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Abstract.— A comprehensive phylogeny of papilionoid legumes was inferred from sequences of 2228 taxa in GenBank
release 147. A semiautomated analysis pipeline was constructed to download, parse, assemble, align, combine, and build
trees from a pool of 11,881 sequences. Initial steps included all-against-all BLAST similarity searches coupled with assembly,
using a novel strategy for building length-homogeneous primary sequence clusters. This was followed by a combination
of global and local alignment protocols to build larger secondary clusters of locally aligned sequences, thus taking into
account the dramatic differences in length of the heterogeneous coding and noncoding sequence data present in GenBank.
Next, clusters were checked for the presence of duplicate genes and other potentially misleading sequences and examined
for combinability with other clusters on the basis of taxon overlap. Finally, two supermatrices were constructed: a "sparse"
matrix based on the primary clusters alone (1794 taxa x 53,977 characters), and a somewhat more "dense" matrix based on
the secondary clusters (2228 taxa x 33,168 characters). Both matrices were very sparse, with 95% of their cells containing
gaps or question marks. These were subjected to extensive heuristic parsimony analyses using deterministic and stochastic
heuristics, including bootstrap analyses. A "reduced consensus" bootstrap analysis was also performed to detect cryptic
signal in a subtree of the data set corresponding to a "backbone" phylogeny proposed in previous studies. Overall, the dense
supermatrix appeared to provide much more satisfying results, indicated by better resolution of the bootstrap tree, excellent
agreement with the backbone papilionoid tree in the reduced bootstrap consensus analysis, few problematic large polytomies
in the strict consensus, and less fragmentation of conventionally recognized genera. Nevertheless, at lower taxonomic levels
several problems were identified and diagnosed. A large number of methodological issues in supermatrix construction at
this scale are discussed, including detection of annotation errors in GenBank sequences; the shortage of effective algorithms
and software for local multiple sequence alignment; the difficulty of overcoming effects of fragmentation of data into nearly
disjoint blocks in sparse supermatrices; and the lack of informative tools to assess confidence limits in very large trees.
[Alignment; Fabaceae/Leguminosae; Papilionoideae; phylogeny; phyloinformatics; supermatrix.]

Large sequence databases such as GenBank (Benson
et al., 2005) are a rich repository of phylogenetically rele-
vant information at the molecular level. As of April 2006,
GenBank contained 57 million sequences for 151,000
species. Electronic access to these databases via the In-
ternet facilitates the timely deposition of sequence data
and makes those data widely available. Although the
rapid doubling time of the database as a whole is now
legendary, the pace of taxonomic sampling observed in
GenBank has also been dramatic: the number of species
with at least one sequence in GenBank has doubled since
2001. Whereas the former can be attributed in large part
to industrial-scale whole-genome sequencing, the latter
clearly testifies to the intense worldwide interest in sys-
tematics and biodiversity.

Most attempts to exploit very large amounts of se-
quence data for phylogenetic inference have adopted
either a "phylogenomics" approach (Eisen and Fraser,
2003), in which whole genomes are used to construct
a "supermatrix" of concatenated loci, from which trees
are built (e.g., Rokas et al., 2003; Lerat et al., 2003), or
a "phyloinformatics" approach, in which sequences are
extracted from the databases irrespective of the original
source (e.g., as part of genome projects or not: Driskell
et al., 2004; Wolf et al., 2004; Philippe et al., 2004, 2005).
Phylogenomic studies have typically combined 50 to
200 orthologous loci from whole genomes and assem-
bled large matrices with little missing data, generally for
few taxa. Although some of these studies have inferred

trees with remarkably little uncertainty attached, oth-
ers have opened up new controversies, as in the case of
angiosperm phylogenies constructed from whole chloro-
plast genomes (e.g., Goremykin etal , 2003; Leebens-
Mack et al., 2005), a case that illustrates the important
effects of taxon sampling.

On the other hand, "phyloinformatics" approaches
can take advantage of additional taxon sampling avail-
able in sequence databases, at the cost of consid-
erable heterogeneity and sampling problems. This
heterogeneity has been a prime motivation for the
development of supertree strategies (reviewed in
Bininda-Emonds, 2004), which combine evidence from
different loci by combining the trees built from those
loci. A number of quite complete, taxon-rich supertrees
have been published for various clades (e.g., carnivores:
Bininda-Emonds etal., 1999; legumes: Wojciechowski
et al., 2000; dinosaurs: Pisani et al., 2002), and several
have been used for evolutionary or ecological studies
(e.g., Grotkopp et al., 2004; Moles et al., 2005). Alterna-
tively, the loci can be combined into one very large super
matrix from which a tree is inferred directly. Because the
data are not obtained by targeted genome projects or
other coordinated community-wide sequencing efforts,
taxon sampling among loci tends to be very heteroge-
neous, leading to supermatrices that typically have much
more missing data than those in phylogenomic studies
(Driskell et al., 2004; Wolf et al., 2004; Philippe et al., 2004,
2005).
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Phyloinformatic approaches may also be differenti-
ated from increasingly common "multigene" studies
that target a selected set of taxa and loci in an effort
to resolve relationships at a particular level in a phy-
logeny. Although this is an approach with a proven
track record (e.g., the spectacular success revising un-
derstanding of angiosperm relationships based on rbcL,
atpB, and 18S rDNA [and now several other loci: Qiu
et al., 2005], culminating in a revised classification; An-
giosperm Phylogeny Group II, 2003), it becomes increas-
ingly infeasible in large sets of densely sampled taxa. By
sampling from sequence databases, it may be possible
to combine more efficiently information relevant to both
deep and shallow nodes in the tree of life, assuming that
such data have been deposited by workers interested in
problems at those different levels.

The goal of this paper is to test the limits of the phy-
loinf ormatics approach by attempting to build a credible
supermatrix and phylogenetic tree of all species of papil-
ionoid legumes in GenBank. In this paper we pursue a
supermatrix rather than supertree approach. Papilionoid
legumes are a good candidate for this exercise. They are
an important group of angiosperms that comprise some
14,000 species nested within the Leguminosae (Lewis
etal., 2005) and account for about 70% of its species
diversity. They have been studied by both systematists
and biologists focusing on the many model legume sys-
tems. The phylogenies of its largest genera (Astragalus,
Indigofera, Dalea, Medicago, Trifolium, etc.) have been the
subject of molecular systematic work; the backbone of
the tree has been extensively studied with broad sam-
ples across a large number of genera (Pennington et al.,
2000; Kajita et al., 2001; Wojciechowski et al., 2004; for
a brief review, see Doyle and Luckow, 2003); and sev-
eral studies at an intermediate scale have focused on
"tribal" level relationships (e.g., Amorpheae: McMahon
and Hufford, 2004; Robinieae: Lavin and Sousa S., 1995;
Millettieae: Hu et al., 2000; Mirbelieae and Bossiaeeae:
Crisp and Cook, 2003; Vicieae and Trifolieae: Steele and
Wojciechowski, 2003; Loteae: Allan et al., 2003). Finally,
their taxonomy has recently been comprehensively sur-
veyed (Lewis et al., 2005).

The scale of analysis spans roughly 12,000 sequences
and 2200 taxa. Exploitation of sequence databases at
this scale for phylogenetic purposes faces a number of
methodological and computational obstacles (Sander-
son and Driskell, 2003; Delsuc et al., 2005). First, strate-
gies for assembling data from a large database into
collections of manageable data sets have been little ex-
plored (Sanderson and Driskell, 2003; Driskell etal.,
2004). Second, several problems that have long received
attention from the phylogenetics community, such as
tree-building and sequence alignment, face novel chal-
lenges from the biased and heterogeneously distributed
data in the databases (e.g., patterns of missing data). One
of the clearest examples of this is the problem of align-
ing sequence data from diverse loci or partitions that
contain both closely and distantly related taxa simulta-
neously. Finally, the scale of the data, especially the large
number of taxa, poses a serious challenge to many ex-

isting protocols for phylogenetic analysis (Guindon and
Gascuel, 2003; Tamura et al., 2004; Salamin et al., 2005;
Vinh and von Haeseler, 2005). This paper examines all of
these general problems in the specific context of recon-
structing relationships of one clade.

Much of this paper describes protocols for acquiring
and processing large quantities of phylogenetically rel-
evant sequence data. Earlier versions of some of these
(Driskell et al., 2004) have been adapted to the specific
problems encountered in this project; other protocols are
new, especially those involving the very significant align-
ment problems encountered in data that are dominated
by noncoding DNA sequences. Driskell et al. (2004) re-
constructed deep phylogenies of green plants and meta-
zoan animals based on amino acid sequence data, which
was easier to automate. The present study includes 20
times as many taxa, which necessitated additional mod-
ifications to alignment and phylogenetic inference pro-
tocols. Evaluating the results of our analyses, either in
terms of conventional estimates of support or by com-
paring results to previously published work, presented
new challenges.

METHODS

Supermatrix Construction

Data.—We downloaded the GenBank flat files (Release
147,15 April 2005: gbpln files only) for green plants from
NCBI (ftp.ncbi.nih.gov/genbank) and extracted all se-
quence records of molecule type "DNA" in the LOCUS
line for organisms belonging to the clade Papilionoideae.
These files do not include very large collections from
high-throughput genome sequencing or EST projects,
nor do they include cDNAs, but they do include the vast
majority of sequences known from non-model organ-
isms. We further limited the records to include only those
of 5kb length or less to exclude; e.g., genomic sequences
from whole chromosomes that had not been shunted by
NCBI to other divisions.

