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Executive Summary

Work Package 4 (WP4) of the ACDC Competitiveness and Innovation Framework (CIP)
project has committed itself to develop comparative metrics that capture the number of
bots, their command & control structures as well as related botnet infrastructure. Such
metrics serve a dual purpose: evaluating the Pilot as well as incentivizing the actors
in the relevant markets to actually undertake mitigation – which can include using the
tools and services provided by the Pilot.

This report – “Documentation of botnet metrics methodology and development” –
starts by addressing the challenges related to these tasks. We begin by discussing how
data obtained from the central clearing house (CCH) and WP3 should be submitted to
a rigorous quality control process and then aggregated to make them amenable to sta-
tistical analysis, while at the same time complying with privacy requirements. The raw
data used for operational abuse handling and botnet mitigation typically lacks in quality
for reliable comparative metrics. It contains gaps, double counting and other problems
that have to be controlled for. The outcome of this task is a statically robust aggregated
data set that can support the development of comparative metrics for evaluating and
incentivizing botnet mitigation.

After that, we present a survey of the state-of-the-art of botnet metrics. We produce
an analysis on comparative metrics across various ISPs – which can be ultimately
used to determine and assess the botnet presence across ISPs and countries. We
identify the requirements for such metrics and identify how current botnet metrics fail
to meet then. Then, we present an methodology and approach to deal with one of
these main shortcomings – the effects of dynamic IP address allocation on reliably
measuring the number of infected machines. We present a measurement method to
estimate the degree of churn caused by Dynamic Host Configuration Protocol (DHCP)
and Network Address Translation (NAT) technologies in ISPs and subnetworks. In a
pilot study, we collect the relevant measurement data and carry out a preliminary test of
our approach. Finally, we introduce the improved specifications of the metrics, beyond
the state-of-the-art, to be used in our evaluation, and present a country level evaluation
using current datasets.

This report is the final version of Deliverable 4.1, which covers the documentation
of the botnet metrics developed within ACDC. The work package is now entering the
second phase, where the focus shifts to the assessment of the performance of ISPs
and the impact of countermeasures, such as those provided by ACDC.
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1 Introduction

The Internet is currently so important for the functioning of modern societies that it is
actually considered part of the critical infrastructure of many countries [1]. All kinds
of critical services, such as banking, energy, and transportation, heavily rely upon the
Internet to perform.

Such dependence, however, has made the Internet very attractive for criminal or-
ganizations, nation states, and activists as a medium in which crimes, cyber war, and
protests can be conducted. One well-known example of malicious activity on the In-
ternet is spam, the abuse of electronic email. It is estimated that between 84% and
90% of all e-mail messages are spam nowadays [2, 3], and behind it, cyber gangs
run lucrative operations by selling pharmaceuticals [4], distributing malicious software
(malware), carrying out distributed denial-of-service (DDoS) attacks, among other il-
legal activities [5, 6]. The impact does not stop on the Internet: it is estimated that
worldwide spam causes losses from $10 billion to $87 billion yearly [7].

Behind many types of attacks, we typically find a large amount of IP addresses,
part of the so-called botnets, which are essentially a large number of distributed com-
promised machines (called bots or zombies) under control of a botmaster [8, 9]. The
zombies can be seen as “hijacked” computers, located at homes, schools, and busi-
nesses, controlled by the botmaster to carry out malicious activities.

Recent economic research has found that the infected machines of end users (zom-
bies) are a key source of security externalities, most notably home users and small
and medium-size enterprise (SME) users1. In contrast to larger corporate users, these
groups often fail to achieve desirable levels of protection.

WP4 has committed to develop comparative metrics that capture the number of
bots, their command & control structures as well as related botnet infrastructure, across
networks. The effectiveness of the Pilot, or any other mitigation measure for that matter,
cannot be established without accurate and reliable reputation metrics across coun-
tries, markets and actors. Without such metrics, there is only anecdotal evidence that
cannot be reliably interpreted. Many factors impact the size and the rise and fall of
botnets. These have to be disentangled in order to develop evidence-based mitigation
strategies, including the strategy developed in the Pilot.

Using the data collected in WP3, WP4 aims to extract comparative metrics at the
levels of countries and the relevant actors, focusing on, e.g., the number of bots per
user in access networks, persistence of those bots, C&C infrastructure density within
hosting provider networks, and other metrics. All of this needs to take into account
relevant control variables, such as the size of the population or user base.

1See US GAO (2007). Cybercrime: Public and Private Entities Face Challenges in Addressing Cyber
Threats. United States Government Accountability Office. Available online at http://www.gao.gov/
new.items/d07705.pdf.
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Figure 1: WP4 Tasks Workflow

1.1 WP4 Tasks Workflow

In order to accomplish its goal, we have divided WP4 into 5 major tasks, as can be
seen in Figure 1. First, we obtain botnet data from the Central Clearing House (CCH),
and make it sure it conforms with the legal requirements (Tasks 4.1, 4.4). This data
is to be produced by WP3 and other partners, in a series of experiments and data
collection initiatives. Please refer to WP3 for more details on this matter.

Then, this data is subjected to a quality control process, in which a series of steps
are taken in order to guarantee that bogus data is removed and the quality of the data
is assessed (T 4.1). The output of T4.1 is robust datasets that can be then used in the
evaluation of the infection rates of various ISPs (T 4.3), which, in turn, have as input the
specification of the metrics developed in T 4.2. Finally, the benchmarks for this ISPs
will be published in T4.5. This interim report focus on Task 4.1 and 4.2.

1.2 Botnet Data and WP3 – Input for WP4

In WP4, the data we will use to assess the evaluate the impact of the pilot will be
obtained from the CCH (Figure 1). The CCH provides a centralized point in which
botnet-related data can be shared among all parters, taking into account the necessary
privacy and law requirements.

Data is fed into the CCH based on a series of experiments described in WP3,
and by all other sources the project partners might obtain. Regardless the type of
experiment and the source of data, there is currently no authoritative data source to
identify the overall population of infected machines around the world [10] or within
the EU. Commercial security providers typically use proprietary data and shield their
measurement methods from public scrutiny. This makes it all but impossible to correctly
interpret the figures they report and to assess their validity.

The publicly accessible research in this area relies on two types of data sources:

• Data collected external to botnets. This data identifies infected machines by their
telltale behavior, such as sending spam or participating in distributed denial of
service attacks;
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• Data collected internal to botnets. Here, infected machines are identified by in-
tercepting communications within the botnet itself, for example by infiltrating the
command and control infrastructure through which the infected machines get their
instructions.

Each type of source has its own strengths and weaknesses. The first type typically
uses techniques such as honey pots, intrusion detection systems and spam traps. It
has the advantage that it is not limited to machines in a single botnet, but can identify
machines across a wide range of botnets that all participate in the same behavior,
such as the distribution of spam. The drawback is that there are potentially issues
with false positives. The second type typically intercepts botnet communications by
techniques such as redirecting traffic or infiltrating IRC channel communication. The
advantage of this approach is accuracy, in the sense of very low rates of false positive.
The machines that connect to the command and control server are really infected with
the specific type of malware that underlies that specific botnet. The downside is that
measurement only captures infected machines within a single botnet. Given the fact
that the number of botnets is estimated to be in the hundreds [11], such data is probably
not representative of the overall population of infected machines.

Neither type of data sources sees all infected machines, they only see certain sub-
sets, depending on the specific data source. In general, one could summarize the
difference between the first and the second source as a trade-off between represen-
tativeness versus accuracy. The first type captures a more representative slice of the
problem, but will also include false positives. The second type accurately identifies
infected machines, but only for a specific botnet, which implies that it cannot paint a
representative picture.

Botnets are typically design to attack one or more different applications: they can be
employed to send spam, carry out DDoS attacks, perform port-scanning, host illegal
files, identity theft, bitcoin mining, cracking passwords, among others. As a conse-
quence, data observed from the attacks is highly dependent on the exploited applica-
tion.

In WP4, we will obtain data from the CCH and consider all these differences in the
data sources whenever evaluating the performance of ISPs.

1.3 Document Outline

Chapter 2 contains a detailed description of the initial research on data processing
and quality control. It takes into account the difference among the sensors used to
detect network incidents and filters out data based on duplicate entries, false entries
(e.g., non-valid/routable IP addresses, incomplete data). Then, it includes an analysis
of each data source obtained from the CCH to assess its properties: data stability,
similarity, and correlation using different models for that. After that, in Section 2.3, we
cover how data can be aggregated and enriched in such a way that ultimately produces
a robust dataset that can be used as input to asses the ISPs performance with regards
with botnet metrics.
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Chapter 3 survey the current existing botnet comparison metrics for botnets, and
produce an analysis on comparative metrics across various ISPs – which can be ulti-
mately used to determine and assess the botnet presence in various ISPs. We show
a list of requirements the metrics must fulfill and the problems with the current botnet
metrics.

In Chapter 4 presents an approach, we presents a novel approach to deal with two
main issues related to botnet metrics: DHCP churn and NAT effects. IP address counts
are typically used as a surrogate metric for unique identifiers. However, due to effects
of DHCP, the actual number of infected customers (in botnets) in an ISP network is
inflated by how often the ISP changes the customer’s addresses. In , we present an
active measurement methodology and apply it to measure entire ISPs, and validate
the precision of our measurements using ground truth from a 1 million IP addresses,
showing we were able to capture up to 78% of all sessions and 65% of their duration.
We then apply our method to four major ISPs and show how their session duration
varies. We finally present a statistical model to estimate DHCP churn rates and validate
against the ground truth from a mid-size ISP.

Chapter 5 finally contains a proposal for new metrics that we will employ to eval-
uate the performance of European ISPs and the impact of the ACDC project in miti-
gating botnets. Differently from Chapter 3, in this chapter we present a hands-on and
detailed description that shows how measurement data should be parsed, enriched,
anonymized, and exported to the CCH, so we can carry our our evaluations. In ad-
dition, we go a step further in the scope of this deliverable, by illustrating how the
proposed metrics can be used, by assessing the performance of countries as a bulk
over the last years for the data sources we currently have.

Finally, Chapter 6 we present the conclusions and a summary of the fundamental
aspects of the work.
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2 Data processing and Quality Control

ACDC Task 4.1 strives to produce data that enables to measure and to assess the
exposure of botnet activity. Critical point is to deliver reliable and trustworthy data
that allow to derive the required information of the employed metrics. This requires to
pre-process the data in such a way that it is statistically stable by ensuring strict quality
control.

This section begins with an overview of the aims and challenges that have to be
addressed. After that, we present approaches that can be used to measure and to
ensure the statistical stability of the data. Especially mathematical methods to analyse
time series are assessed for their applicability. The next part provides an overview
of the data aggregation and further processing. This also comprises the workflows
to retrieve data from the Central Clearinghouse (CCH) and to pass on the data for the
application of metrics. We then detail the specific implementation of workflows covering
formats for the data exchange and collaborative workflows for the specification and
implementation of metrics.

2.1 Aims and Challenges

The data is gathered by different sources and methods2. For example, different tech-
nical sensors exists to detect compromised systems and attacks which include, for
example, signature based Intrusion detection systems (IDS), anomaly detection sys-
tems, and honeypots. Each sensor has its own individual advantages and disadvan-
tages that differ, for instance, with the rate of false positives and the level of recorded
attack details. On the one hand a honeypot provides a very accurate and detailed de-
tection but on the other hand cannot detect any system that does not directly connect
to the honeypot. In contrast, a network based IDS or netflow collector can be deployed
at the edge of a network and theoretically allows to detect all compromised systems
that communicate with the Internet. However, IDS are prone to false-positives and can
be avoided by malware. This results in different characteristics of each sensor or data
source that has to be considered by the pre-processing of the data. These are in detail:

Characteristics of the sensor This includes:

Accuracy The accuracy of the sensor is closely related to the rate of false-
positives and false-negatives. In addition, the sensors differ in the details
of the results. Although an infected system might be correctly detected by a
sensor, it may be erroneously assigned to a wrong malware family.

Method of Detection Multiple different methods for attack and malware detec-
tion exist which include behavioral analysis, anomaly detection, and signa-
ture based attack or malware detection. It is important to note that the gath-
ered data differ significantly in its properties. Because each sensor might

2For examples see also the experiments in Task 3 of the ACDC Project.
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contribute different details of an attack, it is not reasonable or at least difficult
to assess or compare the trustworthiness of data originating from different
classes (e.g. anomalies versus honeypot data). However, correlation of the
data might lead to a more versatile perspective on botnet monitoring.

Level of Detail The level of detail varies with the method of detection. Usually, a
honeypot provides very detailed attack data whereas a method for anomaly
detection in netflow data lacks all details. As previously stated, aggregation
or correlation of the data might add value.

Characteristics of the source This includes:

DHCP Churn A lot of metrics for counting compromised systems rely on source
IP addresses. However, this address might change dynamically over time
resulting in counting unique systems twice or even more times.

NAT NAT gateways hide a private network. All connections from this network
have to use the public IP address of the NAT gateway. Therefore, it may
look like a single host is infected multiple times. In analogy to DHCP the
source IP address does not generally allow to identify or recognize a unique
computer. However, botnets exist that assign a unique identifier to each
compromised system allowing such identification. For example, according
to [12] the communication of Torpig bots comprises such an unique identifier.

Reliability of the data source and transport To produce statistically stable
data, it is important to monitor the reliability of the data source. For example,
a failure of the data submission has to be distinguished from a decrease in
the number of compromised systems.

In addition, some other challenges exist:

• Sensors might fail to correctly classify the attack. Even if an attack is correctly
detected the sensor might erroneously label the malware or type of attack (e.g.
by assigning a wrong malware family).

• The notation of malware is often ambiguous. For example, the Conficker worm
is commonly denoted as W32.Conficker, but other AV companies refer to it as
Downup, Downadup, and kido.

Assessment of the Data Quality and Stability

Pre-processing and aggregation aim at achieving a statistically stable data set. This
requires a precise definition of stability for which different mathematical models have
been introduced (for example in [13, 14]. These models apply to time series and other
stochastic data.

The first step of the assessment of the data quality is to determine the rate of
bogus data, false-positives, and false-negatives. Bogus data comprises all data that is
syntactically or semantically invalid. For example, this applies to malformed reports or
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reports that contain private or unallocated IP addresses. Unfortunately, it is very hard
to reliably measure the rates of false-positives and false-negatives.

It is unfeasible to exactly count the number of infected systems and attacks as pre-
viously outlined in Section 2.1. Instead, we propose to estimate this number and to
quantify the uncertainty that comes with the limitations. Although number and dis-
tribution of infected systems over networks and ISPs are subject to variations, it is
reasonable to assume that at large scale the statistical properties are stable unless a
change point occurs. Change points include, for example, a significant change of the
botnet‘s behavior or a failure of a sensor which leads to a major change in the num-
ber of detected systems. We propose to focus in the work package on the following
statistical properties of:

Number of Infected Systems and Attacks. Objective is to determine the stability of
the number of countable infected systems and attacks. The details are presented
in Section 2.2.

Similarity of the Distribution of Infected Systems. Objective is to determine the
stability of the distribution of infected systems and attacks (e.g. their IP ad-
dresses). The details are presented in Section 2.2.3.

Temporal Correlations in the Data. It is reasonable to look for correlations in the
data. For example, this could reveal a relationship between infected systems
and attacks originating from different data providers. We refer to Section 2.2.3 for
the details.

Ideally, the results give a good indication which data sets are reasonably stable.

Botnet Reconnaissance

Botnets exhibit in many aspects dynamic behavior. Almost all botnet related malware
are capable of updating the bot-software to impede detection and react to countermea-
sures. Furthermore, techniques are deployed to avoid pinpointing either the central
C&C server or the botnet structure. For example, peer-to-peer network structures are
deployed to make it more difficult to enumerate the number of hosts that are part of
the botnet. For that reason, researchers and Anti-Virus vendors spend efforts into the
reconnaissance of botnets and bots that contributes important information pertaining
the analysis and interpretation of data. This is valuable in many aspects:

• It is likely that there are variations in the accuracy of measuring botnet population
depending on the type and structure of the botnet.

• A change of botnet related software or behavior might result in a different nomen-
clature.

• Gaps in the data set may result either from a change in the botnet’s behavior or
from a successful countermeasure. Botnet intelligence could distinguish between
both causes.
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• Botnet intelligence may improve the quality control of the data, e.g. by providing
information about unique identifiers.

• Pre-processing of data might take the botnet structure into account. Botnet intel-
ligence contributes to grouping the data correctly.

2.2 Methods for Quality Control

Design and evaluation of comparative metrics require statistically stable data to ana-
lyze the effectiveness of initiatives reacting to the threat arising from botnets. These
metrics could, for example, reveal trends or change points in the number of infected
systems. Such conclusions cannot be derived without understanding the mathemati-
cal properties of the data. This section presents mathematical models to measure the
stability, similarity, and correlation of the data.

