various mi-
crobes to adapt to the Pi availability. Strikingly, PHR was dis-
covered to serve as a negative and positive regulator to 
mediate immune-related genes and arbuscular mycorrhizal- 
related genes, respectively (Castrillo et al. 2017; Isidra- 
Arellano et al. 2021; Shi et al. 2021; Das et al. 2022). The 
role of SPX in arbuscular mycorrhizal (AM) symbiosis was 
also revealed (Shi et al. 2021; Wang et al. 2021; Liao et al. 
2022), suggesting the central role of SPX-PHR in integrating 
signals involved in nutritional response and biotic interaction. 

Players in Pi uptake and translocation 
Pi is initially acquired by the root epidermal and/or cortical 
cells and subsequently transported radially to the central vas-
cular tissues where Pi is loaded into the xylem for transloca-
tion up to the shoot. Pi is then allocated among different 
tissues and distributed in organelles to sustain growth and 
development or stored inside vacuoles when excessive. 
Therefore, Pi transporters in the plasma membrane or orga-
nellar membranes are essential to facilitate Pi transport 
across membranes for uptake, distribution and remobiliza-
tion (Fig. 3). While vegetative cells generally store Pi inside 
the vacuole, the primary form of P stored in the vacuole of 
seeds is inositol hexakisphosphate (InsP6, phytate) mediated 
by MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN 5 
(MRP5), a vacuolar InsP6 transporter (Nagy et al. 2009). 

Pi transporters comprise different families, such as the 
phosphate transporter (PHT) family, the SYG1/Pho81/XPR1 
(SPX) domain-containing protein family and the SPDT fam-
ily. Members in the PHT family are classified into 5 types ac-
cording to sequence identity and subcellular localization 
(Versaw and Garcia 2017), comprising PHT1 (plasma 

membrane), PHT2 (chloroplast), PHT3 (mitochondria), 
PHT4 (the Golgi apparatus, chloroplast and non- 
photosynthetic plastid) and PHT5 (vacuole). SPX domain- 
containing proteins are divided into 4 subfamilies: SPX, 
SPX-EXS (ERD1/XPR1/SYG1), SPX-MFS (Major Facilitator 
Superfamily), and SPX-RING (Really Interesting New Gene). 
Among them, SPX-MFS domain- and SPX-EXS domain- 
proteins have been identified as Pi transporters (e.g. mem-
bers of the PHT5 family and PHO1, respectively) (Wang 
et al. 2012, 2015; Liu et al. 2015, 2016). 

PHT1 transporters 
PHT1 transporters are proton-Pi symporters and play a crit-
ical role in Pi acquisition from the soil and in Pi translocation 
between tissues (Nussaume et al. 2011; Remy et al. 2012;  
Lopez-Arredondo et al. 2014; Ayadi et al. 2015). There are 
13 members in rice (Oryza sativa) and 9 in Arabidopsis thali-
ana. Most of them are expressed in roots and upregulated by 
the PHR transcription factor under P starvation (Karthikeyan 
et al. 2002; Mudge et al. 2002). In Arabidopsis, Pi uptake is 
mainly mediated by PHT1;1 and PHT1;4 (Shin et al. 2004;  
Remy et al. 2012; Ayadi et al. 2015), and root-to-shoot mobil-
ization is facilitated by PHT1;8/PHT1;9 (Lapis-Gaza et al. 
2014). In rice, OsPT2, a low-affinity Pi transporter exclusively 
expressed in the stele, facilitates the movement of Pi from 

Figure 3. Subcellular localization of players in Pi uptake and transloca-
tion. Arrows indicate the direction of Pi transport. Plasma membrane- 
localized PHT1 and SPDT are responsible for Pi uptake. PHT2 
(chloroplast), PHT3 (mitochondria), and PHT4 (the Golgi apparatus, 
chloroplast, and nonphotosynthetic plastid) mediate Pi import or ex-
port from the corresponding organelles. Pi influx and efflux through 
the tonoplast are operated by PHT5 and VPE, respectively. PHO1 pro-
tein localizes to the plasma membrane and Golgi bearing the Pi efflux 
activity for Pi allocation. Pi translocators (PT) localized in the inner 
envelope membrane of plastids transport Pi in exchange with different 
substrates, including triose-phosphate/phosphate translocator (TPT), 
phosphoenolpyruvate/phosphate translocator (PPT), glucose-6- 
phosphate/phosphate translocator (GPT), and pentose xylulose-5- 
phosphate/phosphate translocator (XPT). Coupling with proton (H+) 
or sodium (Na+) transport is indicated. Created with BioRender.com.   
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roots to shoots. In contrast, OsPT6 and OsPT8 function as 
high-affinity Pi transporters responsible for Pi uptake and 
subsequent translocation (Ai et al. 2009; Jia et al. 2011). 
OsPT9 and OsPT10, 2 other high-affinity Pi transporters, 
are also involved in Pi uptake (Wang et al. 2014a). The expres-
sion of these 5 rice PHT1 transporters were all induced by Pi 
starvation in the roots (Ai et al. 2009; Jia et al. 2011; Wang 
et al. 2014a). The members of PHT1 are also expressed in 
the reproductive tissues responsible for anther and embryo 
development, for example, Arabidopsis PHT1;6 and PHT1;7 
and rice OsPht1;7 in the anthers (Mudge et al. 2002; Dai 
et al. 2022) and OsPht1;4 in the embryo (Zhang et al. 2015). 

Regarding the proper localization of PHT1 proteins, 
PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR 1 
(PHF1), related to yeast SECRETORY 12 (SEC12), facilitates 
the exit of PHT1 proteins from the endoplasmic reticulum 
(ER) to plasma membranes in rice and Arabidopsis 
(Gonzalez et al. 2005; Bayle et al. 2011; Chen et al. 2011b). 
Additionally, the phosphorylation of rice OsPHT1;8 at 
Ser-517 by Casein Kinase 2 (OsCK2) interfered with the inter-
action between OsPHT1;8 and PHF1 and resulted in ER re-
tention of OsPHT1;8 (Chen et al. 2015). Intriguingly, PHT1 
protein abundance in the ER is controlled by PHO2-mediated 
degradation according to cellular P status, which determines 
the PHT1 amount directed to the plasma membrane (Huang 
et al. 2013). 

