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The benthic polyp phase of Medusozoa (Staurozoa, Cubozoa, Scyphozoa, and Hydrozoa) has endoskeletal or
exoskeletal support systems, but their composition, development, and evolution is poorly known. In this
contribution the variation in synthesis, structure, and function of the medusozoan exoskeleton was examined. In
addition, an evolutionary hypothesis for its origin and diversification is proposed for both extinct and extant
medusozoans. We also critically reviewed the literature and included data from our own histological and
microstructural analyses of some groups. Chitin is a characteristic component of exoskeleton in Medusozoa,
functioning as support, protection, and a reserve for various ions and inorganic and organic molecules, which
may persuade biomineralization, resulting in rigid biomineralized exoskeletons. Skeletogenesis in Medusozoa
dates back to the Ediacaran, when potentially synergetic biotic, abiotic, and physiological processes resulted in
development of rigid structures that became the exoskeleton. Of the many types of exoskeletons that evolved, the
corneous (chitin-protein) exoskeleton predominates today in polyps of medusozoans, with its greatest variation
and complexity in the polyps of Hydroidolina. A new type of bilayered exoskeleton in which there is an exosarc
complementing the perisarc construction is here described.

© 2016 The Linnean Society of London, Zoological Journal of the Linnean Society, 2016, 178: 206–225
doi: 10.1111/zoj.12415
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INTRODUCTION

Cnidarians are an early branch of diploblastic ani-
mals, which diverged from the shared ancestor of the
Bilateria ~600 Mya (Ryan et al., 2013), with some
fossil records in the Ediacaran (Van Iten et al.,

2013a, 2014; Liu et al., 2014) and most groups
already present in the Cambrian (Zhao & Bengtson,
1999; Hughes, Gunderson & Weedon, 2000; Cart-
wright et al., 2007). Cnidaria comprise two main
clades: Anthozoa and Medusozoa (Ruggiero et al.,
2015). Anthozoa are typically benthic and marine
polyps, whereas Medusozoa have a greater diversity of
forms and habits, including pelagic, free-swimming
(usually medusae), benthic and sessile (usually*Corresponding author. E-mail: m_angelesmb@hotmail.com
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polyps), all mostly marine, but with a few freshwater
species. Medusozoa encompasses the classes Stauro-
zoa, Cubozoa, Scyphozoa, and Hydrozoa, whose
phylogenetic relationships have been explored using
morphology, life cycles, and nuclear and mitochondrial
molecular markers (Marques & Collins, 2004; Collins
et al., 2006; Van Iten et al., 2006, 2014). Recently,
some molecular phylogenetic analyses indicated that
Myxozoa is a cnidarian group (Chang et al., 2015;
Foox & Siddall, 2015; Foox et al., 2015).

A fundamental evolutionary feature of Cnidaria is
the skeleton that may be present as an endoskeleton,
exoskeleton, or hydrostatic skeleton. This is a conse-
quence of the bauplan of two epithelial layers. The
internal gastrodermis delimits the gastrovascular
cavity from the tentacles to the pedal disc and func-
tions in the absorption of nutrients as well as con-
traction. The external epidermis functions in
protection from the environment and responds to
external stimuli (Chapman, 1974). These two epithe-
lial layers are separated by mesoglea, which is an
extracellular matrix primarily containing collagen
and that may or may not contain cells (Chapman,
1974; Tucker, Shibata & Blankenship, 2011).

The epidermis is fundamental because of the many
cell types it contains, including epithelio-muscular,
interstitial, glandular, nervous, and cnidae cells, as
well as determining how the animal interacts with its
aquatic environment (Mackie, 1984). The skeleton of
Cnidaria is a key feature that plays roles in protection,
ion storage, fixation to substrates, swimming, flexibil-
ity, and floating/drifting/dispersal, as well as other
aspects of cnidarian life (Garstang, 1946; Pyefinch &
Downing, 1949; Chapman, 1968, 1974; Fields &
Mackie, 1971; Blanquet, 1972; H€undgen, 1984; Tid-
ball, 1984; Thomas & Edwards, 1991; Marques & Mig-
otto, 2001; Fraune et al., 2010; Di Camillo et al.,
2012).

Anthozoan skeletons are reasonably well studied
(e.g. Barnes, 1970; Fukuda et al., 2003; Ramos-Silva
et al., 2013), whereas the exoskeletons of Medusozoa
are much less understood. Indeed, after studies of
composition and development, a long hiatus ensued
before additional study of the role of the exoskeleton
in the biology and evolution of the group, despite its
basal position in the evolution of animals (Marques,
Morandini & Migotto, 2003; Collins et al., 2006).
Owing to this gap in our knowledge, our goals here
were to conduct detailed analyses of medusozoan
skeletons, highlighting the variation in origin, struc-
ture, and function, and how disparities in these fea-
tures have accompanied the evolution and
diversification of this group. To achieve these goals,
we have brought together published and unpublished
data for fossil cnidarians and modern histological
information for extant groups of Medusozoa.

THE METAZOAN EXOSKELETON –
SYNTHESIS

Macromolecule evolution has resulted in the develop-
ment of extracellular structures with many
functions, such as support, osmoregulation, defence,
biofilms, cell and tissue morphogenesis, and so on
(Sentandreu, Mormeneo & Ruiz-Herrera, 1994; Ruiz-
Herrera & Ortiz-Castellanos, 2010). The most signifi-
cant structural macromolecules in multicellular
organisms are polysaccharide carbohydrates, such as
cellulose in plants (Richmond & Somerville, 2000)
and chitin in fungi and animals, and the protein col-
lagen, which is important for internal support in the
Metazoa (Ehrlich, 2010a).

Chitin often makes up a significant fraction of
structural support structures. For example, chitin
accounts for 10–30% of the total skeletal components
in some hydrozoans and 3–15% in bryozoans (Jeuni-
aux & Voss-Foucart, 1991; Kaya et al., 2015). Chitin
is a polymer with repeating units of N-acetyl-D-gly-
cosamine (Muzzarelli & Muzzarelli, 2009), usually
with a visible fibrous organization at different hier-
archical levels (nanofibrils, microfibrils, or fibres;
Ehrlich et al., 2010) and in three alternative forms:
antiparallel a (the most common), parallel b, and
alternate c (Pillai, Paul & Sharma, 2009). Biosynthe-
sis of chitin includes synthesis and degradation
catalysed by enzymes found in all living organisms
(Ruiz-Herrera, Gonz�alez-Prieto & Ruiz-Medrano,
2002; Merzendorfer & Zimoch, 2003; Tang et al.,
2015). Processes of expression and functions of chitin
have been most studied in fungi and arthropods (e.g.
Ruiz-Herrera & Ortiz-Castellanos, 2010; Merzendor-
fer, 2011; Souza et al., 2011).

