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Introduction

Welcome to NLRSE, the First Workshop on Natural Language Reasoning and Structured Explanations,
co-located with ACL 2023 in Toronto, Ontario, Canada.

With recent scaling of large pre-trained Transformer language models (LLMs), the scope of feasible NLP
tasks has broadened. Significant recent work has focused on tasks that require some kind of natural lan-
guage reasoning. A trajectory in question answering has led us from extraction-oriented datasets like
SQuAD to “multi-hop” reasoning datasets like HotpotQA and StrategyQA. Although LLMs have shown
remarkable performance on most NLP tasks, it is often unclear why their answers follow from what they
know. To address this gap, a new class of explanation techniques has emerged which play an integral
part in structuring the reasoning necessary to solve these datasets. For example, the chain-of-thought
paradigm leverages explanations as vehicles for LLMs to mimic human reasoning processes. Entailment
trees offer a way to ground multi-step reasoning in a collection of verifiable steps. Frameworks like
SayCan bridge high-level planning in language and with low-level action trajectories. As a result, we see
a confluence of methods blending explainable machine learning/NLP, classical AI (especially theorem
proving), and cognitive science (how do humans structure explanations?). This workshop aims to bring
together a diverse set of perspectives from these different traditions and attempt to establish common
ground for how these various kinds of explanation structures can tackle a broad class of reasoning pro-
blems in natural language and beyond.

A total of 12 papers appear in the proceedings. Over 70 papers were presented at the workshop itself,
with the rest being submitted under two archival options: cross-submissions (Findings papers or those
already presented at other venues, such as ICLR or the ACL main conference), and regular non-archival
submissions (unpublished work). The latter went through a normal peer review process. These papers
can be found on the NLRSE website: https://nl-reasoning-workshop.github.io/

Four papers were featured as oral presentations. These were selected from the archival papers to represent
a selection of strong work that the organizers felt would be of broad interest to workshop participants. In
addition, we featured five invited talks: Peter Clark, Noah Goodman, Ellie Pavlick, Sarah Wiegreffe, and
Denny Zhou.

We are thankful to all reviewers for their help in the selection of the program, for their readiness in
engaging in thoughtful discussions about individual papers, and for providing valuable feedback to the
authors. We would also like to thank the ACL workshop organizers for all the valuable help and support
with organizational aspects of the conference. Finally, we would like to thank all our authors and presen-
ters for making this such an exciting event!

Bhavana Dalvi, Greg Durrett, Peter Jansen, Danilo Ribeiro, Jason Wei, and Lio Wong, NLRSE organizers
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Abstract

Large language models have shown impres-
sive abilities to reason over input text, however,
they are prone to hallucinations. On the other
hand, end-to-end knowledge graph question
answering (KGQA) models output responses
grounded in facts, but they still struggle with
complex reasoning, such as comparison or or-
dinal questions. In this paper, we propose a
new method for complex question answering
where we combine a knowledge graph retriever
based on an end-to-end KGQA model with a
language model that reasons over the retrieved
facts to return an answer. We observe that
augmenting language model prompts with re-
trieved KG facts improves performance over
using a language model alone by an average
of 83%. In particular, we see improvements
on complex questions requiring count, intersec-
tion, or multi-hop reasoning operations.

1 Introduction

Large language models (LMs) have shown great
promise in a variety of NLP tasks, including
question-answering (QA) (Zhang et al., 2022; Sanh
et al., 2022; Wei et al., 2022a). As language models
scale, they achieve impressive results on standard
QA benchmarks, such as SQuAD (Raffel et al.,
2020), and can answer questions either few-shot or
zero-shot using only knowledge stored within the
model parameters (Roberts et al., 2020). Language
models have also been shown to solve complex rea-
soning tasks by outputting step-by-step instructions
from question to answer (Creswell et al., 2022; Wei
et al., 2022b). Despite these successes, language
models are still prone to hallucinations and can re-
turn answers that are incorrect, out-of-date, and not
grounded in verified knowledge sources, making
them an unsafe choice for a factual question an-
swering service. Additionally, step-by-step reason-
ing can be computationally expensive as it requires
multiple calls to a language model.

Alternatively, knowledge graph-based question
answering (KGQA) models (Chakraborty et al.,
2019; Fu et al., 2020) are trained to traverse knowl-
edge graph (KG) facts to return answers to ques-
tions. These models are faithful and grounded to
facts stored in a KG. However KGQA models are
often limited in the types of reasoning that they can
perform. Most end-to-end KGQA models can per-
form relation following for single or multiple hops
(Cohen et al., 2020), and some models have been
trained for set intersection (Sen et al., 2021), union,
or difference (Sun et al., 2020), however expanding
to general reasoning capabilities remains an open
challenge. KGQA models are also restricted to us-
ing facts stored in a knowledge graph and can not
leverage common world knowledge.

In this paper, we propose a novel method for
complex question answering using a KGQA model
retriever with a language model reasoner. Our ap-
proach harnesses both the ability to traverse over
verified facts with a KGQA model, and the ability
to reason over text with an LM.

For our KGQA retriever, we train an end-to-
end KGQA model based on ReifKB (Cohen et al.,
2020) and the Rigel family of models (Saffari et al.,
2021; Sen et al., 2021). We use this model to re-
turn a weighted set of facts from the knowledge
graph that could be useful for answering a given
question. We then prompt an LM with the question
and the top-k facts retrieved, in a zero-shot setting,
and the language model returns a natural language
answer. In our experiments over four QA datasets,
we show that our approach can outperform using
an LM alone by an average of 83%.

2 Related Works

Recent work on using language models for rea-
soning tasks include Kojima et al. (2023), where
the authors prompt the models to output the steps
to the answer in addition to the final result. Other
methods have also tried to solve questions by break-
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Figure 1: Architecture for our model setup. Question
entities are shown as blue nodes in the knowledge graph
diagrams. See section 3.1 for details.

ing them down into intermediate steps: Wei et al.
(2022b) prompts the language model with similar
examples where an answer is formed step-wise be-
fore providing the requested answer. Creswell et al.
(2022) fine-tune several models with the task of
choosing relevant knowledge until a satisfactory
answer is reached. Although these methods im-
prove language model performance, it can be costly
to fine-tune a large language model or to pass an
input through a language model multiple times, es-
pecially at runtime. In this work, we instead build
a lighter weight retriever model to collect relevant
facts followed by a single call to a language model.

Different data sources have also been used for re-
trieval: Lazaridou et al. (2022) uses Google search.
Kang et al. (2022) also retrieves facts from a knowl-
edge graph but requires fine-tuning a language
model, which can be expensive for the larger mod-
els. Recently, Baek et al. (2023) used a similarity
metric between KG facts and questions to retrieve
relevant facts to add to the prompt of a language
model. However Baek et al. (2023) found that sim-
ilarity alone is not always enough to find relevant
facts for complex question. In this work we present
a more sophisticated model for identifying relevant
facts with a KGQA model.

3 Method

We propose a new method for question answer-
ing using a KGQA model to retrieve facts from a
knowledge graph, and a language model to reason
over the question and facts to return an answer.

3.1 Model description
As shown in Figure 1, our model has three main
components:

1. A sequence-to-sequence KGQA model
(which we refer to as RIGEL based on Saffari
et al. (2021); Sen et al. (2021)) for predicting
a distribution over which relations to follow
in a knowledge graph.

2. A differentiable knowledge graph (DKG),
where the KG is stored in three linear maps
from left-entities, relations, and right-entities
to triples respectively, represented as sparse
binary matrices (Cohen et al., 2020).

3. A language model for interpreting the ques-
tions and reasoning over facts provided from
the KG by the two previous components.

We do not yet integrate entity resolution, so ques-
tion entities are provided from the datasets.

There are three steps to running the model in
inference. First, Rigel is used to estimate a distribu-
tion over relations for each hop using a sequence-
to-sequence architecture. We initialize the encoder
using RoBERTa-base (Liu et al., 2019). The de-
coder predicts a distribution over relations in the
knowledge graph. This decoding step is performed
for up to M hops (in our experiments, M = 2).

Second, the question entities and the distribution
over relation are used to extract weighted triples
from the knowledge graph. We represent the ques-
tion entities as a one-hot vector in entity-space and
map this to a vector of triples using the left-entity to
triple sparse matrix in the DKG. Similarly, for rela-
tions, we use the vector over relations predicted by
the Rigel model and map this to a vector of triples
using the relation to triple matrix in the DKG. Fi-
nally we take the Hadamard (element-wise) prod-
uct to extract a weighted vector of triples. For the
second hop, we map the triple vector back to en-
tities using the right-entity to triple matrix in the
DKG and repeat the process above.

We retain only the top-k triples for each hop
(in our experiments k = 10) and convert them into
natural language using the names of the entities
and relations as stored within the KG. We also in-
clude inverse triples within our DKG where the re-
lations are prefixed with “<inv>-” when converted
to natural language, e.g. “(Paris, <inv>-capital-of,
France)”. We also include literal values for num-
bers, strings and dates in our DKG as right entities.

Finally, we run inference in a zero-shot setting
with a pretrained language model. We compose
a prompt following the template: “Given the fol-
lowing context: "{context}" Answer the question:
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{question}. Answer:” where the context is the set
of filtered triples formatted as “(left entity, relation,
right entity), . . . , (left entity, relation, right entity)”.
We input this prompt into a language model to out-
put an answer.

3.2 Training
Of the three components outlined in section 3.1,
we only train the Rigel KGQA model. The DKG
is instantiated from a static dump of the Wikidata
(Vrandečić and Krötzsch, 2014) knowledge graph,
and the language models in our experiments are
not fine-tuned.

Rigel is trained using the train and dev sets of
KGQA datasets annotated with natural language
questions, question entities, and answer entities. As
described in section 3.1 we estimate a distribution
over entities for each hop. During training, we
also jointly learn an attention mechanism which is
conditioned on the question embedding to predict
how much to weigh answer entities returned for
each hop. We use a binary cross-entropy objective
to allow for multiple answer entities. For more
information on training the Rigel model see Sen
et al. (2021). We leave end-to-end training of both
the KGQA model and the LM to future work.

4 Experimental Setup

4.1 Datasets
We use four KGQA datasets in our experiments
with Wikidata as the knowledge graph. For datasets
built using FreeBase, we link entities to Wikidata
using the FreeBase ID Wikidata property. The train
/ dev sets for each dataset are used to train the Rigel
model, and all results are reported on the test sets.

• WebQuestions (Berant et al., 2013) is an
English question-answering dataset of 4,737
questions (2,792 train, 306 dev, 1,639 test)
originally built on FreeBase. WebQuestions
includes questions requiring multiple hops
and set intersections.

• ComplexWebQuestions (Talmor and Berant,
2018) is an extended version of WebQuestions
with 34,689 questions (27,649 train, 3,509
dev: since the test set is not public, we use
the dev set for testing) in English requiring
complex operations, such as multiple hops
and temporal constraints.

• Mintaka (Sen et al., 2022) is a complex ques-
tion answering dataset of 20,000 questions

(14,000 train, 2,000 dev, 4,000 test) linked to
Wikidata and using complex operations such
as comparisons and set operations. We use the
English subset.

• LC-QuAD is a dataset of 30,000 synthetically
generated English questions and SPARQL
parses. We use the subset with SPARQL
parses that return a valid answer from Wiki-
data (20,438 train, 5,230 test). These ques-
tions include complex operations such as
multi-hop and count.

4.2 Language Models

We evaluate our method using language models
from four families of models:

• Flan-T5 (Chung et al., 2022) models are an
extension of T5 encoder-decoder models that
have been instruction tuned on a large set
of instructions that were automatically gen-
erated using existing datasets and templates.
We use the Flan-T5 Small (80M parameters),
XL (3B), and XXL (11B) models.

• T0 (Sanh et al., 2022) models are encoder-
decoder models that are trained on a variety
of prompts, which are automatically built from
supervised datasets using templates. We use
the T0 (11B) and T0 3B (3B) models.

• OPT (Zhang et al., 2022) models are large,
open-source, decoder-only models that have
been trained to roughly match the perfor-
mance of GPT-3 models. We use the 13B
parameter version of OPT.

• AlexaTM (Soltan et al., 2022) is a 20 billion
parameter encoder-decoder model trained on
publicly available data in multiple languages.

4.3 Training Specifications

We train each of our Rigel models on a single
NVIDIA Tesla V100 GPU for 40,000 steps. We
run inference over our language models using four
Tesla V100 GPUs and distribute across GPUs using
Hugging Face Accelerate (Gugger et al., 2022).

4.4 Evaluation metric

Our datasets provide answer entities (e.g., Wiki-
data Q-codes). To evaluate the performance of the
LM’s natural language output, we test if any of the
provided answer entity names or their aliases as

3



Flan-T5 T0

Dataset Experiment Rigel S XL XXL 3B 11B OPT ATM

WebQ No Knowledge – 16.29 40.15 45.15 29.10 34.05 26.85 38.56
Random Facts – 21.90 28.49 39.96 28.07 36.30 48.02 41.98
Rigel Facts 48.9 45.52 55.58 59.79 53.33 55.64 57.60 55.40

% improvement – 179% 38% 32% 83% 63% 115% 44%

CWQ No Knowledge – 9.63 28.79 31.00 20.26 24.98 18.19 27.20
Random Facts – 14.69 23.96 31.15 20.86 26.85 28.13 29.41
Rigel Facts 29.21 25.55 36.09 40.38 32.54 36.35 32.54 35.72

% improvement – 165% 25% 30% 61% 46% 79% 31%

Mintaka No Knowledge – 12.65 24.63 30.15 21.13 30.08 38.53 28.48
Random Facts – 12.20 20.98 33.63 21.33 30.40 42.20 33.00
Rigel Facts 21.7 20.58 33.50 37.90 29.28 33.35 40.03 35.60

% improvement – 63% 36% 26% 39% 11% 4% 25%

LC-QuAD No Knowledge – 3.90 8.15 3.82 8.32 9.31 8.75 11.79
Random Facts – 8.40 8.91 11.24 9.71 10.65 12.65 12.81
Rigel Facts 27.86 15.65 22.82 9.41 20.54 22.32 20.93 22.30

% improvement – 301% 180% 146% 147% 140% 139% 89%

Table 1: Results by language model and dataset over two baselines (No Knowledge and Random Facts) and our
proposed method, Rigel Facts. % improvement shows the percentage improvement over No Knowledge to Rigel
Facts. Rigel shows the baseline of using Rigel alone with no language model.

stored in Wikidata exist within the LM output. We
also lower case text in the prediction and remove
punctuation, articles, and extra white space.

5 Results

We evaluate our method on four complex question-
answering datasets using seven language models.
We compare against two baselines.

• No Knowledge: we provide the question with
no additional context. The prompt is “Ques-
tion: {question} Answer:”.

• Random Facts: we provide k random facts (k
= 10) sampled uniformly over all facts reach-
able in one hop from the question entities.

The results are reported in Table 1, with the %
improvement showing the percentage of improve-
ment from the No Knowledge baseline to our pro-
posed Rigel Facts method. We also report scores
for the Rigel model alone in the Rigel column.

These results show that in almost all cases, a lan-
guage model using facts retrieved from our Rigel
model outperforms No Knowledge and Random

Facts. For smaller models such as Flan-T5, using
Rigel facts improves performance by up to 300%.
Larger models, such as AlexaTM, start with higher
baselines using no knowledge, but still see an aver-
age of 47% improvement across datasets. Excep-
tions are OPT on Mintaka and Flan-T5 XXL on
LC-QuAD, where random facts outperform Rigel.
We observe that in many of the questions where
augmenting with random facts performs better than
Rigel facts, neither provide useful information. In-
terestingly, however, random facts still encourage
the LM to output the correct answer.

The No Knowledge results show that models can
answer questions without additional facts. Larger
models with no facts can even outperform smaller
models with Rigel facts, for example, AlexaTM vs.
Flan-T5 on Mintaka (28.48 vs. 20.58). Neverthe-
less, it is promising to see smaller models become
more competitive with the help of a retriever.

The use of random facts shows mixed results.
Random facts rarely outperform Rigel, but com-
pared to the No Knowledge baseline, random facts
can sometimes help, as seen across models on Com-
plexWebQuestions and LC-QuAD. In other cases,
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Flan-T5 T0

Question Type Experiment S XL XXL 3B 11B OPT ATM Average

Comparative No Facts 48.50 63.00 64.00 49.25 59.75 58.50 57.25 56.75
Random Facts 36.00 61.25 62.50 44.50 57.75 60.00 63.00 55.00
Rigel Facts 42.75 64.25 65.50 42.00 55.50 54.75 60.00 55.12

Count No Facts 16.75 26.25 33.00 21.25 25.00 25.00 40.75 27.56
Random Facts 17.25 17.75 28.50 27.25 28.75 51.00 43.50 30.57
Rigel Facts 23.75 27.25 31.25 40.75 32.00 49.00 48.75 36.47

Difference No Facts 4.25 16.75 19.50 17.00 21.00 20.00 28.25 19.28
Random Facts 6.75 11.75 20.50 11.25 15.50 29.00 21.75 16.64
Rigel Facts 15.50 17.50 24.00 14.25 17.00 28.75 27.25 20.44

Generic No Facts 2.12 16.50 24.25 18.12 28.75 48.38 37.50 27.12
Random Facts 11.62 20.50 35.75 19.62 30.88 50.00 43.62 30.29
Rigel Facts 20.50 34.25 41.12 30.88 36.75 47.12 45.50 37.61

Intersection No Facts 1.75 20.00 28.50 22.50 35.25 54.00 42.50 31.47
Random Facts 8.50 22.50 37.00 18.00 31.25 51.00 40.50 29.82
Rigel Facts 16.00 40.25 44.75 35.00 41.00 49.50 45.75 39.81

Multi-hop No Facts 3.00 7.25 12.75 8.25 13.25 20.00 13.25 12.44
Random Facts 2.75 9.50 18.25 6.50 14.25 24.00 15.75 13.00
Rigel Facts 13.50 22.25 27.75 20.50 21.25 25.75 21.00 22.69

Ordinal No Facts 1.50 9.50 16.50 10.00 15.50 27.75 20.25 15.44
Random Facts 6.75 9.50 17.75 9.50 18.00 29.75 20.75 16.00
Rigel Facts 12.00 16.50 23.75 17.25 18.00 24.25 24.25 19.84

Superlative No Facts 1.25 11.75 16.00 16.00 19.25 28.75 21.50 17.12
Random Facts 6.00 12.00 21.75 12.25 17.50 28.25 23.75 17.36
Rigel Facts 10.50 18.75 21.75 16.75 14.00 25.00 24.00 19.34

Yes/No No Facts 45.25 59.00 62.75 49.00 63.25 54.00 37.00 53.16
Random Facts 14.75 24.50 58.25 44.50 60.50 49.25 51.25 43.29
Rigel Facts 30.75 59.75 58.50 44.50 62.50 49.25 51.25 52.12

Average No Facts 13.82 25.56 30.81 23.49 31.22 37.38 33.14 28.93
Random Facts 12.26 21.03 33.36 21.49 30.49 41.36 35.99 28.00
Rigel Facts 20.58 33.42 37.60 29.10 33.11 39.26 38.64 33.72

Table 2: A breakdown of results by the different complexity types in the Mintaka dataset

random facts can hurt performance, as seen in Flan-
T5 XL on WebQuestions (from 40.15 to 28.49)
and Mintaka (from 24.63 to 20.98). This can be
attributed to random facts adding in distractors that
some models are more susceptible to. For exam-
ple, given the QA pair “Q: Where does Princess
Leia live? A: Alderaan”, if the random facts in-
clude “Leia Organa place of birth Polis Massa”,
the model can incorrectly answer Polis Massa.

We also show results in Table 2 as a breakdown
of performance by complexity type on the Mintaka

dataset. On average, we see that Rigel facts help
across complexity types. The highest gains are
in Count, Intersection, and Multi-hop questions.
These are also the areas that a model like Rigel,
which traverses a knowledge graph by following
relations, is best suited for. Finding facts for com-
paratives or yes/no questions are less reliable since
the training signal can be weak and there can be
multiple paths that spuriously lead to the correct
answer. For example, to answer Who is older, The
Weeknd or Drake?, there are several ways to get to

5



Question
How many countries were in the Central Powers alliance in World War I?

Random Facts Rigel Facts
· Central Powers has part Austria-Hungary · Central Powers has part Ottoman Empire
· Central Powers Commons category Central Powers · Central Powers has part Kingdom of Bulgaria
· Central Powers participant in World War I · Central Powers has part German Empire
· Central Powers instance of military alliance · Central Powers has part Austria-Hungary

Predictions Model No Knowledge Random Facts Rigel Facts
Flan-T5 XXL 6 ✗ 2 ✗ 4 ✓

Question
Where did the author of Pet Sematary go to college?

Random Facts Rigel Facts
· Pet Sematary author Stephen King · Stephen King education Lisbon High School
· Pet Sematary follows Christine · Stephen King education University of Maine
· Pet Sematary language of work or name English · Pet Sematary author Stephen King
· Pet Sematary publisher Doubleday · Pet Sematary notable work Stephen King

Predictions Model No Knowledge Random Facts Rigel Facts
T0 University of Michigan ✗ Dartmouth College ✗ University of Maine ✓

Question
What was the first book in the Lord of the Ring’s series?

Random Facts Rigel Facts
· Lord of the Rings characters Gandalf · Fellowship of the Ring follows The Hobbit
· Lord of the Rings characters Elrond · Two Towers follows Fellowship of the Ring
· Lord of the Rings translator Maria Skibniewska · Return of the King follows Two Towers
· Lord of the Rings nominated for Prometheus Award · Appendices follows Return of the King

Predictions Model No Knowledge Random Facts Rigel Facts
T0 Fellowship of the Ring ✓ Fellowship of the Ring ✓ The Hobbit ✗

Table 3: Examples of questions and model predictions. For simplicity, we only show the top four facts. In
Predictions, No Knowledge is only given the question. Random and Rigel Facts are given the question and the
respective facts. The correct answer is indicated with a ✓. Incorrect answers are indicated with a ✗.

the answer entity Drake without following a date
of birth relation and performing a comparison. In
future work, we plan to explore different ways to
train the Rigel model to provide a better training
signal of which facts will be useful to the LM.

Finally, in Table 3, we provide examples. The
first example is a count question, where the LM
seems to count the entities Rigel returns get to
the correct answer. The second example is of a
multi-hop question. Of note is that Rigel’s top
fact is about a high school, but the LM is able to
recover and return a college instead. The third
example is an ordinal question. Since the Rigel
facts do not specify which books are part of the
series, the model returns an incorrect answer by

trying to stay faithful to the facts given. Relying
on facts given rather than facts in the parameters
can be a desirable trait for an LM, however this
example highlights that more work needs to be
done on improving the KGQA retriever.

6 Conclusion

In this paper, we show how facts from a KGQA
based retriever can be combined with a language
model to help answer complex questions. Our re-
sults show improvements over calling a language
model directly over four datasets, and in particular
on complexity types such as multi-hop and count
questions. We present our method as a promising
way to leverage a knowledge graph, which con-
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tains verified and up-to-date facts, with a single
call to a language model. In future work, we plan
to improve performance across more complexity
types and aim to explore ways to update the train-
ing of our KGQA retriever with feedback from the
language model.

7 Limitations

We present a method for question answering using
a KGQA retriever and a language model reasoner.
Limitations of our method include a lack of an
integrated entity resolution system when training
our KGQA model: we instead rely on annotated
entities from the datasets. While our KGQA archi-
tecture is robust to new entities added at test time,
it does require retraining when new relations are
added to the KG or if a different target KG is used.
Additionally, our results are based on training and
evaluating on one dataset at a time; training on a
mix of datasets could lead to better generalization,
however this is not tested.
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Abstract

Recent work has shown that prompting lan-
guage models with code-like representations of
natural language leads to performance improve-
ments on structured reasoning tasks. However,
such tasks comprise only a small subset of
all natural language tasks. In our work, we
seek to answer whether or not code-prompting
is the preferred way of interacting with lan-
guage models in general. We compare code
and text prompts across three popular GPT
models (davinci, code-davinci-002, and
text-davinci-002) on a broader selection of
tasks (e.g., QA, sentiment, summarization) and
find that with few exceptions, code prompts
do not consistently outperform text prompts.
Furthermore, we show that the style of code
prompt has a large effect on performance for
some but not all tasks and that fine-tuning on
text instructions leads to better relative perfor-
mance of code prompts.

1 Introduction

Recent work has shown that pre-training language
models (LMs) on a mixture of text and program
code (e.g., Python or Javascript) makes them more
capable of reasoning over natural language (Suz-
gun et al., 2022). Such program-trained language
models (PLMs) significantly outperform text-only
LMs on tasks such as math problems and track-
ing shuffled objects despite such tasks lacking any
explicit code formulae (Liang et al., 2022).

Furthermore, prompting such PLMs with code-
like structures (e.g., Python, JSON, PDDL) instead
of text has been shown to lead to performance im-
provements on structured common sense reasoning
(Madaan et al., 2022), event argument extraction
(Wang et al., 2022), knowledge graph construction
(Bi et al., 2023), story understanding (Dong et al.,
2022), and causal reasoning (Zhang et al., 2023).

∗Equal contribution.

You are trying to draw a simple teddy
bear. You need to do two things:
(a) erase unnecessary lines
(b) draw a shirt for the bear
The first thing to do is 

instructions = "Given a goal and
two steps, predict the order to do
the steps to achieve the goal"
goal = "Draw a Simple Teddy Bear"
step0 = "erase unnecessary lines"
step1 = "draw a shirt for the bear"
order_of_execution = 

Code Prompt

Text Prompt

code-davinci-002

text-davinci-002

(b) draw a shirt
for the bear

[step1, step0]

Figure 1: For certain tasks, prompting program-trained
language models with code-like representations works
better than prompting with text.

Such results naturally lead us to ask whether
code-prompting is the preferred way of interact-
ing with PLMs in general. While previous work
is limited to reasoning tasks, in this work we an-
alyze a broad selection of tasks (e.g., QA, senti-
ment, summarization) and systematically compare
the performance of prompting PLMs with code vs.
prompting with text1. We find that:

• With the exception of some reasoning tasks,
code prompts do not outperform text prompts

• The style of code prompt has a large effect on
performance for some but not all tasks.

• Fine-tuning on text instructions leads to rela-
tive improvements when using code prompts.

2 Experimental Design

Model Selection For our text-based LM we
use the original 175 billion parameter davinci
model introduced by Brown et al. (2020). For
our PLM we use the newer code-davinci-002
model which was explicitly trained on text and
code. Neither model underwent any supervised
instruction fine-tuning. In addition, we analyze per-
formance on text-davinci-002, which is a vari-

1The code, prompts, and outputs for our experiments are
public at github.com/zharry29/curious_code_prompts
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Dataset Task Category Num. Eval Examples Metric Origin

HellaSwag Commonsense Reasoning 1000 / 10042 Accuracy Zellers et al. (2019)
wikiHow Goal-Step Commonsense Reasoning 1000 / 1073 Accuracy Zhang et al. (2020)
wikiHow Temporal Commonsense Reasoning 1000 / 3100 Accuracy Zhang et al. (2020)
WinoGrande Commonsense Reasoning 1000 / 1767 Accuracy Sakaguchi et al. (2021)
OpenPI Commonsense Reasoning 111 / 111 ROUGE-F1 Tandon et al. (2020)
ANLI Natural Language Inference 1000 / 3000 Accuracy Nie et al. (2020)
Yelp Sentiment Analysis 1000 / 10000 Pearson’s r Zhang et al. (2015)
IMDb Sentiment Analysis 1000 / 25000 Accuracy Maas et al. (2011)
HotpotQA Question Answering 1000 / 7405 Macro-F1 Yang et al. (2018)
SQuAD Question Answering 1000 / 11873 Macro-F1 Rajpurkar et al. (2018)
CNN/Daily Mail Summarization 1000 / 13368 ROUGE-2 Nallapati et al. (2016)
XSUM Summarization 1000 / 11332 ROUGE-2 Narayan et al. (2018)

Table 1: The 12 evaluation tasks. Macro F1 is based on Rajpurkar et al. (2016). For each task, we randomly sample a
fixed set of 1000 examples from its validation or test set for evaluation. For OpenPI we are limited to 111 examples.

ant of code-davinci-002 trained explicitly on hu-
man demonstrations using supervised fine-tuning2.
We include this model to help us determine whether
or not fine-tuning PLMs on text instructions affects
their ability to interpret code prompts. All three
models were queried through the OpenAI API3 and
our experiments cost approximately $2700 in total
(see Appendix F for the full cost breakdown).

