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Countably additive path space measures are constructed; in two space-time dimensions, 
to give rigorous path integral formulas representing the fundamental solution of the Cauchy 
problem for the Dirac equation as well as the retarded and advanced propagators for the 
Dirac particle. The theory also applies to a free particle, a particle in a central electric field 
and a particle in parallel electric and uniform magnetic fields in four-dimensional space-time. 
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§ 1. Introduction 

The fundamental physical and mathematical concepts which underlie path inte
gral were first developed by Feynman1

),z) in nonrelativistic quantum mechanics, with 
a suggestion of Dirac's remarks.3

l In pure-imaginary-time quantum mechanics Kac4
l 

has given a mathematical realization of it in terms of the Wiener measure.5
l Namely 

he established a rigorous path integral formula representing the solution of the heat 
equation for the quantum Hamiltonian of a nonrelativistic spinless particle in a scalar 
potential, which is called the Feynman-Kac formula. 5

l Its further extension to the 
Hamiltonian with both scalar and vector potentials is the Feynman-Kac-Ito formula,5

l 

which involves the Ito integral.5
l The Laplace transform of this formula for the 
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Path Integral Approach to Relativistic Quantum Mechanics 145 

Schrodinger operator in four-dimensional space with respect to a fifth variable as the 
fictitious time gives rise to a path integral representation of the Euclidean propagator 
for a Klein-Gordon particle in an external electromagnetic field. 

In Refs. 11) ~ 13), we have made a path integral approach to relativistic quantum 
mechanics and established rigorous path integral formulas for the two-space-time
dimensional Dirac equation. We have constructed countably additive tneasures, on 
the space of the continuous paths, which differs from the Wiener measure. In our 
treatment the time variable is real. It makes a contrast with Kac's approach regard
ing the heat equation as the Schrodinger equation in pure-imaginary-time quantum 
mechanics. The aim of this article is to present the full story in a coherent way, 
recapitulating the basic physical and mathematical ideas. We also include some 
recent resule4l'35l which improves on the support property of the path space measures 
constructed in the previous work. 

Our construction of these countably additive path space measures follows 
Nelson's method10l of construction of the Wiener measure. The crucial step is to 
prove continuity of a certain linear functional defined, on the Banach space of the 
continuous functions on the path space, through the fundamental solution for the free 
Dirac equation. The problem is connected with the L 00 well-posedness of the Cauchy 
problem for a hyperbolic system of the first order with two independent variables~ 
Then the Riesz-type representation theorem assures this ·linear functional to bring 
forth a countably additive measure on the path space. 

The path space measures constructed turn out to ·be concentrated on the set of the 
Lipschitz continuous paths which have differential coefficients of magnitude equal to 
the light velocity in every finite time interval with the possible exception of finite 
instants of time. So the trajectory of the particle shuttles back and forth in one
dimensional space with"slopes of the light velocity; it is a zigzag of a finite number of 
straight segments in each finite time interval. At the end points of the segments the 
particle changes its direction of motion. This property may remind us of the "Zitter
bewegung"7l of the Dirac particle. 

These path space measures are then used to represent by path integral the 
fundamental solution of the Cauchy problem for the Dirac equation with vector and 
scalar potentials as well as the retarded and advanced propagators, both in two 
space-time dimensions. The path integral formulas established show a dose analogy 
with the Feynman-Kac formula and the Feynman-Kac-Ito formula for the heat 
equation. 

The theory can be extended to a certain hyperbolic system of the first order/ 1
) but 

does not apply to the Dirac equation in four space-time dimensions except for three 
special cases. These are the free Dirac equation, the Dirac equation for a central 
electric field and the Dirac equation for parallel electric and uniform magnetic fields, 
for they are reduced to equations with two independent variables by use of, re
spectively, the Radon transform, the spherical coordinates and the Fourier transform 
in one variable together with an Hermite function expansion in another variable. 
Nor it applies to the pure-imaginary-time or Euclidean Dirac equation. 

Finally we add here brief mention of path integral for a relativistic spinless 
particle in an electromagnetic field. A path integral formula is obtained36l'37l for the 
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146 T. Ichinose and H. Tamura 

solution of the pure-imaginary-time Schrodinger equation with its Weyl quantized 
Hamiltonian. 

We begin § 2 with a heuristic argument deriving the path integral for the Dirac 
equation, in order to get an intuitive understanding of the subject of this article. 
Section 3 is devoted to path integral representations for the fundamental solutions of 
two Cauchy problems for the Dirac equation and for the retarded and advanced 
propagators, in two space-time dimensions. The proof is given in § 4. Section 5 is 
concerned with the path integral for the Dirac equation in four space-time dimensions. 

The.natural units are used in which both the light velocity c and the constant n 
= h/27r with Planck's constant h equal 1. 

Cd is the vector space of complex d -column-vectors and ( Cd)' that of complex 
d-row-vectors. Md( C) is the vector space of complex d X d matrices. The norm of 
a d X d matrix N ~(Njk) is defined by INI =maXl:S:j:S:d~~=liNjkl. < ·, · > is the bilinear 
inner product and ( ·, ·) the physicist's inner product. 

§ 2. Heuristic derivation of path integral for the Dirac equation 

In this section we shall heuristically see what should be the path integral for the 
fundamental solution of the Cauchy problem for the d + 1-dimensional Dirac equation 

Ot(/J(t, x) [-a( a- zA(t, x))- im/3- iefb(t, x)]</>(t, x), 

(2 ~ 1) 

for a particle of mass m and charge e in an external electromagnetic field. Here a 
=Ca1, az, ···,ad), and a1, az, ···,ad and /3 are the Dirac matrices. fP(t, x) and A(t, x) 
are, respectively, the scalar and vector potentials of the field. Our strategy is to 
exploit the method of phase space path integral8

> or Hamiltonian path integral.9
> 

We begin with presuming that the action for a Dirac particle in an 
electromagnetic field is given by 

S(s, r; P, X)= is[P(t)X(t)-a(P(t)-eA(t, X(t))) 

-m/3-e@(t, X(t))]dt. (2 ·2) 

Here X(t) and P(t) are the position and momentum. A reasonable ground for this 
is that (2 · 2) is what results, by application of Dirac's prescription 

±J(P(t)-eA(t, X(t))) 2 +m2 =a(P(t)-eA(t, X(t)))+m/3, 

from the action33
> 

ls{P(t)X(t)- [ + J(P(t)- eA(t, X(t)))2 + m2 + e@(t, X(t))]}dt 
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Path Integral Approach to Relativistic Quantum Mechanics 147 

for a relativistic spinless, positive-energy(+) [resp., negative-energy(-)] particle of 

mass m and charge e in an electromagnetic field. . We assume s > r for definiteness. 
The method of phase space path integral or Hamiltonian path integral assumes 

that the fundamental solution K(s, x; r, y) of the Cauchy problem for the Dirac 
equation (2·1), which is the probability amplitude that a quantized particle at position 

y at time r will be at position x at time s, is given by the formal "integral" 

l eis(s,r; P, X> fD(P)fD(X). 
P s,x;r,y 

(2·3) 

Here fD(P)fD(X) is a formal "measure" IItE[r,s1(27r)-ddP(t)dX(t) on the space 

9?s,x;r,y of the phase space paths (P(t), X(t)) satisfying X(r)=y and Jr(s)=x with 

P(t) unrestricted. In this formal phase space path "integral" we make the change of 
variables: X'(t)=X(t), P'(t)=P(t)-eA(t, X(t)). Then we have, writing (P(t), 
X(t)) again instead of (P'(t), X'(t)), 

K(s, x; r_, y)= JPs.x;r,y Texp{i 18

[(P(t)+eA(t, X(t)))X(t)-(aP(t)+m/3) 

-etP(t, X(t))]dt} II (27r)-ddP(t)dX.(t), (2·4) 
tE[r,s] 

where T stands for the time-ordering symbol. We understand (2 · 4) to be defined 
with a time division procedure, i.e., 

n-1 
~ 

K(s x· r y)=limj J ···J IT ' ' ' Rd R2d R2dj=1 

- (apj-1 + m/3)- e(/)(tj-1, Xj-1) ]Ctj- tj-1)} 

X (27r )-ddpo(27r)-d(dp1dX1)· .. (27r)-d(dPn-1dXn-1) . (2 · 5) 

Note that the integrand of the integral on the right-hand side of (2 · 5) is rewritten as 

n 
II {exp[ixjpj-1]exp[- i(apj-1 + m{J)(tj- tj-1)]exp[- ixj-1Pj-1]} 
j=1 

n 
X exp{i ~ [eA(tk-1, Xk-1)(xk- Xk-1)- e(])(tk-1, Xk-I)(tk- tk-1)]}. 

k=1 

Here r= to< t1 < ... < tn=s and xo= Y, xj=X(tj), j=1, ... , n-1, xn=x, and the product 

IIJ=1 is time-ordered with time increasing from the right to the left. The limit is 
taken for n~co and max1~j~n(tj- tj-1)~0. If Ko(t, x) is the fundamental solution of 
the Cauchy problem for the free Dirac equation, i.e., Ko(t, x)=f Rdexp[ -- it(ap+ m/3) 
+ ixp](27r)-ddp, then the pj integrations on the right-hand side of (2·5) yield 
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148 T. Ichinose and H. Tamura 

n-l 

n 
Xexp{i~[eA(tj-1, Xj-I)(xi-Xi-1) 

j=l 

If a path space measure Vs,x; r,y should be constructed from the product of Ko's and the 

Lebesgue measures dxh we should get 

K(s, x; r, y )= h dvs,x; r,y(X) 
s, x; r, y 

where .x's,x;r,y is the space of the paths X(t) satisfying X(r)=y and X(s)=x. 