Chitin synthetases (Chs) are the most important
enzymes that form chitin, and their genes are found
in several Medusozoa [e.g. Hydractinia echinata
(Fleming, 1828), Mali et al., 2004; Hydra vulgaris
Pallas, 1766, GenBank database, Table 1] and are
present between some other Metazoa (Porifera,
Anthozoa, Deuterostomia) and the Choanoflagellata
(Zakrzewski et al., 2014). Additionally, other genes
involved in the biosynthesis of chitin in other groups
of metazoans (e.g. Arthropoda; Merzendorfer &
Zimoch, 2003) are also found in Medusozoa (Table 1).
The presence of these genes in different groups sug-
gests that the basic components are conserved and
these are functional since a particular moment in
animal evolution. Yet, Chs genes have not been
found in the genomes of nonchitinous organisms
(Willmer, 1990; Wagner, 1994), e.g. Trichoplax
adhaerens Schulze, 1883 (Placozoa; Dellaporta et al.,
2006; Signorovitch, Buss & Dellaporta, 2007) and
Mnemiopsis leidyi A. Agassiz, 1865 (Ctenophora;
Table 1; Ryan et al., 2013; Bolte et al., 2014).
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Chitinases (family 18 of the glycosyl hydrolases)
are the most important enzymes that degrade chitin
and are functional at different life stages in different
organisms (Dahiya, 2009). Chitinase functions are
typically associated with organism growth and
immunity (in organisms with chitin), and in diges-
tion and immunity (in organisms without chitin;
Mali et al., 2004). In the Metazoa, chitinase genes
are present and variable in several lineages
(Table 1), although chitinase evolution and function
are still poorly known, especially in organisms that
do not produce chitin (e.g. the hydrozoan Hydra vul-
garis; Mali et al., 2004).

Chitin and alternative chitin-like molecules (e.g.
chitooligosaccharides) have been recorded in a few
prokaryotes, some protists and algae (Gooday, 1990;
Cohen, 2010), and in several lineages of Opistho-
konta (Fungi + Metazoa + some unicellular lineages;
Paps et al., 2013). Chitin is found in at least 19
phyla of the Metazoa (Willmer, 1990) and is common
in Cnidaria (Anthozoa and Medusozoa; Table 1).
Phylogenetic and developmental evidence shows a
relationship between animal and fungal chitin sys-
tems and they share some Chs (Wagner, 1993; Ruiz-
Herrera et al., 2002).

Chitin is not merely a neutral extracellular struc-
tural component, but rather can interact with a
variety of inorganic and organic molecules [polysac-
charides, lipids, pigments, noncollagen chitin-binding
protein, minerals (e.g. magnesium carbonate), and
chemical compounds (e.g. calcium carbonate); Shen
& Jacobs-Lorena, 1999; Ehrlich et al., 2010]. These
interactions help to form a structural backbone that
defines the organic phase in extracellular biomineral-
ization, acting as a mould, nucleation niche, and ori-
entation modifier for crystalline and amorphous
minerals, thereby forming a rigid exoskeleton that
serves as a defence against chitinases and as an
important reserve for ions or chemical compounds
(cf. Ehrlich, 2010b). Silica (e.g. Porifera, Crustacea,
Copepoda, Mollusca Docoglossa) and calcium carbon-
ates (e.g. Porifera Calcarea, Cnidaria Anthozoa, some
Hydrozoa, Bryozoa, Arthropoda Crustacea, Mollusca,
and Brachiopoda) are amongst the most characteris-
tic compounds and elements that participate in the
biomineralization of metazoan exoskeletons (Ehrlich,
2010b).

In addition to chitin, cnidarian skeletons have cal-
cium carbonate in the crystalline forms of aragonite
and calcite, silicates, magnesium hydroxides, other
chemical compounds, and calcium phosphate miner-
als in lower concentrations (Table 2; Milliman,
1974). Furthermore, glycosaminoglycans (GAGs) in
the form of chondroitin sulphate and heparin
sulphate can be found as elements in hydrozoan
exoskeletons (Yamada et al., 2007; B€ottger et al.,

2012). Cnidarians are the basal animal branch to
possess GAGs, which are conserved in other animal
groups (Medeiros et al., 2000; Yamada, Sugahara &
€Ozbek, 2011).
The exoskeleton in Medusozoa is derived from the

ectoderm, which secretes the macromolecules (e.g.
structural proteins and enzymes, phenols, polysac-
charides) that combine to form rigid exoskeletons
(Fig. 1; Knight, 1970; Kossevitch, Herrmann & Berk-
ing, 2001). Nevertheless, there are still relatively few
published studies of the composition and the concen-
tration of the macromolecular components of the
cells and skeletons of Medusozoa (Hwang et al.,
2013).

ORIGIN AND EVOLUTION OF ANIMAL
EXOSKELETONS – HYPOTHESES

It is well known that oxygen and mineral (phos-
phates, carbonates, silicates, amongst others) concen-
trations have varied over geological time in the
water column (Cook & Shergold, 1986; Brasier, 1992;
Lenton & Watson, 2004; Papineau, 2010; Och &
Shields-Zhou, 2011; Wood, 2011; Sperling et al.,
2013; Lenton et al., 2014). The factors favouring the

Table 2. Chemicals and minerals included in the compo-

sition of cnidarian exoskeletons (Milliman, 1974; Warren

et al., 2012)

Chemical

element/compound Anthozoa Scyphozoa Hydrozoa

Calcium

carbonate [CaCO3]

9 9 9

Calcium

phosphate

[Ca3(PO4)2]

9 9*

Silicate (SixOy) 9 9

Magnesium

hydroxide [Mg(OH)s]

9

Strontium (Sr) 9 9

Iron (Fe) 9 9

Manganese (Mn) 9

Potassium (K) 9

Barium (Ba) 9 9

Copper (Cu) 9

Zinc (Zn) 9

Lead (Pb) 9

Phosphorous (P) 9 9

Boron (B) 9

Uranium (U) 9

Nickel (Ni) 9

Chromium (Cr) 9

Cobalt (Co) 9

*Fossil Conulatae.
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development of an exoskeleton are poorly under-
stood, but they seem to be associated with time inter-
vals during which concentrations of these nutrients
were greater in Proterozoic marine waters. These
chemical changes in the oceans were related to
increases in animal biomass and biomineralized
skeletons (Brasier, 1992; Cook, 1992; Erwin &
Tweedt, 2012; Wood & Zhuravlev, 2012; Kazmier-
czak, Kempe & Kremer, 2013; Wood et al., 2015).

