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Abstract.—African cichlids (subfamily: Pseudocrenilabrinae) are among the most diverse vertebrates, and their propensity for
repeated rapid radiation has made them a celebrated model system in evolutionary research. Nonetheless, despite numerous
studies, phylogenetic uncertainty persists, and riverine lineages remain comparatively underrepresented in higher-level
phylogenetic studies. Heterogeneous gene histories resulting from incomplete lineage sorting (ILS) and hybridization
are likely sources of uncertainty, especially during episodes of rapid speciation. We investigate the relationships of
Pseudocrenilabrinae and its close relatives while accounting for multiple sources of genetic discordance using species
tree and hybrid network analyses with hundreds of single-copy exons. We improve sequence recovery for distant relatives,
thereby extending the taxonomic reach of our probes, with a hybrid reference guided/de novo assembly approach. Our
analyses provide robust hypotheses for most higher-level relationships and reveal widespread gene heterogeneity, including
in riverine taxa. ILS and past hybridization are identified as the sources of genetic discordance in different lineages. Sampling
of various Blenniiformes (formerly Ovalentaria) adds strong phylogenomic support for convict blennies (Pholidichthyidae)
as sister to Cichlidae and points to other potentially useful protein-coding markers across the order. A reliable phylogeny
with representatives from diverse environments will support ongoing taxonomic and comparative evolutionary research in
the cichlid model system. [African cichlids; Blenniiformes; Gene tree heterogeneity; Hybrid assembly; Phylogenetic network;
Pseudocrenilabrinae; Species tree.]

A reliable phylogeny is a necessary foundation for
investigating evolutionary processes. Despite substan-
tial efforts, however, recalcitrant nodes and uncertainty
persist for some groups, including diverse clades with
rapid radiations considered model systems in evolu-
tionary research (Murphy et al. 2007; Jarvis et al. 2014;
Hughes et al. 2018; Takahashi and Sota 2016). African
cichlids (Blenniiformes sensu Ghezelayagh et al. 2021:
Cichlidae: Pseudocrenilabrinae) are a celebrated model
system for studies of speciation, adaptation, and rapid
radiation (Seehausen 2006). They are the largest cichlid
subfamily with 1700+ species (Turner 2007; Seehausen
2015; Froese and Pauly 2021) inhabiting rivers and lakes
across Africa and include five species in the Jordan
Valley and coastal basins of southern Iran (Fig. 1). Some
lineages underwent rapid radiations in east African
Great Lakes (Kocher 2004; Seehausen 2006), various
small lakes around the continent (Roberts and Kullander
1994; Schliewen et al. 1994; Joyce et al. 2005; Seehausen
2006; Ford et al. 2016), and the lower Congo river basin
(Schwarzer et al. 2011; Stiassny and Alter 2021), but
still others have remained relatively species poor. Such
striking disparity among lineages has spurred research
into diversification along an array of dimensions (e.g.,

phenotypic, molecular, and environmental) in an effort
to reveal intrinsic and extrinsic factors that influence
speciation and adaptation in cichlids (Hulsey and García
de León 2005; Seehausen 2006; Wagner et al. 2012; López-
Fernández et al. 2013; Brawand et al. 2014; Astudillo-
Clavijo et al. 2015; Arbour and López-Fernández 2016;
Ivory et al. 2016; Burress et al. 2017; Meier et al.
2017; Salzburger 2018; Ronco et al. 2021). Despite the
significance of African cichlids in evolutionary research,
uncertainty persists at several deep nodes and riverine
lineages remain underrepresented in most higher-level
phylogenetic hypotheses. A reliable phylogeny with
broad sampling across tribes from diverse environments
is crucial for furthering macroevolutionary research in
the cichlid model system.

Monophyly of Pseudocrenilabrinae is strongly sup-
ported by molecular data (Farias et al. 1999, 2000; Sparks
and Smith 2004; Keck and Hulsey 2014), and its internal
relationships have been explored to various degrees
with morphological, multilocus, and genomic data (see
Appendix S1 of the Supplementary material available on
Dryad at http://dx.doi.org/10.5061/dryad.d7wm37q26
for review of previous phylogenetic findings). Currently,
26–28 tribes are formally or informally recognized

1

Syst. Biol. 72(1):134–149, 2023

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/1/134/6650131 by guest on 19 April 2024



ASTUDILLO-CLAVIJO ET AL.—EXON-BASED PHYLOGENOMICS OF AFRICAN CICHLIDS2023 1352 SYSTEMATIC BIOLOGY

28. Haplochromini1,2

26. Cyprichromini1
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FIGURE 1. (Color online) Cichlidae and Pseudocrenilabrinae relationships prior to this work (a) and distribution of Pseudocrenilabrinae
tribes (b–e). a) Pseudocrenilabrinae relationships are based on combined evidence from existing molecular phylogenies. Bifurcating branches
indicate robust relationships. Polytomies show conflicting or poorly supported nodes. Dashed (red) branches are tribes that were not sampled in
this study. Square brackets to the right of the phylogeny denote commonly recovered tribal assemblages or groupings discussed throughout the
text: WCA, West/Central African Lineages; EAR, East African Radiations Clade; MVhL, Malawi, Victoria, H-Lineage and Lamprologini Clade;
H-Lineage, Haplochromini and remaining Tanganyikan tribes; C-Lineage, H-Lineage minus Eretmodini. 1Tribes with Tanganyikan endemics.
2The Malawi and Victoria system radiations are nested within Haplochromini. *Tribes with disputed taxonomic status. Rectangles next to tribe
names indicate tribes with riverine and/or lacustrine lineages. Numbering of tribes matches numbers in the distribution maps (b–e). b) EAR
tribes 15–28. c) Former-tilapiine tribes 10–14. d) Etiini and former-tilapiine tribes 7–9. e) WCA tribes 1–5. See Figure S1 in Appendix S1 of the
Supplementary material available on Dryad for individual tribal distribution maps.

