REPUBLIC OF TURKEY
 BİNGÖL UNIVERSITY
 INSTITUTE OF SCIENCE

MOLECULAR PHYLOGENY OF THE GENUS LALLEMANTIA Fisch. \& Mey. (LAMIACEAE) IN TURKEY

MASTER THESIS

HERO KAREEM ABBAS

BIOLOGY

SUPERVISOR OF THESIS
Assist. Prof. Dr. Gülden KOÇAK

REPUBLIC OF TURKEY
 BİNGÖL UNIVERSITY
 INSTITUTE OF SCIENCE

MOLECULAR PHYLOGENY OF THE GENUS LALLEMANTIA Fisch. \& Mey. (LAMIACEAE) IN TURKEY

MASTER'S THESIS

Hero Kareem ABBAS

This dissertation was accepted by the following committee on $\mathbf{0 2 . 0 1 . 2 0 1 8}$ with the vote unity.

Assoc. Prof. Dr.	Assist. Prof. Dr.	Assist. Prof. Dr.
Abdullah ASLAN	Gülden KOÇAK	Fethi Ahmet ÖZDEMIR
Head of examining	Member of examining	Member of examining
committee	committee	committee

Assoc. Prof. Dr.
Abdullah ASLAN
committee

Assist. Prof. Dr.
Member of examining committee

Member of examining committee

I confirm the result above

Prof. Dr. İbrahim Y. ERDOĞAN
Director of the institute

PREFACE

To begin with, I thank (Allah) for his blessing who made me able to complete and perform this study with success. I would like to thank to my supervisor Assist. Prof. Dr. Gülden KOÇAK who does not spare her help and knowledge and gives the necessary support for the completion of my studies during the course of the thesis. I am also very grateful to Assist. Prof. Dr. Murat KÜRŞAT for supplying plant materials and Assist. Prof. Dr. Alpaslan KOÇAK for his support and help.

I would like to thank Bingöl University Rector, the manager and staff of central laboratory for their support for the thesis work. I must express my very profound gratitude to my mother and members of my family for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis.

I must express my very profound gratitude to my parents and members of my family for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. Finally, I am thankful to my colleagues and all others friends for their help and encouragement.

This thesis was financially supported by Bingol University BUBAP Unit (BAP Project BAP-FEF.2017.00.002).

CONTENTS

PREFACE ii
CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES vii
ÖZET viii
ABSTRACT ix

1. INTRODUCTION 1
1.1. General Characteristics of Lamiaceae 3
1.2. Lallemantia Fisch. \& Mey 3
1.2.1. L. peltata (L.) Fisch. \& Mey. 4
1.2.2. L. iberica (Bieb.) Fisch. \& Mey. 4
1.2.3. L. canescens (L.) Fisch. \& Mey. 4
1.3. Molecular Systematics of Plants 5
1.3.1. DNA Sequences Used in Molecular Systematic 5
1.3.1.1. Nuclear DNA Sequences 5
1.3.1.2. Chloroplast DNA Sequences 7
1.3.2. DNA Sequencing 10
1.3.2.1. Automated DNA Sequencing 11
1.3.3. Multiple Sequence Alignment and ClustalW 11
1.3.4. Phylogenetic Analysis 11
2. LITERATURE REVIEW 13
3. MATERIALS AND METHODS 15
3.1. Materials 15
3.1.1. Plant Materials 15
3.1.2. Glass and Plastics Materials, Chemicals, Enzymes and Kits 15
3.1.3. Buffers and Solutions 16
3.1.3.1. Agarose Gel Preparation 16
3.1.3.2. EDTA (0.5 M, pH 8.0) 16
3.1.3.3. 50 X TAE Buffer 16
3.1.3.4. CTAB Buffer 17
3.1.3.5. Tris (1.0 M, pH 8.0) 17
3.1.3.6. 1X TE Buffer 17
3.1.4. Molecular Size Markers 17
3.2. Methods 18
3.2.1. Total DNA Isolation from Plant Materials 18
3.2.1.1. CTAB Protocol 18
3.2.1.2. DNA Isolation with NucleoSpin Kit 19
3.2.2. DNA Purity and Quantity Determination 19
3.2.3. Agarose Gel Electrophoresis 20
3.2.4. Polymerase Chain Reaction (PCR) 20
3.2.6. Phylogenetic Analysis 22
4. RESULTS AND DISCUSSION 23
4.1. Experimental Strategies for Molecular Systematic Analysis of Genus
Lallemantia (Lamiaceae) Grown in Turkey 23
4.2. Isolation of Total DNA from Plant Samples 24
4.3. PCR Amplification 24
4.3.1. Amplification of nrDNA ITS Regions 24
4.3.2. Amplification of cpDNA trnT-F Regions 26
4.5. Phylogenetic Analysis 28
4.5.1. nrDNA and Phylogenetic Tree Analysis 28
4.5.2. cpDNA and Phylogenetic Tree Analysis 29
4.5.2.1. $\operatorname{trn} L$ (UAA) intron and $\operatorname{trn} L-F$. 29
5. CONCLUSION 32
REFERENCES 33
APPENDIX 42
CURRICULUM VITAE 55

LIST OF FIGURES

Figure 1.1. Plant genome components 6
Figure 1.2. Schematic representative of ITS-1 and ITS-2 regions 7
Figure 1.3. Diagram of chloroplast genome map 8
Figure 1.4. tRNA genes, intergenic noncoding chloroplast sequences and universal primers 9
Figure 1.5. Taxonomic level of utility of Angiosperm chloroplast mitochondria, and nuclear DNA 10
Figure 3.1. Molecular size marker 17
Figure 4.1. Flowchart of the experimental strategies 23
Figure 4.2. Electrophoresis of total genomic DNA 24
Figure 4.3. The schematic illustration of the amplified region from nrDNA 25
Figure 4.4. Electrophoresis of PCR products amplified with AB101/AB102 and ITS57ITS4 primer sets 25
Figure 4.5. The schematic illustration of the amplified region from cpDNA 26
Figure 4.6. Electrophoresis of PCR products amplified with B48557-A49291; B49317-A49855 and B49873-A50272 primer sets 27
Figure 4.7. Electrophoresis of PCR products amplified with B48557-A49291; B49317-A49855 and B49873-A50272 primer sets. 27
Figure 4.8. Maximum Parsinomy tree of nrDNA ITS region 29
Figure 4.9. Maximum Parsinomy tree of cpDNA trnL (UAA) intron region 30
Figure 4.10. Maximum Parsinomy tree of $t r n L-F$ region 31

LIST OF TABLES

Table 3.1. List of chemical and enzymes used and their suppliers 15
Table 3.2. Sequences of the universal primers 21
Table 3.3. Solutions used in PCR reactions. 21
Table 3.4. PCR procedure and cycles 21
Table 4.1. Numeric information of ITS 29
Table 4.2. Numeric information of trnL (UAA) intron 30
Table 4.3. Numeric information of $\operatorname{trnL}-F$ 31

TÜRKİYE'DE YETISEN LALLEMANTİA Fisch. \& Mey. (LAMIACEAE) CİNSİNIN MOLEKÜLER FILOGENİSİ

ÖZET

Ballıbabagiller (Lamiaceae) çok yıllık bitkilerden olup 236 cins ve 7173 tür ile dünyada en geniş altıncı familyayı temsil eder. Lallemantia Fisch. \& Mey. cinsi Lamiaceae familyasına ait olup dünyada Lallemantia baldshuanica, Lallemantia canescens, Lallemantia iberica, Lallemantia peltata ve Lallemantia royleana olmak üzere beș türü vardır. Bunlardan sadece Lallemantia canescens, Lallemantia iberica ve Lallemantia peltata Türkiye'de doğal yayılış göstermektedir.

Lallemantia türlerine ait moleküler sekans bilgilerine dayanan araştırmalar olsa da daha önce filogenetik ilişkilerine yönelik çalışmalara rastlanmamıştır. Bu çalışma ile Türkiye'de yayılış gösteren Lallemantia cinsine ait tüm türlerin nrDNA ITS ve cpDNA trnT-F bölgelerinin çoğaltılması ve analizleri amaçlanmışsır. Lallemantia türlerine ait DNA dizilemeleri sonuçları filogenetik ilişkileri ortaya koymak üzere MEGA 6.0 programı kullanılarak Maksimum Parsinomi Metodu ile incelenmiş ve filogenetik ağaçlar oluşturulmuştur. Sonuçlar Flora of Turkey'deki cins dağılımına uyumluluk gösterse de Lallemantia tür ayrımı ile uyuşmamaktadır. ITS bölgesine göre oluşturulan filogenetik ağaç, L. peltata ve L. iberica'nın, trnL (UAA) intron ve trnL-F bölgelerine göre oluşturulan ağaçlar ise L. peltata ile L. canescens'in yakın akrabalık içerdiğini göstermiştir. Sonuç olarak, nrDNA ile cpDNA sonuçları hem birbirini hem de morfolojik verileri desteklememektedir.

Anahtar Kelimeler: Lallemantia, nrDNA, cpDNA, ITS, trnT-F.

MOLECULAR PHYLOGENY OF THE GENUS LALLEMANTIA Fisch. \& Mey. (LAMIACEAE) IN TURKEY

Abstract

Lamiaceae the sixth largest angiosperm family contains 236 genera and approximately 7173 species. Lallemantia Fisch. \& Mey. is one of the genus of Lamiaceae family in the world. It is composed of five species in the world; Lallemantia baldshuanica, Lallemantia canescens, Lallemantia iberica, Lallemantia peltata and Lallemantia royleana. From these Lallemantia canescens, Lallemantia iberica and Lallemantia peltata are naturally grown in Turkey.

There are some investigations on the molecular sequences of Lallemantia, however, phylogenetic relationship based on these sequences have not been done yet. By this study it is aimed to amplify the nrDNA ITS and cpDNA trnT-F region of Lallemantia species grown in Turkey. The DNA sequences were analyzed by MEGA 6.0 program and phylogenetic trees were constructed by Maximum Parsinomy Method. Results were congruent in the means of Flora of Turkey genus discrimination but they were not parallel to Lallemantia species separation. According to the phylogenetic tree constructed by the ITS region sequences L. peltata and L. iberica; according to the phylogenetic trees constructed by the $\operatorname{trn} L$ intron and trnL-F regions sequences L. canescens and L. peltata showed closer relationships. Thus not only the phylogenetic relationships of Lallemantia species are incompatible with discrimination of this genus but nrDNA and cpDNA phylogenetic trees are also incompatible with each other.

Keywords: Lallemantia, nrDNA, cpDNA, ITS, trnT-F.

1. INTRODUCTION

The Flora of Turkey contains 167 plant family, 1320 genera and 11.707 generic taxa and one third of this flora consists of aromatic and medicinal plants (Davis et al. 1988; Guner et al. 2001; Baser 2002). Flowering plants (angiosperms) are the largest and most diverse group in the plant kingdom (Borch et al. 2003). In Flora of Turkey Lamiaceae family includes 45 genera and 735 taxa (Davis 1978). Lamiaceae family members show worldwide distribution and the real area of habitation is Mediterranean basin but unlikely at high latitude or altitude (Heywood et al. 1996; Harley et al. 2004). Family is composed of annual, biennial or perennial aromatic or non-aromatic herbs, and includes subshrubs, shrubs and trees (Harley et al. 2004). Family members are widespread over Asia, Middle East and Europe and flowers stage from April to June (Ursu and Borcean 2012). Lamiaceae the sixth largest angiosperm family contains 236 genera and approximately 7173 species many of which are aromatic and medicinal in world (Harley et al. 2004; Dinc et al. 2009; Li et al. 2016; Jamzad 2012). The species of Mentha (perppermint), Salvia (sage), Origanum (oregano), Thymus (tyme) and Rosmarinus (rosemary) have usage in culinary purposes because of their essential oils (Harley et al. 2004). Among these Lamiaceae plant family is an important gene depository in Turkey (Kocabas and Karaman 2001).

Lallemantia Fisch. \& Mey. is one of the genus of Lamiaceae family (Sharifi-Rad et al. 2014). The genus Lallemantia including herbaceous annual and biennial plants is characterized by simple leaves; a thyrsoid, spike-like or oblong, often interrupted inflorescence; ovate to rotund or sometimes linear, aristate-toothed bracteoles; and oblong, trigonous, smooth and mucilaginous nutlets (Harley et al. 2004). The genera Lallemantia is originated from Caucasian distributed from Turkey to Asia and also cultivated in Europe (Cao 1994; Harley et al. 2004; Govaerts et al. 2010). It is composed of five species in the world; Lallemantia baldshuanica, Lallemantia canescens, Lallemantia iberica, Lallemantia peltata and Lallemantia royleana.

From these Lallemantia canescens, Lallemantia iberica and Lallemantia peltata are naturally grown in Turkey (Kew 2009). These taxa have importance in economical and medicinal fields (Dinc et al. 2009).

Molecular phylogenetic studies have been frequently used to resolve generic delimitation and infrageneric classifications in many groups of plants (Watson et al. 2000; Masuda et al. 2009; Sonboli et al. 2011; Sonboli et al. 2012). The use of the ITS region in plant molecular systematics has been reviewed by Baldwin et al. (1995). The ITS region is now a widely used data source in molecular systematic studies of plants at lower taxonomic levels for three principal reasons.

First, the high copy number allows easy amplification of the region from total DNA. Second, the spacer sequences evolve rapidly and can therefore resolve lower level relationships better than slowly evolving genes, such as 18S and rbcL (Baldwin 1992; Baldwin et al. 1995; Baker et al. 1999). Third, the availability of several sets of universal (or near so) PCR primers working with a large diversity of taxonomic groups (White et al. 1990; Gardes and Bruns 1993). Besides the nrDNA, chloroplast DNA (cpDNA) sequence variations are widely used to investigate interspecific relationships among angiosperms and other plants (Taberlet et al. 1991). In chloroplast genome the trnT-trnF region is located in the large single-copy region, approximately 8 kb downstream of $r b c L$.

Three highly conserved transfer RNA genes [tRNA genes for threonine (UGU), leucine (UAA) and phenylalanine (GAA)] are found in tandem, separated by spacers of several hundred base pairs (bp). The high variability of the two spacers and the intron in trnL have led to the wide use of $\operatorname{trn} T$ - $\operatorname{trn} F$ sequences in addressing relationships at the species and genus levels (Borsch et al. 2003). Moreover, the region was quite informative in phylogenetic studies of families like Lamiaceae (Bendiksby et al. 2014).