What we carry out in the following sections is to justify with mathematical rigor 

the above heuristic argument, in two space-time dimensions or d=1, to establish the 

formula (2 · 6) and related ones. 

§ 3. Path integral representations 

In two space-time dimensions, we give path integral formulas for the fundamental 

solutions of two Cauchy problems with the Dirac equation.6
l One of them is further 

used to give path integral formulas for the retarded and advanced propagators. By 

I r, s I is meant the closed interval r:::;;: t:::;;: s or r :2:: t :2:: s according to r < s or r > s. We 

use the convention of summation over repeated Greek indices. 

3.1. The fundamental solutions of the Cauchy problems 

We consider the Dirac equation (2 ·1) in two-dimensional space-time, 

otc/J(t, x)=[ -a(ox-ieA(t, x))-im/3-ie(JJ(t, x)]¢(t, x), 

tER, xER. (3·1) 

Here a and /3 are 2 X 2 Hermitian matrices with a2 = /32 =1 and a/3+ /3a=O. The 

vector and scalar potential A(t, x) and (JJ(t, x) are real-valued functions in space-time 

R X R=R2
• We assume for simplicity that they are continuous functions on R 2

. The 

case for somewhat more general A and (JJ is referred to Ref. 11). One Cauchy 

problem we consider is that for (3·1) with data ¢(r, x)=g(x). Since Eq. (3·1) is a 

first-order hyperbolic system with two independent variables, this Cauchy problem 

can be solved20 along the characteristics and so has a unique solution. 

We write A 0(t, x) (JJ(t, x) and A 1(t, x)=A(t, x). Set AP(t, x)=gpcrA 6 (t, x), 

p=O, 1, with the metric tensor 
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Path Integral Approach to Relativistic Quantum Mechanics 149 

By putting x 0 = t and x 1=x, (3·1) is rewritten as 

iHII¢(x)-[(ao+ ieAo(x))+ a(al + ieA1Cx))+ im,B]¢(x)=O, (3· 2) 

where x=(x0
, x 1)ER2 and ap=a/axp, p=O, 1. Hn is essentially self-adjoint on 

Co oo(R2
; C2

), and defines14
> a self-adjoint operator in L 2(R2

; C 2
). 

We introduce the fictitious time r to consider the other Cauchy problem for 

rER, (3·3) 

with data ¢(r, x)=g(x). Let K 1(s, x; r, y) and KII(s, x; r, y) be the fundamental 
solutions of the Cauchy problems for (3 ·1) and (3 · 2), respectively: 

¢(s, x)= lK1(s, x; r, y)g(y)dy, (3·4) 

¢(s, x)=(e-i<s-r>H11g)(x)= hzKII(s, x; r, y)g(y)dy. (3·5) 

Then they admit the following path integral representations. We say that a measure 
f-L on a space Q is concentrated on a subset E of Q if f-L vanishes on Q \E. Mz( C) is 
the space of complex 2 X 2 matrices. 

THEOREM 3.1. There exists a unique S '(R x R; Mz( C))-valued countably additive 
measure v~; ron the Banach space C(lr, sl; R) of the one-dimensional continuous path 
X: lr, si~R such that for every continuous A(t, x) and (JJ(t, x), 

(!, ¢(s, · ))= (( f(x)K 1(s, x; r, y)g(y)dxdy 
))RxR 

= jCI, dv~;r(X)g)exp[ -i Jse(JJ(t, X(t))dt+i 18

eA(t, )((t))dX(t)J 

(3·6) 

with(/, g) in S (R; ( C 2
)') x S (R; C 2

). The measure v~; r is concentrated on the set of 
those Lipschitz continuous paths X: lr, sl~ R which satisfy 

for some finite partition: r=toSt1S···Stk=s of lr, sl, depending on X, 

j-1 
X(t)- X(r )= ~ ( -1)i-1(ti- ti-l)+( -1)i-1(t- tj-1) 

i=l 

[IX(t)- X(r)l=lt- rl for tEir, sl, in case m=O]. 

The set function v~.f; r,g defined by 

V~,f;r,g(•)=<f@g, vLr(·)>=(/, V~;r(·)g) 

(3·7) 

(3·8) 
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150 T. Ichinose and H. Tamura 

is a complex-valued countably additive measure on the Banach space C(lr, sl; R) 
which is concentrated on the set of the Lipschitz continuous, paths X satisfying (3 · 7) 
and X(r)Esuppg, X(s)Esupp/. 

THEOREM 3.2. There exists a unique S '(R2 X R 2
; M2( C))-valued countably additive 

measure v~\ r on the Banach space C(lr, sl; R 2
) of the two-dimensional continuous 

paths X: lr, si~R2 , X(r)=(X0(r), X 1(r)), such that for every continuous A(x) 
=(Ao(x), A1(x)), 

(/, e-i(s-r)Hilg)= JJR2xR2f(x)KII(s, x; r, y)dxdy 

= jcf, dv~\r(X)g)exp[ -i 18

eAp(X(r))dXP(r)J . (3·9) 

with(/, g) in S (R2
; ( C 2

)') x S (R2
; C2

). The measure v~~r is concentrated on the set of 
those Lipschitz continuous paths X: I r, sl ~ R 2 which satisfy 

for tEir, sl, 

and, for some partition: r=toStlS···Stk=s of lr, sl, depending on X, 

for tEitj-1, tjl, l~j~k 

[IX1(t)-X1(r)l=lt-rl for tEir, sl, in case m=O]. (3 ·10) 

The set function v~1J; r,g defined by 

V~1.f; r,i · )=<]@g, V~; r( · )>=(/, V~1; r( ·)g) (3·11) 

is a complex-valued countably additive measure on the Banach space C(lr, sl; R 2
) 

which is concentrated on the set of the Lipschitz continuous paths X satisfying (3·10) 
and X(r)Esuppg, X(s)Esupp/. 

The proofs of Theorems 3.1 and 3.2 are given in § 4. 
These theorems were first shown in Refs. 11) and 13), with a somewhat weaker 

statement on the support property of the path space measures, to the effect that v~; r 

is, when m>O, concentrated on the set of the Lipschitz continuous paths X:lr, si~R 
satisfying IX(b)-X(a)l~lb-al for every a, b with r~a§.b~s, and similarly for 
v~\ r. Next it was improved in Ref. 34) as follows: v~; r is, when m >0, concentrated 
on the set of the Lipschitz continuous paths X: I r, sl ~ R which are differentiable, 
outside a closed subset Ex of Lebesgue measure zero depending on X, with 
differential coefficients (d/dt)X(t) equal to 1 or -Jon each (relatively) open interval 
in lr, si\Ex, and similarly for v~\ r. Finally the support property of the ultimate form, 
(3 · 7) and (3 ·10), has been shown in our recent note.35

> 

Remark 1. v~; r and v~\ r may be regarded as conditional path space measures ( cf. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.92.144/1934972 by guest on 19 April 2024



Path Integral Approach to Relativistic Quantum Mechanics 151 

conditional Wiener measure5>). In fact, introduce formal conditional path space 
I d II measures Vs,x; r,y an Vs,x; r,y as 

V~.f; r,i • )= fhxRf(x) V~,x; r,y( • )g(y)dxdy 

and 

V~1.f; r,f!( • )= fhzxRzf(x) V~\x; r,y( • )g(y)dxdy. 

Then Theorems 3.1 and 3.2 look like 

K 1(s, x; r, y)= jdv~.x; r,y(X) 

Xexp[ -i 18

e(/)(t, X(t))dt+il
8

eA(t, X(t))dX(t)J 

and 

(3. 6)' 

(3·9)' 

The formal measure v~.x; r,y[v~.x; r,y] is concentrated on the set of the Lipschitz 
continuous paths X satisfying (3·7) [X satisfying (3·10)] and X(r)==y, X(s)=x 
[X(r)=y, X(s)=x]. 

Notice that (3·6)' is coincident with the formula (2·6) in two space-time dimen
sions. 

Remark 2. The support property of v~; rand v~\ r in Theorems 3.1 and 3.2 tells us the 
nature of the "Zitterbewegung"7

> of the Dirac particle. The motion described by a 
path satisfying (3·7) or (3·10) is such that the velocity is, in magnitude, equal to 1, the 
light velocity, at every finite time interval except for finite instants of thne where the 
velocity alters the sign. Here the role the mass m plays is not to render the 
magnitude of the velocity smaller than 1, but to change the direction of tnotion of the 
particle time after time. 

Remark 3. Feynman and Hibbs2
> give briefly a cryptic description of the fundamental 

solution of the Cauchy problem for the free Dirac equation in two space-time dimen
sions. For this context we refer also to Riazanov15

> and Rosen.16
> There are some 

recent contributions to this problem based on Poisson process. See Gaveau et al.,38
> 

Gaveau,39
> Blanchard et al.,40

> J acobson40 and de Angelis et al.42
> 

Remark 4. DaletskiP7
> dealt with related problems but did construct no countably 

additive path space measure. 