and some form part of consistently recovered tribal
assemblages (Fig. 1a). Relationships within the East
African Radiations (EAR) clade, which contain most
lake taxa, have been assessed most thoroughly (e.g.,
Dunz and Schliewen 2013; Weiss et al. 2015; Takahashi
and Sota 2016; Ronco et al. 2020). By contrast, few
detailed hypotheses are available for the various early
diverging and largely riverine lineages. Representation
of the oldest West/Central African tribes (henceforth
WCA lineages) and early haplotilapiines (Schliewen
and Stiassny 2003) formerly grouped into the catch-all
Tilapiini (sensu Poll 1986 minus Boulengerochromini,
Takahashi 2003; Dunz and Schliewen 2013; henceforth
former-tilapiines) has generally been limited to a handful

of species with the aim of addressing family-level
(Streelman and Karl 1997; Streelman et al. 1998; Sparks
and Smith 2004; Friedman et al. 2013), Neotropical
(Farias et al. 1999, 2000; Smith et al. 2008; Ilves et al. 2018),
or EAR relationships (Sültmann et al. 1995; Mayer et al.
1998; Salzburger et al. 2005; Genner et al. 2007; Schedel
et al. 2019, Ronco et al. 2021). Studies with a larger
sampling of WCA and former-tilapiine taxa are usually
focused on shallower intrageneric (Schwarzer et al. 2011;
Ford et al. 2019) or intratribal (Martin et al. 2015; Schwar-
zer et al. 2015) relationships. Consequently, densely
sampled hypotheses of higher-level Pseudocrenilabrinae
relationships are currently represented by primarily
multilocus phylogenies (but see Irisarri et al. 2018), most
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of which have limited riverine representation and reveal
variously conflicting topologies (Schwarzer et al. 2009;
Dunz and Schliewen 2013; Matschiner et al. 2017; Schedel
et al. 2019).

The growing availability of large molecular data sets is
revealing genetic discordance, the presence of conflicting
evolutionary histories amongst loci and between loci and
the underlying species tree, as an important contributor
to persistent phylogenetic uncertainty (Maddison 1997;
Edwards 2009; Jarvis et al. 2014; Hughes et al. 2018;
Irisarri et al. 2018; Salzburger 2018). Incomplete lineage
sorting (ILS) and hybridization are foremost sources of
gene heterogeneity, especially in rapidly radiating clades
like cichlids (Takahashi et al. 2001; Koblmüller et al. 2010;
Martin et al. 2015; Meier et al. 2017; Malinsky et al. 2018;
McGee et al. 2020) and various others (Whitefield and
Lockhard 2007; Litsios and Salamin 2014; Suh et al. 2015;
Grant and Grant 2019; Cai et al. 2021; Morales-Briones
et al. 2021). Irrespective of its source, elevated gene
heterogeneity can positively mislead (Felsenstein 1978)
phylogenetic inference when unaccounted for (Kubatko
and Degnan 2007; Liu et al. 2015; Roch and Steel 2015;
Mirarab et al. 2016).

Several high-throughput sequencing methods can
now yield hundreds to thousands of loci (Miller
et al. 2007; Faircloth et al. 2012; Lemmon et al. 2012)
comprising more representative samples of alternative
genealogies than small multilocus data sets. Targeted
sequence capture is particularly appealing as it allows for
the curation of data sets to meet specific challenges of the
focal group. Target capture with taxon-specific probes
provides added control over locus identity, capture
rates, the proportion of informative sites, and capture
of paralogs (Ilves and López-Fernández 2014; Chau et al.
2018; Hughes et al. 2018; Jiang et al. 2019).

Complementary phylogenetic methods that account
for the diversity of sampled gene histories are also on
the rise, fueled by a recognition of traditional concatena-
tion’s vulnerability to systematic error in the presence of
gene heterogeneity (Degnan and Rosenberg 2009; Roch
and Warnow 2015). Coalescent species tree methods are
most commonly applied as these tend to outperform con-
catenation with rising gene heterogeneity (Kubatko and
Degnan 2007; Davidson et al. 2015; Liu et al. 2015; Roch
and Steel 2015; Mirarab et al. 2016). Species tree methods
assume ILS to be the prime source of discordance and
do not explicitly account for other process, such as
hybridization (Solís-Lemus et al. 2016, but see Davidson
et al. 2015). Approaches that model gene flow in the
presence of ILS are also available, but their application to
phylogenomic or taxonomically rich data sets has been
more limited due to high computational demands and
restricted scalability (Kubatko 2009; Meng and Kubatko
2009; Yu et al. 2012, 2014; Solís-Lemus and Ané 2016).

Together, the accessibility of large curated molecular
data sets, advances in phylogenetic methods that con-
form to theoretical models of speciation, and a growing
awareness of conditions affecting the performance of
traditional and emerging methods make us well poised
to tackle some of the most stubborn phylogenetic

challenges. Here, we investigate relationships of the
African cichlid subfamily, Pseudocrenilabrinae, and its
close relatives in light of ILS and hybridization using
hundreds of cichlid-specific single-copy exons (Ilves
and López-Fernández 2014). We sample various Blen-
niiformes (formerly Ovalentaria) families for a phyloge-
nomic test of the sister relationship between Cichlidae
and the phenotypically divergent marine convict blenny,
Pholidichthys (Wainwright et al. 2012; Betancur-R et al.
2013; Near et al. 2013; Ghezelayagh et al. 2021). We further
assess the taxonomic reach of our probes and implement
a hybrid guided/de novo assembly approach to improve
data recovery in distant relatives. This study provides
the most densely sampled phylogenomic hypothesis of
higher-level Pseudocrenilabrinae relationships and is
among the first to apply both coalescent and hybrid
network approaches across nearly every tribe and both
lake and river taxa.

MATERIALS AND METHODS

Taxon Selection
We sampled 24 of 26–28 Pseudocrenilabrinae tribes

(Fig. 1). Nearly, every tribe containing riverine lineages
was sampled. A number of endemic species flocks,
beyond the African Great Lakes, were represented: lower
Congo River (Nanochromis, Steatocranus, Teleogramma,
and Lamprologus), Cameroonian crater lakes Barombi
Mbo (Oreochromini) and Bermin (Coptodon), soda lakes
Natron and Magadi (Alcolapia), Lake Fwa (Haplo-
chromini), and Pleistocene Lake palaeo-Magadikgadi
(serranochromines). Only a handful of Malawi and
Victoria lake species was sampled since they represent
closely related clades nested well within Haplochromini
(Friedman et al. 2013; Meyer et al. 2015; Matschiner
et al. 2017; McGee et al. 2020). Quotations denote
taxa awaiting formal description and nonmonophyletic
genera that exclude the type species. We herein recognize
Chromidotilapiini and Pelmatochromini as tribes, given
existing support for the monophyly of these currently
informally designated clades (Schwarzer et al. 2011,
2015; Dunz and Schliewen 2013). Tribal assemblages are
referred to using the suffix “ines” (e.g., haplotilapiines).