1.1. General Characteristics of Lamiaceae

Description of Lamiaceae Family in Flora of Turkey (Davis 1982); Herbs or shrubs, usually glandular and aromatic; stems 4 -angled or not. Leaves exstipulate, simple, sometimes pinnate, always opposite. Inflorescence basically of cymes borne in the axils of bracts or upper leaves and usually contracted to form false whorls (verticillasters); the latter may also be arranged to form 'spikes', heads, racemes or cymes. Flowers hermaphrodite, or male-sterile (functionally female) in gynodioecious plants. Bracts clearly different from leaves, or similar to them; bracteoles present or not. Calyx usually 5 -lobed with an upper 3-toothed and lower 2-toothed part, rarely lobes or teeth 1 and 1 and 4, or calyx actinomorphic; veins 5-20. Corolla gamopetalous, zygomorphic and bilabiate with usually indistinctly 2 -lobed upper lip (hood or galea), falcate, straight or \pm concave, and 3-lobed lower lip (labellum); rarely upper lip reduced and lower lip 5-lobed, or with 1 upper and 4 lower lobes, or corolla actinomorphic. Stamens adnate to corolla, 4 and didynamous, or 2 (and staminodes usually present); posterior (upper) pair usually shorter than anterior (lower) pair; anther thecae 2 - or 1-celled, parallel or divergent, rarely (in Salvia) separated by elongated connectives. Ovary superior, 2-carpellate and 4ovulate, 4-lobed. Style gynobasic, rarely not, shortly bifid above. Fruit of four (rarely fewer) dry (very rarely fleshy) nutlets, mucilaginous on wetting (myxospermic) or not.

1.2. Lallemantia Fisch. \& Mey.

Description of Lallemantia Genus in Flora of Turkey (Davis 1982); Annual and perennial herbs. Verticillaters subtended by floral leaves, forming an elongate oblong inflorescence; bracteoles prominently veined, aristatedentate. Calyx tubular, 15-veined, weakly 2 -lipped, upper lip 3-dentate, middle lobe broader than lateral, sinuses with a thickened fold; lower lip 2-dentate, teeth lanceolate. Corolla 2-lipped; tube narrow, gradually widening from base; upper lip slightly galeate, 2-lobed, with 2 longitudinal folds within; lower lip 3-lobed, declinate, with broadly reniform middle lobe. Stamens 4; filaments arising from near base of tube; anthers with divergent thecae. Style with 2 unequal lobes. Nutlets oblong, 3 -angled, smooth or finely punctate.

1. Bracteoles orbicular
2. Bracteoles distinctly longer than broad
3. Annual; corolla $11-18 \mathrm{~mm}$
4. Perennial; corolla 28-40 mm

1. peltata

2. iberica

3. canescens

1.2.1. L. peltata (L.) Fisch. \& Mey.

Annual; stem erect, simple or branched, $15-40 \mathrm{~cm}$. Lower leaves ovate or oblong, 40-55 x 7-12 mm, serrate, petiolate; upper leaves \pm lanceolate to linear, $15-50 \times 3-10 \mathrm{~mm}$, weakly serrate to entire, subsessile. Bracteoles 7-10 x 6-9 mm (excl. awns), orbicular, \pm truncate at base, reticulate-nerved beneath, ciliate-dentate, Calyx \pm cylindrical, divided to less than $1 / 3$, uppermost tooth obovate, lateral oblong; lower teeth lanceolate. Corolla violet-blue to pale bluish, less commonly white, $14-18 \mathrm{~mm}$, tube \pm equaling calyx. Fl. 5-7. Fallow fields, roadside, eroding slopes, in ravines, 1250-2500 m (Davis 1982).

1.2.2. L. iberica (Bieb.) Fisch. \& Mey.

Similar to L. peltata but lowest leaves ovate, lamina to $18 \times 10 \mathrm{~mm}$, crenate; bracteoles 6$10 \times 2-4 \mathrm{~mm}$, ovate, cunate at base, teeth usually with very long capillate awns; corolla violet-blue (sometimes with white lower lip), pale blue or white, 11-15(-18) mm. Fl. 4-6. Roadside, slopes, fallow fields, weed of cultivated land, 500-2150 m (Davis 1982).

1.2.3. L. canescens (L.) Fisch. \& Mey.

Perannial, \pm greyish-canescent with very fine hairs, usually with numerous ascending to erect stems arising from a branched woody base, $20-50 \mathrm{~cm}$ tall. Lower leaves oblongelliptic, $20-60 \times 7-12 \mathrm{~mm}$, long-petiolate, lamina crenate-dentate to subpinnatifid; upper leaves linear-lanceolate, to $80 \times 8 \mathrm{~mm}$, shortly petiolate to sessile. Bracteoles $8-11 \times 2.5-$ 3.5 mm (excl. awns), ciliate-dentate. Calyx \pm cylindrical, divided to $1 / 4$, upper tooth ovate, lateral triangular; lower teeth lanceolate. Corolla violet, dark violet-blue, blue-purple, lilac or lavender-blue, 28-40 mm, tube distinctly exserted from calyx. Fl. 6-8. Fallow fields, hillsides, roadside banks, rocky igneous and limestone slopes \& scree, 1300-3200 m (Davis 1982).

1.3. Molecular Systematics of Plants

Molecular systematics (phylogenetics) is the evolutionary history of organisms and it exhibits the relationships among related taxa as species, genera, family or higher groupings by using the structure and function of molecule (Yang and Rannala 2012). Molecular systematic analysis depends on the determination of changes in DNA sequences derived from nuclear or cytoplasm (mitochondria and chloroplast) and/or amino acid sequences data (Nei and Kumar 2000). Molecular systematics use different techniques to derive phylogenetic trees which are used to show the evolutionary history of related taxa depends on their molecular characteristics (Lio and Goldman 1998; Brown 2002).

1.3.1. DNA Sequences Used in Molecular Systematic

Different kinds of molecular data can be used in molecular systematics to investigate the evolutionary relationships of genes and organisms.

1.3.1.1. Nuclear DNA Sequences

Plant nuclear genome is organized into discrete chromosomes consist of DNA and associated proteins. The number of chromosomes and size of the plant genome show alteration among species with 2350 -fold range from 63 to 149.000 Mbp (Heslop-Harrison and Schwarzacher 2011). The most important reasons of this type of diversity are based on a heritable condition named as polyploidy which possessing more than multiple copies of complete sets of chromosomes and in their origins more than 50% of angiosperms are polyploid (Heslop-Harrison and Schmidt 2007). The other reasons are mutations as duplications, deletions, and gene flow (Gören 2011) and amount of repetitive DNA in the genome (Harrison and Schmidt 2007). Plant nuclear genome is composed of genes (exons and introns) repetitive DNA sequences, regulatory elements and other low copy number sequences (Figure 1.1) (Harrison and Schmidt 2007).

Figure 1.1. Plant genome components (Harrison and Schmidt 2007)

Generally evolution rate of nuclear DNA (nrDNA) is considered that slower than the cytoplasmic source of DNA except plant derived nrDNA, it is the fastest evolving among the three genomes that they contain (Brown et al. 1979, 1982; Wolfe et al. 1987). Higher rate of evolution is concluded by more variation and greater efficiency of sequencing effort (Small et al. 2004). This case introduces some advantages for using nrDNA in phylogenetic studies especially of low taxonomic levels (Small et al. 1998). Generally preferred nrDNA molecular data come from nuclear ribosomal DNA (rDNA) (Alvarez and Wendel 2003). In eukaryotes the rDNA is organized as tandem head to tail repeats. Each repeated units composed of a transcribed region consisting of $18 \mathrm{~S}, 5.8 \mathrm{~S}, 26 \mathrm{~S}$ genes and an intergenic spacer (IGR) consisting of a non-transcribed spacer (NTS) and external transcribed spacers (ETS) (Alonso et al. 2014). Ribosomal RNAs are first transcribed as preRNA containing 5^{\prime} and 3^{\prime} ETS and ITS-1 and ITS-2 sequences (Figure 1.2) (Tollervey and Kiss 1997).

In addition to conserved coding regions of plant genes some highly variable regions as the internal transcribed spacers (ITS-1 and ITS-2) of the 18S-5.8S-26S nuclear ribosomal cistron (Figure 1.2) become to dominate plant molecular phylogenetic studies comparing of closely related genera and species (Soltis et al. 1998; Alvarez and Wendel 2003).

Available data show that using of ITS sequences is convenient in the phylogenetic studies of angiosperms. ITS-1 and ITS-2 sequences are $\mathrm{G}+\mathrm{C}$ rich and these parts are rather conserved among angiosperms (Hershkovitz and Zimmer 1996; Hershkovitz and Lewis 1996). According to Hershkovitz and Zimmer (1996) in all angiosperms 40% of the ITS2 conserved and in angiosperms above the family level, 50% of the ITS-2 is alignable. ITS-1 and ITS-2 sequences are $300 \mathrm{bp}, 5.8$ gene sequences is $163-164 \mathrm{bp}$ and so amplification of ITS sequences give 500-700 bp PCR products in angiosperms (Baldwin 1992; Baldwin et al. 1995). This type of a small size of the target DNA fragment increase efficiency during PCR (Alvarez and Wendel 2003). There are a set of universal primers that can be used for amplifying the ITS sequences from most plants (White et al. 1990). There are generally used two sets of primers are chosen for PCR studies. First set is AB101 (forward primer) compatible with 18 S gene and AB102 (reverse primer) compatible with 26 S gene (Douzery et al. 1999). Second set is ITS5 (forward primer) and ITS4 (reverse primer) (White et al. 1990).

Figure1.2. Schematic representative of ITS-1 and ITS-2 regions (Saar et al. 2001)

1.3.1.2. Chloroplast DNA Sequences

Chloroplast genome of land plants is a small circular molecule ranging from 107 kb (Cathaya argyrophylla) to 218 kb (Pelargonium), composed of 120-130 genes, taking part in photosynthesis, transcription and translation. In each chloroplast there is more than one copy of genome. They contain their own double stranded DNA characterized by two inverted repeat segments (IR), one contain large (LSC) one small single-copy region (SSC) (Figure 1.3) (Soltis et al. 1998; Daniel et al. 2016).

Functionally chloroplast genome can be divided into three groups; non-coding regions, protein coding regions and introns (Clegg et al. 1994). Recent studies have showed that non-coding intergenic region which often include regulatory sequences indicate significant diversity (Daniel et al. 2006). Generally genes and introns of land plant genomes are conserved. Uncommonly in several plant species loss of introns have been reported (Jansen et al. 2007; Daniel et al. 2016). Also in chloroplast genomes of certain lineages land-plant structural rearrangement as loss of IR regions or entire gene families has been demonstrated. Also some studies demonstrate the presence of linear chloroplast genomes (Oldenburg and Bendrich 2004a; 2004b).

Figure 1.3. Diagram of chloroplast genome map (representative of most land plants) (Soltis et al. 1998)

Chloroplast DNA (cpDNA) sequences are widely used in phylogenetic studies especially in analyzing the interspecific relationship among angiosperms by some reasons (Taberlet et al. 1991). cpDNA Despite the nrDNA sequences, cpDNA sequences evolve slowly. This situation brings along serious limitation to uses of this molecule in intraspecific and population level. However, chloroplast genome size is small enough to examine the complete genome to undercover the relationships between the closely related taxa by some DNA analysis methods as restriction site analysis (Soltis et al. 1998; Daniel et al. 2016). cpDNA is structurally stable, inherited uniperantally in angiosperms, haploid and
thus non-recombinant except some examples and this features reduce the intraspecific variation (Small et al. 2004).

In molecular systematics ribulose bisphosphate carboxylase/oxygenase (RUBISCO) gene large fragment, rbcL sequences, NADH dehydrogenase subunit 5 , ndhF sequences located between the SSC and IR regions and non-coding chloroplast sequences as tRNA genes intergenic spacer trnL-F regions are preferred generally (Baldwin 1992; Douzery et al. 1999; Bell et al. 2001; Alverez and Wendel 2003; Potter et al. 2007; Guo et al. 2011).

Chloroplast genome non coding sequences including the trnL (UAA) intron and the intergenic spacer trnL (UAA)-trnF (GAA) (Figure 1.4) have phylogenetic capacity to reveal the phylogeny and evolutionary relationship of intra-species to inter-family level (Xu and Ban 2004; Liu et al. 2006; Tsai et al. 2006).

Non-coding sequences have similar rates of evolution to that of some coding regions or faster than them. These regions length is small, they are usually shorter than $700 \mathrm{bp}, \operatorname{trn} L$ intron length approximately $350-600 \mathrm{bp}$ and trnL-F spacer length approximately 120-350 bp depending on study group. This feature is an advantage to researcher to amplify and sequence of these regions (Soltis et al. 1998; Tsai et al. 2006).

Figure 1.4. tRNA genes, intergenic noncoding chloroplast sequences and universal primers used to amplify these regions (Taberlet et al. 1991)

Figure 1.5 shows the uses of different molecular data come from nuclear, chloroplast or mitochondrial genome in taxonomic level.

Figure 1.5. Taxonomic level of utility of Angiosperm chloroplast mitochondria, and nuclear DNA (Soltis and Soltis 1996)

1.3.2. DNA Sequencing

DNA sequencing is process of determining the order of nucleotides bases adenine, guanine, cytosine and thymine found in a strand of DNA. Nowadays DNA sequencing are common in biotechnology, biological systematics, medical diagnosis, virology and gene engineering.

Firstly, in 1973 Maxam and Gilbert sequenced 24 base pair by spot analysis and in 1975 Sanger Sequencing or namely chain termination method was developed by Fred Sanger and coworkers (Sanger and Coulson 1975). Today more easily applicable and automated methods are available (Bisht and Panda 2013).

1.3.2.1. Automated DNA Sequencing

Sanger sequencing (Sanger and Coulson 1975) creates the basic of the automated sequencing. The only difference in dye-terminator sequencing four dideoxynucleotide labelled with four different fluorescent dyes with different wavelengths other than radioactive isotopes. Automated sequencing provide faster and long chain sequencing and up to 384 DNA samples in a single run with using capillary electrophoresis. Automated system maintains separation, detection and recording of order of the nucleotide in the sample as fluorescent peak trace chromatograms (Munshi 2012).

1.3.3. Multiple Sequence Alignment and ClustalW

Multiple sequence alignment is the important tool to molecular modeling, database searching, and phylogenetic tree creation. Basically multiple sequence alignment is an alignment of 3 or more nucleotide or protein sequences. It gives more information than pair-wise alignment. One of the widely used multiple sequence alignment programs are Clustal series of programs which was firstly written by Des Higgins in 1988 and improved many times (Higgins and Sharp 1988). In the past versions UPGMA was used but now Neighbor-Joining (NJ) methods have been used to calculate the best match for the sample sequences, align them and find out similarities and differences among the sequences. ClustalW perform multiple sequence alignments with divergent DNA or protein sequences and produces biologically meaningful comparison. (Larkin et al. 2007). By phylograms evolutionary relationships can be seen.

1.3.4. Phylogenetic Analysis

Phylogeny purposes to reconstitute the history and relationship of taxonomic group of organisms according to their grade of similarity (Dereeper et al. 2008). One special type of phylogeny is the phylogenetic that compares the sequence homology of genes from several species, generates the genes trees and computes the historically distances by various computational methods (Paradis et al. 2004).