2.2.1 Detection of Bogus Data, Duplicates, and False-Positives

A first step is to exclude all data that is obviously bogus such as private IP addresses3.
Furthermore, duplicates should be excluded in this step. It is important to note, that the
definition of duplicates depends on the context in which the data is analyzed. For ex-
ample, two subsequent connection attempts from a unique source can be condensed
to a single event in cases in which only the number of attacking sources counts. How-
ever, all metrics that count the exact number of attacks might rely on the exact number
of connection attempts which therefore prohibits excluding duplicates.

A next step is to assess the rate of false-positives and false-negatives. Unless
the ground truth is known, it is practically unfeasible to exactly measure these rates.
False-positives can have the following reasons:

• Bogus IP addresses (e.g. private or unassigned IP addresses)

• Inaccuracies of detection methods. Legitimate connections are erroneously clas-
sified as attacks.

• Security systems such as honeypots that, for example, download malware for
research purposes may be detected as being infected.

False-negatives can have the following reasons:

• Fragmentary coverage of the monitored networks leads to incomplete data.

• Inaccuracies of detection methods. Attacks are not detected.

• Technical problems of the sensors. For example, network based IDS are limited
concerning their data processing capabilities and might not be able to monitor a
network cable at full load.

3An overview of theses addresses can be found in [15]
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There are at least two methods to address the problem of false-positives:

• A honeynet provides an environment in which selected malware (e.g. IRC-bots)
is executed under monitoring. This could be used to determine the rate of false-
positives as well as false-negatives for this specific but comparable environment.
However, it is hard to reproduce all sensor environments used in the ACDC
project to produce the resulting ground truth.

• The rate of false-positives can be determined by requesting additional data from
the data provider. For example, a feedback channel could be established through
which false-positives are reported.

As previously mentioned, it is very hard if not virtually unfeasible to determine the
rate of false-negatives. However, an estimation can be based on comparing data from
a variety of sources. This data includes attacks on the one hand and infected systems
on the other. Since botnets are often abused to send spam emails or to conduct DDoS
attacks, it is reasonable to assume that all systems involved in such an attack are
infected by a specific malware. Therefore, the resulting data sets should be similar if
all attacks and infected systems are detected by all sensors. If both data sets differ
significantly this might indicate a high rate of false-negatives. We refer to Section 2.2.3
and Section 2.2.3 how such correlations can be determined.

2.2.2 Mean and Variance and Trends

There are several reasons why an exact measurement of the number of compromised
systems, attacks, and other malicious activity is unfeasible. First, the sensors such
as IDS and honeypots are prone to false-positives and false-negatives. Second, it is
unfeasible to monitor the entire Internet leading to incomplete data. Attacks are often
conducted during initiatives. For example, botnets are used to send spam, conduct
distributed denial of services, or to scan for other vulnerable systems. All this results in
variations in the data which are difficult to predict.

Although the exact variations cannot be predicted, it is reasonable to assume stable
statistical properties on a large scale (e.g. the number of gathered compromised sys-
tems) if the behavior of botnets and the capabilities of detection do not change during
this interval. Thus, our aim is to analyze the data in order to find such stable conditions.

We consider a simple model of a time series

xt = µ+ wt (1)

where xt is, for example, the number of infected systems, µ is a constant value,
and wt are the previously introduces random fluctuations. Usually, the variations are
modeled by a white noise process4. Thus, we assume that the variations are distributed

4In detail, this is stationary process consisting of identical and temporally independent random vari-
ables that are normally distributed N(0, σ) (see e.g. [13, 14] for further details)
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around 0 having a constant variance σ. It is important to note, that we omitted a trend
in (1).

Since we assume randomly distributed variations well-known statistical methods
can be used to characterize the data. The mean value x̄ is

x̄ =
xt1 + xt2 + ...+ xtn

n
(2)

is a good estimation of µ which is in our example the average number of compro-
mised systems. In (2) xti is the number of compromised system at time slice ti. The
sample standard deviation S is

S =

√√√√ 1

n− 1

n∑
i=1

(x̄− xti)2 (3)

estimating the variance of the number of compromised systems. The mean and
standard deviation are important properties that allow to distinguish between random
variations and systematic changes which, for example, include a successful counter-
measure against a botnet. The difference between the observed change and the stan-
dard deviation is a measure for the confidence with which the change is, for instance,
be caused by an anti botnet measure. A common method is to apply the Student’s
t-test or Chi-Square test (e.g. [16]) to test this hypothesis.

We propose to compute the statistical properties of:

• Overall number of reported IP addresses for each data source. To avoid DHCP
churn, we propose to use time intervals of one day.

• Number of reported IP addresses that are related to prominent malware. This list
could take into account the work on Task 1.1.8 (Malware Prevalence Analysis).

• Number of specific attacks (e.g. number of spam mails or SSH scans)

It is important to note that the statistical properties may vary with the data contribu-
tor and malware type.

Estimating Trends in the Data

As previously mentioned, our model in (1) does not regard any trend in the data which
is, for example, be caused by a linear increase or decrease of infected systems. Al-
though this simplifies the mathematical approach, applying (2) and (3) provides erro-
neous results estimating the statistical properties of data containing a trend. This is
compensated by fitting the model:

xt = β1 + β2 ∗ t+ wt (4)

In (4), β1 and β2 are parameters that are usually estimated by applying the method
of linear regression (see e.g. [13, 14] for further details). After subtracting the trend
β1 + β2 ∗ t in (4) we get

Project Title: ACDC
Project Coordinator: ECO

16/94 Contract No. CIP-PSP-325188
http://www.acdc-project.eu/



Version 1.0, Jan. 27th, 2015

Figure 2: Statistical properties of infected systems indicating stability.

xt = wt (5)

which is the detrended data.
Since wt is assumed to be a white noise process, its statistical properties, including

the mean (2) and variance (3) can be computed after detrending.

A sample plot of the number of infected systems referring to some malware families
is presented in Fig.2. The curves show the number of infected IP addresses related
to the botnet “UnknownDGA17” (up-most curve), the Trojan family “Adware” (middle
curve), and the Trojan family “Zeus” (lowest curve). The botnet “UnknownDGA17” was
discovered on 8 October 2013 (see [17] for further information) whereas the infected
systems were recorded by a sinkhole to which botnet connections were redirected.
Although the exact number of gathered systems vary, the curve exhibits a stable linear
increase which fit our model in (4). The other curves related to “Adware” and “Zeus”
also provide stable statistical properties.

2.2.3 Similarity of the Distribution of Compromised Systems

Another aspect of stability is the similarity of the distribution of compromised or infected
systems. The distribution is given by the set of reported IP addresses which can be,
for example, grouped by data providers or malware types. In analogy to the statistical
properties we expect a quite stable distribution unless significant changes in the bot-
net behavior or detection occur. It is important to note that statistical stability does not
exclude any changes in the data which, for example, could be caused by a counter-
measure. However, the statistical properties of the changes are expected to be stable
in order to draw conclusions out of the reported data (e.g. a decreasing trend).
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An indicator for stability of the data is the similarity of the distribution of reported IP
addresses over time. Let Xt be a vector of IP addresses5 (1|IP1 , ..., 1|IPn) that are re-
ported in a specific time interval t (e.g. one day). Then as outlined in [18] the similarity
with the corresponding vector Xt−1 at an earlier time t− 1 can be expressed by

XtX
T
t−1

‖Xt‖‖Xt−1‖
(6)

where XY t is the vector product of X and Y and ‖X‖ =
√
x21 + ...+ x2n is the

Euclidean norm of the vector. Since each component of X is either 0 (if the IP is not
reported as being compromised) or 1 (the IP is reported as being compromised) (6)
can be rewritten as

‖St ∩ St−1‖√
‖St‖‖St−1‖

(7)

where St and St−1 are sets containing the infected IP addresses and ‖S‖ is the
cardinality of S. If both sets St and St−1 are disjoint (6) results in 0. If St and St−1 are
equal the resulting value is 1.

Alternatively, we introduce the vector Nt for networks. In contrast to Xt whose
vector components consist of the values 0 or 1 representing the occurrence of unique
IP addresses, the components of Nt contain the number of reported IP addresses
within a unique network6. Thus, the components represent networks and contain the
number of reported systems within that network:

N(t) = (n1(t), n2(t), ..., nm(t)) (8)

where nm(t) is the number of unique IP addresses that are part of the network nm
and that are reported in the time slice t as being infected. Eq. (6) changes to

NtN
T
t−1

‖Nt‖‖Nt−1‖
(9)

For example, it is reasonable to define the vector N(t) to comprise all class-c net-
works of a ISP or other data contributor.

It is important to note that (9) may compute to 1 even if absolute values of Nt and
Nt−1 are different (for example Nt = (1, 0) and Nt−1 = (5, 0)). Thus (9) could result
in a perfect similarity even if the absolute number of reported systems increases or
decreases which is counter-intuitive. This can be addressed by a modification of (9)

NtN
T
t−1

‖Nmax‖2
(10)

5For example, Xt would contain 256 components for the class-c network 192.168.0.X ordered from
192.168.0.0 until 192.168.0.255. Each component is either 0 or 1 dependent on the occurrence of the
corresponding address

6For example Nt could be (
∑

(192.168.0.X),
∑

(192.168.1.X), ...,
∑

(192.168.255.X) where∑
(192.168.0.X) is the number of reported systems in that network. In this example the IP ad-

dresses are aggregated at a level of class-c networks.
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where ‖Nmax‖ is max(‖Nt‖, ‖Nt−1‖). Thus, the similarity decreases with increasing
difference between Xt and Xt−1. We propose to use this measure if there is a large
difference between Xt and Xt−1.

Similarity and Correlation between different Data Sources

The similarity measures in (6) and (9) can also be computed between different sources
of data. Thus, the intention is to analyze if different sources report similar data. This
can be used to estimate the security tools precision and the trustworthiness of the
data contributors. Ideally, both sources gather similar data. If not, it is important to
understand why the data sets differ among the sources. In addition, a large similarity
between systems that are reported as being infected and sources of attacks likely
indicate that this botnet is conducting these attacks.

The ACDC project provides long-term data of compromised systems on the Inter-
net. The data covers different networks and sources. The aims of correlation is to find
meaningful relationships within this data. This includes:

• It can be expected that a change in the data series is simultaneously observed
by multiple data sources and networks. This can be confirmed by computing the
cross correlation between the time series representing the number of compro-
mised systems.

• It is likely that there is some form of relationships between different types of data.
For example, a growth of a specific botnet might lead to an increase in attacks or
spam emails.

The number of infected systems or attacks can be represented as a time series
X(t) whereas xt is the number of infected systems or attacks at time t. Let X(t) and
Y (t) be time series, then their correlation is given by

rXY =

∑n
i (xti − x̄)(yti − ȳ)√∑n

i (xti − x̄)2
√∑n

i (yti − ȳ)2
(11)

where x̄ and ȳ are the mean of X and Y , respectively (see [14] for further details).
It is important to note, that we assume in (11) a lag of 0 between both series. The
correlation coefficient r varies from 1 (perfect correlation) to -1 (perfect inverse corre-
lation). If X and Y are uncorrelated the value is 0. For example, if both time series
consist of random values7, they are uncorrelated.

Our aim is to find specific correlations within the data:

Correlations between Malware X and Y represent the number of infected systems
by different botnets or malware.

Correlation between botnets and attacks Alternatively, X could be the number of
compromised systems related to a botnet, and Y could be the number of attacks
(e.g. spam emails).

7For example, this is true for two jointly stationary time series consisting of Gaussian noise
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Correlation of different networks and data sources If two data sources are trust-
worthy, they should share the same temporal behavior.

2.2.4 Autoregressive Moving Average Model (ARMA)

Although the models in Section 2.2 allow to efficiently assess important properties of
the data they suffer from drawbacks: Correlations between the fluctuations are not con-
sidered. For example, it is reasonable to assume that an attack initiative of a botnet
lasts for a couple of days and a growth of attacks will be observable for more than
one day. For that reason, the number of attacks of two adjacent days are likely corre-
lated, which is not considered by the model in (1). Considering the correlations of the
fluctuations is especially important to reliably predict future measurements.

ARMA (Autoregressive Moving Average) models linear dependencies between the
current value and subsequent values of a time series. It comprises a family of models
that can be separated into the autoregressive (AR) and moving average (MA) part
differing in their mathematical properties. These models are explained in the remaining
part of this subsection. A critical task is the identification of an appropriate model and
the estimation of its parameters. Unfortunately, there is no simple and straightforward
approach and the choice of the model is sometimes neither easy nor obvious.

Mathematical Properties

The ARMA model is composed of the autoregressive (AR) and moving average (MA)
part. Common to both models is that they consider linear dependencies in the data.
Since both models differ in their properties we discuss their properties in two separated
parts and start with the AR models.

AR Models

An AR model of order p is defined as

Xt = φ1Xt−1 + φ2xt−2 + ..+ φpXt−p + wt (12)

In (12) wt is a Gaussian noise process WN(0, σ2) and φ1...φp are constants φ ∈ R.
The simplest model of the AR family is the AR(1) model:

Xt = φ1Xt−1 + wt (13)

It is similar to the previously introduced model in (1). However, in contrast
to (1) the AR(1) model considers a linear dependency between the lags t and t + 1.
Thus, if we have a large random fluctuation at t it affects directly the future value at t+1.

It is important to note, that even the model in (1) does not consider any direct
correlation of the values at t and t+ n, n ≥ 2, there is an indirect correlation which can
be seen in the autocorrelation function (ACF). The ACF computes the correlation of
different lags in a time series and is defined by
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Figure 3: ACF (above) and PACF (below) of an AR(1) model.

R(τ) =
E[(Xt − µ)(Et+τ − µ)]

σ2
(14)

where µ and σ are the mean value and the standard deviation of the time series
and τ is the time-lag. It is important to note, that we assume a stationary behavior
from which a constant mean µ follows. The previously mentioned indirect correlation
are eliminated by the partial autocorrelation function (PACF). Thus, the PACF is similar
to the ACF. However, in contrast to the ACF only the direct linear dependence between
Xt and Xt−τ are considered. For example, an AR(1) model has only a direct linear
dependence between Xt and Xt−1.

A time series that correspond to an AR(p) model has a characteristic pattern re-
garding its autocorrelations (ACF) and partial autocorrelations (PACF). An example for
an AR(1) model is presented in Fig. 3. The exponential decay in the ACF is character-
istic for this model. Thus, a random distortion at time t has an exponential decreasing
influence on the lag t + τ . As previously mentioned, the indirect dependence between
Xt and Xt−2 which can be seen in Fig. 3 in the ACF is eliminated in the PACF below.

MA Models

The MA model of order p is defined as

Xt = wt + φ1wt−1 + φ2wt−2 + ..+ φpwt−p (15)
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Figure 4: ACF (above) and PACF (below) of a MA(1) model.

In (15) wt are Gaussian noise processesWN(0, σ2) and φ1...φp are constants φ ∈ R.
The simplest model of the MA family is the MA(1) model:

Xt = φ1wt−1 + wt (16)

The characteristic ACF and PACF of an MA(1) are shown in Fig. 4. The ACF shows
a correlation between Xt and Xt−1 whereas the other lags are unrelated. The PACF of
the MA(1) model exhibits a characteristic exponential decay. It is important to note, the
the characteristic pattern of AR and MA models are converse.

Model Identification and Parameter Fitting

As mentioned above there is no simple and straightforward approach and the choice
of the model is sometimes neither easy nor obvious. Instead, multiple different ap-
proaches including the Akaike Information Criteria (AIC) and the Box-Jenkins method
have been proposed. AIC is a measure for the relative quality of the model that maxi-
mizes a trade-off between the likelihood of the model fitting and the complexity of the
model (we refer e.g. to [14] for more information). Although the accuracy of a model
may benefit from more parameters, it may lead to an over fitting of the model. That is
why AIC prefer a less complex model.

The Box-Jenkins method takes the ACF and PACF of the time series into account.
As previously shown each MA and RA model has a characteristic pattern regarding
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the ACF and PACF. For example, the number of related lags in the PACF indicates the
order p of a RA(p) model. Both approaches are, for example, supported by Python
“statsmodels” which also provides effective methods for the parameter fitting of a
ARMA model and the prediction of future values.

An criterion for the appropriability of a selected ARMA model and its parameters
is given by the ACF of the residuals. The residuals are the differences between the
predicted values of the chosen ARMA model and the current time series. If the model
is appropriate all values of the ACF of the residuals are uncorrelated.

Trend Models

A time series is weakly stationary if the mean does not change over time

E[Xt] = µ ∀ t (17)

and the relations between the lags do only depend on the lag h and not the time t

Cov(Xt, Xt−h) = Cov(X0, Xh) (18)

ARMA models are weakly stationary if the AR component is weakly stationary. For
example, this is true for the AR(1) model if and only if φ < 1. Analogous constraints
can be derived for higher order AR models. It is important to note that all time series
that exhibit a trend or a seasonal component are not stationary. For that reason, it is
important to assess a trend and seasonal component before applying an ARMA model.

A linear deterministic trend is given by

Yt = α + βt+Xt (19)

where Xt is a stationary ARMA process. In this case, the ARMA time series results
from subtracting the deterministic trend α + βt from (19). A time series that exhibits a
linear trend is presented in Fig. 5.