Outside Pseudocrenilabrinae, we sampled represent-
atives of the three other cichlid subfamilies and 11 closely
related Blenniiformes families, inclusive of the proposed
sister to Cichlidae and Pholidichthyidae (Wainwright
et al. 2012). Our final data set had 178 terminals,
with 165 cichlids (Pseudocrenilabrinae: 150, Cichlinae:
3, Etroplinae: 5, Ptychochrominae: 7) and 13 noncich-
lid blenniiforms. Tables S1–S5 of the Supplementary
material available on Dryad contain taxonomic and locus
information.

DNA Sequencing and Processing: From Raw Reads to
Multiple Sequence Alignments

Genomic DNA was extracted from preserved tis-
sues using the DNeasy Blood and Tissue kit (Qia-
gen, Venlo, the Netherlands). Library preparation
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and high-throughput paired-end sequencing (Illu-
mina HiSeq) were performed at the University of
Toronto Donnelly Sequencing Centre (http://dsc.
utoronto.ca/dsc/index.html). A set of probes designed
based on a Nile tilapia (Oreochromis niloticus) genome
(BioMart Ensembl Genes 69 database; Flicek et al. 2013)
was used for targeted sequence capture of 923 single-
copy exons ranging in length from 750 to 2000 bp (Ilves
and López-Fernández 2014).

Reads were filtered and trimmed in prinseq 0.20.3
lite (Schmieder and Edwards 2011) and assembled into
target exons with one of three approaches, depending
on the amount of recoverable data (Fig. S2 of the
Supplementary material available on Dryad). First,
reads were mapped to tilapia reference sequences and
assembled in Bowtie2 2.2.0 (Langmead and Salzberg
2012) with the –very-sensitive-local preset. Consensus
sequences with a minimum read depth of 10 were
generated using SAMtools 0.1.19 (Li et al. 2009) and
Biopython’s SeqIO.convert (Cock et al. 2009).

Bowtie2 assembly yielded more data for African and
Neotropical cichlids (Fig. S2, Tables S3 and S4 of the
Supplementary material available on Dryad), which
shared a common ancestor with tilapia more recently
than Indo-Malagasy Etroplinae and Ptychochrominae
subfamilies and noncichlid blenniiforms (Fig. 1a). Muta-
tions accumulated since divergence may have reduced
probe efficacy and interfered with read mapping to
tilapia references during Bowtie2 assembly. We therefore
applied two modified assembly protocols aimed at
increasing bp yield for these more distant taxa.

A hybrid reference guided/de novo assembly approach
was used for seven Etroplinae and Ptychochrominae
with the lowest rates of data recovery. Hybrid assembly
consisted of three stages (see Appendices S2 and S3
and Fig. S3 of the Supplementary material available
on Dryad for details and scripts). (i) An initial set of
consensus exons was obtained through guided assembly
with tilapia references using BWA-MEM 0.7.12 (Li and
Durbin 2009; Li 2013), with more lenient mapping
parameters than Bowtie2 and a minimum read depth
of six. (ii) A second set of consensus exons with a
minimum depth of six was assembled de novo in Velvet
1.0.17 (Zebrino and Birney 2008; Zebrino 2009; Crawford
2010). (iii) Guided and de novo assembled exons were
aligned in MUSCLE v3.8.31 (Edgar 2004), from which
a final set of consensus exons was extracted. In this
way, sections missing from guided-assembled exons
were complemented by novel regions obtained through
de novo assembly. Visual inspection of alignments in
Geneious 7.0.6 (http://www.geneious.com, Kearse et al.
2012) confirmed that sections spanned by both guided
and de novo assemblies were identical, providing reas-
surance that exclusively de novo regions were accurately
recovered.

For the remaining five Indo-Malagasy cichlids and
13 Blenniiformes outgroups, we applied a reduced-
sensitivity assembly approach, equivalent to the first
stage of hybrid assembly. High-throughput sequencing

has proven especially difficult for Pholidichthys, with
our (Table S4 of the Supplementary material available
on Dryad) and previous (Eytan et al. 2015; pers.
obs.) attempts resulting in reduced sequence recovery
relative to other taxa in the same data set. In this
study, we maximized informative sites by combining
sequences from three individuals into a single set of
consensus exons for Pholidichthys (Tables S1 and S4 of
the Supplementary material available on Dryad). We
ensured that exons from different individuals were cor-
rectly aligned for consensus generation by ascertaining
that sections recovered across individuals were identical.

We identified coding and noncoding regions and
codon positions in our targets by aligning them to
annotated tilapia mRNA retrieved from GenBank (NCBI
Oreochromis niloticus Annotation Release 103; Accession
No. GCF_001858045.1; Clark et al. 2016) using a custom
script (Appendix S4 of the Supplementary material avail-
able on Dryad; Altschul et al. 1990; Maglott et al. 2005;
R Core Team 2015). Knowledge of coding regions was
used to assist with alignment editing and delineation of
partition schemes for PartitionFinder analyses.

Assembled cichlid and outgroup sequences were
aligned using MUSCLE. Alignments were visually
inspected and manually edited to ensure open reading
frame in Geneious, based on our determination of coding
regions. A limited amount of missing taxonomic and
character data was permitted since some missing data
are unlikely to be problematic in large data sets (Jiang
et al. 2014; Xi et al. 2016; Nute et al. 2018). Final alignments
contained at least 70% of taxa (124 species) and sequences
spanning 30% or more of the corresponding tilapia
reference. Exon alignments were also concatenated into
a supermatrix.

PartitionFinder v1.1.1 (Lanfear et al. 2012) was run on
individual exons partitioned by coding and noncoding
regions and codon position, and on the supermatrix
partitioned by exon and coding and noncoding regions.
A single data block was identified as the best partitioning
scheme for individual exons and for the supermatrix.
The best fitting models were GTR+G for the supermat-
rix, and either GTR+G or GTR+G+I for individual exons
(Table S2 of the Supplementary material available on
Dryad).