Task Selection Following the methodology of
Sanh et al. (2022) we select tasks in a top-down
fashion by first choosing the categories of interest
(e.g. Question Answering, Sentiment Analysis,
Summarization) and then selecting datasets from
within those categories. We pay special attention to
common sense and causal reasoning tasks as PLMs
prompted with code have been shown to perform
well on such tasks. The resulting 12 tasks are listed
in Table 1 and include Commonsense Reasoning,
Natural Language Inference, Sentiment Analysis,
Question Answering, and Summarization. More
details on each task can be found in Appendix A.

Prompt Formulation We collect text prompts
for each task using the PromptSource dataset (Bach
et al., 2022), a publicly available collection of
crowd-sourced prompt templates. For tasks with
many prompts, we randomly select one from those
provided in the dataset. For a few tasks absent on
PromptSource, we write the prompts ourselves.

For our code prompts, we manually write four
custom code prompts per task. The code prompt
types are as follows, from least to most Pythonic.
(i). Vanilla (Vanilla): instructions and inputs

are given as variables with generic names;

2https://platform.openai.com/docs/
model-index-for-researchers

3https://openai.com/blog/openai-api

(ii). Var Identifier (VI): instructions and inputs
are given as variables with meaningful names;

(iii). Var Identifier + Comments (VIC): instruc-
tions and inputs are given as variables with
meaningful names along with comments ex-
plaining their purpose;

(iv). Class + Var Identifier + Comments (CVIC):
instructions and inputs are given as a task-
specific class. Functionality is “imple-
mented” as member functions.

Figure 2 shows an example of the different styles
of code prompts for the wikiHow temporal order-
ing task. Note that we attempt to write our code
prompts such that we match the wording of the text-
based PromptSource prompt as closely as possible.

At inference time, for each test example, we ran-
domly sample in-context examples from the train-
ing set and add them to the context window until the
maximum context length is reached. This process
circumvents the bias caused by static in-context
examples. We conduct an ablation study where we
vary the random seed and show that this process
produces consistent results (see Appendix D).

3 Results

What is the best type of code prompt? We
compare performance across the four code prompt
types from Section 2 on all 12 tasks using
code-davinci-002 and report our results in Fig-
ure 3. We find that no single type of code prompt
performs significantly better than the others across
all tasks and that the relative difference in perfor-
mance between code prompts also varies signifi-
cantly across tasks. For example, on IMDb and
SQuAD all code prompts have roughly even perfor-
mance while for tasks such as wikiHow-Temporal
and WinoGrande we see a near 14% accuracy dif-
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You are trying to {goal}. You
need to do two things:
(a) {step0}
(b) {step1}
The first thing to do
is {first}

input0 = "Given a goal and two steps,
predict the correct order to do the
steps to achieve the goal"
input1 = "{goal}"
step0 = "{step0}"
step1 = "{step1}"
label = [{first},{second}]

Code Prompt (vanilla)Text Prompt
instructions = "Given a goal and two
steps, predict the correct order to do
the steps to achieve the goal"
goal = "{goal}"
step0 = "{step0}"
step1 = "{step1}"
order_of_exec = [{first},{second}]

Code Prompt (VI - var identifier)

"""Given a goal and two steps, predict the correct
order to do the steps to achieve the goal"""

# The goal that someone is trying to achieve
goal = "{goal}"

# One of the steps that needs to be taken
step0 = "{step0}"

# Another one of the steps that need be taken
step1 = "{step1}"

# The list of correct order of those two steps
order_of_exec = [{first},{second}]

Code Prompt (VIC - var identifier + comments)

import order_steps
class Event:
  """Given a goal and two steps, predict the correct 
  order to do the steps to achieve the goal"""
  def __init__(self, goal, step0, step1):
    self.goal = goal # The goal someone is trying to accomplish
    self.step0 = step0 # One of the steps that need be taken
    self.step1 = step1 # Another step that need be taken
  def get_order_of_steps(self):
    # Output a list of correct order of the two steps to be taken
    return order_steps(self.goal, self.step0, self.step1)

event = Event(goal="{goal}", step0="{step0}", step1="{step1}")
assert(event.get_order_of_steps == [{first},{second}])

Code Prompt (CVIC - class + var identifier + comments)

Figure 2: An example of the four styles of manually written code prompts used in our analysis (Vanilla, VI, VIC,
and CVIC) for the wikiHow temporal ordering task. At test time, variables in braces are replaced with information
from the dataset item (as shown in Figure 1). For this task, {goal}, {step0}, {step1} refer to the article title and
the steps to order while {first} and {second} refer to the true ordering of the steps.

HotpotQA ANLI SQuAD OpenPI

0.4

0.5

0.6

CNN/DM XSUM
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HellaSWAG wikiHow
goal-step

wikiHow
temporal

WinoGrande Yelp IMDb

0.5

0.6

0.7

0.8

0.9

Vanilla VI VIC CVIC

Figure 3: Comparison of code-davinci-002 across the
four types of code prompts. Figures are split to allow
for different y-axis scales. We see that different prompts
do better on different tasks and while some tasks have
high variance over prompt types, others do not.

ference between the worst and best prompt.
In Appendix C, we calculate the average rank of

each code prompt type relative to each other and
find that the “Var Identifier + Comments” (VIC)
prompt is the best across all tasks on average (2.25
avg. rank). We thus use this prompt type for our
comparison in all future sections.

How many in-context examples should we in-
clude in our code prompt? We would like to
also investigate how the number of in-context ex-
amples in the prompt affects models’ ability to
perform the task. We therefore conducted an ex-
periment where we filled the context window of

1 10 100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Wikihow-GS
Wikihow-T
HotpotQA
WinoGrande
HellaSwag
CNN/DM

OpenPI
SQuAD
XSUM
ANLI
IMDb
Yelp

Figure 4: Performance score (y-axis) vs number of
in-context examples (x-axis, in log scale) using code
prompts (VIC) with code-davinci-002. We see that in-
creasing number of examples does not always increase
performance and in some cases makes it worse.

code-davinci-002 with in-context examples up
to 2000 tokens, 4000 tokens, and 8000 tokens and
plotted the validation accuracy of the model with
respect to the number of examples in Figure 4.

Contrary to expectations, we find that the num-
ber of in-context examples has little effect on model
performance for most tasks and actually has a neg-
ative effect on some tasks. This is especially in-
teresting given that previous work on in-context
learning with text prompts finds roughly mono-
tonic improvement from adding more in-context
examples (Liu et al., 2021). While further research
is necessary, it seems that code prompts may have
different scaling behavior than text prompts when
used in in-context learning.
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Dataset Metric davinci code-002 text-002
+Text +Code ∆ +Text +Code ∆ +Text +Code ∆

Hellaswag Accuracy 0.321 0.307 -0.014 0.652 0.606 -0.046 0.717 0.773 +0.046
wikiHow goal-step Accuracy 0.347 0.302 -0.045 0.924 0.898 -0.026 0.919 0.915 -0.004
wikiHow temporal Accuracy 0.495 0.532 +0.037 0.622 0.727 +0.105 0.688 0.761 +0.073
Yelp Pearson ρ 0.913 0.896 -0.017 0.924 0.907 -0.017 0.919 0.904 -0.015
IMDb Accuracy 0.872 0.935 +0.063 0.945 0.951 +0.006 0.940 0.952 +0.012
WinoGrande Accuracy 0.513 0.500 -0.013 0.607 0.716 +0.109 0.628 0.726 +0.098
ANLI Accuracy 0.333 0.360 +0.027 0.562 0.551 -0.011 0.504 0.557 +0.053
HotpotQA Macro-F1 - - - 0.470 0.449 -0.021 0.490 0.350 -0.140
SQuAD Macro-F1 0.482 0.466 -0.016 0.604 0.579 -0.025 0.670 0.656 -0.014
OpenPI ROUGE-F1 - - - 37.33 36.36 -0.970 35.60 31.30 -4.300
CNN/Daily Mail ROUGE-2 9.28 9.13 -0.150 11.74 11.67 -0.070 13.63 13.55 -0.080
XSUM ROUGE-2 9.38 6.83 -2.550 14.51 11.03 -3.580 14.48 13.26 -1.220

Table 2: Performance of the three LMs when using code prompts (+Code) vs. using text prompts (+Text). Blank
cells indicate tasks for which single test examples could not fit in the context window. Color indicates whether or
not code prompts are better, slightly better, slightly worse, or worse than text prompts. We see that while code
prompts outperform text prompts for certain tasks (such as wikiHow temporal and WinoGrande) text prompts are
better on average. We also find that instruction fine-tuning (text-002) allows for better code prompt utilization.

Which is better: code or text prompts? In our
main experiment we compare the performance of
the three GPT models on code prompts (VIC style)
and text prompts across the 12 datasets. Given the
results from Figure 4, we fill the context window
of all models with in-context examples up to 4000
tokens to serve as a middle ground for comparing
code and text prompts. We report the results of
our main experiment in Table 2 and see several
surprising trends.

First, we find that prompting PLMs with code
leads to substantial increases in performance for
certain few reasoning tasks but that this trend does
not hold across all tasks—or even all reasoning
tasks. For example, when using code prompts with
code-davinci-002, we see a 10.5% accuracy in-
crease on wikiHow temporal ordering but a 2.6%
accuracy decrease on wikiHow goal-step inference
despite both being commonsense reasoning tasks
and having identical source material.

Second, we find that supervised instruction fine-
tuning on natural language demonstrations does
not hurt model performance on code. Rather, we
observe that code prompts outperform text prompts
on more tasks when using text-davinci-002 than
when using code-davinci-002 despite the fact
that text-davinci-002 received no additional
fine-tuning on code instructions.

Finally, we find that LMs not explicitly trained
on code can also benefit from code prompting
on certain reasoning tasks. In particular, code
prompts outperform text prompts on davinci for
3 out of our 12 tasks—the same proportion as
code-davinci-002. The tasks that benefit from

code prompts also seem to be largely consistent
across the three types of models tested, suggesting
some underlying trend as to which tasks systemati-
cally benefit from structured input.

4 Conclusion

In this work we investigate whether or not there
exists a systematic performance difference between
prompting PLMs with code or with text. We con-
firm that there are indeed tasks for which code
prompting is significantly more effective than text
prompting and that this finding holds across differ-
ent types of models. However, for most tasks, we
find that text prompting is still the best method for
eliciting few-shot generalization from PLMs.

Given this result it seems reasonable to attempt
to predict which tasks will benefit from code
prompts and which tasks will not. However, we
show that making such predictions based on sim-
ple heuristics such as domain and task category is
difficult and that the larger trends remain unclear.
Future work should seek to investigate the core
mechanism behind what makes code prompting
effective for certain tasks.

Finally, concurrent to our work, a new line of
research has emerged wherein models generate
code and execute that code to produce valid out-
put (Chen et al., 2022; Mishra et al., 2022; Gao
et al., 2022; Lyu et al., 2023). Future work should
consider whether or not the tasks that benefit from
executable code prompts and non-executable code
prompts have any overlap.
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Limitations

One significant limitation to our study is that, as of
March 23rd 2023, OpenAI has deprecated access
to code-davinci-0024, thus rendering our results
non-replicable for any team not granted special
access to these models by OpenAI. We did not
anticipate this deprecation while conducting this
work and we believe this raises serious questions
about the usage of API-based language models in
scholarly work.

Another limitation is that the 12 tasks we se-
lected may not be representative of the broader
population of natural language tasks. Had we con-
ducted our experiments on a larger selection of
tasks there may have been larger-scale trends that
we would have been able to uncover.

The largest and most pressing limitation with
our work is that the models we are testing on
have closed-source pre-training datasets. Thus, we
are unable to verify the extent to which our task
datasets have been included in the training or in-
struction fine-tuning data. Given that the training
data for most of the models tested in this work cuts
off in late 2021, this is a very strong possibility.
Our results should be viewed with this limitation
strongly in mind.

Finally, while we experimented with different
code prompts, the search space of possible prompts
is very large. Thus, it is very likely that there
exists some prompt that outperforms our chosen
prompts for each task. Drawing conclusions based
on a limited sampling of prompts is tenuous and
while methods exist for searching the space of all
prompts, such techniques lack interpretability and
erase any distinction between code and text prompt
(Li and Liang, 2021).
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A Detailed Task Description

Summarization is the task of composing a con-
cise description of a lengthy text. Given a long
narrative, the model is tasked with composing a
short summary that contains the salient events in
the original text.

For our study, we select the CNN/Daily Mail
(Hermann et al., 2015; Nallapati et al., 2016) and
XSUM (Narayan et al., 2018) datasets as both are
variants on the challenging abstractive summariza-
tion task. XSUM tasks models with generating
extremely concise 1 to 2 sentence summaries of
news articles and CNN/Daily Mail tasks models
with generating reasonably concise but longer ab-
stractive summaries. For both CNN/Daily Mail
and XSUM datasets, we use ROUGE-2 score for
evaluation.

Question Answering (QA) is the task of com-
posing answers given a question and an optional
context passage. When this context passage is pro-
vided the task is referred to as “open-book” QA and
when it is not it is referred to as “closed-book” QA.
Open-book QA tasks examine language models’
ability to understand and extract information from
their context while Closed-book QA tasks evaluate

the amount of knowledge encapsulated in language
models during pre-training.

For our study we pick two open-book QA
datasets, SQuADv2 (Rajpurkar et al., 2018) and
HotpotQA (Yang et al., 2018), which allow us to
focus our evaluation on how structured prompts af-
fect models’ ability to comprehend long text input.

For both SQuADv2 and HotpotQA, we evaluate
model performance based on the macro-averaged
F1 score as proposed in Rajpurkar et al. (2016).
This metric measures the average overlap between
the prediction and ground truth answer. It is cal-
culated by treating the prediction and ground truth
as bags of tokens, and first computing their F1.
Then, the maximum F1 score is taken over all of
the ground truth answers for a given question, and
that score is averaged over all of the questions to
get the final result.

Commonsense Reasoning is a machine reason-
ing task that demands the use of commonsense
knowledge which is oftentimes implicitly present
in the text (Sap et al., 2020). The customary formu-
lation of commonsense reasoning tasks are Clas-
sification, where the input is a context, optionally
with candidate answers as choices, and the output
is a label from a pre-defined label space, and Ques-
tion Answering (QA), where the input is a context
followed by a reasoning question and the output is
in free-form language.

In this study, we selected four Classification style
commonsense reasoning tasks: wikiHow Temporal
and wikiHow Goal-Step (Zhang et al., 2020), ANLI
(Nie et al., 2020), and HellaSwag (Zellers et al.,
2019). We also included one Question Answering
style task with OpenPI (Tandon et al., 2020). In
addition, we evaluate our models on WinoGrande a
comprehensive reasoning benchmark dataset (Sak-
aguchi et al., 2021).

For wikiHow Goal-Step, wikiHow Temporal,
HellaSwag, WinoGrande, and ANLI, we use clas-
sification accuracy as the evaluation metric. To
evaluate OpenPI, we use F1 score based on the
ROUGE metric as described in the original paper
(Tandon et al., 2020).

Sentiment Analysis is a task that is concerned
with judging emotion and its degree in text. Given
a passage, a language model is tasked with clas-
sifying the sentiment (positive, negative, neutral)
and/or its degree (strongly, weakly, moderately).

The selected datasets, namely IMDb (Maas et al.,

15

https://arxiv.org/pdf/2301.10896.pdf
https://arxiv.org/pdf/2301.10896.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf


Vanilla VI VIC CVIC

HellaSwag 3 2 1 4
wikiHow Goal-Step 4 2 1 3
wikiHow Temporal 4 3 2 1

Yelp 4 2 1 4
IMDb 1 3 1 4

WinoGrande 4 1 2 3
HotpotQA 4 3 2 1

ANLI 1 2 4 3
OpenPI 1 2 3 4
SQuAD 1 3 4 2

CNN/Daily Mail 4 2 3 1
XSUM 2 4 3 1

Mean 2.75 2.42 2.25 2.58
Standard Deviation 1.36 0.76 1.09 1.26

Table 3: Relative performance rank of the four code
prompt types from Section 2 across the 12 tasks. Ranks
are calculated based on the results reported in Figure 3.
We see that the “Variable Identifier + Comments” (VIC)
style prompt performs the best out of all code prompt
types on average.

2011) and Yelp (Zhang et al., 2015), are both con-
structed using customer reviews. The IMDb dataset
proposes a binary classification problem where
the input is a movie review and the label space
is {negative, positive}. Yelp proposes a five-way
classification problem where the input is a restau-
rant review and the label space is the number of
stars (out of 5) the customers assigned to the restau-
rant.

For IMDb, we use accuracy as the evaluation
metric and for Yelp, we use Pearson Correlation
between the predicted rating and the ground truth
rating as the evaluation metric.

B Hyperparameters

For all our experiments regarding GPT-based mod-
els, we use a max token of the maximum of possible
output tokens in the ground-truth development set.
We use a top p of 1, and no frequency and presence
penalty. We use a temperature of 0 for classifica-
tion and multiple-choice tasks and a temperature
of 0.7 for generation tasks.

C Ranking of Code Prompt Styles

In Table 3 we report the rank-based statistics of the
four code prompt types from Section 2 on our 12
tasks. Ranks are calculated based on the results re-
ported in Figure 3 of the main paper. The numbers
in a row reflect the relative standing of each code
prompt on the corresponding task. While we note
that all code prompts perform within ±0.5 ranks of

Dataset Performance σ

Hellaswag 0.65, 0.67, 0.69, 0.67, 0.67 ±0.01
wikiHow-GS 0.51, 0.51, 0.51, 0.50, 0.51 ±0.00
wikiHow-T 0.62, 0.65, 0.63, 0.63, 0.62 ±0.01
Yelp 0.92, 0.92, 0.92, 0.92, 0.92 ±0.00
IMDb 0.94, 0.94, 0.94, 0.94, 0.94 ±0.00
WinoGrande 0.62, 0.64, 0.61, 0.62, 0.62 ±0.01
HotpotQA 0.35, 0.33, 0.35, 0.35, 0.35 ±0.01
ANLI 0.59, 0.58, 0.57, 0.60, 0.61 ±0.01
OpenPI 36.3, 38.1, 38.3, 37.7, 39.9 ±1.16
SQuAD 0.60, 0.62, 0.61, 0.60, 0.63 ±0.01
CNN/DM 11.7, 12.0, 12.4, 12.3, 12.0 ±0.25
XSUM 14.5, 14.9, 15.5, 15.2, 15.4 ±0.36

Table 4: Comparison across 5 repeated runs of the
code-davinci-002 model with text prompts using dif-
ferent random seeds for sampling in-context examples.
We see minimal standard deviation (σ) between the runs.

each other on average, we see that on average the
VIC prompt performs the best across all tasks and
the Vanilla prompt performs the worst. Looking
to the standard deviation section, we see that the
VI prompt performs the most consistently across
all tasks and that once again the Vanilla prompt
performs the least consistently.

D Ablation Study

To see whether the findings in our Results sec-
tion could be attributed to variance in the ran-
dom sampling of in-context training examples per
test example, we conduct five repeated runs using
code-davinci-002 with different random seeds
each time and calculated the standard deviation
across the five runs. We report our results in Ta-
ble 4 and find that the choice of in-context exam-
ples accounts for very little of the observed vari-
ance across prompt type and context length. This
finding is surprising as previous work has shown
that the selection and ordering of in-context exam-
ples has a very large effect on the performance of
models (Liu et al., 2021). However, it seems that
our approach of random sampling in-context ex-
amples per test item helps to lessen this inherent
variance.

E Evaluation on text-davinci-003

While conducting our research into the differ-
ences between code and text prompts, OpenAI
released the text-davinci-003 model. This
model differs from text-davinci-002 in that it
is trained using Reinforcement Learning with Hu-
man Feedback (RLHF) instead of supervised in-
struction fine-tuning (Ouyang et al., 2022). Out
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Task code-002 text-002 text-003
(base) (+IFT) (+RLHF)

HellaSwag 0.652 0.717 0.714
wikiHow GS 0.924 0.919 0.510
wikiHow T 0.622 0.688 0.815
Yelp 0.924 0.919 0.903
IMDb 0.945 0.940 0.938
WinoGrande 0.607 0.628 0.735
ANLI 0.562 0.504 0.549
HotpotQA 0.470 0.490 0.378
SQuAD 0.604 0.670 0.663
OpenPI 37.33 35.60 39.06
CNN/DM 11.74 13.63 12.64
XSUM 14.51 14.48 13.36

Table 5: Performance of the three GPT-3.5 models
across our 12 datasets with text prompts. (+IFT) indi-
cates the addition of supervised instruction fine-tuning
and (+RLHF) indicates the addition of training using Re-
inforcement Learning from Human Feedback (Ouyang
et al., 2022). We see that RLHF does not always im-
prove performance and that for some tasks (HotpotQA
and wikiHow Goal-Step) it causes large degradations in
performance.

of curiosity, to see the effect of this new train-
ing paradigm, we conducted experiments com-
paring this new text-davinci-003 model to the
other GPT-3.5 models (text-davinci-002 and
code-davinci-002). We report the results of our
comparison across the 12 evaluation tasks in Ta-
ble 5.

We see that while text-davinci-003 out-
performs all previous models on wikiHow Tem-
poral, WinoGrande, and OpenPI, it does signif-
icantly worse than previous models on wikiHow
Goal-Step and HotpotQA. Such large reductions in
performance are to be somewhat expected when
using RLHF given the costly nature of collecting
human demonstrations. However, the magnitude of
the decreases (-50.1% for wikiHow and -11.2% for
HotpotQA) is nonetheless surprising and such re-
sults raise important questions about exactly what
is being learned when conducting instruction fine-
tuning and whether or not this learned information
can generalize to tasks not seen during fine-tuning.

F Evaluation Cost

In this section we report the approximate cost
of conducting our experiments. In our study
we use four OpenAI models, namely davinci,
code-davinci-002, text-davinci-002 and
text-davinci-003. While code-davinci-002
is free to use at the time of this study, we report
the approximate cost of running the experiments

Dataset Num. Examples Est. Cost

HellaSwag 1000 / 10042 $240.48
wikiHow Goal-Step 1000 / 1073 $240.48
wikiHow Temporal 1000 / 3100 $240.48
WinoGrande 1000 / 1767 $240.48
OpenPI 111 / 111 $28.08
ANLI 1000 / 3000 $240.48
Yelp 1000 / 10000 $240.48
IMDb 1000 / 25000 $240.48
HotpotQA 1000 / 7405 $241.20
SQuAD 1000 / 11873 $241.08
CNN/Daily Mail 1000 / 13368 $257.91
XSUM 1000 / 11332 $246.66

Total Cost $2698.29

Table 6: The total estimated cost of running davinci,
text-davinci-002 and text-davinci-003 for 1000
data samples from each dataset (except for OpenPI).

on the other three models5 in Table 6. To
estimate the cost of an experiment, we calculate
the approximate number of tokens necessary
for computing one dataset example and then
multiplied that by the number of examples in the
dataset. For classification tasks, since we fill up
the context window to roughly 4000 tokens for
every test example, we estimate the number of
tokens to be 4000 (3999 tokens for the prompt
and 1 token for the label). To estimate cost for
generative tasks (OpenPI, HotpotQA, SQuAD,
CNN/Daily Mail, and XSUM), we compute the
average generation length from our generated
samples and assume the in-context examples take
up 3500 tokens. While this calculation results in
a fairly loose upper bound, we believe this to be
a good estimate of the total cost incurred by the
project as such overestimates help offset the cost
of other miscellaneous API queries done over the
course of the project.

5The cost of querying davinci, text-davinci-002 and
text-davinci-003 is $0.02/1,000 tokens at the time of study.
See https://openai.com/pricing for more details.
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Abstract

We assume that providing explanations is a
process to elicit implicit knowledge in human
communication, and propose a general method-
ology to generate commonsense explanations
from pairs of semantically related sentences.
We take advantage of both prompting applied
to large, encoder-decoder pre-trained language
models, and few-shot learning techniques, such
as pattern-exploiting training. Experiments run
on the e-SNLI dataset show that the proposed
method achieves state-of-the-art results on the
explanation generation task, with a substantial
reduction of labelled data. The obtained results
open new perspective on a number of tasks in-
volving the elicitation of implicit knowledge.

1 Introduction

When exchanging information, it is typical to ex-
clude details that appear self-evident or insignifi-
cant, so that only part of the message is articulated
verbally while other details are implied (Becker
et al., 2020, 2021a). This is particularly true for
information involving commonsense knowledge,
which represents the backbone of everyday com-
munication and reasoning. For example, consider
the following sentences:

(1) The glass is broken into pieces.

(2) The glass is full.

We can intuitively assert that these two sentences
contradict each other, and if we were asked to ex-
plain why, our answer would most probably appeal
to some implicit knowledge about the world (“A
glass broken into pieces cannot contain any liquid”
and “A glass cannot be broken and full of a liq-
uid at the same time”, etc.) to various degrees of
depth. This implicit, shared knowledge can easily
be inferred by people, but represents a challenge
for computational systems. Crucially, a request
for explanation is often a request to make explicit

something that is only implied or omitted in conver-
sation. While this is evident in everyday communi-
cation, it is also true for more specialised domains,
for example a doctor-patient scenario where the pa-
tient is given a diagnosis (“Your clinical case and
tests indicate that you have type 2 diabetes”) and
asks for explanations to the doctor (“Why do you
believe that?”).

Therefore, the underlying assumption of this pa-
per is that commonsense explanations are to some
extent based upon the notion of implicitness, and
that the information they rely on can not be fully
derived from their textual input alone. Being able
to elicit commonsense implicit knowledge is a rel-
evant step forward not only towards providing ex-
planations, but also towards better natural language
understanding.

In this work, we state the “implicit knowledge
problem” as the capacity to automatically generate
explanations regarding the semantic relations be-
tween two sentences. We define a general method-
ology to elicit implicit knowledge from pre-trained
large language models, motivated by the intuition
that they contain most of the knowledge needed,
and are able to generalize over unseen instances. In
fact, a fully-supervised fine-tuning would require
a large training set where each input-sentence pair
should be labeled with one or more explanations,
a setting which is unrealistic in an open-domain
scenario.

To achieve this, we propose a combination of
prompting and few-shot learning techniques, which
are well-suited to exploit the generative capabilities
of language models and, at the same time, make use
of limited supervision. Similar methods have been
applied to some popular NLP tasks such as text
classification, inference, summarization (Schick
and Schütze, 2021a,b) and, more recently, to teach
language models to leverage external tools via APIs
(Schick et al., 2023). However, the generation
of implicit knowledge poses a further challenge
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to these techniques as it requires to generate text
based on information or reasoning structures that
are outside the input texts1.

For these reasons, in our experiments, we se-
lect the e-SNLI dataset Camburu et al. (2018),
where sentence pairs traditionally employed for
a textual inference task (pairs are labelled with en-
tail, contradict or neutral tags) were augmented
with explanations for the relation tag, collected
through crowd-sourcing. We compare three gen-
eration methods: unsupervised, fine-tuning and
ensembling, showing that the ensembling method
achieves the best results, en-par with state-of-the-
art while making use of limited supervision. More-
over, we find that this method mitigates the poten-
tial negative effects of “bad” prompts, which is a
desirable feature whenever prompt optimization
is not possible. However, we also underline that
evaluation and comparison with SOTA results is
still critical, as evaluation metrics are not usually
directly comparable on the explanation generation
task.

The innovative contributions of this paper are
the following:

• We propose a general methodology to elicit
implicit knowledge from language models
with very limited training data.