The statistical and bioinformatics outcomes are used in phylogenetic studies to construction of phylogenetic tree which is a dendrogram resembles the structure of tree illustrates proximity of different genes, species or organisms sharing common an ancestor (Baum 2008). By phylogenetic trees, relatively closed organisms, function and origin of a gene can be identified. In phylogenetic trees there are nodes and branches. Two adjacent nodes connect together by a branch. External and internal nodes represent extant taxa and hypothetical progenitors of operational taxonomic units known as last common ancestor respectively. Cluster emphasizes a group of taxa sharing a monophyletic origin. To build phylogenetic trees from molecular data different methods can be used. The most common methods are group as distance-based methods such as UPGMA method, Neighborjoining method and character based methods such as Maximum Parsinomy, Maximum likelihood and Bayesian inference (Brown 2002; Lemey et al. 2009).

The aim of this study is to be the first report to display the systematic position of three Lallemantia species in Turkey. In this study we used the molecular data from the nuclear ITS region and we further included sequence information from the chloroplast noncoding regions ($\operatorname{trn} T$ - $\operatorname{trn} F$) to provide a more comprehensive taxonomic and phylogenetic results and a more stable classification with using closely related outgroups.

2. LITERATURE REVIEW

Until today many studies about the molecular systematics of different genus of Lamiaceae have been realized. Among these studies a large scale chloroplast phylogeny of the Lamiaceae is remarkable in the means of shedding new lights on its subfamilial classification (Li et al. 2016). The other studies generally mention about in genus level relationships (Drew and Sytsma 2012; Chen et al. 2016; Roy et al. 2016; Bariotakis et al. 2016). Some other studies are also advert about molecular markers which can be used for phylogenetic studies of members of Lamiaceae family (Moja et al. 2016).

Generally in molecular phylogenetic studies the internal transcribed spacers (ITS) of the nuclear ribosomal DNA repeat (nrDNA) which are two regions of noncoding and relatively rapidly evolving DNA sequence that flank the very slowly evolving 5.8S ribosomal RNA gene are usually preferred. The region comprising the ITS and 5.8S gene has been used extensively for phylogenetic inference among relatively closely related species (Gonzalez et al. 1990; Lee and Taylor 1992; Baldwin 1992, 1993; Suh et al. 1993; Wojciechowski et al. 1993; Baldwin et al. 1995; Yuan et al. 1996). In addition to the nrDNA the use of chloroplast DNA (cpDNA) restriction site analysis and nucleotide sequence data have been used in the recognition and recircumscription of the Lamiaceae (Trusty et al. 2004).

There are also different publications in literature about Lallemantia which are about micromorphological analysis (Dinc et al. 2009), phytochemistry, antimicrobial activity (Dehaghi et al. 2016), antifungal activity (Hosseini and Shahidi 2016; Waller et al. 2017) and in vitro callus induction (Razavi et al. 2017) of Lallemantia taxa. The only one study is found in the literature Masoud et al. (2016) that mentioned about the population genetics, molecular phylogeny and biogeography of the genus Lallemantia. They studied molecular phylogenetic with inter-simple sequence repeat (ISSR) markers and inter-genic spacer of chloroplast genome rpl16. However they did not use nrDNA

ITS regions and cpDNA $\operatorname{trn} T-\operatorname{trn} F$ sequences data for identification of relationship of species. So this study will provide a different perspective for the molecular phylogeny and relationship of the Lallemantia.

3. MATERIALS AND METHODS

3.1. Materials

3.1.1. Plant Materials

Plant material was obtained from silica-gel dried leaved of collected specimens in the wild. . Lallemantia canescens was collected from natural habitats in Nemrut Crater Lake, Bitlis; Lallemantia peltata was collected from Bitlis Eren University Campus; Lallemantia iberica was collected from Doğancık Village Baskil Elazığ. All specimens were collected in 2015. The other plant materials used in this study as outgroup were collected from different places previously and handled in different studies.

3.1.2. Glass and Plastics Materials, Chemicals, Enzymes and Kits

All of the glass and plastic materials as pipet tips, microcentrifuge and PCR tubes and other heat resistant materials were sterilized by using autoclave for 20 min . at $121^{\circ} \mathrm{C}$ before starting study. Chemicals, enzymes and kits and their suppliers are listed and given in Table 3.1.

Table 3.1. List of chemical and enzymes used and their suppliers

Chemical or Enzyme	Supplier
Agarose	Sigma Aldrich
Chloroform	Chemsolute
CTAB	Acros Organics
DNA Isolation Kit	Macherey-Nagel
EDTA	Bioshop
Ethanol	Merck
Ethidium Bromide	Vivantis
Glacial acetic acid	Fisher
HCl	Sigma-Aldrich

Table 3.1. (Continue) List of chemical and enzymes used and their suppliers

Chemical or Enzyme	Supplier
Isoamylalcohol	Fisher
6X loading buffer	ThermoScientific
2. mercaptoethanol	Acros Organics
Molecular size marker	Solis Biodye
NaCl	Sigma-Aldrich
$\mathbf{N a O H}$	Sigma-Aldrich
Phenol:Chloroform:Isoamylalcohol	Acros Organics
Taq Polymerase	BioLabs
Tris	BioShop

3.1.3. Buffers and Solutions

3.1.3.1. Agarose Gel Preparation

In order to visualize DNA samples and PCR products $0.8 \%(\mathrm{w} / \mathrm{v})$ and $1.2 \%(\mathrm{w} / \mathrm{v})$ agarose gel were prepared. For these purpose 0.8 g or 1.2 g agarose and 2.0 mL 50 X TAE buffer were added and dissolved in 100 mL distilled water and homogenized in microwave.

3.1.3.2. EDTA ($0.5 \mathrm{M}, \mathrm{pH} 8.0$)

For preparation of EDTA (ethylenediaminetetra acetic acid di-sodium salt) $(0.5 \mathrm{M}$ and pH 8.0) 186.1 g of EDTA was weighed and added to 800 mL of distilled water. The pH was adjusted to 8.0 with NaOH and sterilized by autoclaving.

3.1.3.3. 50 X TAE Buffer

242 g of Tris base was dissolved in 600 mL distilled water and the pH was adjusted to 8.0 with 57.1 mL glacial acetic acid. After that 100 mL 0.5 M EDTA (pH 8.0) was added and the volume was adjusted to 1 liter. TAE buffer was diluted to 1 X before use.

3.1.3.4. CTAB Buffer

2.0 g CTAB (hexadecyl trimethyl-amonium bromide), 10.0 mL 1 M Tris (pH 8.0), 4.0 mL 0.5 M EDTA (pH 8.0), $28.0 \mathrm{~mL} 5 \mathrm{M} \mathrm{NaCl}, 40.0 \mathrm{~mL} \mathrm{ddH}_{2} \mathrm{O}$ were added and pH was adjusted to pH 5.0 with HCl and made up to 100 mL with $\mathrm{ddH}_{2} \mathrm{O}$.

3.1.3.5. Tris (1.0 M, pH 8.0)

121. g Tris base was dissolved in 800 mL of $\mathrm{H}_{2} \mathrm{O}$. The pH was adjusted to 8.0 by adding 42 mL of HCl . Volume was adjusted to 1 L with $\mathrm{ddH}_{2} \mathrm{O}$.

3.1.3.6. 1X TE Buffer

10 mL Tris (1 M) and 2 mL EDTA ($0.5 \mathrm{M}, \mathrm{pH} 8.0$) were added to $988 \mathrm{~mL} \mathrm{ddH} \mathrm{H}_{2} \mathrm{O}$.

3.1.4. Molecular Size Markers

100 bp DNA ladder was used for DNA fragment size determination shown in Figure 3.1. This ladder contains 13 DNA fragments and their sizes are ranging from 100 bp to 3,000 bp.

Figure 3.1. Molecular size marker

3.2. Methods

3.2.1. Total DNA Isolation from Plant Materials

Total genomic DNA isolation of the plant samples collected and sheltered in the silica gel were done by modified CTAB protocol (Doyle and Doyle 1987) or Nucleospin Plant Kit (Macherey-Nagel, Düren-Germany).

3.2.1.1. CTAB Protocol

Total genomic DNA was extracted by modified protocol of the cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle 1987) as mentioned below;

- $\quad 20 \mathrm{mg}$ of plant tissue in silica gel was grinded and homogenized to a fine paste with liquid nitrogen using sterilized mortal and pastel.
- $\quad 1.5 \mathrm{~mL}$ CTAB was added and extract mixture was transferred to a 1.5 mL microcentrifuge tubes, mixed with $20 \mu \mathrm{~L} \beta$-mercaptoethanol and vortexed. CTAB/plant extract mixture was incubated for about 30 min . at $65^{\circ} \mathrm{C}$ in a water bath and vortexed every 10 min .
- After incubation CTAB/plant extract mixture was centrifuged at $14,000 \mathrm{rpm}$ for 15 min . Supernatant was transferred to clean 1.5 mL microcentrifuge tube and 0.8 V Phenol:Chloroform:Isoamylalcohol (25:24:1) was added and centrifuged at $14,000 \mathrm{rpm}$ for 12 min .
- Supernatant was transferred to clean 1.5 mL microcentrifuge tube, 0.8 V Chloroform:Isoamylalcohol (24:1) was added and centrifuged at $14,000 \mathrm{rpm}$ for 10 min .
- \quad Supernatant was taken and 0.7V Isopropanol was added and mixed.
- Samples were incubated overnight at $-20^{\circ} \mathrm{C}$ for precipitation of DNA.
- Pellets were washed with 70% cold ethanol and DNA pellets were air dried at room temperature and re-dissolved in $50 \mu \mathrm{~L}$ TE buffer.

3.2.1.2. DNA Isolation with NucleoSpin Kit

Total genomic DNA isolation was done by the direction of the kit procedure as mentioned below;

- $\quad 20 \mathrm{mg}$ dry weight plant material was homogenized with liquid nitrogen using mortal and pastel.
- Powder was transferred to a new tube and $400 \mu \mathrm{~L}$ Buffer PL1 was added and mixture was vortexed thoroughly. $10 \mu \mathrm{~L}$ RNase A solution was added and mixed. The suspension was incubated for 30 min at $65^{\circ} \mathrm{C}$ in a water bath.
- NucleoSpin ${ }^{\circledR}$ Filter with violet ring was placed into a 2 mL collection tube and lysate was loaded onto the column and centrifuged for 2 min . at $14,000 \mathrm{rpm}$. Filter was discarded and flow-through was collected.
- $\quad 450 \mathrm{~mL}$ PC Buffer was added onto the flow-through and mixed by pipetting.
- NucleoSpin ${ }^{\circledR}$ Column with green ring was placed into a new 2 mL collection tube and $700 \mu \mathrm{~L}$ of sample was loaded onto the column and centrifuged for 1 min at 14,000 rpm. After centrifugation flow-through was discarded.
- $\quad 400 \mu \mathrm{~L}$ of Buffer PW1 was added to the column, centrifuged for 1 min . at 14,000 rpm and flow-through was discarded.
- $\quad 700 \mu \mathrm{~L}$ of Buffer PW2 was added to column, centrifuged for 1 min . at $14,000 \mathrm{rpm}$ and flow-through was discarded.
- $\quad 200 \mu \mathrm{~L}$ of Buffer PW2 was added to the column, centrifuged for 2 min . at 14,000 rpm.
- Column was placed into a new 1.5 mL microcentrifuge tube. 50 mL Buffer PE at $65^{\circ} \mathrm{C}$ was pipetted on to the membrane and incubated 5 min at $65^{\circ} \mathrm{C}$ and then centrifuged for 1 min at $14,000 \mathrm{rpm}$ to elute the DNA.

3.2.2. DNA Purity and Quantity Determination

To determine the DNA quantity absorbance value was estimated by measuring the absorbance at 260 nm in microplate reader (Molecular Devices, USA) and quantity of DNA was calculated by using the equality below;
dsDNA concentration $(\mathrm{ng} / \mu \mathrm{L})=\mathrm{OD}_{260} \mathrm{x}$ dilution factor $\mathrm{x} 50 \mathrm{ng} / \mu \mathrm{L}$

The purity of DNA was estimated by the ratio of absorbance value of 260 nm and 280 $\mathrm{nm} . \mathrm{A}_{260} / \mathrm{A}_{280}$ was calculated and DNA with the ratio of 1.8 was used for PCR.

3.2.3. Agarose Gel Electrophoresis

In order to visualize DNA samples and PCR products $0.8 \%(\mathrm{w} / \mathrm{v})$ or 1.2% (w/v) agarose gel was prepared respectively. For gel solution preparation 0.8 g or 1.2 g agarose was weighed and added in 100 mL 1X TAE buffer and melted in a microwave until agarose was completely dissolved for approximately 3 min . When it cooled down to $50-55^{\circ} \mathrm{C}$, $0.2-0.5 \mu \mathrm{~g} / \mathrm{mL}$ ethidium bromide solution was added and mixed. Agarose gel was poured slowly into a gel tray with the well comb in place. For polymerization of the agarose gel it was let to sit for 20-30 min at room temperature. After polymerization of the gel the comb was removed and the tray was placed into the electrophoresis tank. Tank was filled with 1X TAE buffer. DNA samples or PCR products were mixed with 6X loading buffer and loaded into the wells. Molecular weight ladder was loaded into generally the first lane and the last lane of the gel. The gel was run at $5-10 \mathrm{~V} / \mathrm{cm}$ for $30-45 \mathrm{~min}$. The gel was visualized with gel imaging system (Bio-Rad, Canada).

3.2.4. Polymerase Chain Reaction (PCR)

Primer sets that used in this study are universal primers. Whole region of nrDNA ITS region was amplified with ITS AB101 and ITS AB102 primers (Douzery et al. 1999). nrDNA ITS region also amplified with another set of primers namely; ITS4 and ITS5 (White et al. 1990) in some cases. Amplification of the three non-coding regions; trnT (UGU)-trnL (UAA) 5' exon, $\operatorname{trn} L$ (UAA) intron and trnL (UAA) 3^{\prime} exon-trnF (GAA) were performed using the B48557-A49291; B49317-A49855 and B49873-A50272 primer sets respectively (Taberlet et al. 1991). Primer sequences are listed in Table 3.2.

Table 3.2. Sequences of the universal primers

Primer	Sequence of primer
ITS-AB101 (forward)	ACGAATTCATGGTCCGGTGAAGTGTTCG
ITS-AB102 (reverse)	TAGAATTCCCCGGTTCGCTCGCCGTTAC
ITS-4 (reverse)	TCCTCCGCTTATTGATATGC
ITS-5 (forward)	GGAAGTAAAAGTCGTAACAAGG
B48557 (forward)	CATTACAAATGCGATGCTCT
A49291 (reverse)	TCTACCGATTTCGCCATATC
B49317 (forward)	CGAAATCGGTAGACGCTACG
A49855 (reverse)	GGGGATAGAGGGACTTGAAC
B49873 (forward)	GGTTCAAGTCCCTCTATCCC
A50272 (reverse)	ATTTGAACTGGTGACACGAG

In Table 3.3. it is given the solutions used in PCR reactions. OneTaq 2 X master mix standard buffer was preferred. After all solutions were added to PCR tubes, they were mixed by pipetting. Total volume was adjusted to $50 \mu \mathrm{~L}$ with sterile $\mathrm{ddH}_{2} \mathrm{O}$.