By the end of the Ediacaran, the oceans experi-
enced an increase in the concentration of NaCl and
other ions together with neutral pH conditions, all of
which resulted in a general state similar to that of
the Phanerozoic seas. During this time, Ca2+ concen-
trations reached 18 mmol L�1 (Hardie, 2003; con-
verted from the original ~36 mEq L�1), compared
with 10.6 mmol L�1 nowadays. These conditions,
together with possible increases in predation risk
and general species diversification (Warren et al.,
2012), resulted in the appearance of skeletons and
exploration of new habitats (such as shallow waters)
by a variety of taxa, causing increased trophic web
complexity (Stanley, 1973; Conway Morris & Robi-
son, 1986; Grant, 1990; Bengtson, 1994; Grotzinger,
Watters & Knoll, 2000; Wood, Grotzinger & Dickson,
2002; Bambach, Bush & Erwin, 2007; Wood, 2011;
Penny et al., 2014). Thus, the different skeleton
types found in distinct lineages would have arisen
through homoplasy, in spite of with phylogenetic
conservation of some molecular pathways. Hence,
through deep homology in the Opisthokonta (Scot-
land, 2010), there would be a common ancestral con-
dition in the genetic components of chitin production
that was followed by different evolutionary pathways
taken by the various taxa that resulted in the cur-
rent variety of exoskeleton types.

Therefore, we may consider various hypotheses to
explain the origin and evolution of the exoskeleton,
based on a trade-off between survival (the cost of the
exoskeleton as protection) and the cost of reproduc-
tion. This is suggested by the synchronous appear-
ance of exoskeletons and the infauna in the fossil
record (Dzik, 2007). Hence, the origin of the
exoskeleton would have been associated with biotic
(i.e. predation; Warren et al., 2012), abiotic (mechan-
ical/chemical changes in the environment; Brasier,
1992; Cook, 1992; Cohen, 2005), and physiological
changes as a consequence of evolution (Vermeij,
1989; Knoll, 2003; Dzik, 2007; Wood & Zhuravlev,
2012).

Biotic, abiotic, and physiological processes must be
considered as synergistic factors, which increase the
rigidity and biomineralization of the exoskeleton. In
sessile phases of life in organisms, this exoskeleton
would have to maintain a degree of flexibility and so
would require a lower energetic cost than that in
vagile organisms (Warren et al., 2012) and originated
de novo in the infauna (Dzik, 2007). Regardless of
how it originated, once present, the exoskeleton
would have resulted in a restructuring of the interac-
tions amongst organisms, especially with respect to
predation (Dzik, 2007; Penny et al., 2014), possibly
being involved with the loss of domination by the
algal mats (stromatolites) that were typical of the
Ediacaran oceans (cf. Pratt, 1982; Warren et al.,
2013).

The Verongida sponges of the Middle Cambrian
were the first animals with chitin (Ehrlich et al.,
2010, 2013). However, skeletogenesis would have
begun by the Neoproterozoic, with records of possible
spicules of ‘parazoan’ ancestors (Brain et al., 2012;
Wallace et al., 2014). It then continued in the early

Figure 1. Model of the chitin-protein (corneous) exoskeleton and cell tissues in Medusozoa. Red line refers to the

exoskeleton, yellow circles are carbon atoms, blue circles hydrogen, purple circles oxygen, and cyan circle N-acetyl

group.
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Cambrian (Stage 2, Tommotian, 521 Mya), with the
appearance in the fossil record of the Small Shelly
Fauna (SSF), in which rigid bodies are present in
Archaeocyatha (Antcliffe, Callow & Brasier, 2014)
and exoskeletal structures are found in the fossil
Coronacollina acula Clites et al., 2012 and in the spi-
cules of the Cambrian sponge in the genus Choia
(Clites, Droser & Gehling, 2012). The chemical struc-
ture of these fossil spicules is unknown, but they
may have contained chitin and silica, or calcium car-
bonate, and their radial organization in the body
suggests a support, rather than protective, function
(Clites et al., 2012). The presence of C. acula also
demonstrates that biomineralization did not have an
abrupt beginning in the Cambrian (cf. Vermeij,
1989), but rather diversification of animals with
biomineralized exoskeletons occurred during the last
evolutionary phase of the Ediacara Biota (~543 Mya;
Xiao & Laflamme, 2008).

THE EXOSKELETON IN MEDUSOZOA

FOSSIL RECORDS

The exoskeleton in Cnidaria occurred at least since
the Ediacaran (~635–551 Mya; Liu et al., 2008; Xiao,
Yuan & Knoll, 2010; Leme et al., 2013; Van Iten et al.,
2013a; Pacheco et al., 2015), concomitant with the
radiation of other animal groups also capable of build-
ing exoskeletons (Xiao & Laflamme, 2008) or support
systems based on aggregated mineral particles
(Serezhnikova, 2014), which then continued taxonomi-
cally and geologically during the Cambrian (Vermeij,
1989; Van Iten et al., 2006, 2014). The oldest exoskele-
tal fossils of metazoans already documented include
the conical calcitic shells of Cloudina, a problematic
genus that is now considered a cnidarian (Vinn &
Zat�on, 2012); the chitinous and tubular annulated
polyps of scyphozoa Olivooides (Zhao & Bengtson,
1999; Dong et al., 2013; Yasui et al., 2013); the late
Ediacaran chitin-mineralized fossil Corumbella
(Pacheco et al., 2015); and the possibly mineralized
phosphate type of Conulatae scyphozoans (Leme
et al., 2013; Van Iten et al., 2013a). Conulatae are also
recorded in the Ediacaran, as exemplified by the indis-
putable occurrence of Paraconularia sp. in the
Tamengo Formation, Brazil (Van Iten et al., 2014).
The phosphatic Conulatae exoskeleton is proposed as
a synapomorphy of the Conulatae (Leme et al., 2008a)
and is homologous with the sister group Coronatae, in
which the exoskeleton is not mineralized (Werner,
1966, 1967; Leme et al., 2008a,b; Leme, Sim~oes & Van
Iten, 2010).

