Echinoderm Phylogeny Including Xyloplax, a Progenetic Asteroid

Daniel A. Janies ${ }^{1, *}$, Janet R. Voight ${ }^{2}$, and Marymegan Daly ${ }^{3}$
${ }^{1}$ Department of Biomedical Informatics, The Ohio State University, 3190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, USA;
${ }^{2}$ Department of Zoology, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA; and ${ }^{3}$ Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA;
*Correspondence to be sent to: Department of Biomedical Informatics, The Ohio State University, 3190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, USA; E-mail: Daniel.Janies@osumc.edu.

Received 7 July 2008; reviews returned 24 October 2008; accepted 20 September 2010 Associate Editor: Frank Anderson

Abstract

Reconstruction of the phylogeny of the five extant classes of the phylum Echinodermata has proven difficult. Results concerning higher-level taxonomic relationships among echinoderms are sensitive to the choice of analytical parameters and methods. Moreover, the proposal of a putative sixth class based on a small enigmatic disc-shaped echinoderm, Xyloplax, from the deep seas of the Bahamas and New Zealand in the 1980s further complicated the problem. Although clearly an echinoderm, Xyloplax did not have clear affinity among known groups. Using molecular sequence and developmental data from recently collected Xyloplax adults and embryos, we show that rather than representing an ancient distinct lineage as implied by its status as a class, Xyloplax is simply a starfish that is closely related to the asteroid family Pterasteridae. Many members of the Pterasteridae and all Xyloplax inhabit deep or polar seas and brood young. Brooding pterasterids and Xyloplax hold their young in specialized adult chambers until the young reach an advanced juvenile stage after which they are released as free-living individuals. We hypothesize that the unique morphology of Xyloplax evolved via progenesis-the truncation of somatic growth at a juvenile body plan but with gonadal growth to maturity. Although the overall phylogeny of extant echinoderms remains sensitive to the choice of analytical methods, the placement of Xyloplax as sister to pterasterid asteroids is unequivocal. Based on this, we argue that the proposed class and infraclass status of Xyloplax should be suppressed. [Asteroid; Asterozoa; Cryptosyringida; Echinodermata; Echinozoa; Pterasteridae; starfish; Xyloplax.]

The body plans of the extant members of the exclusively marine phylum Echinodermata include stalked flower-like sea lilies; ambulatory, stellate starfish and brittle stars; soft-bodied sea cucumbers; spiked, armored, and globose sea urchins; and flat sand dollars. The benthic adult forms of these diverse animals share a water-vascular system in which a single circumoral ring of coelom extends to form five, or occasionally more, radial canals that bear tube feet. Along with a pentaradial water-vascular design, features such as a calcite endoskeleton and mutable collagenous tissue unite the five extant classes of the phylum.

Baker et al. (1986) described the water-vascular system of Xyloplax medusiformis as having tube feet borne on dual circumoral rings rather than along radial canals in a pentaradial design. This description challenged the concept of uniform pentaradial watervascular symmetry among extant echinoderms. X. medusiformis was considered so distinct from all other echinoderms that it required a new class of Echinoderm. Baker et al. (1986) and Rowe et al. (1988) created the class Concentricycloidea to contain only Xyloplax. Baker et al. (1986) named the class for the small disk shape and the described dual circumoral rings of the water-vascular system. The class-level status of Concentricycloidea rests on early descriptions of adult morphology of two species of Xyloplax and the perceived distinction of that morphology from other echinoderm classes (Baker et al. 1986; Rowe et al. 1988; Pearse V. and Pearse J. 1994).

Mah (2006) affixed morphological data from X. janetae to a preconstructed tree to place Xyloplax as a distinct
infraclass of extant asteroids. He placed Xyloplax as a sister taxon to Neoasteroidea, the subclass of all extant asteroids. In contrast, many others have placed Xyloplax within various extant asteroid groups based on the scant molecular and morphological character data available (Smith 1988; Belyaev 1990; Janies and McEdward 1994a, 1994b; Janies and Mooi 1998; Mooi et al. 1998; Janies 2001, 2004).

In addition to its taxonomic status as an asteroid, many hypothesize that Xyloplax is progenetic (Smith 1988; Janies and McEdward 1994b; Janies and Mooi 1998; Janies 2001). We use the term progenesis sensu Gould (1977) to describe Xyloplax because it has a life cycle with truncated somatic development producing a sexually mature organism with an overall juvenile body plan. Although progenesis and its encompassing concept of paedomorphosis are important in developmental and evolutionary theory, only a few natural examples have been studied (Garstang 1922; Gould 1977). Other forms of paedomorphosis, such as neoteny, are not applicable to Xyloplax. Neoteny means retention of juvenile structures (e.g., gills in the salamander Ambystoma mexicanum) in a sexually mature organism that has an overall adult body plan.

Before this study, molecular phylogenetic investigations of Xyloplax have been limited because specimens in the two previous collections were fixed in formalin, precluding extraction and sequencing of large amounts of DNA (Janies and Mooi 1998). In contrast, specimens of X. janetae recovered in 2004 in the Northeast Pacific were preserved in 95\% ethanol (Voight 2005; Mah 2006)
and included several brooding females and juveniles. These specimens not only allowed us to sequence several genes from X. janetae but also provided an unprecedented view of its early development. We use confocal microscopy to illustrate the progenetic ontogeny of young Xyloplax in the brood chamber of adult females. We also demonstrate that the water-vascular system of Xyloplax has pentaradial symmetry but lacks dual circumoral rings.

In addition, we use a variety of alignment and tree search methods to construct phylogenies from large molecular and morphological character data sets that include exemplars of all echinoderm classes and several deuterostome outgroups. These analyses all show that Xyloplax is an asteroid. The best trees from all alignment parameters and tree search methods recover Xyloplax as sister to the asteroid family Pterasteridae.

Roadblocks to Reconstructing Echinoderm Phylogeny

Numerous phylogenetic studies of extant echinoderms have been undertaken, but class-level relationships remain controversial (reviewed in Smith et al. 2004). The crinoids, which are mostly sessile, are generally recognized as the sister group to the Eleutherozoa or mobile echinoderms. Eleutherozoa includes all other extant echinoderms: starfish (Asteroidea), sea urchins (Echinoidea), sea cucumbers (Holothuroidea), and brittle stars (Ophiuroidea). Hypotheses of relationships within Eleutherozoa fall into two categories: the Asterozoa-Echinozoa hypothesis and the Cryptosyringida hypothesis (Fig. 1). The Asterozoa-Echinozoa hypothesis groups taxa based on adult body form (Fig. 1a). Asterozoa refers to the extant stellate forms, the asteroids and ophiuroids (Mooi and David 2000). Echinozoa includes globose forms such as holothuroids and echinoids (Smith 1984). In addition to general body form, similarities in the mouth frame and ambulacral ossicles have been interpreted to support Asterozoa (Mooi and David 2000).