Once at plasma membranes, PHT1 proteins are regulated 
by NLA-mediated degradation, a RING-type ubiquitin E3 lig-
ase containing the SPX domain that can perceive cellular P 
levels (as discussed below) (Lin et al. 2013; Park et al. 2014;  
Yue et al. 2017; Yang et al. 2020). It was proposed that the 
cooperation between NLA and PHO2 controls the final pro-
tein level of PHT1 (Lin et al. 2013; Park et al. 2014). 
Intriguingly, different from Arabidopsis AtNLA, which is 
cleaved by P starvation-induced miR827 (Hsieh et al. 2009), 
rice OsNLA1 is not the target of miR827, but its upstream 
open reading frame (uORF) is essential for its P-induced tran-
scriptional expression (Lin et al. 2018; Yang et al. 2020). 

PHT2/3/4 transporters 
PHT2, PHT3, and PHT4 are localized to organelles, such as 
chloroplasts/plastids, mitochondria, and the Golgi apparatus. 
In Arabidopsis, PHT4;1, PHT4;2, and PHT2;1 control the Pi 
concentration in chloroplasts and regulate ATP synthesis 
and starch accumulation (Versaw and Harrison 2002;  
Karlsson et al. 2015; Miyaji et al. 2015). Similarly, mitochon-
drial localized PHT3 also plays a role in ATP metabolism 
(Zhu et al. 2012). Unexpectedly, PHT4;4 was shown to trans-
port ascorbate into chloroplasts required to tolerate high 
light stress (Miyaji et al. 2015). In rice, OsPHT2;1 is also char-
acterized as a chloroplast Pi influx transporter. 
Overexpression and loss of OsPHT2;1 result in altered Pi con-
tent in the shoot under low P conditions (Liu et al. 2020). 
How different organelles coordinate with each other to me-
diate cellular Pi homeostasis between the cytosol and orga-
nelles awaits more studies. 

Vacuolar Pi transporters—PHT5 and VPE 
Inside plant vegetative cells, the vacuole is the largest organ-
elle and stores about 70% to 95% of the intracellular Pi (Yang 
et al. 2017), thus serving as an important reservoir in buffer-
ing cytoplasmic Pi concentrations. The Pi influx into the 
vacuole is operated by Arabidopsis PHT5 or VPT and rice 
SPX-MFS (Wang et al. 2012; Liu et al. 2015, 2016). These trans-
porters contain N-terminal SPX and C-terminal MFS do-
mains. OsSPX-MFS1 controls Pi homeostasis in leaves and 
mediates Pi influx to yeast vacuoles when heterologously ex-
pressed (Wang et al. 2012; Liu et al. 2016). Loss of Arabidopsis 
PHT5;1/VPT1 reduces total Pi level but results in necrotic 
leaves during P replenishment after starvation (Liu et al. 
2015, 2016). Patch clamp analysis revealed a reduced Pi influx 
current in the vacuoles of vpt1 mutants compared with wild- 
type ones (Liu et al. 2015). In addition, decreased vacuolar Pi 
and increased cytosolic Pi levels were observed in pht5 mu-
tants by 31P-NMR analysis or FRET-based Pi sensor (Liu 
et al. 2016; Sahu et al. 2020). Notably, the expression of 
AtPHT1s is affected in pht5 mutants and PHT5 overexpressor, 
implying that coordination between the storage capacity and 
acquisition activity would be achieved to maintain cytosolic 
Pi concentration (Liu et al. 2016). Conversely, rice vacuolar Pi 
efflux proteins VPE1/2 operate Pi efflux from the vacuole. 
The vpe1/2 double mutant and overexpression plants show 
higher and lower vacuolar Pi levels, respectively (Xu et al. 
2019). Unlike VPE1/2, the expression of PHT5 is not respon-
sive to P status, suggesting that the activity of PHT5 might 
be regulated at the protein level (Liu et al. 2016; Xu et al. 
2019). Indeed, a recent study showed that the activity of 
PHT5 is impaired under Pi-deficient conditions or when 
the InsP/PP-InsP binding pocket in its SPX domain is mu-
tated, thus linking the cellular P status to modulate the vacu-
olar Pi storage activity (Luan et al. 2022). 

PHO1 
Arabidopsis PHO1 and its close homolog PHO1;H1 with Pi 
efflux activity were able to facilitate the unloading of Pi 
into the xylem apoplastic space and allow for the subsequent 
translocation of Pi to the shoots (Poirier et al. 1991;  
Hamburger et al. 2002; Arpat et al. 2012; Liu et al. 2012). 
The significance of PHO1 in the root-to-shoot Pi allocation 
is supported by the higher Pi accumulation in roots and re-
duced Pi levels in shoots of pho1 mutants in Arabidopsis 
and rice (Poirier et al. 1991; Secco et al. 2010; Che et al. 
2020). AtPHO1 also facilitates the transfer of Pi from mater-
nal tissues to developing seeds in the chalazal seed coat 
(Vogiatzaki et al. 2017). It is also expressed in leaf guard cells 
to play a role in the stomatal response to abscisic acid (ABA) 
(Zimmerli et al. 2012). In rice, OsPHO1;2 are involved in the 
allocation of Pi during grain filling (Che et al. 2020; Ma et al. 
2021). In Medicago truncatula, PHO1 mediates the transfer of 
Pi from nodule-infected cells to bacteroids (Nguyen et al. 
2021). Earlier results showed that the subcellular localization 
of Arabidopsis PHO1 is in endomembrane systems, such as  
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the Golgi and trans-Golgi networks, different from the plas-
ma membrane localization of OsPHO1;2 (Arpat et al. 2012;  
Liu et al. 2012; Che et al. 2020). Nevertheless, a recent report 
showed that AtPHO1 is constitutively internalized from the 
plasma membrane (Vetal and Poirier 2023). 

Arabidopsis PHO1 is negatively regulated at the transla-
tional level by its uORF (Reis et al. 2020) or at the transcrip-
tional level by WRKY6 (Chen et al. 2009). In rice, the 
OsPHO1;2 mRNA translation can be enhanced by interacting 
with its cis-natural antisense transcript (Jabnoune et al. 2013;  
Reis et al. 2021). PHO1 has a cytosolic N-terminal SPX domain, 
4 transmembrane domains, and a C-terminal EXS domain 
(Wege et al. 2016). The EXS domain is required for PHO1 
membrane localization and Pi efflux activity (Wege et al. 
2016). The SPX-spanning region of PHO1 facilitates its inter-
action with PHO2, which is responsible for PHO1 degradation 
(Liu et al. 2012). The absence of the SPX domain in PHO1 does 
not affect its efflux activity in transient expression assay. 
However, it fails to restore the impaired root-to-shoot Pi 
translocation activity in pho1 mutants, indicating that the 
SPX domain is crucial for PHO1’s functionality regulated by 
InsP/PP-InsP binding (Wege et al. 2016; Wild et al. 2016). 