Phylogenetic Inference: Concatenation, Species,
and Network Analyses

Maximum likelihood (ML) concatenation analysis was
performed with the supermatrix in CIPRES Science
Gateway (Miller et al. 2010). We used RAxML-HPC v.8
on XSEDE (8.2.10) (Stamatakis 2014) with GTR+G and
1000 rapid bootstrap replicates.

A species tree approach was used to infer relationships
in light of gene heterogeneity under ILS. ML gene trees
were estimated for 588 exons (available on GenBank,
BioProject PRJNA853788) in raxmlHPC-MPI-SSE3 v8.2.8
with GTR+G and 1000 rapid bootstrap replicates. A
species tree was inferred from gene trees in ASTRAL-II
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v.4.10.8 (Mirarab and Warnow 2015) with 700 bootstrap
replicates. Local posterior probabilities, alternative quar-
tet support (ASTRAL), and gene concordance factors
(IQ-TREE; Minh et al. 2020a,b) were also calculated for
the ASTRAL tree to assess topological robustness under
various support metrics and to quantify gene heterogen-
eity. Node-specific gene tree conflict was visualized with
pie charts obtained using ape 5.0’s “nodelabels” function
(Paradis and Schliep 2019) with “pie” equal to ASTRAL’s
q1–q3 values.

Poorly or incorrectly resolved gene trees can mislead
species trees (Gatesy and Springer 2014; Mirarab and
Warnow 2015). We assessed locus information content
by quantifying parsimony informative sites and sum-
marizing node support at various gene tree depths (first
25%, 50%, 75%, and 100% of total depth) and for different
locus lengths. We also investigated the possible impacts
of gene tree error, including model misspecification,
by inferring three additional ASTRAL trees based on
alternative sets of gene trees. One set contained gene
trees with nodes supported by less than 10% bootstrap
collapsed (Mirarab and Warnow 2015; Zhang et al. 2018).
Another set re-estimated a subset of gene trees (Table S2
of the Supplementary material available on Dryad) with
the GTR+G+I model, as suggested by PartitionFinder
(see Appendix S2). For the third set, we reassessed the
fit of over 200 substitution models not implemented
in RAxML and re-estimated gene trees in IQ-TREE
1.6.12 (Nguyen et al. 2015). We also investigated base
compositional heterogeneity, a common source of model
misspecification (Foster 2004), with �2 test in IQ-TREE.
Alternative ASTRAL species trees were compared with
the weighted Robinson–Foulds distance (Robinson and
Foulds 1981) in phanghorn 2.8.1 (Schliep 2011).

Finally, we tested for hybridization and its impacts
on the resolution of Pseudocrenilabrinae relationships
using PhyloNetworks’ SNaQ phylogenetic network ana-
lyses (Bezanson et al. 2017; Solís-Lemus et al. 2017).
Due to SNaQ’s computational demands, we focused
on eight taxonomic subsets to assess hybridization at
various phylogenetic scales. For each subset, ASTRAL
species and ML gene trees were pruned to a selection of
representative species, and only gene trees containing
all representatives were incorporated. Sub1 sampled
across tribes to test for deep hybridization. Sub2 and
Sub 3 investigated hybridization for WCA lineages. Sub4
considered hybridization amongst former-tilapiines.
Sub5 investigated hybridization within Barombi Mbo,
Natron/Magadi, and Bermin lake flocks, and between
these and their close riverine relatives. Sub6 assessed
deep hybridization between former-tilapiine and EAR
taxa. Sub7 focused on hybridization among EAR tribes.
Sub8 looked for hybridization within Lamprologini
and between it and its close relatives. SNaQ analyses
were performed with the ASTRAL starting topology
and incremental increases of hmax =n+1 for 20 runs.
Analyses were considered complete when tree scores
stabilized within two pseudolikelihood points. Support
for hybrid networks was assessed with 100 bootstrap
replicates.

Concatenated, species, hybrid network, and gene tree
topologies were compared by computing multivariate
“tree spaces” in R’s treespace 1.1.4.1 package (Jom-
bart et al. 2017). Topological variability was quantified
with tip–tip path difference (Steel and Penny 1993)
and Kendall–Colijn (Kendall and Colijn 2016) metrics.
Appendix S2 of the Supplementary material available
on Dryad contains details for all methods used in this
study.

RESULTS

Target Capture and Gene Tree Resolution
Alternative assembly contributed more data for Indo-

Malagasy cichlids and outgroup taxa relative to initial
Bowtie2 assemblies (t(16506.1)=40.0,p=0.0; Fig. S4 of
the Supplementary material available on Dryad). The
span of target sequences increased by an average of 16.8
± 22.7% SD, and 1,624,734 bp and 1087 exons were added
across taxa. Hybrid guided/de novo assembly showed
the largest improvements, adding more characters and
exons per taxon than the reduced-sensitivity approach
(Fig. S4 of the Supplementary material available on
Dryad). Ultimately, we obtained 588 exon alignments
between 291 and 1938 bp (mean =1039±330.9), for a
final aligned supermatrix length of 610,990 bp. Align-
ments contained 124–178 (mean =166.5±8.4) taxa and
sequences spanning an average of 89 ± 9.7% of their
reference.

Loci informativeness increased with tree depth and
locus length (Fig. 2b,c). IQ-TREE identified different
best-fit models than PartitionFinder (Table S2 of the
Supplementary material available on Dryad). Never-
theless, compositional heterogeneity tests showed that
nearly no sequence violated the assumption of homogen-
eous base composition for GTR (mean proportion passed
=0.98±0.01; Table S2 of the Supplementary material
available on Dryad), and therefore, our application of
this highly parameterized model is not necessarily inap-
propriate. Indeed, the fixed application of GTR has been
shown to yield accurate topologies even when it is not the
best-fit model (Abadi et al. 2019). Moreover, comparisons
of ASTRAL trees generated with different gene tree
sets revealed highly congruent topologies (wRF: 0.021–
0.058, Table S6 of the Supplementary material available
on Dryad), especially along backbone relationships.
Disagreements were restricted to a few shallow, poorly
supported nodes, like Crater lake (Coptodon and Bermin)
and Congolese (Lamprologini) species flocks whose res-
olution may require additional taxa and faster-evolving
loci (Fig. S5 of the Supplementary material available on
Dryad).