• We compare the effects of prompting, few-
shot fine-tuning and ensembling on a set of
different language models, indicating which
strategy suits best for each type.

• We show that one of our proposed methods
for implicit knowledge generation is able to
mitigate the negative impact of badly designed
prompts.

The paper is structured as follows: Section 2 pro-
vides relevant background on language modelling
and elicitation of implicit knowledge. Section 3
introduces the general approach to implicit knowl-
edge generation. Sections 4 and 5 report, respec-
tively, the experimental setting and the results we
have obtained on the e-SNLI dataset. Finally,
Section 6 provides relevant context of recent ap-
proaches to implicit knowledge elicitation.

1The code is available at github.com/
andreazaninello/explanationgeneration

2 Background

2.1 Language modelling and transfer learning
Recent advances in NLP, particularly in Natural
Language Generation (NLG), have been driven by
the success of transfer learning techniques applied
to neural language models, pre-trained on very
large textual corpora in a self-supervised fashion
(Howard and Ruder, 2018; Radford et al., 2019).
These general models can be trained on in-domain
datasets or on specific downstream tasks with much
less resource expense through fine-tuning.

Transformers (Vaswani et al., 2017), based on
the attention mechanism, currently represent the
state-of-the-art in most of NLP tasks. In our exper-
iments, we employ Transformers’ encoder-decoder
(sequence-to-sequence) models, like BART (Lewis
et al., 2020), T5 (Raffel et al., 2020) or PEGASUS
(Zhang et al., 2020). In these models, encoder atten-
tion can access the whole initial sequence, while de-
coder attention can only attend to previous words;
these models perform best on language generation
tasks that depend on a sequential input, such as
machine translation or text summarization thus we
hypothesize that the encoder-decoder kind of mod-
els are particularly suited to the task of generating
explanations, because the sequence to be generated
(the explanans) has to be conditioned on a full input
sequence (the explanandum).

2.2 Prompting
The core technique that we use to elicit implicit
knowledge is prompting (see Liu et al. (2021) for
an extensive survey). Prompting consists in refram-
ing an NLP task as a language modelling task: from
a practical viewpoint, it corresponds to feeding a
very large language model an input prompt that de-
scribes the desired task in natural language (and/or
gives some examples of the desired output), and
constructing a function that maps the desired label
(e.g., positive in a sentiment analysis task) onto a
series of natural language verbalizers (e.g. good,
great, excellent). Given this prompt as an input, the
language model is let generate the output as if it
were a language modelling task such as next word
or masked word prediction.

This new trend, which is especially appealing
as it requires much less training signal compared
to regular fine-tuning, has led to a shift from ob-
jective engineering to prompt engineering: this in-
cludes both the manual design of templates (Petroni
et al., 2019) and automatic prompt learning (Jiang
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et al., 2020), as well as various options to ensemble
(Schick and Schütze, 2021b) and compose (Han
et al., 2022) multiple prompts.

When using prompts, we can simply generate
with a language model with no parameter update,
giving the model some answered prompts as ex-
ample to direct generation, or we can update the
prompts’ parameters through the supervision given
by training examples (Liu et al., 2021); additionally,
some promising recent approaches have attempted
to apply few-shot training techniques based on
prompting to language generation, too. Schick and
Schütze (2021c), for example, propose a method
called pattern-exploiting training (PET) and use
hand-crafted patterns as task instructions to train
intermediate models, in combination with a small
set of unlabeled gold training examples which they
use to ensemble those models. This technique has
proved successful in performing few-shot down-
stream NLG tasks on sequence-to-sequence models
(Zhang et al., 2020) with many fewer training ex-
amples than state-of-the-art benchmarks, especially
when the generated output is tightly connected to
the input (e.g. text summarization). While our
method is closely inspired by this line of work, to
the best of our knowledge this has not been ap-
plied to tasks where models need to use implicit
information outside the input text.

2.3 Evaluating generation

As we anticipated, we model the “implicit knowl-
edge problem” as the capacity to automatically gen-
erate explanations regarding the semantic relations
between two sentences, which brings up the issue
of evaluating the quality of the generated predic-
tions. Unlike classification and regression tasks,
the evaluation of generation is known to be critical,
and has often relied on human judgments (Wiegr-
effe et al., 2022), which is however expensive and
difficult to scale.

On the other hand, automatic assessment is usu-
ally done by measuring the overlap between at
least one reference generation and the system’s
output, as with popular metrics like ROUGE (Lin,
2004) and BLEU (Papineni et al., 2002). Other
metrics aim to measure the semantic similarity
between generations and references using contex-
tualised embeddings, for example BERT-Score
(Zhang et al., 2019) or Sentence-BERT (Reimers
and Gurevych, 2019), which consider word and,
respectively, sentence-embeddings.

Nevertheless, evaluating generation is a critical
aspect and there is still no consensus on what metric
is to be taken as a reference for system compari-
son, especially on explanation generation. In our
experiments, we align with our selected benchmark
to facilitate results’ comparison, and thus report
BLEU, ROUGE and BERT-Scores. However, we
are aware that results may not be fully conclusive
in terms of comparison with SOTA, and that met-
rics are rather to be taken as a relative indication of
systems’ performance.

3 Methodology

Our proposed methods belong to the “fixed-prompt
language model tuning” types (Liu et al., 2022):
the LM’s parameters are updated through few-shot
fine-tuning, after both training and test examples
have been modified by textual templates, meaning
that the prompts’ parameters are fixed while the
model’s parameters are updated.

While some recent studies aim at discovering the
best prompts or performing prompt optimization
(Li et al., 2021; Shin et al., 2020), our methods aim
to provide a general framework that may work well
even without prompting optimization, minimizing
the negative impact of “bad” prompts. Finding the
best patterns and prefixes would clearly contribute
to the task but falls outside the scope of this study,
and would be task dependent, while we aim to
provide a general framework potentially applicable
to different generation tasks.

Our method is closely related to Gao et al.
(2021)’s, who apply a similar procedure to clas-
sification and regression tasks, and is inspired by
Schick and Schütze (2021b)’s GenPET, who ap-
ply it to a set of generation tasks close to summa-
rization, not involving the elicitation of implicit
external knowledge.

3.1 Problem formalization

We state the “implicit knowledge generation” prob-
lem as the task of automatically producing an ex-
planation for the semantic relation between a pair
of textual sentences ta and tb. We set M to be a
language model of vocabulary V , pre-trained on
a masked language modelling task. We define an
input x ∈ X , an output sequence y ∈ Y , a la-
bel l ∈ L, a label verbalizer v ∈ V ∗ that maps
the labels to a natural language sequences (for ex-
ample mapping a neutrality label to the se-
quence “does not entail”), and the sequence result-
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ing from applying a prompt p ∈ P to input x as
z = fprompt(x, p), with z containing one masked
sequence <mask>. The fprompt function then sim-
ply takes the input texts ta, tb, and the verbalized
label l, and returns a modified, natural language
version of the input.

To obtain the prompts, we need to define (1)
a set of task prefixes (pref1, ..., prefn) that intro-
duce the explanation y ∈ Y , and are either pro-
cessed as final part of the input or pre-pended
to the reference explanation at training time (or
to the mask sequence at test time), and (2) a set
of patterns (patt1, ..., pattm), which we combine
with (pref1, ..., prefn), resulting in n×m prompts.
Prompts are used to rewrite each input example, by
sampling randomly across all labels. We refer to
this modified training set as T , which is n × m
times the size of X . We summarize and give an
example of our prompting design in Section A.1.

3.2 Training objective

The models we use are pre-trained on masked lan-
guage modelling task, so their objective is calcu-
lating the probability of pM = (y|z). We have the
choice of (1) processing the task prefix pref using
the decoder, as part of the generated sequence, or
(2) with the encoder, as part of the input. Thus, as-
suming some model M , some task prefix prefi and
some pattern pattj , the model needs to compute
the probability of y as follows, respectively:

p(y|x) = pM (prefi; y|pattj(x)) (1)

p(y|x) = pM (y|patti(x); prefi) (2)

Schick and Schütze (2021b) indicate that process-
ing it with the decoder has a stronger impact on
generations, and we apply it to BART and Pegasus,
as in (1). However, this is not possible with T5 as
encoding it with the decoder pushes the model to
produce empty strings. With T5, we therefore en-
code it as part of the encoder (2). Modified training
and test instances are used in different zero- and
few-shot training configurations, namely UNSU-
PERVISED (3.3), FINE-TUNING (3.4) and ENSEM-
BLING (3.5). We synthesize the three methods in
Figure 1.

3.3 Method 1: UNSUPERVISED

In a first zero-shot configuration, which we name
UNSUPERVISED and we take as our baseline, we
simply evaluate the model’s predictions without

any training, so no parameter update is performed,
nor do we use any training instances. However,
to have the prompts influence the model’s gener-
ations at inference, we modify each test instance
with each one of the prompts, as explained in Sec-
tion 3.1. We evaluate the model’s predictions for
each prompt separately after modifying the test in-
stances with that prompt through function fprompt,
as detailed in Section 4.4. Moreover, we define a
null prompt p0 for which both pref and patt are
an empty string, resulting in the simple concatena-
tion of x and the <MASK> token, and evaluate its
generations.

3.4 Method 2: FINE-TUNING

In a second configuration, which we call FINE-
TUNING, at training time we apply all the prompts
p to every input through function fprompt obtaining
a dataset T of all training instances X (where X
can be empty). In addition, in order to avoid overfit-
ting and ensure regularization, we also take a set of
1000 unlabeled instances U (for which the explana-
tion y is not given), modify them with the patterns
p ∈ P and have the untrained model M generate
an output for each of them. We therefore obtain a
synthetically generated dataset TFINE-TUNED, which
we append to our training instances.

We use T to fine-tune M with teacher forcing, by
minimizing the cross-entropy between the model’s
prediction and the target sentences, obtaining a
fine-tuned model MFINE-TUNED. In a zero-shot set-
ting, only U is used for fine-tuning. In few-shot
setting, we use training sets of increasing size. As
in method 1 (3.3), at test time we assess the predic-
tions of each pattern separately and of all patterns
together using p0.

3.5 Method 3: ENSEMBLING

In the previous method we were able to assess each
prompt separately at inference time. However, it
may not always be possible to know which pattern
works better for a certain task and poor perfor-
mance of one prompt could hurt the overall per-
formance of the fine-tuned model2. Moreover, in
few-shot scenarios, models tend to overfit the train-
ing data or copy part of the original input, resulting

2We are aware that several methods for prompt search and
optimization have been recently proposed, and our method
would certainly benefit from better quality prompts. However,
our aim is to mitigate the potential impact of bad prompts,
while prompt search currently falls outside the scope of this
study.

21



in poor quality of the generations. In this configu-
ration, we then aim to generalize over all possible
patterns given at training time, without having to
choose a specific pattern at test time.

Therefore, we perform a form of knowledge dis-
tillation through prompt-ensembling by taking the
fine-tuned model MFINE-TUNED and the unlabeled
instances U = (u1, ..., un), and use the set of pat-
terns in P = (p1, ..., pm) to generate a set of can-
didate outputs C = (y1, ..., ym) for each u ∈ U .
Then, we modify the instances in U with the null
pattern p0 and ask an untrained model M (that
did not see any of the training examples) to assign
a probability to each candidate generation in C
given the modified inputs from U . To assign a final
score to the generation, we take the exponentiated
average of all the log-likelihood assigned by the
untrained model across all patterns, and take the
best scoring generation as our prediction.

By doing so, we obtain a new dataset TENSEMBLE,
where inputs are u’s from U modified by p0 and
y’s are the best ranking y’s from C according to M .
The so obtained explanations should not be biased
towards one particular pattern. Moreover, we em-
pirically set a cutoff lower threshold at the bottom
20% of the instances ranked by their probability,
so that low quality explanations are discarded.

We use this final dataset TENSEMBLE to fine-tune
a final model MENSEMBLE with a procedure similar
to method 2, but we only evaluate it using the null
prompt as explained in Section 4.4.

4 Experiments

4.1 Pre-trained language models

We experiment on three different Transformer-
based encoder-decoder language models: BART,
Pegasus, and T5.

Bart (Lewis et al., 2020) uses a standard se-
quence to sequence architecture with a bidirec-
tional encoder and a left-to-right decoder. It is
pre-trained by firstly corrupting text with a noising
function, then learning a model able to reconstruct
the original text. BART was evaluated on several
benchmarks and proved particularly suitable for
generation tasks, a reason why we decided to em-
ploy it. In all experiments, we use the BART-large
model.

Pegasus (Zhang et al., 2020) has a similar archi-
tecture to BART and trained in a self-supervised
way by masking important sentences in text and
have the model generate them as a single output

conditioned on the remaining sentences. Thus, its
training objective is similarl to a summarization
task. We use the PEGASUS-large implementation
in all our experiments.

T5 (Raffel et al., 2020) is also an encoder-
decoder model, however unlike the previous two it
was pre-trained on a mix of NLP tasks prompted
in a text-to-text format, where inputs and outputs
are text strings, as opposed to BERT-style models.
For this reason, it is particularly suitable for meth-
ods exploiting textual verbalizations to condition
generations.

4.2 Dataset
For all our experiments, we use the e-SNLI dataset
(Camburu et al., 2018), an extension of the Stanford
Natural Language Inference (SNLI) dataset (Bow-
man et al., 2015) enriched with crowd-sourced
natural language explanations. The SNLI dataset
is an influential dataset widely used for the task
of Recognizing Textual Entailment (RTE) (Dagan
et al., 2005): given two text fragments (called
premise and hypothesis), the aim of RTE is decid-
ing whether the premise entails, contradicts or nei-
ther entails nor contradicts the hypothesis, labelling
the relationship between the two texts with an en-
tailment, contradiction, or neutrality label. The
SNLI dataset contains 570K premise-hypothesis
pairs, evenly distributed across labels. E-SNLI con-
tains an extra layer of information, represented by
a crowd-sourced natural language explanations for
each instance for the training, testing and develop-
ment splits. An example is given below.

1 {"guid": "test-3",
2 "idx": "3",
3 "label": "NEUTRALITY"
4 "meta": {}
5 "explanations": ["the woman

could’ve been old rather
than young"]

6 "premise": "’A woman with a
green headscarf, blue shirt
and a very big grin.’"

7 "hypothesis": ’The woman is
young.’}

Few other datasets exist, such as the CoS-E dataset
(Rajani et al., 2019) (an expansion of the Common-
senseQA (Talmor et al., 2019) dataset) that provide
explanations based on commonsense. However,
CoS-E’s explanations mainly focus on one single
term or phrase as the given explanation refers to
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one of the five possible answers to a commonsense
question. Moreover, many times the open-ended
explanations in this dataset are not formed as full
sentences, while we aim to generate self-contained,
linguistically complete explanations, so this dataset
is not suitable for our experiments.

On the other hand, the task of recognizing tex-
tual entailment involves general reasoning as well
as understanding some subtle facts about the lan-
guage and the referents, while heavily relying on
commonsense knowledge. For this reasons, many
studies which aim to investigate the ability of a
system to elicit implicit knowledge have turned
onto this dataset, and we choose to experiment our
methods on this challenging dataset enriched with
natural language explanations.

For each training instance x (and for each corre-
sponding output y), we obtain a set of four patterns.
As can be seen from table in Section A.1, odd
patterns present the explanation after the two sen-
tences, while even patterns presents the explanation
before the sentences, which are then introduced by
the “Text:” string.

4.3 Experimental setup
For the FINE-TUNING and ENSEMBLING meth-
ods, we experiment with training sizes =
(0, 10, 100, 500), test and unlabeled sizes = 1000,
sampled uniformly across the original examples
and labels. For UNSUPERVISED, we set T = 0 and
do not perform any parameter update, we simply
let the model generate given the modified inputs.
For FINE-TUNING and ENSEMBLE we train on
a single NVIDIA GeForce RTX GPU with 10GB
RAM for 3 epochs, for about 15 hours. We opti-
mize with Adafactor with square root learning rate
decay, dropout rate = 0.1 and learning rate = 104,
following (Schick and Schütze, 2021b). We train
each model with 8 gradient accumulation steps us-
ing a batch size of 2 as our computing resources
are limited, and generate using greedy decoding.
For all models, we use the Pytorch Transformers
library implementation (Wolf et al., 2019).

4.4 Evaluation
At test time, we evaluate each model on each pat-
tern separately, by modifying each testing instance
with one prompt at a time. Secondly, as in real-
world scenarios it is not always possible to know
in advance which patterns will perform better, we
also evaluate each model on the null pattern p0,
where the input precedes the masked sequence to-

ken and we use an empty task prefix. We evaluate
using common metrics for generation, comparing
the predicted output with the reference explanation,
and thus report BLEU-1, ROUGE-1 and BERT-
Score. Kayser et al. (2021) present the most ex-
tensive, current study on the correlation between
human judgments and generation, focusing in par-
ticular on the explanation generation task, and show
that BERT-Score is the one that best matches hu-
man judgments, as also confirmed by other studies
(Becker et al., 2021b). Therefore, we set BERT-
Score as our reference metric to assess the best
model and method.

5 Results and Discussion

In Table 1 we report the results of our experiments
for each of the considered models. T5 represents
the best scoring model, which most benefits from
the proposed methods, achieving a BERT-score
of 91.23 both for the P0-FINE-TUNING method
and for the ENSEMBLING method, as confirmed by
both BLEU and ROUGE scores. Similarly, Pegasus
benefits from the proposed methods, with a slight
decrease on the ENSEMBLING method, which may
be due to the error margin of the metrics.

Interestingly, both models have very low scores
in both zero-shot configurations, indicating that
the “fixed-prompt fine-tune” strategies may be par-
ticularly suitable for them, even without prompt
optimization, as indicated by the low figures of the
null prompt. On the other hand, BART displays a
stronger baseline and is more sensitive to prompt
design, as displayed by the decreasing values es-
pecially relevant on the p0-FINE-TUNING method.
This indicates that when using BART, which was
not specifically trained to accept prompts as in-
puts, prompt optimization may be a better strategy.
On the other hand, for all three models the EN-
SEMBLING method is able to mitigate the negative
effects of shallow prompt design.

While a clear benchmark for the explanation
generation task does not yet exist, in Table 2 we
report the results of related studies on the same task
and dataset. Specifically, we compare our methods
with studies using the same underlying model and
with comparable settings and show that our meth-
ods achieve better results but with a significant
reduction in training size. In particular, Maraso-
vic et al. (2022) use T5 with 48 training exam-
ples and achieve a significantly lower Bert-Score
compared to our T5-Ensembling method with 10
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training examples. Becker et al. (2021b) achieve a
slightly lower BERT-Score using BART, but with
18K training examples (which we compare with
our BART-Ensemble method with 500 training ex-
amples). We provide further details on the related
works in Section 6.

We also manually analyzed several generations
and compared the different models and methods.
We notice that in the unsupervised settings, models
tend to hallucinate, while with zero-shots BART
and PEGASUS tend to copy (part of) the input,
while T5 often returns single words. In Table 3 we
report an example of the generations produced by
T5 under the different configurations. Notice that
generations under settings T10 and T100 are already
correct. However, the bigger the train size, the
closer the generation to the reference. Finally, man-
ual inspection also highlighted that in some cases
the model learns to reproduce some patterns, such
as the contradiction explanation pattern “X cannot
Y and Z at the same time”, where X is the com-
mon referent to the sentences and Y and Z are the
states described by the two sentences, respectively.
However, the pattern repetition also characterises
many human-generated sentences, a phenomenon
that deserves further attention in future investiga-
tions if we aim at general, better natural language
explanations.

6 Related work

Being a relatively recent area of interest, gener-
ation of free text explanations is not a well con-
solidated task. Particularly, evaluations metrics
are still being discussed (Golovneva et al., 2022)
(Wiegreffe et al., 2022), attempting both to capture
the explanation informativeness and to improve the
correlation toward human judgements. Here we
report related works which are most focused on the
e-SNLI dataset, being more comparable with our
work (see Table 2).

Generating explanation with implicit knowledge
has traditionally been addressed either by con-
straining generations with general knowledge paths
(Ribeiro et al., 2020), by fine-tuning on specific or
general knowledge datasets (Fatema Rajani et al.,
2019), or with a combination of both methods
(Becker et al., 2021a).

Camburu et al. (2018) train four different mod-
els with the aim to generate an explanation given
only the hypothesis, generate an explanation with-
out knowing the label, jointly predict a label and

generate an explanation for the predicted label, and
generate an explanation and then predict the la-
bel. Their work uses straightforward recurrent neu-
ral network architectures so it is does not achieve
state-of-the-art results, but it establishes a strong
baseline.

Becker et al. (2021a) generate implicit knowl-
edge connecting sentences in text, similarly to
Camburu et al. (2018). They perform fine-tuning
on corpora enriched with implicit information, by
constraining them with relevant concepts and con-
necting commonsense knowledge paths, combining
data augmentation and graph-to-text methods.

Marasovic et al. (2022) both present FEB, a
standardized collection of four existing English-
language datasets and associated metrics, and re-
sults based on template-based prompting. In our
work we show that specific prompting design for
the e-SNLI task results in significant improvements
with respect to more general purposes prompts.

Li et al. (2022), based on the intuition that ex-
planation generated through single-pass prompting
often lacks sufficiency and conciseness, propose a
two-step approach where the first-pass output from
the pretrained language model is polished, and then
regenerated retaining the information that supports
the contents being explained.

Ye et al. (2022) show that both the computation
trace (the way the explanation is decomposed) and
the natural language of the prompt, contribute to
the effectiveness of explanations. According to this
finding they propose automatic prompt selection
that focus on prompt diversity, rather than comple-
mentarity only.

7 Conclusion

In this work, we argued that providing explanations
is often a process of eliciting implicit knowledge.
We proposed a general methodology to generate
commonsense explanations from pairs of semanti-
cally related sentences, taking advantage of both
prompting applied to large pre-trained language
models and few-shot learning techniques. Exper-
iments run on the e-SNLI dataset show that the
proposed methods achieve SOTA results on the
explanation generation task, with a substantial re-
duction of labelled data. The obtained results open
new perspective for a number of tasks based on
eliciting implicit knowledge.
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UNSUPERVISED (baseline) FINE-TUNING ENSEMBLING

P0 P1 - P4 (best) P0 P1 - P4 (best) P0

B
A

R
T

11.10 42.30 88.61 10.86 42.05 88.53 (1) T0 11.09 42.3 88.53 10.86 42.05 88.53 (1) 11.12 42.37 88.58

T10 04.50 22.85 88.14 04.60 23.09 88.18 (1) 04.94 23.45 88.43

T100 10.86 31.87 77.09 12.27 35.82 86.88 (4) 14.76 38.00 90.13

T500 08.09 28.23 66.57 11.88 35.68 86.64 (3) 15.06 39.45 90.27

P
E

G
A

S
U

S 01.66 26.67 85.00 03.24 30.85 87.66 (3) T0 05.44 29.69 87.05 10.06 35.00 88.58 (1) 10.86 38.70 88.76

T10 10.58 38.06 88.38 10.50 37.93 88.42 (1) 10.59 38.66 88.52

T100 14.42 40.21 90.42 14.58 40.39 90.47 (4) 15.60 41.90 90.69
T500 16.87 42.30 90.79 16.75 42.26 90.77 (4) 16.39 41.58 90.67

T
5

05.45 27.29 85.59 04.78 25.41 84.68 (3) T0 05.45 27.29 85.59 04.79 24.72 84.76 (1) 06.25 11.72 84.95

T10 18.91 42.45 90.99 18.95 42.64 91.01 (2) 20.45 43.87 91.20

T100 17.62 41.96 90.91 17.63 41.67 90.91 (3) 18.37 42.06 90.96

T500 20.15 44.67 91.23 19.84 44.59 91.21 (1) 20.18 44.00 91.23

Table 1: Results for the three sets of experiments for the considered language models in each training configuration
(T0 − T500). P0 −P1−4 indicate the prompt used to modify the test input in that configuration. For prompts P1− 4
we report the best scoring prompt, indicated in braket (1-4). For each experiment, we report the BLEU-1, ROUGE-1
and BERT-Scores in this order. Boldfaced, the best scoring configurations for each model, method and test prompt
according to BERT-score.

Reference BLEU ROUGE BERT-Score Training size Model
Becker et al. (2021b) 12.71 47 90 18K BART

Our method 15.06 39.45 90.27 500 BART

Marasovic et al. (2022) n/a n/a 79.2 48 T5

Our method 20.45 43.87 91.20 10 T5

Li et al. (2022) 22.3 n/a 87.16 500K GPT2

Ye et al. (2022) n/a n/a 83.9 500K RoBERTa

Camburu et al. (2018) 27.58 n/a n/a 500K From scratch

Table 2: Benchmark for the task of generating explanations on the e-SNLI dataset.

T5-ENSEMBLING Generated explanation on test set with P0

Input ’A man with an afro and bandanna playing electric guitar.’ contradicts ’the guy
with the afro is eating spinach’

T0 False
T10 The guy is either playing electric guitar or eating spinach.
T100 the man is either playing electric guitar or eating spinach.
T500 A man cannot be playing electric guitar and eating spinach at the same time.

Reference The man can not very well be playing electric guitar and eating spinach at the
same time.

Baseline : ’A man with an afro and bandanna playing electric guitar’ : ’A man with an
afro and bandanna playing electric guitar’ contradicts ’the guy with an afro is
eating spinach’. :”’A man with an

Table 3: Example generations for the best scoring model and method T5-ENSEMBLING. We report the generated
explanation for each configuration, the reference explanation, and the T5-UNSUPERVISED’s prediction (baseline).

8 Limitations

Although we showed significant improvements in
explanation generation using prompt-based few-

shot learning, our work still has some limitations.
First, we experimented only on the e-SNLI dataset:
although e-SNLI is a reference for the task, it would
be interesting to extend the proposed methodology
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to other datasets with natural language explana-
tions (see Wiegreffe and Marasović (2021) for an
extensive review).

Second, we did not attempt to automatic prompt
optimization: although this may bring further mi-
nor improvements, we decided to leave optimiza-
tion to a next step, as it does not change the core
contribution of our work.

Third, we believe there is an intrinsic limitation
in comparing our results with SOTA, as there is not
a clear consensus on which metric is to be taken
as the reference metric for benchmarking, along
with the fact that measures sometimes disagree on
scoring one system better than another. We hope
that in the future this task and its evaluation will
consolidate into a shared benchmark.

Finally, as for our our use of e-SNLI, we are
assuming that for all sentence pairs in the dataset
there is an implicit explanation of the semantic rela-
tion between the sentences. Under this assumption
we always generate an explanation, even when the
explanation is already explicit in one of the sen-
tences. We think that a better capacity to detect
those cases would bring relevant insight to our ap-
proach.
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A Appendix

A.1 Prompt design

Parameter Values
Prefixes (pref ) "Explanation:", "Rationale:"
Task verbalizers (v) "entails", "contradicts", "does not entail"
Patterns (patt) patt1, patt3 = ta + v + tb + pref+ <mask>

patt2, patt4 = pref+ <mask> + "Text:" +ta + v + tb

Table 4: Synthesis of the possible values of each of prompt parameters.