As previously mentioned, the AR(1) model Xt = φXt−1 +wt is weakly stationary for
φ < 1. A special case is the random walk process which is given by φ = 1:

Xt = Xt−1 + wt (20)

Although the expected mean is E(Xt) = 0 the variance growth over time violating
the second constraint in (18). A sample random walk process is presented in Fig. 6.
It is important to note, that subtracting enables to transform the process in (20) into a
stationary process:

Xt −Xt−1 = wt (21)

For a given time series, the augmented Dickey-Fuller test (e.g. [14]) allows to de-
termine stochastic trends.
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Figure 5: Sample time series exhibiting a linear trend.

Figure 6: Sample time series exhibiting a stochastic trend.
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Figure 7: DSHIELD attack data showing unique sources scanning for port tcp/445.

Application of ARMA Models to DSHIELD Data

To test the applicability of ARMA models for attack statistics we applied these models
to DSHIELD data ([19]). This data set is provided by the SANS institute and contains
attack data gathered by firewalls. One of its main advantages is that SANS collects
long-term time series of attacks dating back for more than a year. We decided to
use the attack statistics related to the TCP port 445 which is frequently scanned by
botnets and other malware for vulnerabilities in Microsoft Windows. For example, the
W32.Conficker worm exploited a vulnerability that has been accessible on this port.
The time series is presented in Fig. 7 containing unique sources scanning for port
tcp/445. The time interval is from 5th April 2013 to 5th May 2014.

As described in Section 2.2.4 the ACF and PACF indicate applicable ARMA models.
Both are shown in Fig. 8. While the ACF exhibits a slow decay the PACF indicates
a direct correlation between the first two lags. Both the ARMA(2,0) and ARMA(2,1)
models provided good results and minimized the AIC criterion. Finally, we selected the
ARMA(2,1) model because this model had a slightly lower AIC value.

An indication of the quality of the model fitting is provided by analyzing of the
differences between the prediction by the model and the data (residuals). A lack of
fit is indicated if the residuals are not randomly distributed, for instance, if the ACF
of the residuals shows a correlation between lags. The ACF of the residuals (first
graph) as well as the prediction of the ARMA(2,1) model (graph below) are presented
in Fig. 9 (first graph). Since the ACF of the residuals does not indicate any significant
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Figure 8: ACF and PACF of the DSHIELD attack data showing unique sources scan-
ning for port tcp/445.
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Figure 9: DSHIELD attack data showing unique sources scanning for port tcp/445.

auto-correlation, it good fit of that model can be assumed.

In summary, the main findings are:

• The ARMA(2,1) and ARMA(2,0) models provides a good fit for the DSHIELD time
series of the attacks against port TCP/445. Thus, there is a significant correlation
between the current value and the two subsequent values.

• The fluctuations are not completely random as assumed by the simple model
in (1). Therefore, the ARMA models provide a better characterization of the math-
ematical properties of the time series which includes a better prediction of future
values. It is reasonable to assume that other attack data also benefit from ARMA
models.

• The applicability of the ARMA models indicates that the time series is stationary.
Thus, there is no significant trend in this time period.

• The residuals are the difference of the model prediction (red dotted line in Fig. 9)
and the time series (green solid line). As presented in Fig. 9 the ACF of the resid-
uals are uncorrelated and allow in analogy to (1) to estimate the mathematical
properties of the remaining random fluctuations.
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2.3 Data Aggregation

Aggregation is a process in which data sets that share some properties are combined.
A lot of work including, for example, [20] have been done in this area. The aims of
aggregation are manifold:

Data reduction Some applications do not require all the details of the raw data. For
example, metrics that count attacks may not need all consecutive connection
attempts. Instead, related connections could be aggregated to a single event
“Portscan”. This prevents, for example, flooding in case of DDoS attacks. How-
ever, some approaches to analyze the data might require the raw data.

Data enrichment If multiple different data sets share the same IP address this data
can be combined into a single set. This is especially valuable if the data origi-
nates from different sources and varies in the technical details. Alternatively, a
set of related connection attempts can be grouped into a single event such as
“Portscan” or “DDoS”. Here, additional semantic information regarding the type
of attack are added to the event.

Prevention of false-positives Moreover, aggregation can improve the trustworthi-
ness of the data. An event that is reported from multiple independent sources or
different sensors is less prone to a false-positive alert. Moreover, the aggregation
allows to determine false positives if the aggregated data contains contradicting
events.

Normalization of the granularity of data The majority of metrics are used to count
attacks, compromised systems or malware. This requires a comparative repre-
sentation of the data. For example, a data provider might deliver already ag-
gregated data that cannot be directly compared to other raw data. Addition-
ally, this step could involve the normalization of the data such as the malware
and attack notation. For example, some AV vendors denote the Conficker as
“W32.Conficker” and others as “Downup” or “Kido” worm. Furthermore, a lot of
different variants exist lacking a precise discrimination.

Improvement of the stability Aggregation can be used to improve the stability of the
data. For example, this applies to the sum of infected systems if the variations
are random and are independent from each other8.

It is crucial to specify aggregation criteria that conform to the further data processing
in WP4. They specify common features that are used to group the data. For example,
it is frequently used to group all connections that share the same source IP address.
As introduced in [20] and formalised for IDS alert in [21] we use a data model to specify
the specific aggregation criteria. Basically, the data model consists of a hierarchy of
classes. The entities of each class specify the criteria used to group data. Furthermore,
the model might consider relations between classes. We propose to use the following
classes for the data model:

8This is resulting from the central limit theorem
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Malware This class considers common features that are related to malware attacks.
For example, an entity could be a unique malware family resulting from the nor-
malized malware prevalence analysis of Task 1.1.8.

Attacks Entities of this class are, for example, portscans, DDoS attacks, Spam emails,
and other attacks that are specified by the ACDC project members. Optionally,
this class could consider hierarchical relations between entities. For example,
DDoS attacks are frequently conducted by botnets. A detailed analysis of the re-
lationships between ISPs, botnets, and spam abuse has been conducted in [22].

Infected systems This class considers common properties of incident data related
to infected systems. For example, these properties regarding the source and
target of these attacks that include IP addresses, networks, organizations, and
nationalities. As previously mentioned, the DHCP churn and NAT are important
issues for this class.

Criteria related to different classes can be combined. For example, this applies to
the number of infected systems suffering from a specific malware (e.g. Trojan of the
Zeus family). As mentioned above, this model is used to derive the specific aggregation
criteria.

There are at least two methods that can be used for aggregating data that can
be grouped into lossless and not lossless approaches. The first approach clusters
a list of messages into a single message whereas all information is preserved. The
second alternative summarizes the data omitting the original messages. For example,
multiple connection attempts are aggregated into a single portscan report. Although
this compresses the data, information is lost.

It is important to note, that the aggregation criteria heavily depends on the metrics
that are detailed in Sec. 5. Furthermore, the experiments in WP3 also consider an
aggregation and correlation of the data. Therefore, these processes are synchronized
with the proposed metrics. For the first iteration we propose to consider the following
criteria for aggregation:

Attacks These criteria are shared with WP3 experiments and relate to the previously
mentioned attack class. It is important to note, that the experiments are work in
progress and the resulting incident data will be dynamically extended. Therefore,
additional criteria might be added to this class. Currently, we consider the follow-
ing points that are reflected by the “report type” field of the data format (see [23]
for further information)

• Spam related attacks (e.g. all reports that share, for example, an identical
spam message).

• Distributed denial of service (DDoS) attacks (e.g. all DDoS originating from
a botnet C&C server

• Malicious websites (e.g. that share a domain)

• Fast Flux domains
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• Mobile bots

Attack Sources These criteria consider the source of the malware or attacks

• Common IP address or network: All events are aggregated that share the
same IP source address or network. Duplicates (identical data and time
stamp) are omitted. It is important to note, that this aggregation criteria
requires to cope with NAT and DHCP churn. If the data protection guidelines
prevent aggregating IP addresses, network addresses (e.g. class-c network)
could be used instead.

• Common AS: All events are aggregated that share the same autonomous
system (AS) as source.

• Company Network: All events are aggregated that share the same company
network as source.

Malware Families This criteria relates to a common malware family that is associated
with a botnet. Starting point is the malware prevalence list of WP1. Crucial for
this criteria is to agree on a normalized malware nomenclature.

As previously mentioned, we consider a dynamic feedback loop regarding the data
processing. It is likely, that additional requirements arise during the evaluation of the
data analysis. For that reason, the criteria are to be adapted dynamically to future
needs.

2.4 Processes and Data Flows in WP4.1

An overview of the data flows is shown in Fig. 10 which presents two alternatives. Both
diagrams have in common that the sensor data is retrieved from of the central clearing
house (CCH). In the left alternative the data is pre-processed by a built-in component in
the CCH whereas the processing on the right is implemented by a separate component.
From there, the data is passed to the quality control and the data analysis.

Both alternatives have individual advantages and disadvantages. If long term
data has to be aggregated, a separate component as shown in Fig. 10 (right) is
advantageous because this method could better cope with potentially limited re-
sources in the CCH. Furthermore, more complex algorithms that are, for example,
used to correlate data could be better applied in an external component. On the other
hand, a pre-processing component that is part of the CCH is easier to implement
because existing features of the CCH are reused. Furthermore, no raw data has to be
transmitted to external components. This is an important advantage because it allows
to comply with data protection requirements.

Fig. 11 presents an overview of the data processing in WP 4.1. As described in
Section 2.2.1 the first step is sorting out all obvious bogus data. After that, the data is
normalized. As previously pointed out, the most critical issue of the data normalization
is to cope with different naming conventions of malware and botnets. In the next step
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Figure 10: Overview of the Data Flow in WP4.1

Figure 11: Overview of the Data Processing in WP4.1

the statistical properties are computed that relate to the quality control of the data.
Furthermore, this component identifies gaps in the data. Optionally and only in cases
in which prediction is applicable, gaps in the data could be closed by predicting missing
data.

In combination with botnet intelligence the data is used to extract stable parts that
fulfills the quality requirements. Botnet intelligence can contribute to the quality control
by adding information about the reliability with which bot are detected. For example,
a botnet might migrate the bots or change its communication behavior resulting in
artifacts in the botnet detection.

Before applying the metrics, the data is aggregated according to some of the pre-
viously specified criteria. Furthermore, duplicates are detected that share exactly the
same data fields containing redundant information. As previously pointed out the defi-
nition of duplicates depends on the metrics. Thus, at this step a less strict definition of
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duplicates is not reasonable.

Calibration Phase

There are many complex relationships between the data pre-processing and the sub-
sequent analysis. For that reason, we use a calibration phase to test the previously
introduced procedures. According to our expectation, the calibration process is very
important and has to be thoroughly tested. It is required to test the applicability of the
aggregation criteria and quality control.

In the first phase, all raw data will be delivered to the data analysis in WP4.2. The
experiences will be used to step-wise refine the aggregation criteria and quality control:

• Do the aggregation criteria comply to the security metrics?

• Does the data fulfill the statistical requirements?

It is likely, that data characteristic as well as data quality change within the project
duration. Therefore, we use the metrics that are detailed in Sec. 2.5.4 to assess the
properties of the provided data. If the assumptions detailed above proves to the true
other, more specific, quality metrics could be added to address more specific require-
ments.

Data Exchange Formats

A data exchange format is required that enables the transmission of pre-processed
data to the analysis in WP4.2. Critical requirements are the capability to handle aggre-
gated data and the flexibility to support most of the properties of the other data formats
that are used in the ACDC project. Thus, an extensible data exchange format is ad-
vantageous. Basically, there are two alternatives: a proprietary format based on JSON
and the XML based format IDMEF.

The assessment of data formats for ACDC in Task 1.1.7 resulted in multiple dif-
ferent formats that focus on different aspects. To standardize the information, a set
of common data fields have been proposed that is defined by a JSON schema. The
first alternative is to extend this schema to address aggregated data. Technically, this
requires to add cross-references and data types (e.g. “array”) for aggregated sources
or targets. For example, the minimal dataset as defined in [23] provides the field “ad-
ditional data” where an additional JSON object could be stored. This solution requires
only a minor effort for the implementation and supports the available solution of the
project. Furthermore, the JSON schema can be adjusted to new requirements rather
easily.

An alternative is IDMEF which supports aggregation and correlation, and provides a
quasi standard for the exchange of IDS alerts and malware attacks. This makes it easy
to exchange the resulting data set (e.g. fully anonymized and filtered) with third parties
associated to the project. However, the data format is very complex and requires some
effort to support it.
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Data Protection

As presented in Fig. 10 the data pre-processing of WP4.1 consists of gathering, pro-
cessing and exchanging the ACDC data related to security events. Since all these
tasks involve potentially person related data such as IP addresses their handling either
requires a legal basis or the data has to be anonymised prior to its usage. Even if the
metrics rely on aggregated data which omits all person related information the process
in which the aggregation takes place has to process the raw data that may contain
person related information. It is important to note, that the gathering, processing, and
data exchange have to be considered separately if multiple parties are involved:

Data Gathering WP4 relies on data that is submitted to the CCH whereas a legal basis
exists for the gathering and processing of this data related to incident handling.
A critical point is whether the legal allowance can be extended to use the data for
the intended statistical analyses9 or not. If not, the data has to be anonymized
prior to statistical analysis. Alternatively, the anonymization can be implemented
by the aggregating component (e.g. by summarizing all events that originate from
a specific network).

Data Processing As shown in Fig. 10 there are two alternative data flows differing in
the location of the data processing. The left alternative proposes that the data
processing which includes the data aggregation is conducted in the CCH. This is
advantageous because there is no transmission of the data that may violate the
data protection guidelines. The right alternative considers to exchange the raw
data between the operator of the CCH and other project members where the data
is processed. This step is considerable and requires a legal basis unless the data
is anonymized before the transport. However, a full anonymization might render
the data useless for a further analysis.

Data Exchange The data exchange to subtask WP4.2 is the most critical point be-
cause it means sharing potentially personally identifiable information (PII) with
other ACDC partners for the purpose of a statistical analysis of this data. It is
reasonable to consider technical means to anonymize or pseudonymize the data
before the transport. As previously mentioned, the data aggregation could be
used to anonymize the data. It is important to synchronize this step with the
specification of the metrics.

2.5 Implementation of the Data Processing

Based on the requirements of the data processing outline introduced in Section 2.4 we
next detail the implementation covering the processing of the data and workflows to
introduce new metrics.

9In legal terms this is a change of purpose.
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2.5.1 Acquiring and Pre-Processing the Data

Application of metrics rely on attack data that is submitted by the partners of the ACDC
project. It is important to note, that the data has to comply with the requirements of the
specific metrics which comprise the quality, availability, and completeness of the data.

The overall aim of the workpackage 4 is to assess the impact of the project
pertaining the countermeasures against botnet threats. It is reasonable to assume that
this goal can be achieved without the need to process person related data in general,
and IP addresses in particular. If required, pseudonyms could be used that replace IP
addresses or other sensitive data. Here, we adopt the “Research” workflow that has
been detailed in Deliverable 1.7.2 in [23] to acquire data.

Application of the metrics implies requirements pertaining the quality of the raw
data. Since this pre-processing does not depend on a specific metric it is reasonable
to define processes that precede the application of the metrics.

Reduction of False-Positives by discarding known non-malicious scanners This
process aims at reducing the number of known false-positives. An increasing
number of security researchers are scanning the Internet for services and vul-
nerabilities distorting the reports and statistics of attacks and sources. Reports
pertaining these system have to be discarded.

Plausibility Tests Most importantly, the plausibility of the timestamp has to be
checked to discard all events that have a timestamp that is either in the future
or outdated.

Reduction of Duplicates In this case duplicates are defined as events that are acci-
dentally submitted multiple times. It is important to note, that a broader definition
of duplicates could depend on the applied metrics.

Data Standardization Standardization addresses especially the specification of mal-
ware and botnets. This standardization is enforced by the CCH during import.

Data Normalization This affects the granularity of the data. Selected data sets shall
be normalized to enhance comparability.

This also includes timestamps. They should all be set to the same timezone
making it easier for comparison. This may be included in Data Standardization
during import into the CCH.

Data Enrichment Data Enrichment includes e.g. adding the AS-number to a dataset.

Quality Control Quality control excludes obviously bogus data such as private IP ad-
dress ranges.
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2.5.2 Unified Data Format

This section proposes an additional data exchange format that addresses the specific
requirements for the data exchange of data in WP4.1 and 4.2 and takes the specific
metrics in Sec. 5.1 and Sec. 2.5.4 into account. It will be added to the Deliverable
D1.7.2 after it reached its final version. It is important to note, that this format is specif-
ically defined for data that is delivered by the “Research” Workflow. As such, no fields
are provided that contains person related or sensitive data such as IP addresses.

Statistical Data Exchange Format
This data format is designed to extract statistical data from the CCH.