Phylogenetic Relationships and Gene Tree Heterogeneity
Targeted exon capture provided generally well-

resolved and consistent relationships across concaten-
ated (Fig. 2d, Fig. S6 of the Supplementary material
available on Dryad, mean bootstrap =95.3), species
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FIGURE 2. (Color online) Proportion of parsimony informative sites (a), gene tree resolution (b,c), and phylogenies (d,e) for Pseudocrenilabrinae
and close relatives. b) Bootstrap support at various gene tree depths. The first four (blue) boxes correspond to increasing distances from the root,
while the last (yellow) box corresponds to the shallowest 20% of tree depth. c) Bootstrap support and 95% confidence interval (shaded area)
for gene trees inferred from loci of various lengths. d) Concatenated RAxML tree showing branch lengths; see Figure S6 of the Supplementary
material available on Dryad for full annotations. e) ASTRAL-II species tree. Numbers above branches are bootstrap and local posterior probability
support. Pie charts show gene tree support for the main (dark gray), and first (light gray) and second (white) alternative quartet topologies (i.e.,
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to some species names indicate illustrated species to the right of the phylogeny. Illustrations by VAC.
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(Fig. 2e, Fig. S5 and Table S6 of the Supplementary mater-
ial available on Dryad) and phylogenetic network (Fig. 3)
trees, despite widespread genetic discordance (Figs. 2e
and 4, Figs. S7 and S8 of the Supplementary material
available on Dryad). Quartet and gene concordance
scores largely agreed in their identification of genetically
inconsistent nodes (Fig. 2e, Fig. S8 of the Supplementary
material available on Dryad). Disagreements between
concatenated and species trees were limited to mainly
shallow relationships (Figs. 2e and 4). Hybrid networks
indicated a few more topological differences (Fig. 4b–
i), some of which coincided with lineages possibly
involved in hybridization events. Tree files are available
in Appendices S5–S15 of the Supplementary material
available on Dryad.

For noncichlid blenniiforms, we recovered two mono-
phyletic clades: Atherinoidei (sensu Ghezelayagh et al.
2021, formerly Atherinomorpha) and an unnamed
clade with the remaining families (Fig. 2e). The
Pholidichthyidae+Cichlidae sister relationship was well
supported, and this clade was in turn sister to the South
American leaf-fishes (Polycentridae).

As expected, Cichlidae and its four subfamilies were
monophyletic across analyses. Etroplinae and Ptycho-
chrominae diverged prior to the African Pseudocrenilab-
rinae and Neotropical Cichlinae split. Pseudocrenilab-
rinae tribes and their interrelationships were for the most
part well supported. A few challenging relationships
persisted particularly within the EAR and recent rapid
radiations (Fig. 2d).

Early divergence of Heterochromini was followed by
successive branching of four other WCA tribes. Gene
heterogeneity was elevated at some WCA nodes, includ-
ing a sister relationship between Pelmatochromini+
Hemichromini and the haplotilapiines. Hybridization
was inferred among (Tylochromini–Chromidotilapiini,
Hemichromini–Pelmatochromini; Fig. 3a,b) and within
(Chromidotilapiini; Fig. 3c) WCA tribes with limited
genetic exchange (�<0.25), and also between WCA
Hemichromini and the haplotilapiines (Fig. 3a).

The large haplotilapiine clade encompassed the
remaining Pseudocrenilabrinae lineages. In contrast to
WCA, haplotilapiines were characterized by widespread
gene heterogeneity. This included not only clades known
for their rapid diversification but also deeper nodes
defining intertribal relationships. While concatenated
and species trees agreed on nearly all intertribal relation-
ships, phylogenetic networks inferred slightly different
arrangements for some former-tilapiine and EAR tribes,
with variably supported hybridization events.

Etiini was the sister to all other haplotilapiines,
followed by Oreochromini, which contains the mouth-
brooding former-tilapiines. Oreochromini formed two
large clades. One contained the west/central African
“Sarotherodon” and monophyletic Barombi Mbo flock.
The other comprised “Oreochromis” and the soda
lakes Alcolapia radiation. Barombi Mbo and Alcolapia
groups had short and genetically inconsistent branches.
A clade consisting of Danakilia, from the Danakil

Depression in Ethiopia/Eritrea, and Iranocichla, from
southern Iran, was inconsistently placed as sister to
all other oreochromines (Fig. 2e and Fig. S8b of the
Supplementary material available on Dryad) or Alcol-
apia+“Oreochromis” (Figs. 3d,e and Figs. S6 and S8a,c
of the Supplementary material available on Dryad).
Hybridization was detected within the species flocks and
for Iranocichla (Fig. 3d,e).

The remaining substrate spawning former-tilapiines
diversified into several tribes near the base of
the EAR. The early branching of Coptodonini and
Heterotilapiini+Pelmatolapiini were well supported,
but Gobiocichlini varied in its position as sister to
Heterotilapiini+Pelmatolapiini (species and concaten-
ated trees) or Tilapiini+Steatocranini (phylogenetic
networks; Fig. 3d,f). Gene heterogeneity was wide-
spread among former-tilapiines. Hybridization with
high genetic exchange (�≥30) was detected between a
Tilapiini-containing lineage and other substrate spawn-
ing former-tilapiines (Fig. 3a,d).

Tilapiini+Steatocranini was sister to the EAR in
concatenated and species trees, but its placement varied
in phylogenetic networks. One subset concurred with
a Tilapiini+EAR clade (Fig. 3a), but another grouped
Tilapiini+Steatocranini with former-tilapiines and
inferred hybridization between Tilapiini+Steatocranini
and an EAR ancestor (Fig. 3f).

The widely supported EAR clade comprised the
endemic Tanganyikan tribes plus Lamprologini and
Haplochromini. Bathybatini+Boulengerochromini was
sister to the remaining EAR lineages, which together
formed the MVhL clade (Takahashi et al. 2001)
named for its inclusion of Malawi, Victoria, Nishida’s
(1991) H-lineage (Fig. 1a) and Lamprologini taxa. A
Lamprologini+H-Lineage sister relationship was robust.

Internal lamprologine relationships were mostly
well resolved, despite short branches and high gene
heterogeneity. Riverine Lamprologus endemic to the
Congo basin formed a monophyletic grouping nested
among Tanganyikan lineages. Several hybrid events
were detected, of which the most strongly suppor-
ted involved Chalinochromis+Julidochromis and Telmato-
chromis (Fig. 3h). Lamprologines may have also hybrid-
ized beyond the tribe, with the ancestor of the H-lineage
(Fig. 3g,h) or Bathybatini (Fig. 3f).