Table 3.3. Solutions used in PCR reactions

Solution	Quantity	Concentration
Standard buffer	$25 \mu \mathrm{~L}$	-
Forward primer	$1 \mu \mathrm{~L}$	$10 \mu \mathrm{M}$
Reverse primer	$1 \mu \mathrm{~L}$	$10 \mu \mathrm{M}$
Template DNA	$3 \mu \mathrm{~L}$	$50 \mathrm{ng} / \mu \mathrm{L}$
Nuclease free water	to $50 \mu \mathrm{~L}$	-

Amplification was performed by PCR Equipment (Sensoquest Labcycler). The PCR condition is shown in Table 3.4.

Table 3.4. PCR procedure and cycles

Step	Temperature	Time	Cycle number
Initial denaturation	$95^{\circ} \mathrm{C}$	5 min.	1 cycle
Denaturation	$95^{\circ} \mathrm{C}$	1 min.	
Annealing	$60^{\circ} \mathrm{C}$	1 min.	35 cycles
Extension	$72^{\circ} \mathrm{C}$	1 min.	
Last extension	$72^{\circ} \mathrm{C}$	6 min.	1 cycle

3.2.5. DNA Sequencing and Sequence Analysis

Amplified nrDNA ITS region and trnL and $\operatorname{trnL}-F$ region PCR products were sequenced by MedSanTek (İstanbul) using Applied Biosystems 3500 xL Genetic Analyzer. Sequences were aligned by using ClustalW (Thompson et al. 1994) software and checked visually.

3.2.6. Phylogenetic Analysis

Samples were analyzed under three data sets. First one composed of nrDNA ITS region, second one composed of the sequences from $\operatorname{trn} L$ intron region and last one composed of the sequences from region between $\operatorname{trnL-F}$. Molecular diversity statistics for each data was analyzed by using Molecular Evolutionary Genetics Analysis software MEGA 6.0 (Tamura et al. 2013) and pylogenetic tree was constructed by Maximum Parsinomy Method.

4. RESULTS AND DISCUSSION

4.1. Experimental Strategies for Molecular Systematic Analysis of Genus

 Lallemantia (Lamiaceae) Grown in TurkeyThe experimental strategy for studying molecular phylogeny of the Genus Lallemantia (Lamiaceae) grown in Turkey is shown in Figure 4.1.

In this study it was aimed to display the systematic relationship of the L. canescens, L. iberica and L. peltata which are grown in Turkey. For this purpose firstly total DNA isolations were done from dried plant leaves. Then, two sets of universal primers were used to amplify nrDNA ITS regions and three sets of universal primers were used to amplify cpDNA non-coding regions; region between $\operatorname{trn} T$ (UGU) and trnL (UAA) 5' exon; trnL (UAA) intron and intergenic spacer between the trnL (UAA) 3 ' exon and $\operatorname{trn} F$ (GAA). After amplification PCR fragments were sent to DNA sequencing. The data derived from sequenced PCR products were aligned using ClustalW (Thompson et al. 1994) software.

Phylogenetic tree construction

Figure 4.1. Flowchart of the experimental strategies

Variable sites, genetic distances, nucleotide diversity and parsimony-informative sites were computed by using Molecular Evolutionary Genetics Analysis software MEGA 6.0 (Tamura et al. 2013). Ultimately, phylogenetic tree was constructed by Maximum Parsinomy Method.

4.2. Isolation of Total DNA from Plant Samples

Total genomic DNAs were isolated from dried plant leaves (Lallemantia canescens, Lallemantia iberica, Lallemantia peltata, Stachys iberica subsp. iberica, Lamium album, Nepeta fissa, Origanum acutidens, Thymus kotschyanus var. kotschyanus, Stachys kurdica var. kurdica, Satureja boissieri) as described in the Materials and Methods Section 3.2.1. DNA samples were visualized on agarose gel electrophoresis as shown in Figure 4.2. Purified DNA samples concentration and purity was measured by spectrophotometer and calculated by formula described in the section 3.2.2.

Figure 4.2. Electrophoresis of total genomic DNA isolated with NucleoSpin Kit from dried plant leaves in 1.0% agarose gel. $3 \mu \mathrm{l}$ of each genomic DNA was electrophoresed. M: Molecular size marker (100 bp DNA ladder); 1. L. canescens; 2. L. iberica; 3. L. peltata; 4. Stachys iberica subsp. iberica; 5. Lamium album; 6. Nepeta fissa; 7. Origanum acutidens; 8. Thymus kotschyanus var. kotschyanus; 9. Stachys kurdica var, kurdica; 10. Satureja boissieri

4.3. PCR Amplification

4.3.1. Amplification of nrDNA ITS Regions

ITS1+5.8S rDNA+ITS2 regions of the plant samples were amplified using both AB101 and ITS5 forward primers and AB102 and ITS4 reverse primers. Regions amplified by these primers were illustrated in Figure 4.3. (White et al. 1990; Douzery et al. 1999).

Figure 4.3. The schematic illustration of the amplified region by primers AB101/ITS5 and AB102/ITS4 (Baldwin 1992; Douzery et al. 1999)

To optimize PCR reactions, different annealing temperatures were tested. Amplification with $\mathrm{AB} 101 / \mathrm{AB} 102$ primer set yielded PCR products nearly 800 bp and amplification with ITS5/ITS4 primer set yielded PCR products nearly 700-800 bp (Figure 4.4). Origanum acutidens and Satureja boissieri could not be amplified by both two sets of primers.

Figure 4.4. Electrophoresis of PCR products amplified with AB101/AB102 and ITS5/ITS4 primer sets in a 1.2% agarose gel. M: Molecular size marker (100 bp DNA ladder) NC: negative control; PC: positive control; lane 1-8 show PCR products amplified using AB101-AB102 and lane 9-16 show PCR products amplified using ITS5/ITS4 1. L. canescens; 2. L. iberica; 3. L. peltata; 4. Stachys iberica subsp. iberica; 5. Lamium album; 6. Nepeta fissa; 7. Thymus kotschyanus var. kotschyanus; 8. Stachys kurdica var. kurdica; 9. L. canescens; 10. L. iberica; 11. L. peltata; 12. Stachys iberica subsp. iberica; 13. Lamium album; 14. Nepeta fissa; 15. Thymus kotschyanus var. kotschyanus; 16. Stachys kurdica var. kurdica

4.3.2. Amplification of cpDNA trnT-F Regions

Polymerase chain reaction (PCR) of the three non-coding regions (Figure 4.5); trnT (UGU)-trnL (UAA) 5' exon, $\operatorname{trn} L$ (UAA) intron and $\operatorname{trn} L$ (UAA) 3^{\prime} exon-trnF (GAA) were performed using the B48557-A49291; B49317-A49855 and B49873-A50272 primer sets respectively (Taberlet et al. 1991).

Figure 4.5. The schematic illustration of the amplified region by B48557-A49291. (a-b); B49317-A49855 (c-d) and B49873-A50272 (e-f). and the positions and directions of these universal primers 3^{\prime} ends of the primers were indicated by tips of arrows (Taberlet et al. 1991)

To optimize PCR reactions, different annealing temperatures were tested. Amplification of regions between $\operatorname{trn} T$ (UGU) and trnL (UAA) 5' exon with primer B48557-A49291 set yielded no PCR with plant samples of L. canescens, L. iberica, L. peltata, on the contrary yielded nearly 600-700 bp PCR products with the plant samples Stachys iberica subsp. iberica and Lamium album (Figure 4.6). Therefore regions between $\operatorname{trn} T$ (UGU) and trnL (UAA) were not included in phylogenetic tree construction. Amplification of regions between trnL (UAA) 5^{\prime} exon and $\operatorname{trnL}(\mathrm{UAA}) 3 '$ exon with primer B49317-A49855 set yielded products nearly 600 bp PCR products with L. canescens, L. iberica, L. peltata, Stachys iberica subsp. iberica and Lamium album (Figure 4.6). Amplification of regions between trnL (UAA) 3' exon and trnF (GAA) with primer B49873-A50272 set yielded between 400-500 bp PCR products with plant samples L. canescens, L. iberica, L. peltata and 300 bp PCR products with plant sample of Stachys iberica subsp. iberica and 400500 bp PCR products with plant sample of Lamium album (Figure 4.6).

Figure 4.6. Electrophoresis of PCR products amplified with B48557-A49291; B49317-A49855 and B49873-A50272 primer sets in a 1.2% agarose gel. $5 \mu \mathrm{l}$ of each PCR products was electrophoresed. M: Molecular size marker (100 bp DNA ladder). lane $1-5$ show PCR products amplified by using B48557A49291, lane $6-10$ show PCR products amplified by using B49317-A49855 and lane 11-15 show PCR products amplified by using B49873-A50272. 1. L. canescens; 2. L. iberica; 3. L. peltata; 4. Stachys iberica subsp. iberica; 5. Lamium album; 6. L. canescens; 7. L. iberica; 8. L. peltata ; 9. Stachys iberica subsp. iberica; 10. Lamium album; 11. L. canescens; 12. L. iberica; 13. L. peltata; 14. Stachys iberica subsp. iberica; 15. Lamium album.

Amplification of regions between $\operatorname{trn} L$ (UAA) 5^{\prime} exon and trnL (UAA) 3' exon with primer B49317-A49855 set yielded products nearly 500 bp PCR products with Nepeta fissa, and 400 bp with Thymus kotschyanus var. kotschyanus and Stachys kurdica var. kurdica (Figure 4.7). Amplification of regions between trnL (UAA) 3' exon and trnF (GAA) with primer B49873-A50272 set yielded between 400 bp PCR products with plant samples Nepeta fissa and 300 bp PCR products with Thymus kotschyanus var. kotschyanus and Stachys kurdica var. kurdica (Figure 4.7).

Figure 4.7. Electrophoresis of PCR products amplified with B48557-A49291; B49317-A49855 and B49873-A50272 primer sets in a 1.2% agarose gel. 5μ of each PCR products was electrophoresed. M: Molecular size marker (100 bp DNA ladder). lane 1, 2 and 3 show PCR products amplified by using B49317-A49855 and lane 4, 5, and 6 show PCR products amplified by using B49873-A50272. 1. Nepeta fissa; 2. Thymus kotschyanus var. kotschyanus; 3. Stachys kurdica var. kurdica; 4. Nepeta fissa; 5. Thymus kotschyanus var. kotschyanus; 6. Stachys kurdica var. kurdica.

4.4. DNA Sequencing and Alignment

ITS and trnL intron and $\operatorname{trn} L-F$ regions were amplified belonging to plant samples. DNA sequencing of these PCR products was done by MedSanTek. Sequencing of each PCR product was done by unidirectional using forward primers. Sequences were converted to FASTA format and recorded in Note Pad. Raw data were checked visually by aligned using ClustalW (Thompson et al. 1994) software. Sequences and alignment results are shown in Appendix.

4.5. Phylogenetic Analysis

4.5.1. nrDNA and Phylogenetic Tree Analysis

ITS region includes; ITS1, 5.8SrDNA and ITS2 portions. Polymorphisms existing in ITS enable to compare of closely related genera and species. During phylogenetic analysis all sequences were aligned with both ClustalW by using Molecular Evolutionary Genetics Analysis software MEGA 6.0 (Tamura et al. 2013). Then, sequences were clustered and contigs were created by elimination of gap regions. Phylogenetic trees were constructed by character-based Maximum Parsimony Method (Figure 4.8). Number of parsimonyinformative sites, transition, transversion, nucleotide diversity, and variable and conserved sites were computed and summarized in Table 4.1.

For construction of phylogenetic tree depends on sequences of nrDNA ITS region, L. iberica, L. peltata, L. canescens and outgroups; Stachys iberica subsp. iberica, Stachys kurdica var. kurdica and Tanacetum vulgare and Tanacetum nitens were used. According to discrimination of Lallemantia species in Flora of Turkey mentioned in Section 1.2. L. peltata, L. iberica and L. canescens are distinguished depending on their bracteoles. Bracteoles of L. peltata is orbicular however bracteoles of L. iberica and L. canescens are distinctly longer and broad and L. iberica is annual and its corolla is $11-18 \mathrm{~mm}$ and L. canescens is perennial and its corolla is $28-40 \mathrm{~mm}$. On the contrary, the phylogenetic tree constructed by using Maximum Parsimony Method with nrDNA ITS sequence data results is not compatible with this discrimination. L. iberica and L. peltata relationship grade is more close to each other and L. canescens is separated from these as seen in

Figure 4.8. Stachys iberica subsp. iberica and Stachys kurdica var. kurdica which are belonging to Lamiaceae family constituted a cluster and were separated from branches of Lallemantia. The other out group of Tanacetum vulgare and Tanacetum nitens which belong to family Asteraceae were seen as outermost of all. The phylogenetic tree is compatible with taxonomic separation of genus in Flora of Turkey.

Figure 4.8. Maximum Parsinomy tree of nrDNA ITS region

Table 4.1. Numeric information of ITS

Features	ITS
Length of the aligned sequence (including all taxa with outgroup)	524
GC\% content (including all taxa with outgroup)	58.3
Parsimony informative sites (including all taxa with outgroup)	251
Variable Sites	301
Conserved Sites	220

4.5.2. cpDNA and Phylogenetic Tree Analysis

4.5.2.1. trnL (UAA) intron and $\operatorname{trnL} L-F$

$\operatorname{trnL}(\mathrm{UAA})$ intron includes $\operatorname{trnL}(\mathrm{UAA}) 5^{\prime}$ exon - $\operatorname{trn} L(\mathrm{UAA}) 3^{\prime}$ exon portion. $\operatorname{trnL}-F$ includes region between trnL (UAA) 3 ' exon and $\operatorname{trn} F$ (GAA). The length of these regions varies among species. Sequences of L. iberica, L. peltata, L. canescens, Stachys kurdica var. kurdica, Stachys iberica subsp. iberica, Tanacetum vulgare and Tanacetum nitens were aligned by ClustalW program and gaps were eliminated and contigs were created. Maximum Parsimony Method was used to construct the phylogenetic trees (Figure 4.9 and 4.10). Number of parsimony-informative sites, transition, transversion,
nucleotide diversity and variable and conserved sites were computed and summarized in Table 4.2 and 4.3.

The phylogenetic tree constructed with cpDNA $\operatorname{trn} L$ intron and $\operatorname{trnL-F}$ sequences data results are not compatible with the discrimination of Lallemantia genus. L. canescens and L. peltata relationship grade is more close to each other and L. iberica is separated from the L. canescens and L. peltata. Stachys iberica subsp. iberica and Stachys kurdica var. kurdica which are belonging to Lamiaceae family constituted a cluster and were separated from branches of Lallemantia. Tanacetum vulgare and Tanacetum nitens which are from Asteraceae family constitutes outer group. The relationship founded out by cpDNA sequences of L. canescens, L. peltata and L. iberica is not abided to that of nrDNA data. On the other hand on the grade of genus discrimination emerging phylogenetic tree is not contracted to taxonomic separation of genus described in Flora of Turkey.

