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Abstract.— A new approach for biogeography to find patterns of sympatry, based on network analysis, is proposed. Biogeogr-
aphic analysis focuses basically on sympatry patterns of species. Sympatry is a network (= relational) datum, but it has
never been analyzed before using relational tools such as Network Analysis. Our approach to biogeographic analysis
consists of two parts: first the sympatry inference and second the network analysis method (NAM). The sympatry inference
method was designed to propose sympatry hypothesis, constructing a basal sympatry network based on punctual data,
independent of a priori distributional area determination. In this way, two or more species are considered sympatric when
there is interpenetration and relative proximity among their records of occurrence. In nature, groups of species presenting
within-group sympatry and between-group allopatry constitute natural units (units of co-occurrence). These allopatric units
are usually connected by intermediary species. The network analysis method (NAM) that we propose here is based on the
identification and removal of intermediary species to segregate units of co-occurrence, using the betweenness measure and
the clustering coefficient. The species ranges of the units of co-occurrence obtained are transferred to a map, being considered
as candidates to areas of endemism. The new approach was implemented on three different real complex data sets (one
of them a classic example previously used in biogeography) resulting in (1) independence of predefined spatial units; (2)
definition of co-occurrence patterns from the sympatry network structure, not from species range similarities; (3) higher
stability in results despite scale changes; (4) identification of candidates to areas of endemism supported by strictly endemic
species; (5) identification of intermediary species with particular biological attributes. [Betweenness; clustering coefficient;
dot maps; historical biogeography; intermediary species; units of co-occurrence.]

Geographic distribution—As such, we will
understand, as a simple fact of nature, the records of occurrences at

different points of the map of modern world of consanguineous
entities forming a taxon.

L. Croizat, 1964:13

The main goal in vicariance biogeography is the de-
termination of area relationships, based on biota distri-
butions (Nelson and Platnick, 1981). Areas of endemism
are traditional units for historical biogeography. Several
approaches have been proposed to identify and delimit
these basic units of analysis in recent years, but all have
particular methodological problems (Nelson and Plat-
nick, 1981; Platnick, 1991; Morrone, 1994; Hausdorf, 2002;
Szumik et al., 2002; Hausdorf and Hennig, 2003; Mast
and Nyfeller, 2003; Szumik and Goloboff, 2004; Hennig
and Hausdorf, 2006). Problems common to most of the
published works are the criteria to identify areas of en-
demism and the excessive emphasis given to recognizing
their borders (Hausdorf, 2002; Mast and Nyffeler, 2003).
Some authors (Nelson and Platnick, 1981; Morrone, 1994;
Linder, 2001) established as a criterion for identification
that extensive sympatry of at least two species is neces-
sary to identify an area of endemism. Harold and Mooi
(1994) and Hausdorf (2002) suggested that extensive co-
occurrence of taxa is neither sufficient nor necessary for
recognizing an area of endemism. Moreover, Hausdorf
(2002) suggested that extensive co-occurrence does not
delimit areas of endemism but rather it delimits biotic
elements. These previous works emphasized determin-
ing how extensive sympatry is between two taxa instead
of focusing on the meaning of sympatry. Neither “exten-
sive sympatry” nor “extensive co-occurrence” has been
properly defined.

The a priori delimitation of areas of endemism is only
possible when the original biotas were separated by a

vicariant event, and no subsequent dispersal occurred.
Dispersal events obscure the history of the areas, their
limits and their significance. Sympatry is inferred by the
overlap of ranges of different species.

It is possible to distinguish two modes for deriving
species ranges from the literature: raster-like mode and
vector-like mode (e.g., Rapoport, 1982; Posadas, 1996;
Rathert et al., 1999; Unmack, 2001). The raster-like mode
divides the study area into predefined spatial units. The
range of a species is the subset of spatial units where there
is at least a record. Under this mode, the most common
alternative is to plot records on a map divided into quad-
rants or grids. Here, the species co-occurring in the same
cells are considered sympatric. Szumik et al. (2002:807)
stated that “The use of grid system seemed unavoid-
able. . . ” to convert sets of species records into ranges.
However, the use of this methodology presents several
problems, one of them being scale dependence. As Haus-
dorf and Hennig (2003:721) stated: “If the grid used is too
fine and the distribution data are not interpolated, in-
sufficient sampling may introduce artificial noise in the
data set.” On the contrary, if the grid size is too coarse
“distinct biotic elements may be amalgamated.” Also,
different grid cell sizes, shapes, and positions have been
proposed (Posadas, 1996; Rathert et al., 1999) that alter
the results. The grid method is especially unsuitable for
mapping river organisms, due to the linear and diverging
nature of riverine habitats. For example, a single grid cell
could expand ranges to areas without freshwater habi-
tats, that could never have aquatic organisms. On the
other hand, headwaters from different basins, with dif-
ferent histories, could end up in the same cell, depending
on the scale chosen.

The vector-like mode for deriving species ranges does
not divide the study area. Here, species ranges are
independently obtained, emerging from the records.
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Sympatry is inferred by geometric analysis of range
overlap. Under this mode, some techniques of map-
ping involve contour maps, convex hulls (IUCN, 1994),
and Rapoport’s mean propinquity method (Rapoport,
1982). The principal problem associated with these pro-
cedures is that they emphasize extremes of occurrence
and assume homogeneity, convexity and radial nature of
distributions.

A more conservative alternative, appealing to direct
evidence, is a dot map where records themselves account
for the range. Prospecting sympatry via direct evidence
is advisable because minimizes distributional assump-
tions. This proposition requires a new operational defi-
nition of sympatry. We consider that two or more species
are sympatric when there are interpenetration and rela-
tive proximity among their records. Coincidence of two
or more species in the same locality is the maximum ex-
pression of these properties.

Biogeographic analysis focuses basically on sympatry
patterns of species. This poses a dual challenge. The first
is to propose hypotheses of sympatry based on the avail-
able data. The second is to analyze these hypotheses to
find possible patterns.

The geographic records—the minimal informative
unit—correspond to punctual data. As a rule, these punc-
tual data are integrated in different ways to determine
the taxon “distributional area.” Unfortunately, the “real”
distributional areas are beyond our knowledge, and their
derivation from the available records is always depen-
dent on artificial assumptions, regardless of the chosen
procedure. For this reason, it is imperative to obtain reli-
able sympatry hypotheses without a priori range delimi-
tation. If we consider the field collection records as spatial
signals of the real ranges, we can focus on the numerical
parameters of these signals to infer the relations among
ranges, instead of converting the punctual records into
distributional areas before inferring their relationships.
Once the hypotheses of sympatry are obtained, they must
be analyzed under an adequate theoretical framework.

Network analysis has proven to be a powerful tool
for the study of different aspects of biological systems
(molecular, ecological, and evolutionary levels; Proulx et
al., 2005; Montoya et al., 2006). Sympatry is a network (=
relational) datum, not a conventional (attributive) one.
In biogeography, conventional data consist of an array
of species by locations. In this way, locations of species
occurrence are spatial attributes of that species and, con-
versely, species at a location are biotic attributes of that
location. On the other hand, network data consist of an
adjacency matrix of measurements, where each entry ex-
presses the relation between pairs of species. The ma-
jor difference between conventional and network data is
that conventional data focus on species and attributes,
whereas network data focus on species and relations
(Hanneman and Riddle, 2005). Network analysis is de-
signed to detect holistic patterns in the overall sympatry
network in which species are embedded.