In contrast to the Asterozoa-Echinozoa hypothesis, the Cryptosyringida hypothesis (Fig. 1b) groups ophiuroids, holothuroids, and echinoids based on the shared adult feature of enclosed radial elements of the water-vascular system (Smith 1984; Smith et al. 2004). The topology within Cryptosyringida is not often discussed. Smith (1984) pointed out the lack of morphological evidence for holothuroids and ophiuroids as sister taxa. Cryptosyringida typically implies Echinozoa (Holothuroids plus Echinoids in a clade) with Ophiuroidea sister to Echinozoa. Asteroids are assumed to be the sister group to Cryptosyringida (Fig. 1b; Smith 1984).

Studies attempting to resolve relationships among echinoderm classes using multilocus sequence and morphological data have found very similar optimality scores for trees supporting each of the two major competing hypotheses. Littlewood et al. (1997) narrowly supported the Cryptosyringida hypothesis, whereas Janies (2001) narrowly supported the Asterozoa-Echinozoa hypothesis. Moreover, both stud-

FIGURE 1. Competing hypotheses for the relationships of extant echinoderm classes: a) Asterozoa-Echinozoa hypothesis and b) Cryptosyringida hypothesis.
ies acknowledge near-optimal trees that challenge the best-supported hypotheses. In addition, the loci that have traditionally been used in animal phylogenetics (e.g., ribosomal genes) vary in sequence length among echinoderm classes. When compared with proteincoding loci, these length differences in orthologous ribosomal sequences widen the search space at both the levels of alignment and trees and thus require significant computational time and space to find satisfactory results. Studies of mitochondrial gene order sought to resolve class-level relationships among echinoderms (Smith et al. 1992). However, complex patterns of genomic rearrangements and low taxon sampling have thus far limited their ability to resolve relationships (Scouras et al. 2004). Recent studies of mitochondrial gene order have produced results supporting hypotheses for which there is little corroboration in morphology, development, or nuclear genes (Perseke et al. 2008, 2010).

Materials and Methods

Taxon, Genome, and Phenotypic Sampling for Phylogenetic Analyses

We built a data set of 86 echinoderm exemplars and deuterostome outgroups. Vouchers are deposited at the American Museum Culture Collection (AMCC) and the Field Museum of Natural History (FMNH). Data were drawn from 1 urochordate, 4 hemichordates (including 1 pterobranch and 3 enteropneusts), 35 asteroids spanning 16 of 35 families, 12 ophiuroids spanning 8 of 15 families, 3 crinoids spanning 3 of 25 families, 22 echinoids spanning 11 of 45 families, and 9 holothuroids spanning 6 of 23 families. Percent of taxa sequenced for each locus is as follows: 18 S : $96.51 \%, 28 \mathrm{~S}: 52.33 \%, 16 \mathrm{~S}$: 79.07%, 12S: 38.37%, COI: 53.49%, tRNAs: 40.70%, and H3: 37.21\%.

Specimens of X. janetae were collected in 2004 from experimental deployments of wood at 2675 m depth on Gorda Ridge (Voight 2005). Exemplars of other taxa were collected by dredges or divers. All specimens were preserved in 95% ethanol.

DNA was extracted from most specimens using the Qiagen DNAeasy kit. Polymerase chain reaction (PCR) was performed using Amersham Ready to Go PCR Beads. PCR reactions of $25 \mu \mathrm{l}$ final volume included: $2.0 \mu \mathrm{l}$ template DNA, 1 PCR bead, $21 \mu \mathrm{l}$ RNAse free water, $1.0 \mu \mathrm{l}$ forward primer, and $1.0 \mu \mathrm{l}$ reverse primer. Primer sequences are available at http://dx.doi.org/ $10.5061 /$ dryad.1926. Thermal cycling was conducted at $94^{\circ} \mathrm{C}, 49^{\circ} \mathrm{C}$, and $72^{\circ} \mathrm{C}$ (annealing temperatures adjusted as necessary) for 40 cycles. PCR products were purified with a TeleChem kit. Sequencing was performed using Applied Biosystems Big Dye. Sequencing reactions were cleaned through isopropanol and EtOH precipitation and run on an Applied Biosystems 3700 analyzer. Chromatograms were analyzed and contiguous fragments were assembled in GeneCodes Sequencher.

The extraction, amplification, and DNA sequencing of X. janetae were performed in a laboratory in which no echinoderm samples had previously been processed, eliminating the possibility that Xyloplax samples were contaminated by DNA from other echinoderms. DNA from X. janetae was isolated and amplified using the protocols described above except that PCR and cycle sequencing products were cleaned using a magnetic plate and AmPure and SeqClean (Agencourt), and sequences were run on an Applied Biosystems Prism 3100/3100 analyzer.

Our nucleotide data set contains an average of 7.11 kb of DNA per taxon, including data from seven loci (18S rRNA, 28 S rRNA, and histone H3 from the nucleus; 16 S rRNA, 12 S rRNA, cytochrome c oxidase subunit I, tRNA-Ala, tRNA-Leu, and tRNA-Pro of the mitochondrion). We drew from or deposited all nucleotide data in GenBank (http://www.ncbi.nlm.nih.gov). Approximately 59% (251 out of 422 GenBank records) of the nucleotide data analyzed are novel observations. We also incorporated 36 morphological characters drawn
from original observations and literature sources (e.g., Littlewood et al. 1997; Janies 2001). Among these characters are the main features that have been considered important in echinoderm evolution. Thirty-five characters were coded with binary states. One character was coded as a multistate. All character transformations were unordered. Accession numbers for sequences and data files in POY3 formats (molecular and morphological) are archived at http:/ /dx.doi.org/10.5061/dryad.1926.

Microscopy

Young, in various developmental stages, were dissected from females of X. janetae that had been preserved in 95% ethanol (Field Museum of Natural History 12460), transferred to $100 \% \mathrm{EtOH}$, and cleared for 1 week in a $2: 1$ solution of benzyl alcohol to benzyl benzoate. Thus treated, some natural fluorescence is retained, obviating the need for dyes. Optical sections were created with laser light, generated by the 488 nm channel with a $10 \times$ microscope objective of a Zeiss 510 confocal laser scanning microscope and captured digitally. Light micrographs were captured digitally at $10 \times$ with a compound microscope.