A.2 System diagrams

Figure 1: A diagram of our three proposed methods. Hexagons indicate datasets, cylinders indicate language models,
white squares indicate prompting functions applied to inputs, and red rectangle indicates the final evaluation step.
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Abstract

Saliency maps can explain a neural model’s pre-
dictions by identifying important input features.
They are difficult to interpret for laypeople, es-
pecially for instances with many features. In
order to make them more accessible, we for-
malize the underexplored task of translating
saliency maps into natural language and com-
pare methods that address two key challenges
of this approach – what and how to verbalize.
In both automatic and human evaluation setups,
using token-level attributions from text clas-
sification tasks, we compare two novel meth-
ods (search-based and instruction-based verbal-
izations) against conventional feature impor-
tance representations (heatmap visualizations
and extractive rationales), measuring simulata-
bility, faithfulness, helpfulness and ease of un-
derstanding. Instructing GPT-3.5 to generate
saliency map verbalizations yields plausible ex-
planations which include associations, abstrac-
tive summarization and commonsense reason-
ing, achieving by far the highest human ratings,
but they are not faithfully capturing numeric
information and are inconsistent in their inter-
pretation of the task. In comparison, our search-
based, model-free verbalization approach effi-
ciently completes templated verbalizations, is
faithful by design, but falls short in helpful-
ness and simulatability. Our results suggest
that saliency map verbalization makes feature
attribution explanations more comprehensible
and less cognitively challenging to humans than
conventional representations. 1

1 Introduction

Feature attribution methods, or (input) saliency
methods, such as attention- or gradient-based attri-
bution, are the most prominent class of methods
for generating explanations of NLP model behavior
(Wallace et al., 2020; Madsen et al., 2022) and can
be used to produce word-level importance scores

1Code and data at https://github.com/DFKI-NLP/SMV.

without human supervision (Wallace et al., 2019;
Sarti et al., 2023). A major limitation of saliency
maps is that they require expert knowledge to inter-
pret (Alvarez-Melis et al., 2019; Colin et al., 2022).
Furthermore, Schuff et al. (2022) revealed visual
perception and belief biases which may influence
the recipient’s interpretation.

Natural language explanations (NLEs), on the
other hand, exceed other explainability methods in
plausibility (Lei et al., 2016; Wiegreffe and Pin-
ter, 2019; Jacovi and Goldberg, 2020), accessibil-
ity (Ehsan and Riedl, 2020), and flexibility (Brah-
man et al., 2021; Chen et al., 2023), i.e. they can
be adapted to both different target tasks and dif-
ferent audiences. Most previous approaches in
generating NLEs depend on datasets of human-
annotated text highlights (Zaidan et al., 2007; Lei
et al., 2016; Wiegreffe and Marasović, 2021) or
carefully constructed gold rationales for super-
vised training (Camburu et al., 2020; Wiegreffe
et al., 2022), which are costly to obtain and task-
specific. Alignment of model rationales with very
few human-acceptable gold rationales may raise
issues of trust (Jacovi et al., 2021) and the mod-
els trained on them may suffer from hallucinations
(Maynez et al., 2020).

In this work, we revisit and formalize the task
of verbalizing saliency maps, i.e. translating the
output of feature attribution methods into natural
language (Forrest et al., 2018; Mariotti et al., 2020;
Slack et al., 2022). Verbalizations can describe
relations between words and phrases and their as-
sociated saliency scores. Contrary to conventional
heatmap visualizations, we can adjust the compre-
hensiveness of an explanation more precisely and
infuse it with additional semantics such as word
meanings, concepts, and context about the task.

We find that verbalization also comes with a
few caveats: Similar to human explainers, who
communicate only the most relevant explanations
to avoid cognitive overload of the recipient (Hilton,
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Figure 1: Heatmap visualizations generated by the Integrated Gradients feature attribution method explaining the
predictions of a BERT model: Correct classifications of an instance from AG News (top) as Business and an instance
from IMDb (bottom) as Negative sentiment. Tokens with red backgrounds have higher importance scores, while
blue backgrounds indicate the contrast case. Two verbalizations (SMVs) are depicted in the center of the figure: The
left (yellow) is produced by our model-free approach, while the right (blue) is produced by GPT-3.5. The predicted
labels are highlighted in cyan and italic. The model-generated verbalization conveys semantic information such as
associations with the target label (Business) and reasoning that is disconnected from the underlying model. GPT-3.5
wrongly deems two of the least attributed tokens salient (“group” and “growth”, highlighted in red).

2017; Miller, 2019), verbalization methods need to
address the problem of deciding “what” to say, i.e.
selecting the most informative and useful aspects
of the saliency maps and communicating them in
a concise manner. We therefore compare different
methods for verbalizing saliency maps: Supervised
rationales, prompting LLMs, and model/training-
free templates.

We address the problem of saliency map verbal-
ization (SMV) with the following contributions:
• We formalize the underexplored task of SMV and

establish desiderata, i.e. simulatability, explainer-
faithfulness, plausibility, and conciseness (§2.1);

• We conduct a comparative study on various rep-
resentations of feature attribution in two text clas-
sification setups, measuring the effects of verbal-
izations methods on both automated (explainer-
faithfulness) and human evaluation metrics (sim-
ulatability, helpfulness, ease of understanding)
(§3, §5).

• We propose a novel, model-free, template-based
SMV approach, and design instructions for
GPT-3.5-generated SMVs (§4) (examples from
our two setups are depicted in Fig. 1);

• We show that model-free SMVs perform slightly
better than heatmaps and extractive rationales on

ease of understanding and are faithful by design,
while instruction-based SMVs achieve the high-
est average simulation accuracy and are preferred
in subjective ratings (§6);

• We publish a large dataset of model-free and
GPT-generated SMVs alongside extractive ratio-
nales and results from both evaluations, and open-
source code to produce all kinds of SMVs.

2 Verbalizing saliency maps

2.1 Formalization
The setup of the saliency map verbalization
task consists of an underlying (to-be-explained)
model m whose prediction ŷ ⊂ Y on source to-
kens W = w1 . . . wn we want to explain (against
the set of possible outcomes Y ).
m is equipped with a feature explanation

method (or short: explainer) e which produces
a saliency map S = s1 . . . sn:

e(W,m) = S (1)

Here, we call token wi salient towards out-
come y if its associated saliency score si > 0 and
salient against y for si < 0. e can have many
sources, e.g. gradient-based methods such as Inte-
grated Gradients (Sundararajan et al., 2017) which
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we employ in our experiments (§5), or even human
experts assigning relevance scores.

A verbalized saliency map SV is produced by
some verbalizer v that receives the output of e:

v(W,S) = SV (2)

v can be any function that discretizes attribution
scores and constructs a natural language represen-
tation SV. This is connected to the concept of hard
selection in DeYoung et al. (2020) and heuristics
for discretizing rationales (Jain et al., 2020). In the
taxonomy of Wiegreffe and Marasović (2021), ver-
balized saliency maps can be categorized as free-
text rationales with varying degrees of structure
imposed through templates. Moreover, verbalized
explanations are procedural and deterministic by
nature, i.e. they function as instructions that one
can directly follow (Tan, 2022) to understand a
model’s decision, similar to compositional expla-
nations (Hancock et al., 2018; Yao et al., 2021).

2.2 Desiderata

In the following, we outline the common evalua-
tion paradigms for explanations (faithfulness, sim-
ulatability, plausibility) and how we adapt them to
saliency map verbalizations.

Faithfulness Saliency maps express that “cer-
tain parts of the input are more important to the
model reasoning than others” (linearity assumption
in Jacovi and Goldberg (2020)). For verbalizations,
explainer e and verbalizer v are two separate pro-
cesses, so the saliency map S can be seen as static.
Therefore, the faithfulness of e to the model m is
extrinsic to the verbalization. Instead, it is essen-
tial to faithfully translate S into natural language,
which we coin explainer-faithfulness. The verbal-
izer breaks faithfulness, e.g. if words are referenced
as salient in SV that are made up (do not appear in
W ) or if the polarity of any si is falsely interpreted.

Simulatability Another type of faithfulness is
the model assumption which requires two mod-
els to “make the same predictions [iff] they use
the same reasoning process” (Jacovi and Goldberg,
2020). By extension this means a model has to
be simulatable (Doshi-Velez and Kim, 2017; Hase
and Bansal, 2020), i.e. a human or another model
should be able to predict a model’s behaviour on
unseen examples while exposed only to the expla-
nation and not the model’s prediction.

Plausibility The plausibility of explanations is
commonly measured by correlation with ground-
truth explanations (DeYoung et al., 2020; Jacovi
and Goldberg, 2020), since gold rationales are in-
fluenced by human priors on what a model should
do.

Conciseness In addition to these paradigms, ver-
bosity is also an important aspect. A full translation
into natural language is nonsensical, however, be-
cause all relations between the continuous-valued
saliency scores and the associated tokens would
normally overload human cognitive abilities. We
want SV to be concise, yet still contain the key
information, similar to sufficiency and comprehen-
siveness measures from DeYoung et al. (2020).
Thus, we define a coverage measure to indicate
how much information is retained going from S
to SV, i.e. how much of the total attribution in
S = s1 . . . sn is referenced by the tokens men-
tioned in SV = v1 . . . vm:

Coverage(SV) =

∑ |vi|
||S|| (3)

The goal here is not to achieve a coverage of 1
with all of S, but depending on the use case, SV
should mention the most influential tokens, so a
trivial solution for k = 5 would be to include the
top k tokens with the highest attribution in S.

3 Study setup

3.1 Human Evaluation

Inspired by previous crowd studies in explainabil-
ity (Chandrasekaran et al., 2018; Strout et al., 2019;
Hase and Bansal, 2020; Sen et al., 2020; González
et al., 2021; Arora et al., 2022; Joshi et al., 2023),
we propose to measure simulatability as well as
ratings for helpfulness and ease of understanding
(plausibility). We evaluate the quality of differ-
ent verbalization methods in a study involving 10
human participants. All participants have a com-
putational linguistics background, with at least a
Bachelor’s degree, limited to no prior exposure to
explainability methods, and are proficient in En-
glish (non-native speakers). After an introduction
to the goal of the study and a brief tutorial, anno-
tators are to complete the tasks described below.
For each task, we present text instances along with
their explanations, using a simple Excel interface.2

2See Appendix C, Figure 7
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Task A: Simulation In the first task, participants
are asked to simulate the model, i.e. predict the
model’s outcome, based only on one type of expla-
nation plus the input text (“What does the model
predict?”). They are given the possible class labels
and were given an example for each dataset in the
tutorial before starting the session. If the explana-
tion does not provide any sensible clues about the
predicted label, they still have to select a label, but
may indicate this in the following question B1.

Task B: Rating In the second task, participants
have to provide a rating on a seven-point Likert
scale about (B1) “how helpful they found the ex-
planation for guessing the model prediction” and
(B2) “how easy they found the explanation to under-
stand”. A higher rating indicates a higher quality
of the explanation.

Task C: Questionnaire Finally, participants are
asked to complete a post-annotation questionnaire
to obtain overall judgements for each verbaliza-
tion method. They are prompted for Likert scale
ratings about time consumption, coherence, consis-
tency and qualitative aspects of each verbalization
method, as listed in Table 1.

3.2 Automated Evaluation

We expect hallucinations (synthesized, factually
incorrect text due to learned patterns and statistical
cues) from GPT-type models and thus devise the
following tests measuring explainer-faithfulness
and conciseness:
1. Have the referred words been accurately cited

from the input text?
2. How often do the referred words represent the

top k most important tokens? (Eq. 3)
We obtain the results by simple counting and

automated set intersection.

4 Methods

To complement heatmap visualizations and extrac-
tive rationales, we propose and analyze two ad-
ditional verbalization methods: Model-free (§4.1,
Fig. 2) and instruction-based (§4.2, Fig. 3) saliency
map verbalization.

4.1 Model-free verbalization

For our model-free approach we employ hand-
crafted templates for surface realization, different
binary filter algorithms as search methods (§4.1.1)

and scoring metrics (§4.1.2) to select tokens for fill-
ing the templates. This approach does not require
architectural changes to the underlying model or
modifications to an existing saliency method. The
most similar approach to our selection heuristics,
to our knowledge, are the discretization strategies
in Jain et al. (2020, §5.2).

In the following, we will present two distinct can-
didate generation methods that can both be com-
bined with one of two scoring metrics. A final
candidate selection (§4.1.3) will collect the results
from both searches, concatenate them to possibly
larger spans and filter the top scoring candidates
once more while maximizing coverage (Eq. 3).
These salient subsets are then used to complete
hand-crafted templates (App. E). We argue that this
is more human-interpretable than simple top k sin-
gle token selection, at the cost of a lower coverage.
Our methodology allows to set parameters in accor-
dance to how faithful the verbalization should be
to the underlying explainer.

4.1.1 Explanation search

To acquire potentially salient snippets from a given
text, we perform a binary selection on a window of
attributions from the input of size c and then com-
pare the sum of our selection to one of our scoring
methods, performing basic statistical analysis on
the window and the input.

Convolution Search Inspired by the convolu-
tions of neural networks, we compare tokens that
are located close to each other but are not necessar-
ily direct neighbors. Coherence between pairs of
tokens is solely determined by looking at their attri-
butions with the following binary filters. In short,
the following method firstly generates template-
vectors that we then permute and keep as our binary
filters. After computing all valid and sensible per-
mutations, we can start calculating possibly salient
or coherent snippets of our input. We choose b ∈ N
vectors with a length of c ∈ N. We describe these
b vectors vi as follows:

vi = [11,i, 01,c−i], vi ∈ Z1,c. (4)

e.g., for i = 3, c = 5, vi = (1 1 1 0 0)

We only keep those vi where
∑

vi /∈ {0, 1, c} in
order to perform sensible permutations. For each
vi, we define a filter fi,j , where each distinct entry
in fi is a unique permutation of vi. Let A be our
attribution input, with A ∈ R1,k, where k is the
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Figure 2: Model-free saliency map verbalizations (SMVTempl) as generated from three different search methods
(Top k single tokens, Convolution Search, Span Search) and two scoring metrics (Quantile, Weighted Average).

length of our input k > c, then we multiply a
subset of our input with every binary filter

ri,j,l = fi,j ·Al+c
l ,

l ∈ L,L = {l ∈ Z|1 ≤ l ≤ k − c}.
(5)

From this, we receive result vectors containing
possibly coherent attributions and tokens.

Span Search Instead of looking for token pairs
in a local neighborhood, we can also look for con-
tiguous spans of tokens by adapting our proposed
convolutional search.
We generate b vectors of length of c with c be-
ing odd. We describe these b vectors as follows:
Choose i ∈ N with i being odd, which ensures
symmetry of our filters.3

vi = [01,⌊ c−i
2

⌋, 11,i, 01,⌊ c−i
2

⌋], vi ∈ Z1,c (6)

We calculate attribution vectors ri,l as such:

ri,l = vi ·Al+c
l ,

l ∈ L,L = {l ∈ Z|1 ≤ l ≤ k − c}
(7)

4.1.2 Candidate scoring metrics
We score and filter the snippets r so that we can
present the most salient samples. As a threshold,
we calculate the average of the n% most salient

3In contrast to our proposed Convolution Search, we don’t
need permutations of vi to generate filters f , so we directly
use vi. Thus, the result vector r has only two indices.

tokens of the given input sample A. This simple
method does not filter for saliency, but it reduces
the likelihood of presenting non-salient sample
snippets. We call this our baseline β.

Weighted average The weighted average sums
up the attribution values of r and divides the re-
sulting scalar by the length of r, calculating the
"saliency per word" of r. Then the result gets
compared to β. Is the result larger than β, r is
considered salient and will be a candidate for the
verbalization.

Quantile The quantile method relies on the stan-
dard deviation within our current sample A. Given
a quantile n, n ∈ R+

0 , we calculate the correspond-
ing standard deviation value σ and compare it to
the average of the values of our snippet. If the
score is greater than σ and β, it will be marked for
verbalization.

4.1.3 Summarized explanation
On top of the two search methods in §4.1.1, we
construct a summarized explanation to be used in
our human evaluation (§3.1) by considering the k
single tokens with the highest attribution scores.
After generating k candidates from each search
method, we concatenate neighboring token indices
to (possibly) longer sequences and recalculate their
coverage. We compute the q-th quantile of the re-
maining candidates according to their coverage to
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Figure 3: Instruction-based verbalizations SMVGPT us-
ing GPT-3.5 of a negative sentiment instance from
IMDb that was wrongly classified by BERT.

select the final input(s) to our templates. If no can-
didate is within the q-th quantile, the top-scoring
span will be chosen.

4.2 Instruction-based Verbalizations

In light of very recent advances in instructing large
language models to perform increasingly complex
tasks (Wei et al., 2022), we additionally construct
“rationale-augmented” verbalizations (Fig. 3) next
to template-based and search-based ones. The in-
struction contains an overview of the saliency map
verbalization task and the associated caveats, e.g.
“The classifier cannot base its prediction on the
scores, only on the input text itself.”. Our most
consistently accurate result was achieved by then
representing S as bracketed scores rounded to two
digits put behind each word, e.g. “definitely (0.75)
a (0.14) girl (-0.31) movie (0.15)”.

In practice, we manually engineered task-
agnostic instruction templates to work with
GPT-3.5 (March ’23) aka ChatGPT.4 To our knowl-
edge, there are no datasets with gold verbalizations
available and we do not want to enforce any spe-
cific format of the explanation, so we use the API
in a zero-shot setting. We post-process all outputs
by removing all occurrences of the predicted label
and semantically very similar words (App. G).

4We describe the task-specific instructions in App. F and
document the edits to mitigate label leakage in App. G.

Explanations... Templ GPT

were concise & not time-consuming. 4.00 2.38
were not too complex. 3.63 3.88

were not inconsistent/contradictory. - 3
helped me detect wrong predictions. 2.63 3

with more diverse sentences are useful. 4.25* -
with numeric scores are useful. 2.63* 2.38

with associations/context are useful. 4.00* 4.50
summarizing the input are useful. - 4.75

Table 1: Questionnaire asking participants about their
overall impressions on both types of verbalizations. All
aspects were rated based on a 5-point Likert scale (1:
“strongly disagree”; 5: “strongly agree”). Starred values:
SMVTempl do not have this property, so we asked if the
participants would have liked them to have it.

5 Data

We choose datasets that cover a selection of
English-language text classification tasks. In par-
ticular, we select IMDb (Maas et al., 2011) for
sentiment analysis, and AG News (Zhang et al.,
2015) for topic classification.

We retrieve predictions from BERT models on
the test partitions of IMDb and AG News made
available through TextAttack (Morris et al., 2020)
and their Integrated Gradients (Sundararajan et al.,
2017) explanations with 25 samples exactly as they
appear in Thermostat (Feldhus et al., 2021).

We then take subsets (IMDb: n = 80, AG News:
n = 120) of each dataset according to multiple
heuristics (App. D) that make the tasks more man-
ageable for annotators. Each annotator was shown
340 explanations consisting of equal amounts of
each type of representation or rationale. We ran-
domize the order in which they are presented to the
annotators. Every instance was evaluated by seven
different annotators.

6 Results

Human evaluation Tab. 2 shows that both kinds
of SMVs are generally easier to understand (B2)
than heatmaps or extractive rationales. In a post-
annotation questionnaire, we asked 8 out of 10 par-
ticipants 14 questions about both types of SMVs.
Tab. 1 lists the results. While template-based expla-
nations are preferred in being less time-consuming,
we can see that GPT-generated verbalizations out-
perform them in all other aspects. Unsurprisingly,
associations and summarizations are the preferred
characteristics of verbalizations.

Downstream tasks According to Jacovi et al.
(2023a), a feature attribution explanation aggre-
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A: Simulation Accuracy B1: Helpfulness B2: Ease of understanding

HM
Vis

Rat
Extr

SMV
Templ

SMV
GPT

HM
Vis

Rat
Extr

SMV
Templ

SMV
GPT

HM
Vis

Rat
Extr

SMV
Templ

SMV
GPT

All 90.75 85.94 87.5 94.06 4.73 4.19 4.46 5.80 4.35 4.00 4.67 5.88
IMDb Cov(SVT)

↗ 94.38 89.45 92.19 96.09 4.98 4.50 4.91 5.94 4.47 4.34 4.99 5.99
IAA y ̸= ŷ 74.49 58.43 63.90 84.65 3.67 3.09 3.21 5.01 3.48 2.92 3.61 5.25

κ = 0.731 ŷ ̸= ysim n.a. (0.00) 3.40 3.10 2.85 3.94 3.48 3.18 3.35 4.33

All 79.83 - 79.50 77.60 5.26 - 4.65 5.63 5.02 - 4.90 5.77
AG News Cov(SVT)

↗ 85.31 - 84.57 81.13 5.41 - 4.98 5.80 5.18 - 5.13 5.89
IAA y ̸= ŷ 70.17 - 69.37 64.53 5.02 - 4.52 5.36 4.84 - 4.84 5.61

κ = 0.721 ŷ ̸= ysim n.a. (0.00) 4.14 - 3.34 4.40 4.08 - 3.89 5.10

Table 2: Results of the human evaluation. Task A: Simulation accuracy (annotators guessing the label predicted by
the underlying BERT correctly). Task B: Average rating of annotators (1 “bad” - 7 “good”) for helpfulness (B1) and
ease of understanding (B2). HM-Vis = Heatmap visualization. Rat-Extr = Extractive rationalizer of Treviso and
Martins (2020). SMV-Templ = Template-based saliency map verbalization. SMV-GPT = GPT-3.5-based saliency
map verbalization. All: Overall result. Cov(SVT)

↗: Coverage above average. y ̸= ŷ: Explained BERT model made
a false prediction. ŷ ̸= ysim: False human simulation. Inter-annotator agreement in Fleiss κ below the dataset names.

gates counterfactual contexts. This becomes appar-
ent in our overall results on the AG News dataset
where more than one potential alternative (multi-
class classification with |C| = 4) outcome ex-
ists. Annotators’ simulation accuracy drops from
as high as 94 % (IMDb) to 78 %. SMVGPT beats
all other representations across all three measures
in IMDb, but surprisingly underperforms in AG
News.

Coverage of the verbalization Fig. 4 and App. A
show that SMVGPT focuses less on the actual most
important tokens that might not be intuitive for re-
cipients, such as function words. The subset of
instances with higher-than-average coverage ac-
cording to SMVTempl (Cov(SVT)

↗) is substantially
easier to simulate (IMDb) and elicits the highest
ratings and accuracies from annotators. We utilize
this as a proxy for (low) complexity of S, because
usually only a single or few tokens that are very
salient make these explanations easy to decipher in
most representations.

Therefore, we conducted an automated simulata-
bility evaluation on all SMV types, documented in
Appendix B, confirming the suspicions about the
faithfulness of GPT verbalizations.

Model predictions Lastly, we investigate the sub-
sets of wrong model predictions: The drop in sim-
ulation accuracy and ratings when we filter the
instances where the model predicts something dif-
ferent from the true label (y ̸= ŷ) is more severe
for IMDb throughout all types of explanations. In
AG News, the simulatability and the ease of un-
derstanding turn out to be higher for SMVs. Our

consistently worse results in this subset reveal the
belief bias (González et al., 2021), i.e. explanations
have a hard time convincing humans about a model
behavior when they already have prior assumptions
about the true label of an instance. For instances
where the human simulation mismatched with the
predicted label (ŷ ̸= ysim), the drop in scores is
even harsher: Only SMVGPT still achieves ratings
that are slightly above average.

6.1 Evaluating instruction-based
verbalizations

While there are no invented words in the hu-
man evaluation subset, our automated mapping be-
tween explanation and input text still detected cases
where words are auto-corrected and not accurately
copied, especially fixing capitalization and small
typos. We also found examples in which words
or spans are replaced with a synonym, e.g. “not
reliable” → “unreliable”, but most strikingly, in an
IMDb example, “good premise” was replaced with
“bad premise” which entirely changed the meaning
and the polarity of the sentiment.

In Tab. 3, we manually count what type of task-
related information and semantics SMVGPT pro-
vides on top of the translation of the importance
scores. We can see that the “negative sentiment” in
IMDb is often a confounder for the correct inter-
pretation of the negative saliency scores. Without
explicit instructions, GPT still questioned some
of the wrong prediction the underlying BERT has
made, particularly for IMDb. In terms of linguis-
tic aspects of the verbalizations, associations are
frequently included, while summarizations of the
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Figure 4: Coverage+@k of SMVTempl and SMVGPT. Top
k tokens is the upper bound for explainer-faithfulness.

input or the decision are rare.

6.2 Discussion

By choosing parameters that prefer longer spans to
be selected, we show that SMVTempl can be more
plausible to humans than single token selection.
We acknowledge that SMVTempl are repetitive and,
while the results show that they can guarantee a
minimum degree of understandability (Ehsan et al.,
2019), sufficiency and conciseness, they will not be
satisfying enough for lay recipients on their own.

For SMVGPT, the choice of instruction can
greatly impact the faithfulness to the explainer.
Plausible explanations driven by world knowledge
and semantics allow laypeople to contextualize the
prediction w.r.t. the input text, but reliable and gen-
eralizable methods for auditing these rationales for
faithfulness have yet to be discovered.

7 Related Work

To our knowledge, the only previous saliency map
verbalization approach is by Forrest et al. (2018)
who used LIME explanations and a template-based
NLG pipeline on a credit dataset. While they
mostly included numerical values in explanations,
we focus on most important features and free-text
rationales, because humans are more interested in
reasoning than in numerical values (Reiter, 2019).
Ampomah et al. (2022) created a dataset of tables
summarizing the performance metrics of a text clas-
sifier and trained a neural module to automatically
generate accompanying texts. The HCI commu-
nity highlighted the advantages of verbalization as
a complementary medium to visual explanations
(Sevastjanova et al., 2018; Hohman et al., 2019;
Szymanski et al., 2021; Chromik, 2021). Zhang
and Lim (2022) advocated for adding concepts and
associations to make explanations more understand-
able, particularly in contrastive setups.

IMDb AG News
Saliency-related 100.00 99.17

“because of the high importance scores
of words such as ’oil’, ’supply’, [...]”

Correct interpretation of neg. saliency 72.50 100.00
“[...] predicted this movie review as
’negative sentiment’ because of the

high negative importance scores [...]”
Suspecting a wrong prediction 55.00 23.21

“[...] it is unclear why the classifier FP: 0.00 FP: 0.83
predicted this article as ’Business’.”

Associations 47.50 90.00
“These words are associated with

positive emotions and experiences.”
Summarizations 10.00 27.50

“[...] the reviewer enjoyed these
aspects of the movie.”

Table 3: Occurrences of semantics and accuracies of
task comprehension (both in %) in GPT-3.5-generated
verbalizations for both datasets. FP = False positives.

Hsu and Tan (2021) introduced the task of
decision-focused summarization. While there
are overlaps in the selection of important subsets
of the input, the textual nature of the output and the
employment of saliency methods, our work is con-
cerned with summarizing the token-level informa-
tion provided by a saliency map from an arbitrary
source for a single instance. Okeson et al. (2021)
found in their study that global feature attributions
obtained by ranking features by different summary
statistics helped users to communicate what the
model had learned and to identify next steps for
debugging it. Rönnqvist et al. (2022) aggregated
attribution scores from multiple documents to find
top-ranked keywords for classes.

In early explainability literature, van Lent et al.
(2004) already used template filling. Templates
in NLE frameworks were engineered by Camburu
et al. (2020) to find inconsistencies in generated ex-
planations. While their templates were designed to
mimic commonsense logic patterns present in the e-
SNLI dataset (Camburu et al., 2018), our templates
are a means to verbalize arbitrary saliency maps.
Paranjape et al. (2021) crafted templates and used a
mask-infilling approach to produce contrastive ex-
planations from pre-trained language models. Don-
adello and Dragoni (2021) utilized a template sys-
tem to render explanation graph structures as text.
Recently, Tursun et al. (2023) used templates to-
gether with ChatGPT prompts to generate captions
containing verbalized saliency map explanations
in the computer vision domain. However, they did
not conduct an automated or human evaluation.
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8 Conclusion

We conducted a comparative study on explanation
representations. We formalized the task of translat-
ing feature attributions into natural language and
proposed two kinds of saliency map verbalization
methods. Instruction-based verbalizations outper-
formed all other saliency map representations on
human ratings, indicating their summarization and
contextualization capabilities are a necessary com-
ponent in making saliency maps more accessible to
humans, but they are still unreliable in terms of en-
suring faithfulness and are dependant on a closed-
source black-box model. We find that template-
based saliency map verbalizations reduce the cog-
nitive load for humans and are a viable option to
improve on the ease of understanding of heatmaps
without the need for additional resources.