Initial discussion of the composition and microstruc-
ture of the exoskeleton (= theca, in the literature) of
the Conulatae proposed that the exoskeleton pre-

sented ribs covered by integument (Babcock & Feld-
mann, 1986). The ribs would have been solid, narrow,
long, and subcircular in cross-section and the integu-
ment fine and flexible, formed by several lamellae of
calcium phosphate and protein (Fig. 2A; Table 3). In
the exoskeleton there were semidiscontinuous thick-
enings (nodes) and small projections (=spines, in the
literature; Babcock & Feldmann, 1986; Fig. 2A). How-
ever, upon examination of cross-sections of the conu-
larian exoskeleton with scanning electron microscopy,
the exoskeleton was shown to be continuous, consist-
ing of individual lamella of calcium phosphate (ap-
atite) that were thicker in some regions (Van Iten,
1992a). Thicker regions were structural supports,
externally as ribs, nodes, and spines, and internally as
septa and carina (Van Iten, 1992a). The detailed
microstructure of the exoskeleton, showing pores in
the lamellae, can be found in Van Iten et al. (2005b).

The affinity of the Conulatae with Coronatae is
supported by exoskeleton construction and growth,
their exoskeletons are characterized by the cen-
tripetal increase in the lamellae, external ornamen-
tation (longitudinal and transverse corrugations),
repair by apical wall formation, internal perradial
and inter-radial, with carina and septa in the conu-
lariids (Van Iten, 1991, 1992a,b; Jerre, 1994; Van
Iten, Fitzke & Cox, 1996; Hughes et al., 2000; Van
Iten et al., 2006, 2014; Leme et al., 2008a,b, 2010).
In addition to several other groups of Cnidaria as
the Conulatae, Corumbellata and Cloudina are found
only at the end of the Ediacaran (Hahn et al., 1982;
Grotzinger et al., 1995; Amthor et al., 2003; Knoll
et al., 2006; Warren et al., 2012, 2013; Pacheco et al.,
2015). Cloudina is cosmopolitan and found on rocks
that are younger than 555 Myr old (Amthor et al.,
2003). Its exoskeleton was formed by a layer of cal-
cium carbonate (Grant, 1990; Hua et al., 2005) that,
in some cases, has vertical perforations that have
been suggested to be caused by predation, thus indi-
cating predator–prey dynamics that were established
by the end of the Ediacaran (Bengtson & Zhao, 1992;
Hua, Pratt & Zhang, 2003).

The scyphozoan fossil Corumbella werneri (Hahn
et al., 1982), from the Ediacaran in the USA, Brazil,
and Paraguay (Hagadorn & Waggoner, 2000; Warren
et al., 2012, 2013; Pacheco et al., 2015), is also
amongst the first metazoans with biomineralized
(phosphatic) exoskeletons (Pacheco, Leme &
Machado, 2011; Warren et al., 2012; Pacheco et al.,
2015). Its ultrastructure (and that of the Ordovician
scyphozoan Sphenothallus – Van Iten et al., 2005b;
Muscente & Xiao, 2015; Vinn & Kirsim€ae, 2015) dif-
fers from the chitin-protein complex of the exoskele-
ton (=tegument in the literature) of Cambrian
scyphozoans, such as Byronia robusta Matthew, 1899
(Mierzejewska & Mierzejewski, 1979; Mierzejewski,
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1986), owing to its exoskeleton (=carapace in the
literature) which is formed by polygonal plates (of
unknown organic composition) as microlamellae with
pores and papillae (Fig. 2B; Table 3), as described
for conulariids with chitin-mineralized exoskeletons
(Van Iten et al., 2005a,b; Warren et al., 2012;
Pacheco et al., 2015). This morphology confers flexi-
bility to the exoskeleton of C. werneri, allowing some
deformation, but which may break, demonstrating
less elasticity than that found in extant Coronatae
(Chapman & Werner, 1972) and in the fossil scypho-
zoan B. robusta (Mierzejewska & Mierzejewski,
1979), which is functionally similar to modern
arthropod exoskeletons (Pacheco et al., 2015).

Fossil record evidence show that the types of exos-
keleton are conserved amongst living groups. For
example, of the chitin-protein type of Leptothecata of
Ordovician Sinobryon elongatum Balinski, Sun &
Dzik, 2014 (Balinski et al., 2014) the biomineralized
carbonate exoskeletons of anthozoan corals of the
Cambrian (Stanley & Fautin, 2001), and Hydrozoa
Milleporidae (~150 Mya, Jablonski, 2005), Stylasteri-
dae (~65 Mya, Lindner, Cairns & Cunningham,
2008), and Hydractiniidae (~50 Mya, Miglietta,
McNally & Cunningham, 2010).

LIVING GROUPS: MAJOR TRENDS AND A NEW

EXOSKELETON TYPE IN HYDROZOA

Exoskeletal composition is similar in all Cnidaria
and is predominantly chitin-protein, and proteins

associated with quinones or calcium carbonate
(Knight, 1970; Chapman, 1974). However, some
exceptions exist, such as the prevalence of collagen
in gorgonian anthozoans (Tidball, 1984).

Siebold (1874) defined three types of skeleton in
Cnidaria, despite some structural variation: cor-
neous, calcareous, and coriaceous. Corneous types
occur in several groups of anthozoans (Pennatulacea,
Antipatharia; Siebold, 1874), hydrozoans, and some
scyphozoans. The corneous type predominant in
medusozoan polyps is composed of chitin-protein
(Fig. 3, Table 3). Calcareous types, with sclerites
that fit tightly together forming a rigid structure,
are typical of octocorals (Siebold, 1874; Grillo, Gold-
berg & Allemand, 1993). Coriaceous types are formed
from biomineralization of calcium carbonate and are
typical of some anthozoans (stony and blue corals)
and hydrozoans (hydrocorals; Siebold, 1874).