Direct Optimization Searches

For POY3 (Wheeler 1996; Wheeler et al. 2006) analyses, we constructed data sets of: 1) all molecular data and 2) all molecular and morphological data. Each data set was run as a separate search across the sensitivity analysis parameter space (treated below). The gene coding for the H3 protein was treated as prealigned because its alignment was unambiguous. We used the command -noleading to avoid counting leading and trailing gaps in final tree length calculations. We created an alignment implied (IA; Wheeler 2003) by the best POY3 tree for each data set using the commands: -diagnose, -impliedalignment, and -topofile. Leading and trailing gaps in the IA were replaced with "?". IAs and resulting trees are archived at http:/ /dx.doi.org/10.5061/dryad.1926.

Static Alignment

For each locus, we used progressive pairwise alignment (CLUSTALW; Thompson et al. 1994). We then made data sets of: 1) all molecular data and 2) all molecular and morphological data. To make combined data sets, static alignments for each locus, calculated under the same parameter set, were concatenated into NEXUS files. In data sets combining morphological and molecular data, phenotypic characters were added to NEXUS files. For all static alignments, leading and trailing gaps were replaced with "?". Static alignments and resulting trees are archived at http://dx.doi.org/10 .5061/dryad. 1926.

Sensitivity Analysis

For each method (i.e., direct optimization or static alignment), the edit costs among sequences were varied in a sensitivity analysis (Wheeler 1995). Edit costs for insertion-deletion events were 1 or 2 and the ratio of costs for transitions relative to transversions (ts/tv) was set at 0.5 or 1 . This range of variation in edit costs produced a total of four parameter sets for nucleotide data. Results were compared for character congruence using the Mickevitch-Farris Extra Steps (MFES) index (Mickevitch and Farris 1981).

Edit costs for sequence data were set in POY3 using the command -molecularmatrix. Edit costs in morphological data were set at 1 using the -weight command. We performed CLUSTALW alignments for each locus with the commands gapopen=, gapext=, and transweight=. Tree search programs do not distinguish between an opening gap and an extension gap. Thus, to maintain consistency between treatment of edit costs during both alignment and tree search, the commands gapopen $=$ and gapext $=$ were set to the same value in CLUSTALW.

Choice of Models for Substitution and Insertion-Deletion Events

For direct optimization, we used a Sankoff matrix to define weighted models under parsimony, treating gaps as a fifth state. For POY3, tree lengths for each locus and combined data sets were compared using the MFES index. The trees resulting from the parameter set that were least incongruent (i.e., lowest MFES) for molecular and morphological data were used for further analysis.

We chose a model for MRBAYES version 3.1.2 (Huelsenbeck and Ronquist 2001) searches on each static alignment using MODELTEST version 3.8 (Posada 2006) and PAUP version 4.0b10 (Swofford 2002) to choose best-fit models of nucleotide substitution based on the Akaike information criterion (Posada and Buckley 2004), ignoring branch lengths. We used MODELTEST on all molecular data as well as on separate partitions of ribosomal data and protein-coding data. We explored two partitioned analyses in MRBAYES. In one analysis, we treated each gene as a partition. In the other analysis, we treated ribosomal genes and protein-coding genes as the partitions.

Tree Search

For each parameter set under direct optimization in POY3, we performed 100 replicates of direct optimization under parsimony and subsequent refinement with the following search commands: -norandomizeoutgroup, -checkslop 5,-noleading, -random 100, -sprmaxtrees 2,-tbrmaxtrees 2,-fitchtrees, -holdmaxtrees 2, -buildmaxtrees 2, -treefuse, -fuselimit 10, -fusemingroup 5, -fusemaxtrees 10, -repintermediate, -iterativepass, and -exact. When POY3 found multiple best trees,
each was examined for taxonomic implications and JACK2HEN (http://research.amnh.org/scicomp/scripts/ download.php) was used to create a strict consensus for presentation.

We analyzed data sets of the static alignments of molecular data and phenotypic data in MRBAYES. For all runs, we used a general time-reversible model with gamma-distributed rate variation across sites and a proportion of invariable sites as indicated by MODELTEST. The MRBAYES runs in the sensitivity analysis consisted of 1,000,000 Markov chain Monte Carlo (MCMC) generations with a sampling frequency of every 1000th generation and a burn-in of 250 generations. The MRBAYES runs producing the maximum a posteriori (MAP) tree with the best likelihood scores were rerun with $10,000,000 \mathrm{MCMC}$ generations with sampling frequency of every 1000th generation and a burn-in of 2500 generations. To assure that chains had converged, potential scale reduction factor ~ 1.0 was used as implemented with the sump command in MRBAYES. In MRBAYES analyses, the 50% majority rule consensus tree (CON) and MAP tree were both evaluated for taxonomic implications.

Support

POY3 views whole sequence fragments as characters. Although there are an average of ~ 7100 nucleotides per taxon in our data set, these are only 19 fragments-this limits the number of pseudoreplicates. Thus, for resampling searches, we used the IA in TNT with the "new technology" setting for tree search heuristics and "absolute frequencies" setting for bootstrap results (Goloboff et al. 2008). We also used the IA for MRBAYES analyses. For the CLUSTALW-MRBAYES and IA-MRBAYES analyses, we used the posterior probabilities on the CON trees to assess support.

Results

Summary of Taxonomic Results

Regardless of alignment parameters, analytical methods, or whether molecular data are analyzed alone or in conjunction with morphological data, Xyloplax is closely related to the pterasterid asteroids. In this section, we summarize taxonomic results for best trees (Table 1). Sensitivity analyses, scores for unpartitioned analyses, and support values are provided in subsequent sections.

The best direct optimization trees (POY3) for combined molecular and morphological data (Fig. 2) and molecular data alone (Fig. 3) support the Cryptosyringida hypothesis. However, the arrangement within cryptosyringids does not include Echinozoa. Rather, we find support for a clade containing holothuroids and ophiuroids with the echinoids sister to that clade.