Figure 4.9. Maximum Parsinomy tree of $\mathrm{cpDNA} \operatorname{trn} L(\mathrm{UAA})$ intron region

Table 4.2. Numeric information of trnL (UAA) intron

Features	$\boldsymbol{\operatorname { t r n L }}$ (UAA) intron
Length of the aligned sequence (including all taxa with outgroup)	360
GC\% content (including all taxa with outgroup)	34.1
Parsimony informative sites (including all taxa with outgroup)	85
Variable sites	270
Conserved sites	75

Figure 4.10. Maximum Parsinomy tree of trnL-F region

Table 4.3. Numeric information of trnL-F

Features	trnL-F
Length of the aligned sequence (including all taxa with outgroup)	351
GC\% content (including all taxa with outgroup)	39.9
Parsimony informative sites (including all taxa with outgroup)	93
Variable sites	123
Conserved sites	228

5. CONCLUSION

In conclusion, in this study nrDNA ITS region (ITS1, 5.8SrDNA and ITS2) and cpDNA $\operatorname{trn} T-F$ region were analysed. The sequences obtained from these DNA regions were aligned and compared and used for construction of phylogenetic tree. The results were congruent in the means of Flora of Turkey genus discrimination. On the other hand they were not parallel to Lallemantia species separation. According to the nrDNA sequence data L. peltata and L. iberica showed closer relationship compared to L. canescens. On the contrary cpDNA both region sequence data illustrated that L. canescens and L. peltata were separated from the same node but L. iberica branched out of them. Thus not only the phylogenetic relationships of Lallemantia species are incompatible with discrimination of this genus but nrDNA and cpDNA phylogenetic trees are also incompatible with each other.

Until today there isn't any phylogenetic analysis on L. peltata, L. canescens and L. iberica found in Turkey. Although nrDNA ITS and cpDNA trnL-F regions were analysed in this study for the first time it only give us an idea about DNA sequence similarity and diversity of species and reflection of this comparison on the phylogenetic tree. For the more comprehensive results different markers from both nrDNA and cpDNA would be studied and compared in detail.

REFERENCES

Alonso A, Bull RD, Acedo C, Gillespie LJ (2014) Design of plant-specific PCR primers for the ETS region withenhanced specificity for tribe Bromeae and their application toother grasses (Poaceae). Botany 92: 693-699

Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417-434

Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the Compositae. Mol. Phylogenet. Evol 1: 316

Baldwin BG (1993) Molecular phylogenetics of Calycadenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: chromosomal and morphological evolution reexamined. American Journal of Botany 80: 222-238

Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS and. Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden 82: 247277

Baker WJ, Hedderson TA, Dransfield J (1999) Molecular Phylogenetics of Subfamily Calamoideae (Palmae) Based on nrDNA ITS and cpDNA rps16 Intron Sequence Data. Mol Phylogenet Evol 2: 195-217

Bariotakis M, Koutroumpa K, Karousou R, Pirintsos SA (2016) Environmental (in)dependence of a hybrid zone: Insights from molecular markers and ecological niche modeling in a hybrid zone of Origanum (Lamiaceae) on the island of Crete. Ecol Evol. 16, 6(24): 8727-8739

Baum D (2008) Reading a Phylogenetic Tree: The Meaning of Monophyletic Groups. Evolutionay Genetics 1(1): 190

Baser KHC (2002) Aromatic biodiversity among the flowering plant taxa of Turkey. Pure Appl Chem 74: 527-545

Bell CD, Edwards EJ Kım ST, Donoghue MJ (2001) Dipsacales phylogeny based on chloroplast DNA sequences Harvard Papers in Botany Vol. 6(2): 481-499

Bendiksby M, Salmani Y, Brauchler C, Ryding O (2014) The generic position of Stachys tibetica Vatke and amalgamation of the genera Eriophyton and Stachyopsis (Lamiaceae subfam. Lamioideae). Plant systematics and evolution 300(5): 961-971

Bisht SS, Panda AK (2013) DNA Sequencing: Methods and Applications Advances in Biotechnology. (Edn).Indu Ravi, Mamta Baunthiyal. Jyoti Saxena. Springer 11-23

Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Noncoding plastid $\operatorname{trn} T$-trnF sequences reveal a well resolved phylogeny of basal angiosperms. J. Evol. Biol. 16: 558-576

Brown TA (2002) Genomes. Molecular Phylogenetics. Oxford: Wiley-Liss UK

Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences USA 76: 1967-1971

Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. Journal of Molecular Evolution 18: 225-239

Cao Shu BB (1994) Lallemantia L. In: Chun XK [ed.], Flora of China, Lamiaceae 17: 133-134

Chen YP, Drew B, Bo L, Soltis DE, Soltis PS, Xiang CL (2016) Resolving the phylogenetic position of Ombrocharis (Lamiaceae), with reference to the molecular phylogeny of tribe Elsholtzieae. Taxon 65: 123-136

Clegg MT, Gaut BS, Learn GH Jr, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci. 91(15): 6795-801

Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biology p: 17-134

Davis PH (1978) Flora of Turkey and the East Aegean Islands, P.H. Davis (ed.) Vol 6 Edinburg University Press, Edinburg

Davis PH, Mill RR, Tan K (1988). Flora of Turkey and the East Aegean Islands, Vol. 10. Edinburgh University Press: Edinburgh

Dehaghi NK, Gohari AR, Ssadat-Ebrahimi SS, Badi HN, Amanzadeh Y (2016) Phytochemistry and antioxidant activity of Lallemantia iberica aerial parts. Research Journal of Pharmacognosy 3: 27-34

Dereeper A, Guignon V, Blanc G, Audic S, Buffet S,. Chevenet FJ, Dufayard F, Guindon S,. Lefort V, Lescot M,. Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36: 465-469

Dinc M, Pınar MN, Dogu S, Yıldırımlı S (2009) Micromorphological Studies of Lallemantia L. (Lamiaceae) Species Growing in Turkey. Acta Biologica Cracoviensia Series Botanica 51: 45-54

Douzery EJP, Pridgeon AM, Kores P, Linder HP, Kurzweil H, Chase MW (1999) Molecular phylogenetics of Diseae (Orchidaceae): A contribution from nuclear ribosomal ITS sequences. Am J Bot 86: 887-899

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19: 11-15

Drew BT, Sytsma KJ (2012) Phylogenetics, biogeography, and staminal evolution in the tribe Mentheae (Lamiaceae) Am. J. Bot. 99(5): 933-953

Gardes M, Bruns T (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol. Ecol. 2: 113-118

Gilbert W, Maxam A (1973) The Nucleotide Sequence of the lac Operator (regulation/protein-nucleic acid interaction/DNA-RNA sequencing/oligonucleotide priming) Proc. Nat. Acad. Sci. 70(12): 3581-3584

Gonzalez IL, Sylvester JE, Smith TF, Stambolian D, Schmickel RD (1990) Ribosomal RNA gene sequences and hominoid phylogeny. Molecular Biology and Evolution 7: 203219

Govaerts R, Paton A, Harvey Y, Navarro T and Del Rosario GPM (2010) World Checklist of Lamiaceae. The Board of Trustees of the Royal Botanic Gardens, Kew

Gören G (2011) Türkiye'de yetişen Sideritis L. (Lamiaceae) cinsinin Hesiodia ve Burgsdorfía seksiyonlarının ITS nrdna ile $\operatorname{trnL}-F$ ve $n d h \mathrm{~F}$ cpdna dizileriyle moleküler sistematik analizi. Yüksek Lisans Tezi. Balıkesir Üniversitesi

Guner A, Ozhatay T, Ekim T, Baser KHC (eds) (2001) Flora of Turkey and The East Aegean Islands, Vol. 11. Edinburgh University Press: Edinburgh p: 656

Guo SQ, Xiong M, Ji CF (2011) Molecular phylogenetic reconstruction of Osmanthus Lour. (Oleaceae) and related genera based on three chloroplast intergenic spacers. Plant Syst Evol 294: 57-64

Harley RM, Atkins S, Budantsev AL, Cantıno PD, Conn BJ, Grayer R, Harley MM, De Kok R, Krestovskaja T, Morales R, Paton AJ, Rydıng O, Upson T (2004) Lamiaceae. In: Kadereit JW [ed.] The Families and Genera of Vascular Plants 7: 167-275. Springer, New York

Hershkovitz MA, Lewis LA (1996) Deep level diagnostic value of the rDNA-ITS region: the case of an algal interloper. Molecular Biology and Evolution 13:1276-1295

Hershkovitz MA, Zimmer EA (1996) Conservation patterns in angiosperm rDNA-ITS2 sequences. Nucleic Acids Research 24: 2857-2867

Heslop-Harrison JS (Pat) Thomas Schmidt (2007) Plant Nuclear Genome Composition. Wiley Online Library. doi: 10.1002/9780470015902.a0002014

Heslop-Harrison JS (Pat), Trude Schwarzacher (2011) The plant genome: an evolutionary view on structure and function. Organisation of the plant genome in chromosomes The Plant Journal 66: 18-33

Heywood VH (1996) Flovering Plants of The World, BT Batsford Ltd., London 239

Higgins DG and Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73: 237-244

Hosseini K, Shahidi MT (2016) Role of mucilage in germination of fourteen species of medicinal plants. Seed Science and Technology. 44: 435-440

Jamzad Z (2012) Lamaiceae. In: Assadi M, Maassoumi A, Mozaffarian V, editors. Flora of Iran. Research Institute of Forests and Rangelands (in Persian) Vol. 76, Tehran, Iran

Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S-B, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proceedings of the National Academy of Sciences of the United States of America, 104(49): 19369-19374

Kocabas YZ, Karaman S (2001) Essential oils of Lamiaceae Family from South East Mediterranean region (Turkey). Pak J Biol Sci 4: 1221-1223

Royal Botanic Gardens K (2009) World checklist of selected plant families

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007). Sequence analysis Clustal W and Clustal X version 2.0. 23: 2947-2948

Lee SB, Taylor JW (1992) Phylogeny of five fungus-like protoctistan Phytophthora species, inferred from the internal transcribed spacers of ribosomal DNA. Molecular Biology and Evolution 9: 636-653

Lemey P, Salemi M, Vandamme AM (2009) The Phylogenetic Handbook. Cambridge University Press, UK

Li B, Cantino PD, Olmstead RG, Bramley GLC, Xiang CL, Tan YH, Zhang DX (2016) A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification. Scientific Reports 6: 34343

Liò P, Goldman N (1998) Models of molecular evolution and phylogeny. Genome Res. 8(12): 1233-44

Liu QL, Ge S, Tang HB, Zhang XL, Zhu GF, Lu BR (2006) Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences - New Phytol 170: 411-420

Masoud S, Fahimeh K, Zahra N (2016) Population genetics, molecular phylogeny and bogeography of the genus Lallemantia (Lamiaceae). Botany Conference. Section Molecular Ecology and Evolution

Masuda Y, Yukawa T, Kondo K (2009) Molecular phylogenetic analysis of members of Chrysanthemum and its related genera in the tribe Anthemideae, the Asteraceae in East Asian on the basis of the internal transcribed spacer (ITS) region and external transcribed spacer (ETS) region of nrDNA. chromosome. Bot 4: 25-36

Munshi A (2012) DNA Sequencing-Methods and Applications. Intech

Moja S, Guitton Y, Nicole F, Legendre L, Pasquier B, Upson T, Jullien F (2016) Genome size and plastis trnK-matK markers give new insights into the evolutionary history of the genus Lavandula L. Plant Biosystems 150: 1216-1224

Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press

Oldenburg DJ, Bendich AJ (2004. a) Changes in the structure of DNA molecules and the amount of DNA per plastid during chloroplast development in maize. J Mol Biol 344: 1311-1330

Oldenburg DJ, Bendich AJ (2004. b) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335: 953-970

Paradis E, Claude J, Strimmer K (2004) APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics Application Note 20(2): 289-290

Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Systematics and Evolution 266: 5-43

Razavi SM, Arshneshin H, Ghasemian A (2017) In vitro callus induction and isolation of volatile compounds in callus culture of Lallemantia iberica (M. Bieb) Fisch. and C. A. Mey. 5: 65-68

Roy T, Catlin NS, Garner DM, Cantino PD, Scheen AC, Lindqvist C (2016) Evolutionary relationships within the lamioid tribe Synandreae (Lamiaceae) based on multiple lowcopy nuclear loci. PeerJ 4: e2220

Saar DE, Polans ND, Sorensen PD, Duvall MR (2001) Angiosperm DNA Contamination by Endophytic Fungi: Detection and Methods of Avoidance. Plant Molecular Biology Reporter 19: 249

Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 94(3): 441-448

Sharifi-Rad J, Hoseini-Alfatemi SM, Sharifi-Rad M, Setzer WN (2014) Chemical composition, antifungal and antibacterial activities of essential oil from Lallemantia royleana (Benth. in Wall.) Benth. J Food Safety

Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF (1998) The tortoise and the hare, choosing between noncoding plastoine and nuclear Adh sequences for phylogenetic reconstruction in a recently diverged plant group. American Journal of Botany 85: 13011315

Small RL, Cronn RC, Wendel RF (2004) Use of nuclear gene for phylogeny reconstruction in plants. Australian systematic Botany 17: 145-170

Soltis DE, Soltis PS, and Doyle JJ (1998) Molecular Systematics of Plants II: DNA Sequencing. Kluwer Academic Press, Boston MA

Sonboli A, Osaloo SK, Valles J, Oberprieler C (2011) Systematic status and phylogenetic relationships of the enigmatic Tanacetum paradoxum Bornm (Asteraceae, Anthemideae): evidences from nrDNA ITS, micromorphological and cytological data. Plant Syst Evol 292: 85-93

Sonboli A, Stroka K, Osaloo SK, Oberprieler C (2012) Molecular phylogeny and taxonomy of Tanacetum L. (Compositae, Anthemideae) infreered from nrDND ITS and cpDNA trnH-psbA sequence variation. Plant Syst Evol 298: 431-444

Suh Y, Thien LB, Reeve HE, Zimmer EA (1993) Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. American Journal of Botany 80: 1042-1055

Ursu B, Borcean I (2012) Study regarding the Introduction of Lallemantia iberica F. Et M. in to cultivation on the times county planes. Research Journal of Agricultural Sciences 44: 172-175

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Bio Evol. 30: 2725-2729

Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105-1109

Thompson JD (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680

Tollervey D, Kiss T (1997) Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol. 9(3): 337-42

Trusty JL,. Olmstead RG, Bogler DJ, Santos-Guerra A, and Francisco-Ortega J (2004) Using molecular data to test a biogeographic connection of the Macaronesian genus Bystropogon (Lamiaceae) to the New World: A case of conflicting phylogenies. Systematic Botany 29: 702-715

Tsai LC, Yu YC, Hsieh HM, Wang JC, Linacre A, Lee JCI (2006) Species identification using sequences of the $t r n L$ intron and the $t r n L-t r n F$ IGS of chloroplast genome among popular plants in Taiwan. Forensic Science International 164: 193-200

Waller SB, Cleff MB, Serra EF, Silva AL, Gomes AR, Mello JRB, Faria RO, Meireles MCA (2017) Plants from Lamiaceae family as source of antifungal molecules in humane and veterinary medicine. Microbial Pathogenesis. 104: 232-237