Limitations

Our experimental setup excludes free-text ratio-
nales explaining the decisions of a model (Wiegr-
effe et al., 2022; Camburu et al., 2018), because
their output is not based on attribution scores or
highlighted spans of the input text, so we argue
that they are not trivially comparable. However,
there are end-to-end rationalization frameworks
that can accommodate arbitrary saliency methods
(Jain et al., 2020; Chrysostomou and Aletras, 2021;
Ismail et al., 2021; Atanasova et al., 2022; Ma-
jumder et al., 2022), but require large language
models that are expensive to train and perform in-
ference with, so this is out of scope for this study.
However, we also see that high-quality free-text
rationales can be more easily generated with LLMs
(Wang et al., 2023; Ho et al., 2023), and a compari-
son between them and our attribution-based expla-
nations is an interesting avenue for future work.

Inferring high-quality explanations from large
language models necessitates excessive amounts of
compute and storage. Although GPT verbalizations
are most promising, we urge the research commu-
nity to look into more efficient ways to achieve
similar results. In the future, we will explore if
training a smaller model on top of the collected
rationale-augmented verbalizations is feasible.

Emphasizing the concerns of Rogers (2023), we
do not recommend the black-box model GPT-3.5
as a baseline for interpretability, because the
model’s training data or internal parameters can
not be accessed and the dangers of deprecation as
well as the lack of reproducibility are serious con-

cerns. However, we do think it has revealed great
potential as a surface realization and contextualiza-
tion tool for the task of saliency map verbalization.

The causality problem explained in Jacovi et al.
(2023a) is not solved by our verbalizations, as it is
an inherent problem with feature attribution and ra-
tionalization. Future work includes verbalizations
alongside counterfactuals, e.g. in interactive setups
(Feldhus et al., 2022; Shen et al., 2023).

Although multiple models and explanation-
generating methods are available, we specifically
focus on one pair for both datasets (BERT and Inte-
grated Gradients), because the focus of our investi-
gation is on the quality of the representation rather
than the model.

Finally, explicitly modelling expected highlights
to mitigate misalignments as reported on in Schuff
et al. (2022), Jacovi et al. (2023b) and Prasad et al.
(2021) is still unexplored.
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A Token ranks

Figures 5 and 6 show the coverage of the verbal-
izations, which makes up one aspect of explainer-
faithfulness.
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Figure 5: Number of SMVs mentioning top k attributed
tokens in IMDb.
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Figure 6: Number of SMVs mentioning top k attributed
tokens in AG News.

AG News IMDb
SV W + SV SV W + SV

Conv. Search 91.73 94.10 86.08 96.00
Span Search 87.16 94.39 89.08 95.90

Top k = 5 tokens 92.54 93.93 92.38 95.60
SMVTempl 91.94 94.10 94.26 94.90

SMVGPT 69.16 70.00 81.25 81.25

Table 4: Automated simulatability evaluation (Accuracy
in %) using a T5-large model (Accuracy on original
input: AG News – 92.58%; IMDb – 97.62%) to repro-
duce the underlying BERT model’s prediction based on
only seeing one of the verbalizations SV (prepended by
the original input W ).

B Automated simulatability evaluation

We follow Wiegreffe et al. (2021) and Hase et al.
(2020) and train a second language model to simu-
late the behavior of the explained BERT model. Ta-
ble 4 shows the simulation accuracy of a T5-large
receiving various types of verbalizations (plus the
original input). We can see for both datasets that
SMVGPT induces the most noise and thus results in
the lowest accuracy, while the raw output of the
search methods (Conv/Span) are most faithful in
combination with the original input.

C Efficiency

First, we measure a runtime of less than two min-
utes on a CPU (i5-12600k) to generate template-
based verbalizations for all 25k instances of IMDb.
Given pre-computed saliency maps from any ex-
plainer, this is considerably faster than using an
end-to-end model for extractive rationales, e.g. Tre-
viso and Martins (2020), which takes several hours
for training and then more than 10 minutes for in-
ference on an RTX 3080 GPU. GPT-3.5 with at
least 175B parameters, which obliterates the other
two setups. This means that there is a considerable
carbon footprint associated with using it. Future
work has to look into training considerably smaller
models on the generated verbalizations.

D Subset selection heuristics

• We restrict our experiments to explaining a sin-
gle outcome – the predicted label ŷ – and thus
modify our metric (Eq. 3): Cov+ only considers
the positive attributions si > 0.

• We select instances achieving at least a Cov+
score of 15% (indicating the attribution mass is
not too evenly distributed, making interpretations
of saliency maps challenging).
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Figure 7: Annotation spreadsheet including one instance from every type of explanation representation in IMDb and
AG News, as used in the human evaluation described in §3.1.

• We find values for q (§4.1.3) of 0.5 ≤ q ≤ 0.75
to produce the right amount of candidates in the
end, s.t. there almost always is at least one candi-
date in the q-th quantile and the resulting verbal-
ization is not longer than most text inputs.

• We only consider instances with a maximum to-
ken length of 80, s.t. the human evaluation is
more manageable for annotators.

• We select equal amounts of instances for every
true label y (IMDb: 40 positive + 40 negative
sentiment; AG News: 30 World + 30 Sports +
30 Business + 30 Sci/Tech) in each dataset.

• We select 25% of IMDb and 46.67 % of AG
News to be false predictions by the BERT model
(y ̸= ŷ).

We apply the weighted average for IMDb-BERT-
IG (β = 0.4) and the quantile scoring metric for AG
News-BERT-IG (n = 3). We chose the number
of candidates to be k = 5 in all cases and the
threshold q to be .75 for IMDb and AG News as
the average length of the input is lower for the latter
which results in too few candidates with higher qs.

E Templates for Verbalizing Explanations

We design our templates as atomic expressions
with constraints and blanks that can be filled with
words from W . In the most basic cases, we refer
to spans, phrases, words and characters as salient
or important for some prediction. We design the
templates to express saliency information concisely
and enable users to reproduce the model’s decision
process (simulatability). The set of templates is
depicted in Table 8.

Our template-based methodology is task- and
model-invariant by design, because no task-specific
model or NLG component is involved. Achieving
sufficiency (measured by coverage) is harder, be-
cause a full translation of any saliency map is too
verbose and thus not helpful.

F List of LLM prompts

At first, we treated this as table-to-text task – which
has recently been tackled with prompt-based large
language models (Chen, 2023; Xiang et al., 2022) –
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Examples for leading sentence
The words {w1}, {. . . }, and {wn} are most important. Most important is {. . . }

The most salient features are {. . . } The model predicted this label, because {. . . }
. . . is the span that was most important.

Features or linguistic units More than one unit
feature(s) The two phrases {. . . } and {. . . }

word(s) Both phrases {. . . } and {. . . }
token(s) . . . are both salient.

phrase(s) The (top) three most important tokens . . .
punctuation . . . words such as {. . . } and {. . . }

Synonyms for important Conjunctions & Adverbs
salient {. . . }, while {. . . }

influential {. . . }, whereas {. . . }
key . . . also salient

impactful with the word {. . . } also being salient.

Additions for important {. . . } Variations of important
. . . for (the/this) prediction. . . . focused on the most for this prediction.

. . . (to the model) in (making/predicting . . . used by the model to make its prediction.
choosing/producing/shaping) this outcome. . . . caused the model to predict this outcome.

. . . with respect to the outcome. indicate the model’s predicted label.
. . . in this text. . . . shaped the model’s outcome (the most).

Synonyms for prediction Polarity
outcome {. . . } is least important.

model(’s) prediction {. . . } is more salient than {. . . }.
model’s judgment {. . . } is less influential than {. . . }.

model(’s) behavior
prediction of the classifier
(model’s) predicted label

decision

Dataset-specific
IMDb AG News

{. . . } for the sentiment label. {. . . } indicative of the model’s topic classification.
{. . . } most indicative of the sentiment. {. . . } in this article.

{. . . } most indicative for the sentiment analysis. The most salient words in this article are {. . . }.
{. . . } used by the model to predict this sentiment label. {. . . }, because {. . . } appeared in the article.

Figure 8: Templates for model-free saliency map verbalization.

where we provided a list of attribution scores and,
separate from that, a list of tokens. However, we
registered less hallucinations (the model incorrectly
mapping between words and their scores) when
we provided the input as a joint representation as
shown in Fig. 3.

For the two datasets, we then used the to-
ken+score representation as {sample} and a
{label_str} being the predicted label (IMDb: pos-
itive or negative; AG News: Worlds, Sports, Busi-
ness, or Sci/Tech) and wrote the instructions in
Fig. 9.

G Post-processing of GPT outputs

AG News In order to prevent label leakage, we
employed the string replacements listed in Tab. 5.
In our human evaluation, they were replaced with
"{placeholder}", so annotators could perform the
simulatability task without cheating.
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IMDb Movie review with importance scores: {sample}.
A sentiment analyzer has predicted this text as ’{label_str} sentiment’. The scores behind
each word indicate how important it was for the analyzer to predict ’{label_str} sentiment’.
The scores have been determined after the sentiment analyzer has already made its prediction.
The sentiment analyzer cannot base its prediction on the scores, only on the movie review itself.
Based on the importance scores, briefly explain why the sentiment analyzer has predicted this
movie review as ’{label_str} sentiment’:

AG News (Figure 1, r.)
News article with importance scores: {sample}.
A topic classifier has predicted this text as ’{label_str}’. The scores behind each word
indicate how important it was for the classifier to predict ’{label_str}’. The scores have been
determined after the topic classifier has already made its prediction. The topic classifier cannot
base its prediction on the scores, only on the news article itself.
Based on the importance scores, briefly explain why the topic classifier has predicted this news
article as ’{label_str}’:

Figure 9: Task instructions applied to IMDb and AG News used by GPT-3.5 (see App. F for details).

IMDb AG News
Classes Sports Business World Sci/Tech

positivity (+) sport businesses global science
negativity (-) the world of sports business and economics global politics science and technology

business and finance international scientific
economics all over the world tech

finance global issues technical
financial global affairs technology

the business world international relations technological
the economy a global issue or event the tech industry

corporate finance the technology industry

Table 5: Post-processing of GPT-3.5 verbalizations for human evaluation.
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Abstract

We develop a symbolic planning-based decoder
to improve the few-shot semantic parsing of in-
structional texts. The system takes long-form
instructional texts as input and produces se-
quences of actions in a formal language that
enable execution of the instructions. This task
poses unique challenges since input texts may
contain long context dependencies and ambigu-
ous and domain-specific language. Valid se-
mantic parses also require sequences of steps
that constitute an executable plan. We build on
recent progress in semantic parsing by lever-
aging large language models to learn parsers
from small amounts of training data. During
decoding, our method employs planning meth-
ods and domain information to rank and cor-
rect candidate parses. To validate our method,
we evaluate on four domains: two household
instruction-following domains and two cooking
recipe interpretation domains. We present re-
sults for few-shot semantic parsing using leave-
one-out cross-validation. We show that utiliz-
ing planning domain information improves the
quality of generated plans. Through ablations
we also explore the effects of our decoder de-
sign choices.

1 Introduction

Recent advancements in natural language process-
ing (NLP) have successfully combined large lan-
guage models with external symbolic reasoning
capabilities. Toolformer (Schick et al., 2023) en-
ables the use of external tools to perform tasks
such as arithmetic and factual lookup, which are
currently challenging for large language models.
Liu et al. (2023) created a system that performs
multi-step reasoning in planning tasks specified in
natural language. This is achieved by using an ex-
ternal symbolic planner for domain-specific reason-
ing, providing guarantees that plans are logical and
satisfy environmental constraints. By integrating
external symbolic reasoning capabilities, many of

the shortcomings of large language models can be
addressed while still capitalizing on their strengths.
Motivated by this line of work, we develop a novel
decoding procedure that uses symbolic planning
to improve the few-shot semantic parsing of long-
form instructional texts. We map instructional texts
to formal action sequences and validate our method
on two recipe semantic-parsing datasets (Bollini
et al., 2013; Tasse and Smith, 2008). Semantic pars-
ing of instructional texts with few-shot learning
poses several challenges to natural language pro-
cessing (NLP) techniques. Current NLP methods
are dominated by large language models. These
are based on Transformer (Vaswani et al., 2017)
architectures and leverage large scale pretraining
to enable high, few-shot and zero-shot task perfor-
mance (Brown et al., 2020).

Building on work from (Shin et al., 2021), we
investigate semantic parsing in the few-shot setting
using OpenAI’s Codex language and code LLM
(Chen et al., 2021; Shin and Van Durme, 2021).
Learning occurs in-context, by prompting the LLM
with a few input-output task examples. Pretrained
LLM representations allow for more sample effi-
cient learning than non-pretrained methods; but
data scarcity still introduces performance limita-
tions (Brown et al., 2020). Data efficiency is advan-
tageous when working with long-form instructional
texts. The datasets we consider are small and the
cost of annotating long texts with ground-truth se-
mantic parses is high.

In many semantic parsing tasks, context depen-
dencies, input natural language strings, and output
parses are relatively short. These tasks fit easily
within the available context size of LLM models
and consist of at most several input and output state-
ments. Modeling long input-output dependencies
poses a number of challenges for current models, as
shown by their degraded performance on tasks de-
signed to leverage long contexts (Tay et al., 2020).
Semantic parsing of long-form instructional texts,
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like the recipe datasets we evaluate, can require
learning representations for hundreds of words, and
outputting tens of steps, each with multiple argu-
ments and complex syntax.

Instructional texts also exist within an implicit
planning domain. These texts describe plans for
achieving a goal by manipulating objects that com-
prise a world-state. Executable semantic parse-
plans must consist of valid transitions within this
world-state. For example, to bake an item the oven
must be on and preheated. These requirements
constitute preconditions for the bake action. Long-
context dependencies pose challenges to generat-
ing executable sequences of actions that are also
relevant to the task instructions. To form a valid
parse-plan, instructions must be translated into a se-
quence of executable actions. All requisite actions
must be represented in the plan, potentially includ-
ing actions not explicitly mentioned. Complicating
matters, the common-sense knowledge needed to
reason about valid plan sequences in a domain is
only very implicitly represented within the LLM
and few-shot examples.

To address these challenges, we propose Plan-
ning Augmented Semantic Parsing. Our method
leverages a formal symbolic planning representa-
tion to rank and correct candidate plans. Plans
are corrected by searching for sequences of ac-
tions that satisfy the preconditions of all output
actions. Ranking selects plans which best meet
the domain’s planning and syntactic constraints
by ranking plans highly if they have fewer inad-
missible actions, require fewer additional actions
to correct, and have fewer steps with invalid syn-
tax. After ranking, planning errors are fixed using
symbolic planning methods. The result is an ef-
fective neuro-symbolic approach that combines the
strengths of deep-learned LLMs and classical AI
planning.

We validate our approach using leave-one-out
cross validation across each dataset and provide
ablations for various aspects of our model choices.
Results show that using Planning Augmented Se-
mantic Parsing results in more valid plan sequences
that still maintain high relevance to the natural lan-
guage task instructions.

Overall we make the following contributions:

• Develop a novel method for using symbolic
planning to improve semantic parsing with
large language models.

• Demonstrate improvements in the executabil-

ity of generated plans on two datasets, in a
low-data, few-shot setting.

2 Background

2.1 Planning
We consider these instructional text semantic parses
to be plans in a symbolic task planning setting. A
task planning domain defines a world-state, actions
that modify the world-state, and transition function
specifying the effect of actions on the world-state
(Ghallab et al., 2016). The world state is composed
of a collection of Boolean values defining the ex-
istence and state of various kitchen objects and
planning actions are implemented as STRIPs-style
operators (Fikes and Nilsson, 1971). Each action
has logical preconditions that must be satisfied for
its execution. For any state, the admissible actions
are all actions with satisfied preconditions. Upon
execution the action changes the values of the vari-
ables which define the world-state. A planning task
is specified by an initial state and a goal state. The
resulting plan (if it exists) comprises a sequence of
actions that can be taken to reach the goal state.

2.2 In-Context Learning
In-context learning allows LLMs to perform novel
tasks specified in terms of a small number of sam-
ple input-output pairs (Brown et al., 2020). These
examples are provided as part of the generation
context to condition the language model. Typically
these examples are drawn from the training split
of a dataset and prepended to a test example. Few-
shot prompted learning differs from other LLM
learning paradigms including the zero-shot infer-
ence utilized in the evaluations of GPT-2 (Radford
et al., 2019) and fine-tuning used to transfer pre-
trained model weights to novel tasks as in (Radford
et al., 2018), (Peters et al., 2018) and (Devlin et al.,
2018).

3 Related Work

(Branavan et al., 2009) develops a reinforcement
learning-based method for semantic parsing of in-
structional texts and (Branavan et al., 2010) addi-
tionally learns to fill in low-level steps from high-
level instructions using environment interaction.
Previous work also formulates semantic parsing as
a text-to-text machine translation task (Wong and
Mooney, 2006). Our work builds on the few-shot
semantic parsing of (Shin et al., 2021) and (Shin
and Van Durme, 2021) that establishes OpenAI’s
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Codex model (Chen et al., 2021) as a high perform-
ing LLM for few-shot semantic parsing. (Bollini
et al., 2013) and (Tasse and Smith, 2008) intro-
duce the recipe-semantic parsing datasets we use
for evaluation but learn semantic parsers using shal-
low features and classification-based approaches.
Other work investigates semantic parsing of recipes
(Malmaud et al., 2014) including using modern
deep-learning methods (Papadopoulos et al., 2022).
Recent work uses few-shot learning and large lan-
guage models to map single commands (Huang
et al., 2022) and short sequences of commands
(Brohan et al., 2022) to executable plans. How-
ever, to our knowledge, ours is the first work to use
symbolic planning to improve semantic parsing of
instructional texts.

4 Methods

For the LLM we use Davinci Codex (Chen et al.,
2021) based on the GPT-3 architecture (Brown
et al., 2020). Like GPT-3, the model was trained on
a large web-sourced text corpus, but includes code
in the dataset. While OpenAI does not publish the
sizes of the Codex models available through their
API, (Gao, 2021) empirically estimate the size of
text-only Davinci at 175B parameters.

4.1 Datasets

We evaluate our method on two recipe semantic
parsing datasets from (Tasse and Smith, 2008) and
(Bollini et al., 2013). (Tasse and Smith, 2008)
contains 260 recipes with corresponding seman-
tic parses in the Minimal Instruction Language for
the Kitchen (MILK) syntax. Each statement in
the language corresponds to a plan step with an
action and arguments. Some plan steps produce
new variables (ingredients or tools) which are con-
sumed by subsequent steps. The recipes in this
dataset cover a wide range of cuisines, ingredients,
techniques, and tools. Each step also contains an
optional human-readable description of the step.
The original dataset uses variables as arguments
to action steps. We replace these with their literal
values to make the generation problem easier for
the LLM. The 60 recipes of (Bollini et al., 2013)
were selected to be executed by a cooking robot.
The recipes are mainly limited to baking and con-
tain a small fixed set of tools and actions. This
dataset also contains planning domain definitions
in the form of STRIPs-style operator actions (Fikes
and Nilsson, 1971). Recipe steps that require tools

or techniques outside of this fixed vocabulary are
mapped to a NO-OP. Examples from both datasets
are in the Appendix: with in Table 5 and action
signatures are defined in Table 6.

4.2 Planning Domain

(Bollini et al., 2013) contains planning domain def-
initions that specify the state of the kitchen, in-
gredients, and tools used in each recipe. These
were developed to facilitate recipe execution on
a real-world cooking robot. We utilize these def-
initions for planning in this domain. The domain
also provides a successor state function that given
a starting state and a search depth, returns all valid
sequences of actions up to the search depth. This is
used in Algorithm 1. The (Tasse and Smith, 2008)
dataset does not provide planning definitions. We
construct planning definitions where the existence
of ingredients and tools are the only predicates and
transitions in the environment involve either cre-
ating or destroying these objects. Therefore the
only preconditions in this domain involve the ex-
istence of objects. Actions are considered valid if
their objects have been instantiated by prior steps,
otherwise the their preconditions are considered
unsatisfied.

4.3 Prompt Design

To generate a plan for a test example using few-
shot learning, we prompt the model with sample
recipes and parses taken from the held-out exam-
ples. Following (Liu et al., 2021), prompt exam-
ples are selected using nearest-neighbor search us-
ing the cosine distance between their embeddings
as computed by a text embedding model, specifi-
cally the “all-mpnet-base-v2” model from the Sen-
tenceTransformers library (Reimers and Gurevych,
2019) based on the MPNet model (Song et al.,
2020). Due to the limited length of the input con-
text for the Codex models (8, 000 and 2, 048 to-
kens) and API request limits, the number of train-
ing examples is limited to a maximum of five for
the recipes of (Bollini et al., 2013) and one for
(Tasse and Smith, 2008). The selection of few-shot
training examples reduces to Equation 1, where a
is a training example, X denotes the set of held-out
examples, and E represents the recipe embedding
function.

P (a) = argmin
x∈X

{cos_sim(E(x), E(a))} (1)
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The full prompt is formed by concatenating the
training example instructions with their semantic
parses, and the instructions for the test example.
Each component of the prompt is separated by new
line characters, and a special delimiter “###” which
is also appended to the end of the prompt. Because
of the in-context learning, the model learns to ap-
pend the delimiter to the end of the generated parse.
Thereby, the delimiter is used to identify the end of
the model’s sequence completion.

4.4 Planning-Augmented Decoding

Given a prompt sequence, the LLM defines a dis-
tribution over next token continuations. Due to
utilization limits of the Codex API, our method
samples a fixed number of plan completions for
each recipe. For sampling next tokens, we use
nucleus sampling introduced by (Holtzman et al.,
2020), which offers improvements over other sam-
pling methods. These are then ranked using a scor-
ing function based on the generation probability
and a planning score which factors in the number
of precondition errors and syntax errors in the plan
and the sequence probability of the plan.

The planning score is calculated by combining
measures of plan executabilty: the number of pre-
condition errors, syntax errors, and additional plan-
ning steps. Precondition errors occur when a plan
step’s preconditions are not satisfied. For example
when the step references non-existent ingredients
or the world state does not allow the action to oc-
cur. Syntax errors occur when the plan contains
malformed steps that cannot be parsed by the plan
interpreter. The syntax error score (SE) is the num-
ber of plan steps which contain syntax violations.
The precondition error score (PE) is the number of
plan steps which cannot be executed because their
preconditions are not satisfied. Finally, (AS) is the
number of steps added to the plan by planning in
order to maximize the number of plan steps with
valid preconditions. Steps with errors are counted
as opposed to counting all errors in each step. This
allows for computation of a score in the interval
[0, 1] to match the sequence probability score. In
general identifying multiple syntax errors in a given
step is not possible, as the presence of even a single
syntax error may result in an undefined grammati-
cal context.

These counts are normalized by the plan length
(N ) so as not to penalize longer plans. The natu-
ral log is taken to re-scale the planning score for

addition with the sequence log-probability, adding
ϵ to avoid taking the logarithm of zero in cases
where the plan contains no errors and requires no
additional steps to be valid. The planning score is
added to the mean log-probability of the token se-
quence representing the plan. This scoring function
results in plans with a higher sequence probability
and fewer planning errors being selected.

score = ln(1.0− SE + PE +AS

N
+ ϵ)

+
1

T

T∑

t=1

lnPt

(2)

The plan that maximizes the score function is
passed to a planning module. For each inadmissible
step where the preconditions are not satisfied, it
searches for sequences of admissible actions to
insert into the plan, such that those actions lead
to valid preconditions for that step. To limit the
search space, the planning module only searches
in the space of plans that can be inserted before an
existing inadmissible plan step.

4.5 Correcting Plans

While the ranking procedure ensures that high prob-
ability and low-error plans will be surfaced, these
plans may still contain precondition errors. The
planning domain information and a planning algo-
rithm together form a planning module that can
attempt to correct these precondition errors. The
ranking procedure incorporates this planning mod-
ule to calculate the additional steps AS that can
be inserted into a plan to fix precondition errors.
These steps are also included in the total number
of steps N . Therefore fixable plans will receive a
better planning score.

Algorithm 1 describes the procedure for finding
steps to insert into a plan to ensure that each step’s
preconditions are satisfied. As input, it takes the
world state after executing some number of plan
steps, and computes the sequence of actions needed
to ensure the preconditions of the next plan step A
are met. The algorithm returns the shortest number
of actions required to satisfy the step’s precondi-
tions. Aside from producing more valid plans, this
method should produce plans which correspond
more closely to the ground truth semantic parse an-
notations. However because the planning module
only inserts steps into a plan before an inadmissi-
ble step, and does not change the existing steps,
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Algorithm 1: The planning algorithm in-
serts steps before actions with unmet pre-
conditions.
Input: A starting state S, desired action A,

transition function T , and search
depth N .

Output: The shortest sequence of actions P
which ends in action A or null if
none exists.

sequences = successors(S, T, depth=N);
best = null;
for s in sequences do

if A in s then
/* truncate the plan until

the action A or false if
no such prefix exists */

plan = prefix(s, A);
if plan && length(plan) <

length(best) then
best = plan;

end
end

end

it cannot necessarily fix all precondition errors in
a plan. Utilizing planning and likelihood based
decoding balances the desire for plans with valid
preconditions while ensuring that plans contain
relevant steps to the recipe. These two require-
ments may compete in some cases. In the simplest
case, an empty plan, there are no potential precon-
dition errors, but the plan also contains no relevant
plan steps. In practice there exists a trade-off be-
tween plan executability and correctness as noted
by (Huang et al., 2022).

5 Experiments

We use leave-one-out cross-validation to evaluate
performance of various models on our two recipe
datasets. For the shorter recipes in the (Bollini
et al., 2013) dataset, we evaluate using both one
and five training plans in the prompt. We evaluate
the longer recipes of the (Tasse and Smith, 2008)
dataset using only a single prompt example due to
context length limitations.

To evaluate the correctness of each output plan
we compare the generated plan to the ground truth
annotation from the dataset. We use metrics that
measure the similarity between the output and
ground truth plans. However for each recipe there

are potentially many admissible plans and subjec-
tive judgements about the level of detail of the
annotation and about which attributes to include.
To address these potential ambiguities, we evalu-
ate models using several diverse metrics to capture
different aspects of plan accuracy.

5.1 Baselines

We evaluate three baseline methods for ranking the
generated plans: Random, Rank (PPL), and Rank.
Our full ranking method with partial planning is
denoted Rank+Plan. No Rank simply selects a ran-
dom plan from the set of generated completions.
Rank (PPL) selects the plan with the lowest per-
plexity (PPL) (the highest sequence probability),
providing a baseline where no planning domain in-
formation is utilized. Finally, Rank ranks the plans
by the scoring function in Equation 2, but does not
correct precondition errors through planning like
Rank + Plan does.

5.2 Longest Common Subsequence (LCS)

Prior work evaluates plan correctness in terms of
the LCS between generated and ground truth plans
(Puig et al., 2018). We normalized LCS by the
length of the longer plan. LCS evaluates the textual
overlap between plans; computing common sub-
sequences which may contain interwoven unequal
sequences. It therefore does not strongly penal-
ize erroneous injected subsequences. This metric
ranges from [0.0, 1.0] where 0.0 indicates no se-
quence overlap and 1.0 indicates identical plans.

5.3 Plan Steps F1

LCS reflects the order and content of the gener-
ated plan steps compared to the ground truth. We
also report an F1 measure (the harmonic mean of
precision and recall) that quantifies the quality of
the individual plan steps without regard to their se-
quencing. Steps in the generated and ground truth
plans are compared based on string equality. In
many plans, steps are often repeated. For example
a recipe from (Bollini et al., 2013) may have many
mix() steps after pouring different ingredients. We
choose to treat each of these repetitions as a unique
step when computing the precision and recall. We
also exclude NO-OP steps from these calculations
for the (Bollini et al., 2013) dataset as they do not
change the plan’s results.
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(Bollini et al., 2013)
Rank Rank + Plan Ground Truth

pour(nuts)
mix()
scrape()
bake(25)

pour(nuts)
mix()
scrape()
preheat(350)
bake(25)

pour(nuts)
mix()
scrape()
preheat(350)
bake(25)

(Tasse and Smith, 2008)
Rank Rank + Plan Ground Truth

combine(“1/2 cup all-purpose
flour”, “1 egg”, “1 tablespoon
chopped fresh parsley”, “1/2
teaspoon salt”, “1/4 teaspoon
freshly ground nutmeg”,
“mashed potatoes”, “dough”,
“stir in”)

create_ing(“1/2 cup
all-purpose flour”)
...
combine(“1/2 cup all-purpose
flour”, “1 egg”, “1 tablespoon
chopped fresh parsley”, “1/2
teaspoon salt”, “1/4 teaspoon
freshly ground nutmeg”,
“mashed potatoes”, “dough”,
“stir in”)

create_ing(“1/2 cup
all-purpose flour”)
...
combine(“1/2 cup all-purpose
flour”, “1 egg”, “1 tablespoon
chopped fresh parsley”, “1/2
teaspoon salt”, “1/4 teaspoon
freshly ground nutmeg”,
“mashed potatoes”, “mashed
potato mixture”, “stir in”)

Table 1: Excerpted examples of improved parsing for recipes using the Rank + Plan method. The parses were
selected by randomly selecting recipe where the Rank + Plan method resulted in an improvement in the number of
precondition errors over the baseline methods. NO-OP actions are omitted for brevity.