Required Fields
report category string The category of the report. This links

the report to one of ACDCś schemata.
A report category has the format
eu.acdc.aggr.<identifier>.

report type string The type of the report. This is a free
text field characterizing the report that
should be used for a human readable
description rather than for automatic
processing. As a rule of thumb this
should not be longer than one sen-
tence.

timestamp string: format times-
tamp

The timestamp when the first reported
observation took place. This can for
example be when an attack occurred,
when a malware hosting was ob-
served, or when a compromise took
place according to log files.

aggregation type Boolean True, if data is aggregated, False if not
Required Fields for Aggregated Data

These fields apply only for aggregated data
measurement window integer minimum: 0 The time interval in hours in which the

aggregated data falls into, e.g. 24h.
aggregation field string enum, e.g:

Submission Key,
Report Category,
Source Value

The Field that is used to aggregate
the data. For example, “Report Cat-
egory” state that all reports that have
the same value are enumerated in the
measurement window.

aggregation criteria string Value of the criteria: e.g. AS680
aggregation value Integer Number of aggregated data entities

Required Fields for non-Aggregated Data
These fields apply only for non-aggregared data
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source ASN string Number of ASN the attack originated
from

source type string enum: hash,
pseudonym, network

The type of the reported object. Since
this format is associated with the Re-
search Workflow, strict data protec-
tion is considered. This requires to ei-
ther fully anonymise the data (e.g. by
discarding the last Byte of the IP) or
to replace the IP with an pseudonym.

source value string The identifier of the reported object
like its pseudonymised IP address or
hash. If the source type “pseudonym”
is selected, a prefix preserving psu-
domysation algorithm is applied that
preserves the data type for IP ad-
dresses.

Optional Fields for Specification of the Source
These fields apply for a further specification of the source.

organization string Source of the attack, e.g. Deutsche
Telekom A.G.

country string Source of the attack, e.g. Germany
(Geolocation DB).

city string Source of the attack, e.g. Munich (Ge-
olocation DB).

Optional Fields
Other optional fields

report id Integer The ID of the report in the CCH. This
will be set by the CCH.

reported at string: format times-
tamp

The timestamp when the report was
submitted to or created by the CCH.

report subcategory string The subcategory of the report. This
is used to categorise different types
of similar reports that have mostly the
same fields. It is defined as an enum
in the schema of the report category.

aggregation descriptionstring Free text description of the aggrega-
tion criteria, e.g. shared ASN of net-
work

ip protocol number integer minimum: 0
maximum: 255

The RFC 790 decimal internet proto-
col number of the connection.

Project Title: ACDC
Project Coordinator: ECO

36/94 Contract No. CIP-PSP-325188
http://www.acdc-project.eu/



Version 1.0, Jan. 27th, 2015

src port integer The source port of the connection.
This is always the remote port from
the perspective of the attacking sys-
tem.

dst port integer The destination port of the connec-
tion. This is always the remote port
from the perspective of the reported
system (i.e., the one identified by
source value). It can for example be
the port of a honeypot that was con-
tacted to infect it.

type of connection string Type of the connection according to
Maxmind connection DB, e.g. DSL

toplevel domain string Top-level domain according to reverse
DNS data , e.g. dtag.de

Table 1: Data format specification to extract data from
the CCH

2.5.3 Methodology and Method for Adding Metrics

The application of new metrics cannot be achieved without an appropriate pre-
processing of the data. We here introduce a workflow and specification for metrics
that is used to implement the required pre-processing and data export in the CCH. It
is important to note, that different partners associated with different workpackages are
required to smoothly set up the data processing. For that reason, a specific and unam-
biguous workflow is necessary to achieve this aim. Moreover, all metrics have specific
demands pertaining the required input data and quality. If these requirements are not
satisfied the results are either invalid or may be misleading. For example, a fluctuation
of a data source might be erroneously interpreted as a change in the number of bots
that belong to a specific botnet. That is why care has to be taken if a new metric is
added.

Before the CCH can provide a data feed for a metric several tasks must be fulfilled.
We follow a two-man-rule-based methodology. Precisely it should be a multi-step col-
laborative four-eyes principle with both parties being experts in the field of processing
and metric definition. This includes a third party reviewing and evaluating changes or
new subjects before they are submitted to the operator of the CCH. The basic idea
for this procedure is to reduce errors, misconceptions and misconduct. Reviewing the
intention and the proposed algorithm for processing can also reveal and remove possi-
ble ambiguity before the operator of the CCH is asked to implement the metric and its
processing steps.

Preliminary Workflow
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1. All required information for a metric must be defined. This typically includes the
data defined for the template as provided by [24].

2. Before the defined processing is forwarded to the operator for implementation a
review of its pseudo code shall be conducted to remove possible ambiguity.

3. If any changes are advised by the reviewer on either the metrics definition or the
processing pseudo code the metric’s creator shall check the proposed changes
whether they comply with his intentions.

If the metric’s creator accepts the changes the metric and its processing
pseudo code can be transmitted to the CCH’s operator for implementation.

Otherwise, if the metric’s creator does not accept the changes the process
starts again.

4. If required or requested by the metric’s definition the operator of the CCH must
enrich the data as specified. If the requested additional data cannot be supplied
by the operator the operator shall follow the guidelines to be specified in that
very section. In any case in which those instructions are not supplied the default
action ’DROP’ shall be applied resulting in excluding that data set from further
processing.

5. If required, the operator of the CCH must implement the pseudo code of process-
ing to prevent any ambiguity. If ambiguity is detected the metric’s implementation
shall be stopped until the ambiguity is resolved.

6. If application of the metric is applied external to the CCH the operator of the CCH
must implement the data exchange format to be specified. The metric’s creator
must also define its workflow. During the project’s lifespan Deliverable D1.7.2
shall be updated to include the data exchange format.

7. If all previous steps are successfully performed the metric can go live.

2.5.4 Processes and Metrics for Quality control

In this section we present processes and metrics that are devoted to the quality control
process of the data. The metrics are intended to gather data for a statistical analysis
using the algorithms described in Section 2.2 for time series and similarity measures.

Process for Quality control

Objective of the Process This process aims at reducing the number of known false-
positives and to drop all data that does not conform to quality requirements. It com-
prises the following steps:

Black-listing non-malicious systems Since an increasing number of security re-
searchers are scanning the Internet for services and vulnerabilities these events
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distort the reports and statistics of attacks and sources. These systems are omit-
ted from the attack data10.

Validation of Timestamps Timestamps are valid if they are within a configurable time
window. For example, it is reasonable to discard all data whose timestamp is
either in the future11 or exceed a backward limitation of 1 week.

Validation of IP addresses All events that contain an IP address that is within private
or unassigned IP address space should be discarded.

Legal Statement Since the data processing is performed in the CCH, no legal issues
are expected.

Data Selection The white-list is applied to all data that is submitted to the CCH.

Data Enrichment Not applicable

Data Exchange Format Not applicable

Semantics of the Process The semantics of the data are not changed.

Application of the Process The process is applied as a filter to all data that is sub-
mitted to the CCH. Thus data processing takes place in the CCH.

Quality Assessment: Number of Reports

The Metric’s Objective The metric aims at identifying gaps or anomalies in the data
that might be caused by a failure of the data submission or the sensor. This is achieved
by computing the total number of reports pertaining all data sources in a specific time
interval. Data sources are unique keys that are used to submit data to the CCH. In the
context of the metrics, gaps are time intervals where no reports are submitted or where
the number is significantly less than the average number of reports.

Legal Statement Since only statistical data is collected legal issues do not arise from
this metric.

Data Selection and Quality Criteria This metric is applied to all data sources (CCH
keys) that submit data to the CCH. Since this metric is used to assess the data quality,
no quality criteria are expected.

10As long as their IP addresses are known.
11Considering the timezone!

Project Title: ACDC
Project Coordinator: ECO

39/94 Contract No. CIP-PSP-325188
http://www.acdc-project.eu/



Version 1.0, Jan. 27th, 2015

Data Exchange Format Sample for Quality Metrics I
Required Fields

report category eu.acdc.aggr.quality1.
report type Statistical data to identify gaps and anomalies in the

quantity of submitted reports.
Time Stamp string: format timestamp
aggregation type True
measurement window 24
aggregation field Submission Key
aggregation criteria <Instance of Submission Key>
aggregation value Integer
aggregation description Aim is to count all reports that has been submitted with

a unique Submission Key
Optional Fields

Report ID Integer
Reported at string: format timestamp

Table 2: Data Exchange Format Sample for Quality Metrics I

Data Enrichment Not applicable

Data Exchange Format The data exchange format as specified in Section 2.5.2 is
used. See Table 2.

The Metric’s Semantics This metric measures the number of events that are sub-
mitted by the different data source. Here, a data source is associated with a unique
CCH key that is used to submit data.

Quality Assessment: Distribution of Reports

The Metric’s Objective The metric aims at identifying gaps or anomalies in the data
that pertain the distribution of reported systems. The metrics compute the number of
reports that are associated to ASNs and if feasible networks. The assumption is that
anomalies and gaps distort the statistical stability of the data.

Legal Statement Since only statistical data is collected legal issues do not arise from
this metric.

Data Selection and Quality Criteria This metric is applied to all data sources (CCH
keys) that submit data to the CCH. Since this metric is used to assess the data quality,
no quality criteria are expected.

Project Title: ACDC
Project Coordinator: ECO

40/94 Contract No. CIP-PSP-325188
http://www.acdc-project.eu/



Version 1.0, Jan. 27th, 2015

Data Exchange Format Sample for Quality Metrics II
Required Fields

report category eu.acdc.aggr.quality2.
report type Statistical data to identify gaps and anomalies in the

source distribution of submitted reports (ASN or net-
work).

Time Stamp string: format timestamp
aggregation type True
measurement window 24
aggregation field ASN or source_value
aggregation criteria <Instance of ASN or Network>
aggregation value Integer
aggregation description Aim is to count all reports sharing a common ASN or

network as source of the attack
Optional Fields

Report ID Integer
Reported at string: format timestamp

Table 3: Data Exchange Format Sample for Quality Metrics II

Data Enrichment The ASN and optionally network has to be derived from the source.

Data Exchange Format The data exchange format as specified in Section 2.5.2 is
used. See Table 3 for details.

The Metric’s Semantics This metric measures the number of events that are asso-
ciated with an ASN or network as source of the attack.

2.6 Summary

The overall aim of the data processing is to provide a statistically stable data set that
allows to derive the requested results of the propsed metrics. In this section we pre-
sented requirements and statistical approaches to achieve these aims. Furthermore,
we presented collaborative workflows to specify and to implement the data exchange
and the application of metrics. To address data protection requirements the data pro-
cessing will be conducted as far as this is possible in the CCH, which mitigates the
problem of transfering sensitive data.
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3 Botnet Metrics

A critical problem that all botnet mitigation efforts face is this the lack of consistent
metrics to measure the impact of countermeasures across networks and over time.
The absence of metrics also undermines the incentives of market actors to act against
botnets.

It is costly for ISPs and other market players to mitigate botnets. Previous research
suggests that most ISPs are not attacking the problem at the scale at which it currently
exists. The effectiveness of mitigation measure cannot be established without accurate
and reliable reputation metrics [25]. Without such metrics, there is only anecdotal
evidence that cannot be reliably interpreted.

As the “U.S. Anti-Bot Code of Conduct (ABC) for Internet Services Providers (ISPs)”
states, ”the current inability to uniformly measure the bot population and the results of
activities to reduce bots” [26] is a key barrier to implement broad botnet remediation
initiatives [27].

The lack of metrics also create an information asymmetry which impedes the func-
tioning of markets and may even result in market failure. If consumers, businesses,
regulators and other stakeholders cannot reliably tell more secure ISPs from less se-
cure ISPs, then the market incentives to invest in mitigation are weakened.

Therefore, in WP4, we will investigate what kind of network measurement data is
required to statistically account for botnet population in the networks of ISPs, and how
this data can be expressed in mature and comparative reputation metrics at firm and
country level that provide more transparency regarding the efforts of providers and
countries in mitigating botnets.

Comparative metrics will be developed at the level of countries and ISPs, focusing
on, e.g., the number of bots per user in access networks, persistence of those bots,
C&C infrastructure density, and other metrics.

The goal of this chapter is to provide the foundations upon which we can build to
define robust comparative botnet metrics. It is structured as follows: In Section 3.1, we
present background information on metrics in computer science – from the networking
and software engineering disciplines – which have a story of development and have
been widely used and validated, which we base upon while defining our botnet metrics.
Then, in Section 3.2 the requirements we envision for botnet metrics. After that, (Sec.
3.3) we present a survey on the current botnet metrics. Finally, in Section 3.4, we map
the requirements that the existing botnet metrics fail to meet.

3.1 Background: Metrics in Networking and Software Engineering

In general, a metric can be defined as “a standard of measurement”. In computer sci-
ence, metrics have been a frequent term and research topic in mostly networking and
software engineering disciplines. In this section, we cover how metrics are addressed
by these two disciplines.
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3.1.1 Networking

In networking, metrics have been usually associated with performance and routing.
For example, RFC 2330 [28] – “Framework for IP Performance Metrics”, has the goal
of “achieve a situation in which users and providers of Internet transport service have
an accurate common understanding of the performance and reliability of the Internet
component that they use/provide.” It’s definition of quantitative metric is as follows: “In
the operational Internet, there are several quantities related to the performance and
reliability of the Internet that we’d like to know the value of. When such a quantity is
carefully specified, we term the quantity a metric.”

It also establishes the criteria that performance and reliability metrics must satisfy:

• The metrics must be concrete and well-defined,

• A methodology for a metric should have the property that it is repeatable: if the
methodology is used multiple times under identical conditions, the same mea-
surements should result in the same measurements.

• The metrics must exhibit no bias for IP clouds implemented with identical tech-
nology,

• The metrics must exhibit understood and fair bias for IP clouds implemented with
non-identical technology,

• The metrics must be useful to users and providers in understanding the perfor-
mance they experience or provide,

• The metrics must avoid inducing artificial performance goals.

RFC 2544 [29], on the other hand, defines a “ benchmarking methodology for net-
work interconnect devices”. In addition, metrics have been used in network routing,
as a value to be used by a routing protocol to determine whether one particular route
should be chosen over another (e.g., hop count, latency, packet loss, etc.).

3.1.2 Software Engineering

Software engineering encompasses a series of software metrics, which servers as a
measure of a property of the particular software code or its specifications [30, 31].
Software metrics elaborate some of the characteristics which can be generalized and
applied to botnet metrics. For instance in [30] Kaner et. al proposes a framework to
evaluate defined metrics based on some questions which include defining the purpose,
scope , scale, variability, among others. Moreover, the IEEE body has defined a stan-
dard for a Software Quality Metrics Methodology (IEEE 1061) [31], in which the subject
is extensively covered.
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3.2 Botnet Metrics Requirements

In order to be useful, the botnet metrics must fulfill a series of requirements. The more
fundamental requirements are related to the software engineering discipline, from the
IEEE Standard for a Software Quality Metrics Methodology (IEEE 1061) [31]. Kaner et
al. [30] summarizes the requirements as follows:

• Correlation. The metric should be linearly related to the quality factor as mea-
sured by the statistical correlation between the metric and the corresponding
quality factor.

• Consistency. Let F be the quality factor variable and Y be the output of the
metrics function, M : F− > Y . M must be a monotonic function. That is, if
f1 > f2 > f3 , then we must obtain y1 > y2 > y3

• Tracking. For metrics function, M : F− > Y . As F changes from f1 to f2 in real
time, M(f) should change promptly from y1 to y2 .

• Predictability. For metrics function, M : F− > Y . If we know the value of Y at
some point in time, we should be able to predict the value of F .

• Reliability. ”A metric shall demonstrate the correlation, tracking, consistency, pre-
dictability, and discriminative power properties for at least P% of the application
of the metric.

Besides these fundamental requirements, we add extra requirements for the botnet
metrics:

1. Metrics are comparative across networks.

Metrics have to be useful to compare networks. This implies not only that they
are based on data that is collected across networks, but also that the metric
is normalized to take network properties into account when calculating infection
levels.

2. Metrics are comparative over time.

Measurements might fluctuate because of the rise and fall of specific botnets,
changes in the criminal business models behind botnets, improvements in detec-
tion techniques, or better evasion strategies by attackers.

3. Metrics are able to take input of differing data sources with different biases.

Given that all data sources have intrinsic limitations, a metric ideally would take
different sources as its input and produce a consistent rate as its output.

4. Metrics are reliable, which means that they must have an acceptable levels of
random error

Some data sources, such as spam traps, are basically sampling strategies. To
generalize from these samples to a metric for the whole network might introduce
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significant random error, which means the metric would fluctuate even if the in-
fected population remains the same over time. RFC 2330 further highlights some
of the common sampling strategies which can assist in correctly identifying mea-
surement window.

5. Metrics are valid, which means that they accurately represent the actual infection
level in a network. In other words, they do not have systematic errors.

Many data sources suffer from the problem of capturing only a partial view. A
sinkhole might see all bots in a botnet, but only for that botnet. A spam trap
sees bots from different botnets, but never all of them. Each source suffers from
different systematic biases. For example, the geography of the spam trap may
influence which infected hosts try to reach it. The geography of a host may impact
the probability it is attacked with a certain type of botnet infection and, hence,
whether it would show up in a sinkhole of that botnet.