Species groups satisfying the requirement of within-
group sympatry and between-groups allopatry will con-
form to natural units of co-occurrence (UCs hereafter).

Natural UCs are embedded into a more global network
when there are other species connecting them. A sym-
patry network may contain dense groups of species con-
nected through intermediary species. The intermediary
species will have higher “connecting” capacity than the
other species that are inside the units. The UCs will be
evident after the intermediary species are removed. The
spatial expression of the resulting UCs will be our can-
didates for areas of endemism. The species belonging to
each UC are strictly endemic (sensu Anderson, 1994). The
final status of the candidate areas of endemism will de-
pend on the congruent historical (phylogenetic) relation-
ships of the involved taxa (Humphries and Parenti, 1999;
Mast and Nyfeller, 2003). We propose using network
analysis to study species sympatry patterns, as a first
step in the search for bio-spatial units in biogeography.

METHODOLOGICAL DEVELOPMENT

Distributional Data and Sympatry Matrix

Let S = {r1, r2, . . . , rN} the set of N punctual records
associated to treated species. Equivalently, S = {S1 U
S2 U . . . U Sn} is also obtained as the union of record
subsets pertaining to n treated species. It is assumed
that records are informative fragments of the respective
ranges. If the ranges overlap, that is, if the considered
species are sympatric, their punctual records must sat-
isfy two properties: (1) relative proximity (Property I); and
(2) interpenetration (Property II).

Relative proximity.—There is relative proximity be-
tween two points when the geographic distance between
them is smaller or equal than a specified reference value.
We need then to define this reference value and establish
a procedure to detect dot clouds that comply with this
property. This will allow us to extract these clouds from
the whole set of records, after evaluating the proximity
of the individual points with respect to their neighboring
ones.

We opted for the Delaunay triangulation method of the
records, which is able to preserve the data proximity in-
formation (Bhattacharya and Gavrilova, 2006). Recently,
some triangulation-based algorithms have been used
to recognize dot patterns (Bhattacharya and Gavrilova,
2006; Papari and Petkov, 2005). The advantage of this
method is its capability to detect groupings with different
forms, including nonconvex shapes and irregular bor-
ders. Briefly, in the Delaunay triangulation, the points
are completely interconnected by segments, in such a
way that the segments do not cross. For more detail see
De Berg et al. (2000). The triangulation segments can be
either interspecific or intraspecific, depending on the bi-
ological identity of the connected records. To detect co-
herent dot clouds, it is essential to identify and trim the
nonpertinent segments. A segment becomes nonperti-
nent when its geographic length exceeds the proximity
limit admitted by the extreme points; very long segments
suggest disjunct ranges.

There is no absolute measure to consider a segment as
too long. Its length must be contrasted with the reference
values of its end points. Each point has two proximity
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reference values, one for intraspecific and one for inter-
specific comparisons. Those values help to decide what
distance around a point may be considered as critical for
pertinent vicinity.

The geographic distance D that separates the end
points of the segment rr ′ can be calculated by the haver-
sine formula:

D(r, r ′) = 2 × Rd × arcsin

√
sin2

[ (latr −latr ′ )
2

]
+ cos(latr )

× cos(latr ′ ) × sin2
[ (lonr −lonr ′ )

2

] (1)

∀r, r ′ ∈ S ∧ r �= r ′

latr , latr ′ : latitude of the points r and r ′ in radians
lonr , lonr ′ : longitude of the points r and r ′ in radians
Rd: radius of the geoid adopted

We adopted the World Geodetic System of 1984 geoid
with Rd = 6,378,137 m, because it is the official GPS ref-
erence system (El-Rabbany, 2002).

Concerning interspecific comparisons, two punctual
records from different species are in relative proximity
when the distance between them is smaller than the dis-
tance separating each of them from its nearest intraspe-
cific neighbor. For each point or record r , its relative prox-
imity for interspecific comparisons (NRinterr ) is

NRinterr = min D(x, r ) (2)

∀x ∈ Si ∧ x �= r, Si being the subset of S associated to
species i recorded at r.

In the triangulation context, a pair of points exhibits
clear interspecific proximity when the segment that
unites them is shorter than their NRinter values. How-
ever, the retention of an interspecific segment becomes
controversial when its length exceeds one of the two end
points NRinter values. To solve this, we appeal to the
weighted average of proximity values, with emphasis on
the lower of both NRinter values, such as a balance be-
tween the more stringent value and the semisum of both
extreme values is achieved. Thus, the threshold cut for
an interspecific segment (CTinter) uniting points r and r ′
is

CTinter (r, r ′) = 0.75 × min(NRinterr , NRinterr ′ )

+ 0.25 × max(NRinterr , NRinterr ′ ) (3)

Two considerations are necessary here. First, if two or
more species share the same record r , the NRinter value
of r will be the minimum of all possible values obtained
with Equation 2. Second, when the point r corresponds
to the single record of a species, NRinter will be equal to 0.

Concerning intraspecific comparisons, we need to dis-
cern records from disjunct range portions as species
ranges are rarely continuous. Without evidence to the
contrary, it is reasonable to assume that a record and its

nearest intraspecific neighbor belong to a common range
portion. The geodetic distance to the nearest intraspe-
cific neighbor varies within each subset Si . So, for each
species i , the proximity reference value for intraspecific
comparison (NRintrai ) will be the mean distance between
each record of Si and its respective intraspecific nearest
neighbor:

NRintrai = |Si |−1
|Si |∑
x=1

min D(x, Sx
i ) ∀x ∈ Si ; |Si | > 1 (4)

|Si |: number of records of species i
Sx

i : set of records of species i excluding record x

In the triangulation, an intraspecific segment becomes
nonpertinent when its length is beyond the mutual reach
of their end points. Given a pair of end points (r, r ′) be-
longing to species i , the cut threshold for the intraspe-
cific segment (CTintra) will be twice the NRintra value of
species i records:

CTintra(r, r ′) = 2 ∗ NRintrai ∀r, r ′ ∈ Si (5)

When both r and r ′ belong to more than one species,
CTintra(r, r’) will be equal to the highest value obtained
with Equation 5, because if cutting proceeds at this value,
it also proceeds at the lower ones. Ambiguous segments,
that is, segments with lists of species associated to each
end point that are partially overlapped (e.g., species A
and B in one end point and species A and C in the other),
should be treated as intraspecific.

The original Delaunay triangulation, a connected
undirected graph, is transformed into a reduced Delau-
nay triangulation, which may be a disconnected graph,
after deletion of nonpertinent segments. The compo-
nents detected in the reduced Delaunay triangulation are
the dot clouds of interest. In reduced Delaunay triangu-
lation, two points are members of the same component if
there is a path connecting them. Partial sympatry is hy-
pothesized for species with records in the same compo-
nent. The final result is then a square matrix with binary
entries indicating sympatry (1) or allopatry (0) between
species.

Interpenetration.—We consider interpenetration be-
tween Si and Sj if they are spatially intertwined, suggest-
ing that species i and j share a common range portion. In
a simple isotropic model, each species i can be found in a
radius radi around a representative point pi . Each species
has its natural pi in the record where the geographical
distance radi to its outermost record is minimized. In this
way, pi will be the center of the minimum circle enclosing
all the records of Si .