The H-lineage was unambiguously supported. Con-
catenated and species trees produced identical topo-
logies, but some highly heterogeneous nodes received
equivocal support or differed from network ana-
lyses (Fig. 3a,f,g). Cyprichromini+Perissodini and
Eretmodini+Haplochromini were consistently inferred.
Ectodini+Limnochromini was supported by concat-
enated and species trees, but phylogenetic networks
grouped Limnochromini+Cyphotilapiini and connec-
ted Ectodini to Limnochromini only through hybridiza-
tion (�= 0.17–0.34; Fig. 3f,g). Additional hybrid events
involving the H-lineage were inferred between the
EAR ancestors and more nested Eretmodini+ Haplo-
chromini clades (Fig. 3a), Cyprichromini and Eretmodini
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FIGURE 3. (Color online) Best phylogenetic networks estimated with SNaQ for eight taxonomic subsets. a) Sub1: Pseudocrenilabrinae
tribes; b) Sub2: WCA lineages; c) Sub3: Chromidotilapiini; d) Sub4: former-tilapiine tribes; e) Sub5: Barombi Mbo, Bermin and Natron/Magadi
flocks, and riverine relatives; f) Sub6: EAR, former-tilapiine and other Tanganyikan lineages; g) Sub7: EAR clade; h) Sub8: Lamprologini and
close relatives. Tribes are differentiated by numbers in square brackets adjacent to species names and also by color in the online version of this
figure. Vertical lines to the right of phylogenies denote multitribal groupings (a–d and f–h) or species flocks (e). Gray numbers around nodes
show bootstrap support for species relationships. Diagonal black lines connecting lineages show hybrid networks. Black and italicized numbers
indicate bootstrap support and inheritance probabilities (i.e., �= proportion of genes transferred during hybridization) of estimated networks.

(Fig. 3g), and the H-Lineage ancestor and Lamprologini

(Fig. 3g,h).
The earliest Haplochromini divergences gave rise to

Malagarasi River Orthochromis and Ctenochromis from
southern Tanzanian streams. Concatenated and species
trees placed the remaining lineages into two clades. One
included the Congolese Pseudocrenilabrus+Orthochromis
as sister to a grouping of Congo/Zambezi serrano-
chromines and Lake Fwa radiation. The other clade
included Tanganyikan tropheines as sister to a group
of riverine haplochromines and the Malawi and Vic-
toria lake radiations. Phylogenetic networks placed

tropheines+serranochromines instead as sister to the
Malawi/Victoria radiations (Fig. 3f,g). Despite our
limited sampling of haplochromines, we identified
possible hybridization between serranochromines and
other Congolese taxa (Fig. 3f,g) and between tropheines
and a Malawi/Victoria clade ancestor (Fig. 3g).

DISCUSSION

We applied a suite of approaches that draw on
emerging high-throughput, bioinformatics, and phylo-
genomic tools to tackle the phylogenetic challenges
of Pseudocrenilabrinae, a large clade with multiple
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FIGURE 4. (Color online) Tree spaces comparing Pseudocrenilabrinae
hypotheses across concatenated, species, hybrid network, and gene
trees based on the tip–tip path difference metric. a) Comparison
of full phylogeny across concatenated, species, and gene trees. b–
i) Comparison of concatenated, species, hybrid network, and gene
trees, restricted to taxa in hybrid network subsets. Tree spaces inferred
with the Kendal–Colijn metric showed comparable similarity patterns
across concatenated, species, and hybrid network trees and are thus
included in Fig. S7 of Appendix S2 of the Supplementary material
available on Dryad.

radiations and rampant gene tree conflict. Hundreds
of carefully curated loci and phylogenomic methods
that account for ILS, hybridization, and gene tree
error ensured that relationships were informed by a
comprehensive sampling of the diverse genetic histories
and biological processes underlying cichlid evolutionary
history, as well as possible methodological bias.

Phylogenetic Relationships
We infer strong and generally consistent phylogenetic

hypotheses for Pseudocrenilabrinae and its close relat-
ives, especially at higher taxonomic levels. Support for
homogeneous base composition and highly consistent
species trees based on alternative input gene trees
indicate that while gene tree error is inevitable (Mirarab
and Warnow 2015), it is unlikely to have considerably
misled phylogenetic reconstruction. Major taxonomic
contributions of this work include the resolution of:
(i) WCA intertribal relationships, (ii) the WCA sister
to haplotilapiines, (iii) former-tilapiine relationships,
(iv) relationships near the root of the EAR clade, and
(v) placement of several challenging MVhL tribes. See
Appendix S1 of the Supplementary material available
on Dryad for a detailed taxonomic review.

WCA tribes diverged successively, with
Hemichromini+Pelmatochromini supported as sister
to the pan-African haplotilapiines. Previous, mostly
multilocus, hypotheses for this part of the tree are
either based on the incomplete sampling of WCA
tribes or provide equivocal support for similar or
conflicting relationships (Schwarzer et al. 2009; Dunz
and Schliewen 2013; Matschiner et al. 2017; Irisarri et al.
2018). Haplotilapiines are frequently split into three
clades: Oreochromini, west/central “boreotilapiines”
(substrate spawning former-tilapiines less Tilapiini
and Steatocranini), and central/east “austrotilapiines”
(Tilapiini+Steatocranini+EAR) (Schwarzer et al. 2009;
Dunz and Schliewen 2013; Matschiner et al. 2017). We
fail to recover “boreotilapiines,” but our grouping of the
notably intractable Tilapiini+Steatocranini (Schwarzer
et al. 2009; Dunz and Schliewen 2013; Irisarri et al. 2018;
Schedel et al. 2019) with the EAR clade in all but one
network analysis (Fig. 3f) substantiates a more nested
austrotilapiine assemblage. Within the EAR, we support
a monophyletic Bathybatini+Boulengerochromini as
sister to the MVhL clade, a finding consistent with some
multilocus (e.g., Takahashi et al. 2001; Salzburger et al.
2002; Clabaut et al. 2005; Friedman et al. 2013) and most
phylogenomic (Meyer et al. 2015; Takahashi and Sota
2016; Matschiner et al. 2017; Irisarri et al. 2018; Ronco
et al. 2021) studies.