6. Metrics are normalized, so that they express the infection level, rather than the
size of the network or other properties.

If we count bots per country, the country with more Internet subscriber will typi-
cally have more bots. This does not mean it has higher relative infection rates,
e.g., more infections per subscriber. To compare infection levels we need to nor-
malize number of infections by subscribers and potentially other factors.

7. Botnet metrics take into account impact on users.

Not all botnet infections are equally active or dangerous. For example, some
machines are persistently infected but may not be active because the botnet is
abandoned. Those infections that are active should be given higher weight. Simi-
larly, among active bots, those involved in more impacting activities could also be
given higher weight, e.g., being infected with spambot infection might be consid-
ered less of a threat to the user impact than an infection with a banking Trojans.
We might also consider taking the potential to do damage into account by look-
ing at their geographical location, their bandwidth or their presence in sensitive
networks like banks, military or government systems.

3.3 State-of-the art on Botnet Metrics

In this section, we cover the state-of-the-art on botnet metrics. We have carried an
extensive literature review on the current metrics and cover and present an analysis on
the current metrics.

Moreover, we also propose a classification of these metrics into three categories,
as follows:

• IP-based: metrics that use the originating IP address of traffic related to infected
machines. For example, a standard metric is to count the number of unique IP
addresses sending out spam from ISPs’ network, where each unique address is
interpreted to represent at least one spambot. However, due to effects of DHCP
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and NAT, IP addresses are far from perfect proxies for the number of compro-
mised hosts [12].

• Host-based: metrics that are build based on data that directly and reliably iden-
tifies individual hosts on the Internet. An example metric is the number of bots
in ISP networks as seen in data from anti-virus software deployed at customer
end point devices or in data from sinkholes for those botnets that assign unique
identifiers to its bots

• Proxy-based: metrics that are estimations based on traffic volume associated
with botnets (spam, ssh attacks, DDoS, etc). We refer to them as proxy-based
methods as the data does not have any identifiers (neither IP address nor host),
but rather assumes a correlation between the observed activity and the number
of infected hosts in a network.

Each individual metric that falls into these categories can be further extended, by
aggregation (per AS, country, etc.), by normalization (e.g., number of spamming IP
addresses divided by size of IP pool or user population), or by being turned into a rating
based on a different scale than the original metric. All of these types metrics allow for
some type of comparison of different Internet intermediaries. Figure 12 summarizes
this relationship.

Figure 12 shows these different metrics as consecutive steps away from the raw
data captured at collection points. While these different types of metrics do typically
follow each other, this is not necessarily the case, however. Once could produce a
ranking metric without normalizing the botnet counts, for example. We would consider
such metrics to be rather useless for evaluating and incentivizing mitigation, as they do
not take into account important differences among networks and countries. That said,
such drawbacks don’t stop some security vendors from producing ranking of the most
spamming or the most infected countries in the world.

Table 4 summarizes the state-of-the-art of existing metrics and their respective ref-
erence. It presents a list of current metrics used in the research on botnets. We also
classify them accordingly to the measurement window that was used, the underlying
data source, the metric’s aggregation level, whether normalization was applied (e.g.,
considering the size of the AS) and if a final ranking was produced. These metrics
cover both industrial and academic communities.

In Table 4, we can see that many metrics are based on IP addresses or traffic vol-
ume, even though host-based metrics are more precise, and often offer the additional
benefit of including more precise information on the detected malware strains. This
reflects the wealth and accessibility of data on which metrics can be based. The data
required for host-based metrics is much more scarce and often derived from a very
specific collection mechanism with unknown biases – i.e., the anti-virus client of a spe-
cific vendor, who does not reveal how many clients they have in each network. To the
extent that the data is available, it is often proprietary and less accessible to indepen-
dent researchers or intermediaries interested in transparent metrics based on (semi)
open data.
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Figure 12: Taxonomy of botnet metrics
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We can also see that aggregation of mostly done at the level of ASes or countries.
These might reflect research questions that needs to be addressed, but can also be
attributed to the fact that these aggregations are relatively easy to execute. Several
publicly available datasets which can help map IP addresses to geogrpahical location
and ASN [32, 33, 34, 35]. This stands in contrast to the lack of aggregation to the ISP
level (where one ISP may operate several or even many ASes). This is unfortunate, as
the bulk of the infections are concentrated in ISP networks and ISPs have become crit-
ical players in botnet mitigation [36, 37, 38, 39]. The dearth of ISP-level comparisons
might be due to unavailability of available tools to reliably and historically accurately
map IP addresses to ASes to ISP.

Metric Type Measurement
Window

Data
source

Agg. Normalized Ranking

estimated
# of hosts [40,
41]

IP per hour / per
day

Sinkhole - -

extrapolated #
of bots [42]

IP per day Honeynet
and Dark-
net

# of Source
ASes

Avg, num-
ber of IP
scanned
per botnet

# of bots per
AS [43]

IP per day Spam
email

ASes, BGP Top 20
AS and
countries
sending
spam

Malscore [44] IP 60 days IRC-
based
botnets
HTTP-
based
botnets

ASes Size of AS AS Ranking

Botnet activ-
ity [45]

IP per day Spam
Data

ISP # of sub-
scribers per
ISP

ISPs

CCM [46] Host quarter Malwares
cleaned

Country Number of
computers
cleaned for
every 1,000
unique
computers
execut-
ing the
Malicious
Software
Removal
Tool

Countries

Unique ma-
licious ob-
jects [47]

Host quarter Malwares
detected

Country, %
of unique
attacked
users

Countries
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spam volume [48] Host quarter spam,
Web Ex-
ploits,
Malware,
DDoS

Themes
for spam,
Platform
(Windows,
Linux,
Mobile)
Country

Countries,
Platform

# bot IDs per
countries [12]

Host 10 days, per
hour , per day

Sinkhole Country Countries

Suspiciousness
score [49]

Proxy per day recursive
DNS
(RDNS),
spam

# of malicious
domains [50]

Proxy 1.2 days DNS ,
spam

Active Size [51] Proxy per day Spam
emails

Clustered
emails into
spam cam-
paigns / #
of countries
participated
in sending
spam

Badness
score [52]

Proxy per day Click-
spam

Search Ad
Network,
Mobile Ad
Network,
Contex-
tual and
Social Ad
Networks

ASrank[53] IP per day malware ASes Size of AS AS

max spam
vol per asn

min spam
vol per asn

[25]

IP per day spam ASes,
Country

Size of AS Country

% malicious
hosts per asn

[54]

IP 30 day Phishing,
malware,
spam

ASes Size of AS % of mali-
cious hosts
per asn

% spam caught
[55]

IP per day spam ASes Size of AS,
Size of sub-
net

reputation
subnet rep-

utation asn
cluster based
reputation [56]

IP per day spam
emails

BGP prefix
cluster ,
DNS cluster

% spam caught
[55]

IP per day spam ASes Size of AS,
Size of sub-
net

reputation
subnet rep-

utation asn
# of infected
domain clus-
ters [57]

Proxy per day DNS DNS cluster
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Figure 13: Relationship between ISPs, botnet and home users

# of bots per
timezone [58]

IP per day sinkhole bots per
continent

total num-
ber of bots

number of
syn con-
nections
by botnet
sent per
continent

# of unq ip
per spam cam-
paign [59]

IP per hour spam
emails

Countries,
ISPs

Top-20
Countries
with the
Most Bot
IPs, Top-20
ISPs that
Host the
Most Bot
IPs

# of unq sus-
pected bots
[60]

IP per day sinkhole flows (src
ip,dest
ip,src
port,dest
port)

Table 4: Summary of Current Botnet Metrics

3.4 Issues with Current Botnet Metrics

In this section, we present in more detail the main problems with current botnet met-
rics. In the next chapter, we can then explore innovative methods and approaches to
overcome them, allowing us to produce more reliable metrics.
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Figure 14: Number of unique IP addresses per RIPE probe

3.4.1 IP-based metrics

Currently, most of botnet metrics are build upon counts of compromised IP addresses,
including all the metrics of the type “IP” in Table 4. Typically, all the IP type metrics
void several of our requirements: consistency, tracking, predictability, reliability, among
others.

The reasons for that is due to DHCP and NAT effects. To illustrate this, consider
Figure 13. In this Figure, we see that a subscriber of ISP A is using a home router (with
DHCP and NAT) to connect three laptops to the Internet. Laptop 1 has two malware
instances running, while laptop 3 has one and laptop 2 has none. There are three bots
which are operating from two different laptops and are hiding behind a single public
routable IP address.

This exemplifies how complex it is to count botnet presence in ISP networks, and
how IP addresses do not correspond to the number of botted computers. To show
how the number of IP addresses may significantly differ from the actual number of
hosts, we have analyzed the variation on the number of IP addresses of 1,064 RIPE
Atlas probes [61]12, over 1 year period. As can be seen, there is a significant variation
among the probes and, on average, each probe had 24 IP addresses (1:24). In another
study, Stone-Gross et al. [12] hijacked the Torpig botnet for 10 days, and found that on
average, each bot had (1:7) IP addresses, varying significantly according to ISP and
country.

In the next chapter, we present an active measurement approach to estimate DHCP
churn in different ISP networks and subnetworks.

12Atlas probes are small hardware devices distributed all over the world and used to measure In-
ternet connectivity and reachability, developed and maintained by the Réseaux IP Européens Network
Coordination Centre (RIPE NCC).
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3.4.2 Host-based metrics

Host-based metrics are built on data that can reliably identify individual hosts on the
Internet, regardless their location and IP address.

Typically, such measurements are very hard to obtained, since it typically requires
some form of access to the hosts themselves. This requires either highly intrusive
probing from the network, much more intrusive than would be deemed acceptable ac-
cording to current practices, or the owner of the machine to run software that produces
this data. One of example of the latter is a metric generated by Microsoft, based on
telemetry of more than 600 million end user machines that have opted in to run an
anti-malware tool.

Microsoft Security Intelligence Reports include a metric for infection rates called
”Computers Cleaned per Mille” (CCM). This counts from how many hosts malware
was removed for every 1,000 unique hosts executing the Malicious Software Removal
Tool (MSRT), a free tool for malware removal that is distributed as part of Microsoft Au-
tomatic Updates. Similarly, Trend Micro publishes a quarterly report where they report
counts of the number of unique malware infections reported for mobile, desktop/laptop
computers and point-of-sale systems. In each of the categories they also rank the
malware relative to each other.

Even though these metrics tend to more precise than IP-based ones (fulfilling the
requirements specified on IEEE 1061), the main issue with them is that access to them
is either restricted – meaning ACDC parters are not able to obtain it – or they are
presented to the public in aggregated levels – e.g., country or AS level.

3.4.3 Proxy-based metrics

The main issue with proxy-based metrics is that they basically express estimates,
rather than direct data, on the number of infected machines. The volume of spam
or DDoS traffic leaving a network has been shown to be correlated to the number of
infected machines in that network, but it can never be very precise. Many factors can
influence these measurements. While the correlations might be useful at the aggre-
gate level, we cannot use it to compare individual ISPs. For example, a small ISP is a
highly-connected country may generate a larger DDoS attack than a bigger provider in
a country with less connectivity, even if the latter has many more infected computers.

Therefore, proxy-metrics should only used for purposes that fit with their shortcom-
ings. Within ACDC, they might be helpful to triangulate other measuruments, but they
cannot provide a precise picture of infection rates.

3.5 Summary

In this section we have covered the state-of-the-art of botnet metric and presented
background information on metrics in the disciplines of networking and software en-
gineering. We have also presented the requirement for botnet metrics and discussed
how the current metrics (in groups) fail to address those requirements.
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In the next chapter, we present a methodology and an experiment to deal with the
issue of DHCP/NAT of IP-based metrics. The next (and final) version of this deliverable
will cover the other issues with other metrics as well.
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4 Dealing with DHCP Churn and NAT Effects

In this chapter we focus on a critical problem with current IP-type botnet metrics: the
impact of DHCP and NAT effects on counting infected machines. Other problems, as
covered in Section 3.4, are dealt with in the specification of the metrics.

4.1 Introduction

There have been a number of measurement studies into the usage of the IPv4 ad-
dressing space, mostly focusing on the degree in which allocated address space is
actually used [62, 63], on quantifying statically versus dynamically managed address
space [64] and, to a lesser extent, on the duration of use of addresses [65]. Rela-
tively little work has been done on measuring the relationship between addresses and
hosts [66, 67, 68, 69], especially for large-scale for highly dynamical managed networks
of Internet Services Providers (ISPs).

The differences among networks are substantial, and such usage variation within
and among ISPs poses a challenge to any research that, in lack of a more precise solu-
tion, relies upon IP addresses as a surrogate for the unique identifiers of hosts, as is the
case in much research in Internet security. Metrics produced with this surrogate can be
dramatically wrong. Take the example of counting the number of compromised com-
puters (bots) [8] in an ISP: it is well-known that the number of IP addresses observed
in malicious activity correspond to a completely different number of hosts for different
ISP networks [70]. By hijacking the Torpig botnet, for example, Stone-Gross et al. [12]
were able to observe that infected hosts at German ISPs changed their IP addresses
faster than others, on average around 13.4 times over a 10 day period, compared to
2.9 times for American bots and 1.8 times for Dutch bots. So within just 10 days, us-
ing IP addresses to count malicious hosts can be off by one order of magnitude. This
number of addresses per host over time is commonly referred to as DHCP churn rates,
regardless of the underlying technology used to assign the IP address. In the absence
of a reliable way to measure this churn [70], it is very difficult to develop reliable security
metrics, as well as other host counts based on IP addresses.

To understand why there is such variation among and within ISPs, we have first to
understand the relation between ISPs and IP addresses. To connect customers, ISPs
are allocated with network prefixes [71] by their respective Regional Internet Registrar
(RIR) [72], which in turn, receive those prefixes from the Internet Assigned Numbers
Authority (IANA) [73]. ISPs then advertise their prefixes to other ISPs usually employ-
ing the Border Gateway Protocol (BGP) [74]. ISPs and organizations that provide con-
nectivity to hosts are free to decide how/what prefixes should be assigned to end users
in light of their business requirements. Using a variety of technologies (e.g. DHCP
[75], RADIUS [76], BRAS), IP addresses are assigned (statically or dynamically) to
hosts.

Each of these technologies, in turn, may be configured with a different set of pa-
rameters, such as the size of the IP address pools and lease time (the time an address
is assigned to a client) [77]. In an ISP, we expect sub-prefixes to exhibit different usage
patterns from one another [68]: prefixes assigned to business customers is likely to
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differ from a wireless hot-spots block or a home DSL block in terms of session times
duration and prefix usage, which are more likely to be managed at /24 [64]. We also
expect the usage patterns to vary when comparing different ISPs.

Due to the large number of ISPs and privacy/security issues, currently there is no
authoritative way to measure DHCP churn across multiple ISPs/countries/jurisdictions.
In this paper, therefore, we present an scalable active measurement-based method-
ology based on [65] and employ it to measure the dynamics of all prefixes of sev-
eral Autonomous Systems (ASes). Even though session durations have been previ-
ously measured for random prefixes [65], it is unclear to which degree such active
measurement-based methods are capable to capture the dynamics of all addresses
allocated to different ISPs/ASes. We assess the precision of our methodology by com-
paring our measurements against ground truth data from an 1 million IP addresses
ISP.

We make the following contributions: (i) we present and assess the precision a
scalable measurement methodology to measure session times of all active IPs within
an AS (Section 4.3); (ii) we then apply the methodology to ASes of four large ISPs
and show how their IP usage/visibility, session duration and inactivity varies, and how
this results can be used to profile /24 level policies based on their IP address usage
(Section 4.4). We then (iii) develop a statistical model (Section 4.5) to estimate the
number of different users behind IP addresses (DHCP churn rates) over the monitoring
period and validate it.

4.2 Measurement Methodology

We first provide in this section background information on IP addresses assignment
and then present our methodology.

4.2.1 Background: IP Address Assignment

Various technologies can be deployed by ISPs to assign IP addresses to hosts. These
include (i) Dynamic Host Configuration Protocol (DHCP) [75] servers, (ii) Remote Au-
thentication Dial In User Service (RADIUS) servers [76], (iii) IP pools managed by
Broadband Remote Access Servers (BRAS), among others. The latter are often de-
ployed with Point-to-Point Protocol (PPP) [78]. Due to space constrains, we do not
delve into the specifics of these protocols, and instead look at IP assignment in generic
terms.

ISPs assign either static or dynamic IP addresses to clients with a certain lease
time, which is the time interval that an IP addresses is assigned, which can also be
extended – a DHCP client may issue a request message to extend the duration of the
lease time, which typically happens after half of lease has been expired. Moreover,
determining the most appropriate lease time for is far from being an obvious tasks:
short leases times lead to high volume of broadcast traffic, while long lease times can
lead to exhaustion on the address pool space [68].