Specific pi and radi parameters are submitted to a
test to analyze the interpenetration between each pair
of species. Thus, for the pair of species (i, j), the input
variables will be radi , rad j , pi , and p j . The test evaluates
if there is at least one record of species i with a distance to
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point p j not higher than rad j (or vice versa for records of
species j) and can be formulated as the logical question:

Is min D(Sj ,pi ) <= radi OR min D(Si ,p j ) <= rad j ?
(6)

min D(S j , pi ): minimum distance between records of
species j and pi

After completing all pairwise comparisons, a second
square matrix is produced, with 1 for positive and 0 for
negative test results. There are also special situations that
must be considered. Strict acceptance of the rad defini-
tion implies that species with a single record have a rad
equal to 0. Singletons will then have an interpenetration
of range only with species that were found at the exact
same location. On the other hand, although exceptional,
a species may exhibit more than one p; e.g., species with
only two records. In this case, each pair of parameters
(p, rad) detected is submitted separately to the interpen-
etration test.

Final hypotheses generation.—Given n species, the final
sympatry matrix M is an n × n adjacency matrix. Each
mi j entry denotes presence (1) or absence (0) of a sympa-
try link between i and j species. Sympatry matrices are
symmetric (mi j = m ji , because sympatry is a reciprocal re-
lation) with all the main diagonal terms equal to 1 (mi j = 1
when i= j , because each species is sympatric with itself).
M is obtained from the Hadamard product (i.e., element
by element product) of the Property I and Property II ma-
trices. In other words, M is the strict consensus of unity
scores between both strategies. Thus, species will be con-
sidered sympatric when their records interpenetrate and
belong to the same dot cloud of relative proximity.

If records are evenly scattered, without noticeable
gaps, the first property is prone to overestimate sym-
patric links by an effect of concatenation. In other words,
distant species may remain in a common dot cloud
because of inner bridges. For this reason, the comple-
mentary use of interpenetration and relative proximity
properties was designed to avoid errors of considering
sympatry when there is clear allopatry.

Hypothetical example.—Figure 1 illustrates the records
associated to 12 species spread over three areas enclosed
with a dashed line. These areas represent the subjacent
range portions, arbitrarily known here but ever elusive
to our understanding of the real world. Peripheral areas
are circular. The central area has a more complex shape
(derived from a vertical displacement of a cubic polyno-
mial curve).

Species {A, B, C, D} share the upper circular area, {E,
F, G} occupy the middle area, and {H, I, J} the lower
circular area. On the other hand, species K and L have
disjunct ranges. Species K inhabits the upper and mid-
dle areas, while L is found in middle and lower areas.
For each species, we randomly selected 5 points from its
range portion.

The first phase of sympatry inference starts with the
Delaunay triangulation (Fig. 2a) of all records. The De-

FIGURE 1. Distributional data (randomly generated) of 12 hypo-
thetical species. For more details, see text.

launay triangulation evolves to the reduced Delaunay
triangulation after removal of nonpertinent segments
(Fig. 2b). Finally, a binary matrix indicating inclusion (1)
or not (0) of a pair of species into a common dot cloud
is generated (Fig. 2c). The second phase of sympatry
inference starts with the determination of rad and p pa-
rameters. For each species, p and its farthest intraspecific
neighbor are located (arrows in Fig. 3a). The distance
between origin and head of arrow corresponds to rad
value. The interpenetration criterion is applied and the
respective binary matrix is generated (Fig. 3b). Finally,
we obtain our consensus sympatry matrix from the
Hadamard product between Property I and Property II
matrices. This matrix will be used later during the devel-
opment of the sympatry network analysis, to obtain the
UCs.
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FIGURE 2. First phase of sympatry inference. (a) Delaunay triangulation. (b) Reduced Delaunay triangulation. Dot clouds with associated
species (capital letters). (c) Property I matrix.

Alternative strategies for inferring sympatry hypothesis.—
Distributional data are frequently available in the form
of presence/absence matrices of species in operative ge-
ographical units (grids, political divisions, basins, etc.).
The amount of data published in this way, force us to
consider other alternatives for inferring sympatry. In
these cases, ranges consist of the sum of locations where
species occur and, consequently, range overlap (sympa-
try) proceeds when co-occurrence of species in at least
one location has been observed. In case of ranges ob-
tained by a vector-like mode (different from the dot maps
already considered), geometric analysis of range overlap
encompasses the inference of sympatry. Therefore, sym-
patry is assumed when the intersection of species ranges
is not null.

Sympatry Network Analysis

The network analysis method (NAM) is oriented to
identify groups of species that satisfy the requirement
of within-group sympatry and between-group allopa-
try. These groups of species correspond to UCs. In
sympatry networks, UCs will be hardly perceived as
entities initially. On the contrary, the different UCs are
usually embedded into a more global network due
to intermediary species connecting allopatric groups.
The removal of intermediary species will segregate

the UCs. To illustrate the reasoning, let us consider
the network associated with the hypothetical sympatry
matrix (Fig. 4a).

Intermediary species and betweenness measure.—A sym-
patry network is described as a graph G= (V, E), where
the set V of nodes represents species, and the set E
of edges represents sympatric relations. For simplicity,
we will consider the graph as unweighted, ignoring the
strength or intensity of the relations. Let w be a weight
function on edges, defining w(e)= 1, e ∈ E, for an un-
weighted graph. A sympatry network is thus an undi-
rected graph where an edge exists between two species
for which there is an inferred sympatry relation in the
sympatry matrix, and no edge otherwise. This graph can
be either connected or disconnected from the onset, de-
pending on the sympatry relations present in the sym-
patry matrix.

A path from s ∈ V to t ∈ V is an alternating sequence
of nodes and edges, beginning with s and ending with
t, such that each edge connects its preceding node with
its succeeding node. The path length is the sum of the
weights of its edges (Brandes, 2001). A fundamental con-
cept in graph theory is the “geodesic” or shortest path
linking two given nodes (Newman, 2001). The minimum
length of any path connecting a pair of nodes is called
geodesic distance. There may be more than one geodesic
path between two nodes.
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FIGURE 3. Second phase of sympatry inference. (a) For each species, an arrow connects the representative point (p) to its farthest intraspecific
neighbor. (b) Property II matrix.

Freeman (1977) introduced a centrality measure called
betweenness that can be used to identify those inter-
mediary species. Betweenness (B) is a measure of the
frequency that a node occurs in the geodesic path con-
necting two other nodes:

B(v) =
∑

s �=v �=t∈V

σst(v)
σst

(7)

Let σ st = σ ts denote the number of geodesic paths
from s ∈ V to t ∈ V, where σ ss = 1 by convention. Let
σ st(v) denote the number of geodesic paths from s to t
that some v ∈ V belong to. Thus, the betweenness mea-
sure is the number of times a given node occurs on a
geodesic path (Borgatti et al., 2002). The best performance
algorithms to calculate B are in Brandes (2001) and
Newman (2001).

According to Hanneman and Riddle (2005), the be-
tweenness measure of a node indicates its degree of con-
trol position in the network. In a connected network of
sympatry, the shortest paths from the species of one UC
to another unit must pass through intermediary species.

So, intermediary species will have a high betweenness
due to their connecting capacities.

Units of co-occurrence and clustering coefficient.—Two
concepts are necessary to introduce here: density and
degree of a node in a binary network. Density is the fraction
of possible edges actually present in the network (Equa-
tion 8). The degree of node i (ki ) is its number of incident
edges (neighbors; Equation 9).