3.2. The retarded and advanced propagators 

The propagator18
> for a two-space-time-dimensional Dirac particle is a 2 x 2 

matrix-valued function (distribution) which is a solution of Green's function equation 

(3 ·12) 
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152 T. Ichihose and H. Tamura 

Here y0 =/3 and y1=/3a. y0 is Hermitian and r 1 anti-Hermitian with rpr(J'+r(J'rp 
=28p(J'l, where p, o-=0, 1. The convention of summation over repeated Greek indices 
is used. The left-hand side of (3·12) is nothing but y0HuS(x, y) with Hu in (3·2). 

Then the retarded and advanced propagators Sret(X, y) and Sadv(x, y) have the 
following path integral representations. 

(( 
2 2

/(x) Sret(X, Y )g(y )dxdy ))R XR 

= i£
00 

dr jet, dv~;o(X)y0g)exp[- i£reAp(X(s))dXP(s) J (3 ·13) 

and 

(( 
2 2

/(x)Sadv(x, y)g(y)dxdy 
))R XR 

(3·14) 

Remark 1. With the formal conditional path space measure v~.x; o,y introduced in 
Remark 1 to Theorems 3.1 and 3.2, (3·13) and (3·14) become 

Sret(X, y)=i1oo dr jdv~.x;o,y(X)y0exp[-i1reAP(X(s))dXP(s)J 

and 

(3·14)' 

Remark 2. For the Feynman propagator SF(x, y) we have not such a neat formula. 

Proof of Theorem 3. 3. We simply write H for Hu. We prove only ( 3 ·13) for the 
retarded propagator. The proof for the advanced propagator is similar. Let(/, g) 
be in fD(R2

; (C2)')x fD(R 2
; C2

). Note that His a self-adjoint operator in L 2(R2
; C2

) 

and 

(c+zH)-1= 100 dr e-ere-irH. 

Then by Theorem 3.2 we have 

(/, i(c+ zH)- 1 y0g)= i£oodr e-er jCI, dv~;o(X)y0g) 

Xexp[- i 1reAP(X(s))dXP(s) J. (3 ·15) 

Since I and g have compact support, the r-integral on the right-hand side of (3·15) is 
reduced to that over a finite interval in view of the support property of v~1.f; o,g. 

Therefore, it converges to the right-hand side of (3·13) as E t 0, by the Lebesgue 
bounded convergence theorem. On the other hand, by definition of the retarded 
propagator the left-hand side of (3 ·15) converges to that of (3 ·13) as E t 0. This 
proves Theorem 3.3. 
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Path Integral Approach to Relativistic Quantum Mechanics 153 

§ 4. Proofs of Theorems 3.1 and 3.2 

We shall prove only Theorem 3.1. Theorem 3.2 will be shown similarly. (Proof 
of Theorem 3.2 with a somewhat weaker statement on the support property of v~\ r is 
given in Ref. 13).) Without loss of generality we may assume r=O and s >O to 
construct v~; o. The proof consists of three parts. First we construct the path space 
measure vLo on the product space (R)[o,sJ of the uncountably many copies of R, where 
R=RU{oo} is the one-point compactification of R. Next its support is determined 
and finally the path integral formula (3 · 6) is established. For the first and last parts 
we follow mainly Refs. 13), 11) and for the second, our recent result in Ref. 35). 

4.1. Construction of the path space measure v~; o 

We construct v~;o, using Nelson's method10>'5 >' 19> of construction of the Wiener 
measure. 

First consider the Cauchy problem for the free equation to (3 ·1), 

ot<P(t, x)=[ -aax-im/3]</J(t, x), tER,xER 

with initial data ¢(0, x)=g(x). Let Ko1(s, x) be the fundamental solution: 

</J(s, x)=(e-s<aax+imP>g)(x)= hKoi(s, x-y)g(y)dy. 

It is given by 

Ko1(s, x)=2-1[os- aox- imp>](!o(m(s2
- x 2

)
112)8(s -lxl)), 

(4 ·1) 

(4. 2) 

(4 ·3) 

where !o( t) is the Bessel function of order zero, and 8( t) the Heaviside function 8( t) 
=1 for t >0, =0 for t<O. Coo(R; C2

) denotes the Banach space of the C2-valued 
continuous functions in R which vanish at infinity. Its dual space, denoted by 
M(R; ( C 2

)'), is the Banach space of the ( C2)'-valued measures on R with bounded 
variation.20

> 

Lemma 4.1. (1) e-t<aax+imP> is a continuous linear operator of Coo(R; C 2
) into itself, 

and satisfies 

(4 ·4) 

for g in Coo(R; C 2
). Here N is a unitary matrix satisfying 

NaN-~=(1 0). 
0 -1 

(2) e-t<aax+imP> is a continuous linear operator of S (R; C2
) into itself. 

Proof These are derived by straightforward calculation using (4 · 2) and (4 · 3). 
The content of Lemma 4.1 is that the Cauchy problem for (4·1) is Loo well-posed. 

This holds also for the hyperbolic system of the first order with two independent 
variables.21

> 
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154 T. Ichinose and H. Tamura 

Now we are ready to construct the path space measure v~;o. For each fixed s >0 
let Xs,o= ITro,sJR=(R)lo,sJ be the product of the uncountably many copies of R. By 
the Tychonoff theorem22

> Xs,o is a compact Haussdorff space in the product topology. 
It may be regarded as the space of all paths X:[O, s] ~ R, possibly discontinuous and 
possibly passing through the infinity oo. Let C(Xs,o) be the Banach space of the 
complex-valued continuous functions on Xs,o and Cfln(Xs,o) the subspace of those lJf 
in C(X s,o) for which there exist a finite partition: 

O=so< SI < ... < sn=s (4 ·5) 

of the interval [0, s] and a complex-valued bounded continuous function F(xo, XI, ... , 
Xn) on (.R)n+I such that 

lJf(X)=F(X(so), X(si), ... , X(sn)). (4. 6) 

Define, for each fixed s > 0, a functional Ls,o( ([); f.l, g) which is linear in lJf 
E Cfin(Xs,o) and sesquilinear in (f.l-, g)EM(R; ( C 2

)') X Coo(R; C2
) by 

Ls,o( lJf; f.l, g). hdxo··· hdXn-1 hd f.l(Xn)Ko 1(Sn- Sn-I, Xn- Xn-I) 

X F(xo, XI, ... , Xn)g(xo). (4. 7) 

When stressing the sesquilinearity of Ls,o( lJf; f.l, g) we shall write it also as 
(Ls,olf!)(f.l, g). 

Crucial is the following Lemma. 

Lemma 4.2. (1) For each fixed (f.l-, g) in M(R; (C2)')x Coo(R; C 2
), Ls,o(lJf; f.l, g) is 

well-defined on Cfin(Xs,o); it is independent of the choice of F corresponding to lJf. 
(2) The following inequality holds 

(4 ·8) 

for every lJf in Ctin(X s,o) and every pair (f.l-, g) in M(R; ( C2)') X Coo(R; C2
) with C 

= INIIN-II s: 2. 

Proof By Ct we denote the operator Ne-t<aax+imP> N-I on Coo(R; C2). The statement 
(1) is a consequence of the (semi-)group property of the operator Ct. To prove (2), 
let lJ! be in Cfln(Xs,o) and represe11ted as (4 · 6) with a continuous function F(xo, XI, ···, 
xn) on (.R)n+I. We inductively define a sequence {F.Ml 1 , ... ,xnH=I of C2-valued functions 
Fl~l~ ... ·,xn on R with n-l parameters Xt+I, ···, XnER as follows: 

Fl~~xz,· .. ,xnCx)-Ng(x)F(x, XI, X2, ···, Xn), 

F<n>(x)- ( Csn-sn-
1
Fx (n-I>)(x) 

for l = 1, 2, ···, n. By induction and continuity of the operator Ct in Lemma 4.1(1), we 
see that for each fixed l = 1, · · ·, n, Flil~,. ... xn is in Coo(R; C 2

) and continuous as a map of 
the parameter space Rn-t into C oo(R; C 2

). Note that ( 4 · 7) is rewritten as 
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Making an iterative use of the estimate (4·4), we get 

IIF(n)ll = x~}~r,)( Csn-Sn-rFx(n-l))ix )I ~S~PII Csn-Sn-rFx(n-l)ll 

~ em(sn-Sn-r}supiiF1~-l)ll ~ ... ~ems sup IIF1~~···,xnll 
Xn Xr,···,Xn 

Then the estimate (4·8) is derived from (4·9) and (4·10). 
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(4 ·9) 

(4·10) 

The consequence of Lemma 4.2 is the following. Since Cnn(X s,o) is dense in 
C(X s,o) by the Stone-Weierstrass theorem,22

) the inequality ( 4 · 8) holds also for lJf 
E C(Xs,o). By Lemma 4.2, Ls,o lJf is a continuous sesquilinear form on M(R; ( C2

)') 

X Coo(R; C2
), and so on s (R; ( C 2

)') X s (R; C2
), because both linear etnbeddings of 

S (R; ( C 2
)') into M(R; ( C 2

)') and of S (R; C 2
) into Coo(R; C2

) are continuous. Then 
the kernel theorem22

) enables us to regard Ls,o lJf as an element in the space 

S '(R x R; Mz( C))= ( S (R; ( C2)')(8) S (R; C2
) )' • (4 ·11) 

Here note that Mz( C)= C20( C2
)'. Hence Ls,o is a continuous linear mapping of 

C(Xs,o) into the space (4 ·11). Further Ls,o is weakly compace3
) because the space is 

reflexive, and even compace4
) because the space ( 4 ·11) is a Montel space. Then the 

Riesz-type represetation theorem25
) yields the following representation of Ls,o in terms 

of a countably additive measure on X s,o. 