PHO2-mediated degradation of PHO1 occurs in endomem-
branes and is involved in vacuole proteolysis mediated by 
multi-vesicular bodies (Liu et al. 2012). Similarly, rice 
OsPHO2 also interacts with OsPHO1 to direct its degradation 
via a multi-vesicular body–mediated pathway (Wang et al. 
2020), suggesting the conservation of the PHO2-PHO1 regula-
tory module among plants. The expression of PHO2 is nega-
tively regulated by miR399 (Bari et al. 2006) and positively 
regulated by the HD–ZIP III transcription factor PHB, which 
is inhibited by SHORT-ROOT (SHR) (Xiao et al. 2022). 
Studies have also revealed that OsCK2, a protein kinase, can 
enhance the degradation of OsPHO2 through the phosphor-
ylation of OsPHO2 by OsCK2α3 (Wang et al. 2020). 

SULTR-like phosphorus distribution transporter 
(SPDT) 
SPDT was first shown to play a crucial role in regulating P al-
location in rice (Yamaji et al. 2017). SPDT is a plasma- 
membrane-localized transporter that facilitates Pi transport 
and is expressed in the xylem region of both enlarged- and 
diffuse-vascular bundles of the nodes. Loss-of-function of 
SPDT in rice decreased P levels in grains but increased P levels 
in leaves. These findings indicate that SPDT functions as a 
switch in the rice node to allocate Pi to the grains preferential-
ly. Likewise, barley HvSPDT, mainly expressed in the nodes, 
also plays an essential role in loading P into grains (Gu et al. 
2022). In addition, the primary function of vascular cambium- 
localized Arabidopsis AtSPDT was shown to preferentially dis-
tribute Pi to the growing tissues (Ding et al. 2020). 

Phosphate translocators 
Phosphate translocators (PTs) localized in the inner envelope 
membrane of plastids play a crucial role in establishing the 

metabolic connection between the plastid stroma and cyto-
sol. Different from the Pi transporters mentioned above, 
these PT facilitate a precise counter-exchange of Pi with 
phosphorylated intermediates, including triose-phosphate/ 
phosphate translocator, phosphoenolpyruvate/phosphate 
translocator, glucose-6-phosphate/phosphate translocator, 
and pentose xylulose-5-phosphate/phosphate translocator. 
They were reported to be involved in vegetative tissue and 
gametophyte development, redox signaling in leaves, and ac-
climation responses of photosynthesis (Młodzińska and 
Zboińska 2016; Fabiańska et al. 2019). 

PHR1 as a central transcriptional regulator 
of PSRs 
Arabidopsis PHR1 or rice PHR2 encoding an MYB coiled-coil 
transcription factor is a central positive regulator of the PSRs. 
PHR1 was initially identified from a genetic screen in 
Arabidopsis harboring a reporter gene driven by the IPS1 pro-
moter highly induced by P starvation (Rubio et al. 2001). phr1 
mutants displayed multiple impairments in PSRs, including 
altered root-to-shoot Pi allocation, reduced accumulation 
of anthocyanin and carbohydrate, altered lipid composition 
and lipid remodeling genes, and impaired induction of sev-
eral P starvation–induced (PSi) genes under P starvation 
(Rubio et al. 2001; Nilsson et al. 2007; Pant et al. 2015). 
Arabidopsis PHR1 transcript and protein accumulation are 
weakly responsive to P starvation; however, its activity is 
regulated by interacting with SPX proteins coupled with 
the cellular P status (Rubio et al. 2001; Puga et al. 2014). 

PHR1 forms homodimers or heterodimers with its close 
homolog PHR1-like 1 (PHL1) and binds to P1BS elements pre-
sent in the promoter of many PSi genes (Rubio et al. 2001;  
Bustos et al. 2010; Jiang et al. 2019b). Arabidopsis PHR1 and par-
tially redundant PHL1 regulate the majority of transcriptional 
responses to P starvation, and P1BS elements are enriched in 
the promoter of PSi genes but not in P starvation-repressed 
(PSr) genes (Bustos et al. 2010). In P-starved phr1phl1 mutants, 
nearly 70% of PSi genes and 50% of PSr genes showed de-
creased and increased expression, respectively, suggesting a dir-
ect and indirect regulation of transcriptional activation and 
repression responses (Bustos et al. 2010). 

The other 3 Arabidopsis PHR1 homologs, PHL2, PHL3, and 
PHL4, have also been found to participate in PSRs to varying 
extents. PHL4 has a redundant function with PHR1/PHL1 but 
a minimal effect (Wang et al. 2018). PHL2 and PHL3 exhibit a 
specific interaction, and their expression is induced by P star-
vation, unlike PHR1 and PHL1. The transcriptomic analysis 
further suggests that PHR1/PHL1 and PHL2/PHL3 regulate 
various aspects of PSRs as separate regulatory modules 
(Wang et al. 2022). PHR1/PHL1 regulates genes involved in 
the cellular response to P starvation, Pi transport, and galac-
tolipid biosynthetic process, whereas PHL2/PHL3 regulates 
genes related to the cellular response to P starvation, trans-
lation, and ribosome biogenesis. In rice, Arabidopsis PHR1 
homolog OsPHR2 plays a crucial role in Pi homeostasis, and  
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overexpressing OsPHR2 increases PSi gene expression and re-
sults in P toxicity (Zhou et al. 2008). PHR1 homologs partici-
pating in cellular Pi homeostasis have also been identified in 
various plant species (Wang et al. 2022), suggesting that PHR 
proteins have a universal and predominant role in regulating 
PSRs. 

Despite not being as prevalent as PHR1, other transcription 
factors have been identified as regulators of PSRs to different 
extents. MYB62, as a negative regulator of PSRs, is involved in 
the interplay between PSRs and gibberellic acid responses 
(Devaiah et al. 2009), and WRKY75 is a positive regulator 
of Pi uptake and a subset of PSi genes (Devaiah et al. 
2007a). As mentioned, WRKY6 is a repressor of PHO1. It in-
teracts with 2 W-box motifs in the promoter of PHO1 and 
is degraded by 26S proteasome to relieve the suppression 
upon P starvation (Chen et al. 2009). Basic Helix-Loop-Helix 
32 and zinc finger of Arabidopsis thaliana 6 were also re-
ported to have roles in regulating Pi content and root archi-
tecture (Chen et al. 2007; Devaiah et al. 2007b). 