Density =
2

n−1∑
i=1

n∑
j=i+1

mi j

n(n − 1)
(8)

k(i) =
n∑

j=1

mi j − 1 (9)

In Equations 8 and 9, mi j represents the element of
a sympatry matrix where row i and column j cross. In
Equation 8, n is the number of nodes in the network un-
der consideration.

The group of species that integrate a UC must be co-
hesive. The maximal cohesiveness is reached when each
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FIGURE 4. Removal process based on betweenness scores. (a) Origi-
nal network and successive subnetworks with betweenness scores near
the respective nodes. Nodes represent species, while edges connect
pairs of sympatric species. In the original network, node K obtains the
highest betweenness (bold type). (b) The removal of node K with all its
incident edges produces the first subnetwork composed of two com-
ponents. Betweenness scores are recalculated, and node L acquires the
maximum betweenness (bold type). (c) After node L removal, the last
subnetwork is generated, with three components, and betweenness
scores are recalculated again. The removal process stops at this level
since all remnant nodes obtain zero betweenness scores.

species is sympatric with all others, a clique in graph
terms. Watts and Strogatz (1998) introduced the clus-
tering coefficient to account for the tendency in many
real-world networks to be structured in dense groups of
nodes. That is, the density in local neighborhoods tends
to be higher than expected for a random graph of the
same size. Clustering coefficient of a node i(Ci ) is de-
fined in Equation 10.

Ci = 2Ei

ki (ki − 1)
(Ci = 0 i f ki < 2) (10)

ki : degree of node i
Ei : number of links between ki neighbors of node i

Ci can be interpreted as the probability that any two
neighbors of i are connected.

Extracting the units of co-occurrence..—To extract the
UCs from the original network (Fig. 4a), it is necessary to
identify and remove the intermediary species (Fig. 4b, c).
The criterion for removing a species is B (betweenness
score). Starting from the original network, the species
with the highest B is removed, giving a subnetwork.
If there are two or more species with the same highest
B, they are removed simultaneously. For each remnant
node, B must be recalculated after each removal because
the pattern of connections is modified. As nodes are re-
moved from the sympatry network, the graph becomes
unconnected and components emerge. The iterative re-
moval stops when all remnant nodes have B equal to
zero. One of the subnetworks obtained in this way, the
one holding the components (i.e., connected subgraphs)
corresponding to the UCs, must be selected.

In the hypothetical example, it is clear that the last
subnetwork (Fig. 4c) must be selected. The three com-
ponents (A-B-C-D; E-F-G; H-I-J) are maximally cohesive
by virtue of their clique status. However, UCs do not
always correspond to cliques, and successive removals
may generate “atomized” subnetworks with many di-
ads (components with two nodes) and isolated nodes.
This realistic situation prevents the selection of the last
subnetwork by default. On the contrary, all instances
of the removal process must be explored to select the
one that maximizes a measure sensible to segregation of
UCs.

The species of a UC embedded in a major component
will have two kinds of neighbors: either other species
of the unit, or intermediary species. Therefore, the re-
moval of intermediary species is a selective pruning in
the neighborhood of UC species. Thus, to evaluate the
segregation of UCs we must measure changes operating
at their species neighborhood, using the clustering per-
formance in the neighborhood (CP). Given a sympatry
network (or subnetwork), for each species i connected to
others, CPi is defined as the minimum clustering value
observed among neighbors of i (Equation 11). If species
i is an isolated node (without neighbors), a zero is as-
signed to CPi .

C Pi = min Ci ′ ∀i ′ ∈ N ∧ i ′ �= i ∧ mii ′ = 1 (11)

By definition, a clustering value of intermediary
species is always suboptimal. In fact, the open neigh-
borhood of intermediary species exhibits species with-
out sympatric links. So, until intermediary species are
removed, some nodes of UCs will present suboptimal
values of CP. As removal progresses and UCs become
segregated entities, the neighborhood of their nodes will
restrict to themselves. In a cohesive UC, specific CP val-
ues should rise after successful removal.

A collective increase of CP values suggests the ar-
rangement of species into UCs. This increase allows us
to propose a global descriptor of successive removals
for selecting the subnetwork that holds the UCs. The
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proposed descriptor is the overall change of cluster-
ing performance (OCP), which measures the magni-
tude of change in CP values with respect to the original
network.

For each subnetwork x generated at level x of the re-
moval process, its OCPx is obtained as the sum of dif-
ferences between CP value of species i at subnetwork
x(C Px

i ) and the CP value of the same species at original
network (C P0

i ):

OC Px =
nx∑

i=1

(C Px
i − C P0

i ) (12)

nx: size of subnetwork at level x of removal process

We select the subnetwork that maximizes the OCP
value. Of the components forming this subnetwork,
those composed of more than two nodes will correspond
to the UCs. Diads do not constitute UCs because the co-
hesiveness of their nodes is null (Ci = 0). In case of OCP
ties, the smallest subnetwork is preferred. Table 1 pro-
vides the values of C and CP for every node from both
the original and the successive subnetworks of the hy-
pothetical example. The last row of the table shows the
gradual increase of OCP, with a maximum at the last
subnetwork, from which UCs should be extracted.

Testing adequacy of network.—The adequacy of a sym-
patry network for segregation into UCs must be tested
before its analysis. The partition index (PI; Equation 13)
depicts the tendency of species towards a clustered ar-
rangement. PI varies between 0 (sparse nodes) and 1
(compact UCs with few or no intermediary species). PI
selects the clustering parameter (C or CP) with the high-
est value of each species, sum them, and divides the total

TABLE 1. Clustering coefficient (C), clustering performance (CP),
and overall clustering performance (OCP) along removal process. The
intermediary species (K and L) have smaller values of C because some
pairs of their neighbors lack links. OCP values increase gradually to a
maximum at sub-network 2 where three ideal components, each one a
clique, remain.

Subnetwork 1 Subnetwork 2
Original (after removal (after removal of
network of node K) nodes K and L)

ID node C CP C CP C CP

A 1 0.429 1 1 1 1
B 1 0.429 1 1 1 1
C 1 0.429 1 1 1 1
D 1 0.429 1 1 1 1
E 1 0.429 1 0.4 1 1
F 1 0.429 1 0.4 1 1
G 1 0.429 1 0.4 1 1
H 1 0.429 1 0.4 1 1
I 1 0.429 1 0.4 1 1
J 1 0.429 1 0.4 1 1
K 0.429 0.429 — — — —
L 0.429 0.429 0.4 1 — —
OCP 0.000 2.681 5.710

by the theoretical optimum (= species number).

P I = n−1
n∑

i=1

max(C0
i , C P0

i ) (13)

High C or CP indicates that a species is inside a unit
of co-occurrence or in an intermediary condition, respec-
tively. The significance of observed PI is tested against
a series of PIs associated to random networks. If the ob-
served PI is significantly higher than those randomly ob-
tained (P < α), an arrangement of nodes into different
UCs is suggested. In our example, 5000 networks were
randomly generated, following a Bernoulli model (each
species pair is observed independently and their link is
selected with a probability equal to the density of the
original network). The adequacy test resulted in a very
high value (PI = 0.905, P < 0.001).