THEOREM 4.3. There exists a unique countably additive measure v~;o defined on the 
Borel sets in Xs,o and having values in S '(R X R; Mz( C)) such that 
(a) v~;o is of bounded q-variation for each continuous seminorm q on 

· S '(R x R; Mz( C)), i.e., 

where the supremum is taken over all finite partition {Ej} of Xs,o into disjoint 
Borel sets and all collection {cj} of complex numbers with lcjl~1; 

(b) for each (/,g) in s (R; ( C2
)') X s (R; C 2

) the set function v~.f; O,g defined by 

2/~.f; o,9 (E)= <J X g, !.I~; o(E)> =(/,!.I~; o(E)g) 

is a complex-valued countably additive regular measure on the Borel sets E in 
Xs,o; 

with a constant C' depending only on the seminorm q; 
(d) for each lJf in C(Xs,o), 

Ls,o lJf = ( dv~; o(X) lJf(X) . Jxs,o ( 4 ·12) 
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Remark 1. In terms of the formal path space measure v~.x; o,y in Remark 1 to 
Theorems 3.1 and 3.2, the expression ( 4 ·12) looks like 

(Ls,o llf)(x, y)= fxs.odv~.x;o.iX) lJf(X). (4 ·12)' 

Remark 2. There is another way to construct a path space measure. First note that 
we can define Ls,o( f/J; f-1., g) to establish Lemma 4.2 for the pair M(R; ( C2

)'), C(R; C2
) 

in place of the pair M(R; ( C2
)'), Coo(R; C 2

). Here C(R; C2
) is the Banach space of the 

C 2-valued continuous functions on R. Its dual space M(R; ( C 2
)') is the Banach space 

of the ( C2)'-valued measures on R with bounded variation.22
> Define Ls,f.l;o by 

(Ls,f.l;O lJf)(g)=Ls,o( lJf; /-L, g) 

with a fixed fJ.EM(R; ( C2
)'), for lJfE C(Xs,o) and gE C(R; C2

). By the Riesz repre
sentation theorem,Z2

> Ls,11 ;o lJf is regarded as an element in M(R; ( C2
)'), so that Ls,11 ;o 

is a continuous linear operator of C(Xs,o) into M(R; ( C 2
)'). Further it is seen26

> that 
Ls,11 ; o is weakly compact. Then by the Riesz-type representation theorem,27

> there 
exists a unique countably additive measure v~. 11 ; o defined on the Borel sets in X s,o and 
having values in M(R; ( C2

)') such that 
(a) v~.f.l; o is of bounded variation; 
(b) for each g in C(R; C 2

) the set function v~.f.l;o,g defined by 

JJ~.f.l;o,g(E)=<v~.f.l;o(E), g) 

is a complex-valued countably additive regular measure on the Borel sets E in Xs,o; 
(c) IILs,f.l;oii=Var v~.f.l;oS:Ce"* 1 llfJ.II with C=INIIN- 1IS:2; 

(d) for each lJf in C(Xs,o), 

Ls,11 ;o lJf= ( dv~.11 ;o(X) lJf(X). 
Jxs.o 

N oti<;e we can choose, for t', ax'- [ ~X l or ax 2 - [ ~J ' where ax= a( 0 -X) is 

the Dirac measure at x, an element of M(R). Then each component of the solution 

q\(s, x)= [ ::~:: ~~] of (4 ·1) with data q\(0, x)= g(x) is represented as 

rPi(s, x)= fxs.odvk,csxi;o(X)g(X(O)), i=1, 2. 

4.2. Support property of the path space measure v~; o 

We shall now see the measure v~; o has the support property described in Theorem 
3.1. In order to simplify the notation, we put 

A=-NaN- 1 8x and B=- imN/]N- 1
, 

where N is the unitary matrix introduced in Lemma 4.1. We may assume r=O and 
s>O. We have 
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Ne-t(a8x+imP) N-1 = et(A+B) . (4 ·13) 

Let us make a Taylor expansion of et<A+s> in m by using iteratively the well
known formula 

(4·14) 

Set 

(4 ·15a) 

and 

(4·15b) 

for k > 1. In the proof of Lemma 4.2, C/_. was denoted by Ct. 

Then we have 
N 

Lemma 4.4. (1) Ct 0--= ~ C/+ C/+1
--, N=O, 1, 2, ···. 

k=O 
(2) Ctk and C/--, k=O, 1, ···, are bounded linear operators of Cco(R; C2

) into itself: 

Proof By iteration of (4 ·14), we get (1). The statement (2) is a direct consequence 
of definition (4 ·15) and the estimates 

IIBII=m and llet<A+B>IIs:emt. 

The estimate llet<A+s>ll::::: emt is nothing but (4 ·4). Since N(JN- 1 anti-commutes 
with NaN- 1 and NaN- 1 is diagonal, we have (N(JN-1)n =(N(JN-1)zz=O, I(N(JN- 1)Izl 

= I(N.BN-1 l21l = 1 and hence liB II= m. Notice that etA operates on ( ::) E Coo(R; C') 

according to 

(etA(cpl))cx)=(cpl(x- t)), 
cpz cpz(x + t) 

( 4 ·16) 

so that we get lletAII=l. 

For lJfECnn(Xs,o) represented as (4·6) with a continuous function F(xo, X1, ···, Xn) 
on (R)n+l, we introduce a sequence {F~R ... ·,Kt; xl+t.···,xnH=l of C 2-valued functions on R 
with parameters, similarly to the proof of Lemma 4.2. Set 

F~~~ .. ·,xn(x)=Ng(x)F(x, X1, ... , Xn) 

and with C/ and C/_. in (4 ·15), 

F<ff.L .. ·Kt; Xt+t, .. ·,xn(X) = ( Cf/-st-lF}I;}~,Kt-1; x,Xt+t, .. ·,xn)(x) 

(4··17a) 

(4·17b) 
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for !=1, 2, ···, n-1, and 

Ft~···;Kn(X)- ( Cffnn-sn-IF}Fl-;_~.~Kn-I; x)(x) . (4·17c) 

Here Kz is kz or kz ~ with kz a nonnegative integer. For 1:::;;: l:::;;: n -1, 
F}f;}!,Kt-t;x,xt+t.···,xn(y) in (4·17b) is in Coo(R; C 2

) as a function of y. 
For each k20, define the functionals L~.o( 1fJ'; /,g) and Lto( 1fJ'; /,g) which are 

linear in 1fJ'E Cnn(Xs,o) and sesquilinear in (/, g)E S (R; ( C2
)') X S (R; C2

) by 

L~.o( 1fJ'; !, g)- ( f(x)N- 1 F6.~.?.o(x)dx, }R '---v-J 
n 

L~7o( 1fJ'; /,g)- ( f(x) N-1 FJ'!.~···,o---(x)dx j R '----v--' 
(4 ·18a) 

n 

and 

n 
· LtoC w; !, g)=~ ~ 

P=1 "E.'i~tk;=k 
kt,···,kp-t20; kp21 

X ( f(x) N-1 Ft! .. ·,kp-t,kp-+, o-.,. .. ,o-. (x )dx j R . '----v-----' 
(4·18b) 

n-P 

for k 21. Note that L~7o( 1fJ'; /, g) in ( 4 ·18a) is nothing but Ls,o( 1fJ'; f, g) in ( 4 · 7). 

Then the following lemma holds. 

Lemma 4.5. (1) For each fixed (/, g )E S (R; ( C 2
)') X S (R; C 2

) and each k 2 0, 
L~.o( 1fJ'; /,g) and Lto( 1fJ'; /,g) are well-defined on Cfln(Xs,o); they are independent of 
the choice ofF corresponding to 1fJ'. 
(2) The following inequalities hold: 

IL~.o( 1fJ'; /, g)l:::;;: C(k! )-1(ms)kiiWIIII/II1IIglloo, 

IL~;D( 1fJ'; /, g)l:::;;: C(k! )-1(ms)kemsiiWIIII/II1IIglloo 

with a constant c:::;;: 2. The L1 and L"' norms are denoted by ll·ll1 and ll·lloo, re
spectively. 

k 

(3) L~-:o( 1fJ'; !, g)= ~LLo( 1fJ'; !, g)+ L~~1 _.( 1fJ'; /,g), 
l=O 

L~7o( 1fJ'; /,g)= ~,L~.o( 1fJ'; /,g). 
l=O 

Proof The statement (1) follows from the identities 
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k 
~cz ck-,-z_ck 
4..1 n rz - n + rz l=O 

k 

Co-+ck-++ ~ cz---ck-l_ ck-+ n rz 4..1 n rz - n + rz , l=l n, rz>O, 
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which can be derived from the definition (4 ·15). To prove (2), we make a multiple use 
of Lemma 4.4(2) as in the proof of Lemma 4.2(2). The first equality in (:3) in a direct 
consequence of Lemma 4.4(1). Note that IL~~1 ~( lJf; /, g)l~o as k~co by (2), then the 
second equality in (3) holds. 

The consequence of Lemma 4.5 is the following theorem. 