Intracellular P sensing and signaling 
SPX proteins as intracellular P sensors 
Proteins harboring a hydrophilic and poorly conserved SPX 
domain have been identified in many eukaryotes, such as 
yeasts, plants, and mammals (Secco et al. 2012). Many yeast 
SPX domain–containing proteins are involved in Pi homeosta-
sis, including Pi transporters Pho87, Pho90, and Pho91; poly-
phosphate synthase subunits of vacuole transporter 
chaperone VTC2-5; the cyclin-dependent kinase inhibitor 
Pho81; and the glycerophosphocholine phosphodiesterase 1 
(Secco et al. 2012; Desfougères et al. 2016). Yeast Pho87 and 
Pho90 are plasma membrane–localized low-affinity Pi influx 
transporters, and their SPX domains act as auto-inhibitory do-
mains to regulate Pi import (Hürlimann et al. 2009). The SPX 
domain of vacuolar Pi exporter Pho91 also regulates its activity 
through binding with PP-InsP (Potapenko et al. 2018). 
Additionally, PP-InsP-dependent binding on the SPX domains 
of yeast VTC complex is required for its polyphosphate poly-
merase activity (Gerasimaite et al. 2017). 

Arabidopsis SPX1 and SPX2 are nuclear proteins and func-
tion to repress PHR1 activity through physical interaction in 
the nucleus to sequester PHR1 from binding to the P1BS 
element of PSi genes (Fig. 4A) (Duan et al. 2008; Puga et al. 
2014). Notably, the interaction between PHR1 and SPX1/2 
highly depends on the cellular P status, with a strong inter-
action under P-sufficient conditions. Intriguingly, SPX1/2 
transcription is induced by PHR1 during P starvation, reveal-
ing a negative feedback regulatory loop between SPX1/2 and 
PHR1 (Puga et al. 2014). This mechanism is conserved in rice; 
OsSPX1/2 interacts with OsPHR2 to suppress the binding of 
OsPHR2 to the P1BS element (Zhou et al. 2008; Wang et al. 
2014b). Other than in the nucleus, Arabidopsis SPX4 and 
rice OsSPX4 and OsSPX6 interact with PHR in the cytoplasm 
to restrain the nuclear translocation of PHR when P is replete 
(Lv et al. 2014; Zhong et al. 2018). Upon P deficiency, OsSPX4 

and OsSPX6 undergo ubiquitin-mediated proteasomal deg-
radation, thus releasing OsPHR2. 

InsP8 as a metabolic messenger for intracellular 
P signaling 
Pi was initially considered to be a signaling molecule because 
of the attenuation of PSRs by phosphite (Phi, a nonmetabo-
lized homolog of Pi) (Ticconi et al. 2001; Varadarajan et al. 
2002). However, this concept was revised when the InsP/ 
PP-InsP binding site of the SPX domain was revealed after 
solving the structure (Wild et al. 2016). The conserved amino 
acid residues defined as Pi binding cluster and lysine surface 
cluster together in the α-helix 2 and 4 of SPX domains form a 
positively charged surface, with higher affinities for InsP6 and 
5-InsP7 than Pi. Moreover, the binding of InsP6 and 5-InsP7 

but not Pi to OsSPX4 can facilitate the interaction with 
OsPHR2, with 5-InsP7 showing a higher affinity than InsP6 

(Wild et al. 2016), supporting the notion that PP-InsP rather 
than Pi is the signaling molecule representing intracellular P 
status. 

In Arabidopsis, the synthesis and hydrolysis of 5-InsP7 and 
1,5-InsP8 are catalyzed by 2 bifunctional enzymes, inositol 
1,3,4-trisphosphate 5-/6-kinase ITPK1/2 and diphosphoinosi-
tol pentakisphosphate kinase VIH1/2, respectively (Desai 
et al. 2014; Laha et al. 2015, 2019; Zhu et al. 2019; Whitfield 
et al. 2020; Riemer et al. 2021). The activity of ITPK1/2 and 
VIH1/2 can respond to changes in cellular ATP and Pi levels: 
high ATP favors kinase activity to synthesize 1,5-InsP8, as ATP 
levels decrease in response to P starvation, and ADP phos-
photransferase activity of ITPK1 and phosphatase activity 
of VIH1/2 are stimulated to catalyze the hydrolysis of 
5-InsP7 and 1,5-InsP8 (Laha et al. 2019; Zhu et al. 2019;  
Whitfield et al. 2020; Riemer et al. 2021). Inhibition of 
VIH1/2 phosphatase activity by Phi may explain the early ob-
servations of the Phi-mediated suppression of PSRs. 
Arabidopsis vih1vih2 mutants displaying severe growth re-
tardation exhibit an undetectable level of InsP8 but overaccu-
mulation of Pi and constitutive expression of PSi genes when 
grown under P-sufficient conditions, implying that InsP8 is 
critical for plants to sense cellular P status (Dong et al. 
2019b; Zhu et al. 2019). Furthermore, whereas the levels of 
InsP6 and InsP7 were relatively unchanged in response to P 
starvation, the level of InsP8 was significantly decreased 
(Kuo et al. 2018; Dong et al. 2019a). 1,5-InsP8 but not 
5-InsP7 can restore the interaction between SPX1 and 
PHR1 in the Pi-depleted cell lysate (Dong et al. 2019b). 
These findings indicate that InsP8 is a signaling molecule 
communicating the cellular P level to control cellular Pi 
homeostasis through the SPX domain. A recent yeast study 
also revealed that 1,5-InsP8 specifically inactivates Pho81 
through its SPX domain and that the reduction of 1,5-InsP8 

upon P starvation triggers the yeast PHO pathway 
(Chabert et al. 2023). The authors further proposed 
1,5-InsP8 as a universal signaling molecule in P sensing and 
signaling pathways among fungi, plants, and mammals 
(Chabert et al. 2023). It is worth noting that defective  
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Intracellular and systemic P signaling