The MAP and CON from MRBAYES for the IA of the combined molecular and morphological data (Fig. 4) and the molecular data alone (Fig. 5) also support

TABLE 1. A summary of Echinoderm relationships as determined using various methods and data sets

Data type	Method	Echinoderm relationships	Topology of the Cryptosyringida
Molecular	DO $^{\text {a }}$	Cryptosyringida	$(\mathrm{OH}) \mathrm{E}^{\text {b }}$
Molecular	IA-MB	$(\mathrm{MB}$	
Molecular	CL-MB	Cryptosyringida	Not found
Molecular and morphological	DO	Asterozoa	$(\mathrm{OH}) \mathrm{E}$
Molecular and morphological	IA-MB	Cryptosyringida	$(\mathrm{EH}) \mathrm{O}$
Molecular and morphological	CL-MB	Cryptosyringida	Not found

Notes: Xyloplax is sister to Pterasteridae in each case.
${ }^{\text {a }} \mathrm{DO}=$ Direct optimization in POY3 (POY3 is a program for analysis of sequence data under dynamic homology; Wheeler 1996; Wheeler et al. 2006).
${ }^{\mathrm{b}}(\mathrm{OH}) \mathrm{E}=$ Ophiuroidea + Holothuroidea as a clade sister to Echinoidea.
${ }^{\text {c }}$ IA-MB $=$ Implied alignment (implied alignment creates a synapomphy scheme akin to multiple sequence alignment based on a tree resulting from DO search; Wheeler 2003) by POY3 with tree search in MRBAYES (MRBAYES is an program for analysis of prealigned sequence data; Huelsenbeck and Ronquist 2001).
${ }^{\mathrm{d}}(\mathrm{EH}) \mathrm{O}=$ Echinoidea + Holothuroidea as a clade sister to Ophiuroidea.
${ }^{\mathrm{e}} \mathrm{CL}-\mathrm{MB}=$ Progressive pairwise sequence alignment by CLUSTALW (Thompson et al. 1994) followed by tree search in MRBAYES.
the Cryptosyringida hypothesis and Xyloplax as sister to the pterasterid asteroids. However, within Cryptosyringida, both IA and MRBAYES analyses find a more traditional Echinozoa (Holothuroidea plus Echinoidea; sensu; Smith 1984). Ophiuroidea is sister to the Echinozoa.

The MAP and CON trees from static alignment (CLUSTALW) followed by MRBAYES analysis for combined molecular with morphological (Fig. 6) and molecular data alone (Fig. 7) support the Asterozoa hypothesis and Xyloplax as sister to the pterasterid asteroids.

Sensitivity of Taxonomic Results to Alignment Parameter and Tree Search Variation

Under direct optimization (or resulting IA plus MRBAYES tree search) over all parameters investigated, Xyloplax is consistently recovered as sister to pterasterid asteroids. In addition, the five classes of echinoderms and Cryptosyringida are consistently found to be monophyletic.

CLUSTALW-MRBAYES runs are also consistent in their placement of X. janetae as sister to Pterasteridae and the recovery of the five classes of echinoderms and Asteroidea as monophyletic. However, other groups are more labile across parameter space under CLUSTALW-MRBAYES. In some cases, Cryptosyringida is not recovered or the consensus tree indicated that Cryptosyringida was unresolved. Asterozoa is recovered only under some conditions. Echinozoa is recovered consistently.

Partitioning schemes made no difference in taxonomic results from MRBAYES for any alignment.

Support and Scores for the Best Trees for Molecular and Morphological Data

Direct optimization.-For analyses conducted with POY3 on molecular plus morphological data, the lowest MFES (0.01303) was found at a gap cost of 1 and a ts/tv ratio of
0.5 . Searches under this parameter set using the -exact command hit a minimum length of 19,834, producing eight unique trees (Fig. 2). The bootstrap values are 100% for all major groups of interest to the main hypothesis including Xyloplax plus Pterasteridae, Hemichordata, Echinodermata, Eleutherozoa, Cryptosyringida, Ophiuroidea plus Holothuroidea, Crinoidea, Asteroidea, Ophiuroidea, Holothuroidea, and Echinoidea (Fig. 2).

The MAP from MRBAYES analysis of the IA had a likelihood score of $-60,730.982$. The CON tree is presented in Fig. 4. Posterior probabilities in the CON are 1.0 for clades of interest, including Xyloplax plus Pterasteridae, Hemichordata, Echinodermata, Eleutherozoa, Cryptosyringida, Echinozoa, Crinoidea, Asteroidea, Ophiuroidea, Holothuroidea, and Echinoidea.

Static alignment.-For CLUSTALW alignment and MRBAYES tree search of molecular data combined with morphological data, the MAP tree (likelihood score of $\ln -60,721.81$) is found when the alignment parameters are set at a gap cost of 1 and a ts/tv ratio of 0.5 . These edit cost parameters are the same as those associated with the best POY3 score for these data. The CON tree for this analysis is presented in Fig. 6. The posterior probabilities in the CON for major groups are 0.99-1.0 except for Eleutherozoa at 0.87 and Asterozoa at 0.85 .

Support and Details for the Best Trees for Molecular Data

Direct optimization.-For analyses conducted with POY3 on molecular data alone the lowest MFES (0.02985) is found at a gap cost of 1 and a ts/tv ratio of 1 . Searches under this parameter set using the -exact command analysis hit a minimum length of 16,295 , producing one tree (Fig. 3). The bootstrap values for all major groups of interest to the main hypotheses ranged from 99% to 100%.

The MAP from MRBAYES analysis IA of the molecular data had a likelihood score of -66719.434 . The

FIGURE 2. A phylogeny of extant echinoderms based on direct optimization of nuclear sequence data ($18 \mathrm{~S} \mathrm{rDNA}, 28 \mathrm{~S}$ rDNA, and histone H3), mitochondrial sequence data (S12 rDNA, S16 rDNA, tRNA cluster, and cytochrome coxidase I), and character data for morphological features. Bootstrap values are placed next to each clade.

Figure 3. A phylogeny of extant echinoderms based on direct optimization of nuclear sequence data ($18 \mathrm{~S} \mathrm{rDNA}, 28 \mathrm{~S} \mathrm{rDNA}$, and histone H3) and mitochondrial sequence data (S12 rDNA, S16 rDNA, tRNA cluster, and cytochrome c oxidase I). Bootstrap values are placed next to each clade.

FIGURE 4. A 50% majority rule tree of extant echinoderms based on implied alignment followed by MRBAYES tree search of nuclear sequence data (18 S rDNA, 28 S rDNA, and histone H3), mitochondrial sequence data (S12 rDNA, S16 rDNA, tRNA cluster, and cytochrome c oxidase I), and character data for morphological features. The posterior probabilities are shown for each clade.

CON for this analysis is shown in Fig. 5. Posterior probabilities in the CON tree for major groups of interest to the hypotheses of the paper are 1.0.

Static alignment.-In this analysis of molecular data, the alignment parameters for CLUSTALW were set at a gap cost of 1 and a ts/tv ratio of 0.5 . The MAP had a likelihood score of $-60,372.177$. The CON tree is shown in Fig. 7. Posterior probabilities in the CON for major
groups of interest to the hypotheses of the paper are 0.98 to 1.0 except for Eleutherozoa at 0.77 and Asterozoa at 0.73.