The H-lineage presents some of the most stub-
born challenges of the Pseudocrenilabrinae back-
bone. While studies based on a small number of
loci propose various, often poorly supported, topo-
logies, phylogenomic efforts are converging on a
few robust relationships (Takahashi and Sota 2016;
Irisarri et al. 2018, Ronco et al. 2021). Common
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phylogenomic groupings (also recovered here) are
Ectodini+Limnochromini, Perissodini+Cyprichromini,
and Eretmodini+Haplochromini. Eretmodini+ Haplo-
chromini corroborates an H-Lineage (Nishida 1991) over
the alternative C-Lineage (Clabaut et al. 2005; Fig. 1a),
which instead groups Eretmodini+Lamprologini.

Notable findings at shallower nodes include the first
phylogenomic evidence for Danakilia+Iranocichla within
Oreochromini (Trewavas 1983), a Heterotilapiini+ Pel-
matolapiini sister relationship, and monophyly of nested
radiations beyond the Great Lakes. Combined evidence
for monophyly (here, Stiassny et al. 1992; Schliewen et al.
1994; Roberts and Kullander 1994; Joyce et al. 2005; Ford
et al. 2015, 2016; Martin et al. 2015; Musilova et al. 2019),
short branches (Fig. S6 of the Supplementary material
available on Dryad), and gene tree conflict (Figs. 2e
and 4, Fig. S8 of the Supplementary material available on
Dryad) for sampled flocks are consistent with repeated
episodes of rapid speciation in diverse habitats.

Beyond Pseudocrenilabrinae, we corroborate the
Pholidichthyidae+Cichlidae sister relationship (Wain-
wright et al. 2012) with amongst (Ghezelayagh
et al. 2021) the largest phylogenomic data sets.
The Cichlidae+Pholidicthyidae+Polycentridae group-
ing further sheds light on the biogeographic origin
of cichlids (Friedman et al. 2013; Matschiner et al.
2017; Ghezelayagh et al. 2021). This grouping suggests
freshwater origins for the clade with a secondary mar-
ine transition in Pholidichthyidae. Going forward, our
documentation of genetic discordance at interfamilial
nodes indicates that phylogenomic tools accounting for
gene heterogeneity may help improve resolution within
Blenniiformes (Hughes et al. 2018; Ghezelayagh et al.
2021).

ILS and Hybridization
Complementary coalescent and network analyses

support ILS and hybridization as likely sources of gene
heterogeneity in African cichlids. Whereas hybridization
is implicated in specific instances (Fig. 3), ILS appears
to be a prevailing source of genetic incongruence
throughout. Gene tree error is also expected to have
contributed to genetic discordance.

Like authors before us, we document short branches
(Fig. 2d, Fig. S6 of the Supplementary material available
on Dryad) and gene heterogeneity (Figs. 2e and 4, Fig. S8
of the Supplementary material available on Dryad),
consistent with rapid speciation and ILS, across the EAR
and within smaller-scale lake radiations. Sampling of riv-
erine taxa shows that these patterns are far from a unique
property of lacustrine or recent taxa. Similar patterns
within Congo species flocks, among chromidotilapiines,
between WCA lineages and haplotilapiines, and among
former-tilapiine tribes, indicate possible rapid diversi-
fication for recent riverine radiations and very early in
Pseudocrenilabrinae history as well.

Phylogenetic networks document hybridization
among taxa at various tree depths and from diverse

environments, some of which have presented persistent
phylogenetic challenges. Disagreements regarding an
H- versus C-Lineage and its internal relationships are
likely influenced by hybridization. Most studies in favor
of a C-Lineage are based on 50–100% mitochondrial
markers (Kocher et al. 1995; Salzburger et al. 2002;
Clabaut et al. 2005; Day et al. 2008; Schwarzer et al. 2009;
Muschick et al. 2012; Dunz and Schliewen 2013; Weiss
et al. 2015; Matschiner et al. 2017; but see Friedman
et al. 2013), while the H-Lineage is supported by mainly
nuclear data (here, Nishida 1991; Meyer et al. 2015;
Takahashi and Sota 2016; Irisarri et al. 2018; Schedel
et al. 2019; Ronco et al. 2021). We contribute additional
phylogenomic evidence for gene flow within the H-
Lineage and between it and early EAR and lamprologine
taxa (Fig. 3a,f–h; Weiss et al. 2015; Meyer et al. 2017).
Ectodini–Limnochromini hybridization (Fig. 3f,g) in
particular seems to explain the grouping of these tribes
in some analyses (Fig. 2e) and conflicting placements
for Ectodini and Cyphotilapiini in prior work (Weiss
et al. 2015; Takahashi and Sota 2016; Meyer et al. 2017;
Irisarri et al. 2018; Schedel et al. 2019; Ronco et al. 2021).

Hybridization among riverine and between river and
lake lineages is also implicated. Tilapiini+Steatocranini
appear to be disposed to hybridization with other
former-tilapiine and EAR taxa (Fig. 3a,d,f; Loh et al. 2013;
Dunz and Schliewen 2013; Weiss et al. 2015; Irisarri et al.
2018). Such repeated and taxonomically far-reaching
hybrid events may underlie disagreements regarding
a Tilapiini+Steatocranini grouping and its relationship
to the EAR (here, Schwarzer et al. 2009; Dunz and
Schliewen 2013; Weiss et al. 2015; Irisarri et al. 2018; Sche-
del et al. 2019). Gene flow among WCA lineages (Fig. 3a–
c) is a novel finding consistent with previous suspicions.
Schwarzer et al. (2015) proposed hybridization as a
source of cytonuclear discordance in Chromidotilapiini,
which could have been aided by past hydrological
connections between West Africa and the lower Congo.
Inconsistent placements of Iranocichla+Danakilia (Fig. 2e;
Schwarzer et al. 2009, Wagner et al. 2012; Matschiner et al.
2017; Schedel et al. 2019) may also be due to hybridization
with other oreochromines (Fig. 3d,e). Finally, networks
connecting lake flocks to riverine relatives (Fig. 3e–g)
highlight a prospective role for river taxa as conduits
of genetic material that could have supported nested
lake radiations (Schwarzer et al. 2012a,b; Loh et al. 2013;
Martin et al. 2015; Weiss et al. 2015; Ford et al. 2016).