THEOREM 4.6. For each k~O, there exist unique complex-valued countably additive 
regular measures v~.f; o,g and v~.f; o,g on the Borel sets in X s,o such that for each lJf in 
C(Xs,o), 

L~.o( lJf; /,g)= ( dv~.f;o,g(X) lJf(X), Jx •. o 

Lto( lJf; /,g)= ( dv~.f;o,g(X) lJf(X). Jx .. o 

Moreover the following equality holds for every Borel set E in X s,o: 

()() 

vtr; o,iE) = v~.f; o,g(E) = ~ v~.f; o,g(E) , 
k=O 

where the series in the last member is absolutely convergent. Therefore if, for each 
k~O, the measure v~.f;O,g is concentrated on a Borel subset Ek of 2~s.o, then the 
measure v~.f;O,g is concentrated on the Borel subset U'k=oEk. 

Proof The first half of the theorem -follows from Lemma 4.5(1), (2) and the Riesz 
representation theorem. Next this and Lemma 4.5(3) yield 

N 
I _ ~ k + N+l-+ Vs,f;O,g- 4..1 Vs,'f;O,g Vs,f;O,g. 

k=O 

Further, by Lemma 4.5(2), we get 

I v~iiO.g(E)I < C((N + 1)! )- 1(ms)N+lemsll/lllllglloo, 

which converges to zero as N ~co. This proves the second half of the theorem. 

Our next task is to see the support property of v~; o. We shall show in Theorem 
4.8 below that, for each k ~ 0, the measure v;,f; o,g is concentrated on the set of the 
Lipschitz continuous paths X:[O, s] ~ R satisfying, for some k-partition: 0= to< t1 < ··· 
< tk=s of the interval [0, s], depending on X, 

j-1 
X(t)- X(O)= ~ ( -1)i(ti- ti-l)+( -1)j(t- tj-1) 

z=l 

or 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.92.144/1934972 by guest on 19 April 2024



160 T. Ichinose and H. Tamura 

for tj-1-::;,t-::;,tj, 1-::;,j-::;,k. 
For each k ~ 1, let LJk be the open k-simplex 

k 

LJk={(n, ···, rk)ERk j·L: ri<s and n, ··· rk>O}, 
i=1 

and (/J1k and rpzk the maps from R X LJk into Xs,o defined by 

Nt Nt 
cp/(x, n, ···, rk)(t)=x+(-1)i[L:(-1) 1rz+(-1)Nt+1(t-L:rz)] 

l=1 l=1 
(4·19) 

for xER, Cr1, ···, rk)ELlk, tE[O;s] and j=1, 2, where Nt is the t-dependent integer 
satisfying 

Nt Nt+1 
L: rz-::;, t < L: rz . 
!=1 l=1 

In (4 ·19), the value cp/(x, r1, ·· ·, rk) is a function: [0, s] ~ R and so belongs to Xs,o. 
For k=O, we understand Ll0 to be the set of one point and identify R X Ll0 with R. 

Let (/)1° and cpz0 be the maps from R=RXL1° to Xs,o defined by 

cp/(x)(t)=x+( -1)it, j=1, 2. 

Then the maps cp/, k~O, j=1, 2, have the following properties. 

Lemma 4.7. (1) For each k~O and j=1, 2, rp/ is continuous and Borel-measurable; 
(2) cp/(RxLJk) is an Fr5-set. 

Proof The statement (1) is obvious. (2) R X LJk is expressed as a countable union 
U~=1Kn of compact sets Kn. By the continuity of cp/, each cp/(Kn) is compact in Xs,o 
and hence closed, so rp/(R X LJk) is an Fr5-set. 

For each k~O and j=1, 2, define the complex-valued regular Borel measure 
f-1~:}; o,g on R X LJk by 

f-1~:}; o,g(E) 

(4. 20) 

where E is a Borel set in R X LJk. 

THEOREM 4.8. For each(/, g)E S (R; ( C2
)') X S (R; C2

), k~O and s >0, 

2 

j) k _""' 11 k,j (m k)-1 s,f;o,g- ~t-s,f;O,g -ri . 
J=1 

Here f-1~:J;o,g(rp/)- 1 is the image measure on Xs,o induced28
> from the measure f-1~:J;o,g 

on R X LJk by the map rp/. 

Before showing Theorem 4.8, we see first what is a consequence of the theorem. 
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The measure f.L~:};o,9(cp/)- 1 is concentrated on the set cp/(RXLJk) and so the measure 
v~.f; o,9 on the set U7=1 cp/(R X LJk). It follows by Theorem 4.6 that the measure v~.f; o,g 

is concentrated on the set Uk'=o U7=1 cp/(R X LJk), which is a· Borel, in fact, FcJ-, set by 
Lemma 4.7. Then the S'(RXR; MlC))-valued measure v~;o is also concentrated on 
the set Uk'=o U7=1 cp/(R X LJk), for this set is independent of (/, g) in s (R; ( C 2

)') 

X S (R; C2
). It is obvious that every X in Uk'=oUJ=1 cp/(R X LJk) satisfies the condition 

(3·7) in Theorem 3.1. In case m=O, we have v~.f;o,g= v~.f;o,g: By Theorem 4.8 it is 
concentrated on the set of the straight segments X:[O, sl~ R with X(t)=X(O)+ t or 
X(t)=X(O)- t, 0~ t~s, and so is vLo; similarly. Thus we have seen Theorem 4.8 
yields the desired support property of v~; o. 

Proof of Theorem 4.8. It is enough to show that the equality 

hs,o dv~.f; o,g(X) lf!(X) 

= ~hxLJ•df.L~:}; O,g( S) lf!( cp/( s)), 

holds for every lf!E Cfin(Xs,o). Here we only prove this equality for k=2. The proof 
will be still complicated for general lJf in Cnn(.X s,o). So we only see it when lJf is 
represented as lf!(X)= F(X(O), XCs1), X(s)) with a partition O=so< s1 < sz=s of the 
interval [0, s] and a bounded continuous function F on (R)3

, i.e., (4·5) and (4·6) with 
n = 2. We can similarly prove the general case. 

Recall that 

(
0 B12) 

and B= Bz1 0 

with 

IB1zl = IBz1l = m. 

By Theorem 4.6 and the definition (4 ·18), we have 

hs,o dv~.f; o,9 (X) lf!(X) = L~,o( lf!; /, g) 

= h!Cx)N-1{Fd;d(x)+ Fi;((x)+ Fi;J(x)}dx. 

Using (4 ·17), (4 ·15) and anti-commutativity of A and B, we get 

F1<;((x) = ( C1-s~F~? x)(x) 

l oo ((FP!x)1(x+s-s1-2rz)) 
= B drzB(s- s1- rz) (F<1l ) ( 

2 
). . 

1 ; x 2 X - S + S1 + rz 

(4. 21) 

Here FP/x(y)=t((Fi\\)1(y), (FP!x)z(y)). For these functions in the integrand of the 
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last member of the above equation, we get 

(F~?x)I(x+s-sl-2r2) 

_ . (-SJ+2ri)A (0) 1
00 

-B1z dnB(si-n)(e Fx+s-s1-2r2,x)2(x+s-s1-2r2) 

= B1z£
00 

dnB(si- n)(Ng)2(x+s -2s1-2r2+2n) 

X F(x+s-2sl-2r2+2n, x+s-s1-2r2, x) 

and 

(Fi1ix)2(x-s+sl +2r2) 

=B21£
00 

dnB(si- n)(Ng)I(x-s +2sl +2r2-2n) 

X F(x-s+2sl +2r2-2n, x-s+sl +2r2, x). 

Hence we have 

Fl;{(x) 

= E 2£
00 

dr2£
00 

dn B(s- s1- r2) 8(s1- n) 

x ((Ng)I(x-s +2sl +2r2-2n)F(x-s +2sl +2r2-2n, x -s +s1 +2r2., x)) 
(Ng)2(x+s-2si-2r2+2n)F(x+s-2sl-2r2+2n, x+s-s1-2r2, x) 

= B 2£
00 

dr21= dnB(s- n- r2)8(n + r2-s1)8(s1- n) 

(
(Ng)l(x-s+2r2)F(x-s+2r2, x-s-sl +2rz+2ri, x)) 

x (Ng)2(x+s-2r2)F(x+s-2r2, x+s+s1-2r2-·2n, x) ' 
(4. 22) 

where, in the second equality, we have first made the change of variable: rz' = r2 + s1- n 
and next written r2 again instead of r2'. Similarly we have 

and 

Fd;d(x) = E 2£
00 

dr2£
00 

dn B(s- n- r2) 8( n- s1) 

X ((Ng)I(x-s +2r2)F(x -s+2r2, x-s+sl +2r2, x)) 
(Ng)2(x+s-2r2)F(x +s-2r2, x +s -s1-2r2, x) 

x((Ng)I(x-s+2r2)F(x-s+2r2, x-s+si, x)). 
(Ng)z(x+s-2r2)F(x+s_.....2r2, x+s-sl, x) 

(4. 23) 

(4. 24) 
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Substituting (4·22)""'(4·24) into (4·21), we get 

fxs,o dv~.f; o,u(X) lJ!(X) · 

= hdx 1oo dn1oo drz(f(x+s-2rz)N-1B 2)I8(s- n- rz) 

x[B(n-si)(Ng)I(x)F(x, x+s1, x+s-2rz) 

+ B(n + rz-si)B(si- n)(Ng)I(x)F(x, x-sl +2n, x+s-2rz) 

+ 8(sl- n- rz)(Ng)l(x)F(x, x+s1-2rz, x+s-2rz)] 

+ hdx 1oo dn1oo drz(f(x-s+2rz)N-1B 2)z8(s- n- rz) 

X [B(n -si)(Ng)z(x)F(x, x-sl, x-s+2rz) 

+ 8(rl + rz-sl)B(sl- n)(Ng)z(x)F(x, x+s1-2r1, x-s+2rz) 

+ 8(sl- n- rz)(Ng)z(x)F(x, x-sl +2rz, x-s+2rz)]. (4. 25) 

Here, on the right-hand side, we have first made the change of variables: ~r;' =x- s + 2rz 
in the first term and x" = x + s- 2 rz in the second term, and next written x instead of 
x' and x". 