B

A

P sensing at the root  p

Figure 4. Intracellular and systemic signaling and local sensing to P availability at root tips. A) During P sufficiency, the synthesis of InsP8 is favored, 
which enables the interaction between SPX and PHR, suppressing PSi genes. Excess Pi in the cytosol is transported into the vacuole by PHT5. In the 
seeds, P is stored as InsP6 (IP6) in the vacuole by MRP5. PHO2 and NLA promote the degradation of Pi transporters PHT1 and PHO1 via ubiquitina-
tion (ub). Upon P deficiency, InsP8 (IP8) level is reduced. PHR is released and binds to the P1BS element as a dimer to activate PSi genes. PHF1 
facilitates the targeting of PHT1 Pi transporters to plasma membranes. miR399 and miR827 repress PHO2 and NLA, respectively, to increase the 
abundance of PHT1 and PHO1. AT4/IPS1 transcripts can sequester miR399 to antagonize the effects of miR399. As indicated, miR399, miR827, sugar, 
strigolactone (SL), and cytokinin (tZ and iP) are potential systemic signals traveling via vascular tissues. B) Under P-sufficient conditions, ARSK1 is 
induced to phosphorylate RAPTOR1B, stabilizing the TOR1 complex and promoting root growth. Under P-deficient conditions, STOP1-ALMT1 
modulates LPR1 activity, which controls Fe distribution in the root apical meristem, blocking SHR cell-to-cell movement by callose deposition. 
Meanwhile, the reception of CLE14 peptide activates POL/PLL1 phosphatases to inhibit root cell proliferation at transcript levels. Abbreviations: 
CALS, callose synthase; ROS, reactive oxygen species. Created with BioRender.com.   
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vacuolar storage of InsP6, as seen in mrp5 mutants, results in 
elevated InsP7 and InsP8 levels (Desai et al. 2014; Riemer et al. 
2021), suggesting InsP6 compartmentation may also play a 
role in P signaling. 

Recent studies have investigated the structure-functional 
relationship of the SPX-PP-InsP-PHR complex. InsP8 pro-
motes the binding between the InsP8-SPX1 complex and 
the coiled-coil domain of PHR1 (Ried et al. 2021). In the pres-
ence of InsP6 (used as a substitute for InsP8), OsSPX1 inter-
acts with the MYB and the coiled-coil domains of OsPHR2 
to form a complex with 1:1 stoichiometry, which disrupts 
the OsPHR2 dimer and further inhibits its binding to the 
P1BS element (Zhou et al. 2021). On the other hand, Guan 
et al. (2022) proposed that upon binding with InsP6, 
OsSPX2 forms a domain-swapped dimer and blocks the 
Myb and coiled-coil domains of OsPHR2 to abolish 
OsPHR2 dimerization and DNA binding; the SPX-InsP6-PHR 
complex was described as a 2:2:2 complex. This discrepancy 
might be due to the difference in conformational changes be-
tween different SPX proteins (Guan et al. 2022). 

P sensing and signaling at the root tips 
Root tips are critical in sensing environmental P status and 
regulating root meristem activities in response to external 
stimuli. P starvation causes premature differentiation in the 
root meristem, inhibiting primary root growth (Sanchez- 
Calderon et al. 2005). The increase of cell wall stiffness in 
the root transition zone can be observed 2 hours after plants 
transfer to P-deficient conditions. This results in the restric-
tion of root cell extension and inhibition of root growth 
(Balzergue et al. 2017). LPR1 and LPR2, 2 multicopper oxi-
dases with ferroxidase activity, which function with PDR2, 
a P5-type ATPase, are involved in the control of iron (Fe) dis-
tribution in the root apical meristem (RAM) (Reymond et al. 
2006; Svistoonoff et al. 2007; Ticconi et al. 2009; Müller et al. 
2015; Naumann et al. 2022). Intriguingly, Fe distribution in 
P-depleted roots overlays with the callose deposition pattern 
in the cell wall, restricting the movement of SHR for stem cell 
specification (Müller et al. 2015). Loss of LPR significantly re-
duced class III peroxidase activity, which might affect 
ROS-mediated callose deposition, leading to cell wall soften-
ing (Müller et al. 2015; Balzergue et al. 2017). These studies 
demonstrate the role of the LPR1-PDR2 module in mediating 
Fe- and peroxidase-dependent P starvation–induced root 
meristem differentiation (Fig. 4B) (Balzergue et al. 2017;  
Mora-Macias et al. 2017). Later studies revealed the involve-
ment of PDR2-mediated ER stress-dependent autophagy in 
controlling Pi starvation–induced root growth retardation 
(Naumann et al. 2019). 

Organic acids such as malate and citric acid in root exu-
dates are needed for solubilizing metal ion-conjugated Pi in 
soils (Ryan et al. 2001). The activation of ALMT1, a malate ef-
flux channel, by SENSITIVE TO PROTON RHIZOTOXICITY 
(STOP1) is not only critical for aluminum tolerance (Liu 
et al. 2009; Sawaki et al. 2009) but also influences malate ex-
port in the apoplast of root tips and Fe distribution. The 

reduction of LPR1 mRNA in stop1 and almt1 mutants and in-
effective malate treatment on the long primary root pheno-
type in lpr1 indicate that ALMT1-mediated malate-triggered 
responses promote LPR1-dependent root meristem differen-
tiation (Fig. 4B) (Balzergue et al. 2017). 

Arabidopsis CLAVATA3/ENDOSPERM SURROUNDING 
REGION 14 (CLE14) is a low-P–induced peptide signal found 
specifically in the cortex, endodermis, and stele of RAM, func-
tioning downstream of LPR1/LPR2. Applying CLE14 peptides 
can trigger RAM differentiation even under P-sufficient con-
ditions but does not affect callose deposition. Instead, CLE14 
perceived by CLAVATA 2 (CLV2) and PEP1 RECEPTOR2 
(PEPR2) activates 2 phosphatases, POLTERGEIST (POL) and 
POL-LIKE1, to repress SHR and SCARECROW at mRNA levels 
(Fig. 4B) (Gutierrez-Alanis et al. 2017); however, the under-
lying mechanism is still missing. Moreover, the crosstalk of 
these signaling pathways with phytohormone-mediated 
root growth regulation remains to be studied. 

Although Fe distribution in root tips determines the root 
meristem activities, an Fe-independent regulatory pathway 
is suggested because the reduction of root growth was ob-
served before changes in Fe accumulation in the short-term 
responses to P deficiency. Arabidopsis-root-specific kinase 1 
(ARSK1), a receptor-like kinase, is expressed explicitly in 
P-sufficient roots and can phosphorylate regulatory- 
associated protein of TOR 1B (RAPTOR1B), a scaffold protein 
of the target of rapamycin complex 1 (TOR1) that integrates 
environmental cues to modulate cellular growth (Wu et al. 
2019). Overexpressing ARSK1 or phosphorylated RAPTOR1B 
inhibited P deficiency–triggered primary root retardation, in-
dicating the crucial role of ARSK1 in maintaining primary 
root growth under P-sufficient conditions via stabilizing 
TOR1 complex (Fig. 4B) (Cho et al. 2023). Therefore, 
PDR2-LPR1 and STOP1-ALMT1 modules are activated by 
low P and collectively regulate RAM activities after gradually 
reducing ARSK1 levels. 