Microscopy

Embryos of X. janetae at $\sim 100 \mu \mathrm{~m}$ in diameter are bilaterally symmetric and have a juvenile rudiment that is oriented sagittal to the anterior posterior axis (Figs. 8a,b). When embryos of Xyloplax reach $\sim 200 \mu \mathrm{~m}$

FIGURE 5. A 50\% majority rule tree of extant echinoderms based on implied alignment followed by MRBAYES tree search of nuclear sequence data (18 S rDNA, 28 S rDNA, and histone H 3) and mitochondrial sequence data (S 12 rDNA , S16 rDNA, tRNA cluster, and cytochrome c oxidase I). The posterior probabilities are shown for each clade.

FIGURE 6. A 50% majority rule tree of extant echinoderms based on static alignment followed by MRBAYES tree search of nuclear sequence data (18 S rDNA, 28 S rDNA, and histone H3), mitochondrial sequence data ($\mathrm{S} 12 \mathrm{rDNA}, \mathrm{S} 16 \mathrm{rDNA}$, tRNA cluster, and cytochrome c oxidase I), and character data for morphological features. The posterior probabilities are shown for each clade.

FIGURE 7. A 50% majority rule tree of extant echinoderms based on static alignment followed by MRBAYES tree search of nuclear sequence data (18 S rDNA, 28 S rDNA, and histone H3) and mitochondrial sequence data (S12 rDNA, S16 rDNA, tRNA cluster, and cytochrome c oxidase I). The posterior probabilities are shown for each clade.

Figure 8. Internal and external anatomy of Xyloplax janetae (FMNH 12460). a) Optical section of three young of X. janetae in various stages of development removed from a brood of an adult. The embryo (e) in the middle of the frame shows the bilateral symmetry of the coeloms (c). The other young (j 1 and j 2) at the top and bottom of the frame are late-stage juveniles showing clusters of tube feet (t) in pentaradial symmetry around the gut (g). b) Optical section of an embryo of X. janetae, transverse to the anterior posterior axis of the embryo, showing the hydrocoel (h) in a sagittal orientation in the embryo and the gut (g). Also visible are the axocoel (a) and somatocoels (s). c) Light micrograph of partially dissected adult X. janetae showing tube feet (t) in the circular symmetry of the adult. A brooded juvenile (j) is also visible. d) Optical section of juvenile X. janetae showing internal anatomy of water-vascular system and gut. Five clusters of tube feet (t) forming in pentaradial symmetry around the single circumoral ring (r) and gut (g) are visible.
in diameter they undergo a truncated metamorphosis. At this stage, embryos begin to take on the terminal body plan of juvenile asteroids (Fig. 8c). The juvenile rudiment encircles the gut and fuses to form a single circumoral water-vascular ring (Fig. 8d) while clusters of tube feet begin to grow radially (Fig. 8d), only later growing along the meridian of the adult Xyloplax (Figs. 8c, 9a). This last step in water-vascular development is the refinement of the body of the young Xyloplax to the ultimate disk-shaped form (Fig. 9). Concomitant skeletogenesis is described in Mooi et al. (1998).

DISCUSSION

Irrespective of method or data sampling scheme, phylogenetic analyses of large and diverse data sets place Xyloplax as sister to pterasterids among asteroids with high support values. Xyloplax is an asteroid-thus resolving the question of whether there are five or six
classes of extant echinoderms. We also resolve questions on water-vascular anatomy and developmental evolution of Xyloplax based on confocal microscopy of embryos. However, results for the relationships among echinoderm classes are dependent on choice of parameters and methods.

Water-Vascular Anatomy and Developmental Evolution of Xyloplax

New embryological data from brooded embryos of X. janetae (Fig. 8) further support the hypothesis that Xyloplax is a progenetic asteroid (Smith 1988; Janies and McEdward 1994a). The coelomogenesis of Xyloplax appears typical of asteroids. These observations offer evidence that a juvenile asteroid body plan, but not an adult asteroid body plan, is achieved in Xyloplax. Thus, no pattern describes the developmental evolution of Xyloplax better than progenesis.

FIgURE 9. Light micrographs of specimens of Xyloplax sp. a) Oral view (about 4 mm in diameter). b) Aboral view (about 4 mm in diameter). These specimens were collected in 2010 at a depth of 2202 m along the Juan de Fuca ridge in the Eastern Pacific. These are females that show brooded embryos. (Images courtesy of Ben Grupe, Scripps Institution of Oceanography, University of California, San Diego.)

Our confocal results for soft embryological anatomy and the observations on skeletal anatomy in Mooi et al. (1998) refute the model of coelomogenesis for Xyloplax predicted in Janies and McEdward (1994b). This prediction was based on the early description of dual circumoral rings (Baker et al. 1986; Rowe et al. 1988), which we can now refute by observation of newly discovered embryos. This being said, the refutations of the descriptions and prediction do not alter the systematic conclusions of this paper. The ontogenetic results provided herein uncover even more diversity of coelom formation among the clade formed by Pterasteridae and

Xyloplax than previously observed (Janies 1995) and add more asteroid features to what we know about Xyloplax.

Taxonomic Recommendations

As Xyloplax is nested within asteroids under a variety of optimality criteria and under a wide alignment parameter space, we consider the class Concentricycloidea to be a synonym of class Asteroidea. Similarly, these results contradict the concept of an Infraclass Concentricycloidea (erected by Mah in 2006 for Xyloplax) as a sister taxon to Neoasteroidea.
TABLE 2. Taxonomic hierarchy, voucher information, and GenBank accession numbers for nucleotide sequences for the seven loci used in this study