By the definition (4·19) of rp/: RXLP-<X:s,o, j=l, 2, we have 

rp/(x, n, rz)(O)=x, 

rp/(x, n, rz)(s)=x-(-1)i(s-2rz), 

so that we can get after all 

fxs,o dv~.f; o,g(X) lJ!(X) 

Cs1 < n) 
( n < S1 < r1 + rz) 

(n + rz<s1) 

= hdx 1
2 
dndrzj;t(f(x-( -1)i(s-2r2))N-1B 2)i 

x(Ng)jlJ!(rp/(x, n, rz)) 

This proves Theorem 4.8 for k=2. 

4.3. Proof of the path integral formula (3 · 6) 

We prove the formula (3·6) with r=O and s>O. We note the proof of the path 
integral formula (3·9) is analogous. ([)(t, x) and A(t, x) are continuous on R 2

• In 
Ref. 11), it was shown for ([)(t, x) and A(t, x) more general in x but less general in t, 
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164 T. Ichinose and H. Tamura 

i.e., when both the maps t ~ ([J( t, ·) and t ~A( t, ·) of R into L!oc(R; R) are continuous
ly differentiable. 

We prove (3·6) in three steps; first for t-independent ([J and A which are in 
Co oo(R; R), next for those which are in C(R; R) and finally for the general ([J(t, x) and 
A(t, x) which are in C(R2

; R). 

Step 1. So suppose that ([J(t, x)= ([J(x) and A(t, x)=A(x) are t-independent func
tions in Co oo(R; R). Define the operator 

(T(t)g)(x)= j RKo'(t, x-y)exp[ -ie([J(y)t+ieA(y)(x-y)]g(y)dy (4. 26) 

for g in Coo1(R; C2
), the Banach space of the C2-valued continuously differentiable 

functions in R which together with their first derivatives vanish at infinity. 
We need the following lemma. 

Lemma 4.9. Assume ([J(x) and A(x) are in Co oo(R; R). Then T(t) defines a bounded 
linear operator of Coo(R; C2

) into itself and II T(t)ll:::;:; cemltl with a constant C. 
Further, if g is in Coo'(R; C 2

), at( T(t)g) converges to - iHg in the norm of L 00 as t ~o, 
where 

zH'=[a(ax- ieA(x))+ im/3+ ie([J(x)]. ( 4. 27) 

Proof We simply write H for H'. The first half follows from the L 00 well-posedness 
of the Cauchy problem for (4 ·1). To show the second half note that, for fixed (t, x) 
ER X R, the support of Ko'(t, x- y) is bounded in y, and 

atKo'(t, x-y)=[aay-im/3]Ko'(t, x-y). 

Then we have 

at( T(t)g)(x)=- f)Ko'(t, x- y)(- at)+ aKo'(t, x- y)ay+ im/3Ko'(t, x- y)] 

x(exp[ -ie([J(y)t+ieA(y)(x-y)]g(y))dy. 

It follows that 

at( T(t)g)(x) + i(Hg)(x) 

=-{hKo'( t, x- y )exp[- ie([J(y) t + ieA(y )(x-y)] ie([J(y )g(y )dy 

- ie([J(x )g(x)} 

- a{hKo'(t, x- y)exp[- ie([J(y)+ ieA(y)(x- y)][ay- ieA(y) 

- ie( ay([J(y)) t + ie( ayA(y) )(x- y) ]g(y )dy- (ax- ieA(x) )g(x)} 

- im!3{hKo'( t, x- y )exp[- ie([J(y) t + ieA(y )(x- y) ]g(y )dy-g(x)} . 
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Path Integral Approach to Relativistic Quantum Mechanics 165 

The right-hand side above converges to zero in the norm of L 00 as t ~ 0, because 
Ko1(t, x-y)~o(x-y)l as t~o. Lemma 4.9 is thus proved. 

Now let us prove the path integral formula (3·6) with t-independent (J)(t, x) 
= (J)(x) and A(t, x) = A(x) in Co oo(R; R). By (4 · 7) and Theorem 4.3 we have for(/, g) 

in S (R; ( C2
)') X S (R; C2

) with sj= js/n 

(/, T(s/n)ng)= jCJ, dvLo(X)g) 

n 
X exp{- ie ~ [ (J)(X(sj-t))s/n-A(X(sj-t))(X(sj)- X(sj-t))]}. 

j=l . 

(4. 28) 

The integrand on the right hand of (4·28), which is a function in Ctin(Xs,o), is 
uniformly bounded and convergent to exp[- ijge(J)(X(t))dt + iHeA(X(t))dX(t)] as 

n~oo for every Lipschitz continuous path X:[O, s]~R, i.e., for almost every path X, 

because v~.f; o,g has, as seen in § 4.2, support on the set of the Lipschitz continuous 

paths. Thus by the Lebesgue bounded convergence theorem, the right·hand side of 

(4·28) converges to that of (3·6) with r=O and with t-independent (/)and A as n~oo. 
As for the left-hand side of (4·28), we show in fact that T(s/n)ng converges to 

e-isHg in the norm of Loo as n~oo. By Lemma 4.9 we can see that for every gin 

C~1(R; C 2
) 

llot( T(t)- e-itH)gll ~ 0 

as t ~ 0. Since 

lln(T(s/n)- e-i(sln>H)gll = nllls;n Ot( T(t)- e-itH)gdtll 

s;;.s sup llot(T(t)-e-itH)gll, 
tE[O,s!n] 

we have 

lln(T(s/n)-e-i<s;n>H)gii~O as n~oo. (4. 29) 

Further {n( T(s/n)- e-i(sln>H)}c;:=I is a family of bounded operators of Co,1(R; C2
) into 

Coo(R; C 2
) and for each fixed g in Coo1(R; C 2

), 

lin( T(s/n)- e-i(sln>H>)gll (4. 30) 

is uniformly bounded for n. Therefore, by the uniform boundedness principle,22
> 

( 4 · 30) is uniformly bounded for both n and g in the unit ball of Coo 1(R; c~} It follows 
that the convergence in (4·29) is uniform on compact subsets of Coo1(R; C2

). Since 

n II[ T(s/n)n- e-isH]gll =II~ T(s/n)i-1( T(s/n)- e-i(s!n)H)e-i((n-j)s!n)Hgll 
j=l 

< Cnems sup II( T(s/n)- e-i(sln>H)e-itHgll 
tE(O,s] 

with C=INIIN-11 by Lemma 4.1, and the set {e-itHg; tE[O, s]} is a compact subset of 
Coo 1(R; C 2

), the theorem is proved for t-independent (f) and A in Co oo(R; R). 
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166 T. Ichinose and H. Tamura 

Step 2. Next, suppose that f!J(t, x)= f!J(x) and A(t, x)=A(x) are !-independent 

functions in C(R; R). Let H 1 be the operator defined by (4·27). Choose sequences 

{ rp<n>(x )}~=1 and {A <n>(x )}~=1 of functions in C';(R; R) such that rp<n>(x) and A <n>(x) are 

uniformly bounded on each compact set in R and rp<n>(x) ~ f!J(x ), A <n>(x) ~ A(x) 

uniformly on each compact set of R as n~co. For each n define the operator H 1<n> 

by ( 4 · 27) with rp<n>(x) and A <n>(x) in place of f!J(x) and A(x ), respectively, i.e., 

( 4. 31) 

To simplify the notation we write again H, H<n> for H\ HI(n>, respectively. Then for 

(/, g) in S (R; ( C 2
)') x S (R; C 2

) 

(/, exp[- zsH<n>]g)= jdv~.f;o,gexp[- £18 

er!J<n>(X(t))dt 

+ ils eA <n>(X(t))dX(t)]. ( 4. 32) 

Since rp<n>(X(t)) and A <n>(X(t)) converge to f!J(X(t)) and A(X(t)) for every Lipschitz 

continuous path X: [ 0, s] ~ R and so for almost every path X because of the support 

property of v~.f;o,g, the right-hand side of (4·32) converges to the last member of (3·6) 

with r=O and with !-independent f!J and A as n~co, by the Lebesgue bounded 

convergence theorem. 
On the other hand, H<n> and H are essentially self-adjoine4

> on Co co(R; C 2
). For 

gin Co co(R; C 2
), H<n>g converges to Hg in L 2(R; C 2

) as n~ co. It follows29
> that for g 

in L 2(R; C 2
), exp[- isH<n>]g converges to exp[- isH]g in the norm of L 2 as n~co. 

This proves (3·6) for !-independent f!J and A in C(R; R). 