Watson LE, Evans TM, Boluarte T (2000) Molecular Phylogeny and Biogeography of Tribe Anthemideae (Asteraceae), Based on Chloroplast Gene ndhF. Mol Phylogenet Evol 15: 59-69

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, San Diego, USA

Wojciechowski MF, Sanderson MJ, Baldwin BG, Donoghue MJ (1993) Monophyly of aneuploid Astragalus (Fabaceae): evidence from nuclear ribosomal DNA internal transcribed spacer sequences. American Journal of Botany 80: 711-722

Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences, USA 84: 9054-9058

Xu, DH, Ban T (2004) Phylogenetic and evolutionary relationships between Elymus humidus and other Elymus species based on sequencing of non-coding regions of cpDNA and AFLP of nuclear DNA. Theor Appl Genet. 108: 1443-1448

Yang Z, Rannala B (2012) Molecular phylogenetics: Principles and practice. Nature rewievs. Genetics 13: 303-314

Yuan Y. Küpfer MP, Doyle JJ (1996) Infrageneric phylogeny of the genus Gentiana (Gentianaceae) inferred from nucleotide sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA. American Journal of Botany 83: 641-652

APPENDIX

$\operatorname{trnL}(\mathrm{UAA})$ Intron Sequences

Lallemantia canescens

GATAACTTTCAAATTCAGAGAAACCCCGGAATTAAGAAAAAAGGGCAATCCTGAGC CAAATCCTGTTTTCTCAAAACAAAGGTTCAAAAAACAACAAAAAGGATAGGTGCAG AGACTCAATGGAAGCTGTTCTAACGAATGGAGTTGACTGCGCCGGTAAAGGAATCTT TCCATGGAAATTTTAGAAAGCATGAAGGATAAACGCATCTATTGAATACAATATCAA ATTTTTAATGTTGGCCCGAATCTGTTTTTTTTTTTTTTTAATATGAAAATAACAAAATT TAATATGAAAATAAGTGGGAATTTATTTCACTTTGAAAAAAAAA

Lallemantia iberica

GATAACTTTCAATTCAGAGAAACCCCGGAATTAAGAAAAATGGGCAATCCTGAGCCA AATCCTGTTTTCTCAAAACAAAGGTTCAAAAAACAACAAAAAGGATAGGTGCAGAG ACTCAATGGAAGCTGTTCTAACGAATGGAGTTGACTGCGCCGGTAAAGGAATCTTTC CATGGAAATTTTAGAAAGGATAAACGCATCTATTGAATACAATATCAAATTTTTAAT GTTGGCCCGAATCTGTTTTTTTTTTTTATTTTAATATGAAAATAACAAAATAAGTGGG AATTTATTTCACGTTGAAGAAAAAAAA

Lallemantia peltata

GATAACTTTCAAATTCAGAGAAACCCCGGAATTAAGAAAAATGGGCAATCCTGAGCC AAATCCTGTTTTCTCAAAACAAAGGTTCAAAAAACAACAAAAAGGATAGGTGCAGA GACTCAATGGAAGCTGTTCTAACGAATGGAGTTGACTGCGCCGGTAAAGGAATCTTT CCATGGAAATTTTAGAAAGGATGAAGGATAAACGCATCTATTGAATACAATATCAAA TTTTTAATGTTGACCCGAATCTGTTTTTTTTTTTTTTTAATATAAAAATAAGTGTGAAT TTATTTCACCTTGAATAAAAAAAAAAA

GATAACTTTCAAATTCAGAGAAACCCCGGAATTAATCAAAATGGGCGATCCTGATCC AAATCCTGTTTTTTCAAAACAAAGGTTCAAAAAACCAAATAAAGGATAGGTGCAGAG ACTCAACGGAAGCTGTTCTAACAAATGGAGTTTACTGCGTTGGTAGAGGAATCCTTT CTAGGAAACTTCAAAAAGGATGAAGGATAAACGTATCTATCGAATACTATATCAAAT GATTAATGATAGCCCGAATCCGTA

Stachys kurdica var. kurdica

GATAACTTTCAAATTCAGAGAAACCCCGGAATTAATCAAAATGGGCGATCCTGATCC AAATCCTGTTTTTTCAAAACAAAGGTTCAAAAAACCAAATAAAGGATAGGTGCAGAG ACTCAACGGAAGCTGTTCTAACAAATGGAGTTGACTGCGTTGGTAGAGGAATCCTTT CTACGGAAACTTCAGAAAGGATGAAGGATAAACGTATCTATCGAATACTATATCAAA TGATTAATGATGGCCCGAGTCCGTATTTTTAAATATGAAAAATAGAAGAATTGGTGT GAATTGATTCTATAATTGAAGAAAAAA

Tanacetum vulgare

TTACTAAGTGATAACTTTCAAATTCAGAGAAACCCTGGAATTAAGAAAAATGGGCAA TCCTGAGCCAAATCACGTTTTCCGAAAACAAACAAAGGTTCAGAAAGCGAAAAGAA AAAAAAGATAGGTGCAGAGACTCGATGGAAGCTGTTCTAACGAATGGAGTTGATTGT CTTACATTGGTAGAGGAATCCTTCTATCGAAACTTCAGAAAAGATGTCAGAAAAGAT GAAGGATAAACCTGTATACATAATACAGAATTGAAGAAAGAATCAATCAAATATTC ATTGATCAAAGATTCACTCCATAATCTGATAGATCTTTTGAAGAACTGATTAATCGGA CGAGAATAAAGATAGAGTCCCGTTCTACATGTCAATACTGGCAACAATGAAATTTAT AGTAATAGGAAAATCCGTCGATTTCAAAAATCATGAGGGTTCAAGTCTTTCTCTGAG TGCCCCGGAAA

Tanacetum nitens

CGCTAAGTGATAACTTTCAAATTCAGAGAAACCCTGGAATTAAGAAAAATGGGCAAT CCTGAGCCAAATCACGTTTTCCGAAAACAAACAAAGGTTCAGAAAGCGAAAAGAAA AAAAAGATAGGTGCAGAGACTCGATGGAAGCTGTTCTAACGAATGGAGTTGATTGTC TTACATTGGTAGAGGAATCCTTCTATCGAAACTTCAGAAAAGATGTCAGAAAAGATG AAGGATAAACCTGTATACATAATACAGAATTGAAGAAAGAATCAATCAAATATTCAT

TGATCAAAGATTCACTCCATAATCTGATAGATCTTTTGAAGAACTGATTAATCGGAC GAGAATAAAGATAGAGTCCCGTTCTACATGTCAATACTGGCAACAATGAAATTTATA GTAATAGGAAAATCCGTCGATTTCAAAAATCATGAGGGTTCAAGTCTTTCTATAATC CCCGGGAAA

$t r n L-F$ Sequences

Lallemantia canescens

TAGGGGTTCCAAATTCCCTTATCCTTCTAATTCCTTGACAAGCTTATTTTAGCGTAAA TGACGGACTTTCTTTTATCACATGTGATATAGAATACACATTGCAAATAAAGCAAGG AATGCCAATATGAATGAATTGCGTTGAAATTACAGGACTTGGAGAAAACTTTACAAT CCCCCCCGTGTCCCTTTAATTGACATCGACTCCAGTCATCTAATAAAATGAGGGTGGG ATGCTACATTGGAAATGGTCGGGATAGCTCAGCTGGTAGAGCAGAGGACTGAAAAT CCTCGTGTCACC

Lallemantia iberica

TAGGGGTTCCAAATTCCCTTATCCTTCTAATTCCTTGACAAGCTTATTTTAGCGTAAA TGACGGACTTTCTTTTATCACATGTGATATAGAATAGAATACACATTGCAAATAAAG CAAGGAATGCCAATATGAATGAATAGCGTTGAAATTACAGGACTTGGATAAAACTTT ACAATCCCCCCCGTGTCCCTTTAATTGACATCGACTCCGTCATCTAATAAAATGAGGG TGGGATGCTACATTGGAAATGGTCGGGATAGCTCAGCTGGTAGAGCAGAGGACTGA AAATCCTCGTGTCCC

Lallemantia peltata

TAGGGGTTCCAAATTCCCTTATCCTTCTAATTCCTTGACAAGCTTATTTTAGCGTAAA TGACGGACTTTCTTTTATCAAATGTGATATAGAATACACATTGCAAATAAAGCAAGG AATGCCAATATGAATAGCGTTGAAATTACAGGACTTGGAGAAAACTTTACAATCCCC CCCGTGTCCCTTTAATTGACATCGACTCCGTCATCTAATAAAATGAGGGTGGGATGCT ACATTGGAAATGGTCGGGATAGCTCAGCTGGTAGAGCAGAGGACTGAAAATCCTCGT GTCACCC

TTATCCCATCCCCCCTTAAGGAATCCCTATTTGAATAATTCACAATCAATAGATGCAG GACAAAACTTTGTAATCCTGCCTGTCCCTTTAATTGACAGAGACTACAGTTATCCTAT AAAATGAAGATGGGATGCTACATTGGGAATGGTCGGGATAGCTCAGCTGGTAGAGC AGAGGACTGAAAATCCTCGTGTCCC

Stachys kurdica var. kurdica

TATTTACCCTATCCCCCTTCTTTTTCGTTAACGGTCCCAAATTCCCTTATCCTTCTGAT TCTTTGACAAACGTATTTGGGCGTAAATGACTTTATCTTATCACATGTGATATAGAAT ACACATTCCAAATGAAGCAATGAATGCCGATATGAATGAATAGCCTTGAAATTACAG GACTCGGAGAAAACTTTGTAATCCCCCGTGTCCCTTTAATTGACATCGACTCCAGTCA TCTAATAAAATGAGGGTGGGATGCTACATTGGAAATGGTCGGGATAGCTCAGCTGGT AGAGCAGAGGACTGAAAATCCTCGTGTCACA

Tanacetum vulgare

ACACTGGCTCTATTCTTTATTGTATCCTTTTGATTTATCTTGTTTTTCGTTAGCGGTTCA AAATTCСTTATCTTTCCCATTCACTACTCTTTATACAATTATACAAAAGGATCTGAGC GGAAAAGCTGTTCTCTTATCACATCACACGGGATATATATGATACATGTACAAATGA ATATCTTTGAGCAAGGAATCCCCGTGTGAATTATTCACGATCGATATTTTTATTCATA CTGAAGTTATTCTTTTGCCAAATTATAGGACCTGGACGAGGCTTTGTAATACCCTTTC AATTGACATAGACCCACGTTGTCTAGTAAAATGAAAATGAGGATGCGACATCAGGA ATAGTTGGGATAGCTCAGTTGGTAGAGCAGAGGACTGAAAATCCTCGTGTCCCGGGT CGGGAAAATAAAAA

Tanacetum nitens

CACTTGACTCTATTCTTTATTGTATCCTTTTGATTTATCTTGTTTTTCGTTAGCGGTTCA AAATTCСTTATCTTTCCCATTCACTACTCTTTATGCAATTATACAAAAGGATCTGAGC GGAAAAGCTGTTCTCTTATCACATCACACGGGATATATATGATACATGTACAAATGA ATATCTTTGAGCAAGGAATCCCCGTGTGAATTATTCACGATCGATATTTTTATTCATA CTGAAGTTATTCTTTTGCCAAATTATAGGACCTGGACGAGGCTTTGTAATACCCTTTC AATTGACATAGACCCACGTTGTCTAGTAAAATGAAAATGAGGATGCGACATCAGGA

ATAGTTGGGATAGCTCAGTTGGTAGAGCAGAGGACTGAGAATCCTCGTGTCACCAGT TGCGAAATAAAA

ITS Sequences

Lallemantia peltata

Abstract

TGGGATGTTTATTAATCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATT GTCGAAACCTGCAAAGCAGACCGCGAACCCGTGCGTAACGAACCGCGTGCGTCGCG GCGTGGGGGCGACCCCCGTCGCGCCGCCGCGTCCCCGCCGGCGCCATCCCTCGGGCG GCGTCGTGCGGGCTAACGAACCCCGGCGCGGAATGCGCCAAGGAAAACAGAAACGA AGCGTCCGCCCCCCGCTCCCCGTCCGCGGAGCGTGCGGGGGACCGGCCGTCTATCAA AATGTCATAACGACTCTCGGCAAAGGATATCTCGGCTCTCGCATCGATGAAGAACGT AGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGA ACGCAAGTTGCGCCCGAAGCCATCAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCA TCGCGTCGCCCCCCCTCCATCGAGGCGGGGCGGATATTGGCCCCCCGTGCGTCCCGG CGCGCGGCCGGCCCAAATGCGATCCCTCGGCGGCTCGTGTCGCGACCAGTGGTGGTT GAACTCATCAATCTCTCAAGGTCGCGATCCCGTGCCGTCCGAACGGGCATCAACGAA CGACCCAACGGCGTCGGGCCCCAGCGGCCCCGCGCCTTCGACCGCGACCCCAGTGCA GGCAATACC

Lallemantia iberica

TTGTATGGTGATAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATT GTCGAAACCTGCAAAGCAGACCGCGAACCCGTGCGTAACGAACCGCTTGCGTCGCG GCGTGGGGGCGACCCCCGTCGCGCCGCCGCGCCCCTGCCGGCGCCATCCCTCGGGAG GCGTCGTGCGGGCTAACGAACCCCGGCGCGGAATGCGCCAAGGAAAACAGAAACGA AGCGTCCGCCCCCCGCTCCCCGTCCGCGGAGCGTGCGGGGGACCGGCCGTCTATCAA AATGTCATAACGACTCTCGGCAAAGGATATCTCGGCTCTCGCATCGATGAAGAACGT AGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGA ACGCAAGTTGCGCCCGAAGCCATCAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCA TCGCGTCGCCCCCCCTCCATCGAGGTGGGGCGGATATTGGCCCCCCGTGCGTCCCGG CGCGCGGCCGGCCCAAATGCGATCCCTCGGCGGCTCGTGTCGCGACCAGTGGTGGTT GAACTCATCAATCTCTCAAGGTCGCGATCCCGTGCCGTCCGAACGGGCATCAACGAA CGACCCAAGGCGTCGGGCCCCAGCGGCCCCGCGCCTCGACCGCGACCCCAGTCAAGC GAATAACCG

Lallemantia canescens

Abstract

TGGAAAGTTAAAAAATCGTAACAAGGTCTCCGTAGGTGAACCTGCGGAAGGATCATT GTCGAACCTGCAAAGCAATCCGCAAACCCGAACGAACCGCATCTCGCGCTCGGGGG CGACCCGGCTAACACGCGGCAATGCCCAAGGAAAACACGAAGCTGCATCCTTAGTCC CCGGGCGGGAAATAAACTTTCGGCAACGGATCTCTCGGTTCTGGCATCGATGAAGAA CGTAGCGAAATGCGATAATTGGTTTGAATTGCAGAAGCCCGTGATCCATCGAGTCTT TGAACCCAAGTTGCGCCCGAAGCCATGAGGCCGAGGGCACGTCTGCCTGGGCCGTCA CGCATCGCGTCGCCCCCCCTCGCCGCGTGGGGCGGATTCCCCCGGTGGCGCCGGCCG CGCGGCCGGCATGCGATCCCTTGGCGGCTCGTGTCGCGACCAGTGGTGGTTGAACTC TCTCAAGGTCGCGATCCCGTGCCGTCCGAACGGGC