Systemic signaling 
In addition to local sensing and signaling, optimizing adap-
tive responses to P starvation requires communication be-
tween roots and shoots via systemic signals traveling long 
distances in the vasculature. Several molecules are consid-
ered long-distance signals that regulate PSRs systemically 
(Fig. 4A). 

miR399 and miR827 are evolutionarily conserved and in-
duced explicitly by P starvation (Fujii et al. 2005; Hsieh 
et al. 2009; Lin et al. 2018). Their levels are highly increased 
in phloem sap during P starvation (Pant et al. 2008, 2009), 
suggesting their potential roles as P starvation signals moving 
from shoot to root to coordinate the shoot Pi demand and 
root Pi acquisition and translocation activity. miR399 and 
its target gene PHO2 are coexpressed in vascular tissues 
(Fujii et al. 2005; Aung et al. 2006; Chiou et al. 2006). 
Suppression of PHO2 by overexpression of miR399 results 
in overaccumulation of Pi in shoots due to increased uptake 
and root-to-shoot translocation of Pi (Chiou et al. 2006).  
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The wild-type root grafted with miR399 overexpressing scion 
shows a high level of mature miR399, suppressing root PHO2 
transcripts and enhancing shoot Pi accumulation (Lin et al. 
2008; Pant et al. 2008). Recently, the molecular basis underlying 
the miR399-mediated long-distance silencing was uncovered, 
by which miR399f/miR399f* duplex moves as a mobile entity 
and is unloaded in phloem pore pericycle in the root through 
plasmodesmata in a dose-dependent manner independent of 
its biogenesis, sequence context, and length (Chiang et al. 
2023). Arabidopsis miR827 has also been reported to move 
from shoot to root (Huen et al. 2017). It is interesting to 
note that miR827 shifted its target preference during evolution; 
it targets NLA in Brassicaceae and Cleomaceae but targets 
PHT5 homologs in other species (Lin et al. 2018). 

Plants accumulate sugars and starch in leaves upon P star-
vation (Nielsen et al. 1998; Nilsson et al. 2007), and the induc-
tion of PSi genes increased with increasing concentrations of 
exogenous sugars (Karthikeyan et al. 2007). Increased sucrose 
loading and shoot-to-root translocation enhanced the ex-
pression of PSi genes (Lei et al. 2011; Dasgupta et al. 2014); 
in contrast, impairment of sucrose translocation via stem 
girdling of white lupin suppressed the expression of PSi genes 
in Pi-starved roots (Liu et al. 2005). These findings support 
the systemic role of sugar in P signaling, but the underlying 
mechanism requires further investigation. 

Phytohormones also play a role in P signaling. Strigolactones 
(SLs), a group of carotenoid-derived terpenoid lactones, inhibit 
shoot branching in plants (Gomez-Roldan et al. 2008;  
Umehara et al. 2008). It has been demonstrated that the re-
duced shoot branching under P starvation could be attributed 
to the increased levels of SL in xylem sap (Kohlen et al. 2011), 
indicating a systemic role for SLs in regulating shoot branching 
during P starvation to coordinate the shoot development with 
nutrient supply from roots. N6-(Δ2-isopentenyl) adenine (iP) 
and trans-zeatin (tZ) are primary forms of natural isoprenoid 
cytokinins in Arabidopsis with strong physiological activities 
(Sakakibara 2006). Early studies proposed cytokinins to be 
negative regulators of PSRs because the exogenous application 
of cytokinin suppresses the expression of PSi genes in 
Arabidopsis (Martín et al. 2000; Wang et al. 2006). iP and tZ 
are predominantly present in the phloem and xylem, respect-
ively, suggesting cytokinins are able to function as systemic sig-
nals (Hirose et al. 2007). Silva-Navas et al. (2019) reported that 
even though tZ has a greater substantial repression effect on 
PSR genes, an increase in the cis-zeatin (cZ):tZ ratio in 
P-deprived plants to improve root architecture and sustain ne-
cessary cytokinin responses was observed. Nevertheless, the 
detailed systemic role of cytokinins in response to P starvation 
remains to be determined. 

Involvement of PSR factors in biotic 
interaction 
Plants live with a diverse composition of microorganisms, 
and their relationship can be affected by plant internal nutri-
ent levels or immune responses. It has been shown that plant 

P status significantly affects the interaction with beneficial 
and pathogenic microbes (Paries and Gutjahr 2023). 
Moreover, recent evidence reveals the involvement of PSR 
genes in regulating biotic relationships, providing profound 
insights into plant-microbe interaction. 

Regulation of arbuscular mycorrhizal (AM) symbiosis 
via SPX-PHR modules 
Due to the scarcity of Pi in soil, plants not only modulate Pi 
uptake efficiency but also form beneficial mutualistic rela-
tionships with microbes to enhance Pi acquisition (Fig. 5). 
Arbuscular mycorrhizal fungi (AMF) are soil-born microbes 
that can establish endophytic symbiosis with more than 
80% of land plant species and provide mineral nutrients via 
highly branched structures, termed arbuscules, in root cor-
tical cells in exchange for carbon source for survival (Chiu 
and Paszkowski 2019). Interestingly, P1BS elements are pre-
sent in the promoter regions of several AM symbiosis- 
responsive genes, such as symbiosis-induced PHT1 genes 
(Chen et al. 2011a; Lota et al. 2013). Rice PHR2 is activated 
in arbuscule-containing cells (Shi et al. 2021), and overexpres-
sing OsPHR2 induces symbiosis-responsive genes even with-
out fungal infection (Shi et al. 2021; Das et al. 2022). Mutation 
at 3 rice PHR proteins severely impairs AMF colonization and 
arbuscular development. It alters the expression pattern of 
more than 60% symbiosis-responsive genes, including genes 
involved in pre-contact signaling, fungal entry, arbuscular de-
velopment, and nutrient exchange (Shi et al. 2021; Das et al. 
2022), demonstrating that PHR also functions in the center 
of AM symbiotic regulatory network (Fig. 5C). 