Sequence clustering and alignment.—Assembly of an
appropriate collection of phylogenetically related se-
quences is a hard problem, well studied in the con-
text of construction of protein "families," but poorly
studied in the more typical phylogenetic setting of het-
erogeneous mixtures of coding and noncoding data of
different lengths and degree of overlap. The latter can
occur because of evolutionary insertions and deletions
or, more problematically, because of primer choice and
mosaic patterns of local homology (e.g., intron loss or
domain shuffling). Because multiple sequence align-
ment algorithms generally assume that sequences dif-
fer only through processes of substitutions and small
insertions or deletions, large-scale differences in length
and degree of overlap can lead to severe problems
(Lassmann and Sonnhammer, 2002, 2005a). This in-
volves the general problem of local multiple sequence
alignment (Gusfield, 1997), for which solutions are less
well established than global alignment (Lassmann and
Sonnhammer, 2002). Tools that have been developed rel-
atively recently include those that attempt to align locally
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homologous segments, (DIALIGN 2: Morgenstern, 1999;
DIALIGN-T: Subramanian et al., 2005), to sidestep the
"multiple" part of the alignment problem entirely by
aligning pairwise to a reference sequence (Blast Align:
Belshaw and Katzourakis, 2005), to combine local and
global alignment procedures (e.g., T-Coffee: Notredame
et al., 2000; POA: Grasso and Lee, 2004), or to employ hid-
den Markov models to align sequences to profiles (HM-
Mer: Eddy, 1998). Other methods are designed solely to
align proteins (e.g., Kalign: Lassmann and Sonnhammer,
2005b; HMMer 2: Eddy, 1998, http://hmmer.wustl.edu/)
and were not applicable to our data.

Figure 1 illustrates the general problem we encoun-
tered in trying to use standard alignment software with
sequences of heterogeneous length. Our most troubling
data sets originated from sequenced regions for which
there has been much variation in primer sets, such as
the nuclear ribosomal ITS region and the chloroplast
trnK intron. These are also among the most frequently
sequenced regions and were therefore critical to the
study. Preliminary experimentation with several align-
ment programs demonstrated that global alignment al-
gorithms (such as that found in Clustal W; Thompson
et al., 1994), which are not designed for this problem, en-
countered difficulty in assigning partial sequences to the
correct subregion (Fig. 1). For our data, the local align-
ment program DIALIGN (Morgenstern, 1999) performed
best in this regard, although it was significantly slower
than any other program. Our assessment of the qual-
ity of alignments was largely based on this gross level,
i.e., whether sequences annotated as a certain subregion
were indeed placed in that subregion. This is not an easy
process to automate, however, because sequence anno-
tations are highly variable and difficult to parse. An al-

ternative approach is to assess intraalignment or inter-
alignment consistency and use this as a basis of com-
parison (Poirot et al., 2003; Lassmann and Sonnhammer
2005a). For the example shown in Figure 1, the results of
an interalignment consistency analysis using MUMSA
(Lassmann and Sonnhammer 2005a) were similar to our
gross-scale assessment (see Fig. 1), with DIALIGN and
Clustal W receiving the highest and lowest scores, re-
spectively, for this particularly difficult set of sequences.

None of these programs alone offered satisfactory
solutions, so we developed two alternative heuristic
strategies. A schematic of these strategies, as well as other
analysis steps, is shown in Figure 2. The first step was to
assemble sequences into sets of homologs, or "clusters,"
for eventual multiple alignment. We used all-against-all
local similarity searches using the NCBI BLAST program
blastn (Altschul et al., 1990) to compare each sequence to
every other sequence with a cutoff maximum E-value of
1.0E-10 and the low-complexity filter DUST turned off,
which prevents the breakage of long homologs into short
fragments based on intervening low complexity runs of
bases. This strategy identifies pairs of sequences that
have one or more regions of statistically significant ho-
mology within them. We then used single-linkage clus-
tering to put all sequences together that hit against at
least one other member of the cluster (cf., Dondoshan-
sky, 2002). However, additional factors are critical to
deciding whether or not to assemble sequences into a
cluster of homologs, especially the length, number, and
degree of overlap of the local regions of homology in the
pair.

To characterize these, we developed two statistics de-
scribing the set of BLAST hits between any two se-
quences. In Figure 3 the typical case is illustrated. One or
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FIGURE 1. Example of performance of alignment programs Clustal W 1.83 (Thompson etal., 1994), DIALIGN 2.2 (Morgenstern, 1999),
MUSCLE 3.6 (Edgar, 2004), POA 2 (Grasso and Lee, 2004), and HMMer 1.8.5 (Eddy, 1998) on the same collection of sequences exhibiting only
local homologies. Input sequences consisted of 123 papilionoid GenBank accessions comprising parts or all of the nuclear ribosomal internal
transcribed spacer (ITS) region, including ITS1, 5.8S rRNA gene, ITS 2, and small parts of the flanking 18S and 26S rRNA genes. A subset of
sequences is shown. Programs were run with default options. Output shows a symbol if there are any bases in the alignment in a binned length
of size 50 bases. Sequences containing data from only ITS1 or only ITS2 are indicated as 1 or 2; sequences that span most or all of the region
are indicated as W. The diagram shows overall structure of the programs' homology assessment, although its fine structure obviously includes
additional gaps. Total length of the five alignments differs because of the difference in numbers of gaps inserted. Note the poor performance
of Clustal W, expected because the sequences lack global homology. The multiple overlap score (MOS) calculated by MUMSA (Lassmann and
Sonnhammerm, 2005a) is given for each alignment, which is related to the proportion of base homologies found in that alignment that are
consistent across alignments. Sequence data set available at http://ginger.ucdavis.edu/Benchmark.htm and http://systematicbiology.org.
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Dense supermatrix

GenBank download

• All gbpln files, Release 147,
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realignment

Test for seq orthology
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clusters that are linked by at least
four taxa /

N
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c Phylogenetic analysis
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FIGURE 2. Flowchart of the data analysis steps used to assemble the sparse and dense supermatrices. Steps proceed from top to bottom.
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FIGURE 3. Schematic diagram of our criteria used to establish homology between pairs of sequences following BLAST searches. Example
shows two overlapping sequences in which BLAST has reported two "hits" (regions of sufficient local homology above the user-supplied cutoff
expect value, indicated by black regions). Hit span is the length from beginning of first hit to end of last hit. The hit fraction, co, is the fraction of the
sequence's length involved in BLAST hits. The hit span fraction, (/>, is the fraction of the total span taken up by the hit span. See Methods for more
precise definitions. Adjustment of these two parameters during assembly of pairwise BLAST hits into clusters greatly affects how heterogeneous
the sequences are in terms of lengths, internal structure, and sequence divergence.

more hits occur (black areas) and the remaining sequence
is judged non-homologous. Consider the top sequence,
sequence 1. Its length, Si, is the sum of three things: the
so-called hit span length, Hi, which is the length of se-
quence from the beginning of the first hit to the end of
the last hit (thus including some interspersed nonhomol-
ogous regions), plus a leftmost nonhomologous piece of
length L i, and rightmost nonhomologous piece of length
R\. Similar lengths are defined for the bottom sequence,
of length S2. Note that Hi and H2 need not be equal,
e.g., interspersed nonhomologous regions may differ in
length, or the sequences may contain repeats, which pro-
duce complex hit patterns. Define the "hit span fraction"
as

0 =
max (Hi, H2)

max (Li, L2) + max (Hi, H2) + max (R\,

This provides a quantitative indication of the degree
of overhanging nonhomologous ends in the sequences,
with values close to 0 reflecting very long nonhomolo-
gous ends on one or both sequences. However, values
close to 1.0 could occur even if there were two small hits
separated by nonhomologous interspersed regions, as
long as there were short ragged ends. To monitor this,
we construct a "hit fraction." Assume there are k hits,
labeled, h\]' to indicate the z'th hit in coordinates rela-
tive to sequence /. The total length of hits on sequence
1, H*, is given by the length of the union of these se-
quences: Hj" = length(|jf=i hf]). That is, if they are dis-
joint, the lengths are summed; if they overlap, the length
is based on the combined sequence. Then the hit frac-
tion is o>i = H*/S\ for sequence 1 and &>2 = H2*/S2 for
sequence 2. The hit fraction gives an indication of how
much overall similarity is present between the input se-
quences. Our indices are similar in concept to the cover-
age parameters in BLASTCLUST (Dondoshansky, 2002)
but differ in that we take the set union from potentially
many separate hits. In addition, BLASTCLUST does not
provide access to all of the parameters available when
using BLAST alone.

Clustering was implemented in two rounds. In the
first round, we clustered sequences together if co\, C02,
and 0 > 0.90. The cutoff value of 0.90 was determined
through extensive experimentation with the goal of cre-

ating small "well-behaved" clusters that are nearly iden-
tical in length and suitable for subsequent alignment by
global multiple alignment programs. These "primary"
clusters were retained only if they were potentially phy-
logenetically informative, having four or more species.
Because taxon names are notoriously difficult to stan-
dardize (Page, 2005), we relied on the taxon identification
numbers assigned by NCBI. If the sequence was given a
taxon ID that corresponded to an infraspecific taxon, we
used the species ID as given in the NCBI taxonomy to
determine phylogenetic informativeness.

Sequences within these primary clusters were aligned
using Clustal W 1.83 (Thompson et al, 1994). Manual
adjustment was necessary for nearly all of the clusters
and was conducted in a variety of programs including
Se-Al (Rambaut, 1996), Seaview (Galtier et al., 1996), and
MacClade (Maddison and Maddison, 2005).

To push the limits of alignment protocols, we also un-
dertook a secondary round of clustering and alignment.
To determine which of the primary clusters could be as-
sembled further, we sampled three sequences from each
primary cluster and compared this collection of sam-
pled sequences using BLAST as described above. For
each pair of sequences, if a>\ and a>2 > 0.2 and 0 > 0.25,
the sequences were assembled into a cluster. By relax-
ing the cutoff values in this second round, we linked
sequences that overlapped less and/or had greater se-
quence divergence than in the first round. These "sam-
ple" clusters, made by linking samples from the primary
clusters, were aligned using DIALIGN (Morgenstern,
1999), a program designed for local (as opposed to global)
multiple sequence alignment. The alignments were then
edited manually, an important step because DIALIGN
can leave several bases unaligned (indicated in the align-
ment as lower case letters). As in the primary alignments,
our manual editing was conducted as conservatively
as possible, bringing into alignment only those bases
that clearly matched, leaving many gaps when neces-
sary to reduce the possibility of incorrect alignment. We
"zipped" together the aligned primary clusters accord-
ing to the alignments of the sample clusters, producing
"secondary" clusters in which the relative alignments
of sequences within each primary cluster were not dis-
turbed (similar to profile alignments in Clustal W).