The construction of random networks can be more or
less realistic. An alternative to conferring more realism to
the network is to randomize the distributional data, con-
strained by known biogeographical processes, such as
autocorrelation and carrying capacity (e.g., Hennig and
Hausdorf, 2004). Then, the sympatry network inference
can be based on these new random data. However, this
procedure has underlying arbitrary assumptions with
regards to vagility, the available area for dispersion, etc.
Moreover, “. . . unduly restrictive null models are avail-
able that may mask the detection of nonrandom pattern
because too much of that pattern may be built into the
null model itself” (Moore and Swihart, 2007:764). We
prefer to focus on the network structure, avoiding the
stochastic generation of ranges.

Mapping Units of Co-occurrence

Units of co-occurrence are in a geographical context
from which sympatry among species emerges. The geo-
graphical correspondence of a UC is its spatial expression.
The exact procedure to derive spatial expressions will
depend on the information source. When distributional
matrices are used, the spatial expression will be the union
of locations inhabited by the species in question. On the
other hand, when individual maps are used, the spatial
expression will be the juxtaposition of respective species
maps. The spatial expressions of the hypothetical exam-
ple are represented in Figure 5.

EMPIRICAL EXAMPLES

The performance of our method was evaluated study-
ing the patterns of distribution in three real cases. The
formalization of the algorithm is included in Appendix 1.

Case Study 1: Epiphragmophora Doering, 1874,
a Land Gastropod

This genus is a component of the land snail family
Xanthonychidae (Gastropoda: Stylommatophora) and
is found exclusively in South America. Distributional
information from a data set, consisting of the coordi-
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FIGURE 5. Spatial expressions of the three units of co-occurrence
(UC) detected in the hypothetical example. Supporting species for each
spatial expression between brackets.

nates of 145 localities of occurrence of 21 species of
Epiphragmophora distributed in Argentina, was used and
analyzed with the proposed new methodology (Ap-
pendix 2; Appendices 2 to 4 are available at the Systematic
Biology Web site at http://www.systematicbiology.org).
After triangulation and interpenetration test were ap-
plied, a sympatry matrix was created and the respective
basal sympatric network was obtained (Fig. 6a). The
partition index was significantly high (PI = 0. 56, P �
0.01). NAM recognized four UCs after the removal of
two intermediary species (Fig. 6a, b): UC1 composed
by E. walshi, E. cryptomphala, E. jujuyensis, and E. tri-
grammephora is located in Salta and Jujuy Provinces in
the Yungas and Chacoan areas. UC2 is composed by
E. parodizi, E. tucumanensis, and E. argentina, inhabiting
Tucumán province mainly in Yungas. UC3 composed by
E. variegata, E. hemiclausa, and E. hieronymi, which inhabit
Yungas and Pre-Puna areas from Catamarca to western
Tucumán Provinces. UC4 composed by E. trifasciata,
E. puntana, E. guevarai, and E. trenquelleonis, inhabiting
Chacoan areas of northwestern Cordoba, southern Santi-
ago del Estero, and northern San Luis Provinces (Fig. 6c).

The two species removed due to their highest between-
ness scores were E. rhathymos and E. tomsici. Five other
species, E. escoipensis, E. puella, E. quirogai, E. saltana, and
E. villavilensis, are isolated nodes, mainly because they
consist of single localities records in the data set that are
also geographically distant from each other. Each of the
units identified are nonoverlapping candidates to areas
of endemism supported by strictly endemic species.
These units represent patterns obtained from the sympa-
try network structure, not from species range similarities.

Interestingly, NAM found that two geographically
proximal species, E. hieronymi and E. parodizi, both coinci-
dent in western portion of Tucumán province but living
at different altitudes, belong to different UCs. The same
situation occurs with E. variegata and E. tucumanensis,
both species inhabiting geographically close cloud for-
est areas (Yungas). UC4 and UC1 are geographically well
separated from each other and also with UC2 and UC3
due to the existence of clear geographical gaps. However,
UC2 and UC3 are contiguous, located between Tucumán
and Catamarca provinces (Fig. 6c). E. tucumanensis + E.
argentina form a monophyletic clade (Cuezzo, 2006), both
are part of UC2 and according to the cladistic analysis
these are sister species of E. hemiclausa and E . variegata,
both components of UC3. This situation may indicate
that both units of co-occurrence might have been origi-
nated by vicariance. However, this hypothesis needs fur-
ther testing.

NAM detected two intermediary species: E. rhathymos
and E. tomsici. E. rhathymos shows a remarkably wide area
of distribution, ranging from Salta to Catamarca and Cor-
doba provinces. This species is highly variable in shell
morphology and size among the different populations.
Conversely, E. tomsici is only distributed in Tucumán and
Catamarca provinces, but again morphological charac-
ters are highly variable between populations of Yungas
and Chacoan areas. Molecular studies are needed in both
cases to test if these taxa are really single species or group
of species not detected by morphological characters.

Roig Juñent and Flores (2001) proposed two areas of
endemism in the Chacoan biogeographical subregion in
Argentina based on the analysis of beetles and vege-
tational formations: the “Llanos Chaqueños,” an area
encompassing Santiago del Estero, western Cordoba,
eastern Catamarca, northern San Luis, La Rioja and San
Juan Provinces, and the “Occidental Chaco” ranging
from southern Bolivia and western Paraguay to north-
ern Cordoba. Our analysis shows some coincidences
with these previous subdivisions. However, the limits
of these previously mentioned areas of endemism corre-
spond with vegetational ecorregions. Areas of endemism
or candidates of areas of endemism should not be delim-
ited or proposed based on types of environments and
vegetational formations. Our results are independent of
predefined spatial units.

Case Study 2: The Curimatidae, a Characiform
Family of Freshwater Fishes

Curimatidae occur in a broad range of freshwa-
ter Neotropical ecosystems. These habitats range from
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FIGURE 6. Inference and analysis of sympatry network applied on Epiphragmophora data. (a) Basal sympatry network. Intermediary species
(empty circles) connected to network by dashed line. Elements of units of co-occurrence (UC) connected by full lines. (b) Overall clustering
perfomance (OCP) along the revomal process. Vertical line indicates instance of removal where OCP is maximized (selected subnetwork). (c)
Spatial expressions of the four UCs detected. Species codes: ar = E. argentina; cr = E. cryptomphala; es = E. escoipensis; gu = E. guevarai; he = E.
hemiclausa; hi = E. hieronymi; ju = E. jujuyensis; pa = E. parodizi; pl = E. puella; pn = E. puntana; qu = E. quirogai; rh = E. rhathymos; sa = E. saltana;
tf = E. trifasciata; tg = E. trigrammephora; to = E. tomsici; tq = E. trenquelleonis; tu = E. tucumanensis; va = E. variegata; vi = E. villavilensis; wa = E.
walshi.

streams and meandering rivers typical of lowland flood-
plains to tributaries and rapids of the Andean piedmont
and the upland of the Guyana and Brazilian Shields
(Vari, 1988). The Curimatidae had been chosen to be
analyzed using NAM because they are typical lowland
components of the Neotropical fish fauna on both sides
of the Andes. Members of this family inhabit the trans-
Andean Pacific drainages of Central and South America
from Costa Rica to Peru. They also inhabit the Caribbean
drainages in northern South America, but the great-
est species diversity occurs in the Atlantic drainages
from the Orinoco basin through the Amazon basin and
numerous rivers of the Guianas, Brazil, Uruguay, and
Argentina.