Phylum	Subphylum	Class	Order	Family	Genus	Species	Voucher	18 SrDNA	285 rDNA	16 S rDNA	12 S rDNA	COI DNA	tRNAs rDNA	H3 DNA
Chordata	Urochordata	Ascidiacea	Enterogona	Cionidae	Ciona	intestinalis		AB013017	AF212177			AJ517314		
Hemichordata			Enteropneusta	Harrimaniidae	Harrimania	planktophilus		AF236799	AF212173					
				Harrimaniidae	Saccoglossus	kowalevskii		L28054	AF212175	NC_007438	NC_007438	NC_007438		
				Ptychoderidae	Ptychodera	flava		AF278681	AF212176					
			Pterobranchia	Cephalodiscidae	Cephalodiscus	gracilis		AF236798	AF212172					
Echinodermata		Crinoidea	Comatulida	Antedonidae	Florometra	serratissima	AMCC	DQ060789	AF212168	AF049132	AF049132	AF049132	AF049132	
										$\begin{aligned} & \text { and } \\ & \text { DQ297091 } \end{aligned}$				
			Articulata	Hemicrinidae	Gymnocrinus	richeri		AY275895	DQ672721	DQ068951	DQ068951		DQ068951	
				Isocrinida	Metacrinus	rotundus		AY275898		AY275905				
		Asteroidea		Brisingidae	Brisingaster	robillardi		AF088802	AF088836			AF217392	AF088836	
				Asteriidae	Allostichaster	sp.	$\begin{aligned} & \text { AMCC } \\ & 113388 \end{aligned}$	DQ060775		DQ297072			DQ377809	DQ676896
					Asterias	forbesi	AMCC	AH001575	AF088829	DQ297073	AY548833	AF217390	AF217350	
								and DQ060776	$\begin{aligned} & \text { and } \\ & \text { AF212169 } \end{aligned}$					
					Coscinasterias	muricata	$\begin{aligned} & \text { AMCC } \\ & 113391 \end{aligned}$	DQ060783	DQ273704 and DQ297117 and DQ060008	DQ297083				
					Diplasterias	brucei	$\begin{aligned} & \text { AMCC } \\ & 113408 \end{aligned}$	DQ060785	DQ273705 and DO060011	DQ297087				
					Evasterias	troschelii	$\begin{aligned} & \text { AMCC } \\ & 113398 \end{aligned}$	DQ060788	DQ273706 and DO060013	DQ297090	AY548837	AF217386	AF217345	DQ676909
					Leptasterias	hexactis	$\begin{aligned} & \text { AMCC } \\ & 113404 \end{aligned}$	DQ060793	DQ060017	AF190505 and DO297094	AF190505 and DQ777079	AF217372 and AF190502	AF217322	DQ676912
					Pisaster	ochraceus	$\begin{aligned} & \text { AMCC } \\ & 113397 \end{aligned}$	DQ060813	$\begin{aligned} & \text { DQ273718 } \\ & \text { and } \\ & \text { DQ060029 } \end{aligned}$	DQ297110		AF217388	AF217348 and DQ377810	DQ676927
					Stichaster	australis		DQ060821		DQ297114	DQ377826	DQ380244	DQ377808	
				Labidasteridae	Rathbunaster	californicus		AF088807	AF088833	AY548879	AY548854	AF217387	AF217347	
				Heliasteridae	Heliaster	helianthoides		AF088804	AF088844			AH009999	AF217335	
				Goniasteridae	Diplodontias	miliaris	$\begin{aligned} & \text { AMCC } \\ & 113392 \end{aligned}$	DQ060780	DQ060006	DQ297078	DQ377827	DQ380240	DQ377816	DQ676900
					Pseudarchaster	parelii		AF088806	AF088845 and DO273701	D63745	D63744	AF217384	AF217343	
				Aneriidae	Perknaster	fuscus	$\begin{aligned} & \text { AMCC } \\ & 113407 \end{aligned}$	DQ060812	$\begin{aligned} & \text { DQ029080 } \\ & \text { and } \\ & \text { DQ060028 } \end{aligned}$	DQ297109			DQ377819	DQ676926
				Archasteridae Odontasteridae	Archaster Acodontaster	typicus conspicuus		DQ060774	$\begin{aligned} & \text { DQ297124 } \\ & \text { DO273703 } \end{aligned}$	DQ297071		AH009980	$\begin{aligned} & \text { AF217339 } \\ & \text { DQ377814 } \end{aligned}$	DQ676895
							$\begin{aligned} & \text { AMCC } \\ & 113409 \end{aligned}$	DQ06074	and DQ060003	DQ29071		DQ38023		DQ6789
					Eurygonias	hylacanthus	AMCC 114324	DQ060787		DQ297089	DQ273739	DQ380238	DQ377818	DQ676908
					Odontaster	validus	AMCC	DQ060801	DQ060019	DQ297101	DQ273731		DQ377812	DQ676918
				Poraniidae	Dermasterias	imbricata	$\begin{aligned} & \text { AMCC } \\ & 113399 \end{aligned}$	DQ060784	AF088843 and DQ060010	DQ297086	DQ273729	AF217381	AF217340	DQ676906