To explore the tradeoff between alignment accuracy
and data density, we constructed supermatrices in two
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ways (Fig. 2). A sparse supermatrix was constructed from
the primary clusters only, skipping the second round of
assembly and alignment. Because the primary clusters
are sets that are similar in both sequence and length,
we expect that the alignment accuracy is highest within
these clusters. However, not aligning across the clusters
reduces data density because each cluster is treated as a
separate "gene," and more missing data are required in
the final concatenated matrix.

A "dense" (relatively speaking) supermatrix was con-
structed by combining the secondary clusters. Because
these clusters contain a much more heterogeneous set
of sequences, both in terms of sequence divergence and
length variation, alignment accuracy may well be pushed
to its limits, but the density of data is higher because more
sequences from more taxa are placed into homology with
one another. Rather than having 41 separate ITS clusters
in separate alignments, for example, the dense superma-
trix places 37 of them into one multiple alignment.

Orthology.—Prior to final supermatrix assembly, how-
ever, primary clusters were examined to see if they
contain gene duplications, because multigene fami-
lies cannot easily be analyzed together with single-
copy genes using standard tree-building algorithms
(Maddison, 1997) (although see Simmons et al, 2000).
To each cluster containing more than one sequence acces-
sion per species we applied a phylogenetic test of orthol-
ogy (modified from Sanderson et al., 2003) in which we
used the KH test for parsimony (Kishino and Hasegawa,
1989; Swofford et al., 1996) as implemented in PAUP*
(Swofford, 2003) to compare the results from a parsi-
mony search with and without the species constrained
to be monophyletic. If the result was significant at the
a = 0.05 level, we considered the species to be problem-
atic. For the nuclear ribosomal regions and the organellar
markers, we removed the problematic species and used
the pruned data sets. All nuclear (nonribosomal) data
sets that had any problematic species were removed en-
tirely. Our rationale for this is that ribosomal and organel-
lar data, the mainstay of molecular phylogenetics, are
assumed to behave as single-copy genes unless proven
otherwise. Failing the orthology test typically (with some
evident exceptions!) indicated processes such as lineage
sorting, hybridization, paraphyly of a species, or simple
misidentification of the taxon, and we therefore removed
the offending taxon from subsequent analyses. Nuclear
sequences, on the other hand, occur in gene families at a
much greater frequency (e.g., Arabidopsis Genome Ini-
tiative, 2000), and we felt it was safest to regard any
evidence of duplication as an indictment of the whole
cluster.

Consensus sequences.—Once the duplicated species
were pruned from the data sets, we reduced the num-
ber of sequences to one per taxon within the primary
clusters (sparse matrix) or within the secondary clusters
(dense matrix) by making consensus sequences. To con-
struct a consensus sequence, all aligned sequences with
the same taxon ID were compared and the majority state
selected where they differed, ignoring missing data. In
this way, for example, a taxon with separate ITS1 + 5.8

S and 5.8 S + ITS2 sequences would merge into one se-
quence covering the entire ITS1-5.8S-ITS2 region, using
consensus for the region of overlap in the middle. This
was motivated not by the goal of resolving disputes be-
tween sites but rather to construct the longest sequences
possible.

Data set combinability and concatenation.—An important
barrier to combining alignments into a supermatrix is the
amount of taxon overlap between data sets. If data sets
overlap in their taxon sets completely, it is appropriate
to consider combining them into a supermatrix. If, how-
ever, they share no taxa, then no analysis will produce
new information when those data sets are combined, and
it is appropriate to keep them separate. The risk of com-
bining such data sets can be extreme, depending on the
analysis. For example, if two data sets with no taxonomic
overlap are concatenated in a supermatrix and analyzed
with parsimony, the strict consensus of the resulting set
of trees will be completely collapsed. At best, a maximum
agreement subtree may pull out isolated relationships
within each of the data sets, but no information about re-
lationships between data sets can be obtained (An6 et al.,
2006). Elsewhere (Driskell et al., 2004; An6 et al., 2006),
we have termed collections of minimally combinable
data sets "groves." Identification of groves in extreme
cases is straightforward: if all taxon sets are equal or are
subsets of one another, the entire collection forms a sin-
gle grove; if all taxon sets are disjoint, each data set is in
a separate grove. Intermediate cases such as overlap of
a single taxon can be combinable or not, depending on
the pattern of overlap (Ane et al., 2006). Therefore, tak-
ing a relatively conservative approach to the question of
minimal taxon overlap, we required that data sets share
at least four taxa to be considered combinable. For each
analysis (sparse and dense), the largest set of combinable
data sets was then concatenated, adding missing data (as
question marks) where necessary to fill out the matrix.

Phylogenetic Analyses

Parsimony analyses of each supermatrix were
conducted in PAUP* (Swofford, 2003). We started
with simple-addition-sequence or random-addition-
sequence starting trees and variously limited the
searches to keep only one tree or to keep only 10 to 50
trees that were longer than the shortest known length,
with various additional limits on time from one to 150
hours. Gaps were treated as missing data. We also used
Perl scripts to implement the parsimony ratchet (Nixon,
1999) directly in PAUP*. The ratchet was set up such
that after 30 min of searching on the original matrix, the
tree was saved, 10% of the characters were randomly se-
lected and given weight of two, the previous tree was
used to start a new search, the best tree from this was
saved after 15 min, all characters were given weight one,
and the search continued for 200 iterations. Five separate
runs were started with simple-addition-sequence trees
and another five were started with random-addition-
sequence trees, and each was limited to one tree. The
tree or trees with the shortest length from all analyses
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was used as starting trees for searches that were limited
to 5000 trees and were not allowed to swap to completion.

Tree Assessment

Clade support was estimated using the nonparametric
bootstrap (Felsenstein, 1985) as implemented in PAUP*
(Swofford, 2003). Analyses of 100 pseudoreplicates (92
pseudoreplicates for the sparse matrix) were started
with simple addition-sequence trees, and the heuristic
searches were limited to 10 trees and 4 h each (dense
only) or 1 tree and 24 h each (both matrices). These
values were chosen based on extensive experimentation
with tree search protocols. We also used a reduced con-
sensus procedure outlined by Wilkinson (1996) to look
for support in subtrees of our data that might be lost
in the majority-rule consensus of the entire data set.
Conventional consensus techniques, including majority-
rule consensus, are inadequate for summarizing com-
mon information across collections of large trees; they
are too sensitive to "rogue" taxa, which are a significant
issue in the partially fragmented supermatrices we con-
structed. (Obtaining maximum agreement subtrees is an
additional approach, but we found this problematic be-
cause of a bug in PAUP* v4.0bl0 that prevented calcu-
lation of agreement subtrees for many inputs.) Instead
of searching for largest reduced consensus trees in a sys-
tematic fashion, we examined the reduced consensus in
the most recent and comprehensive phylogenetic anal-
ysis across legumes (Wojciechowski et al, 2004), which
is an analysis of 330 taxa, 226 of which are found in our
tree (225 for the sparse matrix). We took the entire boot-
strap profile of trees from our analyses and pruned them
down to the taxa found in common between our study
and that of Wojciechowski et al. (2004), then constructed
the majority-rule consensus of the resulting profile. This
gives an assessment of subtree support embedded in the
larger analysis—essentially a projection of the bootstrap
support from the large trees onto the taxa present in
the smaller tree. Note that this is entirely different from
merely restricting the phylogenetic analyses of the large
data set to the smaller set of taxa; instead, it extracts the
information present in the analysis of all taxa that is rel-
evant to the smaller taxon set.

Finally, we examined the correspondence of the trees
with generic delimitations. For each genus that contained
more than one species sampled in the data set, we as-
sessed whether the genus was monophyletic or, if not,
into how many disjoint maximal clades it was segre-
gated. We did this not because we expect all genera to be
monophyletic, but rather that the average level of non-
monophyly provides some sense of the tree's correspon-
dence with conventional taxonomy and may be useful
in providing some comparative sense of quality between
the two strategies we examined.

All analyses were conducted on a dual Xeon 2.80-GHz
CPU with 3 GB of RAM or on a 35-node Linux cluster, in
which the head node is a dual Xeon 2.66-GHz CPU with
3 GB RAM and each node is a dual AMD 1.4-GHz CPU
with 1 GB RAM.

RESULTS

Assembly, Alignment, and Supermatrix Construction

The GenBank gbpln flat files contained 523,094
records, 17,527 from Papilionoideae. Of these, 4182 were
not of molecule type DNA, 1464 were longer than 5 kb,
leaving 11,881 that were accepted for further analysis,
representing 2416 taxa (including subspecific taxa). The
first round of clustering, using stringent requirements for
u>\, 0)2, and 0, produced 3893 primary clusters. Of these,
3261 contained only a single sequence, and 131 contained
four or more species. Together, these 131 phylogeneti-
cally informative clusters contained 6416 sequences and
2264 taxa (54% and 94% of the original sequences and
taxa, respectively).

Primary cluster sizes ranged from 4 to 365 sequences.
Following alignment with Clustal W and manual editing,
the primary clusters had a mean density (proportion of
total cells without gaps) of 91%. Notable exceptions in-
cluded a cluster consisting of 308 sequences from the
chloroplast tRNA-Leu(UAA) gene intron, which was re-
plete with gaps and had a density of only 58%. Most
of the primary clusters required relatively little manual
editing, although areas of tandem repeats frequently re-
quired adjustment. None required substantial shifts, in-
dicating that the large-scale homologies were assessed
correctly (as opposed to what we had seen when using
Clustal W with clusters that had not been screened using
co1, (o2/ and 0) (Fig. 1).

Primary clusters were classified into five broad cate-
gories based on GenBank annotation: mitochondrial (3
clusters), chloroplast (41), nuclear ribosomal (53), other
nuclear (32), and transposable elements (2). Testing each
cluster for orthology by examining monophyly of mul-
tiple sequences within species (for those species that
had two or more sequences), we found that the results
differed greatly between the nuclear markers and the
chloroplast + ribosomal markers (Table 1). Across the
nuclear (nonribosomal) clusters, an average of 33% of
the duplicated species failed the test of orthology. We ac-
cepted only those clusters in which all species passed (or
there were no duplicated species). Across the chloroplast
and ribosomal clusters, average failure rate was 7.5% and
7.4%, respectively. For these, we used the clusters after
removing any species that failed. The mitochondrial clus-
ters were small, contained no duplicated species, and we
accepted them all. Both transposable element clusters
consisted of sequences from Tyl-copia, a retrotranspo-
son generally found in highly heterogeneous superfami-
lies within plant genomes (Kumar and Bennetzen, 1999).
Therefore, we excluded both of the transposable element
clusters.