Vari (1988) proposed nine areas of endemism based on
the distribution of the Curimatidae: Western, Orinoco,
Guianas, Northeast, São Francisco, Coastal, Upper
Parana, Paraguay, and Amazon (Fig. 7a). However, he
also considered the subdivision of Western area of en-
demism into six smaller nonoverlapping areas: Mara-
caibo, Rı́o Magdalena, Atrato, Patia, Guayas, and Chira
with few or unique endemic species in each of the river
basins. The Curimatidae in the trans-Andean Pacific and
Caribbean drainages are distinct from those of the east

of the Cordilleras of the Andes, which acts as a barrier.
The largest and most specious area of endemism rec-
ognized by Vari (1988) was the Rı́o Amazonas. Accord-
ing to Vari (1988), as a consequence of the overlapping
distribution patterns among those species, it is not pos-
sible to recognize areas of endemism within this vast
geographic extension. The Amazon shares species with
the three different areas: the Rı́o Orinoco, the Guiana,
and the Rı́o Paraguay system. Vari stated that the largest
number of species is shared with the Rı́o Orinoco due to
the broad Rı́o Casiquiare connecting the two basins. En-
demism among curimatid species is more pronounced
in the two regions south of the Amazon basin, the upper
Rı́o Parana and the area consisting of Rı́o Paraguay, lower
Parana, Rı́o Uruguay, and the river south of San Pablo.

A set of 1639 records corresponding to 98 species
of Curimatidae was used. The records were com-
piled from two Internet databases, NEODAT Project
(http://www.neodat.org/) and Fishbase (Froese and
Pauly, 2007). Additional geographical data were taken
from published taxonomic revisions (Vari 1984, 1988,
1989a, 1989b, 1991, 1992). The definitive list of records
with their coordinates in decimal format is given in
Appendix 3.
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FIGURE 7. Inference and analysis of sympatry network applied on Curimatidae data. (a) Areas of endemism proposed by Vari (1988).
(b) Spatial expressions of the seven units of co-occurrence (UC) detected (species listed in Table 2). For discussion see text.

NAM was applied to the sympatry matrix derived
from punctual records. The partition index was signif-
icantly high (PI = 0.74, P << 0.01). Seven UCs were
obtained (Table 2). Our results (Fig. 7b) show high
coincidence with the areas delimited by Vari (1988). The
following difference with Vari’s results was found: São
Francisco and coastal areas comprise a single UC instead
of two areas of endemism, with three species endemic to
this unit: Steindachnerina elegans, Cyphocharax gilbert, and
Curimatella lepidura.

Pseudocurimata is the only generic-level clade of the
Curimatidae endemic to the rivers of western slopes
of the Andes. Vari (1988, 1989) included the species
of this genus to justify the creation of the Western
area of endemism. However, the species ranges within
Pseudocurimata are restricted to single rivers. Such
generic and specific levels of endemism of Pseudocuri-
mata are noteworthy both in comparison to the more
extensive ranges typical of most components of the

South American ichthyofauna and relative to the much
broader geographic distribution of all other curimatid
genera (Vari, 1989a).

NAM did not associate the western species into a com-
mon UC, because the species ranges are restricted and
not interpenetrated. Single endemic species that char-
acterize some of Vari’s subdivisions, as, for example,
Steindachnerina atratoensis, endemic to the Atrato area of
endemism, and Pseudocurimata patiae, endemic to the Pa-
tia, are isolated nodes in the network. Sympatry is not hy-
pothesized in these cases due to the restricted ranges of
single endemic species in single rivers that do not allow
deriving co-occurrence patterns from these data. Other
elements such as Cyphocharax aspilos and Potamorhina lat-
iceps from Maracaibo constitute diads, entities not qual-
ifying for UCs.

The largest UC found with NAM is Amazonas in
concordance with the Amazon area of endemism es-
tablished by Vari (1988, 1992), with 31 endemic species.
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TABLE 2. Curimatidae units of co-occurrence (UC) detected by sympatry network analysis method (NAM).

Units of Co-Occurrence

UC1 (Amazon) UC2 (Orinoco) UC6 (Paraguay)
Curimata aspera Curimata cerasina Curimatopsis myersi
Curimata cisandina Curimata incompta Cyphocharax gillii
Curimata inornata Cyphocharax meniscaprorus Cyphocharax platanus
Curimata knerii Cyphocharax oenas Cyphocharax saladensis
Curimata ocellata Steindachnerina argentea Cyphocharax spilotus
Curimata roseni Steindachnerina pupula Cyphocharax voga
Curimata vittata Steindachnerina dobula Potamorhina squamoralevis
Curimatella meyeri Steindachnerina biornata
Curimatopsis microlepis UC3 (Northeast) Steindachnerina brevipinna
Cyphocharax gangamon Curimata macrops Steindachnerina conspersa
Cyphocharax gouldingi Psectrogaster rhomboides
Cyphocharax laticlavius Psectrogaster saguiru UC7 (Upper Parana)
Cyphocharax leucostictus Steindachnerina notonota Cyphocharax modestus
Cyphocharax mestomyllon Cyphocharax nagelii
Cyphocharax nigripinnis UC4 (Coastal and São

Francisco)
Cyphocharax vanderi

Cyphocharax notatus Steindachnerina insculpta
Cyphocharax pantostictos Curimatella lepidura
Cyphocharax plumbeus Cyphocharax gilbert
Cyphocharax spiluropsis Steindachnerina elegans
Cyphocharax stilbolepis
Cyphocharax vexillapinnus UC5 (Guianas)
Potamorhina latior Curimatopsis crypticus
Potamorhina pristigaster Cyphocharax microcephalus
Psectrogaster amazonica Steindachnerina runa
Psectrogaster falcata
Psectrogaster rutiloides
Steindachnerina fasciata
Steindachnerina hypostoma
Steindachnerina leucisca
Steindachnerina quasimodoi

Paraguay area of endemism is also recognized by NAM
with 10 endemic species characterizing this unit. The rest
of the UCs found have 6 or less endemic species: Orinoco
(6), Upper Parana (4), Northeast (4), Guiana (3), Coastal
and São Francisco (3).

Nineteen species were intermediary and were elimi-
nated from the analysis. From them, Curimatella dorsalis
has the highest betweenness at first instance of removal.
It exhibits a high morphological variability and a wide
area of distribution ranging from Rı́o Orinoco and Rı́o
Amazonas to the lower Parana system (Vari, 1992). Most
of the intermediary species connecting Amazonas with
Orinoco were mainly found in the Rı́o Casiquiare, co-
inciding with Vari’s results. Other species indicated by
Vari as widely distributed and with the greatest variation
in the body form (Curimata cyprinoides and Psectrogaster
essequibensis) have been identified with NAM as inter-
mediary species.

In comparison to Vari’s (1988, 1992) results, the present
study represents a testable methodology to analyze Curi-
matidae distribution. The spatial expressions of the UCs
found using the available information are supported by
exclusive endemic species. There was no need to de-
fine line limits of areas because the units arose from the
sympatry analysis. Intermediary species that obscure the
recognition of the units were identified to define the bio-
geographical pattern. We hypothesize then that the UCs
found are candidates for areas of endemism until more
information concerning other taxa is gathered to test this
hypothesis.