Figure 15 shows an example: a device has been assigned with the address
2.2.2.2 at Ts, having L1 as initial lease with default lease time (L1). These lease
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Figure 15: Session Duration and Errors

was then renewed twice (L2, L3). The device disconnects at Te. The session duration
of a device in a network is a function of the default lease time (Lease, in time units):

Session(Lease) = n× Lease− (Lnend − Te) (22)

in which n is equal the number of leases (n ∈ ℵ|n ∈ [0...∞]) and Lnend is the time
in which the last lease ends (these might differ since DHCP, for example, does not
mandate a client to inform a server when it disconnects [75], therefore active leases
might be allocated to offline devices). Ultimately, the session duration of a device
therefore is not only influenced by the way IP pools and leases are configured, but
also by human behavior (e.g., users deciding when to connect or disconnect from the
network) as well as external-factors, such as network failures and power outages [79].

4.2.2 Method and Metrics

Figure 15 summarizes the relationship between our probing method and the measure-
ment session duration of an IP address. A random device uses the IP 2.2.2.2 for the
time interval Te − Ts. To actively estimate this session, we send four probes (pn). In
this example, three probes were successfully replied, indicating the device was active
and reachable, while p4 did not succeed, to which we assume the device disconnected
from the network.

We define measured session duration of an IP address to a device as the inter-
polation of the timestamps of continuously acknowledged probes (ACK). For 2.2.2.2
this is the time difference between the timestamps of the ACK messages of p3 and p1
(we disregard the time interval between the time the packet is sent and received). The
measured session is an approximation of the actual session duration, which, for the
same figure, is Te− Ts.

Whenever a hosts disconnects, its former IP address might be reassigned to a
different user. As a consequence, an IP address may have multiple users over a mea-
sured period of time. In our method, we also calculate the number of sessions each
IP has been assigned. Finally, based on the same method, we can also calculate for
each IP the time in between sessions, i.e., how long it takes for an IP address to be
re-assigned.
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4.2.3 Probe Design and Measurement Setup

The two main requirements for our probing design is to be ISP-independent and scal-
able. It must enable probing entire ISP’s address ranges in a short time frame, with-
out requiring a large amount of computer resources. In this sense, we employ active
probing as a measurement technique to be ISP-independent and employ ZMap [80],
a high-performance network scanner to achieve scalability. Additionally, the design
should minimize traffic footprint and respect user’s privacy, i.e., collect the minimum
information necessary about the probed systems. Next we present our choices for the
probing design:

Measurement Protocol: Several protocols can be used to probe the state of an
IP address (probes pn in Figure 15). We chose to use ICMP [81] echo request/reply
messages (types 8 and 1) over TCP and UDP since ICMP has proved to be less fire-
walled, generated less abuse messages (and usually considered “benign traffic”), and
be more accurate than TPC and UDP [65, 82]. ICMP also generates a smaller traffic
footprint, and better respects user’s privacy, since no information other than system
status is obtained.

Number of Probes: As discussed in [79], “one ping is not enough”. Whenever an
ICMP packet reaches a router that does not know the MAC address of the destination,
the ARP RFC [83] states that the router should drop the packet and then, send a
ARP request instead, impacting our results. Therefore, we choose to send two probes
instead per IP per measurement. More probes could possibly lead to more accurate
results, at expenses of increased traffic footprint.

Measurement Tool: Standard Unix measurement tools, such as nmap [84], ping,
and hping3 can be used as probing tool in our design. However, none of these afore-
mentioned tools is designed with scalability as a main requirement. Therefore, we em-
ploy ZMap [80], an open-source network scanner that enable to scan the entire IPv4
address space within one hour time. Besides being more scalable, ZMap outperforms
nmap in accuracy, since it has a higher connection timeout when waiting for echo reply
messages. In our measurements, we could easily probe more than 400K IP addresses
per second, using one single computer.

Frequency of Measurements: The frequency of the measurements play a crucial
role in network measurements. One common sampling scheme is to send the probe
packets separated by a fixed sampling interval. However, using a uniform sampling
interval the probes might not capture the true system behavior. Due to DCHP polices
and user behavior, there is a possibility that periodic samples may be synchronized
with a periodicity in the system under observation. Moreover, commonly used uniform
sampling misses high-frequency components and causes aliasing in low-frequency
components. Some sampling problems can occur where the samples and system
periodicities are not synchronized.

Random sampling is an important step towards more accurate network measure-
ments [85]. It has long been recognized that one way to overcome aliasing in sampling
is to sample at random intervals rather than at uniform intervals. Therefore, our ap-
proach is based on random additive sampling: samples are separated by independent,
randomly generated intervals that have a common statistical distribution G(t). G(t) is
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Figure 16: CDF of the inter-probes sending interval

defined by ZMap randomization algorithm. ZMap selects addresses using a random
permutation of a cyclic multiplicative group of integers modulo a primer and generat-
ing a new primitive root (generator) for each scan. To verify this, we have carried 144
measurements (1 every 5 minutes) over 1 million IP addresses and analyzed G(t), and
obtained the timestamps from the outgoing IP packets from the pcap files.

Figure 16 shows the empirical cumulative distribution function of G(t) compared to
a normal distribution. As expected, ZMap sends the probes randomly according to a
normal distribution with mean equal to the sending interval, i.e., N (5, 0.06). Thus, by
using ZMap we achieve a Non-Uniform Probabilistic sampling strategy avoiding phase-
lock problems while being non-intrusive [85].

We have determined empirically the most suitable interval in between each mea-
surements in Section 4.3.1. Thus, we run the scans every 10 minutes with an average
inter-probes sending interval equal to G(t).

It is important to emphasize the difference between our work and [65]. Contrarily to
theirs, our probe selection method is random and does not have bias to active portions
of the address space. Moreover, we probe entire IP address spaces of ISPs, while they
use sampling instead (24K /24 prefixes, 9,200 probes/s), at more than 400K probes/s.
In addition, their interval between measurements is 11 minutes while we employ 10
minutes, and we employ an open-source tool (Zmap) as measurement tool.

Measurement Setup: Our probing setup was configured in a Ubuntu 12.04 Server
edition, in a Kernel-based Virtual Machine (KVM), with 6 3.3GHz Xeon cores and 8GB
of RAM. The measurements were originated from the network of our university of Delft
University of Technology (TU Delft, AS 1128), which has SURFNet (AS 1103) as up-
stream provider.

In this setup, the most demanded resource is CPU power – our average network
throughput was∼ 25Mpbs on a 1Gbps line. We found that the version of ZMap we used
did not guarantee packets transmission13, and had to run it with three threads only to

13See https://github.com/ZMap/ZMap/issues/136
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avoid packets being dropped on our side. We probed and logged the IP address and
the timestamp at of the corresponding ICMP echo response (SRC IP, timestamp).

4.2.4 Limitations

There are several limitations in this method that ultimately impact the precision of the
results:

Visible IP Addresses: As discussed in [65], any active probing method can only
account for the “visible” part of pool of probed addresses. Many online hosts are ex-
pected to be located behind network/application firewalls, network address translators
(NAT) which may block all probes destined to a certain network. Moreover, when not
behind network firewalls, hosts/customer-premises equipment (CPE) may have their
own firewall, and block probes.

Transient Errors and α threshold: Packet losses due to network failures (e.g.,
poor wireless links), limiting-rate network firewalls, intrusion detection and preventions
(IDPS) systems, may also lead to incorrect measurements. In Figure 15, if probe p2
would have been lost, the ACK message related to p2 would not be received, and
therefore there would be two sessions, p1 − p1 and p3 − p3, instead of p3 − p1. To
cope with error incurred by transient failures, we introduce a tolerance threshold α.
This threshold defines how much longer (in seconds) the algorithm should wait before
considering a host offline whenever a probe is not acknowledged. By definition, the
algorithm waits for the fixed period of measurements (1/f ). We added α seconds to
this period in order to cope with such errors.

Sampling Errors: Our measurements are subject to random sampling errors. Un-
certainties associated with the divergence due to sampling errors are generally small
compared to the average measured magnitude. For example, measurement may start
after a session has been initiated on the DHCP server, and therefore, not measure it
(m1−Ts) in Fig. 15. Similarly, it may miss the ending of a session, which leads to other
errors - (Te −m3) and (Te −m3) and (m4 − ξ2). To mitigate such errors, we weight each
timestamp with a uniform distribution of mean 1/f as in [86].

4.3 Validation

Any active measurement method requires its precision to be verified. In our case, it
requires us to rely on sources that have ground truth data on the session durations.
We collaborated with ISP, a mid-size ISP with approximately one million IP addresses,
for this research. ISP is the largest privately held broadband service provider in Iran
providing a range of services, mostly based on DSL technologies [87]. We carried out
the measurements and provided the ISP staff with the results from ZMap; they then
compared this against their customer IP log files, and provided us aggregated informa-
tion on the results. For privacy reasons, we were not given access to the session logs
directly, and data processing was performed at the ISP.
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ISP DHCP logs - Sessions Duration (h)
m-0 m-600 %-m0 %-m600

5min 29,560,569.95 33,071,437.91 58.58% 65.54%
10min 29,248,506.23 31,594,275.51 57.97% 62.61%
20min 28,630,164.97 28,630,164.97 56.74% 56.74%
30min 28,233,964.92 28,233,964.92 55.95% 62.95%

ISP DHCP - Sessions
m-0 m-600 %-m0 %-m600

5min 26,536,848 41,899,400 226.62% 357.29%
10min 15,192,248 8,143,872 129,55% 69.44%
20min 9,324,855 9,324,855 79.51% 79.51%
30min 7,179,625 7,179,62 61.22% 61.22%

Table 5: Results of Interval in Between Measurements

4.3.1 Interval in between Measurements

The measurements described in this section all leverage the fact that probes are in-
trusive. To determine the interval in between the measurements, we first obtained the
BGP prefixes announced by ISP from RIPE Routeviews [88], which have corresponded
to 1,081,344 unique IPv4 addresses. After that, we have probed twice every IP allo-
cated to ISP every 5 minutes, for one week (May 22–28, 2014), using the methodology
described in Section 4.2. After processing all ZMap output files, we generated a file that
reconstructs the DHCP sessions of the ISP users (m-0). We repeated the procedure
adding an offset α of 600s (threshold parameter, (m-600), Section 4.2.4). We choose
this value in order to cope with possible transient/network errors.

Then, we vary the probing rate and observe how the accuracy of the results
changes. To that end, we process ZMap output files for 10, 20, and 30 minutes probing
interval. We compare the accuracy of the results for each probing interval with the
DHCP log files (ground truth, % w.r.t to it), as can be seen in Table 5. On the one
hand, short probing intervals (i.e., < 5m) lead to underestimate the number of ses-
sion (∼35%). On the other hand, larger intervals (>10m) increase only marginally the
precision in terms of session hours. Thus, there are trade-offs in among the measure-
ment accuracy, the probe rate, and the overhead on the network. Increasing the probe
rate beyond 10 minutes might lead to the situation that the probes themselves skew
the results. We therefore choose 10 minutes intervals and use it the remainder of this
paper.

4.3.2 Address and Prefix Visibility and Usage

After determining the 10 minutes time in between measurements, we employ a mea-
surement dataset that we have generated for 2 continuous weeks (March 22nd – April
5th, 2014). That lead to a file having a total 14,533,525 measured sessions (m-0), and
m-600 with 8,215,301 measured sessions (m-600).

Before evaluating the precision of our method, we first need to determine whether
our ICMP-based method is able to obtain response from a significant part of addresses
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ISP Session Logs
# IP addresses

Measurements 714,139
Session Logs 752,098
Measurements ∩ Logs 709,586 (94.95%)
Only Session Logs 42,510
Only Measurement 4,551

Table 6: Validation Datasets

allocated. We have sent 4,641,128,448 probes (two probes per IP, per measurement),
to which 356,805,959 IPs (non-unique, total) responded. In average, 166,266 of the
∼1M IP addresses responded per measurement, which shows that the ISP, at any
given time, has in use 15% of its pool – which was confirmed by the ISP, providing an
insight on how the ISP (re)use its pool of IP addresses.

Table 6 shows the number of unique IP addresses observed on the measurement
and on the ground truth. As can be seen, our method was capable to obtain response
from 94.95% of the addresses employed by ISP (the ratio of intersecting IPs between
measurement and DHCP logs) during the measured period. The remainder IPs in the
DHCP log files of ISP (42,510) did not respond either because of firewalls or because
our probes might have missed those IPs due to sampling rate.

Interestingly, there were 4,551 IP addresses only found in our measurements: those
are assigned to devices such as routers and servers that do not have their IP addresses
recorded in the ground truth we employed in this paper. In addition, part of these
addresses were allocated to business customers, which, in turn, maintain their own
independent DHCP servers, therefore not included in the ground truth.

Figure 17 shows the time series of the number of unique IP addresses, in which
each point represents the total number of unique IP addresses observed until that
measurement. As can be seen, there is an asymptotic curve towards the number of
used IP addresses over time. The 1st derivative at a point P determines the ratio of new
IP addresses being used at the time P took place. This supports our probing method,
in which we probe entire IP address spaces, instead of sampling certain portions of IP
addresses as in previous works, which might lead to incorrect results with regards the
usage of the address pool space.

4.3.3 Session Duration Distribution

We processed the output file generated by our software at the ISP, which aggregates in-
formation per IP addresses in the format of the tuple (SRC IP, NSessions(Measur.),

NSessions(DHCP), SumDuration(Measur.), SumDuration(DHPC)), for α = 0 and
α = 600 (m-0 and m-600, respectively). This tuple provides us enough information for
validation while keeping privacy of users.

Table 7 summarizes the results. In the first line of the table (
∑

all), we show the
sum of the duration of all sessions for the measurements and ground truth. Then, in the
second line

∑
∩IPs, we show what portion of these measured hours overlap in time with
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ISP DHCP logs - Sessions Duration (h)
m-0 m-600 DHCP∑

all 59,676,305.56 60,733,610.81 96,899,976.59∑
∩IPs 59,336,733.11 59,374,111.53 90,874,619.90

Ratio 65.29% 65.33%
Error 0.29 0.28

DHCP - Sessions
m-0 m-600 DHCP∑

all 14,533,525 8,215,301 19,877,570∑
∩IPs 14,432,133 8,182,572 18,498,448

Ratio 78.01% 44.23%
Error 0.42 0.50

Table 7: Validation Results

the measured hours from the session log files – that is, that captured correctly online
time intervals of the intersecting IP addresses. This is shown in the Ratio line, which
is obtained by dividing

∑
∩IPs of the measurements by the

∑
∩IPs. As can be seen,

for both measurement files (m-0 and m-600), our method was able to account for ∼
65% of the online time of all the observed IP addresses. It is important to highlight the
meaning of these findings: by only sending frequent ICMP messages, we were able to
infer correctly 65% of all of the sessions duration observed at ISP. Due to our sampling
rate, we technically miss all sessions that start and end in between two consecutive
time intervals. Increasing the frequency would lead to better results, however at the
price of increasing traffic footprint.

Another finding is that the threshold parameter α only slightly improves the accu-
racy of the session durations. To understand why, we further analyze the number of
sessions by comparing m-0 to m-600. We can see that m-600 in fact reduced the total
number of measured sessions, by merging two distinct sessions. This, in turn, has led
to 37,378.42 more hours being correctly estimated, which is a small fraction of the total
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Figure 18: Scatter plot of DHCP logs vs. m-0/m-600

hours (
∑

all) at cost of a higher error in the number of sessions.
However, when comparing the average session duration per IP

(SumDuration(Measur.)/NSessions(Measur.)), m-600 outperforms m-0 in es-
timating the average session time on IP addresses, as can be seen in Figures 18 and
19. Fig. 19 shows the histogram of these results: m-600 follows closer the shape of
the ground truth (R2 = 0.69), and is capable to estimate average sessions if from IPs
having long average duration sessions. m-0, on the other hand, is sensitive to any
packet loss, and estimates a larger number of very short average sessions (R2 = 0.50).
Comparing Fig.19(b) to Fig.19(a), we can see that m-0 performs poorly in estimating
the correct number of sessions with duration inferior to 50 hours, which is explained by
the fact that those IPs did not respond to the probes while they were actually online.
The reasons for that are hard to pinpoint, but include either real-time firewall/IDPS,
probe loss, transient error, graylisting, as discussed in Section 4.2.4.

4.4 Analyzing Larger ISPs

Having assessed the precision of our methodology, in this section we apply it to ASes
of four major ISPs from different countries: AT&T, British Telecom, Deutsche Telekom,
and Orange, as can be seen in Table 8. Using the same setup described in Sec-
tion 4.2.3 we probed the ISPs for 17 continuous days (March 13th – March 29th, 2014),
which amount to a total of 134 million IPv4 addresses.