"Sparse" supermatrix.—After removal of problematic
clusters or species from within the clusters, 117 ortholo-
gous clusters remained. Based on the criterion of over-
lap of four or more taxa, the largest "grove" contained
72 clusters, one grove contained 12 clusters, three groves
had 3 clusters each, and the remaining 24 clusters were
isolated. The grove with the most clusters also had the
most taxa, and this set of clusters was used to make the
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TABLE 1. Summary statistics for primary clusters.

Orthology/paralogy detection

Sourcea

Chloroplast
Mitochondrion
Nuclear
Nuclear-ribosomal
Transposable elements
Total

Clustering and
alignment

Primary clusters'5

41
3

32
53

2
131

Clusters
with

duplicated
species

23
0

27
38

0
88

Average
proportion
duplicated

species

0.12
0

0.36
0.21

0

Average
proportion

failed
monophyly

0.075
0

0.330
0.074

0

"Orthologous"
clusters0

41
3

20
53
0

117

""Source genomes were determined from annotations after all data were assembled and aligned.
bOnly those clusters with four or more species were included.
Tor organellar and nuclear ribosomal data, these included all clusters for which four or more species remained after removing any species that failed the orthology

test. For nuclear data, these included only those clusters in which there were no species that failed the orthology test.

sparse supermatrix by concatenation. It contained 1794
taxa (1688 species) and 53,977 characters, representing
4437 of the original sequences. The matrix was 2.7% filled
(96.6% missing data, 0.7% gaps). Table 2 summarizes the
supermatrix assembly.

"Dense" supermatrix.—For the dense supermatrix, the
second round of assembling and aligning started with
the 117 orthologous clusters, uniting them into 47 larger
secondary clusters, with most of the linking occurring
among the chloroplast and ribosomal clusters (Table 2).
The largest sample data set had 37 sequences (i.e., 37
primary clusters shared some sequence similarity with
each other). The program DIALIGN aligned these sam-
ple datasets quite well with respect to overall structural
homology; e.g., the ITS1, ITS2, and whole-ITS sequences
appeared to be in their proper positions. However, many
gaps were inserted by the program to accommodate high
levels of sequence divergence among the samples. Man-
ual adjustment of the alignments was minimal, partly
because there was considerable variation on a fine scale
within the alignments and manual editing would not
improve the alignments significantly. The final data sets
(i.e., the secondary clusters, formed by combining the
primary clusters according to the alignments within the
sample data sets) had, on average, 12.7% missing data
(gaps).

Evaluating the secondary clusters' combinability (with
respect to taxonomic overlap), we found that all 47

shared at least one taxon with at least one other data
set. Two small data sets shared only one taxon with any
other data set, one data set shared at most two, and five
shared at most three taxa. Therefore, requiring a mini-
mum of four shared taxa resulted in eight isolated data
sets and a large grove of 39 data sets. The large grove
was used to construct the dense supermatrix by concate-
nating all sequences in these clusters. The final "dense"
supermatrix contained 2228 taxa (2102 species, and 93%
of the taxa in the original download) and 33,168 char-
acters, representing 5615 of the original sequences. The
matrix was 4.3% filled (89.0% missing data, 6.7% gaps).
See Table 2 for summary statistics on the assembly of
the dense supermatrix. A list of all loci contained in this
supermatrix is presented in Table 3.

Both supermatrices are available as supplemental ma-
terial (http://systematicbiology.org) or from our website
(http://ginger.ucdavis.edu).

Phylogenetic Analysis and Tree Assessment

Several CPU-months of heuristic searches were em-
ployed. Significant differences in the behavior of heuris-
tic searches in the two matrices necessitated considerable
experimentation with search strategies. We report only
the most salient results here.

The sparse supermatrix had 9429 parsimony-
informative characters, and the shortest trees found had

Sourcea

Chloroplast
Mitochondrion
Nuclear
Nuclear-ribosomal
Total

TABLE 2. Primary and secondary clusters combined in the

Sparse supermatrix assembly

Clusters in
large groveb Species0

27
2

13
30
72

989
12
63

1259
1688

Taxad

1026
12
69

1339
1794

Sequences6

1625
12

196
2604
4437

Secondary
clusters

13
3

17
14
47

"sparse" and "dense" supermatrices.

Dense supermatrix assembly

Clusters in large groveb Species0

13
3

12
11
39

1221
17
72

1636
2102

Taxad

1263
17
78

1731
2228

Sequences0

2113
17

260
3225
5615

aAs in Table 1.
bThe large grove was the largest set of clusters that were linked by sharing at least four taxa.
cSpecies were determined using the NCBI taxonomy tree.
dIncluding species, subspecies, and varieties.
cSequences represented in the final supermatrix as consensus sequences.
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TABLE 3. Secondary clusters combined in the "dense" supermatrix.

"Gene"a

ITS
trnL
matK
rbcL
ETS
ETS
ndhF
psbA-trnH
trnS-trnG
atpB-rbcL
rpsl6
18S
ITS1
trnT-L
ITS2
trnL
legcyc 1
phyE
H3
ETS
rps3-rpll6
trnS-trnG
rpsll-rpl36
led
26S
ITS1
cox2
rga
bbi
5S
Sat5
shst2
SGlu2
ITS1
B-III
nadh4
nad3-rpsl2
aai2
rga

Taxa

1648
705
517
260

92
90
89
79
51
35
34
26
24
22
21
17
16
16
14
13
13
12
12
9
9
9
8
7
7
7
7
6
6
5
5
5
4
4
4

Sequences

2888
852
561
274

92
98
92
79
55
49
34
26
31
27
27
26
44
16
18
14
24
18
22
14
9
9
8

30
16
14
13
7

25
17
7
5
4

58
12

Clusters

37
14
10

1
1
3
2
3
1
4
1
1
1
1
1
1
2
2
2
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1

aGene (or sequence region) names were determined from record annotations
after data assembly and alignment of secondary clusters. See Supplemental Mate-
rial (available online at http://systematicbiology.org) for more complete names.

length 42,816. The shortest score was found in a random-
addition-sequence run in which the search was limited
to five trees and 48 h. The second best score (42,837)
was found during 1 of 10 parsimony ratchet runs (each
taking 150 h), in which the resulting trees ranged up to
43,356 steps at worst, averaging 302 steps longer than the
best. Across the random-addition-sequence runs, results
also ranged widely up to 43,432, averaging 307 steps
longer than the best tree. The simple-addition-sequence
search (limited to one tree) swapped to completion in
61 h but found a score of 42,878. In general, tree search
progress was slower and more variable in the sparse
matrix than in the dense matrix.

The dense supermatrix had 7199 parsimony-
informative characters. The shortest score, 56,093
steps, was found during one of the parsimony ratchet
replicates. Across 10 parsimony ratchet runs, each
taking 150 h, trees were found with lengths from 56,093
to 56,662, with an average result of 140 steps longer than
the shortest tree. The second best score (56,095) was

found using a heuristic search without the ratchet, start-
ing with a simple-addition-sequence starting tree and
limited to one tree. This search swapped to completion
in 25.5 h. Ten searches with random-addition-sequence
starting trees each swapped to completion on average
within 23 h, when limited to one tree, and found trees
that had lengths from 56,133 to 56,521, averaging 165
steps longer than the shortest known trees. Additional
search efforts were less successful: searches in which
we retained more than a few trees never swapped to
completion and failed to make much progress in finding
shorter trees.

Using the one or few trees with the best scores as
starting trees, we expanded the sets to 5000 equally
parsimonious trees (available as supplemental mate-
rial [http://systematicbiology.org] and on our website
[http://ginger.ucdavis.edu]). Strict consensus trees of
these tree sets had fair levels of resolution: for the sparse
matrix, the strict consensus had 938 nodes (out of a pos-
sible 1793), and the dense strict consensus tree had 1292
nodes (out of a possible 2227). The 50% majority rule
trees were much more resolved: 1775 nodes and 2189
nodes for sparse and dense, respectively. Most values in
the majority rule trees were very high (e.g., for the dense
matrix, the 99% majority rule consensus had 2129 nodes,
so only 60 nodes had values between 50% and 98%), in-
dicating that the 5000 equally parsimonious trees were
extremely similar.

The overall structure of the strict consensus tree was
evaluated by locating, where possible, clades that cor-
responded to those recognized in the legume phyloge-
netics literature (Wojciechowski et al, 2004; Lewis et al.,
2005). Many large recognized clades were at least approx-
imately recovered in the analysis of the dense matrix (Fig.
4), although in several cases a small number of taxa were
placed outside of the clades in which they likely belong.
It was far more difficult to locate, even approximately,
the previously recognized clades in the strict consensus
tree made from the sparse matrix (tree not shown).

Bootstrap analyses of the dense supermatrix were con-
ducted first by limiting each of 100 replicates to 4 h and
then by limiting each to 24 h. In the first analysis, the boot-
strap consensus had 1079 nodes (with bootstrap propor-
tion [BP] > 50%), of which 571 were well supported (BP
>80%). Adding time to the searches affected the results
generally by improving the bootstrap scores. In the sec-
ond analysis, 1117 nodes were resolved (BP >50%) and
623 were well supported (BP >80%). The bootstrap (92
replicates) on the sparse matrix had only 715 nodes with
greater than 50% support (359 nodes with BP > 80%) and
a vast basal polytomy containing 910 lineages.