Case Study 3: Sciobius Schönherr, a Southern
African Weevil

The method was also implemented on a classic exam-
ple, namely the distributional data of 47 Sciobius species
published by Schoeman (1983) as dot maps. We have
selected this example because it has been previously
employed by many different authors (Morrone, 1994;
Szumik et al., 2002; Hausdorf and Hennig, 2003; Mast
and Nyfeller, 2003) in order to identify either areas of
endemism or biotic elements. For comparison with their
results, we used the same grid system. The sympatry
matrix was obtained under the assumption that species
co-occurring in at least one cell are sympatric. We also
considered the original data (dot maps) for inferring
sympatry. Then, we analyzed the sympatry matrices
derived from different data inputs (2◦× 2◦, 1◦× 1◦, and
punctual data sets) with NAM. Table 3 summarizes the
results of the three analyses.

We used the 2◦× 2◦ grid data matrix obtained by
Morrone (1994) and corrected later by Mast and Nyfeller
(2003). Nomenclatural conventions introduced by these
authors are retained. The partition index of data was sig-
nificantly high (PI = 0.892, P � 0.01). Four UCs were
detected after removal of nine intermediary species.
The respective spatial expressions of UCs correspond
to a set of four nonoverlapping areas (Fig. 8a). We are
able to compare and discuss our results with the other
studies.

Parsimony analysis of endemicity (PAE; Morrone,
1994; Mast and Nyfeller, 2003): Original matrix (Morrone,
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TABLE 3. Comparison of results from three different data inputs for
Sciobius. 1–4 = units of co-occurrence; int = intermediary species; iso =
isolated node. Boxes enclose partial matches. Note the high coincidence
of species assignment among the three different partitions.

Data input
Sciobius species
(abbreviations) 1◦× 1◦ 2◦× 2◦ Dot maps

S. angustus (ag) 1 1 1
S. peringueyi (pe) 1 1 1
S. viduus (vd) 1 1 1
S. anriae (ai) 2 2 2
S. arrowi (ar) 2 2 2
S. barkeri (ba) 2 2 2
S. brevicollis (br) 2 2 2
S. cognatus (co) 2 2 2
S. cultratus (cu) 2 2 2
S. dealbatus (de) 2 2 2
S. holmi (hl) 2 2 2
S. marginatus (mg) 2 2 2
S. panzanus (pa) 2 2 2
S. pollinosus (pi) 2 2 2
S. prasinus (pr) 2 2 2
S. tenuicornis (te) 2 2 2
S. wahlbergi (wa) 2 2 2
S. asper (as) 3 3 3
S. capeneri (ca) 3 3 3
S. cinereus (ci) 3 3 3
S. griseus (gi) 3 3 3
S. minusculus (mi) 3 3 3
S. nanus (na) 3 3 3
S. oneili (on) 3 3 3
S. scapularis (sa) 3 3 3
S. schoenlandi (se) 3 3 3
S. tottus (to) 3 3 3
S. lateralis (la) 4 4 4
S. planipennis (pl) 4 4 4
S. pondo (pn) 4 4 4
S. scholtzi (sl) 4 4 4
S. aciculatifrons (ac) int int int
S. granosus (go) int int int
S. marshalli (ms) int int int
S. obesus (ob) int int int
S. pullus (pu) int int int
S. endroedyi (en) 4 4 iso
S. transkeiensis (tr) 4 4 iso
S. granipennis (gp) 4 4 3
S. horni (ho) int int 2
S. kirsteni (ki) iso iso 2
S. vittatus (vt) 1 1 iso
S. viridis (vr) 1 int int
S. impressicollis (im) 4 int int
S. thompsoni (th) 4 int int
S. spatulatus (sp) int 2 2
S. bistrigicollis (bi) int 2 2

1994) gave rise to three areas of endemism (N-O-R-S-T;
P; I-J-L-M). After the analysis of corrected data, Mast
and Nyfeller (2003) reduced the N-O-R-S-T candidate
to a single cell (N). NAM also detected a fourth UC
in B-C-E-F, which was not previously detected with
PAE.

Biotic elements analysis (Hausdorf and Hennig, 2003):
Four elements were produced, with geographical cores
approximating our areas. However, unlike our areas,
the biotic elements overlap geographically among each
other and include in their list of supporting species
clearly widespread taxa such as S. pullus (it belongs to

element 4, occupying 48% of the cells under study and
extending from Natal to Southern Cape Province) and
S. marshalli (it belongs to element 2, traversing Natal
and Transvaal regions from cell A to cell M). The in-
clusion of these widespread taxa is a consequence of
the distance measure (Kulkczinsky distance) adopted by
the authors. Kulkczinsky distance is justified because
it relates the range overlap between species in a bal-
anced way (Hausdorf and Hennig, 2003). However, in
the same way, Kulkczinsky distance is misleading be-
cause it favors the inclusion of widespread species into
biotic elements, clustering them with species of smaller
ranges. Our method, due to the identification of interme-
diary species, recognized and removed these dispersal
elements that obscure the patterns.

Stability in cluster analysis is strongly dependent on
the data set (Hennig, 2007). Particularly, when the re-
sults of Sciobius example obtained with Prabclus pack-
age (Hausdorf and Hennig, 2003) were tested, we found
that the same data matrix yield different results depend-
ing on row (species) ordering. Row permutation from a
random order to an alphabetical order produced consid-
erably different results. For this reason, caution should be
taken when the biotic element methodology is applied.

The grid-based method (Szumik et al., 2002): It was dif-
ficult to compare to our results because optimal and sub-
optimal results are mixed together. However, there are
sets of cells roughly equivalent to our results (Transvaal,
Natal, Southern, and Eastern Cape regions). Our areas
are supported by strictly endemic species, precluding
records outside the areas. Furthermore, our areas are
supported by unique species that are not supporting ele-
ments elsewhere, whereas different combinations of cells
in Szumik et al. (2002) share many of their supporting
species (e.g., sets 1, 4, 5, 6, 7, 8, 9). If different areas of
endemism are proposed, each one must be supported by
a unique or distinctive pool of supporting species as our
method effectively does.

When using NAM, the shift from a 2◦× 2◦ to a 1◦×
1◦ grid did not critically affect the species composition
of the UCs already found. Moreover, a better spatial
resolution was achieved as a consequence of cell size
reduction (Fig. 8b). Seventy pairs of sympatric species
at the coarser scale became allopatric at the finer scale.
Nevertheless, the general structure of the sympatry net-
work was not greatly modified. Seventy-seven percent of
deleted edges was incident to intermediary species pre-
viously detected, without major erosion of links inside
UCs. The stability of our results contrasts with those de-
rived from PAE and biotic element analysis, where 1◦×
1◦ grid cell data resulted in lower resolution or increased
noise, respectively. The analysis at this scale was not per-
formed with the grid-based method, so we could not
compare it with our results.

Finally, we inferred sympatry from punctual evidence
(Fig. 8c1), to demonstrate that our approach has inde-
pendence of the predefined areas. Schoeman (1983) used
a quarter-degree dot for plotting records on the distri-
bution maps. We assigned the geographical coordinates
to the center of dots. A total of 311 coordinates were
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FIGURE 8. Inference and analysis of sympatry network applied on Sciobius (Coleoptera: Curculionidae) distribution data. (a) 2◦ grid data set.
(b) 1◦ grid data set. (c) Punctual data set. (a1, b1, c1) Basal sympatry networks. Nodes (black dots) represent species, whereas edges (connecting
lines) represent sympatry links between species. Network was constructed as an undirected graph using Netdraw 2.29 (Borgatti, 2002). (a2, b2,
c2) Spatial expressions of units of co-occurrence (UC). (a2, b2) Each UC with corresponding components of selected subnetwork in same gray
tone. (c2) Each UC with same symbol.
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TABLE 4. Comparison of characteristics between NAM and the other discussed methods.