As mentioned, modulation of PHR activity via the inter-
action with SPX proteins is widely validated in many plant 
species. Similarly, Medicago SPX1 and SPX3 are induced by 
low P, and SPX-PHR modules work in a P-dependent man-
ner. In mycorrhizal roots, the activation of these 2 SPX genes 
is more confined to arbuscule-containing cells. Although 
the colonization efficiency in spx1spx3 mutants is reduced, 
the enrichment of large arbuscules and the repression of ar-
buscular degeneration-related genes indicate that these 2 
genes function redundantly in the control of arbuscular 
degradation (Wang et al. 2021). In addition, MtSPX1 and 
MtSPX3 control SL biosynthesis genes, the critical phyto-
hormone in modulating shoot branching and AMF hyphae 
branching. The effects of MtSPX1 and MtSPX3 on the regu-
lation of PSR and symbiosis were shown to be partially 
through the control of SL levels (Wang et al. 2021). In con-
trast, in rice spx1/2/3/5 quadruple mutants, AMF coloniza-
tion efficiency and arbuscular abundance are increased (Shi 
et al. 2021). In tomatoes, Slspx1 mutants enhance AM col-
onization under Pi-replete conditions, whereas overexpres-
sion of SlSPX1 inhibits the formation of AM symbiosis (Liao 
et al. 2022). Further characterization is required to deter-
mine whether the distinct effects of SPX protein are due 
to the difference of family members or the interacting part-
ners in different species.  
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Control of rhizobium-mediated nitrogen fixation via 
P status 
Rhizobium-mediated nitrogen (N) fixation is critical for N 
supply and cycling in agriculture and ecosystems. In nodulat-
ing legumes, P supply to rhizobia is essential for maintaining 
nodule function and mutualistic relationship. Depletion of 
environmental P impairs nodulation and N fixation (Tang 
et al. 2001; Valverde et al. 2002). Soybean (Glycine max) 
PHT1;14, a high-affinity PHT1 family member, is induced by 
low P treatment, mainly in the junction area between roots 
and young nodules and in the nodule vascular bundles. It 
is one of the key players in transporting plant Pi to nodules 
(Qin et al. 2012). In addition to taking up Pi indirectly from 
host plants, Pi can be acquired directly by nodules from 
growth environments. Soybean PHT1;1 is upregulated in 
the plasma membrane of the outer cortex and the fixation 

zone of nodules in P-depleted roots. Overexpressing 
GmPHT1;1 increases the fresh weight of nodules and the nitro-
genase activity both under normal and P-deficient conditions, 
leading to the enhancement of N and P accumulation in 
plants and the final yield, supporting the significance of Pi 
transporters in Pi absorption by nodules and N fixation 
(Chen et al. 2019). GmPHR1 and GmPHR4 are expressed in 
the entire nodules and non-N-fixation region, respectively. 
Overexpressing GmPHR1 enhances the expression of 
GmPHT1;11 in nodules, leading to an increase in nodule Pi con-
tent and the size of the nodule, showing the importance of 
PHR-PHT1 module in nodules (Lu et al. 2020). 

SPX proteins also regulate Pi homeostasis in nodules but 
not always via their association with PHR proteins. Soybean 
SPX5 and SPX8 are predominantly expressed in nodules 
and upregulated by P deficiency. Overexpressing either 
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GmSPX5 or GmSPX8 increases the number and the fresh 
weight of nodules, resulting in higher N and P content in no-
dules than in the wild type (Zhuang et al. 2021; Xing et al. 
2022). GmNF-YC4, a member of nuclear factor Y transcrip-
tion factors, physically interacts with GmSPX5, and the asso-
ciation with GmSPX5 enhances the binding capability of 
GmNF-YC4 to the promoters of downstream target genes, 
such as asparagine synthetase-related genes. The phenotype 
of nodulation in overexpressing GmNF-YC4 is largely overlaid 
with overexpressing GmSPX5, supporting the involvement of 
GmSPX5-GmNF-YC4 in nodule development and functions 
(Zhuang et al. 2021). 

Modulation of plant immunity against pathogens via 
P status 
Excess P supply or Pi overaccumulation reduced the 
expression of defense-related genes, increasing the suscepti-
bility to fungal pathogen Magnaporthe oryzae in rice 
(Campos-Soriano et al. 2020) and indicating the influence 
of external P in plant responses to pathogens. In contrast, 
P deficiency also suppresses plant immune response to pro-
mote the association with plant growth-promoting bacteria, 
which might facilitate Pi uptake efficiency or relieve the pres-
sure of P scarcity (Tang et al. 2022). Thus, Pi uptake is tightly 
regulated to optimize the cellular P content for recruiting 
beneficial microbes. Among Arabidopsis PHT1 members, 
PHT1;4 is the major player in Pi uptake after recovering 
from P deficiency. Mutation at PHT1;4 reduces the suscepti-
bility to the pathogen and upregulates pathogen elicitor- 
induced defense-related genes only under low P conditions 
(Dindas et al. 2022). Coincidently, overexpressing rice PT8 re-
duces the pathogen resistance (Dong et al. 2019b). These 
studies reveal the direct link between PHT1-dependent Pi 
uptake and immune responses. 

The influences of PSR genes on the structure of root mi-
crobe communities also point out the connection between 
Pi signaling and immune responses. Results of transcriptomic 
and chromatin immunoprecipitation-sequencing analyses 
disclose that PHR1 regulates not only PSR genes but also a 
set of salicylic acid– and jasmonic acid–inducible genes, 
which are under the transcriptional control of PHR1 via 
the direct binding on the promoter regions (Castrillo et al. 
2017). Moreover, the flagellin peptide flg22-responsive de-
fense genes are upregulated in phr1phl1 mutants. FERONIA 
(FER), a Catharanthus roseus receptor-like kinase 1-like 
(CrRLK1L) family member, and its peptide ligand, rapid alka-
linization factor 23 (RALF23), can inhibit flg22-induced im-
mune signaling (Stegmann et al. 2017). Interestingly, 
RALF23 and several RALF genes are also the direct targets 
of PHR1 that are upregulated by low P treatment. Studies 
of overexpressing RALF23 or fer mutants support the involve-
ment of the FER-RALF23 module in P starvation-mediated 
immune inhibition. All these observations together revealed 
that PHR1 has a negative role in regulating immune re-
sponses through the enhancement of the FER-RALK module 
(Fig. 5D) (Tang et al. 2022). 