In the reduced bootstrap consensus analysis there were
very clear differences between the sparse and dense anal-
yses. The pruned bootstrap majority rule tree for the
sparse matrix was highly unresolved. Of the six sizable
"major" clades (having more than ten taxa) highlighted
in the matK tree, only the Mirbelioids was supported
with BP > 50%. The pruned bootstrap analysis of the
dense matrix (Fig. 5), however, was quite well resolved
and supported all 12 of the major clades recognized by
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Dalbergioids
(187)

Amorpheae (57)

Mirbellioids
(285)

Genistoidss. I.
\ (438)

Indigofereae
(101)

Robinioids
(192)

' IRLC
(590)

FIGURE 4. Strict consensus of 5000 equally parsimonious trees based on the dense supermatrix. Tree of 2228 taxa of papilionoid legumes is
displayed using the program Paloverde (Sanderson, 2006); branches are partially white for visual effect only. Terminal taxon names have been
removed, but arcs around circumference show eight large named clades used in the literature of legume phylogenetics (Wojciechowski et al.,
2004). Numbers in parentheses are the number of terminal taxa in named clade. The tree is rooted at a basal polytomy that includes all members of
the Swartzioid clade (Swartzia, Bobgunnia, Ateleia, Cyathostegia, and Bocoa Wojciechowski et al., 2004) and two other lineages. IRLC defined in text.

Wojciechowski etal. (2004), with the single exception
of the misplacement of Ormosia outside of one of those
clades.

A final indication of the relative quality of the two trees
was obtained by examining the degree of nonmonophyly
of the genera that had at least two sampled species in
these analyses (Table 4). Genera were broken into more
disjoint clades in the sparse analysis than in the dense
analysis, reflecting in part some level of failure in assem-
bly and phylogenetic reconstruction. Of course, it is un-
clear what fraction of these genera is truly monophyletic
(it is surely less than 100%), but the highly dispersed po-
sition of disjoint pieces of many genera in the sparse tree
suggests that "real" nonmonophyly of genera is only part
of the story.

DISCUSSION

This paper reports results from a series of compu-
tationally intensive analyses of ~12,000 sequences and
~2200 species, involving numerous data processing
steps (Fig. 2). The complexity of the methodology ne-
cessitates some further discussion. First, we discuss the

phylogenetic results in the context of present knowledge
of papilionoid legume relationships to explore the cred-
ibility of the supermatrices and their resulting phylo-
genies. Second, we discuss in some detail a long list of
issues and problems that these analyses revealed about
phyloinformatics approaches to supermatrix construc-
tion, some of which will require substantial additional
research to obtain workable solutions. Finally, we com-
pare our approach to others that have been taken and

TABLE 4. Nonmonophyly of genera.

Number of generic names
Number of genera with more than

one species in data set
("nonmonotypes"a)

Number of origins of clades in these
"nonmonotype" genera

Number of origins of clades in most
fragmented genus

Sparse analysis

320
121

525 (4.33:1)

35 (Astragalus)

Dense analysis

345
127

468 (3.68:1)

22 [Genista)

aThese are monotypic genera with respect to the data set only. Some have
additional species that were not in the data set.
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0108214 Arachis major
ti108216 Arachis pintoi
037660 Stylosanthes hamata
079070 Stylosanthes capitata
0108226 Chapmannia gracilis
U108223 Chapmannia sericea
0108221 Chapmannia floridana
0108228 Fiebrigiella gracilis
077293 Pictetia angustifolia
077294 Pictetia maiyinata
077292 Pictetia aculeata
077284 Ormocarpum kirkii
U107311 Ormocarpum bemierianum
077279 Ormocarpopsis itremoensis
077278 Ormocarpopsis calcicola
0107370 Ormocarpum yemenense
077269 Diphysa americana
077270 Diphysa floribunda
0134032 Aeschynomene americana
til 14996 Kotschya ochreata
0135787 Aeschynomene rudis
048135 Aeschynomene indica
H107306 Aeschynomene pfundii
0107308 Dalbergia sissoo
077268 Dalbergia congestiflora
til14979 Aeschynomene purpusii
0100170 Pterocarpus indicus
til 08278 Pterocarpus macrocarpus
054894 Tipuana tipu
til 14993 Inocarpus fagifer
til10007 Ramorinoa girolae
0235074 Maraniona lavinii
til 15002 Platypodium elegans
til 14989 Grazielodendron riodocense
ti110003 Cascaronia astragalina
0107362 Geoffroea decorticans
til35789 Geoffroea spinosa
0107374 Platymiscium stipulate
0107357 Discolobium psoraleifolium
U107358 Discolobium pulchellum
077267 Brya ebenus
0107355 Cranocarpus martii
til 15004 Riedeliella graciliflora
til 14999 Nissolia hirsuta
0105937 Chaetocalyx brasiliensis
0105940 Chaetocalyx nigricans
0105941 Chaetocalyx scandens
0105934 Amicia glandulosa
til 05946 Poiretia angustifolia
til04308 Adesmia lanata
0100158 Ormosia formosana
0247912 Ormosia colombiana
((248525 Parryella filifplia
048131 Amorpha fruticosa
0247882 Eysenhardtia orthocarpa
til 04311 Apoplanesia paniculata
0247881 Dalea pulchra
0247883 Marina parryi
ti104318 Pterodon pubescens
054988 Dipteryx alata
048129 Andira galeottiana
0247907 Calia arizonica
0212700 Sweetia fruticosa
077050 Vatairea macrocarpa
053216 Lupinus argenteus
0247890 Genista monspessulana
049843 Spartium junceum
03835 Cytisus scoparius
0247921Anarthrophyllum desideratum
053871 Dichilus lebeckioides
0247889 Crotalaria pumila
053848 Calpumia aurea
070606 Piptanthus nepalensis
U61122 Thenmopsis rhombifolia
til49633 Baptisia australis
U37501 Maackia amurensis
U247904 Ammodendron argenteum
U247913 Sophora nuttalliana
U49839 Sophora davidii
H247911 Diplotropis martiusii
U247910 Diplotropis brasiliensis
til 00136 Acosmium panamense
ti100140 Brongniartia alamosana
U247885 Hovea purpurea
U100148 Harpalyce arborescens
U104316 Poecilanthe parviflora
U247908 Cladrastis platycarpa
U191728 Pickeringia montana
U389 7 Styphnolobium japonicum
U149640 Cladrastis delavayi
0149639 Calia secundiflora
0149679 Uribea tamarindoides
053888 Holocalyx balansae
0149665 Myrocarpus frondosus
053904 Myrospermum sousanum
0100153 Myrospermum frutescens
0149628 Amburana cearensis
0225114 Dussia macroprophyllata
0149645 Cyathostegia mathewsii
0149635 Bobgunnia madagascariensis
t{247905 Swartzia flaemingii

0100171 Swartzia simplex

Dalb

Am

Gen

—€

64

0100151 Lotus purshianus
0100160 Omithopus compressus
054747 Hebestigma cubense
0168539 Genistidium dumosum
0168519 Coursetia glandulosa
0168511 Coursetia axillaris
0168549 Sphinctospermum constrictum
0168542 Olneya tesota
0168546 Robmia neomexicana
035938 Robinia pseudoacacia
0167661 Gliricidia brenningii
0167662 Gliricidia maculata
0167666 Poitea campanula
0167670 Poitea glyciphylla
0167672 Poitea immarginata
0167665 Lennea modesta
054756 Sesbania vesicaria
0206308 Sesbania drummondii
054755 Sesbania emerus
0206309 Sesbania grandiflora
053838 Bolusanthus speciosus
0200948 Cicer canariense
03827 Cicer arietinum
047088 Cicer pinnaOfidum
03908 Vicia sativa
0200966 Vicia americana
047086 Vicia ludoviciana
03910 Vicia hirsuta
03906 Vicia faba
03864 Lens culinaris
0154494 Lathyrus latifolius
03860 Lathyrus sativus
03854 Lathyrus aphaca
03888 Pisum sativum
0247906 Trifolium beckwithii
047087 Trifolium nanum
03899 Trifolium reports
060915 Trifolium hirtum
074519 Trifolium lupinaster
078534 Trigonella foenum graecum
0200951 Melilotus indica
047082 Melilotus alba
078533 Trigonella cretica
0119383 Trigonella kotschyi
03879 Medicago sativa
U3880 Medicago truncatula
070953 Medicago lanigera
070958 Medicago monantha
0200952 Onoms arvensis
0200954 Ononis natrix
047654 Galega orientalis
0200947 Parochetus communis
090187 Astragalus lonchocarpus
090197 Astragalus nothoxys
020408 Astragalus canadensis
047052 Astragalus americanus
020805 Oxytropis lambertii
020804 Oxytropis deflexa
047091 Suthenandia frutescens
047649 Colutea arborescens
020511 Clianthus puniceus
047095 Carmichaelia williamsii
047647 Swainsona pterostylis
047035 Hedysarum boreale
047033 Onobrychis montana
047037 Alhagi maurorum
020484 Caragana arborescens
047080 Glycyrrhiza lepidota
020997 Wisteria sinensis
047096 Wisteria frutescens
054882 Callerya reticulata
054881 Callerya atropurpurea
0100165 Philenoptera laxiflora
0100164 Philenoptera eriocalyx
062120 Millettia grandis
062124 Pongamiopsis amygdalina
0100155 Neodunnia richardiana
053626 Millettia thonningii
053865 Denis laxiflora
0100150 Lonchocarpus lanceolatus
062123 Piscidia piscipula
053929 Tephrosia heckmanniana
054460 Mundulea sericea
0100146 Galactia striata
03816 Abrus precatorius
035936 Lablab purpureus
0132441 Dipogon lignosus
03886 Phaseolus coccineus
03885 Phaseolus vulgaris
087068 Phaseolus microcarpus
0115715 Vigna subterranea
03917 Vigna unguiculata
087088 Vigna umbellata
077326 Sfrophostyles umbellata
0271796 Sphenostylis angustifolia
0271170 Dolichos trinervatus
0271171 Macrotyloma uniflorum
0271813 Wajira albescens
03847 Glycine max
0247917 Psoralidium tenuiflorum
0247919 Rupertia physodes
0100168 Psoralea cinerea
045679 Amphicarpaea bracteata
0132459 Pueraria montana
0271814 Cologania hintoniorum
0247892 Campylotropis macrocarpa
0247893 Desmodium psilocarpum
0185702 Apios americana
054890 Platycyamus regnellii
062122 Xerodenis stuhlmannii
054458 Dalbergiella nyasae
053833 Austrgsteenisia blackii
053834 Baphia massaiensis
048127 Baphia madagascariensis
0100143 Cyamopsis senegalensis
0100149 Indigofera suffruticosa
0247895 Indigofera sphaerocarpa
0233824 Daviesia latifolia
0233800 Gompholobium minus
0209830 Isotropis foliosa
0247876 Gastrolobium punctatum
0247902 Aotus ericoides
0247884 Bossiaea cordigera
0140921 Hypocalyptus coluteoides

Rob

IRLC

Mill

Ind

Mirb

FIGURE 5. Reduced bootstrap consensus tree (Wilkinson, 1996) based on bootstrap analysis of the dense supermatrix, followed by pruning
resulting trees to 226 taxa found in both the dense supermatrix and the matK tree of Wojciechowski et al. (2004). Clades with black boxes are
supported at BP >75%. Eight named clades of Figure 4 are shown with their exact bootstrap proportion (Am = Amorpheae; Dalb = Dalbergioids;
Gen = Genistoids s. 1.; Ind = Indigofereae; IRLC = inverted-repeat-lacking clade; Mill = Millettioids; Mirb = Mirbelioids; Rob = Robinioids).
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end with some speculation about the prospects for semi-
automated supermatrix construction.