Analysis performed

Characteristics

PAE: Maximum
parsimony of grid

cells using presence/
absence of taxa as

characters with
an outgroup with

taxa absent in
every cell

(Rosen, 1988)

Grid-based
method: Scoring

of sets of cells
depending on the

adjustment of
taxa to them

(Szumik et al.,
2002)

Biotic elements
analysis: Partition

of species into
clusters according

to their range
similarity

(Hausdorf, 2002)

NAM: Analysis
of a sympatry

matrix directed
to extract

species groups
sympatrically cohesive

by removal of
intermediary

species

Dependence on predefined areas Yes Yes Yes No
Emphasis on range similarities No No Yes No
Geographical overlap of supporting elements No Yes Yes No
Uniqueness of supporting elements No No Yes Yes
Curvature of earth into consideration No No No Yes
Evaluation of randomness in data structure No No Yes Yes
Relative stability of results to scale change No No Medium High

extracted and analyzed to obtain the sympatry matrix.
The list of records with their coordinates in decimal for-
mat is given in Appendix 4. The partition index was also
highly significant (PI = 0.83, P � 0.01). NAM obtained
four UCs and one isolated node after removal of eight in-
termediary species. The spatial expressions of UCs (Fig.
8c2) are similar to those of our analyses based on 2◦× 2◦
and 1◦× 1◦ grid data matrices.

S. marshalli and S. pullus showed high connecting ca-
pacity in all the analyses, meaning high betweenness
scores caused their early removal. This quantitative con-
sideration correlates with the introduced and pest nature
of these species, already remarked by Schoeman (1983).
Table 4 lists the most conspicuous differences among the
various approaches discussed.

DISCUSSION AND CONCLUSIONS

Traditionally, the theoretical concept of sympatry
among species has been synthetically stated as “range
overlap,” leading first to the derivation of the species
ranges, and later to the identification of sympatry. In the
process of obtaining the ranges, either with grids or vec-
torial alternatives, the information provided by direct ev-
idence (punctual records) is masked. On the contrary, we
rely here on the direct evidences to analyze these spatial
signals, their interactions of proximity and interpenetra-
tion, to infer sympatry.

There are some similarities between sympatry net-
work analysis and the algorithm proposed by Girvan
and Newman (2002) to detect communities in social net-
works. The main differences are as follows: (1) the Girvan
and Newman algorithm is based on “edge betweenness,”
whereas ours is based on “node betweenness”; (2) the
communities in the Girvan and Newman approach can
be connected, whereas the UCs are mutually exclusive;
(3) the Girvan and Newman method assigns all individ-
uals to communities, whereas ours assigns some species
to groups but others not (i.e., intermediary species, iso-
lated nodes and diads).

In biogeography, Page (1987) applied graph concepts
to formalize Croizat’s ideas. His method, although us-

ing network analysis, operated on locality adjacency ma-
trices derived from minimum spanning trees, whereas
our method operates on species adjacency matrices. In
this way, the resulting networks are different. In Page’s
method, the pattern of interest is the topological recur-
rence of locality graphs projected on a map, whereas in
ours the goal is to detect groups of species cohesively
sympatric.

The identification of UCs and the derivation of their
spatial expressions liberate us from the need of the tra-
ditional delimitation of areas of endemism. These spa-
tial expressions are the candidates to areas of endemism,
until biogeographical analysis is performed to test their
historical significance. In this way, taxa from cladograms
should be replaced with the defined UCs to obtain area
cladograms. The congruence between area cladograms
from different lineages will serve to test the nonrandom
co-occurrence of the taxa inhabiting the units and their
possible common biogeographical history.

The notion of intermediary species offered in this pa-
per is new, and it is only captured with a holistic approach
like network analysis. Several circumstances can lead to
intermediacy. The most common is widespread distri-
butions. However, intermediary species do not always
possess this attribute. For example, in the Sciobius anal-
ysis with the 2◦× 2◦ data set, some intermediary species,
such as S. granosus and S. thompsoni, have a narrow range
of two cells. From this case, it becomes clear that species
are intermediary due to their position in the network,
not necessarily because of the size of their range. Addi-
tional causes of intermediary condition may include the
lack of either taxonomic resolution or speciation after a
vicariant event.

We have considered sympatry as a binary relation; but
when there is partial range overlap, it is possible to use
weights to quantify the degree of superposition. New-
man (2004) proposed a method for analyzing weighted
networks, mapping them onto multigraphs. Although
promising, this development transcends the scope of the
present paper. Certainly, our approach is susceptible to
improvements, but we consider it as a viable option to
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other methods overly dependent on a priori delimited
spatial units.

The new methods presented here represent a novel
platform of analysis in biogeography and can be
differentiated from other methods by the following char-
acteristics: (1) sympatry inference generates sympatry
hypotheses from direct evidence, as a previous nec-
essary step in the search of biogeographical patterns;
(2) sympatry hypotheses are proposed from punctual
data, allowing the consideration of nonconvex ranges;
(3) NAM emphasizes the treatment of sympatry (a re-
lational or network datum) with the appropriate ana-
lytical tool (network analysis); (4) NAM may explore
ranges obtained through different methods, being versa-
tile and applicable to available data; (5) NAM deals with
distributions that obscure subjacent patterns, identify-
ing intermediary species and facilitating heuristic tasks
with them; (6) NAM explores randomness in the data to
be analyzed without appeal to stochastic generation of
ranges; (7) NAM yields results strictly adjusted to a no-
tion of endemism in the sense of species restricted to
an area; (8) NAM is independent of comparative cri-
teria among ranges as congruence or similarity; and
(9) NAM shows higher stability of results despite scale
change.
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APPENDIX 1: FORMALIZATION OF ALGORITHM

Sympatry inference and NAM are structured around the follow-
ing algorithm, implemented in the program package SyNet, which
is an add-on package for the statistical software R (available at
http://www.cran.r-project.org).

1. Is distributional evidence based on punctual data? If yes, go to 2;
else go to 3.

2. Obtain the sympatry matrix applying the analysis of proximity and
interpenetration of points. Go to 6.

3. If data are available as raster-like ranges, go to 4. If data are available
as vector-like ranges, go to 5.

4. Obtain the sympatry matrix applying co-occurrence of species. Go
to 6.

5. Obtain the sympatry matrix applying geometric analysis of range
overlap. Go to 6.

6. Test the significance of PI. If test yields a significant index, then go
to step 7; else interrupt analysis.

7. Initialize OCP to zero. Calculate betweenness value for each species
of original network.

8. Remove species with highest betweenness value.
9. For resulting subnetwork, calculate OCP. Recalculate betweenness

value for each remnant node.
10. Are betweenness scores of all remnant nodes equal zero? If no, go

to 8; else next.
11. From original network to last subnetwork, select the instance of

removal where OCP is maximized. In case of OCP ties, select the
latter instance.

12. Extract from 11 the UCs (components with three or more nodes) and
map them.
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