Staurozoa have some indications of an exoskeleton
(=periderm, in the literature) of uncertain chemical
structure at the base of the body during the larval
(planula) and stauromedusa stages. Planula larvae of
the genus Haliclystus secrete substances that cover
them as they move, perhaps associated with adhesion
to the substrate, but also probably serving as the sub-
strate itself (Wietrzykowski, 1910, 1912; Otto, 1976).
During Haliclystus planula settlement, the cells in the
base of the larva apparently secrete a chitinous layer,
covering the lower half of the larva (Wietrzykowski,
1912). After settling, the larva is surrounded by an
amorphous sheath, and plaques of hexagonally packed

Figure 2. Schematic of the exoskeleton in fossil groups in Medusozoa. A, Conulatae: A1, hypothetical Conulatae, gen-

eral morphology with main features (modified from Leme et al., 2004); A2, lamellar ornament details of the exoskeleton.

B, Corumbella: B1, Corumbella werneri; B2, oral region; B3, cross-section of the exoskeleton with microlamellae; B4,

lamellar detail showing pores (brown arrow) and papillae (red arrow); B5, underside view of two of the polygonal plates

that comprise the lamellae with papillae (shown as red ‘u’); B6, topside view of the same plates as in B5, showing pores

(shown as brown oval) (modified from Pacheco et al., 2011). Colour-coded chemical composition and structure of the

exoskeleton: yellow, calcium phosphate; orange, calcium carbonate.
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subunits can enclose the planula (Otto, 1978). These
plaques are also visible in epidermal cell cytoplasmic
vesicles, where they probably formed before transport
to the exterior, and are apparently distinct from other
extracellular covering described for Cnidaria, proba-
bly associated with an overwintering phase (Otto,
1978). Settled larvae of Haliclystus antarcticus Pfef-
fer, 1889 (‘microhydrula’ stage; Jarms & Tiemann,
1996; Miranda, Collins & Marques, 2010) have a thin
exoskeleton produced by the cells of the basal epider-
mis, forming a circular disc but never a cup (Jarms &
Tiemann, 1996). By contrast, planulae of Lucernariop-
sis campanulata (Lamouroux, 1815) secrete a gelati-
nous substance that can encyst the larva
(Kowalevsky, 1884; Hanaoka, 1934), forming a resting
larval stage (Otto, 1978; Miranda, Morandini & Mar-
ques, 2012). Stauropolyps have not yet been found
with an exoskeleton.

The basal disc in the stauromedusa Haliclystus is
covered by a filamentous and adhesive layer
(Fig. 3A; Otto, 1978; Miranda, Collins & Marques,
2013). Stauromedusae of Haliclystus have four kinds
of basal epidermal cells: support, adhesive secretory,
mucous secretory, and cnidoblasts (Singla, 1976).
Support cells have contractile elements and secretory
vesicles, similar to the glandulomuscular cells of
Hydra (Singla, 1976). These cells, however, are mor-
phologically and structurally similar to desmocytes
of Aurelia, whose function is usually the anchoring
of tissues to the exoskeleton (Singla, 1976; Lesh-
Laurie & Suchy, 1991). Secretions of adhesive, sup-
portive, and mucous cells appear to form an extracel-
lular layer (~60–100 lm) in the basal epidermis of
Haliclystus (Fig. 3A; Singla, 1976; Lesh-Laurie &
Suchy, 1991). Even though this layer appears
homogenous, fibril components can be found at fixa-

Table 3. Types of exoskeleton

Subtaxa Layers

Chemical

composition Type

Regions with

exoskeleton

Common name

in literature Figure

Staurozoa Stauromedusae 1* Chitin and

mucus*

Corneous Lower half of the

planulae larvae,

larval cysts, and

basal disc of

stauromedusa

Periderm 3A

Scyphozoa Discomedusae 1 Chitin Corneous Podocysts Periderm 3C

Coronatae 2 Chitin-protein

and GAGs

Corneous Polyp body Periderm 3B

Conulatae† 2 Calcium

phosphate

Coriaceous Polyp body Theca 2A

Corumbellata† 1 Calcium

carbonate

Coriaceous Polyp body Carapace 2B

Cubozoa Carybdeida 2 Chitin-protein Corneous Basal portion

of polyp

Periderm 3D

Hydrozoa ‘Anthoathecata’ 1 Calcium

carbonate

Coriaceous Polyp body Perisarc 3H

1 Chitin-protein Corneous Hydrorhiza and

hydrocaulus

Perisarc 3F

2 Chitin-protein

and GAGs

Bilayered Hydrorhiza,

hydrocaulus,

and base of

hydranth

Perisarc or

pseudohydrotheca

3I

Leptothecata 1 Chitin-protein Corneous Polyp body and

reproductive

structures

Perisarc 3E

Hydridae 5 Glycosaminoglycan

Chondroitin

sulphate

and putative

peroxidase

proteins

Fibrous Polyp body,

except tentacles

Cuticle 3G

GAGs, glycosaminoglycans.

*Uncertain; †fossil groups.
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Figure 3. Schematic view of the exoskeleton in extant groups of Medusozoa. A, Staurozoa, Stauromedusae, Haliclystus;

B, C, Scyphozoa: B, Coronatae, C, Discomedusae; D, Cubozoa, Carybdeida; E–I, Hydrozoa: E, Leptothecata, F,

‘Anthoathecata’, G, Hydridae, Hydra vulgaris, H, Millepora sp., I, Bimeria vestita. Chemical composition and structures

of the exoskeleton indicated in different colours: red, chitin-protein; cyan, glycosaminoglycans; orange, calcium carbon-

ate; green, glycosaminoglycan, chondroitin sulphate, and putative peroxidase proteins; p, podocyst.
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tion points, which are probably formed by polymer-
ization of the adhesive secretions and mucous from
the epidermal cells (Singla, 1976; Lesh-Laurie &
Suchy, 1991). In addition, a continuous and individu-
alized chitinous layer has also been reported for the
stauromedusa stage of Haliclystus between the basal
disc and the substrate (Fig 3A; Migot, 1922a: fig 1),
which would be responsible for the fixation of the
animal to the substrate (Migot, 1922a). In other
parts of the body of a stauromedusa, there is only a
thin mucous covering (Migot, 1922a,b). However, the
presence of chitin at the pedal disc was not con-
firmed in subsequent studies (Singla, 1976; Miranda
et al., 2013), and understanding the links between
the chitinous layer and the different secretions in
the different stages of development requires further
study.