The Phylogeny of Papilionoid Legumes

Prior to this analysis the state of Papilionoid phyloge-
netics was a mixture of robust results at various hierarchi-
cal levels but little integration across levels. A backbone
phylogeny of several hundred genera, based on a sin-
gle highly informative plastid gene, matK, had been
constructed (Wojciechowski et al., 2004) and largely ac-
cepted by the community of legume systematists (Lewis
et al., 2005; building on previous work based on other
genes; e.g., rbcL: Kajita et al., 2001; trnL: Pennington et al.,
2000; Lavin et al., 2001). Complementing this were a large
number of intra- and intergeneric studies based on nu-
clear and plastid spacers, also single-gene analyses, and
also in many cases fairly well supported. However, no
comprehensive multigene studies across the clade had
been undertaken, and no "high-resolution" study at-
tempting to bring together the taxon samples already
available in the literature had been done with the excep-
tion of a supertree analysis of one large clade of papil-
ionoids, the IRLC (inverted-repeat-lacking clade; see our
Fig. 4; Wojciechowski et al., 2000).

The results of our two supermatrix construction strate-
gies were mixed, with the sparse analysis performing
relatively poorly compared to the dense analysis. The
sparse analysis produced a strict consensus tree with nu-
merous anomalies, including a large wastebasket clade
in one part of the tree containing a hodgepodge of
taxa from dispersed clades identified in previous pa-
pilionoid studies. This probably stems from the struc-
ture of overlap—or lack of overlap—between blocks of
data in the supermatrix, a general phenomenon dis-
cussed further below. It may also be accounted for by fail-
ure of heuristic searches to sort out relationships under
these conditions when numerous local rearrangements
are equally parsimonious.

On the other hand, the structure of the strict consen-
sus tree from the dense supermatrix is much less anoma-
lous (Fig. 4). First, it lacks pathological subtrees found
in the sparse analysis. Second, it recovers the essential
elements of the well-supported previous studies of the
backbone papilionoid phylogeny (Wojciechowski et al.,
2004), while adding in many genera and a very large
number of species (~1900) not sampled in that study.
The reduced bootstrap tree (Fig. 5) is very similar to
the backbone matK tree. The composition of the eight
named clades indicated there and in Figure 4 accords
well with that given in Lewis etal. (2005), and their
relationships to each other agree in the main with the
strongly supported relationships indicated in the matK
analysis (Wojciechowski et al., 2004). Finally, the strict
consensus of the full taxon set recovers important ele-
ments of phylogenies of lower level groups while plac-
ing them in phylogenetic context to each other and the
larger scale tree of papilionoids. The sparse analysis gen-
erally broke up genera to a greater degree than did the
dense analysis (Table 4). Some of these instances must

be due to true nonmonophyly, but some are obvious
artifacts.

A tale of two clades: Amorpheae and the Astragalean
clade.—Rather than attempt to discuss the entire tree
in detail, we comment briefly on the two clades with
which the authors have significant previous experience,
Amorpheae and the Astragalean clade. Amorpheae is a
moderately small (ca. eight genera and 250 species) clade
for which McMahon and Hufford (2004) inferred a well-
supported phylogeny, which agrees very closely with the
results of our dense analysis. This is not surprising given
that almost all of the data concerning these taxa were in
fact collected by these authors, but it is reassuring that
these strong results were not "lost" in the process of data
assembly, at least in the dense analysis. The sparse analy-
sis recovered the same relationships as the dense analysis
among species of Amorpheae, but 38 unrelated taxa were
placed within Dalea, a phenomenon similar to the large
wastebasket clade described above.

The Astragalean clade is a species-rich group of tem-
perate herbaceous plants dominated by the huge an-
giosperm genus, Astragalus, and includes about 15 other
genera. Its phylogeny has been reconstructed using
chloroplast RFLP data and sequence data from nrlTS,
matK, and the chloroplast trnL intron (reviewed in Wo-
jciechowski et al., 2000), using both conventional single
gene matrix reconstructions and supertree approaches
(Wojciechowski etal., 2000). Within Astragalus, cyto-
genetic evidence (Spellenberg, 1976) and all molecu-
lar phylogenetic work supported the monophyly of a
New World aneuploid group, called Neo-Astragalus
(Sanderson and Doyle, 1993; Liston and Wheeler, 1994;
Wojciechowski et al., 1993,1999).

Results from the dense supermatrix analysis agree in
most respects with this emerging picture of the phy-
logeny of the Astragalean clade. As with earlier analysis,
a "Coluteoid" clade, including the Astragalus sinicus
group, the large genus Oxytropis, and the remaining As-
tragalus each form clades. A gratifying result was the
placement of a number of recently deposited sequences
of Asian Astragalus, none of which had previously been
integrated into a broad phylogenetic analysis of the As-
tragalean clade.

The one significant anomaly in the dense superma-
trix with respect to the Astragalean clade is the poly-
phyly of Neo-Astragalus. Examination of the alignments
revealed the source of this result. One collection of
Neo-Astragalus taxa represented by separate ITS1 and
2 sequences, which had clustered into two separate
primary clusters, did not properly align to a cluster
consisting of other sequences of Neo-Astragalus rep-
resented by a complete ITS1-5.8S-ITS2 primary cluster.
Although the separate primary alignments constructed
using global alignment via Clustal W appeared fine, the
product of the DIALIGN/zipped local alignment proce-
dure, the secondary cluster, was not. Inspection of the
alignment revealed several false synapomorphies ow-
ing to an obvious shift among the blocks of sequences
coming from the original primary clusters. When this
alignment (pruned to just Astragalus exemplars) was
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re-edited by eye, the monophyly of Neo-Astragalus was
once again supported.

As with Amorpheae, results for the sparse supermatrix
were more problematic. One indication is the fragmen-
tation of many large genera. In the dense analysis, Astra-
galus was dominated by one very large clade, one small
clade (the A. sinicus group) and three isolated terminal
taxa. In the sparse analysis, Astragalus was broken into
35 different lineages, including 14 clades and 21 isolated
terminals.

Methodological Issues

Errors in GenBank accessions.—A mundane but remark-
ably significant source of problems in our analyses were
various mistakes in GenBank sequence accessions. Pre-
vious work had indicated a fairly high rate of mis-
taken gene annotation, so we relied entirely on similarity
search algorithms like BLAST in the clustering stage. One
of the most surprising examples of misannotation was a
set of five ITS sequences that had been entered into the
database reverse complemented (several Crotalaria and
Piptanthus, e.g., gi:14716940). Default BLAST settings de-
tect these as homologies, which initially were shunted off
to alignment programs, causing no end of problems. The
fix was simple, but the example illustrates the perils of
relying on annotations.

Unfortunately, many mistakes involve incorrect iden-
tifications of species, for which there is no easy solution.
First indication of these often occurred in the orthol-
ogy detection step, when two accessions from the same
species for a presumptively single-copy gene might ap-
pear to be phylogenetically distantly related and thus
classified as paralogs. The paraphyly might be real, of
course, either because the species is paraphyletic, or there
is lineage sorting, hybridization, or introgression. How-
ever, the orthology test was set up fairly stringently and
let pass cases where accessions from the same species
were "close" to monophyly, failing only those in which
accessions were removed by several branches from each
other. Up to about 7% of species containing multiple
sequences of plastid and nuclear ribosomal sequences
failed this test (Table 1), and we interpret most of these
as mistaken identifications.

Alignment.—Alignment presented one of the most se-
vere obstacles to supermatrix construction in the context
of the heterogeneous nucleotide data found in GenBank.
The fundamental difference between our phyloinfor-
matics approach and traditional molecular phylogenetic
studies is that the latter are often composed of data gath-
ered by one group of investigators targeting one or more
homologous regions of approximately the same length
(researchers using the same PCR primer pairs, for ex-
ample). This generates sequences that can be aligned
well by robust "global" multiple sequence alignment
methods such as the progressive alignment used in
Clustal W (Thompson et al., 1994). When significant se-
quence divergence is combined with considerable se-
quence length heterogeneity, however, global alignment
algorithms begin to fail in spectacular fashion (Lass-

mann and Sonnhammer, 2002, 2005a; see our Fig. 1),
and "local" multiple sequence alignment methods are
necessary (e.g., Subramanian et al., 2005). Unfortunately,
although several have been developed in the last decade,
none are as proven in their own domain as global meth-
ods. Our experience with several methods, including DI-
ALIGN (Morgenstern, 1999; Subramanian et al., 2005),
POA (Grasso and Lee, 2004), and others, suggested that
none was simultaneously capable of handling the level
of length variation, sequence divergence, and large num-
ber of sequences such as was found in the 1700+ ITS se-
quences for papilionoid legumes. Their only virtue was
that they consistently outperformed global alignment
procedures.

In response we developed a heuristic approach remi-
niscent of seed alignment strategies used to identify large
protein clusters from databases (e.g., Pfam: Sonnham-
mer et al., 1997). This constructed blocks of highly ho-
mologous and length-homogeneous sequences—the pri-
mary clusters—took small samples from these, and then
attempted to use local alignment to piece these blocks
together based on the samples. Overall, because of the
generally superior outcome obtained from the dense
analysis using this heuristic local alignment strategy, we
conclude that this approach is promising. It enabled, for
example, the assembly of a very large ITS alignment,
a large set of data that was not brought together in the
sparse analysis when the primary clusters were kept sep-
arate. However, a glance at some of these alignments re-
veals that some are very "gappy." DIALIGN adds a large
number of gaps into noncoding sequence alignments in
an attempt to conservatively avoid bringing nonhomol-
ogous bases into the same column.