Stachys kurdica var. kurdica

TTTTTGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGCGCCCCGCTAACGAAATTCG GGCGCGGAATGCGCCAAGGAAAACGAAATGGAGCGCTCCCCTCCCCCCGGCGCGCC CCGTCCGCGGGGCGAACCGCGGGGAGACGGACGCCTATCGAATGTCTAAACGACTCT CGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTT GGTGTGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGA AGCCATCAGGCCGAGGGCACGCCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCACC CCCCGGGGTGCCGGGGCGGAGATTGGCCCCCCGTGCGCAGCGATGCGCGCGGCCGG CCCAAACCCGAATCCGCCGTCGACGCGCGTCGCGACCAGTGGTGGTTGAACCCTCAA CTCGCGTGCTGTCGCGCCCCGCCGCGCCGTCGGTCCGGAGACCGCAGGGCCCAACGG AGCGATCCACGGATCGCGCCCACGACCGCGACCCCAGGTCACCCGAATACGCG

Stachys iberia subsp. iberica

TTGTGGGTGTAACTTCTCTCTTACAAGGTTTCCGTAGGTGAACGTGCGGAAGGATCAT TGTTGAAACCTGCAAAGCAGACCGCGAACACGTTCACAAAAAACAAAACCCGGAGC CGCTGAGCGGGGGAGACCCCGGGAAGCGGCCCCGATAACGAACTCGGGCGCGGAAT GCGCCAAGGAAAACGAAATGGAGCGCACCCGCCTCCCCCGAGCGCCCCGTCCGCGG GGCGACGGGGGTGGAGAGGGACGCCTATCGAATGTCTAAACGACTCTCGGCAACGG ATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAAT TGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTAG GCCGAGGGCACGCCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCCCCCCCGCCTC GGGGGGCGTTGGGGCGGAGATTGGCCCCCCGTGCGCAGCGATGCGCGCGGCCGGCC

CAAACACGAATCCGCCGTCGACGCAAACGTCGCGACCAGTGGTGGTTGAACCCTCAA CTCGCGTGCTGTCGCGTCCCGATGCGCCGTCGGTCCGGAGACGAACGAACCCAATGG AGCGATCGCGAATCGCGCCCACGACCGCGACCCCAGTCAGGCGATACCC

Tanacetum vulgare

CGGCGTCGCCTGACCTGGGGTCGCGGTCGAAGCGTCATCCTAAGATAACACATTGGG GTATTTGAAGAGTTTTTCCTTGCGACTAACACAGAACAAAGAACGAGGGTTTTTACG ACCACCACTAGTTCGTGCGTCCATCGAAGGGACTCCTATTTTGGCCAACCACACCAT GAGCACGGGAGACCAATATCCGCCCCGAACAAAGATTTGTTGGGGGCGACGCGATG CGTGACGCCCAGGCAGACGTGCCCTCGGCCAAAAGGCTTCGGGCGCAACTTGCGTTC AAAAACTCGATGGTTCACGGGATTCTGCAATTCACACCAAGTATCGCATTTTGCTAC GTTCTTCATCGATGCGTGAGCCGAGATATCCGTTGCCGAGAGTCGTTTGTGATTATAA AGAAGCCACGTCTCATGAGCACACCGCGAACGGGGCAACATAAAACTAGCCTTCTTA AGTTTAGTTTTCCTTGGCACACATTGTGCCGGGGGTTGTTATTGCGCCAATGACACAT TCACCATGTCCAAAAGAACACAAGTAAATGCACATCGACAAAGCATCGAGAGGATC AAACAAGTGCTTAATCCACTCGACGCTCGGTTGTTTTTACATGTTCGCGGGTCGTTCT GCTTTGCAGGGTTCGACAATGATCCTTCCGCAGGTTCACCTACGGAAACCTTGTAATA TTTTTTAGCGATGCAGTCACCA

Tanacetum nitens

ATGCTGTCCGCCTGACCTGGGGTCGCGGTCGAAGCGTCATCCGAAGACAACACATTG GGGTATTTGAAGAGTTTTCCTTGCGATTAACACAGAACAAAGAACGAGGGTTTTTAC GACCACCACTAGTTCGTGCGTCCATCGAAGGGACTCCTATTTTGGCCAACCACACCA TGAGCACGGGAGACCAATATCCGCCCCCAACAGAGATTTGTTGGGGGCGACGCGAT GCGTGACGCCCAGGCAGACGTGCCCTCGGCCAAAAGGCTTCGGGCGCAACTTGCGTT CAAAAACTCGATGGTTCACGGGATTCTGCAATTCACACCAAGTATCGCATTTTGCTAC GTTCTTCATCGATGCGTGAGCCGAGATATCCGTTGCCGAGAGTCGTTTGTTATTATAA AGAAGCCACGTCCCATGAGCACACCGCGAACGGGGCAACATAAAACAAGCCTTCTT AAGTTTAGTTTTCCTTGGCACACATTGTGCCGGGGGTTGTTATTGCGCCGATGATACA TTCACCATGTCCAAAAGAACACAAGTAAATGCACACCGACAAGCATCGAGAGGATC AAACAAGTGCTTAATCCACTCGACGCTCGGTTGTTTTTACGTGTTCACGGGTCGTTCT GCTTTGCAGGGTTCGACAATGATCCTTCCGCAGGTTCACCTACGGAAACCTTGTCGCG TTTTATTGTGCTGCGCGCGTAGCA

ClustalW Alignment of trnL (UAA) intron

L.iberica	GATAACTTTCAATT-CAGAGAAACCCCGGAATTAAGAAAAATGGGCAATCCTGAGCCAAA
L.peltata	GATAACTTTCAAATTCAGAGAAACCCCGGAATTAAGAAAAATGGGCAATCCTGAGCCAAA
L.canescens	GATAACTTTCAAATTCAGAGAAACCCCGGAATTAAGAAAAAAGGGCAATCCTGAGCCAAA ************:* **************************:************************)
L.iberica	TCCTGTTTTCTCAAAACAAAGGTTCAAAAAACAACAAAAAGGATAGGTGCAGAGACTCAA
L.peltata	TCCTGTTTTCTCAAAACAAAGGTTCAAAAAACAACAAAAAGGATAGGTGCAGAGACTCAA
L.canescens	TCCTGTTTTCTCAAAACAAAGGTTCAAAAAACAACAAAAAGGATAGGTGCAGAGACTCAA **)
L.iberica	TGGAAGCTGTTCTAACGAATGGAGTTGACTGCGCCGGTAAAGGAATCTTTCCATGGAAAT
L.peltata	TGGAAGCTGTTCTAACGAATGGAGTTGACTGCGCCGGTAAAGGAATCTTTCCATGGAAAT
L.canescens	TGGAAGCTGTTCTAACGAATGGAGTTGACTGCGCCGGTAAAGGAATCTTTCCATGGAAAT
L.iberica	TTTAGAAAG------GATAAACGCATCTATTGAATACAATATCAAATTTTTAATGTTGG
L.peltata	TTTAGAAAGGATGAAGGATAAACGCATCTATTGAATACAATATCAAATTTTTAATGTTGA
L.canescens	TTTAGAAAGCATGAAGGATAAACGCATCTATTGAATACAATATCAAATTTTTAATGTTGG ********* **)
L.iberica	CCCGAATCTGTTTTTTTTTTTTATTTTAAT----------ATGAAAATAACAAAATAAG
L.peltata	
L.canescens	CCCGAATCTGTTTTTTTTTTTTTTTAATATGAAAATAACAAAATTTAATATGAAAATAAG $* * * * * * * * * * * * * * * * *: *)$
L.iberica	TGGGAATTTATTTCACGTTGAAGAAAAAAAA---
L.peltata	TGTGAATTTATTTCACCTTGAATAAAAAAAAAAA
L.canescens	TGGGAATTTATTTCACTTTGAAAAAAAAA----- ** ************* ***** ******

ClustalW Alignment of $\boldsymbol{t r n L}-\boldsymbol{F}$

L. canescens
L.iberica
L.peltata
L.canescens
L.iberica
L.peltata
L. canescens
L.iberica
L.peltata
L. canescens
L.iberica
L.peltata
L. canescens
L.iberica
L.peltata
L. canescens

ACC-
L.iberica
L.peltata

CC--
ACCC

TAGGGGTTCCAAATTCCCTTATCCTTCTAATTCCTTGACAAGCTTATTTTAGCGTAAATG TAGGGGTTCCAAATTCCCTTATCCTTCTAATTCCTTGACAAGCTTATTTTAGCGTAAATG TAGGGGTTCCAAATTCCCTTATCCTTCTAATTCCTTGACAAGCTTATTTTAGCGTAAATG

ACGGACTTTCTTTTATCACATGTGATATAGAATA-----CACATTGCAAATAAAGCAAGG ACGGACTTTCTTTTATCACATGTGATATAGAATAGAATACACATTGCAAATAAAGCAAGG ACGGACTTTCTTTTATCAAATGTGATATAGAATA-----CACATTGCAAATAAAGCAAGG

AATGCCAATATGAATGAATTGCGTTGAAATTACAGGACTTGGAGAAAACTTTACAATCCC AATGCCAATATGAATGAATAGCGTTGAAATTACAGGACTTGGATAAAACTTTACAATCCC AATGCCAATATGAAT----AGCGTTGAAATTACAGGACTTGGAGAAAACTTTACAATCCC

CCCCGTGTCCCTTTAATTGACATCGACTCCAGTCATCTAATAAAATGAGGGTGGGATGCT CCCCGTGTCCCTTTAATTGACATCGACTCCG-TCATCTAATAAAATGAGGGTGGGATGCT CCCCGTGTCCCTTTAATTGACATCGACTCCG-TCATCTAATAAAATGAGGGTGGGATGCT

ACATTGGAAATGGTCGGGATAGCTCAGCTGGTAGAGCAGAGGACTGAAAATCCTCGTGTC ACATTGGAAATGGTCGGGATAGCTCAGCTGGTAGAGCAGAGGACTGAAAATCCTCGTGTC ACATTGGAAATGGTCGGGATAGCTCAGCTGGTAGAGCAGAGGACTGAAAATCCTCGTGTC ***)

ClustalW Alignment of ITS

L.peltata L.iberica L. canescens
L.peltata
L.iberica
L. canescens
L.peltata
L.iberica
L.canescens
L.peltata
L.iberica
L. canescens
--TGGGATGTTTATTAATCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTG --TTGTATGGTGATAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTG TTTGGAAAGTTAAAAAATCGTAACAAGGTCTCCGTAGGTGAACCTGCGGAGGGATCATTA

TCGAAACCTGCAAAGCAGACCGCGAACCCGTGCGTAACGAACCGCGTGCGTCGCGGCGTG TCGAAACCTGCAAAGCAGACCGCGAACCCGTGCGTAACGAACCGCTTGCGTCGCGGCGTG CTGAGTTAG--GGAGCAATCC-CGAACCT--------CCAACCCTTTGTG-------------
.: . ..**.:** ****** * **** ** *

GGGGCGACCCCCGTCGCGCCGCCG-CGTCCCCGCCGGCGCCATCCCTCGGGCGGCGTCGT GGGGCGACCCCCGTCGCGCCGCCG-CGCCCCTGCCGGCGCCATCCCTCGGGAGGCGTCGT --AACGCATCTCGTTGCTTCGGGGGCGACCCTGCCG-----TTCACGCGG------------..**.. * *** ** ** * ** *** **** :**.* ***

GCGGGCTAACGAACCCCGGCGCGGAATGCGCCAAGGAAAACAGAAACGAAGCGTCCGCCC GCGGGCTAACGAACCCCGGCGCGGAATGCGCCAAGGAAAACAGAAACGAAGCGTCCGCCC

CCCGCTCCCCGTCCGCGGAGCGTGCGGGGGACCGGCCGTCTATCAAAATGTCATAACGAC CCCGCTCCCCGTCCGCGGAGCGTGCGGGGGACCGGCCGTCTATCAAAATGTCATAACGAC ACTGCATCCTTACGTCGGAGTATAAAG-------------------TTAATTTAATAAAAC .* **: ** :* ***** .*...* $::^{*}: * *::^{*} .{ }^{*}$

TCTCGGCAAAGGATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTT TCTCGGCAAAGGATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTT TTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGT $\star * * \ldots * * *, * * * * . * 。 *$

GGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGC GGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGC AATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCCTGG .. $* * * * * * * * * * * * * * * * . * * * * * * * * * * * . * * * * * * * * * * * * . . * * * * * * * * .!*$

CATCAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCTCCATCGA CATCAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCTCCATCGA TATTC--CGGGGGGCATGCCTGTTCGAGCGTCAT--TTCACCACTCAAGCCTCGCTTGGC

GGCGGGGCGGATATTGGCCCCCCGTGCGTCCCGGCGCGCGGCCGGCCCAAATGCGATCCC GGTGGGGCGGATATTGGCCCCCCGTGCGTCCCGGCGCGCGGCCGGCCCAAATGCGATCCC ATTGGG-------------CGTCGCGAGTCCCT---CGCG--CGCCTCAAAGTCTCCGGC

TCGGCGGCTCGTGTCGCGACCAGTGGTGGTTGAACTCATCAATCTCTCAAGGTCGCGATC TCGGCGGCTCGTGTCGCGACCAGTGGTGGTTGAACTCATCAATCTCTCAAGGTCGCGATC TCGGCGATTCGT----CTCCCAGCGTTG-----TGGCAACTATTTCGCAGTGGAGT----

CCGTGCCGTCCGAACGGGCATCAACGAACGACCCAACGGCGTCGGGCCCCAGCGGCCCCG CCGTGCCGTCCGAACGGGCATCAACGAACGACCCAAGG-CGTCGGGCCCCAGCGGCCCCG --TCGGGTCGCGGGGCCGTTA

CGCCTTCGACCGCGACCCCAGTGCAGGCAATACC--CGCCT-CGACCGCGACCCCAGTCAAGCGAATAACCG AATCTTCAAAGGTGACCTCGGATCACGTAAGGTAAG .. ** *.*. * **** *.*: .* ** . .