Challenges and perspectives 
Facing the limitation of Pi availability in nature, an increase in 
P fertilizer supply promotes crop yield, but plants acquire less 
than 30% of it (Vance et al. 2003). Tremendous progress has 
been made in establishing the regulatory network of Pi sens-
ing and signaling over years of study, providing opportunities 
to accelerate high PUE crop development. Yet, many funda-
mental questions and gaps remain if such information is to 
be usefully translated to agriculture and ecological systems. 
For example, the underlying mechanisms of apoplastic re-
sponses to low external P to adjust the growth in root tips 
have been established; however, it is still unclear whether 
other plant cells can also sense extracellular P availability 
and how. Concerning intracellular sensing, the perception 
of InsP8 by SPX proteins determines the activation of 
PHR-mediated PSRs (Wild et al. 2016; Ried et al. 2021). 
Multiple enzymes are required to catalyze PP-InsPs synthesis, 
but understanding of the coordination of the enzyme activ-
ities in response to extra- or intracellular P levels remains lim-
ited. In addition, the direct link between external and internal 
P sensing is still missing. 

Many studies have focused on increasing Pi acquisition to 
improve PUE. These include modifying root architecture to 
enlarge root surface area for Pi scavenging (Jia et al. 2018;  
Sun et al. 2018; Wang et al. 2019), enhancing the expression 
of PHTs to increase Pi acquisition and translocation (Song 
et al. 2014; Ouyang et al. 2016; Pontigo et al. 2023), modulat-
ing the secretion of root exudates involved in soil Pi solubil-
ization (Pang et al. 2018; Robles-Aguilar et al. 2019; Wen et al. 
2019) and promoting the interaction of plants with beneficial 
microbes to extend Pi source (Wen et al. 2019; Yahya et al. 
2021). 

Natural germplasms are valuable genetic resources for 
identifying novel alleles to improve the current cultivars’ 
PUEs. Phenotypic and molecular characterization of various 
germplasm lines in crop species identified many quantitative 
trait loci associated with low P tolerance. Genome-wide asso-
ciation studies of soybean germplasms pinpointed a variant 
in the uORF of GmPHF1 that contributes to P acquisition di-
versity (Guo et al. 2022b). Rice phosphate-starvation toler-
ance 1 (PSTOL1) is an enhancer of root growth and Pi 
uptake of aus-type cultivars grown in poor soils (Wissuwa 
et al. 2002; Gamuyao et al. 2012). Sequencing PSTOL1 alleles 
in wild rice (Oryza rufipogon) grown in diverse environments 
found novel alleles associated with high Pi content, which 
might be used for breeding high PUE rice cultivars (Neelam 
et al. 2017). Ectopic expression of OsPSTOL1 in wheat en-
hanced plant growth and root plasticity and promoted the 
induction of PHR-mediated P-starvation responses under 
low P conditions (Kettenburg et al. 2023). However, overex-
pressing wheat endogenous TaPSTOL homolog decreased 
PUE due to reduced yield but increased P accumulation in 
grains (Milner et al. 2018). Genome-wide association studies 
of soybean germplasm identified a variant in the uORF of 
soybean PHF1 as a key determinant for P acquisition  
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efficiency in the field (Guo et al. 2022b). Nevertheless, most 
studies were conducted in greenhouses. Reproducing the 
traits in field conditions and integrating the knowledge on 
P sensing/uptake/recycling to improve plant PUE will be 
the main challenges for further application in breeding 
programs. 

Coordinated acquisition and distribution of P and other 
nutrients are also required for optimizing plant growth and 
development. Thus, the interplay between P and other nutri-
ents must be considered when modulating PUE via genetic 
strategies. Perception of nitrate strengthens the interaction 
of the nitrate sensor, OsNRT1;1B, with OsSPX4, resulting in 
OsSPX4 degradation, which leads to the activation of 
OsPHR2-mediated PSRs and NIN-like protein NLP3- 
mediated nitrate signalings (Hu et al. 2019). Meanwhile,  
Medici et al. (2019) identified PHO2 as another integrator 
of N signals to PSR pathways. These findings give insights 
into nitrate-regulated PSR responses, but little is known 
about the effects of ammonium and the role of P signaling 
in nitrate responses. Additionally, diverse functions of SPX 
and PHR homologs imply the different SPX-PHR modules 
present in vivo to exert transcriptional regulation. The under-
lying mechanism for controlling SPX-PHR formation and 
their roles in the interplay between P and other nutrient sig-
naling requires further investigation. 

As mentioned, Fe mediates P sensing in the root tips 
(Fig. 4B). Reciprocally, transcriptomic analysis also revealed 
the importance of P level in regulating Fe deficiency- or 
excess-responsive genes (Sanchez-Calderon et al. 2005;  
Thibaud et al. 2010). Rice HRZ, a Fe starvation-induced ubi-
quitin E3 ligase, mediates the protein degradation of 
OsPHR2. Conversely, OsPHR2 negatively regulates the HRZ 
transcript level to modulate Fe-deficient responses (Guo 
et al. 2022a), pointing out the regulatory loop in P-Fe inter-
action. Zn-dependent regulation of Pi accumulation has 
also been observed (Khan et al. 2014; Kisko et al. 2018), but 
knowledge about the underlying signaling and the coordin-
ation of P and Zn homeostasis is still lacking. 

In terms of the role of plant P status in plant-microbe inter-
action, it is crucial to integrate PSR and immune responses 
for recruiting a specified set of microbes for survival. How 
to identify friends or foes and balance pathogen resistance 
and symbiotic interaction are fascinating topics about which 
little is known. Interestingly, PHR can directly activate genes 
required for AM symbiosis but repress genes involved in de-
fense, suggesting that PHR appears to be a hub that coordi-
nates immunity and symbiosis. However, the diversity and 
complexity of soil microbe composition challenge the inte-
gration of genetic studies and crop breeding programs. 
Large-scale studies and field trials are required to elucidate 
the interaction between P signaling and immune responses. 

In nature, plants undergo multiple stresses. The rising tem-
perature and CO2 levels aggravate the pressure and fre-
quency of such stresses. However, the coordination 
between Pi signaling and other stress responses is rarely 

discussed. Recent research reported that overexpressing a 
chloroplast-localized Pi importer resulted in the overaccu-
mulation of chloroplast Pi and phytic acids, leading to 
growth retardation under CO2-elevated conditions (Bouain 
et al. 2022). This result points out the importance of chloro-
plast Pi homeostasis in maintaining plant growth when 
plants face elevated CO2 levels. Despite being a challenging 
topic, more studies must be conducted to investigate the 
interplay between P and other stresses and underlying me-
chanisms, which need to be scrutinized in the field when ap-
plied to crop improvement. 
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