Not surprisingly, there were clear cases in which this
strategy simply did not work—where DIALIGN simply
went too far—such as with the apparent polyphyly of
Neo-Astragalus described earlier. In attempting to com-
bine separate and partial ITS 1 and 2 regions with com-
plete sequences, the combination of sampling exemplars
from the primary alignments and DIALIGN's inability to
correctly align these exemplars generated clearly faulty
regions of poor alignment that were easily diagnosed by
eye (once the visual clutter was reduced by removing a
large number of sequences). As usual, the consequence
of shifts among blocks of sequences in an alignment was
to introduce false synapomorphies into the phylogenetic
analysis, driving apart a formerly well-supported clade.
This was almost immediately recognizable because the
new clades were comprised of the same class of sequence,
such as ITS 2 only.

Quality assessment of multiple sequence alignments
is a difficult problem when the underlying homology is
unknown (Pei and Grishin, 2001; Thompson et al., 2001;
Lassmann and Sonnhammer 2005a). Approaches in-
clude the identification of unambiguously aligned blocks
(GBlocks: Castresana, 2000), or, similarly, relatively con-
served columns (A12co: Pei and Grishan, 2001). Objective
functions have been developed to allow comparison of
alignments produced by various parameter sets or align-
ment algorithms (e.g., Notredame et al., 1998; Thompson
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etal., 2001). Another promising tactic is to compare
across alignments, assuming that the most frequently
found homologies are indeed correct (Lassmann and
Sonnhammer, 2005a). This approach also incorporates
the observation that the performance of different align-
ment techniques is data set dependent (Lassmann and
Sonnhammer, 2005a). However, assessment, like align-
ment itself, is most well studied for data sets that dif-
fer significantly from ours in two important respects.
First, many of these techniques are aimed specifically
at successful protein identification, and second, bench-
mark data sets on which the techniques are tested do not
have the severe length heterogeneity found in many of
ours. We find it encouraging that, for the sample data set
depicted in Figure 1, the cross-alignment scoring system
in MUMSA (Lassmann and Sonnhammer, 2005a) ranked
the programs similarly to our preliminary assessment.
However, more work is needed to fully understand the
effects of highly length-heterogeneous nucleotide data
on multiple sequence alignment.

Data set structure and fragmentation.—Although it was
first described in the context of supertree construction
(Sanderson et al., 1998), an important issue for super-
matrix construction is the structural relationship among
different blocks of data in the final matrix. For supertrees
the issue is how much taxon overlap is necessary in the
input trees for there to be new inferences about rela-
tionships not found in any of the input trees, a kind
of "cross-talk" among the input trees. In a superma-
trix, the same issue arises. Consider a simple example:
a matrix in which there are sequence data for gene 1 in
taxa A-D and for gene 2 in taxa E-H, but nothing else.
The supermatrix looks like two nonoverlapping blocks
of data in two of the corners with blocks of questions
marks in the other two corners. A parsimony analy-
sis can correctly infer relationships within the blocks
but not between them (assuming sufficiently informa-
tive data within the blocks). However, in the collection
of equally parsimonious trees based on the whole matrix,
all possible cross-relationships will appear and the strict,
semistrict, and majority-rule consensus trees will be un-
resolved. The information from the separate blocks is still
buried in the collection of trees and can be retrieved us-
ing maximum agreement subtrees, for example, but it is
obscured.

Even some shared information between blocks may not
be enough to overcome this problem. In the supertree
case, it is insufficient for two trees to share one taxon
in common and expect any cross-relationships to be in-
ferred. These considerations led to the idea (Sanderson
et al., 1998) that an overlap of two was necessary, a cri-
terion used in one empirical study (Driskell et al., 2004).
Recent work has demonstrated for supertrees (Ane et al.,
2006) that this is probably sufficient but not always nec-
essary if more than two input trees are used. The anal-
ogous results for supermatrices are not yet known, but
our supermatrix construction herein illustrates some of
the issues playing an important role in the outcome. We
have used the term "grove" for a set of trees that can
provide cross-information in a supertree analysis (Ane

et al., 2006). In a supermatrix perhaps a better term is a
"block."

A telltale sign of the presence of multiple blocks in
a supermatrix is the collapse of large parts of the con-
sensus trees due to the presence of certain collections of
taxa. This is confounded in large analyses, unfortunately,
by the inability of heuristic search strategies to find, or
retain, all of the equally parsimonious trees at any stage
in the analysis. Thus, a set of rogue taxa that really can be
placed anywhere in the tree as long as their relationships
to each other are preserved may or may not be evident if
key trees have simply not been stored. In suspect cases,
one can check by manually moving the suspected rogue
taxa around the tree (preserving their relationships to
each other), and seeing if the parsimony score remains
the same. If it does, there is evidence that this set of taxa
forms a block isolated from others.

In the sparse analysis many of the problematic results,
such as the large "wastebasket clade," can be attributed
to the lack of overlap structure between the primary clus-
ters, many of which appear to be acting as independent
blocks. This occurred despite efforts to ensure a mini-
mum level of overlap between clusters. Every primary
and secondary cluster was required to overlap with at
least one other by four taxa, meaning that between, say,
clusters of sequence from genes 1 and 2, there were at
least four species with both sequences. Evidently, this is
not enough to prevent some pathological results, which
is not entirely surprising because there might be no phy-
logenetic information in those key sequences even if they
are present (because of lack of variation, for example).

The most instructive case of data fragmentation we
uncovered involved species of Glycine dispersed incor-
rectly around the dense analysis tree. In this case, issues
of insufficient taxonomic overlap between data sets com-
bined with simple mistakes in the GenBank accession to
produce substantially incorrect results. At the base of
the strict consensus tree from the dense supermatrix, we
found two polytomies that involve many taxa thought to
derive from basal nodes, as expected, but we also found
five species of Glycine. Glycine has always been consid-
ered to be related to other members of the Millettioid
clade (Doyle et al., 2003), just where its other 16 species
are placed in our tree. So how did these five taxa move
into a position so far from the other Glycine species? In-
sufficient tree search effort does not appear to be the
cause. To test this, we ran a brief search in which they
were constrained to be near the other Glycine species, us-
ing the rest of the relationships from one of the MP trees
as a starting point. This resulted in more steps than in
the original MP tree, not less, which we would expect
if it was simply incomplete tree searching that placed
them near the base. Alignment is also not to blame. The
five problematic taxa are each found in six small clus-
ters and the large ITS cluster. The small data sets were
easily inspected and their alignments appeared reason-
able. Likewise, the ITS data set, when pared down, also
appeared to be aligned reasonably for these taxa.

Most data sets that involve the taxa in question contain
only Glycine {H3, rpsll-rpl36, rps3-rpll6; trnS-trnG has
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one Neonotonia, a recent segregate; Lackey, 1977). These
data cannot be placing the problem taxa at the base of the
tree. Instead, these data will agree with any placement,
as long as the relationships within the genus are main-
tained. Therefore, the potentially misleading data must
be within the two data sets that have non-Millettioid taxa:
atpB-rbcL and ITS. A quick heuristic search and bootstrap
of the atpB-rbcL data set (35 taxa, 1135 characters) shows
strong support for the monophyly of Glycine to the ex-
clusion of Genista and Vigna, inconsistent with the final
placement of the five problem species of Glycine, so these
data are also not likely to be the cause.

The single primary cluster that contains Glycine
stenophita has sequences only from Glycine and one other
taxon: Myrospermum sousanum. Myrospermum sousanum
is a member of the Sophoreae, a tribe reasonably expected
to be found in the basal grade of the tree. Myrospermum
sousanum is well represented in the supermatrix (trnL,
PhyE, matK, rbcL, and ITS), and four of these sequences
are most similar to sequences from other Sophoreae.
However, the ITS sequence for M. sousanum is very sim-
ilar to G. stenophita (BLAST search: 99% identity, 1 gap).
This suggests that a Glycine ITS sequence has been mis-
takenly labeled as M. sousanum and deposited in Gen-
Bank. To test this, we removed this one M. sousanum
ITS sequence from the supermatrix and ran an abbre-
viated tree search. The resulting trees restore all Glycine
species to the Millettioid clade, as expected. Thus, a se-
quence mislabeled Myrospermum combined with limited
data overlap between Glycine species and other taxa, and
strong data overlap between the Myrospermum and other
taxa, conspired to scatter Glycine in "unexpected" direc-
tions.

Search strategies in large data sets.—The large size and
sparseness of both supermatrices has a strong impact
on the running times of heuristic search strategies for
obtaining parsimony solutions. Deterministic and ran-
domized heuristics all required upwards of a week of
processor time before showing evidence of lack of con-
tinued improvement in tree length. No doubt shorter
trees can be found with more extended efforts. The par-
simony ratchet (Nixon, 1999) found the shortest trees
among all searches run on the dense matrix, but this oc-
curred in just one of its replicates. Deterministic heuris-
tics in PAUP* outperformed other ratchet replicates. Of
special concern was the likelihood that vast collections of
equally parsimonious trees were not found with any of
our search strategies. Not only are there a large number
of 2000+ taxon trees of similar length that evidently ex-
ist, the search procedures did not get around to sampling
much of this space in the first place, because all equally
parsimonious trees were derived from rearrangements
from just one run—the ratchet run in the case of the
dense matrix. It would be ideal to approach the same
optimality score from different random starting points,
but the searches required so much processor time and
ended at such suboptimal scores that this was simply not
possible.

Improvements in algorithms and tree search heuristics
aimed at large data sets have been reported (Ronquist,

1998; Goloboff, 1999; Huson et al., 1999; Ganapathy et al.,
2003), and current algorithms have been tested with large
simulated data sets (Salamin et al., 2005). However, the
fragmented, sparse structure of our supermatrices sug-
gests a need for heuristics tailored to this structure. For
example, if a matrix contained two independent blocks,
there would be no reason to perform rearrangements
of taxa across blocks in trying to find better trees: such
rearrangements would always produce new trees with
the same parsimony score (the Glycine example showed
abundant evidence of this). To avoid such computation-
ally expensive mistakes, explicit methods for character-
izing this block structure are needed.