Table 2. Continued

Phylum	Subphylum	Class	Order	Family	Genus	Species	Voucher	18 S rDNA	28 S rDNA	16S rDNA	12 S rDNA	COI DNA	tRNAs rDNA	H3 DNA
		Ophiuroidea		Asterinidae	Asterina	miniata	$\begin{aligned} & \text { AMCC } \\ & 113402 \end{aligned}$	DQ060777	DQ060004	DQ297074	DQ273727	U50056	U50056	DQ676897
			Patiriella		regularis	$\begin{aligned} & \text { AMCC } \\ & 113390 \end{aligned}$	DQ060811	DQ273717 and	AY370734	DQ273733	U50045	U50045	DQ676925	
			Stegnaster		inflatus	$\begin{aligned} & \text { AMCC } \\ & 113381 \end{aligned}$	DQ060820	$\begin{aligned} & \text { DQ297115 } \\ & \text { DQ273724 } \\ & \text { and } \\ & \text { DQ297116 } \end{aligned}$	AY370719	DQ273734		DQ377821	DQ676931	
			Caymanostellidae	Caymanostella	sp.	$\begin{aligned} & \text { FMNH } \\ & 5167 \end{aligned}$			DQ297082					
			Astropectinidae	Astropecten	articulatus	$\begin{aligned} & \text { AMCC } \\ & 113394 \end{aligned}$	DQ060781	$\begin{aligned} & \text { AF088827 } \\ & \text { and } \\ & \text { DQ273699 } \end{aligned}$	DQ297079	DQ273741	DQ380242	DQ377823	DQ676901	
				Astropecten	polyacanthus	AMCC 113389	DQ060782	DQ060007	DQ297080	DQ273735			DQ676902	
				Macroptychaster	accrescens	AMCC 113410	DQ060797		DQ297098	DQ273742		DQ377822	DQ676915	
			Luidiidae	Luidia	clathrata	$\begin{aligned} & \text { AMCC } \\ & 113393 \end{aligned}$	DQ060795		DQ297096	DQ273743	AF217377	$\begin{aligned} & \text { AF217327 } \\ & \text { and } \\ & \text { AF217331 } \end{aligned}$	DQ676913	
				Luidia	foliolata	AMCC 113401	DQ060796	$\begin{aligned} & \text { AF088828 } \\ & \text { and } \\ & \text { DQ273702 } \end{aligned}$	DQ297097	DQ273744	DQ380243	AF217336	DQ676914	
			Solasteridae	Solaster	stimpsoni	$\begin{aligned} & \text { AMCC } \\ & 113400 \end{aligned}$	DQ060819	DQ060034	DQ297113	DQ273726	AF217382	AF217341	DQ676930	
				Crossaster	papposus	$\begin{aligned} & \text { AMCC } \\ & 113349 \end{aligned}$	AB084556	AJ225842 and AF088830 and DQ297131	D63731 and DQ297084	D63730 and DQ273725	AF217383	AF217342	DQ676904	
			Pterasteridae	Hymenaster	pellucidus	$\begin{aligned} & \text { AMCC } \\ & 113310 \end{aligned}$	DQ060792	DQ229081 and DQ273700 and DQ060016		DQ273745				
				Pteraster	tesselatus	AMCC 113396	DQ060817	$\begin{aligned} & \text { DQ273722 } \\ & \text { and } \\ & \text { DQ060031 } \end{aligned}$	DQ297111		AF217373	AF217323	DQ676928	
				Xyloplax	janetae	$\begin{aligned} & \text { FMNH } \\ & 12460 \end{aligned}$	DQ380245	$\begin{aligned} & \text { DQ380246 } \\ & \text { and } \\ & \text { DQ380247 } \end{aligned}$	DQ777080	DQ377828	DQ377828			
			Echinasteridae	Echinaster	sentus	$\begin{aligned} & \text { AMCC } \\ & 114323 \end{aligned}$	DQ060786	DQ060012	DQ297088	DQ273746	AF217376	AF217326 and DQ377807	DQ676907	
				Henricia	sp.	$\begin{aligned} & \text { AMCC } \\ & 113385 \end{aligned}$	DQ060791	$\begin{aligned} & \text { DQ273707 } \\ & \text { and } \\ & \text { DQ297118 } \\ & \text { and } \\ & \text { DQ060015 } \end{aligned}$	DQ297093	DQ273728			DQ676911	
		Ophiurina	Ophiodermatidae	Ophioderma	brevispinum		DQ060803	DQ273710 and DQ297125 and DQ060021	DQ297103				DQ676920	

Table 2. Continued

TABLE 2. Continued

At lower taxonomic levels, our results suggest that Xyloplax is sister to or within Pterasteridae. Belyaev (1990) and Smith (1988) suggested alternative familial classifications for Xyloplax. Belyaev (1990) proposed that Xyloplax was closely related to Caymanostella, another wood-dwelling deep-sea asteroid. Smith's proposal to group Xyloplax among Velatida was based on taxonomy of Blake (1987). In Smith (1984) and Blake (1987), Myxasteridae, Korethrasteridae, Caymanostellidae, Pythonasteridae, and Solasteridae were united with Pterasteridae in the order Velatida. Our analyses show that Solasteridae and Caymanostellidae are not closely related to Pterasteridae or Xyloplax. The other taxa in Blake's (1987) Velatida live in abyssal seas and are as rare as Xyloplax. As such, collection of more data for these taxa will take some time and luck. However, because we do not yet have data from Myxasteridae, Korethrasteridae, or Pythonasteridae, we cannot test a relationship between any of these families and Xyloplax.

Results for Relationships among the Five Classes are Dependent on Methods

Despite our confidence in identifying Xyloplax as a progenetic asteroid closely related to pterasterids, unraveling the relationships among extant classes of echinoderms remains difficult. Results of analyses of echinoderm-wide multilocus data sets are very sensitive to the choice of alignment and tree search parameters and methods (Table 2). We expect these results to be updated with new data. One reason is the plummeting cost of nucleotide sequencing which will soon provide very large data sets for extant echinoderms and outgroups. Moreover, the history of echinoderms is replete with extinction events: The phylum includes 21 classes of which the extant echinoderms are but a small fraction. Thus, another avenue to address the problem of relationships among major lineages of extant echinoderms is to incorporate fossil taxa. For example, a contentious issue is the position of Crinoidea and other stemmed echinoderms such as extinct Blastozoa. Crinoidea may be sister to the Eleutherozoa as many assume (David et al. 2000) or nested within stemmed forms, such as the Blastozoa (Sumrall 1997; Ausich 1998). If crinoids are nested within Blastozoa, the sister group of Eleutheroza remains unknown and must be searched for among fossil lineages (Sumrall and Zamora 2010; Zhao et al. 2010). A concerted tree-of-life scale effort, bringing together paleontological, morphological, developmental, genomic, and analytical disciplines, is required to better understand the major radiations within Echinodermata.

SUPplementary Material

Supplementary material, including data files and/or online-only appendices, can be found at http:/ /dx.doi .org/10.5061/dryad.1926.

FUNDING

This work was financially supported by National Aeronautics and Space Administration (NAG-1399 to D.J.); National Science Foundation (NSF; DEB-0531763 and DEB-1036416 to D.J.; DEB-0415277 and DEB-0531763 to M.D.). NSF DEB-0103690 to J.R.V. supported collection of the key specimens and synthesis of the work.

AcKNOWLEDGMENTS

We thank Gonzalo Giribet who read early versions of the MS, two anonymous reviewers, Jon Studer, and the editors of Systematic Biology, Frank (Andy) Anderson, Jack Sullivan, and Deborah Ciszek for careful editing. We thank Edward Ruppert for sharing his thoughts on the lack of dual circumoral rings in adult Xyloplax. We thank the Department of Biomedical Informatics of the Ohio State University (OSU), the Medical Center Information Services team of OSU, and the Ohio Supercomputer Center for hosting computing clusters used in this study.