5.4 Precondition and Syntax Errors (PE &
SE)

The previous metrics assess similarity to the ground
truth plan and do not explicitly reflect the exe-
cutability of generated plans. Therefore, we also
measures the frequency of precondition and syntax
errors in plans. Errors are counted on a per-step
basis. If a step contains more than one error or
more than one type of error these are quantified as
a single error and type for the step.

5.5 Implementation Details

We utilize Davinci Codex1 for all experiments due
to its large context size of 8, 000 tokens which is
sufficient for all prompts and completions across
both datasets. Our method samples ten completions
up to a fixed length of 1, 500 tokens or until the spe-
cial delimiter sequence is reached. The decoding
length was chosen to be longer than the longest
recipe parse in either of the datasets. We generate
ten completions for each recipe to offer a diversity
of plans to rank and correct through planning. We

1The OpenAI API name for the model is “code-davinci-
002”.

also utilize a nucleus sampling top-p value of 0.5.
This value was selected because it maximizes the
performance of the No Rank baseline with respect
to LCS. We perform ten trials to compute means
and confidence intervals.

6 Results

We report results for the (Bollini et al., 2013)
dataset in Table 2 and the (Tasse and Smith, 2008)
dataset in Table 3. Mean cross-validation results
are reported with 95% confidence intervals com-
puted using a t-distribution for ten trials. For both
datasets, the number of precondition errors are re-
duced by ranking using our scoring metric and cor-
rective planning. The Rank method results in a de-
crease in the precondition error rate, and by adding
corrective planning (Rank + Plan), the error rate
is again reduced significantly. This results in more
valid, executable plans. Even as the precondition
error rate is reduced, the LCS remains constant for
the (Bollini et al., 2013) dataset and only slightly
reduced for the (Tasse and Smith, 2008) dataset.
This indicates that the plans maintain high agree-
ment with the ground truth plans while steps are
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Models (Bollini et al., 2013)
LCS↑ PE↓ SE↓ F1 ↑

No Rank
Davinci Codex, E=1 0.908± 0.007 0.737± 0.067 0.065± 0.025 0.784± 0.002
Davinci Codex, E=5 0.950± 0.001 0.277± 0.020 0.000± 0.000 0.859± 0.002

Rank (PPL)
Davinci Codex, E=1 0.897± 0.008 0.962± 0.685 0.042± 0.008 0.784± 0.004
Davinci Codex, E=5 0.949± 0.005 0.198± 0.009 0.002± 0.004 0.863± 0.003

Rank
Davinci Codex, E=1 0.901± 0.008 0.382± 0.037 0.025± 0.008 0.798± 0.002
Davinci Codex, E=5 0.952± 0.005 0.120± 0.015 0.002± 0.004 0.868± 0.002

Rank + Plan
Davinci Codex, E=1 0.903± 0.008 0.143± 0.033 0.025± 0.008 0.807± 0.002
Davinci Codex, E=5 0.952± 0.005 0.033± 0.000 0.002± 0.004 0.870± 0.002

Table 2: Results and ablations for the (Bollini et al., 2013) dataset, reported as means over the leave-one-out cross
validation. 95% confidence intervals are computed using a t-distribution over ten trials. Results using one (E=1) and
five (E=5) training examples in each prompt are shown. All plans are generated using a nucleus sampling top-p
value of 0.5.

Models (Tasse and Smith, 2008)
LCS↑ PE↓ SE↓ F1 ↑

No Rank
Davinci Codex, E=1 0.707± 0.002 0.805± 0.029 0.940± 0.134 0.448± 0.001

Rank (PPL)
Davinci Codex, E=1 0.692± 0.003 0.827± 0.086 0.875± 0.199 0.443± 0.002

Rank
Davinci Codex, E=1 0.695± 0.004 0.293± 0.016 0.226± 0.024 0.446± 0.001

Rank + Plan
Davinci Codex, E=1 0.695± 0.003 0.000± 0.000 0.237± 0.018 0.446± 0.001

Table 3: Results and ablations for the (Tasse and Smith, 2008) dataset, reported as means over the leave-one-out
cross validation. 95% confidence intervals are computed using a t-distribution over ten trials. Results using one
(E=1) training example in each prompt are shown. All plans are generated using a nucleus sampling top-p value of
0.5.

added. For the (Bollini et al., 2013) dataset the F1
score also improves through ranking and correc-
tive planning indicating that highly ranked plans
contain more accurate selections of recipe steps.
The F1 score does not improve for the (Tasse and
Smith, 2008) dataset and the Rank + Plan method
results in no precondition errors. However, these re-
sults are not surprising because the for this dataset
the planning module can only insert ingredient and
tool definitions into the plan. These inserted actions
could result in lower LCS by lengthening the gener-
ated plan and may not match ingredient definitions
in the ground truth plan. Because of the presence

of free-text descriptions and specifications in the
(Tasse and Smith, 2008) dataset and the difficulty
of parsing longer plans, both the LCS and F1 are
lower than for the (Bollini et al., 2013) dataset. Fi-
nally providing more in-context examples for the
(Bollini et al., 2013) dataset improves performance
for all measured metrics.

Table 1 contains qualitative examples of the
Rank + Plan performance. For the example from
the (Bollini et al., 2013) dataset, in the generated
plan the oven is not preheated before baking. The
corrected plan adds a preheat() action to satisfy the
preconditions of the bake() action, which requires
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a heated oven. In the example from the (Tasse and
Smith, 2008) dataset, a recipe that uses certain in-
gredients to make dough. In the generated plan
these ingredients are not instantiated. However the
planning module inserts actions to instantiate the
ingredients which improves the validity of the gen-
erated plan. An additional example for the (Bollini
et al., 2013) dataset is included in Table 4

7 Discussion

Evaluations show that our method improves plan
validity as measured by the mean number of precon-
dition errors, syntax errors, and accuracy of steps
returned (F1) in each plan. LCS remains fairly
constant across our evaluations and ablations. The
LCS metric reflects both the content of planning
steps and their sequencing. By contrast, F1 only as-
sesses the accuracy of steps in the generated plans.
Perhaps there exists a trade-off wherein the pro-
cess of inserting corrective plan steps reduces the
amount of alignment of the generated and ground
truth plans (lowering LCS), but increases the ac-
curacy of included steps (raising F1). Of all the
metrics considered, our method results in largest re-
duction in the number of precondition errors (PE).
We achieve these improvements without singifi-
cant reductions in LCS and with an increase in
F1. This is an important validation for our method,
as (Huang et al., 2022) finds that there exists a
trade-off between the executability and semantic
correctness (measure by LCS) of generated plans.
It is straightforward to increase executability (fewer
precondition errors) by ignoring the instructional
text content and only outputting valid actions. For
any downstream applications, plans must be exe-
cutable and while also reflecting the content of the
instructions. Therefore is is important to reduce the
number of precondition errors while maintaining
content similarity to ground-truth plans.

7.1 Limitations and Future Work

Our approach requires access to planning informa-
tion for each instructional text domain. In gen-
eral, creating this information requires program-
ming and domain knowledge to formally specify
the planning constraints. However for high-value
applications the effort associated with generating
these planning domain definitions may be justified
by their potential to help in generating more valid
plan-based semantic parses. Having this knowl-
edge is also crucial to allowing an agent or robot

to execute the resulting plan and may be naturally
available in many domains as part of the execu-
tion component. In the course of developing our
semantic parsing model, we discovered that Codex
could generate valid planning domain definitions
in a variety of output formats including the Plan-
ning Domain Definition Language (Fox and Long,
2003). This may provide a path towards automat-
ically generating planning domain definitions for
novel environments or reducing the need for hu-
man annotators. Future work could also evaluate
our method in other planning domains that contain
tasks beyond cooking such as VirtualHome (Puig
et al., 2018) or ALFRED (Shridhar et al., 2020).

8 Conclusion

We develop an approach to semantic parsing for
long-form instructional texts that leverages plan-
ning domain information to generate more valid
plans in a low-data, few-shot setting. Our method
significantly reduces the number of precondition
errors present in semantically parsed plans for two
recipe datasets. These results highlight the benefit
of a neuro-symbolic approach that utilizes the state-
of-the-art code-generation LLM Codex to produce
relevant steps for recipe execution and refines these
plans using classical symbolic planning. In quan-
titative and qualitative evaluations, our approach
generates plans that reflect the relevant steps of
the natural language recipe. The symbolic plan-
ning component corrects precondition errors that
arise from omitted or implied instructional steps
and the challenges of learning with long context-
dependencies from limited examples.
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(Bollini et al., 2013)
Rank Rank + Plan Ground Truth

pour(flour)
mix()
mix()
preheat(350)
bake(20)

pour(flour)
mix()
mix()
preheat(350)
scrape()
bake(20)

pour(flour)
mix()
scrape()
preheat(350)
bake(20)

Table 4: Additional excerpted generation examples for the (Bollini et al., 2013) dataset.

(Tasse and Smith, 2008)
A Very Intense Fruit Smoothie

1 (10 ounce) package frozen mixed berries
1 (15 ounce) can sliced peaches, drained
2 tablespoons honey
In a blender, combine frozen fruit, canned
fruit and honey.
Blend until smooth.

create_ing(“1 (10 ounce) package frozen
mixed berries”)
create_ing(“1 (15 ounce) can sliced peaches,
drained”)
create_ing(“2 tablespoons honey”)
create_tool(“blender”)
combine(“1 (10 ounce) package frozen mixed
berries”, “1 (15 ounce) can sliced peaches,
drained”, “2 tablespoons honey”, “fruit and
honey”, “”)
put(“fruit and honey”, “blender”)
mix(“fruit and honey”, “blender”,
“smoothie”, “blend”)
chefcheck(“smoothie”, “smooth”)

(Bollini et al., 2013)
Easy Cake Mix Cookies

1 (18 1/4 ounce) box chocolate cake mix
1/3 cup vegetable oil
2 eggs
Combine cake mix, oil and eggs.
Mix well.
Bake at 350F for about 10 minutes.
Remove from oven and let cool on pan for
several minutes before removing to rack to
finish cooling.

ingredient([“cake_mix”], “1 (18 1/4 ounce)
box”, homogenous=True)
ingredient([“oil”], “1/3 cup”,
homogenous=True)
ingredient([“eggs”], “2”, homogenous=True)
pour(cake_mix), pour(oil), pour(eggs), mix()
mix()
scrape(), preheat(350), bake(10)
noop()

Table 5: Example recipes from the (Tasse and Smith, 2008) and (Bollini et al., 2013) datasets. These examples are
the second shortest and shortest for each dataset respectively.
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(Bollini et al., 2013)
ingredient(contains : string, amount : string, homogenous : bool)
pour(ingredient : string)
scrape()
preheat(temperature : string)
bake(time : string)
noop()

(Tasse and Smith, 2008)
create_tool(name : string)
create_ing(name : string)
chefcheck(name : string, description : string)
cut(item : string, tool : string, result : string, description : string)
combine(item : string, tool : string, result : string, description : string)
cook(item : string, tool : string, result : string, description : string)
do(item : string, tool : string, result : string, description : string)
leave(item : string, description : string)
mix(item : string, tool : string, result : string, description : string)
put(item : string, tool : string)
remove(item : string, tool : string)
separate(item : string, result1 : string, result2 : string, description : string)
serve(item : string, description : string)
set(item : string, description : string)

Table 6: Action definitions for the cooking recipe domains. The actions of (Bollini et al., 2013) operate on a
world-state definition that includes the state of the ingredients, a mixing bowl, a baking pan, and the oven. In
contrast (Tasse and Smith, 2008) provides no planning domain definitions and employs qualitative descriptions of
state transformations in the action annotations. We build a simple planning domain where the state consists only the
existence of objects as state variables. The preconditions for an action are met if the items used in the action have
been instantiated.
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Abstract

Multi-hop Question Generation is the task of
generating questions which require the reader
to reason over and combine information spread
across multiple passages employing several rea-
soning steps. Chain-of-thought rationale gener-
ation has been shown to improve performance
on multi-step reasoning tasks and make model
predictions more interpretable. However, few-
shot performance gains from including ratio-
nales have been largely observed only in +100B
language models, and otherwise require large-
scale manual rationale annotation. In this pa-
per, we introduce a new framework for apply-
ing chain-of-thought inspired structured ratio-
nale generation to multi-hop question genera-
tion under a very low supervision regime (8-
to 128-shot). We propose to annotate a small
number of examples following our proposed
multi-step rationale schema, treating each rea-
soning step as a separate task to be performed
by a generative language model. We show that
our framework leads to improved control over
the difficulty of the generated questions and bet-
ter performance compared to baselines trained
without rationales, both on automatic evalua-
tion metrics and in human evaluation. Impor-
tantly, we show that this is achievable with a
modest model size.

1 Introduction

Recently, there has been a surge of interest in the
NLP community in the idea of providing super-
vision to language models(LMs) in the form of
human-written rationales (Wiegreffe and Maraso-
vic, 2021; Camburu et al., 2018; Jansen et al., 2018;
Aggarwal et al., 2021; Geva et al., 2021; Inoue
et al., 2020) which explain why and how the target
label is arrived at. Using human-written explana-
tions as an intermediate step has been shown to im-
prove performance on a variety of predictive tasks,
compared to the cases where no rationales are pro-
vided (Wiegreffe and Marasovic, 2021). However,

rationales are expensive to collect through manual
annotation at a large scale.

Explanations can take several forms, such as
textual highlights, free-text explanations and struc-
tured explanations. In this work, we focus on the
latter two. By rationales we refer to several struc-
tured sentences enumerating intermediate steps of
reasoning required to solve a multi-step reasoning
problem before producing the target text.

In chain-of-thought rationale generation
paradigm (Wei et al., 2022b; Zelikman et al.,
2022), LMs learn to generate rationales - a step
toward explainable NLP models. Prompting LMs
with few-shot rationale examples has been shown
to improve performance for multi-step reasoning
tasks compared to standard prompting without
rationales (Wei et al., 2022b). However, this effect
is only observed in extremely large language
models (XLLMs) with +100b parameters (Wei
et al., 2022b; Lampinen et al., 2022). At the same
time access to XLLMs is limited in the research
community due to costs and infrastructure required
to fine-tune and inference them. In many cases
these models are never released publicly.

In essence, supervision from rationales is a richer
signal compared to supervision from only target
labels, especially for multi-step reasoning tasks.
However, only XLLMs have been shown to cap-
ture this signal in few-shot regimes. In this paper
we assume large-scale rationale annotation to re-
main unavailable since it is tedious and arguably
more expensive to generate than standard target
label annotation. This leads to a currently unad-
dressed challenge of solving multi-step problems
by smaller LMs than XLLMs in a few-shot regime.

This work deals with the complex task of Multi-
hop Question Generation(MQG) where, given mul-
tiple passages and a pre-defined answer, the objec-
tive is to generate challenging questions that cannot
be answered only from reading a single passage,
this task requires many steps of reasoning to ac-
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complish and we further constrain ourselves to the
case where supervision available is restricted to a
few number of labelled examples.

Our contributions can be summarized as follows.
We propose a new framework called Reasoning
Circuits applicable specifically for the often en-
countered constraints faced in real-world where:
1. Large-scale annotation is not possible or avail-
able, only a limited number of examples of a multi-
step reasoning problem are available.
2. Access limited to modest neural compute infras-
tructure that can support training models up to a
maximum of 3 billion parameters.
3. Budget for rationale annotation is limited.

In this work we apply this framework to MQG
task in a few-shot setting. This entails identifying
reasoning steps human annotators employ to gener-
ate multi-hop questions and codifying them into a
structured rationale annotation scheme, and man-
ually producing rationale annotations for the few
examples, capped at a maximum of around 200 ex-
amples. A generative model is then fine-tuned with
a mixture of tasks where each "task" refers to a sin-
gle smaller step of reasoning derived from the struc-
tured rationales designed for the MQG task. We
report improvements over baselines where no ratio-
nale was employed on automatic evaluation metrics
as well as human evaluation. We also show re-
duced gap in performance between our system only
trained with approimately 150 examples(training
and validation combined) and prior art that has
been trained with 9,000 to 90,000 examples with-
out rationales on automatic evaluation metrics.

2 Related Work

2.1 Multi-hop Question Generation

Several research studies focus on the task of single-
hop question generation on datasets like SQuAD
(Rajpurkar et al., 2016) for instance, Kim et al.
(2019) propose ASs2s-a, a seq2seq model based
on Long Short-term Memory (LSTM), which sepa-
rately encodes answer and context.

There are studies about generating more difficult
questions on knowledge graphs which includes Tal-
mor and Berant (2018) and Kumar et al. (2019).
However, these are not directly applicable to free-
text since, it is not made up of entity relation
triplets, as is the case with knowledge bases.

Proposed systems for MQG with free-text,
SGGDQ-DP (Pan et al., 2020), MultiQG (Su
et al., 2020), DFGN+QG (Yu et al., 2020b) and

GATENLL+CT Sachan et al. (2020) rely on exter-
nal tools like name entity recognition, entity linking
and coreference resolution to construct knowledge
graphs with which complex questions are generated
with decoders. Closely related to our work Cheng
et al. (2021) propose to control question difficulty,
by progressively increasing question hops through
step-by-step rewriting with GPT2-small(Radford
et al., 2019) under the guidance of an extracted
reasoning chain, generated also from external tools.
QA4QG (Su et al., 2022) is current state-of-the
art for MQG task, where attention patterns of a
multi-hop question answering model guide a MQG
model.

In the F+R+A system proposed by Xie et al.
(2020) reinforcement rewards for fluency, relevance
and particularly answerability - also generated by a
separate QA model, are introduced in tandem with
standard cross-entropy loss for MQG. In SemQG
(Zhang and Bansal, 2019) two semantics-enhanced
rewards are proposed to regularize a question gen-
eration model. ADDQG (Wang et al., 2020) treats
semantic and syntactic metrics as reinforcement
rewards for MQG task.

All systems cited until now utilise large scale su-
pervision of 90k training examples from HotpotQA
dataset (Yang et al., 2018) with the exception of
Cheng et al. (2021) at 57k. LowResourceQG sys-
tem (Yu et al., 2020a) learns the structural patterns
from unlabeled questions and transfers this to a
MQG model, it is train with 9,000 examples from
HotpotQA dataset.

2.2 Few-shot Rationale Generation

XLLMs can learn to generate valid rationales for
multi-step problems with few-shot in-context learn-
ing examples (Wei et al., 2022b; Lampinen et al.,
2022), smaller models on the other hand, need to
be trained on more rationale annotation to achieve
strong performance. To reduce the dependence on
tedious rationale annotations a hybrid self-learning
approach with smaller 6B parameter LMs has been
proposed by Zelikman et al. (2022) that uses fewer
rationale annotations, however even this method
requires a lot of manually annotated data. Since
the generated silver rationales are noisy, to filter
and improve these rationales large-scale standard
input-target annotation is required. The ground
truth references are used as a proxy to check and
filter out generated silver rationales, by comparing
the references to the predicted target text, produced
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along with the rationales. Ground truth references
also are used to provide hints to the model when
it fails to generate the correct answer. Filtered sil-
ver rationales thus accumulated are then used for
iterative self-training until performance plateaus.

3 Structured Rationales for Multi-hop
Question Generation

HotpotQA dataset (Yang et al., 2018) is one of the
most widely used benchmarks of multi-hop ques-
tion answering and consists of broadly two types
of questions: bridge-entity questions and compar-
ison questions. In bridge-entity questions, which
constitute 75% of the dataset, annotators get pairs
of passages where at least one entity (called the
bridge entity) is present in both passages. In com-
parison questions, annotators are provided a pair of
passages about entities drawn from a similar theme
such as musicians, authors, films, plants among
several categories. A comparison question typi-
cally compares some quality of the central entities
in the two passages. Question types found in this
dataset cover 5 out of 6 total sub-types of multi-hop
questions as identified in recent survey on multi-
hop question answering and generation (Mavi et al.,
2022) originally identified in Min et al. (2019) with
the only exception of commonsense reasoning.

Below, we identified the reasoning steps that
annotators needed to follow in order to create the
questions of each type.

3.1 Bridge Entity Questions
Figure 1 shows examples of reasoning steps for
bridge-type multi-hop questions. Given two pas-
sages and a pre-defined answer to the question to
be generated, an annotator would need to:

(1) Select the bridge entity b, an entity present in
both passages. If the answer is present in both
passages, bridge entity is set to the answer.

(2) From each passage (p1 and p2), extract one
statement (s1 and s2) about the bridge entity
which connects the answer to the bridge entity,
if the passage contains the answer.

(3) Combine the two statements (s1 and s2) into
a single combined statement c.

(4) Substitute bridge entity b in combined state-
ment c with a common noun to get c− b. For
example, replace "the Beatles" with "a band".

(5) Substitute the answer a in c−b with a common
noun preceded by "certain" or "some" to get
c− b−a. For example, the answer entity "5th

March 1992" is replaced by "certain date" or
"someday" and the answer "George Orwell"
is replaced by "certain person" or "someone".

(6) Convert the statement from the previous step
into a question, such that the answer to it is
the provided answer span.

Step 4 is skipped if bridge and answer are the same.

3.2 Comparison Questions

Figure 2 shows two examples of this type. For this
question type, given two passages and a pre-defined
answer, an annotator would need to:

(1) Extract two statements(s1 and s2), one from
each passage, such that a comparison can be
drawn between the two statements, keeping
the answer in mind.

(2) The two statements are combined into a single
statement(c), highlight the nature of similarity
or difference between information from the
two paragraphs, keeping the answer in mind.

(3) Generate a comparative question(qc) from
reading the combined statement and answer.

4 Rationale Steps as a Mixture of Tasks

The step-by-step nature and clearly defined struc-
ture of the rationales identified above motivated us
to formulate this multi-step problem into a mixture
of tasks. A step of reasoning is treated as a task,
only the information required to perform the rea-
soning step is treated as the input and the result of
the reasoning step is the expected output.

We formalise bridge multi-hop question genera-
tion into nine separate smaller steps of reasoning
and we identify 3 steps of reasoning for generat-
ing comparison multi-hop questions. Additionally,
a reasoning step should identify whether a given
pair of passages and answer are more suitable to
generate a bridge question from or a comparison
question instead. For this purpose we create the
first task of predicting the question type.

These reasoning steps or tasks can be catego-
rized into: 1. Control tasks where the outcome is a
control variable whose value decides what reason-
ing path to follow and 2. Generative tasks which
essentially generate free-form text to be treated as
input for later reasoning steps or as the final output.
We describe each of these tasks below.
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Bridge Type 2 Example
Passage 1: ... The Kennedy Compound consists of three houses on six acres ... 
on Cape Cod ...
Passage 2: Hyannisport Club: ... The course is located adjacent to the Kennedy 
Compound and the Kennedy family have long been members of the club. ...
Answer: Kennedy Compound

Bridge entity: Kennedy Compound
Answer entity same as bridge entity: Yes
Statement extracted from Passage 1: The Kennedy Compound consists of three 
houses on six acres on Cape Cod.
Statement extracted from Passage 2: Hyannisport Club is located adjacent to 
the Kennedy Compound.
Combined statement: Hyannisport Club is located adjacent to the Kennedy 
Compound that consists of three houses on six acres and on Cape Cod.
Contract answer from combined statement: Hyannisport Club is located 
adjacent to a certain property that consists of three houses on six acres and on 
Cape Cod.
Multi-hop Question: Hyannisport Club is located adjacent to which property that 
consists of three houses on six acres and on Cape Cod?

Bridge Type 1 Example
Passage 1: Romy Ruyssen is a French mixed martial artist. She ... and headlined the 
first Invicta Fighting Championships event against Marloes Coenen ...
Passage 2: Marloes Coenen ... is a retired Dutch mixed martial artist. ...
Answer: Invicta Fighting Championships

Bridge entity: Marloes Coenen
Answer entity same as bridge entity: No
Statement extracted from Passage 1: Romy Ruyssen headlined the Invicta Fighting 
Championships event against Marloes Coenen.
Statement extracted from Passage 2: Marloes Coenen is a Dutch mixed martial artist.
Combined statement: Romy Ruyssen headlined the Invicta Fighting Championships 
event against Marloes Coenen who is a Dutch mixed martial artist.
Contract bridge entity from combined statement: Romy Ruyssen headlined the 
Invicta Fighting Championships event against a Dutch mixed martial artist.
Contract answer entity from previous statement: Romy Ruyssen headlined a certain 
event against a Dutch mixed martial artist.
Multi-hop Question: Romy Ruyssen headlined which event against a Dutch mixed 
martial artist?

Figure 1: Two examples of bridge rationales that lead to the creation of multi-hop question. Example 1 shows
rationale annotation when answer span is not found in both passages. Example 2 shows another of example of
rationale annotation when the answer is present in both passages, so that the Step 4 is skipped. The highlights in
green and yellow show the answer and bridge entities, in the second example they are the same. In the penultimate
steps, the lighter highlights indicate the substitution of bridge and answer entities with a common noun preceded
by "certain". In the last step typically a Wh- word substitutes "certain" or "some" words, however more radical
transformations also take place in our annotations.

Comparison Example 1
Passage 1: Black Francis ... is an American singer, songwriter and guitarist.
Passage 2: Alex Band is an American musician and singer-songwriter ...
Answer: singer-songwriter

Statement from Passage 1: Black Francis is a singer, songwriter.
Statement from Passage 2: Alex Band is a singer-songwriter.
Combined statement: Black Francis and Alex Band are both singer-songwriters.
Multi-hop Question: What is common between Black Francis and Alex Band?

Comparison Example 2
Passage 1: Ettelaat-e Banuvan ... was the first women's magazine published in Tehran.
Passage 2: Playgirl is an American magazine ...
Answer: Ettelaat-e Banuvan

Statement from Passage 1: Ettelaat-e Banuvan was the first women's magazine 
published in Tehran.
Statement from Passage 2: Playgirl is an American magazine.
Combined statement: Ettelaat-e Banuvan was the first women's magazine published in 
Tehran and Playgirl is an American magazine.
Multi-hop Question: What was the first women's magazine published in Tehran,  
Ettelaat-e Banuvan or Playgirl?

Figure 2: Two examples of comparison multi-hop question. In Example 1 similar attributes of the central figures
in the two passages have been highlighted, later this is turned into a similarity multi-hop question. In Example 2
difference between the two magazines is used as a basis to create a multi-hop question.

4.1 Question Type Task

Task 1 is a control task that decides the question
type. Given input passages p1, p2 and the answer
a, this task assigns the control variable qtype ei-
ther the value bridge, comparison or confused.
The values bridge, comparison are assigned if the
model literally generates the tokens "bridge" and
"comparison" which lead the current input example
to only follow either the bridge or the comparison
tasks trajectories. In case the model gets confused
and fails to generate "bridge" or "comparison" as
its output during test time we assign qtype the value
confused which leads to both bridge and com-
parison task trajectories to be followed and two
questions one of each type are generated.