Confidence limits in very large trees.—Little is known
about how to assess confidence in large phylogenies
(Salamin et al., 2003). Several studies have examined the
impact of heuristic search effort on confidence limits
(Debry and Olmstead, 2000; Mort et al., 2000; Salamin
etal., 2003; Muller, 2005), generally concluding that
more exhaustive searches increase bootstrap support, al-
though some search strategies seem to exhibit this effect
more than others (Muller, 2005). In addition, theory and
limited empirical work (Sanderson and Wojciechowski,
2000) suggest that bootstrap confidence levels will de-
cline for a given clade as more taxa are sampled from
it. This can happen because the hypothesis becomes
increasingly specific relative to the null hypothesis of
nonmonophyly—there are increasingly many ways for
the collection to be nonmonophyletic versus mono-
phyletic, and monophyly is rejected merely if one taxon
drops out of the clade in a majority of the replicates, even
if it is a different taxon each replicate. Both of these issues
are important in data sets of the size assembled here.

Bootstrap proportions for both sparse and dense su-
permatrices were quite low across the tree and the ma-
jority rule bootstrap trees were highly unresolved. We
suspected that although large clades have low bootstrap
support, evidence for relationships of pruned (reduced)
subtrees might be much higher. The differences between
the reduced bootstrap trees and the original ones were
striking. For example, although the bootstrap propor-
tion for all 590 species in the IRLC taken together as a
clade was <50% on the bootstrap tree from the origi-
nal dense supermatrix, the support for this clade when
reduced to the 51 species in the pruned collection was
100% (Fig. 5). Overall, there was high concordance be-
tween the bootstrap levels observed on the reduced tree
and those seen in the tree of Wojciechowski et al. (2004).
However, this only emerged after heuristic searches were
extended to 24 h per replicate. Preliminary, less exhaus-
tive, searches identified fewer clades in the bootstrap ma-
jority rule trees with much lower bootstrap proportions,
a pattern seen in earlier studies (e.g., Mort et al., 2000)
but quite dramatic in our data.

These results are reassuring in the sense that the signal
present in subsets of the data is retained in the collection
of bootstrap trees derived from the supermatrices, but
they do not help to characterize support at that larger
scale. The bootstrap proportion just does not scale well,
and other hypothesis tests about trees may be more
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instructive in large data sets (Sanderson, 1989; Page,
1996).

Alternative Strategies

The most widely used strategy for reconstructing deep
(though not necessarily taxon-rich) phylogenies is to fill
in a complete multigene supermatrix by targeting a de-
fined list of taxa and loci. An important feature of most
of these matrices is that they contain loci that can be
aligned. They do not typically include rapidly evolving
loci that are useful in small subtrees but are very dif-
ficult to align across the tree as a whole. Indeed, it is
difficult to imagine any strategy that can produce dense
supermatrices when loci of widely varying rates are com-
bined and "aligned." Ironically, even "phylogenomics"
approaches exemplify this issue. Analyses based on
complete genomes (Rokas et al., 2003; Lerat et al., 2003;
Ciccarelli et al., 2006) only combined ~100 to 200 loci or
fewer in the same matrix, with alignment problems and
lack of homology (e.g., absence of orthologs or high lev-
els of divergence between orthologs) presumably lim-
iting the number of taxa scored as having a particular
locus.

Other strategies have been widely discussed. Com-
partmentalization (Mishler, 1994; Zanis et al., 2003) ex-
tracts strongly supported subclades, replacing them with
terminal taxa possessing synthesized ancestral states
for the clades, but as yet has not been widely used.
Supertree methods (Bininda-Emonds, 2004; Wilkinson
et al., 2005), which build trees from a collection of smaller
trees, have engendered a rich theoretical literature, a not
insignificant number of case studies, and considerable
controversy, especially as a competitor to supermatrix
approaches (Gatesy et al., 2004). Our view on the rela-
tive merits of the two competing approaches after this
exercise is uncommitted. If anything, the similarities be-
tween the issues raised by construction of sparse super-
matrices and supertrees suggest that there are important
commonalities in the two approaches.

Prospects for Large Supermatrix Construction and Analysis

Algorithmic improvements.—Enumeration of the issues
raised above highlights the need for significant improve-
ments to algorithms for several problems. Multiple lo-
cal sequence alignment stands out as one of the most
formidable challenges to effective assembly of phyloge-
netic data sets at large scales. The problem of assembly
of segments of sequence of different lengths and diver-
gence levels has received little attention but is taking on
increasing significance in comparative genomics, so ad-
vances in this area are to be expected. The appropriate
problem to solve in phyloinformatics approaches to tree-
building may be slightly different, however, than that for
the case when whole genomes are available. There may
well be tradeoffs in attempting to assemble data sets that
maximize number of taxa, number of sites, or minimize
number of missing bases. Moreover, the structure of the
data matrix assembled has strong implications on the
quality of phylogenetic results that can be obtained, and

it may be appropriate to incorporate notions of this struc-
ture early in the data assembly process.

Efficient tree-building parsimony heuristics that take
account of the increasingly common sparseness of large
data sets are also still needed. Given the interest in model-
based approaches to phylogenetics, an obvious ques-
tion is whether and what future these methods have
when scaled to the level of thousands of taxa. Prob-
lems of long branch attraction, which confound parsi-
mony analysis, undoubtedly will remain in large-scale
phylogeny efforts, and overcoming them will be a per-
sistent challenge. However, even model-based methods
with promising running time behavior, such as RAxML
(Stamatakis et al., 2005), are heuristic mixtures of fast par-
simony steps and slow likelihood-based steps, and any
such "impure" method may lose the desirable proper-
ties of consistency characteristic of likelihood-based ap-
proaches (Felsenstein, 2004).

Automated error detection.—One of the most impor-
tant limitations of any informatics approach is the fre-
quency of undetected errors in the data—a problem with
any kind of data, of course, but one that is exacerbated
as the familiarity of the investigator with the original
data lessens. It should be possible to detect some er-
rors from the data themselves, either because of fail-
ure of consistency checks, incongruence, or failures of
more elaborate tests such as implemented in our tests
for orthology. Nonetheless, there will remain a strong
need for trusted annotations attached to the data used in
these analyses. The presence of voucher specimen infor-
mation in the GenBank record, though it does not guar-
antee a correct taxonomic identification, bespeaks a con-
cern for avoiding mistakes in identification and provides
a mechanism for ultimately checking on it. Other kinds
of annotation errors, such as those regarding sequence
"features" (positions of introns, exons, etc.) are more or
less important depending on the reliance of steps in the
data-mining pipeline on those annotations. We have de-
liberately sidestepped almost all of this information, re-
lying on algorithm-driven techniques to assemble and
align sequences into data matrices. This is not necessarily
the most efficient technique, but it does avoid certain pit-
falls due to mistaken annotations. A long-term strategy
might be to incorporate feature annotations by passing
them through error detection routines of our own devis-
ing, analogous to the orthology tests. This approach may
connect with efforts to develop phylogenetically driven
comparative genomics annotation schemes (e.g., Hughes
etal.,2005).

How much automation will be possible?—This raises the
general question of how much automation is possi-
ble in large-scale tree reconstruction. Alignment proce-
dures implemented here were not sufficiently good to
leave completely automated. Numerous—and tedious—
manual edits were necessary even in the primary align-
ments. Our sense is that this will come as no surprise to
the molecular phylogenetics community, but it presents
a cautionary note for the prospects of removing hu-
man intervention from this analysis pipeline entirely.
On a more positive note, what can be automated is
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extensive, including downloading sequences, running
BLAST searches, assembling matrices, constructing first
cuts at alignments, checking for orthology, and building
supermatrices. There then remains a great deal of heuris-
tic tree construction, which can also be automated, but
additionally benefits from the investigator adaptively
modifying search procedures in response to performance
on the particular data set at hand.

CONCLUSION: THE SHAPE OF SUPERMATRICES TO COME

The pace of data acquisition and its easy accessibility
raise the possibility of near "real-time" phylogenetic syn-
theses that span both existing and newly deposited data
sets. Systematists beginning a new study of a clade or
returning to one studied previously have a strong moti-
vation to understand the existing relevant phylogenetic
information contained in the databases. Other biologists
who wish to pair their own data with phylogenies to un-
dertake ecological, physiological, or other comparative
studies also have a stake in finding (or building) the most
comprehensive phylogenetic trees available. Though not
all phylogenetically informative data are confined to se-
quence databases, they are the most accessible source of
comparative data for the most taxa in the tree of life at
present.

Phyloinf ormatics methods for the construction of large
supermatrices are at an early stage (Driskell et al., 2004;
Delsuc et al., 2005; Philippe et al., 2005). This paper ex-
tends these methods in the direction of taxonomic rich-
ness by including 93% of the species of papilionoid
legumes found in GenBank, some 2200 of them. It is not
the largest phylogenetic tree ever built (see e.g., Kallersjo
et al., 1998, Hibbett et al., 2005), but it is unusual in its
combination of deep and shallow phylogenetics at such
a large scale. Despite significant problems, the result-
ing phylogeny represents a reasonably good synthesis
of available phylogenetic knowledge from molecular se-
quence data. We find it particularly useful as an indicator
of the shape of supermatrices to come: the extraordinary
problems of data sampling, alignment, and homology as-
sessment that characterized our analysis at these differ-
ent scales drive supermatrix construction in the direction
of sparseness, both between loci and within alignments
(Philippe et al., 2004). The vision of large, complete data
matrices with little missing data is just that—a vision. It is
approximated best by protein-coding data that are easily
aligned, but at low taxonomic levels these data sets are
frequently uninformative about relationships, whereas
deeper in the tree, many exhibit important structural
changes, such as gains, losses, and rearrangements of in-
trons, exons, and entire functional domains (e.g., Reyes
et al., 2004; Kim et al., 2006). If the ultimate goal of phy-
logenetics is construction of large, high-resolution trees,
then the problem to be solved is integrating data from
very different loci in a single analysis.
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