Clustal W Alignment of trnL (UAA)

L.canescens
S.kurdica
L.iberica
L.peltata
S.iberica
T.vulgare
L.canescens
S.kurdica
L.iberica
L.peltata
S.iberica
T.vulgare
L. canescens
S.kurdica
L.iberica
L.peltata
S.iberica
T.vulgare
L.canescens
S.kurdica
L.iberica
L.peltata
S.iberica
T.vulgare
L. canescens
S.kurdica
L.iberica
L.peltata
S.iberica
T.vulgare
L. canescens
S.kurdica
L.iberica
L.peltata
S.iberica
T.vulgare
L. canescens
S.kurdica
L.iberica
L.peltata
S.iberica
T.vulgare
L.canescens
S.kurdica
L.iberica
L.peltata
S.iberica
T.vulgare
----GATAACTTTCAAATTCAGAGAAACCC------------------CGGAATTAAGAAAA
----GATAACTTTCAAATTCAGAGAAACCC------------------ CGGAATTAATCAAA
------GATAACTTTCAATTCAGAGAAACCC-------------------- CGGAATTAAGAAAA
-----GATAACTTTCAAATTCAGAGAAACCC--------------------CGGAATTAAGAAAA
-----GATAACTTTCAAATTCAGAGAAACCC------------------ CGGAATTAATCAAA GGTTCAAGTCCCTCTATCCCCAAAAAGACCGTTTGACTCCCTAATTCTTTATTGTTCCTT .: :. * *: *..*.**..**

AAGGGCAATCCTG--------------------------- AGCCAAATCCTGTTTTCTCAAA ATGGGCGATCCTG---------------------------ATCCAAATCCTGTTTTTTCAAA ATGGGCAATCCTG--------------------------- AGCCAAATCCTGTTTTCTCAAA ATGGGCAATCCTG----------------------------AGCCAAATCCTGTTTTCTCAAA ATGGGCGATCCTG--------------------------ATCCAAATCCTGTTTTTTCAAA TTGATTTATCTTGTTTTTCGTTAGCGGTTCAAAATTCCTTATCTTTCCCATTCTCTTTAT $:: *$ *** ** : . . : : *** . ** * * : *:

ACAAAGGTTCAAAAAACAACAAAAAGGATAGGTG--------------------CAGAGACTC ACAAAGGTTCAAAAAACCAAATAAAGGATAGGTG--------------------CAGAGACTC

 ACAAAGGTTCAAAAAACCAAATAAAGGATAGGTG--------------------CAGAGACTC ACAATTATACAAAAGGATCTGAGCGGAAAAGCTGTTCTCTTATACATCACACGGGATATA ****: . *: *****...*.*:** ** *.*....*.

 TATGATACATGTACAAATGAATATCTTTGAGCAAGGAATCCCCGTGTGAATTATTCACGA :* *.:* .***:*:** .***. . ** * ..*

CCGGTAAAG-GAATCTTTCCATGGAAATTTTAG----AAAGCATGAAGGATAAACGCATC TTGGTAGAGGAATCCTTTCTACGGAAACTTCAG----AAAGGATGAAGGATAAACGTATC CCGGTAAAG-GAATCTTTCCATGGAAATTTTAG----AAAG-------GATAAACGCATC CCGGTAAAG-GAATCTTTCCATGGAAATTTTAG----AAAGGATGAAGGATAAACGCATC TTGGTAGAG-GAATCCTTTCTAGGAAACTTCAA----AAAGGATGAAGGATAAACGTATC TCGATATTTTTATTCATACTGAAGTTATTCTTTTGCCAAATTATAGGACCTGGACGAGGC

$$
\text { *.** : *: * *: .*: : * * : } \quad \text { *** } \quad . .^{* * *} . *
$$

TATTGAATACAATATCAAATTTTTAATGTTGGCCCGAATCTGTTTTTTTTTTTTTTTAAT TATCGAATACTATATCAAATGATTAATGATGGCCCGAGTCCGTATTTTTAAATATGAAAA TATTGAATACAATATCAAATTTTTAATGTTGGCCCGAATCTGTTTTTTTTTTTTATTTTA TATTGAATACAATATCAAATTTTTAATGTTGACCCGAATCTGTTTTTTTTTTTTTTT---TATCGAATACTATATCAAATGATTAATGATAGCCCGAATCCGTA------------------TTTGTAATACCCTTTCAATTGACATAGACCCACGTTGTCTAGTAAAATGAAAATGAGGAT *:* ***** .*:****:* : : * . .* . **:

ATGAAAATAACAAAATTT----------AATATGAAAATAAGTGGGAATTTATTTCACTT ATAGAAG------------------------------AATTGGTGTGAATTGATTCTATAA ATATGAA----------------------AATAACAAAATAAGTGGGAATTTATTTCACGT -----------------------------AATATAAAAATAAGTGTGAATTTATTTCACCT

GCGACATCAGGAATAGTTGGGATAGCTCAGTTGGTAGAGCAGAGGACTGAAAATCCTCGT

ClustalW Alignment of $\boldsymbol{t r n L}-F$

L. canescens
L.iberica
L.peltata S.kurdica S.iberica T.vulgare
L. canescens
L.iberica
L.peltata
S.kurdica
S.iberica
T.vulgare
L.canescens
L.iberica
L.peltata
S.kurdica
S.iberica
T.vulgare
L. canescens
L.iberica
L.peltata
S.kurdica
S.iberica
T.vulgare
L.canescens
L.iberica
L.peltata S.kurdica
S.iberica
T.vulgare
L. canescens
L.iberica L.peltata S.kurdica S.iberica T.vulgare

L.canescens

L.iberica
L.peltata
S.kurdica
S.iberica
T.vulgare
L.canescens
L.iberica
L.peltata
S.kurdica
S.iberica
T.vulgare

-----------------------TAGGGGTTCCAAATTCCCTT-------------------ATC
----------------------TAGGGGTTCCAAATTCCCTT-------------------- ATC
----------------TTTTCGTTAACGGTCCCAAATTCCCTT-------------------ATC
--------------------------TTATCCCATCCCCCCTT-------------------AAG
TTTGATTTATCTTGTTTTTCGTTAGCGGTTCAAAATTCCTTATCTTTCCCATTCACTACT .* *.*:. ** *:

CTTCTAATTCCTTGACAAGCTTATTTTAGCGTAAATGACGGACTTT-CTTTTATCACATG CTTCTAATTCCTTGACAAGCTTATTTTAGCGTAAATGACGGACTTT-CTTTTATCACATG CTTCTAATTCCTTGACAAGCTTATTTTAGCGTAAATGACGGACTTT-CTTTTATCAAATG CTTCTGATTCTTTGACAAACGTATTTGGGCGTAAAT----GACTTT-ATCTTATCACATG

CTTTATACAATTATACAAAAGGATCTGAGCGGAAAAGCTGTTCTCTTATCACATCACACG

TGATATAGAATA----------CACATTGCAAATAAAGCAAGGAATGCCAATATGAATGA TGATATAGAATAGAATA-----CACATTGCAAATAAAGCAAGGAATGCCAATATGAATGA TGATATAGAATA----------CACATTGCAAATAAAGCAAGGAATGCCAATAT----GA TGATATAGAATA----------CACATTCCAAATGAAGCAATGAATGCCGATATGAATGA --GAATCCCTATTTGAATAA GGATATATATGATACATGTACAAATGAATATCTTTGAGCAAGGAATCCCCGTGTGAATTA

ATTGCGTTG---------------------------------------AAATTACAGGACTTGG ATAGCGTTG--AAATTACAGGACTTGG

ATAGCCTTG--AAATTACAGGACTCGG
 TTCACGATCGATATTTTTATTCATACTGAAGTTATTCTTTTGCCAAATTATAGGACCTGG :* .* :* **: : . **

AGAAAACTTTACAATCCCCCCCGTGTCCCTTTAATTGACATCGACTCCAGTCATCTAATA ATAAAACTTTACAATCCCCCCCGTGTCCCTTTAATTGACATCGACTCCG-TCATCTAATA AGAAAACTTTACAATCCCCCCCGTGTCCCTTTAATTGACATCGACTCCG-TCATCTAATA AGAAAACTTTGTAATCCCCCGTGT--CCCTTTAATTGACATCGACTCCAGTCATCTAATA ACAAAACTTTGTAATCCTGCCTGT--CCCTTTAATTGACAGAGACTACAGTTATCCTATA ACGAGGCTTTGTAATACCCT---------TTCAATTGACATAGACCCACGTTGTCTAGTA *****. ***.* ** ******** . *** ... * . ** : . **

AAATGAGGGTGGG-ATGCTACATTGGAAATGGTCGGGATAGCTCAGCTGGTAGAGCAGAG AAATGAGGGTGGG-ATGCTACATTGGAAATGGTCGGGATAGCTCAGCTGGTAGAGCAGAG AAATGAGGGTGGG-ATGCTACATTGGAAATGGTCGGGATAGCTCAGCTGGTAGAGCAGAG AAATGAGGGTGGG-ATGCTACATTGGAAATGGTCGGGATAGCTCAGCTGGTAGAGCAGAG AAATGAAGATGGG-ATGCTACATTGGGAATGGTCGGGATAGCTCAGCTGGTAGAGCAGAG AAATGAAAATGAGGATGCGACATCAGGAATAGTTGGGATAGCTCAGTTGGTAGAGCAGAG

GACTGAAAATCCTCGTGTCACC----------
GACTGAAAATCCTCGTGTCCC------------GACTGAAAATCCTCGTGTCACCC---------GACTGAAAATCCTCGTGTCACA----------GACTGAAAATCCTCGTGTCCC----------GACTGAAAATCCTCGTGTCACCAGTTCAAAT *******************.*

ClustalW Alignment of ITS

S.kurdica	
S.iberica	
L.peltata	---GGGGCCCGACGCCGT
L.iberica	----GGGGCCCGACGCCTT
L.canescens	----------CTTACCT
P.mascula	TTCGCCGCTCGCGACGTCGCG

S.kurdica

S.iberica
L.peltata
L.iberica
L.canescens
P.mascula
S.kurdica
S.iberica
L.peltata
L.iberica
L.canescens
P.mascula

-GCGCGATCCGTGGATCGCTCCGTTGGGCC----CTGCGGTCTCCGGA----------------GCGCGATTCGCG-ATCGCTCCATTGGGTT----CGTTCGTCTCCGGA------------------GAGATTGATGAGTTCAACCACCACTGGTCGCGACACGAGCCGCCGAGGGATCGCA-----GAGATTGATGAGTTCAACCACCACTGGTCGCGACACGAGCCGCCGAGGGATCGCA-----CTCCACTGCGAAATAGTTGCCACAACGCTGGGAGACGAATCGCCGAG---------------AGAACGACCAGCGAACTTGTAAAAATGCTCGGGATGACGGAAGGCGTGAGCCTCTC----
S.kurdica
S.iberica
L.peltata
L.iberica
L.canescens
P.mascula
S.kurdica
S.iberica
L.peltata
L.iberica
L. canescens
P.mascula
S.kurdica
S.iberica L.peltata L.iberica L. canescens P.mascula

S.kurdica

S.iberica
L.peltata
L.iberica
L.canescens
P.mascula

 --------TTTGGGCCGGCCGCGCGCCGGGA--------------CGCACGGGGGGCCAATAT --------TTTGGGCCGGCCGCGCGCCGGGA-------------CGCACGGGGGGCCAATAT --------------CCGGAG--ACTTTGAGG-------------CGCGCGAGGGACTCG---CTTCATCCCATGTCCGGTCGCGCCATACGTTGAGTCGCCCCTCGCACGATGTGCAGGGAA ***. .* . *

GGTCGCG---ACG--CGCG-------TCGACGGCGGATTCGGGTTTGGGCCGGCCG----GGTCGCG---ACGTTTGCG-------TCGACGGCGGATTCGTGTTTGGGCCGGCCG-----TGACGCCCAGGCAGACGTG-------CCCTCGGCCTGATGGCTTCGGGCGCAACTTGCGT TGACGCCCAGGCAGACGTG-------CCCTCGGCCTGATGGCTTCGGGCGCAACTTGCGT TGACGCTCGAACAGGCATG--------CCCCC--CGGAATACCAGGGGGCGCAATGTGCGT GAA--CTAAAACGAAAGA--GCATGCCCC-CGTTGCCCCGGCTTCGGGATGCGCGGGAGG . * .*. . * * **
\qquad
 TCAA------AGACTCGATGGTTCACGGGATTCTGCAATTCACACCAAGTATCGCATTTC TCAA------AGACTCGATGGTTCACGGGATTCTGCAATTCACACCAAGTATCGCATTTC TCAA------AGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTATCGCATTTC TAATGTCTTCTTTTACATATCAAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATC * *. :**
S.kurdica
S.iberica
L.peltata
L.iberica L. canescens P.mascula

GCTGCG-------------------CACGGGGGGCCAATCTCCG-------------------------
 GCTACGTTCTTCATCGATGCGAGAGCCGAGATATCCTTTGCCGAGAGTCG-------------GCTACGTTCTTCATCGATGCGAGAGCCGAGATATCCTTTGCCGAGAGTCG------------GCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGTTGTTGAAAGTTTTATTAAATTA GATAAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAATCACCG *.*... .* * . . * *

S.kurdica	
S.iberica	
L.peltata	--TTATGACATTTTGATAGACGGCCGG---
L.iberica	---------TTATGACATTTTGATAGACGGCCGG---
L.canescens	ACTTTATACTCCGACGTAAGGATGCAGTGTTTTGATGACCTCCGGGGGGAATGCCGCGT-
P.mascula	AGTCTTTGAACGCAAGTTGCG--CCCAAAGCCTTTAGGCTGAGGGCACGTCTGCCTGGG-
S.kurdica	
S.iberica	-------------------CCCCAACGCCCCCCGAGGCGGGGGGGAGGGGG----------
L.peltata	----------------TCCCCCGCACGCTCCGCGGACGGGGAGCGGGGGGCGGACGCTT
L.iberica	
L.canescens	-----GAACGGCAGGGTCGCCCCCGAAGCAACGAGATGCGTTCACAAAGGGTTGGAGGTT
P.mascula	CGTCACGTATCCCGTCGCACCCCCAACCCGTCCCAACTCGGGAATGATGGCTGGTGGGAG
S.kurdica	-----------
S.iberica	
L.peltata	
L.iberica	-
L. canescens	
P.mascula	CGGATATTGGCCTCCCGTGTACTCGCGTTACG-GTTGGTCTAAAATCGAGC--CCCGAGC
S.kurdica	
S.iberica	-
L.peltata	
L.iberica	
L.canescens	
P.mascula	GACGA-ACGTCACGACAA-GTGGTGGTCTGTAATAGCTATTTCGTGTTGTGCGTTGTCTC
S.kurdica	
S.iberica	
L.peltata	
L.iberica	
L.canescens	
P.mascula	GTCGCCCGTGG-GAGCTCACA--GAGACCC-CAAAGCATCGTCA---CGATGATGC-ATC
S.kurdica	--
S.iberica	
L.peltata	
L.iberica	
L.canescens	--CCTTGTTACGATTTTTT-----AACT--TTCCA---AAA--------
P.mascula	CATCGCGACCCCAG-GTCA-GCGGGACT--ACCCG-CTGAATTTAAGC

CURRICULUM VITAE

She was born on March 1990 in Kalar, a city of Kurdistan region of Iraq. After she completed primary, secondary and high school in Kalar, Sulaymaniyah, in 2009 she started to study Biology in Sulaymaniyah University faculty of science, and graduated in 2013 holding bachelor degree of science, and now she is master student at Bingol University in Molecular Biology, Bingol, Turkey.