REFERENCES

Ausich W.I. 1998. Phylogeny of Arenig to Caradoc crinoids (Phylum Echinodermata) and suprageneric classification of the Crinoidea. Lawrence (KS): University of Kansas Paleontological Contributions. p. 36 (New Series no. 9).
Baker A.N., Rowe F.W.E., Clark H.E.S. 1986. A new class of Echinodermata from New Zealand. Nature. 321:862-864.
Belyaev G.M. 1990. Is it valid to isolate the genus Xyloplax as an independent class of echinoderms? Zool. Zh. 69:83-96.
Blake D.B. 1987. A classification and phylogeny of post-Paleozoic sea stars (Asteroidea: Echinodermata). J. Nat. Hist. 21:481-528.
David B., Lefebvre B., Mooi R., Parsley R. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology. 26:529-555.
Garstang W. 1922. The theory of recapitulation: a critical restatement of the biogenetic law. Zool. J. Linn. Soc. 35:81-101.
Goloboff P., Farris S., Nixon K. 2008. Willi Hennig Society edition of TNT. Tucuman (Argentina): Willi Hennig Society. Available from: http://www.zmuc.dk/public/Phylogeny/ TNT.
Gould S. 1977. Ontogeny and phylogeny. Cambridge (MA): Belknap Press.
Huelsenbeck J.P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 17:754-755.
Janies D. 1995. Reconstruction the evolution of morphogenesis and dispersal among velatid asteroids [Ph.D. thesis]. Gainesville (FL): University of Florida.
Janies D. 2001. Phylogenetic relationships of extant echinoderm classes. Can. J. Zool. 79:1232-1250.
Janies D. 2004. Evolution of asterozoan echinoderms and their development. In: Heinzeller T., Nebelsick J.H., editors. Echinoderms: München. Leiden (The Netherlands): Balkema International Publishers. p. 586-587.
Janies D., McEdward L. 1994a. Heterotopy, pelagic direct development, and new body plans in velatid asteroids. In: David B., Guille A., Feral J., Roux M., editors. Echinoderms through time. Rotterdam (The Netherlands): AA Balkema. p. 319-324.
Janies D., McEdward L. 1994b. A hypothesis for the evolution of the concentricycloid water-vascular system. In: Wilson W.H., Stricker S.A., Shinn G.L., editors. Reproduction and development of marine invertebrates. Baltimore (MD): Johns Hopkins Press. p. 246-257.
Janies D., Mooi R. 1998. Xyloplax is an asteroid. In: Carevali M.C., Bonasoro F., editors. Echinoderm research 1998. Rotterdam (The Netherlands): AA Balkema. p. 311-316.

Littlewood D.T.J., Smith A.B., Clough K.A., Emson R.H. 1997. The interrelationships of the echinoderm classes: morphological and molecular evidence. Biol. J. Linn. Soc. Lond. 61:409438.

Mah C.L. 2006. A new species of Xyloplax (Echinodermata: Asteroidea: Concentricycloidea) from the northeast Pacific: comparative morphology and a reassessment of phylogeny. Invert. Biol. 125: 136-153.
Mickevitch M.F., Farris J.S. 1981. The implications of congruence in Menidia. Syst. Zool. 30:351-370.
Mooi R., David B. 2000. What a new model of skeletal homologies tells us about asteroid evolution. Amer. Zool. 40:326-339.
Mooi R., Rowe F.W.E., David B. 1998. Application of a theory of axial and extra-axial skeletal homologies to concentricycloid morphology. In: Carevali M.C., Bonasoro F., editors. Echinoderm research 1998. Rotterdam (The Netherlands): AA Balkema. p. 61-62.

Pearse V., Pearse J. 1994. Echinoderm phylogeny and the place of concentricycloids. In: Guille A., Feral J., Roux M., editors. Echinoderms through time. Rotterdam (The Netherlands): AA Balkema. p. 121126.

Perseke M., Bernhard D., Fritzsch G., Brummer F., Stadler P.F., Schlegel M. 2010. Mitochondrial genome evolution in Ophiuroidea, Echinoidea, and Holothuroidea: insights in phylogenetic relationships of Echinodermata. Mol. Phylogenet. Evol. 56:201-211.
Perseke M., Fritzsch G., Ramsch K., Bernt M., Merkle D., Middendorf M., Bernhard D., Stadler P.F., Schlegel M. 2008. Evolution of mitochondrial gene orders in echinoderms. Mol. Phylogenet. Evol. 47:855-864.
Posada D. 2006. ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res. 34:W700-W703.
Posada D., Buckley T. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53: 793-808.
Rowe F.W.E., Baker A.N., Clark H.E.S. 1988. The morphology, development and taxonomic status of Xyloplax Baker, Rowe and Clark (1986) (Echinodermata: Concentricycloidea), with the description of a new species. Proc. R. Soc. Lond. B Biol. Sci. 233: 431-459.
Scouras A., Beckenbach K., Arndt A., Smith M.J. 2004. Complete mitochondrial genome DNA sequence for two ophiuroids and a holothuroid: the utility of protein gene sequence and gene maps in the analyses of deep deuterostome phylogeny. Mol. Phylogenet. Evol. 31:50-65.

Smith A.B. 1984. Classification of the Echinodermata. Palaeontology. 27:431-459.
Smith A.B. 1988. To group or not to group: the taxonomic position of Xyloplax in echinoderm biology. In: Burke R.D., Mladenov P.V., Lambert P., Parsley R.D., editors. Proceedings of the Sixth International Echinoderm Conference. Rotterdam (The Netherlands): AA Balkema. p. 17-23.
Smith A.B., Peterson K.J., Wray G., Littlewood D.T.J. 2004. From bilateral symmetry to pentaradiality: the phylogeny of hemichordates and echinoderms. In: Cracraft J., Donoghue M.J., editors. Assembling the tree of life. New York: Oxford University Press. p. 365383.

Smith M.J., Arndt A., Gorski S., Fajber E. 1992. The phylogeny of echinoderm classes based on mitochondrial gene arrangements. J. Mol. Evol. 36:545-554.
Sumrall C.D. 1997. The role of fossils in the phylogenetic reconstruction of Echinodermata. In: Waters J.A., Maples C., editors. Pittsburgh (PA): Geobiology of echinoderms. Paleontological Society.
Sumrall C.D., Zamora, S. Forthcoming 2010. Ordovician Edrioasteroids from Morocco: faunal exchanges across the Rheic Ocean. J. Syst. Palaeontol.

Swofford D. 2002. PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4.0b10 for Unix. Sunderland (MA): Sinauer.
Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.
Voight J.R. 2005. First report of the enigmatic echinoderm Xyloplax from the North Pacific. Biol. Bull. 208:77-80.
Wheeler W.C. 1995. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst. Biol. 44:321-331.
Wheeler W.C. 1996. Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics. 12:1-9.
Wheeler W.C. 2003. Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search. Cladistics. 19:261-268.
Wheeler W.C., Aagesen L., Arango C., Faivovich J., Grant T., D'Haese C., Janies D., Smith W.L., Varon A., Giribet G. 2006. Dynamic homology and phylogenetic systematics: a unified approach using POY. New York: American Museum of Natural History.
Zhao Yu., Sumrall C.D., Parsley R.L., Peng J. 2010. Kailidiscus, a new plesiomorphic edrioasteroid from the basal middle Cambrian Kaili Biota of Guizhou Province, China. J. Paleontol. 84:668-680.