Step 3. Finally, we show the path integral formula (3 · 6) in the general case where 

f!J(t, x) and A(t, x) are in C(R2
; R). Before that, we note the following~ Given 

sequences { rp<n>}~=1 and {A <n>}~=1 of t -independent functions in C(R; R), let {H1<n>}~=1 

be the corresponding operators defined by (4·31). We write again H<n> for HI(n>. 

For each fixed n21, set 

ijj<n>(t, x)= rp<n(x), _A<n>(t, x)=A<n(x), 

(l-1)s/n-::;;, t-::;;, ls/n, 1 ~ l < n. 

Then notice that for each n, 

e-i(S/n)H<n> e-i(s/n)H<n-1> ••• ••• e-i(s!n)H<l>g 

is the unique solution at t=s of the Cauchy problem for (3·1) with (b<n> and _A<n> in 

place of f!J and A, respectively, with initial data gat t = 0. By similar arguments used 

'in the first step above we get for (/, g) in S (R;( C 2
)') X S (R; C 2

) 

We are now in a position to prove the path integral formula (3 · 6) with continuous 
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Path Integral Approach to Relativistic Quantum Mechanics 167 

functions (]) and A on R 2
• Let ¢(t, x) be the solution of the Cauchy problem for (3 ·1) 

with initial data ¢(0, x)=g(x) in S(R; C2
). Define sequences {&<n>}~=l and {Jl<n>}~=l 

by 

<D<n>(t, x)= (])(ls/n, x), _A<n>(t, x)=A(ls/n, x), 

(l-1)s/n ~ t ~ ls/n , 1 ~ l ~ n . 

Here note that <D<n>----; (]) and _A<n>----; A locally uniformly in R 2 as n----; oo, because (/) and 
A are uniformly continuous on each compact set in R 2

• For each n21, let ¢<n>(t, x) 
be the solution of the Cauchy problem for (3 ·1) with &<n> and _A<n> in place of (/) and 
A, respectively, with the same initial data ¢<n>(o, x)=g(x). The.n by (4··33) we have 

(/, ¢<n>(s, • )) 

=jet, dv1;o(X)g)exp[ -i1
8

e&<n>(t, X(t))dt+i1
8

e.A<n>(t, X(t))dX(t)J 

(4. 34) 

for (/,g) in s (R; ( C 2
)') X s (R; C 2

). The right· hand side of (4 ·34) converges to the 
last member of (3·6) with r=O by the Lebesgue bounded convergence theorem. To 
see the convergence of the left·hand side of (4 ·34), suppose first that g is inCa co(R; C 2

). 

Then in view of (3·1) we get, denoting the L 2 norm by ll·llz, 

ll¢(s, · )- ¢<n>(s, ·)Ill= lsdt ft ll¢(t, • )- ¢<n>(t, • )llz2 

= 1
8

dt{(¢<n>(t, ·), [z"e((])(t, ·)-<D<n>(t, ·)) 

+ iea(A(t, • )- _A<n>(t, • ))]¢(t, · )) 

-(¢(t, ·), [ie((])(t, ·)-<D<n>(t, ·)) 

+ iea(A(t, • )-Jl<n>(t, · ))]¢<n>(t, · ))} . 

We note here that g has compact support and so do ¢(t, ·)and ¢<n>(t, ·),by the finite 
propagation property of the solution for the Cauchy problem for the Dirac equation 
(3 ·1). The integrand of the third member of the above equation converges to zero 
uniformly in t on [ 0, s] as n----; oo because <D<n> and _A<n> converge to G~ and A, re· 
spectively, locally uniformly on [0, s]XR. -Thus we have ll¢(s, ·)-¢<n>(s, ·)llz----;0 and 
hence the left·hand side of (4·34) converges to the first member .of (3·6) with r=O as 
n--;oo. This proves (3·6) when g is in Ca00(R; C 2

). Now suppose that g is in 
S(R; C 2

). For every c>O there is a g' in Ca00(R; C 2
) with llg-g'llz<c. Let ¢(t,x) 

and ¢'(t, x) [resp., ¢<n>(t, x) and ¢'<n>(t, x)] be the solutions of the Cauchy problem for 
(3 ·1) [resp., with <D<n> and A<n> in place of (/) and A] with initial data ¢(0, x) = g(x) and 
¢'(0, x)=g'(x) [resp., ¢<n>(o, x)=g(x) and ¢'<n>(o, x)=g'(x)]. Then we have by unitar
ity 

ll¢(t, ·)-¢'(t, ·)llz=ll¢<n>(t, ·)-¢'<n>(t, ·)llz=llg-g'llz<c 

and so 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.92.144/1934972 by guest on 19 April 2024



168 T. Ichinose and H. Tamura 

ll¢<n>(t, • )- qS(t, ·)liz 

:S:II¢<nl(t, ·)-qS'<n>(t, ·)llz+ll¢'<n>(t, ·)-qS'(t, ·)llz+llqS'(t, ·)-qS(t, ·)liz 

:S: 2llg- g'llz +II qS'(n)( t, ·)- qS'( t, ·)liz 

:S:2c+ll¢'<n>(t, ·)-qS'(t, ·)liz. 

The second term in the last member, as already seen above, converges to zero as 
n-HX), because g' is in Co oo(R; cz). Since c is arbitrary, we conclude that as n-HXJ, 

qS<n>(t, • )~ qS(t, ·)in Lz and so the left-hand side of (4 ·34) converges to the first member 
of (3·6) with r=O, when g is in S (R; cz). This prove (3·6) in the general case, 
completing the proof of Theorem 3.1. 

§ 5. The Dirac equation in four space-time dimensions 

We consider the problem of the path integral for the four-space-time-dimensional 
Dirac equation (2 ·1) with d = 3. The Dirac matrices aj and /3 are 4 X 4 Hermitian 
matrices satisfying a/=/3z=1, aj/3+/3aj=O, 1:S:j:S:3, and ajak+akaj=O, j=t=k. 

Our method does not seem to establish the L 00 well-posedness to get Lemma 4.2 for 
the Cauchy problem for the free equation to (2·1) with d=3, 

(5·1) 

However, we can deal with three special cases, the path integral for the free Dirac 
equation, that for the Dirac equation with a central electric field and that for the Dirac 
equation with parallel electric and unifom magnetic fields, which are reduced to the 
problems for equations with two independent variables as considered in § 3. 

5.1. The free Dirac equation 

We use the Radon transform30
> to reduce the problem with four independent 

variables to that with two independent variables.31
> 

The Radon transform {j of a function g defined in R 3 is by definition 

§(~, w)= ( g(x)8(~-xw)dx, . )R3 

where ~ER and w=(w1, wz, W3) is a unit vector in R 3
• The following Plancherel 

theorem holds: 

(5· 2) 

·where 1~ a~J and {j~=o~{j. 
Then the fundamental solution Ko(t, x- y) of the Cauchy problem for the free 

Dirac equation (5 ·1) admits the following path integral representation. Note that. 
there is a unitary matrix N(w) such that N(m)(~5=1 ajwj)N(w)- 1 . a1 and 
N( w) /JN( w )- 1 = /3. 

THEOREM 5.1. There exists a unique S '(R x R; Ml C))-va.lued countably additive 
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Path Integral Approach to Relativistic Quantum Mechanics 169 

measure vLo on the Banach space C(IO, tl; R) of the one-dimensional continuous paths 

E:IO, tl ____, R such that for (/,g) in S (R3
; ( C4

)') x S (R3
; C 4

) 

(/, ¢(t, · ))= {{ · f(x)Ko(t, x- y)g(y)dxdy 
}}Rs xR3 

The measure v Lo is concentrated on the set of those Lipschitz continuous paths 

E:IO, tl ____, R which satisfy 

for some finite partition: O=to~t1~···~tk=t 

of IO, tl, depending on E , 

or 

j-1 

E( r)- E(O)= ~ ( -l)i-1(ti- ti-l)+ ( -l)i-1
( r- tj-l) , 

i=l 

for rEI ti-l, til , 

[!E(r)-E(O)I=Irl for rE!O, tl, in case m=O]. (5·4) 

The set function 

is a complex-valued countably additive measure on the Banach space C(IO, tl; R) 

which is concentrated on the set of the Lipschitz continuous paths E satisfying (5·4) 

and E(O)Esupp§i·, ro), E(t)Esuppfi·, ro). 

Proof The Radon transform of (5 ·1) yields 

Multiply (5·5) by N(ro) from the left. Then we have 

8tr;(t, ~' ro)=[ -alat;-im(3]r;(t, ~' ro) 

(5·5) 

(5. 5)' 

with r;(t, ~' ro)=N(ro);J(t, ~' ro). For ro fixed, (5·5)' is a first-order hyperbolic system 

with two independent variables t and~- In the same way as in the proof of Theorems 

3.1 and 3.2 we can construct the path space measure vL o with the property mentioned 

in Theorem 5.1. 
To get (5·3), differentiate by ~ both sides of (5·5). Then if ;Jt;(t, ~' ro) 

-ot;;J(t, ~' ro) is the solution of the Cauchy problem for (5·5) with initial data 

¢io, ~' ro)= §t;(~, ro)- ot;§(~, ro) it has the following path integral representation: 
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170 T. Ichinose and H. Tamura 

(fi ·, w), ¢~(t, ·, w)) 

= jcfi·, w), N(w)- 1dvLo(E)N(w)fh(·, w)). 

The formula (5·3) follows from this with the aid of the Plancherel formula (5·2). 
This proves Theorem 5.1. 