4.2 Bridge Rationale Steps

Task 2 generates the bridge entity b provided input
passages p1, p2 and the answer a.
Task 3 is a control task that identifies whether
the answer span(a) is present in the provided

passage(pi) or not and assigns the boolean value of
True or False to the variables ina

pi for i in {1, 2}
depending on whether whether the model generates
the token "present" or "absent".

Task 4 is a control task that identifies whether the
answer span(a) is the same as the bridge entity (b)
or not and assigns a value of either True or False
to the variable sameab .

Task 5 generates a statement si which connects
the bridge entity b to the answer entity a from the
passage pi. This task is only run on a passage that
contains the answer entity or ina

pi = True unless
the answer entity is the same as the bridge entity
and present in both passages in which case this task
is not run on either of the passages.

Task 6 generates a statement si about bridge entity
(b) from the passage pi. Inputs include the ith

input passage pi and the bridge entity b. When the
sameab = True, Task 6 is run on both p1 and p2
to get s1 and s2. Otherwise it is only run on the
passage pi where ina

pi = False
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Task 7 generates a single combined statement c
from statements s1 and s2. Inputs to this step in-
clude the answer a the bridge entity b and the gen-
erated statements s1 and s2 from prior steps.
Task 8 This task contracts the bridge entity from
the combined sentence c and substitutes it with a
common noun to get c− b. It is a generative task
and inputs to this step include combined statement
(c), the answer (a) and the bridge entity (b).
Task 9 contracts the answer entity in the sentence
c− b and substitutes it with a indefinite determiner
followed by a common noun to get c − b − a. It
is a generative task and inputs to this step include
combined statement with bridge contracted (c− b),
the answer (a) and the bridge entity (b).
Task 10 transforms the combined statement with
both the answer and bridge contracted (c− b− a)
into a multi-hop question qb enquiring about the
noun which is preceded by "certain" or the some-
word. It is the final reasoning step in the bridge
type rationales and is a generative task. Inputs to
this step include c− b− a, c− b and a.

4.3 Comparison Rationale Tasks
Task 11 simultaneously generates both statements
s1 and s2 which deliberate over a similar or dis-
similar quality about the key entities in passages
p1 and p2 respectively. Input includes passages p1,
p2 and the answer a. The reason for concurrently
producing both s1 and s2 is to maintain the same
decoder state while producing both s1 and s2.
Task 12 generates a single combined statement c, a
conjunction of the two statements s1, s2 emphasis
is on comparison between the two. It is a generative
task, and serves as the second reasoning step in
comparison rationales. Inputs to this step include
the generated statements s1, s2 and answer a.
Task 13 transforms the combined statement c into
a comparitive question qc. It serves as the third
and final reasoning step in comparison rationales.
Inputs to this step include the combined statement
c and the answer a as inputs.

4.4 Rationale Annotation
We annotate a small number of examples from
Hotpot-QA dataset which adhere to the step-by-
step rationale scheme described in the previous two
sub-sections. In recent work on few-shot learning
(Gao et al., 2021), it has been shown that access to
a large development set under a few-shot supervi-
sion regime creates an unrealistic few-shot setting.
To mimic a realistic few-shot setup we pick the

development set to be either smaller than or of the
same size as of the training set. In total we annotate
98 bridge and 50 comparison type questions from
the training set of Hotpot-QA and 32 bridge and 24
comparison type questions from the validation set.

4.5 Reasoning Circuit for Multi-hop Question
Generation

The tasks described above are arranged as shown in
Figure 3. It is an acyclic graph where information
flows from left to right, with generative or control
tasks being performed at each node. At the left
entry point, the system gets two passages and a pre-
defined answer as input, and after being processed
through all the reasoning steps, multi-hop questions
are produced at the other end. Initially, the question
type qtype is determined from passing the inputs
through the Task 1 prompt. After this step, if the
question type is determined to be comparison, then
Tasks 11, 12 and 13 are run sequentially to generate
a comparison multi-hop question. Otherwise, if the
question type is bridge, then Tasks 2 through 10
are run to generate a bridge multi-hop question.

Our proposed few-shot mixture of reasoning
tasks framework is implemented by finetuning a
pretrained bi-directional encoder-decoder masked
language model (MLMs), instead of the auto-
regressive decoder-only language models such as
GPT-2 (Radford et al., 2019) and LaMDA (Thop-
pilan et al., 2022) since MLMs are known to be
superior for question answering tasks, and have
greatly improved parameter efficiency compared to
auto-regressive language models (Sanh et al., 2022;
Wei et al., 2022a) when trained on mixture of tasks.
We use the standard encoder-decoder objective of
maximizing the log likelihood of text in the ground
truth target. For creating input and output prompts,
we closely follow the templates proposed by Chada
and Natarajan (2021) where prompts are aligned to
the format used during the MLM pretraining.

We know that multi-hop reasoning is a complex
natural language task and to build performant sys-
tems for this task, prior art infused many basic
language skills such as named entity recognition
and co-reference resolution into their systems, in
the form of external tools as noted in related work
section. Also, recent findings show that first fine-
tuning models with intermediate tasks like question
answering and natural language inference before
further finetuning (Vu et al., 2020) them on few-
shot examples of target task improves few-shot per-
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Figure 3: Reasoning Circuits: This flowchart depicts the connections between different reasoning steps/tasks.
Control tasks are marked as yellow decision nodes while the generative tasks are marked by blue process nodes.
Edge labels denote the significant inputs that flow from one task to next as well as the value of the control signal at
the root of the edge that enables this edge flow data flow to be enabled. Note that a single LM is fine-tuned on a
mixture of all these reasoning steps and is responsible for serving all the tasks nodes in this flowchart. The edges
represent sequentiality and the post-processing flow of information between the different tasks. A node cannot be
run unless all the nodes to it’s left, connected to it either directly or indirectly, have been run. For instance, Task 13
can only run when Task 1, 11 and 12 have been run.

formance on the target task by priming the model
with basic language understanding skills. For these
reasons, we choose to implement our framework
with the T5 transformer(Raffel et al., 2020) that has
already been pretrained on a variety of downstream
tasks in addition to unlabelled text.

5 Experiments

We conduct all our experiments on T5-3b v1.0
model with 3 billion parameters1. As a baseline,
we consider tuning the same T5-3b model to di-
rectly generate multi-hop questions, without any
rationale input and provided with only the two pas-
sages and answer as input. For the baseline we use
a simple prompt in Appendix A. For the reason-
ing circuit experiment we utilise rationale prompts
described in Appendix A to generate a mixture of
task examples from our few-shot annotation. We
use a learning rate of 2e-5 with no warm-up and
keep constant learning rate throughout. We train
for 35 epochs or 5000 steps whichever is higher.

For fair comparison, we follow the data splits
similar to SGGDQ-DP (Pan et al., 2020), QA4QG
(Su et al., 2022) and SGGDQ-DP (Wang et al.,
2020) to get 90,440 training examples and 6,072
test examples respectively, note however that in-
stead of using the entire test set as validation set as
done in prior work we only validate with same or
lower number of examples as that used for training,

1https://github.com/google-research/text-to-text-transfer-
transformer

see section 4.4 for details. We use two settings as
input to the encoder: 1. The original training data
in HotpotQA, in which each question is paired with
two long documents, and 2. a pre-processed ver-
sion of the data where only supporting sentences
required to answer the gold question are kept. We
conduct experiments with 8, 16, 32, 64, 128 train-
ing examples where 75% of the examples are drawn
from the bridge-type while the remaining 25% ex-
amples are of the comparison type, this is done
to mimic the distribution of question types in the
original HotpotQA dataset. The number of valida-
tion examples is equal to the number of training
examples until the 32-shot experiment. After this
the number of validation examples gets capped at
32 bridge type questions and 24 comparison type
questions. We also conduct an experiment with 148
training examples that constitute all collected anno-
tations. We tune on the average of BLEU1, BLEU2,
BLEU3 and BLEU4 (Papineni et al., 2002), ME-
TEOR (Lavie and Agarwal, 2007), and ROUGE-
L(Lin, 2004) scores on our few-shot validation sets.

6 Results and Analysis

6.1 Automatic Evaluation

The automatic evaluation metrics used are
BLEU1, BLEU2, BLEU3, BLEU4, METEOR, and
ROUGE-L, which measure similarity between gen-
erations and the target reference questions.

We report the resuls in Table 1. Reasoning Cir-
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Models # Training # Validation BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Encoder Input: Supporting Fact Sentences

ASs2s-a∗ (Kim et al., 2019) 90,440 6,072 37.67 23.79 17.21 12.59 17.45 33.21
SemQG∗ (Zhang and Bansal, 2019) 90,440 6,072 39.92 26.73 18.73 14.71 19.29 35.63
F+R+A (Xie et al., 2020) 90,440 6,072 37.97 - - 15.41 19.61 35.12
SGGDQ-DP (Pan et al., 2020) 90,440 6,072 40.55 27.21 20.13 15.53 20.15 36.94
ADDQG (Wang et al., 2020) 90,440 6,072 44.34 31.32 22.68 17.54 20.56 38.09
QA4QG-Large (Su et al., 2022) 90,440 6,072 49.55 37.91 30.79 25.70 27.44 46.48
Cheng et al. (2021) 57,397 6,072 - - 21.07 15.26 19.99 -
Finetuning 8 8 24.40 13.76 7.49 4.50 17.18 24.63
Reasoning Circuits 8 8 20.19 10.85 5.93 3.65 15.53 21.45
Finetuning 16 16 24.47 14.37 8.39 5.33 17.93 25.21
Reasoning Circuits 16 16 22.64 12.83 7.31 4.53 17.64 22.82
Finetuning 32 32 28.27 17.63 10.84 7.03 21.00 27.77
Reasoning Circuits 32 32 26.09 15.93 9.56 6.11 20.39 25.67
Finetuning 64 48 28.74 18.19 11.44 7.59 21.78 28.20
Reasoning Circuits 64 48 29.60 18.62 11.66 7.62 22.35 28.32
Finetuning 128 56 31.42 20.53 13.34 8.94 24.02 30.62
Reasoning Circuits 128 56 32.77 21.58 14.08 9.50 25.51 31.33

Encoder Input: Full Document Context
MultiQG (Su et al., 2020) 90,440 6,072 40.15 26.71 19.73 15.2 20.51 35.30
GATENLL+CT (Sachan et al., 2020) 90,440 6,072 - - - 20.02 22.40 39.49
LowResourceQG (Yu et al., 2020a) 9,000 6,072 - - - 19.07 19.16 39.41
QA4QG-Base∗ (Su et al., 2022) 90,440 6,072 43.72 31.54 24.47 19.68 24.55 40.44
QA4QG-Large∗ (Su et al., 2022) 90,440 6,072 46.45 33.83 26.35 21.21 25.53 42.44
Finetuning 8 8 24.17 13.46 7.38 4.46 16.79 24.71
Reasoning Circuits 8 8 17.76 8.91 4.56 2.66 13.81 19.74
Finetuning 16 16 25.61 15.04 8.76 5.47 18.74 25.18
Reasoning Circuits 16 16 21.77 12.00 6.72 4.12 16.84 22.01
Finetuning 32 32 27.04 16.75 10.23 6.64 20.31 26.39
Reasoning Circuits 32 32 25.29 14.94 8.69 5.55 19.46 24.62
Finetuning 64 48 28.06 17.52 10.89 7.14 21.11 27.42
Reasoning Circuits 64 48 27.92 16.92 10.21 6.51 21.01 26.90
Finetuning 128 56 28.31 18.05 11.41 7.60 22.65 28.18
Reasoning Circuits 128 56 30.67 19.58 12.42 8.25 23.86 29.33

Table 1: Evaluation results on automatic evaluation metrics for few-shot Reasoning Circuits and fine-tuning
baseline experiments with different encoder input settings are reported. We mark in bold where reasoning circuits
perform better than our baseline. We also show performance of previous MQG methods on the HotpotQA dataset.
Note that most of prior work trained on the entire 90K examples in the HotpotQA dataset with the exception of
LowResourceQG (Yu et al., 2020a) trained on 9K and Cheng et al. (2021) trained on 57K examples. ∗ Results as
reported by Su et al. (2022).

Model
Multi-hop Well formed Answerable Answer Matching
Yes No Yes Acceptable No Yes No Yes No

Baseline 45% 55% 89% 2% 9% 87% 13% 75% 25%
Reasoning Circuits 66% 34% 81% 4% 15% 89% 11% 79% 21%

Table 2: Human evaluation results, bold marks better score, for ’Yes’ and ’Acceptable’ higher and for ’No’ lower
percentages are better.

cuits perform better than the baseline for 64- and
128-shot when entire passages are input to the en-
coder as well as for 128-shot when only supporting
sentences are input to the encoder.

We note a substantially reduced performance gap
in the METEOR score between prior state-of-the
art models trained with 90k training examples and
results of our best few-shot experiments. The ME-
TEOR metric has certain synonymy matching and
stemming modules, in addition to standard exact

word matching which not found in other metrics.
From this we infer that reference and generated
questions may not exactly match each other how-
ever could be closer paraphrases of each other.

Though the performances of baseline and Rea-
soning Circuits are quite close in terms of auto-
matic metrics, we observe (See models generations
in B) through manual inspection that the questions
generated by Reasoning Circuits lead to more multi-
hop questions being generated whereas baseline
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generations tend to be single-hop questions instead.
Through automatic evaluation these advantages are
not reflected.

6.2 Human Evaluation

We follow similar human evaluation criteria as
Cheng et al. (2021), wherein we randomly sam-
ple 150 questions from our 128-shot baseline and
Reasoning Circuits experiments of the kind where
the input to encoder is only supporting sentences.
These examples are manually evaluated by a human
annotator across the following four dimensions:
Multi-hop: To check whether a question can be
answered from only reading a single passage or
both. The annotation is yes if both passages have
to be read or no if reading only a single passage
answers the question.
Well-formed: To check whether a question is se-
mantically correct, annotator is asked to mark a
question as either yes, acceptable or no. Accept-
able is selected if the question is not grammatically
correct, but its meaning is still intelligible.
Answerable: It checks whether a question is an-
swerable according to the given context. The anno-
tation is either yes or no.
Answer Matching: It checks whether the given
answer is the correct answer to the question. The
annotation is either yes or no.

Table 2 report results from human evaluation.
Our proposed approach generated +22% more
multi-hop questions than the baseline which fares
poorly on this critical measure. The pre-defined
answer is found to be the correct answer to the
questions generated with our slightly higher chance
than the baseline. However, our approach leads to
slightly less well formed generations than the base-
line model, typically this stems from our approach
failing to find the right common noun. In terms of
answerability both approaches score evenly.

7 Discussion and Future Work

Through automatic and human evaluations we show
that larger language models generate similar ques-
tions to reference questions with orders of magni-
tude less labelled data. The proposed approach also
is found to generate a much higher percentages of
multi-hop questions than the baseline.

One avenue of future work is in the area of self-
training. Self-training, involves generating predic-
tions from a weaker model on unlabelled data and
using these predictions as additional training data,

where the training set now includes the silver pre-
dictions on unlabelled data. Self-training may be
detrimental for or not improve overall model per-
formance strongly especially when the task is hard
for the weaker model (Vu et al., 2020, 2021). Since
prediction errors of the weaker model in the sil-
ver annotations further reinforce wrong predictions
during self-training. In Reasoning Circuits, sil-
ver predictions on unlabelled data for many steps
of reasoning can be approximately validated with
simple heuristics. For instance, predictions from
Task 9 can be verified by checking whether they
still contains the answer and bridge spans or not,
if they do then these predictions can be deemed
unfit for self-training. Filtering prediction errors
from the initial trained weaker model on unlabeled
data should lead to stronger improvements from
self-training compared to vanilla self-training.

8 Conclusion

In this paper, we propose Reasoning Circuits, a new
framework suited to real-world scenarios where the
NLP task at hand requires multiple steps of struc-
tured reasoning, with only a limited number of
available labelled examples, and a small annotation
budget, also only a modest deep learning compu-
tational infrastructure/budget is accessible. In this
work, we apply this framework to the task of few-
shot multi-hop question generation which fits all
these criteria. We identify structured multi-step
rationales that break down this problem into many
discrete reasoning steps. Each step in these ratio-
nales is treated as a single "task" within a mixture
of similar "tasks". The individual tasks can be cate-
gorized into control tasks, which control the flow
of information between tasks, and generative tasks,
that generate free-form text for successive tasks in
the Reasoning Circuit. The framework is relatively
easy to implement, since only a single generative
model is fine-tuned with a mixture of all reason-
ing steps; at inference time, the same model can
generate all reasoning steps sequentially. We show
that fine-tuning with only around 64 to 128 labelled
rationale examples with our approach is enough to
improve automatic evaluation metrics compared
to a baseline trained without rationales on the Hot-
potQA dataset. More importantly, with human eval-
uation, we find that this framework can strongly
improve the central objective of multi-hop QG, to
generate challenging questions which cannot be
answered from reading only a single passage.
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9 Limitations

The proposed Reasoning Circuits framework in-
tends to replace the need for thousands of annotated
examples with a strong inductive bias of structured
rationales. There is two issues with this approach
at a conceptual level:
1. It may not always be possible to break down a
multi-step reasoning problem cleanly into discrete
reasoning steps, and another related issue it increas-
ing complexity of the circuit with the complexity
of the task.
2. For the design of these reasoning circuits a re-
searcher must develop a thorough understanding
of this reasoning task, so that the final circuit de-
sign broadly covers all possible types of reasoning
problems expected to be solved. An under- or ill-
designed reasoning circuit may cause the system to
either not support a certain portion of problems or
produce non-sensical outputs.

Essentially, there is trade off between a tighter
control over reasoning by investing in a deep under-
standing of the problem leading to a comprehensive
reasoning circuit design and lower annotations bud-
get, versus, less control over logic and depending
on a large number of annotations which allow the
model to discover this logic on its own at much
higher cost of large scale annotations budget.

At the implementation and operations level one
of the the key limitations our proposed system is
the number of inference steps to solve the prob-
lem. The number of times model inference may
be needed to solve a single example is equal the
length of the longest task sequence chain in the
reasoning circuit. One possible solution for this
could be by training the model to solve the entire
problem by generating all the steps of reasoning
and the target string in a single inference step and
could massively reduce inference time and costs.
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A Task Prompts

We provide the prompts used for training T5 be-
low. SentinelTokeni refers special sentinel to-
kens used while pretraining T5 model. Common
entities were filled in for Tasks 1 and 2 using top
three longest contiguous sub-sequences found both
in p1 and p2 from which common English words
and words that are not capitalised indicating com-
mon nouns were removed, we also used Flair NER2

library to generate these entities and kept the ones
shared across both p1 and p2.
Baseline Context 1: p1 Context 2: p2 Answer: a
Question type: SentinelToken0

Task 1 Context 1: p1 Context 2: p2 Answer: a
Common entities found: SentinelToken0 Ques-
tion type: SentinelToken1

Task 2 Context 1: p1 Context 2: p2 Answer: a
Common entities found: SentinelToken0 Ques-
tion type: SentinelToken1

Task 3 Answer: a is SentinelToken0 in context:
pi
Task 4 Entities: a and b are SentinelToken0.
Task 5 Context: pi Bridge entity: b Answer: a
Assertion: SentinelToken0

Task 6 Context: pi Bridge entity: b Assertion:
SentinelToken0

Task 7 Bridge entity: b Assertion 1: s1 Assertion
2: s2 Combined: SentinelToken0

Task 8 Removing bridge entity: b from: c We get:
SentinelToken0

Task 9 Contract answer entity a from: c − b We
get: SentinelToken0

Task 10 Turn: c − b − a into question:
SentinelToken0

Task 11 Context 1: p1 Context 2: p2 Answer: a

2https://github.com/flairNLP/flair
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Assertion from Context 1: SentinelToken0 As-
sertion from Context 2: SentinelToken1

Task 12 Assertion 1: s1 Assertion 2: s2 Combine,
compare and think: SentinelToken0

Task 13 Combined assertion: c Answer: a
Question: SentinelToken0 The outputs prompt
for each of these tasks is to generate the ex-
pected output items of each task preceeded by
SentinelToken0 and SentinelToken1.

B Generated Examples

We provide actual examples of generations from
our baseline model and Reasoning Circuits (128-
shot, encoder input: Supporting sentences from the
passage only)
============== Q1 ==================
P1: John Updike - John Hoyer Updike
(March 18, 1932 January 27, 2009) was
an American novelist, poet, short
story writer, art critic, and literary
critic.
P2: Bret Easton Ellis - Bret Easton
Ellis (born March 7, 1964) is an
American author, screenwriter, and
short story writer.
Gold Question: What profession was
both John Updike and Bret Easton Ellis
?
Answer: short story writer
Gold Type: comparison
–– Generations ––
Reasoning Circuits question type:
comparison
Reasoning Circuits: What kind of
writers were Bret Easton Ellis and
John Updike?
Baseline: What job did both Bret
Easton Ellis and John Updike have in
common?
============== Q2 ==================
P1: Xingcheng - Xingcheng (),
former name Ningyuan (), is a
county-level city of southwest
Liaoning province, China, with a
population of approximately 140,000
urban inhabitants, and is located on
the Liaodong Bay, i.e. the northern
coast of the Bohai Sea.
P2: Ulan Hot - Ulanhot (Mongolian-
; Cyrillic- ; Latin transliteration-
"Ulaan qota"; ), formerly known as

Wangin Sm, alternatively Wang-un
Sme, Ulayanqota (Red City) in
Classical Mongolian, and Wangyehmiao
or Wangyemiao () in Chinese prior
to 1947, is a county-level city and
the administrative center of Hinggan
League in the East of Inner Mongolia
autonomous region.
Gold Question: Is Xingcheng or Ulan
Hot located in the Inner Mongolia
region of China?
Answer: Ulanhot
Gold Type: comparison
–– Generations ––
Reasoning Circuits question type:
comparison
Reasoning Circuits: Which city is in
the East of Inner Mongolia autonomous
region, Ulanhot or Xingcheng?
Baseline: What is the name of this
city, which was formerly known as
Wangin Sm?
============== Q3 ==================
P1: French Spaniel - The breed
is recognised by Canadian and
international kennel clubs but not
by The Kennel Club (UK).
P2: Beagle - The Beagle is a breed of
small hound, similar in appearance to
the much larger foxhound.
Gold Question: Are both French
Spaniel and Beagle universally
recognized breeds?
Answer: no
Gold Type: comparison
–– Generations ––
Reasoning Circuits question type:
comparison
Reasoning Circuits: Are the
Beagle and the foxhound similar in
appearance?
Baseline: Are the Beagle and the
French Spaniel both breeds of small
hound?
============== Q4 ==================
P1: The Tempest (1979 film) - The
Tempest is a 1979 film adaptation of
William Shakespeare’s play of the same
name. Directed by Derek Jarman, with
Heathcote Williams as Prospero, it
also stars Toyah Willcox, Jack Birkett
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and Helen Wellington-Lloyd from
Jarman’s previous feature, "Jubilee"
(1977), as well as his long-time
cohort Karl Johnson.
P2: Heathcote Williams - John
Henley Heathcote-Williams (15
November 1941 1 July 2017), known
as Heathcote Williams, was an English
poet, actor, political activist and
dramatist. He wrote a number of
book-length polemical poems including
"Autogeddon", "Falling for a Dolphin"
and "Whale Nation", which in 1988
became, according to Philip Hoare,
"the most powerful argument for the
newly instigated worldwide ban on
whaling."
Gold Question: What is the title
of the 1979 film adaptation of
William Shakespeare’s play in which
the English poet, actor, political
activist and dramatist who wrote wrote
a number of book-length polemical
poems such as "Autogeddon", "Falling
for a Dolphin" and "Whale Nation"
played a main character?
Answer: The Tempest
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: What is the
film in which an English poet, actor,
political activist and dramatist wrote
a number of book-length polemical
poems including "Whale Nation"?
Baseline: What 1979 film starring
Heathcote Williams was directed by
Derek Jarman?
============== Q5 ==================
P1: Achel Abbey - The Trappist Abbey
of Achel or Saint Benedictus-Abbey
or also Achelse Kluis (which means
hermitage of Achel), which belongs to
the Cistercians of Strict Observance,
is located in Achel in the Campine
region of the province of Limburg
(Flanders, Belgium). The abbey is
famous for its spiritual life and its
brewery, which is one of few Trappist
beer breweries in the world.