Before starting the measurements, however, we met with the Security Incident Re-
sponse team of our university and coordinated how the measurement would be ar-
ranged. First, we ran in the same measurement VM the micro-httpd web server with
a web page describing the project goal, our credentials, and how users could opt-out
of our measurements. We have received a total of 35 e-mails requesting IP addresses
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Figure 19: Histogram of Average Session Duration per IP for ISP

to be removed from our measurements, which we did immediately upon received the
messages. All the complaints we received were from system administrators in small-
businesses and few tech savvy home users. In only one instance one user wrongly
thought we were carrying out a denial-of-service attack (DoS) on his server, which was
not the case and we have confirmed him once he shared with us his intrusion detection
system (IDS) log files, which showed we sent only 2 ICMP echo-requests per IP per
measurements. In general the users were understanding and supportive; they only
requested few of their IPs to be removed from our measurements.

4.4.1 Address and Prefix Visibility & Usage

Using our measurements, we can determine the lower bound on the address space
in use in those ISPs (Section 4.2.4) by determining the percentage of visible IPs with
regards the total announced by the ISPs. Table 8 presents the addresses visibility, in
which only a small fraction of IP addresses are on average reachable via ICMP. How-
ever, when considering all IP addresses that have responded over the measurement
period, the percentage increases - in the case of Deutsche Telekom this value goes to
51%, a reflect on how fast ISPs recycle IP addresses.

Figure 20 shows the time series of the IP addresses that are online (active) and
that become offline (disconnected) for the ISPs discussed in Section 4.4. For each ISP,
we also include the time series when using α threshold parameter as 600 seconds.
We can observe a diurnal pattern in all the time series, i.e., the peaks in the plots
represent late mornings to early afternoons while the falls correspond to nights. Due
to few transient network outages during the measured period, the time series suffered
from two sudden drops in the number of active IPs. This effect is diminished when
using the α threshold. As expected, the m-600 reduces the number of disconnecting
IPs.
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Figure 20: Time Series of online IPs per ISP
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Servers that assign IP addresses are configured using a default lease time for mul-
tiple prefixes. Figure 21(a) shows the number of visible/active IP addresses per /24
prefix for the evaluated ISPs. In this Figure, we can see how Deutsche Telekom, faster
than the other ISPs, quickly re-uses its IP addresses, while most of prefixes from AT&T
present low-visibility/usage.

4.4.2 Session Duration Distribution

Table 9 shows the results of session duration for each ISP. We have shown in Sec-
tion 4.3.3 that α = 600 lead to more precise results than α = 0. Analyzing Tab. 9, we
can see all m-600 files were able to generate at least one session duration equal to
the monitoring period (17 days ∼ 408 h). Since some IP addresses in these ISPs are
expected to belong to network devices/servers with high availability, we can expect that
m-600 tend, as in Section 4.3.3, to be more precise with regards estimating the session
durations. However, only a comparison with ground truth could precisely answer this
question.

Figure 22 shows the empirical cumulative mass function of average session du-
ration per IP for each ISP for m-600. On average, a bot would have its IP address
renewed every 61, 20, 10, and 14 hours for AT&T, British Telecom, Deutsche Telekom,
and Orange, respectively, which wind up inflating at different rates the actual number
of compromised computers per ISP. We can also observe that most of the “visible”
IP addresses have an average lease time of less than 50 hours, and that for AT&T,
we see spikes around t = 75, 100, 140 hours, which indicates that large portion of the
IP addresses are managed by DHCP servers that enforce IP address changes af-
ter reaching these session durations. We can see how the average session duration
varies according to /24 prefix on Figure 21(b).

This information can be also used to profile prefixes i.e., classify them according
to what they are used. Figure 21(c) shows the average inactivity time per /24. For all
ISPs, the majority of IPs for these prefixes have a low average inactivity time (< 25h),
while some have higher values. Prefixes with short lease times and large number of
users are likely to have a low inactivity time; while prefixes with long lease time and
long inactivity time are more likely to belong to ranges from static IP addresses.

4.5 Towards Churn Rates

Estimating churn rates would allow us to normalize the bot count in the networks of
ISPs. By using our methodology, we were able to account for 78% and 44% of the
observed sessions for our ground truth datasets. If each new session would be asso-
ciated to a new user, counting the number of sessions an IP address has exhibit would
yield to the number of distinct users that IP has been assigned too. However, a same
user might be re-assigned to the same IP multiple times over the measured period.
To cope with that, one could employ device fingerprinting [89], but this approach re-
quires a large number of packets to be sent in order to measure clock skews, which
is hard to scale to when probing entire ISPs address pools, not to mention the privacy
implications.
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Figure 21: Distribution of Prefixes

We envision an approach to statistically estimate the churn rates of IP address.
Previous works either used passive data to estimate this churn rate [90] or described
complex stochastic models that are not able to capture the whole nature of the dynamic
allocation of addresses [91]. However, none of these models was able to establish a
methodology valid for the whole Internet. Contrarily, our methodology is scalable and
valid for any network.

Our churn estimator is based on the activity rate of an IP address to approximate
the number of users behind it. Instead of analyzing IPs individually, we group them
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Figure 22: ECDF: mean session duration/IP (m-600)

according to the Network Access Server (NAS) the users connects to. DHCP/RADIUS
servers are commonly configured with multiple /prefixes in a NAS group which leads to
similar behavior (See Fig. 21). For any session, as the churn rate is verified to follow
a Poisson distribution [90], then from the properties of the distribution, the number of
IPs per user can be estimated based on its rate. Consider a Poisson process {A(t)}t≥0
that counts the number of active IPs in intervals of [0, t]. Assuming that all users were
online at some time t′ < t, we can use the intensity process λ of the Poisson process
{A(t)}t≥0 as an estimator churn rate, i.e., we estimate the number of new added IPs
per measurement as the churn rate.

Figure 23 shows the mean number of IPs per user per day for those NAS groups
that are visible in the same ISP used in Sect. 4.3. We observe that around 2% of the
groups have at most one IP per user per day in average; while the mean number of IPs
per user per day is around 5. It is also worth noting more than 60% of the groups have
10 or more IPs per user per day. By measuring the leverage and the Cook’s distance
we can detect two outliers (NAS-183 and NAS-214). Removing these outliers, the root
mean square relative error is equal to 0.27 which confirms the notable accuracy of our
estimation. Figure 24 shows the normal probability plot (NPP) of the error of the churn
estimation. Despite a short curvature in the NPP, the probability plot seems reasonably
straight, meaning an accurate fit to normally distributed residuals. The F-statistic of the
linear fit versus the constant model is 4.19, with a p-value of 0.049. Hence the model
is significant at the 5% significance level.

4.6 Related Work

To the best of our knowledge, this is the first study that employs high-performance
large-scale probing with the goal of estimating session durations and dynamics of IP
addresses of entire ISPs. Heidemann et al. [65] have analyzed the session time of
random 24,000 /24 prefixes. We extend their methodology to reconstruct sessions and
validate against a mid-size ISP, and then apply it to the entire IP addresses of four major
ASes (∼ 280,000 /24). We show how the distribution of sessions varies within and for

Project Title: ACDC
Project Coordinator: ECO

68/94 Contract No. CIP-PSP-325188
http://www.acdc-project.eu/



Version 1.0, Jan. 27th, 2015

plotly Sign in Sign up

PLOT

DATA

CODE

    

0 comments

error-bar-bar

Made by krlosbcn Last edited a few seconds ago  View full-size graph Fork and edit Public

      

matlab

BETA  NEW PROJECT

N
A

S
-11

7

N
A

S
-1

4
7

N
A

S
-1

4
9

N
A

S
-1

5
7

N
A

S
-1

6
5

N
A

S
-1

7
1

N
A

S
-1

7
2

N
A

S
-1

7
3

N
A

S
-1

7
5

N
A

S
-1

8
3

N
A

S
-1

9
8

N
A

S
-1

9
9

N
A

S
-2

0
2

N
A

S
-2

0
4

N
A

S
-2

0
5

N
A

S
-2

0
7

N
A

S
-2

0
9

N
A

S
-2

1
4

N
A

S
-2

1
5

N
A

S
-2

1
6

N
A

S
-2

2
3

N
A

S
-2

2
6

N
A

S
-2

3
5

N
A

S
-2

3
6

N
A

S
-2

3
7

N
A

S
-2

3
8

N
A

S
-2

3
9

N
A

S
-2

4
0

N
A

S
-2

4
1

N
A

S
-2

4
4

N
A

S
-2

4
6

N
A

S
-2

4
7

N
A

S
-5

1

N
A

S
-7

1

0

2

4

6

8

10

12

14

16
N

u
m

b
e

r 
o

f 
IP

s
 p

e
r 

u
s
e

r 
p

e
r 

d
a

y

and graph »

DHCP churn

Estimated churn

Figure 23: Number of IPs per user per day

different ISPs. Another Internet-wide probing was carried out by anonymous authors
in [82]. Since the use of their datasets of is controversial [92] (data was obtained by
hacking users’ CPEs) and its validity questionable, we therefore refrain from compare
our works to their. Schulman et al. [79] have employed ICMP-based measurements to
detect network failures incurred by the weather.

DHCP leases have been analyzed in previous works [66, 67, 68, 69]. However, they
have employed DHCP and http server logs. Brik et al., for example, monitored DHCP
servers of University of Wisconsin-Madison for 3 weeks, while Khadilkar et al. [67],
analyze four days of DHCP logs at George Tech. Papapanagiotou et al. [68], have
monitored two networks for less than 6 weeks, having less than 6,000 active IP ad-
dresses. Finally, Xie et al. [69] analyzed the http log files for MSN Hotmail, which also
included user login information for one month period. Our method differs with these
since it enables session duration estimation independent of an ISP and does not re-
quire access to log files, making it scalable to the entire Internet.

It is also important to highlight our measurements do not allow to monitor/fingerprint
individual users, since the information we collect (IP address, timestamp) is not enough
to single out unique users. Active probing has been used to perform device fingerprint.
Kohno et al. [89] have employed ICMP and TCP-based active measurements to mea-
sure clock-skews of devices, which ultimately may allow fingerprint. However, their
method requires a vast number of probes per individual IP to be sent, and it is not
easily scalable. Eckersley [93], in turn, develop a method to measure the entropy of a
users’ browser, based on the parameter automatically provided by the user’s browser.
However, in this case, is a passive measurement approach, in which users must vol-
untarily access websites that may fingerprint their browsers.
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Figure 24: Error estimation

4.7 Conclusions

We have shown in this chapter how, in a scalable and ISP-independent way, we can
measure session durations of entire ISPs with precision. Using the same methodology
we have profiled and analyzed several ISPs gaining insights about their IP address
allocation policies – how often IP addresses remain online, are re-used, and remain
inactive. We have shown how these vary for different ISPs.

Moreover, we have developed a simple but rigorous statistical model for estimat-
ing the number of users behind active IP addresses. Our validation using DHCP logs
from a mid-size ISP proves the accuracy of the methodology. The proposed method-
ology is generic, and can be applied to a wide spectrum of applications and determine
the number of different hosts behind IP addresses – which has a direct application in
normalizing bot counts across ISPs.

As future work, we will carry measurements on the networks of the biggest ISPs on
the Internet and apply the churn estimation methodology to norrmalize metrics related
to several types of abuse traffic including spam, DDoS attacks or ad-click fraud which
will lead to better estimation of botnet size. We will explore the possibility to create
more sophisticated abuse detection techniques as well as redefine mitigation policies
such as IP blacklisting.

Project Title: ACDC
Project Coordinator: ECO

70/94 Contract No. CIP-PSP-325188
http://www.acdc-project.eu/



Version 1.0, Jan. 27th, 2015

A
S

C
C

IS
P

IP
v4

V
is

ib
le

(t
ot

al
)

V
is

ib
le

(m
ea

n)
σ

S
iz

e
70

18
U

S
AT

&
T

73
,8

20
,6

72
3,

83
6,

88
0

(5
.1

9%
)

2,
19

5,
06

8
(2

.9
7%

)
56

,4
37

.0
29

G
B

28
56

U
K

B
rit

is
h

Te
le

co
m

11
,3

52
,5

76
2,

67
3,

03
4

(2
3.

54
%

)
56

3,
63

5
(4

.9
6%

)
15

,4
39

.3
6.

7G
B

33
20

D
E

D
eu

ts
ch

e
Te

le
ko

m
34

,4
04

,3
52

17
,4

50
,6

01
(5

0.
72

%
)

4,
70

5,
55

1
(1

3.
67

%
)

17
6,

63
8.

3
59

G
B

32
15

FR
O

ra
ng

e
15

,2
73

,7
28

2,
68

0,
68

2
(1

7.
55

%
)

40
8,

53
7

(2
.6

7%
)

11
,3

74
.9

5G
B

To
ta

l:
13

4,
85

1,
32

8
26

,6
41

,1
97

(1
9.

75
%

)
7,

87
2,

79
1

(5
.8

3%
)

–
99

.7
G

B

Ta
bl

e
8:

E
va

lu
at

ed
IS

P
s

–
M

ar
ch

13
th

–2
6,

20
14

Project Title: ACDC
Project Coordinator: ECO

71/94 Contract No. CIP-PSP-325188
http://www.acdc-project.eu/



Version 1.0, Jan. 27th, 2015

AT&T British Telecom Deutsche Telekom Orange
m-0 m-600 m-0 m-600 m-0 m-600 m-0 m-600

Mean 4.854 61.140 3.280 19.451 3.169 9.900 2.769 14.115
Median 5.354 40.725 3.416 9.247 3.113 7.914 2.716 6.816

Max 68.669 408.212 67.195 408.159 27.679 408.158 50.071 408.018
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Std Dev 2.259 68.634 2.496 24.473 0.905 10.249 2.383 17.967
Coeff Var 0.465 1.123 0.761 1.258 0.286 1.035 0.861 1.273

Trimmed Mean (95%) 4.848 55.723 3.150 17.634 3.157 8.751 2.630 12.769

Table 9: Statistics summary session duration in hours.
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5 Employed Metrics for Evaluation

We divide this chapter into three main parts: in Section 5.1, we show how data col-
lected from the ACDC experiments should be enriched and anonymized, so we can
produce the results for our comparative botnet metrics, which we show in Section 5.2.
Then, in Section 5.3, to bridge the work on metrics development to actual evaluation
(the next phase of WP4), we carry out an example of an evaluation using our currently
available datasets.

5.1 Data collection and enrichment

In this section, we specify in more details the fields required to produce botnet met-
rics that will be employed in the evaluation of European ISPs. We also show how
data should be collected. This also takes into account the legal and privacy concerns
involved in WP4 and in the project.

Table 10 shows what fields should be capture by the sensors and what fields should
be added to it before being imported from the CCH, as well as the anonimization of the
IP address. It is important to emphasize that the enriched fields must be added to each
logged event before the anonimization of the IP address takes place.

Captured Fields
Field Header/Layer Example

Timestamp 1/2 1422352309
IP address 3/IP header 10.10.10.10 – not the one of the sensor

Protocol 3/IP header 0x06 (TCP)
Source Port 4/ TCP header 25 (SMTP)

Destination port 4/TCP header 9292 (client port)
Application 5/depends on the application botid, in case of botnet protocol

Enriched Fields
Field Source Example

AS number BGP feeds/Maxmind db AS3320
Organization Maxmind Org DB [32]/whois [94] Deustche Telekom A.G.

Country Geolocation DB [32] Germany
City Geolocation DB [32] Munich

Type of Connection Maxmind Connection DB [32] DSL
Top-level Domain Reverse DNS dtag.de

Anonymized Fields
Field Source Example

IP address Must be prefix preserving depends on the algorithm

Table 10: Capture Fields and Enriched fields

Finally, each event will then be imported from the CCH in the following for-
mat: <Timestamp,IP address (anonymized), Protocol,Source Port,
Destination Port, AS Number,Organization,Country,City,top-level
domain, Type Of Connection>. These fields are as well specified in the CCH
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data exhanged format described in Table 1, Section 2.3, that we will use to extract
aggregated and non-aggregated data from the CCH.

5.2 Comparable Botnet metrics

In Chapter 3, we have covered extensively the state-of-the art of current botnet metrics,
the requirements, and presented a survey of existing metrics. In addition, we have
presented in Figure 12 (Section 3.3) a taxonomy for botnet metrics, based on types of
data sources available.

In this section, we employ the data fields described in Section 5.1 to produce our
botnet metrics. Each metric is composed of a summation part and a normalization part.
The summation refers to the sum of unique fields. The normalization part, however,
refers to the part in which the summation is normalized in order to make it comparable
across different ISPs/countries etc. For example, it is expected that Germany has
many more bots than Finland, since Germany’s population is many times larger than
the Finish. We therefore normalized the bot counts by the number of Internet users in
the country, so we they can be compared.

5.2.1 Host-based metrics

Host-based metrics, in our taxonomy, refers to metrics that count infected hosts within
networks of ISPS – for example, botnet sinkholes with unique identifiers. Datasets
that provide such type of data are harder to obtain: one must first sinkhole or hijack
a botnet, and the botnet must have unique identifiers in its protocol, and the protocol
must be not encrypted or poorly encrypted.

Table 11 shows the host-metrics we will employ in our evaluation. First of all, these
metrics will produced on a daily basis. For each bot id found on a day, we will aggregate
them into countries, Autonomous System Numbers (ASN), and ISPs (using TU Delft
ISP mappings). To make it comparable across countries, we will normalize it to remove
external factors such as size of population from the rates.