Remark Formal substitution of 3x=3( · -x) and 3y=3( ·- y) into f and g yields the 
following intuitive expression of (5 · 3): 

Ko(t, x- y)=2- 1(2Jr)-2 j(J)
1

=
1
dw j3'(E(t)-xw) 

XN(w)- 1dvLo(E)N(w)3'(E(O)- yw), (5·3)' 

where 3'(s)=(d/ds)3(s). 

5.2. The Dirac equation for a central electric field 

The Dirac equation for a central electric field can be separated in spherical 
coordinates.6

l The radial Dirac equation is 

otx(t, r)=- zHKx(t, r), 

HK=HoK+ V(r), 

(0 -1) (m HoK= 1 0 a,+ K/r 

tER, rE(O, co), 

(5·6) 

with V = e(/j, where K is a positive and negative integer. We assume that V( r) is a 
real-valued continuous function in (0, co) such that HK is self-adjoint 32

l in 
L 2((0, co), dr; C2

). The following theorem is, though of a rather restrictive charac
ter, concerned with a path integral representation for the solution K(t, r) for the 
Cauchy problem for (5·6) with initial data x(O, r)=g(r). 

THEOREM 5.2. Let f and g be in S (R+; ( C2
)') and S (R+; C2

), the restrictions of 
S(R; (C2

)') and S(R; C 2
) to R+=[O, co), respectively. If, for each s with O:Ss:St 

when t > 0 or with 0 >s 2 t when t < 0, the intersection 

{rER+; lx-rl<lt-sl, xEsupp/}n{rER+; lr-yJ:Sisl, yEsuppg} (5·7) 

does not contain 0, there exists a unique complex-valued countably additive measure 
v~; t.f; o,u on the set of the one-dimensional continuous paths R:IO, tl ~ R+ such that for 
every continuous V( r ), 

(5· 8) 

The support of v~; t .f; o,u is on the set of the Lipschitz continuous paths R: IO, t I~ R+ 
satisfying 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.92.144/1934972 by guest on 19 April 2024



Path Integral Approach to Relativistic Quantum Mechanics 171 

for each a, b with 0~ a< b~ t when t >O 

or 0?:. a > b?:. t when t < 0 , 

IR(b)-R(a)l~ lb-al 

and R(O)Esuppg, R(t)Esupp/. 

(5·9) 

Proof We give only an outline of the proof, for it proceeds with a similar argument 
used in the proof of Theorem 3.1. 

Let t, f and g be as in Theorem 5.2. We consider only the case t >0. The free 
equation to (5·6) is 

O<s~t, rE(O, oo). (5 ·10) 

Then for the Cauchy problem for (5·10) we have the following lemma (cf. Lemma 
4.1). Let ro >O be the minimum of the set (5·7), so that IKI/ro is an upper bound of IKI/r 
with r in the set (5 · 7). 

Lemma 5.3. If r is in suppf with r?:.min(suppg)-s, then 

iNx(s, r)l< eMsmax{iNx(O, u)l; uEsuppg, r-s~ u< r+s}, 

(1 1i). where M=m+IKI/ro and N=2-112 i 

Proof We only note the following. Multiplying Eq. (5 ·10) by N fron1 the left, we 
have with r;(t, r)=Nx(t, r), 

[ (1 0) (0 -m- iK/r)] Otr;(t, r)= 0 -1 or+ m-iK/r 0 r;(t, r). (5·10)' 

Notice that Lemma 5.3 yields the support property of the fundamental solution 
Ko+(s, r) of the Cauchy problem for (5·10). 

To construct the path space measure let .1{t,o= IT[o,tJ.R+ be the product of the 
uncountably many copies of .R+=R+U{oo}, the one-point compactification of R+. Let 
C(.1{t,o) be the Banach space of the continuous functions on the compact Hausdorff 
space g{t,o, and Cfin(.1{t,o) its subspace of those lJf for which there exist a finite 
partition 0= to< tl < ... < tn= t of the interval [0, t] and a complex-valued bounded 
continuous function F(ro, r1, ···, rn) on (_R+)n+I such that lJf(R)=F(R(to), R(tl), ···, 
R(tn)). 

Define a linear functional L/C; t.f;O,g on Cfin(.1{t,o) by 

n+1 
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Then the following lemma will be shown with use of Lemma 5.3 (cf. Lemma 4.2). 

Lemma 5.4. L/C; t,f;o,glf/ is well-defined on Cnn(fRt,o) and 

IL/C; t ,f; O,g lfli :-:::;:: 2eMt lllfiiiiiiiiL l((O,oo),dr)llgiiLoo((o,oo),dr) 

for every lJf in Cfln(fRt,o), where M = m+ IKI/ro. 

Since Cfin(fRt,o) is dense in C(fRt,o), it follows from Lemma 5.4 with the Riesz-type 
representation theorem27

> that there exists a unique complex-valued countably ad
ditive measure v ~; t,f; o,g defined on the Borel sets in fR t,o such that for every lJf 
E C(fRt,o), 

L/C; t,f;O,glf/= h,.odl!~; t,f;O,g(R) lf!(R). 

The support property of the measure will be seen from that of Ko +(s, r ). For the 
proof we refer to the argument used in Ref. 13), Section III B. Once the path space 
measure v~; t.f; o,g is constructed the proof of the formula (5 · 8) will be accomplished as 
in § 4.3. 

Remark 1. The restriction for t and the supports of I and· g in Theorem 5.2 means 
that the information which starts from g at time 0 to reach I at time t. has never 
passed through the center of the potential, i.e., r = 0. We need it, for the free Dirac 
equation (5 ·10) contains the 1/r singularity in Ho/C, which invalidates Lemma 5.3. As 
for the Cauchy problem for (5 · 6), the theorem gives only a short-time representation 
of its solution x(t, r) with initial data x(O, r)=g(r), a function in S(R+; C2) with 
support not containing r = 0. 

Remark 2. Even when m=O, it cannot be asserted that the support of v~; t,f;o,g is on 
the set of the paths R: IO, ti~R+ satisfying IR(b)-R(a)l=lb-al instead of (5·9) for 
the same a, b. The presence of the iK/r term in Ho/C might warp the paths. 

These facts may suggest that this case cannot be effectively reduced to a two
space-time-dimensional problem. 

5.3. The Dirac equation for parallel electric and uniform magnetic fields 

We consider, in 4-dimensional space-timeR X R 3 = R 4
, a uniform magnetic field in 

the 3-direction and a parallel electric field, which are given by the potentials 

(5 ·11) 

The coordinates are so chosen that eB > 0. Then the Dirac equation .becomes 

{)tc/J( t, XI, Xz, X3) = [- GI (JI- az( {Jz- ieBxi)- G3()3- i/3m- ie(J)( t, X3)] 

X c/J(t, XI, X2, X3). (5 ·12) 

We first make the Fourier transform of ¢(t, XI, Xz, X3) in the variable xz, i.e., 

¢(t, X1, P, X3)=(27f)-I12h¢(t, XI, Xz, X3)e-iPx 2 dP, 

and next expand ¢(t, XI, P, X3) in terms of the Hermite functions of the variable 
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(eB) 112(xl- P/eB). Then we have 

c/J(t, X1, Xz, X3)=(27f)-
112IJ

0
hQn( (eB)112

( X1- e~) )¢n(t, X3; p)eiPx2dj> (5 ·13) 

with 

The Qn(~) are the normalized Hermite functions 

n=O, 1, 2, ··· 

with normalization constants en depending on n, where the functions lin(~) are the 
Hermite polynomials of order n. They are characterized by the equatilons 

with ~(~)= 7f- 114 e-lf212. Further define functions ¢n by 

¢n(t, X3; P)- 2- 1(1 + ia1az) ¢ n-1Ct, X3; P) + £2- 1(1- ia1az) ¢n(t, X3; P) (5 ·14) 

with i-1-0. Note that 2-1(1 + ia1az) are projections of C4 onto two-dimensional 
subspaces of C4

• Substituting (5·13) and (5·14) into the Dirac equation (5·12), we get 

dtcPn(t, X3; p) = [- a3d3- i(m2 + 2neB)112 /3n- ie(/)(t, X3)] ¢n(t, X3; p), 

n=O, 1, ···, (5 ·15) 

where fln is an Hermitian matrix in Ml C) given by 

fln =(m2+ 2neB)-112({Jm-(2neB) 112 al). 

The 4X4~matrices a3 and fln satisfy al=fln2=1 and a3fln+flna3=0. Since Eq. (5·15) 
is a first-order hyperbolic system with two independent variables t and .:;c3, the theory 
of the present article can be applied. We may also reduce Eq. (5 ·15) to an equation 
with 2 X 2 matrices as coefficients. In fact, there exists, for each n, a 4 >< 4 matrix Nn 
such that 

where ch and CJz are Pauli matrices. Then it is seen that for each n, both ¢n t 
= t((Nn¢n)1, (Nn¢n)z) and ¢n + = t((Nn¢n)3, (Nn¢n)4) satisfy one and the sarne equation 

dt¢'(t, X3)= [- CJ3d3- i(m2+2neB)112 CJ1- ie@(t, X3)]¢(t, x3), 

(5 ·16) 

which is nothing but the two-dimensional Dirac equations (3 ·1) with mass 
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(m2 +2neB)112 and A=O. Therefore the same statements as in Theorem 3.1 hold for 
Eq. (5·16). 
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