In Scyphozoa, polyps (scyphistomae) have an
exoskeleton (=periderm in the literature) with one or
more layers of chitin, but this does not become rigid as
in other medusozoans (Lesh-Laurie & Suchy, 1991).
The exoskeleton in the Coronatae completely covers
the polyp body (Jarms, 1991) and is formed by an
internal, thick (~38 lm), wrinkled and fibrous at the
base, chitin-protein layer that becomes thinner
(~4 lm) and uniform towards the top. Additionally,
there is an external thin and continuous GAG layer
(M.A. Mendoza-Becerril, pers. observ.; Fig. 3B). The
Discomedusae (‘Semaeostomeae’ + Rhizostomeae)
have a reduced chitinous exoskeleton at the basal por-
tion of the polyp or, rarely, in the form of resistant
structures called podocysts (Chapman, 1966; Chap-
man & Werner, 1972). We observed and confirmed the
presence of an exoskeleton (~4 lm thick) in the podo-
cysts of Chrysaora fuscescens Brandt, 1835 (Fig. 3C).

Polyps in the Cubozoa, based on the scarce infor-
mation available, are described as having an
exoskeleton (=periderm, in the literature) of two lay-
ers (~5 lm each) that are restricted to the base
(Fig. 3D, Table 3; Chapman, 1978). Cysts may also
occur in the planulae (Toshino et al., 2013) and
around degenerate polyps (Carrette, Straehler-Pohl
& Seymour, 2014). Our histological analysis of the
polyp of Carybdea sp. found a two-layer exoskeleton
consisting of chitin and proteins (each ~12 lm thick).
The first layer is in contact with the epidermis and
the second in contact with the environment; the sec-
ond layer is covered by a mucous membrane (when
reared in the laboratory). We found that polyps of
Carybdea sp. also have fibrous anchoring structures
that join the mesoglea with the homogenous layer of
the skeleton, similar to the desmocytes in scypho-
zoans and leptothecate hydrozoans (cf. Chapman,
1969; Knight, 1970; Lesh-Laurie & Suchy, 1991).

Hydrozoa have the greatest exoskeleton variability
and structural complexity, especially in Hydroidolina

(Fig. 3E–I). In Leptothecata, the homogeneous
chitin-protein exoskeleton (=perisarc in the litera-
ture) covers the colony from the hydrorhiza to the
hydranth. The exoskeleton forms a hydrotheca
around the hydranth and a gonotheca around the
gonozooids, and both exoskeletal structures represent
a synapomorphy of the group (Fig. 3E, Table 3; Mar-
ques, 2001; Marques & Collins, 2004; Van Iten et al.,
2006). Rigidity and hardening of the exoskeleton are
a result of a reaction of the enzyme phenoloxidase
with a dopamine substrate that is secreted by epider-
mal cells (tanning cells) and liberated in spherules in
the extracellular matrix. There they react, forming a
quinone that, in turn, forms strong connections when
in contact with the proteins of the matrix (Knight,
1970). This process of secretion is greater in growth
regions where the exoskeleton remains elastic and
extendible (Knight, 1970).

In the order Siphonophora, the chitinous compo-
nent (=pneumatocyst in the literature) is reduced
to an internal covering of the pneumatophore, also
formed by lipids (Mackie, 1960). In ‘Anthoathecata’
(a nonmonophyletic group, cf. Marques & Collins,
2004; Cartwright et al., 2008; Van Iten et al.,
2014), it is generally assumed that the exoskeleton
(=perisarc in the literature) only covers to the base
or pedicel of the hydranth (Tidball, 1984; Fig. 3F),
with some exceptions. In the pelagic Porpitidae,
the exoskeleton is reduced to an internal layer of
the basal disc of the float chamber (Garstang,
1946; Chapman, 1974), and is not strictly an
exoskeleton in the same way as in Siphonophora
(Garstang, 1946; Fields & Mackie, 1971). In the
suborder Aplanulata, the fibrous exoskeleton (=cuti-
cle in the literature) of Hydra has GAGs and puta-
tive peroxidase proteins (exclusive to this group;
Yamada et al., 2007). Structurally, the invisible
exoskeleton is five-layered (1.5 lm thick), covering
from the base of the polyp to the hydranth, except
for the tentacles (Fig. 3G, Table 3; B€ottger et al.,
2012). In Solanderiidae, the exoskeleton is an
internal, rigid, network formed by vertical and hor-
izontal chitin fibres, surrounding the central tis-
sues (=coenosarc) with which the endoskeleton is in
contact (Wineera, 1968). Our observations in
Bougainvilliidae and Eudendriidae revealed a
chitin-protein exoskeleton (Table 3), usually lami-
nated and vertically striated (1–11 lm thick), from
the hydrorhiza to the peduncle of the hydranth.
Some Bougainvilliidae may be thinly covered
(~1 lm thickness and not striated) to the whorl of
tentacles (classically called pseudohydrotheca). In
general, the exoskeleton at the base of the hydro-
caulus and branches may be ringed or irregularly
wrinkled along the entire colony, such as in the
genus Pachycordyle (Stepanjants et al., 2000) and
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other Hydroidolina, for example the genus Euden-
drium (Marques et al., 2000).

In some ‘Anthoathecata’, the exoskeleton may be
reinforced by the process of biomineralization (min-
eral deposition; Le Tissier, 1991), such as in the
families Milleporidae, Stylasteridae, and Hydractini-
idae (Cairns & Macintyre, 1992; Lindner et al., 2008;
Miglietta et al., 2010). Biologically, secretions (e.g. of
glycoproteins) from epidermal cells (=calycoblasts)
constitute the extracellular matrix that modulates ion
ingression to form spheres of aragonite or calcite that,
once joined, make a firm, and rigid skeletal structure
that is more fibrous and porous in Milleporidae than
in other families (Fig. 3H; Table 3; Sorauf, 1980;
Lewis, 2006).

Biomineralization is not the only way to reinforce
the exoskeleton, and in other groups, such as
Bougainvilliidae, there is a gelatinous covering of
GAGs (M.A. Mendoza-Becerril, pers. observ.) with
incrustations of inorganic (e.g. small sand grains) or
organic (e.g. diatoms) or both particles. We propose
that this type of covering should be called the exo-
sarc (Table 3, Fig. 3I). The exosarc is the most exter-
nal layer, radial in relation to the chitin-protein
layer (=perisarc) of the exoskeleton, and may vary in
extent and thickness (3.9–132.5 lm). The exosarc
may cover all colonial structures, including those not
covered by a chitin-protein layer. For example,
Bougainvillia rugosa Clarke, 1882, and Parawrightia
robusta Warren, 1907, have an exosarc that extends
from the hydrorhiza to the tentacular whorl,
together with the chitin-protein layer. By contrast,
Bimeria vestita Wright, 1859, and Bimeria rigida
have an exosarc that covers the hypostome and the
base of the tentacles. Therefore, with this evidence
we propose that some ‘Anthoathecata’ have an
exoskeleton that is formed by two layers (chitin-pro-
tein and GAGs), has a granular appearance, and is
different from that of other cnidarians (corneous,
calcareous, coriaceous), and designate it here as
bilayered.