# Metric Summation Normalized by Time Interval
1 Daily botIDs/country-user for country in i:∑

BotIds ∈ i
population×
Internet Penetration Rate

Daily

2 Daily botIDs/ASN-IP for ASN in i:∑
BotIds ∈ i

∑
IPs ∈ ASN Daily

3 Daily botIDs/ISP-subs. for ISP in i:∑
BotIds ∈ i

∑
Subscribers ∈ ISP Daily

Table 11: Host-based Metrics used in the evaluation

It is important to highlight that the normalization uses variables that change with
time – e.g., population of country, subscribers base. Therefore, in this process, we
use the timestamp (Table 10) of the event to determine what is the closest values
we have for Population, Internet Penetration Rate, Number of IPs announced by an
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ASN on daily BGP feeds, and number of subscribers obtained from the Telegeography
database [95].

5.2.2 IP-based metrics

Table 12 shows the IP-based metrics we will use in our evaluation. Similarly to the host
based-ones, in this one we sum IP addresses instead of bot-ids. While host-based
metrics may not be able to be produced (due to the fact botIds are not always possible
to be obtained or even may not even exist), IP-based metrics should be always be able
to be produced in the comparison.

# Metric Summation Normalized by Time Interval
4 Daily IP/country-user for country in i:∑

IP ∈ i
population×
Internet Penetration Rate

Daily

5 Daily IP/ASN-IP for ASN in i:∑
IP ∈ i

∑
IPs ∈ ASN Daily

6 Daily IP/ISP-subs. for ISP in i:∑
IP ∈ i

∑
Subscribers ∈ ISP Daily

Table 12: Host-based Metrics used in the evaluation

5.2.3 Proxy-based metrics

Depending on the type of attack, we can also explore compare the impact of the attack
for different ISPs. For example, in the case of spam, one metric which is also important
is the number of spam messages each bot has sent, and total number of bots. Table 13
shows the list of metrics we will use.

# Metric Summation Normalized by Time Interval
7 Daily Events/country-user for country in i:∑

Events ∈ i
population×
Internet Penetration Rate

Daily

8 Daily Events/ASN-IP for ASN in i:∑
Events ∈ i

∑
IPs ∈ ASN Daily

9 Daily Events/ISP-subs. for ISP in i:∑
Events ∈ i

∑
Subscribers ∈ ISP Daily

Table 13: Proxy-based Metrics used in the evaluation

5.2.4 Normalization by DHCP churn rates

In Chapter 4, we have a method to measure DHCP churn rates for entire ISPs. We
are currently working on producing a model that employs these measurements and
profiling using domain names associated to IP addresses to determine, per /24 prefix,
what is the average churn rate. Therefore, after that, we will be able to normalize each
metric by how often their IP addresses change per ISP.
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5.3 Performance Evaluation

In this section, we employ a series of datasets to show how part of metrics we propose
can be used to evaluate the performance of ISPs. Even though this Deliverable D4.1
does not require any performance evaluation results, we include it to demonstrate the
functionality. However, in this section, we focus on comparing only countries against
each other. First, we cover the employed datasets we employ, then on the measured
results. Please notice that this results do not capture the impact of ACDC yet.

5.3.1 Datasets

Shadowserver Sinkhole Conficker data (Conficker)

Established in 2004, the Shadowserver Foundation comprises volunteer security pro-
fessionals that “gathers intelligence on the darker side of the Internet”. They have cre-
ated the Conficker working group, which provides reports and data on “the widespread
infection and propagation of Conficker bots” [96].

Several members of the working group run sinkholes that continuously log the IP
addresses of Conficker bots. The sinkholes work in this fashion: computers infected
with Conficker frequently attempt to connect to command and control servers to receive
new payloads (i.e., instructions). In order to protect the botnet from being shut down,
Conficker attempts to connect to different C&C domains every day. The working group
has succeeded in registering some of these domain names and logging all connections
made to them. Since these domains do not host any content, all these connections are
initiated by bots. Therefore, we can reliably identify the IP addresses of the Conficker
bots.

The Conficker dataset is unique in several ways. First of all, unlike the other two
datasets, it is not a small sample of a much larger population, but rather captures the
universe of its kin. This is because of the way the bot works most of them will eventually
contact one of the sinkholes. Second, this dataset is basically free from false positives,
as, apart from bots, no other machine contacts the sinkholes. These features make
the dataset more reliable than the spam or DShield datasets. The difference, however,
is that the dataset is only indicative of the patterns applicable to one specific botnet,
namely Conficker. Although Conficker has managed to replicate very successfully, with
around several million active bots at any given moment, it has not been used for any
large-scale malicious purposes or at least no such uses have been detected yet. This
means ISPs and other market players may have less powerful incentives to mitigate
these infections, different from spam bots, for example. These differences make the
Conficker dataset complementary to the two other sets.

Overall, the Conficker dataset adds a fresh, robust and complimentary perspec-
tive to our other two datasets and brings more insight into the population of infected
machines worldwide.
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Zeus Gameover Botnet (Peer and Proxy)

Zeus botnet started making headlines in 2007, as a credential stealing botnet. The first
version of Zeus was based on centralized command and control (C&C) servers. The
botnet was studied by various security researchers and multiple versions were also
tracked [97, 98, 99, 100].

In recent years Zeus has transformed, into more robust and fault tolerant peer-to-
peer (P2P) botnet, known as P2P Zues or Gameover. The botnet supports several
features including RC4 encryption, multiple peers to communicate stolen information,
anti-poising and auto blacklist. It also can be divided into sub-botnet, based on BotIDs
, where each sub-botnet can be used to carryout diverse task controlled by different
botmasters.

The botnet is divided into three sub-layers, which provide following functionality.

• Zeus P2P Layer (Peer): This is the bottom most layer and contains information
of infected machines. Bots in P2P layer exchange peer list with each other in
order to maintain updated information about compromised machines.

• Zeus Proxy Layer (Proxy) : A subset of bots from P2P layer are assigned the
status of proxy bots. This is done manually by the botmaster by sending proxy
announcement message. Proxy bots are used by Peer-to-peer layer bots to fetch
new commands and drop stolen information.

• Domain Generation Algorithm Layer: DGA layer provides fall backup mecha-
nism, if a bot cannot reach any of its peers, or the bot cannot fetch updates for
a week. Zeus algorithm generates 1000 unique domain names per week. Bots
which lose connection with all connected peers search trough these domains until
they connect to live domain.

More details about architecture and functioning of the botnet can be found in
literature [101, 102].

This dataset is sub-divided into three feeds, GameOver Peer, GameOver Proxy and
GameOver DGA. The botnet is spread in around 212 countries with on average 95K
unique IP addresses per day. Hence it is gives us insight of botnet infection level at
global level, and compare various countries and ISPs.

ZeroAccess

ZeroAccess is a Trojan horse, which uses a rootkit to hide itself on Microsoft Windows
Operating Systems. The botnet is used to download more malware and open backdoor
for botmaster to carry out various attacks including click fraud and bitcoin mining.

The botnet is propagated and updated through various channels including compro-
mised website redirecting traffic and dropping rootkit at potential host or updating the
already compromised host through P2P network.

ZeroAccess also provide global view with bots in around 220 countries with an
average of about 12K unique IP addresses per day.
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Morto Botnet

Morto is a worm that exploits the Remote Desktop Protocol (RDP) on Windows ma-
chines to compromise its victims. It uses a dictionary attack for passwords to connect
as Windows Administrator over RDP with vulnerable machines in the network. After
successfully finding a vulnerable machine, it executes a dropper and installs the pay-
load.

We have a time series data of Morto for past 4 years with an average of 5k daily
unique IP addresses distributed globally. This is relatively small, but it complements
our other data sources by providing a longitudinal perspective.

Spam trap dataset (Spam)

Spam data are obtained from a spamtrap we (TU Delft) have access to. It might not
be fully representative of overall spamming trends, and also there is no guarantee that
the listed spam sources are indeed originating from botnets, though so far that is still
the main platform for distribution. The more important limitation is that the spam has
become a less important part of the botnet economy, as witnessed in the substantial
drop in overall spam level. The reports of security firms seem to confirm these overall
trends. Symantec reported a significant decrease in the volume of spam messages,
from highs of 6 trillion messages sent per month to just below 1 trillion [103] until 2012.
Cisco, TrendMicro and Kaspersky show that the spam volume since that period has
been fluctuating, but staying at more or less the same level (see [104] and [105]). All of
this means that the source is becoming less representative of overall infection levels.
Regardless, we employ this source and compare against the other ones as well.

5.3.2 Mapping offending IP addresses to EU ISPs

For each unique IP address that was logged in one of our data sources, we looked up
the Autonomous System Number (ASN) and the country where it was located. The
ASN is relevant, because it allows us to identify what entity connects the IP address to
the wider Internet – and whether that entity is an ISP or not.

However, there are some ISPs that operate in various countries across Europe. We
employ IP-geolocation databases [106] from Maxmind [32] to single out IP addresses
used in The Netherlands from the other European countries when classifying the at-
tacking IP addresses from each ISPs.

As both ASN and geoIP information change over time, we used historical records
to establish the orgin for the specific moment in time when an IP address was logged
in one of our data sources (e.g., the moment when a spam message was received or
network attack was detected). This effort resulted in time series for all the variables in
the datasets, both at an ASN level and at a country level. The different variables are
useful to balance some of the shortcomings of each a point to which we will return in
a moment.

We then set out to identify which of the ASNs from which the trap received spam
belonged to ISPs. To the best of our knowledge, there is no existing database that

Project Title: ACDC
Project Coordinator: ECO

78/94 Contract No. CIP-PSP-325188
http://www.acdc-project.eu/



Version 1.0, Jan. 27th, 2015

maps ASNs onto ISPs. This is not surprising. Estimates of the number of ISPs vary
from around 4,000 based on the number of ASNs that provide transit services to as
many as 100,000 companies that self-identify as ISPs many of whom are virtual ISPs
or resellers of other ISPs’ capacity.

So we adopted a variety of strategies to connect ASNs to ISPs. First, we used
historical market data on ISPs wireline, wireless and broadband from TeleGeographys
GlobalComms database 2013 [95] . We extracted the data on all ISPs in the database
listed as operating in a set of 40 countries, namely all 34 members of the Organization
for Economic Co-operation and Development (OECD), plus one “accession candidate”
and five so-called “enhanced-engagement” countries.

The process of mapping ASNs to ISPs was done manually. First, using the GeoIP
data, we could identify which ASNs were located in each of the 40 countries. ASNs
with one percent of their IP addresses mapped to one of the 40 countries were included
in our analysis. For each of these countries, we listed all ASNs that were above a
threshold of 0.5 percent of total spam volume for that country.

We used historical WHOIS records to lookup the name of the entity that administers
each ASN in a country. We then consulted a variety of sources such as industry
reports, market analyses and news media to see which, if any, of the ISPs in the
country it matches. In many cases, the mapping was straightforward. In other cases,
additional information was needed for example, in case of ASNs named after an ISP
that had since been acquired by another ISP. In those cases, we mapped the ASN to
its current parent company.

5.4 Comparison Results

In this section, we use data sets (Section 5.3.1) to rank several EU countries against
each other, and against the US and Japan, developed nations comparable to EU coun-
tries.

Table 14 shows the average number of daily unique IP addresses for each global
feed we have analyzed, for both top 10 countries with the highest number and for
the countries of interest we have mentioned before. Analyzing this table, we can see
that, there is a significant difference among the number EU countries and other top 10
countries, due also to the large difference in the population in these countries.

As discussed in Section 5.2, we have then to normalize this total counts to make
these metrics comparable.To compensate for this, we have produced a ranking in which
the number of unique IP addresses seen in the infection data is normalized by the In-
ternet user population of the country (metric # 4 in Table 12). The results can be seen
in Table 15. As can be seen, EU countries perform relatively well to others; but there
is a significant difference between the Italy and Finland, for example. We need to
determine with active measurements the probability of DHCP churn rates differences
impacting the results. However, Finland is renowned for having highly effective mitiga-
tion initiatives, which can be seen in Table 15. This shows that there is a lot of potential
for ACDC to bring EU rates closer to the ones observed for Finland.
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CC Conficker Morto Spam
2011 2012 2013 2014 2011 2012 2013 2014 2011 2012 2013 2014

NL 176 183 196 195 68 75 94 76 108 179 156 144
DE 91 105 124 144 31 56 62 80 158 144 115 148
GB 126 135 145 149 64 76 97 115 146 152 133 136
FR 113 128 134 142 115 121 128 133 163 193 162 173
FI 209 214 217 219 141 151 149 143 199 205 206 213
IT 13 22 22 27 103 155 111 111 103 124 60 100
ES 31 34 23 37 57 59 70 70 129 53 39 114
US 150 154 161 162 79 93 93 99 178 164 136 92
JP 138 134 139 152 132 53 157 152 184 157 165 156

Table 16: Countries Yearly Ranking (normalized by each countries’ Internet Users num-
bers, metric #4)
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Figure 25: Conficker Countries - Daily Average

5.4.1 Country performance over time

Table 16 shows the evolution of the ranking of the countries of interest for the global
feeds, broken into years. First and foremost, we can observe that most of the reference
countries have improved over time, with a few exceptions.

We have also looked at the speed of clean-up across the reference countries. Fig-
ures 25–29 shows the time series of daily unique IP addresses the chosen countries.
These figures show that how the total number of infected IPs changed over time, as
also shown in Tables 14 and 15. As can be seen, for these botnets, most of the infection
numbers were reduced over time.

To get a better sense of the relative speed of clean up, we have generated indexed
time series. Figures 31 – 33 show the infection rates of the reference countries all
index at 1 at start of the measurement period – i.e., we have divided all daily averages
by the first daily average of the first measurement. We only performed this for the
data sources that span more than one year (Morto, spam, and Conficker). In this way,
all countries start with a value equal to 1 and their variation shows the percentage of
infections that have increased or reduced. As can be seen, we can see that Germany
and Finland are the ones that have improved more proportionally for conficker.
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Figure 26: GameOver Peer Countries - Daily Average
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Figure 27: GameOver Proxy Countries - Daily Average

5.5 Next steps

We have covered in this chapter how measurement data has to first be captured, en-
riched, anonymized, and shared with ACDC CCH so we can produce the botnet metrics
to evaluate the performance of countries and ISPs.

Then, we have show an example on how one of these metrics (Metric #4) can
be employed to compare performance of countries with regards botnet infections. In
the next deliverable, we will present an extensive evaluation not only of countries with
regards all the produced metrics, but of the individual ISPs as well. We will continue on
working on normalizing the metrics by measuring average churn rates of IP addresses.
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Figure 28: Morto Countries - Daily Average
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Figure 29: ZeroAccess Countries - Daily Average
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Figure 30: Spam Countries - Daily Average
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Figure 31: Conficker Countries - Indexed w.r.t. first quarter
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Figure 32: Spam Countries - Indexed w.r.t. first quarter
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Figure 33: Morto Countries - Indexed w.r.t. first quarter
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6 Summary

The ACDC project, more specifically WP4, has committed itself to develop comparative
metrics that capture the number of bots, their command & control structures as well as
related botnet infrastructure across networks.

In this report, we have covered how to quality control on data obtained from the
ACDC CCH will be executed. After that, we have presented a survey of the state-of-
the-art on botnet metrics. We have discussed how current solutions fall short of the
requirements for comparative metrics across ISPs.

We then proposed a novel active-measurement based approach to deal with one
critical problem: the impact of dynamic IP address allocation on deriving bot counts
from IP-based infection data. These counts are skewed due to effects of Dynamic Host
Configuration Protocol (DHCP) and Network Address Translation (NAT). We demon-
strate the feasibility of this active-measurement approach by applying it to several large
ISP networks.

Next, we have specified which metrics will be employed in the evaluation. We have
shown (i) which botnet metrics we will employ in the ISPs evaluation with regards botnet
infections, and (ii) how they can be enriched, anonymized, and shared using ACDC’s
CCH. We have also shown an example in which we compare the performance of var-
ious countries for real-world botnet datasets we have obtained, to illustrate the usage
of one of the metrics.

The activities carried out in WP4 have lead to the following dissemination activities:

• Lone, Q. Moura, G. C. M. , Van Eeten, M.: Towards Incentivizing ISPs To Mitigate
Botnets. In: 8th International Conference on Autonomous Infrastructure, Man-
agement and Security (AIMS 2014 – Ph.D. track), Brno, Czech Republic, June
30-July 3 2014 [27]

• Lone, Q: Towards Incentivizing ISPs To Mitigate Botnets. Poster presented at 4th
PhD School on Traffic Monitoring and Analysis (TMA), 2014.

In addition, we have submitted a paper based on Chapter 4 to the IFIP Networking
2015 conference, which is currently under review.

The main contribution of this report was to document the data processing and what
metrics will be used in the next deliverable “ D4.2 – Statistical evaluation of the impact
ofthe Pilot”, in which we will evaluate the performance of the ACDC sharing solution in
reducing overall botnet infection accross Europe, in six month time from the writing of
D4.1.
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