Together, our findings corroborate mounting evidence
for ILS and hybridization in the EAR clade (Takahashi
et al. 2001; Salzburger et al. 2002; Koblmüller et al.
2007, 2010; Weiss et al. 2015; Meyer et al. 2017; Meier
et al. 2017; Irisarri et al. 2018), small lacustrine species
flocks (Schliewen and Klee 2004; Zaccara et al. 2014;
Ford et al. 2015; Martin et al. 2015; Richards et al.
2018), and some riverine taxa (Schwarzer et al. 2011,
2012a,b; Loh et al. 2013; Alter et al. 2017) and also point
to other lineages whose diversification may have been
marked by these processes. The prevalence of these
processes and resulting gene heterogeneity underscores

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/1/134/6650131 by guest on 19 April 2024



SYSTEMATIC BIOLOGY144 VOL. 722022 ASTUDILLO-CLAVIJO ET AL.—EXON-BASED PHYLOGENOMICS OF AFRICAN CICHLIDS 11

the importance of incorporating diverse genetic histories
alongside approaches that consider multiple sources
of discordance in phylogenies for taxa with complex
evolutionary histories, like cichlids.

Biogeographic and Macroevolutionary Implications
Sequential early divergence of WCA lineages supports

West/Central African rivers as the place of origin for
Pseudocrenilabrinae (Stiassny 1987; Mayer et al. 1998).
Several WCA and former-tilapiine tribes diversified in
situ until austrotilapiines dispersed and radiated further
east. Most age estimates place the origin of austrotilapi-
ines somewhere between 25 and 35 Ma (Schwarzer et al.
2009; McMahan et al. 2013; Schedel et al. 2019; Matschiner
2019; Matschiner et al. 2020), which coincides with early
rifting in East Africa (Ring 2014). Slightly older (Murray
et al. 2001a; Schwarzer et al. 2009; Schedel et al. 2019)
and substantially younger estimates (Friedman et al.
2013; Irisarri et al. 2018) still place the austrotilapiine
split well within a time range that would see their
earliest descendants impacted by rifting. As rift branches
migrated across the continent, rivers changed course,
drainages reversed, basin connectivity was altered, and
lakes formed and desiccated (Stankiewicz and de Wit
2006; Danley et al. 2012). This was a dynamic time for
aquatic ecosystems that may have afforded ancestral
populations opportunities to colonize and diversify in
new habitats further east (Murray et al. 2001a,b; Joyce
et al. 2005; Ford et al. 2016).

Lake Tanganyika was most likely colonized by a
Congo basin ancestor, based on its nested position
among Congolese endemics. Later-diverging taxa recol-
onized surrounding rivers (e.g., Lamprologus and Ortho-
chromis) and other eastern lakes. A close relationship
between Lake Victoria and “Astatotilapia” suggest that
the Malagarasi or Ruzizi rivers may have served as
the portal through which the Victoria system was
colonized (Danley et al. 2012). In addition to seeding
lakes, changing river networks likely also facilitated the
transfer of genetic diversity throughout the continent
by allowing for hybridization among newly interacting
communities (Schwarzer et al. 2012a,b; Loh et al. 2013;
Martin et al. 2015; Weiss et al. 2015; Svardal et al. 2020).

Lake colonization resulted in repeated adaptive radi-
ations that have been linked to both extrinsic factors
related to ecological opportunity (e.g., depth and energy)
and intrinsic attributes that enhance standing diversity
or expedite speciation (e.g., proclivity for hybridization
and sexual selection) (Deutsch 1997; Seehausen 2006;
Wagner et al. 2012; Brawand et al. 2014; Weiss et al.
2015; Ford et al. 2016; Ivory et al. 2016; Meier et al. 2017;
McGee et al. 2020). But, lakes are not the only habitats
in which cichlids thrive. Although not as prolific, the
Congo River, particularly its lower stretches, is another
fecund environment for cichlids (Markert et al. 2010;
Schwarzer et al. 2011; Alter et al. 2017; Stiassny and Alter
2021). Geographic and ecological drivers of riverine
cichlid diversification are being investigated to various

degrees in the Neotropics (Piálek et al. 2012, 2019;
Poll 1986; López-Fernández et al. 2013; Astudillo-Clavijo
et al. 2015; Arbour and López-Fernández 2016; Burress
et al. 2017); much less is known about diversification in
African rivers (Markert et al. 2010; Schwarzer et al. 2011;
Alter et al. 2017). Improved resolution of relationships
will support comparative phylogenetic work in classic
and understudied groups and enable comparisons of
lineages and environments.

Target Capture
Target enrichment with taxon-specific probes allows

researchers to obtain hundreds to thousands of loci
chosen to meet known challenges of the focal group.
However, mutation accumulation can affect data acquis-
ition in distant relatives of the focal group (Chau
et al. 2018). Indeed, effectiveness of Ilves and López-
Fernández’s (2014) tilapia-based probes decreases bey-
ond African and Neotropical cichlids (Fig. S2 of the
Supplementary material available on Dryad). Never-
theless, data loss may be ameliorated to some extent
with bioinformatic modifications. Our hybrid approach
proved capable of contributing novel sites through de
novo assembly that are otherwise too divergent to map
to a reference genome during guided assembly (Fig. S2 of
the Supplementary material available on Dryad). Thus,
our hybrid approach provides a tool for simultaneously
reaping the benefits of a carefully curated data set for
the focal group and placing it in a broader phylogenetic
context with reduced missing data.

Given the advantages of protein-coding loci for
phylogenetic inference, there is also a keen interest in
identifying exon markers that are informative at broad
phylogenetic scales (Li et al. 2013; Jiang et al. 2019). We
identified close to 250 loci that are consistently retrieved
across Blenniiformes (Table S5 of the Supplementary
material available on Dryad) and may be suitable for
investigating fish relationships beyond cichlids.

CONCLUSIONS

African cichlids have long captivated researchers with
their species richness and ecomorphological diversity.
Advances in molecular techniques are quickly building
on the knowledge acquired from decades of meticulous
morphological observation, and together this work is
pulling back the curtain on a complex evolutionary
history involving repeated radiations and hybridization
that has played out over a dynamic continent. While
genetic exchange and rapid diversification may have
been important to the success of African cichlids, these
processes also complicate phylogenetic inference. Thor-
oughly sampled phylogenetic hypotheses that account
for gene heterogeneity from multiple sources will con-
tribute to improved classification schemes and provide
the necessary foundations for comparative research into
drivers of cichlid diversity.
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