The exosarc has received little or no previous
research attention and is often called by generic
terms restricted to hydranths of some families of
‘Anthoathecata’: a cuticle (Brown, 1975), a gelati-
nous-looking investment (Allman, 1871), a gelati-
nous structure (Warren, 1919; Cartwright et al.,
2008), external secretions (Thomas & Edwards,
1991), mucous-like perisarc (Stepanjants et al.,
2000), or a pseudohydrotheca (Calder, 1988; Schu-
chert, 2007). A detailed examination of the
exoskeleton of Bougainvilliidae shows that the exo-
sarc is not limited to the hydranth. Thus, we sug-
gest that the name pseudohydrotheca continues to
be used exclusively for the part of the exosarc cov-
ering the hydranth. Detailed morphological, histo-

logical, histochemical, and genetic examination of
the exosarc will be necessary to resolve questions
of homology (whether around hydranths, branches,
hydrorhiza, or gonophores).

PHYLOGENETIC PATTERNS OF
EXOSKELETONS IN MEDUSOZOA

Diversification in the corneous, calcareous, coria-
ceous, and bilayered exoskeletons reflects particular
evolutionary histories in Medusozoa (Fig. 4). Phylo-
genetically, the exoskeleton is found in all meduso-
zoans, with uncertainties in Staurozoa, and it is thus
reasonable to consider that it would be present in
the medusozoan ancestral lineage (Van Iten et al.,
2006).

Exoskeletal structure and composition in Hydrozoa
are most variable in the clades of Hydroidolina (Lep-
tothecata and ‘Anthoathecata’); it is modified in
Siphonophora, reduced in some ‘Anthoathecata’
(Aplanulata and Capitata), and it is absent in Tra-
chylina. Biomineralized exoskeletons (coriaceous)
may be a synapomorphy for the monophyletic group
‘Filifera III’, because they appear in the sister groups
Hydractiniidae and Stylasteridae (Miglietta et al.,
2010). However, this type of exoskeleton would be a
homoplastic character because it is also represented
in Milleporidae (Capitata).

The bilayered exoskeleton (perisarc and exosarc),
although variable, is perhaps a synapomorphy in the
‘Filifera IV’ (sensu Cartwright et al., 2008; Van Iten
et al., 2014), even though it is referred to as a pseu-
dohydrotheca in Bougainvilliidae and Pandeidae,
and is only present on the hydrorhiza to the base of
the hydranth in Oceaniidae and Rathkeidae. The
exosarc is also homoplastic in other groups, such as
the anthoathecate Clathrozoellidae (as a pseudohy-
drotheca; not included in Cartwright et al., 2008).
Therefore, the exosarc requires further study to
understand its biological and ecological function and
evolutionary history.

A crucial step to resolving these evolutionary con-
siderations lies in species phylogeny itself. Nowadays
there is no consensus about major patterns amongst
the main hydroidolinan clades (see Fig. 4 for a
current hypothesis). Improvements on this subject
will be important to future discussions about the
evolutionary processes related to medusozoan
exoskeletons.

EXOSKELETAL STRUCTURE: CAUSE AND
EFFECT IN MORPHOLOGICAL

DIVERSIFICATION IN MEDUSOZOA

In Medusozoa there is a clear interaction between
abiotic factors (e.g. waves and/or currents), and the
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organization and composition of the exoskeleton with
the function of this, either as a simple protection or
as a rigid structure (Murdock, 1976; Hughes, 1980).
This trend is preserved in the fossil record. For
example, in the Ponta Grossa Formation (Devonian),
Paran�a Basin, Brazil, sedimentological, stratigraphi-
cal, and taphonomic evidence shows the influence of
deep-water currents upon the distribution of some
conulariid species (Sim~oes et al., 2000; Rodrigues,
Sim~oes & Leme, 2003; Van Iten et al., 2013b). In
these rocks, the simple (without septa or carina) and
thin exoskeleton of Conularia quichua Ulrich, 1890,
would have been transported and reworked prior to
its final deposition (Rodrigues et al., 2003; Leme
et al., 2004). Normally, when preserved in situ in the
Ponta Grossa Formation, its exoskeleton is three
dimensional, completely inflated, with the aperture

region turned upward, as in life. These fossils were
preserved below fair-weather wave base (Sim~oes
et al., 2000; Rodrigues et al., 2003; Van Iten et al.,
2013b). By contrast, the exoskeleton of Eoconularia
loculata (Wiman, 1895) (Silurian in Sweden) is
robust, with strongly mineralized septa and an
internally thick corner groove (Jerre, 1994). Because
these fossils were split apart above the insertion of
the septa, or at the base, we can infer that these fea-
tures were reinforcements of the exoskeleton as an
adaptation to life in a high-energy marine environ-
ment (Jerre, 1994).

It has been proposed that hydroids subjected to
stronger currents have a tendency to produce a more
annular exoskeleton, especially in regions of flexing
or attachment to substrates, such as at branches and
at the peduncles that support the hydranths

Figure 4. Phylogenetic hypothesis of the exoskeleton in Cnidaria, with fossil Medusozoa, with optimization for different

skeleton types: calcareous, corneous, coriaceous; bilayered; ? unknown, without exoskeleton. Skeleton compo-

sition: chitin, calcium carbonate, calcium phosphate, glycosaminoglycans (GAGs) and putative peroxidase pro-

teins, chitin-protein and GAGs. Lineages are by colour: yellow, Anthozoa; orange, Staurozoa; green Cubozoa; purple,

Scyphozoa; blue, Trachylina; dark green, Capitata; grey, Siphonophora; brown, Aplanulata; red, ‘Anthoathecata’; cyan,

Leptothecata. Numbers in parentheses indicate the total number of extant species, based on Daly et al. (2007) and Col-

lins (2009). Solid bars indicate fossils, open squares do not have fossil records. Red circles indicate groups with internal,

chitinous skeletons. This hypothesis combines the phylogeny in Collins et al. (2006) with, for the position of the Conu-

latae, Van Iten et al. (2006, 2014) and Cartwright et al. (2008). Hypothetical relations for Hydroidolina are based on

unpublished data (M. M. Maronna & A. C. Marques). Images of fossils: 1, Cubozoa and Narcomedusae (Cartwright

et al., 2007); 2, Conulatae (Van Iten et al., 2013a); 3, Pseudodiscophylum windermerensis (Fryer & Stanley, 2004); 4,

Lepidopora sp. (modified from Cairns & Grant-Mackie, 1993); 5, Sinobryon elongatum (Balinski et al., 2014).
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(Murdock, 1976; Hughes, 1980). In addition, growth
and branching patterns may be influenced by cur-
rents, such as the transverse axis being perpendicu-
lar to the direction of the current to increase
feeding efficiency (Tidball, 1984) or an increase in
thickness, which confers greater resistance (Kose-
vich, 2012).

Structurally and ecologically, the development of a
more rigid exoskeleton has consequences for colony
organization, as observed in Ectopleura (Suborder
Aplanulata) (cf. Nawrocki & Cartwright, 2012).
Therefore the exosarc thickness should be a conse-
quence of the habitat in which it is developed, as
well as of resource availability (Rees, 1956; referring
to the pseudohydrotheca). Thickness has been
shown, experimentally, to change as a result of the
application of chemical reagents (e.g. changing exter-
nal mucosal secretions because of detergents and
changes in pH; Schlichter, 1984).

Skeletogenesis was undoubtedly a key factor in
animal evolution and ecological interactions, perhaps
first owing to structure and the environment, and
then as an exaptation for predation avoidance (e.g.
Knoll, 2003). The radiation of metazoans with skele-
tons was both a cause and an effect of diversity due
to the many benefits arising from a support structure
in a variety of environments. Hence, skeletons gener-
ated a restructuring of ancient ecosystems that led
to dramatic changes in evolution and ecological inter-
actions (Jones, Lawton & Shachak, 1994, 1997;
Wright & Jones, 2006; Seilacher, 2007; Erwin, 2008;
Erwin & Tweedt, 2012).

Cnidarian diversification took place during the
Cambrian (or earlier) and was simultaneous with,
and a consequence of, the evolution of the exoskele-
ton (cf. Glaessner, 1971). Owing to the age of their
diversification, and if modern patterns indicate past
history, then, in the Cambrian, medusozoans had
already colonized probably all of the same environ-
ments in which they thrive in the present-day (Gili
& Hughes, 1995). This adaptive capacity and diversi-
fication was also linked to their life cycle (e.g. the
medusa and polyp stages), with asexual reproduction
and regeneration (Piraino et al., 2004). Specifically
during the benthic polyp phase in several groups,
diversification associated with the development of
the exoskeleton allowed the exploitation of the many
habitats still occupied in modern oceans. Therefore,
the varying compositions, structures, and functions
of the exoskeleton probably contributed to the diver-
sification and species richness of Hydrozoa
‘Anthoathecata’, such as Stylasteridae, Bougainvillii-
dae, and Eudendriidae (Cairns, 2011; Mendoza-
Becerril & Marques, 2013; Schuchert, 2015), and
Leptothecata, which has the greatest species rich-
ness within Hydrozoa (Cornelius, 1982).

Diversification in Stylasteridae and Milleporidae
(not sister taxa) was indeed associated with the com-
position of the rigid exoskeleton, which is associated
to increase in survival and dispersal likelihood of
polyp fragments, produced by asexual reproduction,
or breakage (Cairns & Macintyre, 1992; Lewis,
2006). Other predation-avoidance strategies became
available, such as protection of the gastrozooids and
dactylozooids that can retract in Milleporidae (Kruijf,
1975), and the skeletal operculum that can close in
the gastrozooids of Stylasteridae (Lindner et al.,
2008). Although the physiological response to the
environment is similar in Milleporidae and Stylas-
teridae, the latter has nearly 18 times more species
than the former (268 vs. 15; Cairns, 2011; Schuchert,
2015). Stylasteridae is also much more widespread,
from the Arctic to the Antarctic (Cairns, 2007),
whereas Milleporidae is tropical (Milliman, 1974). In
addition to the mutualism of Stylasteridae with zoox-
anthellae (Milliman, 1974), we suggest that skeletal
structure may have also been important to its huge
diversification. Similarly, Bougainvilliidae, with 97
species, may owe its current widespread distribution
and tolerance to varying salinity (Mendoza-Becerril
& Marques, 2013) to its bilayered exoskeleton (peris-
arc and exosarc).

CONCLUSIONS

Skeletogenesis in Medusozoa dates back to the Edi-
acaran period, having over 600 Myr of evolutionary
history. Depending on the phylogenetic framework
adopted, the process of skeleton formation would be
present in the ancestor of medusozoans, although it is
not present in the basal Staurozoa. It appears that,
since the origin of skeletogenesis in this taxon,
polysaccharides, glycosaminoglycans, enzymes, and
other chemical and mineral compounds may have par-
ticipated in exoskeleton synthesis, and a combination
of these compounds results in the complex diversity
presently observed, i.e. corneous, coriaceous, fibrous,
and the new type described in this study, the bilay-
ered exoskeleton. The origin and transformation of
the medusozoan exoskeleton in general are associated
with biotic, abiotic, and physiological/ontogenetic
changes in habitats and animals, and an exoskeleton
is undoubtedly a key factor in Medusozoa evolution
and ecology. Future investigations on the subject
should focus on the developmental programmes
involved in skeletogenesis, but basic (even histologi-
cal) knowledge on several taxa is still much needed.

ACKNOWLEDGEMENTS

We thank colleagues in the Marine Evolution Labora-
tory, University of S~ao Paulo, for their suggestions,

© 2016 The Linnean Society of London, Zoological Journal of the Linnean Society, 2016, 178, 206–225

218 M. A. MENDOZA-BECERRIL ET AL.

D
ow

nloaded from
 https://academ

ic.oup.com
/zoolinnean/article/178/2/206/2674323 by guest on 25 April 2024



Jos�e E. A. R. Marian for sharing his knowledge on
histology, Fabio Rodrigues for his help with chemical
conversions, and James J. Roper and two anonymous
referees for their valuable suggestions on the text.
This study was supported by fellowships from Coor-
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