P2: Trappist beer - Eleven
monasteries six in Belgium, two in the
Netherlands and one each in Austria,
Italy and United States currently
brew beer and sell it as "Authentic
Trappist Product".
Gold Question: The Trappist Abbey of
Achel produces and sells what as an
"Authentic Trappist Product"?
Answer: Trappist beer
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: What kind of beer
is brewed at Achel Abbey, which is
famous for its spiritual life and its
brewery?
Baseline: What is brewed at the
Trappist Abbey of Achel?
============== Q6 ==================
P1: Marc Bolan - He was best known as
the lead singer of the glam rock band
T. Rex.
P2: Metal Guru - "Metal Guru" is a
song by the British rock band T. Rex,
written by Marc Bolan. It was the
band’s fourth (and final) number one
on the UK Singles Chart when it topped
the chart for four weeks from MayJune
1972.
Gold Question: In the summer of 1972,
"Metal Guru" was the last UK number
one for T. Rex and its lead singer.
What was his name?
Answer: Marc Bolan
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: Who is the best
known person who also wrote the song
Metal Guru and who also played the
guitar for the band T. Rex?
Baseline: Who wrote the song Metal
Guru for the glam rock band T. Rex?
============== Q7 ==================
P1: Estonian Hound - It was bred in
1947 when the Soviet Union’s national
economy ministry decided that every
country in the Union must have its own
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dog breed.
P2: English Water Spaniel - The
English Water Spaniel is a breed of
dog that has been extinct since the
first part of the 20th century, with
the last specimen seen in the 1930s.
Gold Question: Which breed was bred
first, the English Water Spaniel or
the Estonian Hound?
Answer: The English Water Spaniel
Gold Type: comparison
–– Generations ––
Reasoning Circuits question type:
comparison
Reasoning Circuits: Which breed of
dog has been extinct since the first
part of the 20th century, the English
Water Spaniel or the Estonian Hound?
Baseline: Which breed of dog was bred
in 1947, the Estonian Hound or the
English Water Spaniel?
============== Q8 ==================
P1: Tommy’s Honour - The film is
directed by Jason Connery, and the
father and son are portrayed by Peter
Mullan and Jack Lowden.
P2: Jack Lowden - Jack Andrew Lowden
(born 2 June 1990) is a Scottish
stage, television, and film actor.
Following a highly successful and
award-winning four-year stage career,
his first major international onscreen
success was in the 2016 BBC miniseries
"War & Peace", which led to starring
roles in feature films.
Gold Question: Tommy’s Honour was
a drama film that included the actor
who found success with what 2016 BBC
miniseries?
Answer: War & Peace
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: In which 2016 BBC
miniseries did a Scottish actor have
his first major international onscreen
success?
Baseline: What was the first major
international onscreen success of this
Scottish actor, who played the father

in the film Tommys Honour?
============== Q9 ==================
P1: Moho House - "Moho House" is
the twenty first episode of the
twenty-eighth season of the animated
television series "The Simpsons",
and the 617th episode of the series
overall.
P2: The Simpsons (season 28) - On
May 4, 2015, Fox announced that "The
Simpsons" had been renewed for season
28.
Gold Question: How many seasons has a
popular tv show had, in which one of
the episodes is called Moho House?
Answer: 28
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: Moho House
is the twenty first episode of the
twenty-eighth season of the animated
television series which was renewed
for season 28 on May 4, 2015?
Baseline: Moho House is the twenty
first episode of which season of
the animated television series The
Simpsons, and the 617th episode of the
series overall?
============== Q10 ==================
P1: Harry S. Truman Supreme Court
candidates - During his two terms
in office, President Harry S. Truman
appointed four members of the Supreme
Court of the United States- Chief
Justice Fred M. Vinson, Associate
Justice Harold Burton, Associate
Justice Tom C. Clark, and Associate
Justice Sherman Minton.
P2: Fred M. Vinson - The most
prominent member of the Vinson
political family, he was the 53rd
United States Secretary of the
Treasury and the 13th Chief Justice
of the United States.
Gold Question: Of four Harry S.
Truman Supreme Court candidates, who
was the 53rd United States Secretary
of the Treasury and the 13th Chief
Justice of the United States?
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Answer: Fred M. Vinson
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: Who was the
most prominent member of the Vinson
political family and the 13th Chief
Justice of the United States who
was appointed by President Harry S.
Truman?
Baseline: During his two terms in
office, President Harry S. Truman
appointed four members of the Supreme
Court of the United States, including
the most prominent member of the
Vinson political family, he was the
53rd United States Secretary of the
Treasury and the 13th Chief Justice of
the United States.
============== Q11 ==================
P1: Lee Ranaldo - Lee Mark Ranaldo
(born February 3, 1956) is an
American musician, singer-songwriter,
guitarist, writer, visual artist
and record producer, best known as
a co-founder of the alternative rock
band Sonic Youth. In 2004, "Rolling
Stone" ranked Ranaldo at number 33 on
its "Greatest Guitarists of All Time"
list.
P2: Mikael kerfeldt - Lars Mikael
kerfeldt (born 17 April 1974) is a
Swedish musician, prominently known
as the lead vocalist, guitarist, and
primary songwriter of progressive
death metal band Opeth, as well as
being the former vocalist of death
metal supergroup Bloodbath. He was
also guitarist for the "one-off"
band Steel, and is part of the
collaboration Storm Corrosion with
Steven Wilson.
Gold Question: Mikael kerfeldt
and Lee Ranaldo were this kind of
instrumentalist in their respective
bands.
Answer: Guitarists
Gold Type: comparison
–– Generations ––
Reasoning Circuits question type:

comparison
Reasoning Circuits: What is common
between Lee Ranaldo and Mikael
Kerfeldt?
Baseline: What do Lee Ranaldo and
Mikael kerfeldt have in common?
============== Q12 ==================
P1: Bent Hamer - Bent Hamer (born 18
December 1956) is a film director,
writer and producer, born in
Sandefjord, Norway in 1956.
P2: Yasujir Ozu - Yasujir Ozu ( , Ozu
Yasujir , 12 December 1903 12 December
1963) was a Japanese film director and
screenwriter.
Gold Question: Between Yasujir Ozu
and Bent Hamer, who has more creative
titles?
Answer: Bent Hamer
Gold Type: comparison
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: What film
director, writer and producer, born
in Sandefjord, Norway in 1956 worked
for Yasujiro Ozu who was a Japanese
film director and screenwriter?
Baseline: Which film maker was born
in Sandefjord, Norway, Bent Hamer or
Yasujir Ozu?
============== Q13 ==================
P1: Ulli Lommel - Since 1977 he has
lived and worked in the USA, where he
has written, directed and starred in
over 50 movies.
P2: Benjamin Stoloff - Benjamin "Ben"
Stoloff (October 6, 1895 September 8,
1960) was an American film director
and producer. Stoloff was born in
Philadelphia, Pennsylvania. He died
in Hollywood, California.
Gold Question: Who has lived longer
in the USA, Ulli Lommel or Benjamin
Stoloff?
Answer: Stoloff
Gold Type: comparison
–– Generations ––
Reasoning Circuits question type:
comparison
Reasoning Circuits: Which film
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director and producer lived and worked
in the USA, Ulli Lommel or Benjamin
Stoloff?
Baseline: What American film director
and producer born in Philadelphia,
Pennsylvania, died in Hollywood,
California, Ulli Lommel or Benjamin
Stoloff?
============== Q14 ==================
P1: Five Finger Death Punch
discography - After Hook replaced
previous guitarist Darrell Roberts,
5FDP released "War Is the Answer"
in 2009 which reached the top ten of
the "Billboard" 200 and was certified
platinum by the RIAA.
P2: War Is the Answer - It was
released on September 22, 2009 through
Prospect Park.
Gold Question: Which Five Finger
Death Punch discography albulm was
released on September 22, 2009 through
Prospect Park?
Answer: War Is the Answer
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: What song did
Five Finger Death Punch release on
September 22, 2009 through Prospect
Park?
Baseline: Which album by Five Finger
Death Punch was released in 2009,
after Hook replaced previous guitarist
Darrell Roberts?
============== Q15 ==================
P1: Wolfgang Becker - Wolfgang Becker
(born 22 June 1954) is a German film
director and writer.
P2: Jacques Audiard - Jacques Audiard
(] ; born 30 April 1952) is a French
film director and screenwriter.
Gold Question: Are Wolfgang Becker
and Jacques Audiard both German film
directors?
Answer: no
Gold Type: comparison
–– Generations ––
Reasoning Circuits question type:
comparison

Reasoning Circuits: Are Wolfgang
Becker and Jacques Audiard both
writers?
Baseline: Are Jacques Audiard and
Wolfgang Becker both film directors
and writers?
============== Q16 ==================
P1: ECAC Hockey - The conference used
to be affiliated with the Eastern
College Athletic Conference, a
consortium of over 300 colleges in
the eastern United States.
P2: Colgate Raiders women’s ice
hockey - The Colgate Raiders women’s
ice hockey team is an NCAA Division
I ice hockey team that represents
Colgate University and play in ECAC
Hockey.
Gold Question: What athletic
conference did the conference that
the Colgate Raiders women’s ice hockey
team play in used to be affiliated
with?
Answer: Eastern College Athletic
Conference
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: The Colgate
Raiders women’s ice hockey team is
an NCAA Division I ice hockey team
that represents Colgate University and
play in a conference which used to be
affiliated with what?
Baseline: The conference used to
be affiliated with which consortium
of over 300 colleges in the eastern
United States?
============== Q17 ==================
P1: The Futureheads - The Futureheads
were an English post-punk band from
Sunderland. consisting of Ross
Millard (vocals and guitar), Barry
Hyde (vocals and guitar), David "Jaff"
Craig (bass guitar) and Dave Hyde
(drums).
P2: Marcy Playground - Marcy
Playground is an American alternative
rock band consisting of three members-
John Wozniak (lead vocals, guitar),
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Dylan Keefe (bass), and Shlomi Lavie
(drums).
Gold Question: Which band has more
members, The Futureheads or Marcy
Playground?
Answer: The Futureheads
Gold Type: comparison
–– Generations ––
Reasoning Circuits question type:
comparison
Reasoning Circuits: Which band
was an English post-punk band, The
Futureheads or Marcy Playground?
Baseline: Which post-punk band had
members from both Marcy Playground and
The Futureheads?
============== Q18 ==================
P1: General Motors Technical Center -
The GM Technical Center is a General
Motors facility in Warren, Michigan.
P2: Warren, Michigan - Warren is
a city in Macomb County in the U.S.
state of Michigan.
Gold Question: In what county is
the General Motors Technical Center
located?
Answer: Macomb County
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: General Motors
Technical Center is in what city in
what county?
Baseline: The General Motors
Technical Center is a General Motors
facility in Warren, Michigan, in which
U.S. state?
============== Q19 ==================
P1: Balfour Declaration - The Balfour
Declaration was a public statement
issued by the British government
during World War I announcing support
for the establishment of a "national
home for the Jewish people" in
Palestine, then an Ottoman region
with a minority Jewish population.
P2: Declaration to the Seven -
The Declaration to the Seven was
a document written by the British
diplomat Sir Henry McMahon and

released on June 16, 1918 in response
to a memorandum issued anonymously by
seven Syrian notables in Cairo who
were members of the newly formed Party
of Syrian Unity, established in the
wake of the Balfour Declaration and
the November 23, 1917 publication by
the Bolsheviks of the secret May 1916
Sykes-Picot Agreement between Britain
and France.
Gold Question: Party of Syrian Unity
was established in the wake of a
public statement that announced what ?
Answer: support for the establishment
of a "national home for the Jewish
people" in Palestine
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: What was
the combined assertion of a
public statement issued by the
British government during World
War I announcing support for the
establishment of a "national home
for the Jewish people" in Palestine
and a document written by the British
diplomat Sir Henry McMahon and
released on June 16, 1918 in response
to a memorandum issued anonymously by
seven Syrian notables in Cairo who
were members of the newly formed Party
of Syrian Unity, established in the
wake of the Balfour Declaration?
Baseline: The Balfour Declaration
was a public statement issued by the
British government during World War I
announcing what?
============== Q20 ==================
P1: El Paso International Airport -
El Paso International Airport (IATA-
ELP, ICAO- KELP, FAA LID- ELP) is
a public airport four miles (6 km)
northeast of downtown El Paso, in El
Paso County, Texas, United States.
P2: Grand Forks International Airport
- Grand Forks International Airport
(IATA- GFK, ICAO- KGFK, FAA LID- GFK)
is a public airport five miles (8 km)
northwest of Grand Forks, in Grand
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Forks County, North Dakota.
Gold Question: Which airport Grand
Forks International Airport or El Paso
International Airport is closer to
their town ?
Answer: El Paso International Airport
Gold Type: comparison
–– Generations ––
Reasoning Circuits question type:
comparison
Reasoning Circuits: Which airport
is located in El Paso County,
Texas, United States, Grand Forks
International Airport or both?
Baseline: Which airport is farther
northeast, El Paso International
Airport or Grand Forks International
Airport?
============== Q21 ==================
P1: Oklahoma Sooners football - The
Oklahoma Sooners football program is a
college football team that represents
the University of Oklahoma (variously
"Oklahoma" or "OU"). The team is
currently a member of the Big 12
Conference, which is in Division I
Football Bowl Subdivision (formerly
Division I-A) of the National
Collegiate Athletic Association
(NCAA).
P2: Justin Brown (wide receiver) -
Justin Brown (born March 10, 1991)
is a wide receiver for the Toronto
Argonauts of the Canadian Football
League (CFL).
Gold Question: A wide receiver for
the Toronto Argonauts played college
football for a team that represents
the University of Oklahoma, which
belongs to what conference?
Answer: Big 12 Conference
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: Justin Brown
is a wide receiver for the Toronto
Argonauts of the Canadian Football
League (CFL) that represents the
University of Oklahoma, it is a member
of which conference?

Baseline: Justin Brown is a wide
receiver for the Toronto Argonauts of
the Canadian Football League, a team
that is a member of which conference?
============== Q22 ==================
P1: D. Napier & Son - D. Napier &
Son Limited was a British engineering
company best known for its luxury
motor cars in the Edwardian era and
for its aero engines throughout the
early to mid-20th century.
P2: Edwardian era - The Edwardian era
or Edwardian period of British history
covers the brief reign of King Edward
VII, 1901 to 1910, and is sometimes
extended in both directions to capture
long-term trends from the 1890s to the
First World War.
Gold Question: Which British
engineering company is best known
for its luxury motor cars in the era
of British history that covers the
brief reign of King Edward VII?
Answer: D. Napier & Son
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: What British
engineering company best known for its
luxury motor cars in the era which
covers the brief reign of King Edward
VII?
Baseline: What British engineering
company best known for its luxury
motor cars in the Edwardian era and
for its aero engines throughout the
early to mid-20th century?
============== Q23 ==================
P1: Werther - Werther is an opera
("drame lyrique") in four acts by
Jules Massenet to a French libretto by
douard Blau, Paul Milliet and Georges
Hartmann (who used the pseudonym Henri
Grmont).
P2: Odyssey - The Odyssey ( ; Greek-
"Odsseia", ] in Classical Attic) is
one of two major ancient Greek epic
poems attributed to Homer.
Gold Question: Are Werther and The
Odyssey both operas?
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Answer: no
Gold Type: comparison
–– Generations ––
Reasoning Circuits question type:
comparison
Reasoning Circuits: Are Werther and
The Odyssey both by Jules Massenet?
Baseline: Are The Odyssey and Werther
both written by the same author?
============== Q24 ==================
P1: mile Verdet - Marcel mile Verdet
(13 March 1824 3 June 1866) was a
French physicist. Verdet did much
to champion the early theory of the
conservation of energy in France
through his editorial supervision
of the "Annales de chimie et de
physique".
P2: Annales de chimie et de physique
- Annales de chimie et de physique
(French for "Annals of Chemistry and
of Physics") is a scientific journal
that was founded in Paris, France,
in 1789 under the title "Annales de
chimie".
Gold Question: what is the english
name of mile Verdets editorial?
Answer: Annals of Chemistry and of
Physics
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: Which journal was
founded in Paris, France, under the
editorial supervision of mile Verdet,
who did much to champion the early
theory of the conservation of energy
in France?
Baseline: What is the name of the
scientific journal that was founded in
Paris, France, in 1789 under the title
Annales de chimie?
============== Q25 ==================
P1: Vinylmation - Most figures are
all shaped with the body of Mickey
Mouse but have different themed
markings, colors, and patterns.
P2: Mickey Mouse - He was created by
Walt Disney and Ub Iwerks at the Walt
Disney Studios in 1928.

Gold Question: The vynil collectible
Vinylmation are all shaped with the
body of a cartoon character created by
who ?
Answer: Walt Disney and Ub Iwerks
Gold Type: bridge
–– Generations ––
Reasoning Circuits question type:
bridge
Reasoning Circuits: Vinylmation is
shaped with the body of a character
which was created by who at the Walt
Disney Studios in 1928?
Baseline: Who created the character
Mickey Mouse in 1928?
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Abstract

Large Language Models (LLMs) are capable
of performing zero-shot closed-book question
answering tasks, based on their internal knowl-
edge stored in parameters during pre-training.
However, such internalized knowledge might
be insufficient and incorrect, which could lead
LLMs to generate factually wrong answers.
Furthermore, fine-tuning LLMs to update their
knowledge is expensive. To this end, we pro-
pose to augment the knowledge directly in the
input of LLMs. Specifically, we first retrieve
the relevant facts to the input question from
the knowledge graph based on semantic simi-
larities between the question and its associated
facts. After that, we prepend the retrieved facts
to the input question in the form of the prompt,
which is then forwarded to LLMs to gener-
ate the answer. Our framework, Knowledge-
Augmented language model PromptING (KAP-
ING), requires no model training, thus com-
pletely zero-shot. We validate the performance
of our KAPING framework on the knowledge
graph question answering task, that aims to an-
swer the user’s question based on facts over a
knowledge graph, on which ours outperforms
relevant zero-shot baselines by up to 48% in
average, across multiple LLMs of various sizes.

1 Introduction

Pre-trained Language Models (LMs) (Devlin et al.,
2019; Raffel et al., 2020), which are trained on a
large amount of text corpora with self-supervised
learning, can perform closed-book Question An-
swering (QA) tasks that aim to answer the user’s
question based only on their internal knowledge
in parameters, without using any external knowl-
edge (Petroni et al., 2019; Roberts et al., 2020).
Also, when we increase the LM sizes, Large Lan-
guage Models (LLMs) can generate the answer
for the question without any additional fine-tuning

∗ Work done while interning at Amazon. Corresponding
author: Jinheon Baek (jinheon.baek@kaist.ac.kr)

[Prompt]
Question: Which member of Black Eyed Peas appeared in Poseidon?
Answer:

(a) Language Model Prompting w/o Knowledge Augmentation

[Generated Answer]
Tariq Ali

[Prompt]
Below are the facts that might be relevant to answer the question:
(Black Eyed Peas, has part, Fergie), (Black Eyed Peas, has part, Kim Hill),
(Poseidon, cast member, Fergie)
Question: Which member of Black Eyed Peas appeared in Poseidon?
Answer:

(b) Knowledge-Augmented Language Model Prompting

[Generated Answer]
Fergie

Knowledge Graph

Black 
Eyed PeasFergie

Has_part

Musical 
Group

Instance of

Poseidon
Cast_member

Kim 
Hill

Has_part

Retrieval

Figure 1: (a) For the input question in the prompt, the large
language model, GPT-3 (Brown et al., 2020), can generate
the answer based on its internal knowledge in parameters,
but hallucinates it which is highlighted in yellow. (b) Our
Knowledge-Augmented language model PrompTING (KAP-
ING) framework first retrieves the relevant facts in the knowl-
edge graph from the entities in the question, and then augments
them to the prompt, to generate the factually correct answer.

steps, called LM prompting (Brown et al., 2020;
Liu et al., 2021). However, since the knowledge
in LLMs might be incomplete, incorrect, and out-
dated, they often generate factually wrong answers,
known as hallucination (Rohrbach et al., 2018)
(See Figure 1a). Also, refining the knowledge in
LLMs with parameter updates is costly, especially
when knowledge is constantly changing (e.g., ex-
change rates of money). Lastly, whether LLMs are
fetching the correct knowledge for QA is unclear.

To overcome those limitations, we propose to re-
trieve and inject the relevant knowledge directly as
an input, called a prompt, to LLMs (Figure 1b). As
a knowledge source, we use a Knowledge Graph
(KG) consisting of symbolic knowledge in the form
of a triple: (head entity, relation, tail entity). There-
fore, to extract the relevant facts to the input ques-
tion, we first match entities in the question with
entities in the KG. After that, triples associated to
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entities in the KG are verbalized (i.e., transforming
the symbolic relational knowledge to the textual
string) and prepended to the input question, which
are then forwarded to LLMs to generate the answer.
Consequently, LLMs conditioned on the factual
knowledge are able to generate the factual answers,
alleviating the hallucination issue, while keeping
LLMs’ parameters unchanged: fine-tuning is not
required for knowledge updates. We refer to our
overall framework as Knowledge-Augmented lan-
guage model PromptING (KAPING), which is
completely zero-shot and can be done with any
off-the-shelf LLMs, without additional training.

While the above scheme looks simple yet effec-
tive, there is a couple of challenges. First, most
retrieved triples associated with the question enti-
ties are unrelated to answer the given question. For
example, when we retrieve the associated triples for
the question entity (e.g., Poseidon) in Figure 1 in
the Wikidata KG (Vrandecic and Krötzsch, 2014),
there exist 60 triples, and most of them (e.g., genre,
publication date, to name a few) are irrelevant to
answer the question. Therefore, they might mis-
lead the model into generating incorrect answers.
On the other hand, the number of triples for the
question entities is occasionally large (e.g., 27%
samples for the WebQSP dataset (Yih et al., 2016)
have more than 1,000 triples), thereby encoding
all triples including unnecessary ones yields high
computational costs, especially on LLMs.

To overcome such challenges, we further pro-
pose to filter out unnecessary triples based on their
semantic similarities to the input question, inspired
by the information retrieval (Bast et al., 2016). To
be specific, we first represent the question and
its associated verbalized triples in the embedding
space. Then, we retrieve the small number of triples
whose embeddings are more close to the input ques-
tion’s embedding than others. By doing so, we can
prepend only the more relevant triples to the given
question, which can effectively prevent LLMs from
generating irrelevant answers with high computa-
tional efficiencies, unlike the one that augments all
triples. Note that, our filtering approach uses off-
the-shelf sentence embedding models (Song et al.,
2020; Hofstätter et al., 2021); thus no additional
training is required in every part of our pipeline.

We then validate our KAPING framework on
Knowledge Graph Question Answering (KGQA)
tasks. The results show that our KAPING signif-
icantly outperforms relevant zero-shot baselines.

Also, the detailed analyses support the importance
of knowledge retrieval and augmentation schemes.

Our contributions in this work are threefold:
• We present a new knowledge-augmented LM

prompting framework that leverages the fac-
tual knowledge from KGs, for zero-shot QA.

• We propose to retrieve and augment relevant
facts from KGs, based on semantic similarities
between the question and its associated triples.

• We validate our KAPING on KGQA bench-
mark datasets, on which ours impressively
outperforms relevant zero-shot baselines.

2 Related Work

Language Model Prompting Language model
pre-training, which trains Transformers (Vaswani
et al., 2017) on unannotated text corpora with auto-
encoding (Devlin et al., 2019; Liu et al., 2019) or
auto-regressive (Yang et al., 2019; Radford et al.,
2018) objectives, becomes an essential approach
for natural language tasks. Also, Large Language
Models (LLMs) (Brown et al., 2020; Raffel et al.,
2020; Chowdhery et al., 2022; Soltan et al., 2022)
are able to perform zero-shot learning, for example,
generating the answer for the input textual prompt,
based on the knowledge stored in pre-trained pa-
rameters (Petroni et al., 2019; Roberts et al., 2020;
Sung et al., 2021), without additional parameter
updates as well as labeled datasets. To further im-
prove their performances, some work (Rubin et al.,
2022; Liu et al., 2022a) proposes retrieving rele-
vant samples to the input question from the training
dataset and prepending them in the prompt under
few-show learning. Recent few work (Sanh et al.,
2022; Wei et al., 2022a) further shows that, when
LLMs are fine-tuned on a collection of instruc-
tions phrased from natural language tasks, they can
have strong generalization performance on unseen
zero-shot tasks. However, the knowledge inside
LMs might be insufficient to tackle factual ques-
tions, which gives rise to knowledge-augmented
LMs. Notably, our LM prompting is different from
prompt-tuning literature (Lester et al., 2021a; Chen
et al., 2022a) that additionally tunes LMs with
model training (See Appendix C for discussions).

Knowledge-Augmented LMs Recent work pro-
poses to integrate the knowledge, such as docu-
ments from unstructured corpora (e.g., Wikipedia)
and facts from Knowledge Graphs (KGs), into LMs.
To mention a few, REALM (Guu et al., 2020) and
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RAG (Lewis et al., 2020) learn to retrieve docu-
ments and augment LMs with them. In addition,
KGs could be another knowledge source, where
the knowledge is succinctly encoded in the most
compact form, and some methods augment such
facts in KGs into LMs (Galetzka et al., 2021; Rony
et al., 2022; Kang et al., 2022). However, all afore-
mentioned approaches require massive amount of
training data and model updates for downstream
tasks. While more recent work (Izacard et al., 2022)
shows retrieval-augmented LM can have strong per-
formance with few-shot learning, it still requires
extra training steps, which is different from ours
focusing on LM prompting for entirely zero-shot.

Recently, there are few studies augmenting the
knowledge in the LM prompting scheme. At first,
some work proposes to extract the knowledge in
the parameters of LLMs themselves via prompting,
and then use the extracted knowledge to answer
the question (Kojima et al., 2022; Liu et al., 2022b;
Wei et al., 2022b; Wang et al., 2022). However,
since LLMs’ parameters might be insufficient to
store all the world knowledge, the extracted knowl-
edge and generated answers might be inaccurate.
On the other hand, most recently, Lazaridou et al.
(2022) propose to use the Google Search to retrieve
documents on the Web, and then prepend the re-
trieved documents to the input question along with
few-shot demonstrations, to answer the question
under few-shot LLM prompting schemes. How-
ever, our focus on zero-shot prompting with KGs is
orthogonal to the previous study working on doc-
uments with few-shot prompting, and leveraging
KGs can bring additional advantages. Specifically,
since KGs can succinctly encode the knowledge in
the compact triple form, for QA tasks, ours makes
LLM prompting more efficient (i.e., reducing the
input sequence length compared to the document
case), as well as more effective on the zero-shot QA
scheme: LLMs need to select one triple containing
the answer entity in the prompt, instead of looking
through lengthy documents having various entities.

Knowledge Graph Question Answering The
goal of our target Knowledge Graph Question An-
swering (KGQA) tasks is to answer the input ques-
tion based on a set of facts over KGs (Chakraborty
et al., 2019; Fu et al., 2020). Previous approaches
are broadly classified into neural semantic parsing-
based methods (Yih et al., 2015; Bao et al., 2016;
Luo et al., 2018), information retrieval-based meth-
ods (Sun et al., 2018; Saxena et al., 2020; Yasunaga

et al., 2021), and differentiable KG-based meth-
ods (Cohen et al., 2020; Saffari et al., 2021; Sen
et al., 2021), which, however, require annotated
data with additional model training. While Zhou
et al. (2021) aim to transfer the KGQA model to the
target language domains without any training data
on them, this work indeed needs the labeled data
to train the model on data-rich source domains first
before transferring the model to the target domains.
In contrast to all the aforementioned methods, we
explore the novel zero-shot KGQA mechanism,
which does not require any annotated QA pairs and
additional training, leveraging LM prompting.

3 Method

We now describe our Knowledge-Augmented lan-
guage model PromptING (KAPING) framework.

3.1 LM Prompting for Zero-Shot QA
We begin with the zero-shot question answering,
and then explain the language model prompting.

Zero-Shot Question Answering Given an input
question x, the Question Answering (QA) system
returns an answer y, where x and y consist of se-
quences of tokens: x = [w1, w2, . . . , w|x|]. Let P
be a QA model based on the generative Language
Model (LM) (Raffel et al., 2020; Brown et al.,
2020), which generates the conditional probability
of answer y for question x as follows: P (y|x).
Then, in contrast to supervised learning that trains
model P with a set of annotated (x, y) pairs, zero-
shot learning does not use any labeled samples and
model training. Notably, we are interested in this
zero-shot QA, since collecting the dataset and then
fine-tuning the existing LMs for every new domain
are known to be expensive and sometimes infeasi-
ble (Houlsby et al., 2019; Lester et al., 2021b).

LM Prompting LMs are often pre-trained by
predicting the next token based on previous tokens,
which is known as auto-regressive language mod-
eling (Radford et al., 2018; Raffel et al., 2020).
Then, thanks to this pre-training objective, LLMs
can perform zero-shot instruction learning. Specif-
ically, when we provide a question as well as an
instruction (e.g., "Please answer the question: Who
is the author of Lady Susan?") to the LLM (i.e.,
P ), such the LLM, conditioned by the input text,
can sequentially generate the probability of output
tokens, which might be an answer, "Jane Austen".

To be more formal, for every input question x,
we first modify it with a particular instruction tem-
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plate T into a textual string x′ called a prompt, as
follows: T : x 7→ x′. For example, if we have the
previous question x = "Who is the author of Lady
Susan?" along with the previous instruction tem-
plate "Please answer the question:", the resulting
prompt x′ would be T (x) = "Please answer the
question: Who is the author of Lady Susan?". Then,
we forward the prompt x′ to the LLM (i.e., P ),
which then generates the answer (i.e., y) through
P (y|x′). Note that this LM prompting scheme
does not require any additional model parameter
updates (i.e., fine-tuning) on the labeled data, thus
appropriate for the target zero-shot QA task.

However, there are multiple challenges in this
naive zero-shot prompting for QA. First, LLMs,
which rely on the knowledge in parameters, are
vulnerable from generating the factually incorrect
answer, since the knowledge in LLMs might be in-
accurate, and outdated: knowledge can be emerged
and changed over time. Also, refining the internal-
ized knowledge with additional parameter updates
is expensive, while it is necessary to reflect the
wrong and ever growing knowledge. Lastly, which
knowledge LLMs memorize and utilize when gen-
erating the answer to the question prompt is unclear,
which limits their explainability on the outputs.

3.2 Knowledge-Augmented LM Prompting

In order to tackle the aforementioned limitations
of the existing LM prompting scheme, we propose
to inject the relevant knowledge to the input ques-
tion from the Knowledge Graph (KG), which we
refer to as Knowledge-Augmented language model
PromptING (KAPING). In this subsection, we first
define the main objective of our KAPING frame-
work, and then introduce the ingredients for aug-
menting the knowledge over KGs to LM prompts.

LM Prompting with Knowledge Graphs In-
stead of relying on the knowledge internalized in
parameters, we propose to additionally access and
inject the knowledge from the external KG, which
contains accurate and up-to-date facts helpful to an-
swer the question. Formally, a knowledge graph G
consists of a set of factual triples {(s, r, o)}, where
s and o denote subject and object entities, and r
is a specific type of a relation between them. For
example, one relational knowledge "Lady Susan
was written by Jane Austen" can be represented as
a triple consisting of two entities s = "Lady Su-
san" and o = "Jane Austen" along with a relation
r = "written by". Then, for the question prompt x′

transformed from the example question x = "Who
is the author of Lady Susan?" via the template T ,
we additionally augment its relevant triple: (Lady
Susan, written by, Jane Austen), to the LM prompt-
ing scheme. By doing so, LLMs can generate the
correct answer with regard to the augmented knowl-
edge from KGs, formalized as follows: P (y|x′,G).
Note that, since we can provide specific and valid
facts in KGs to LLMs whenever they exist, our
framework can alleviate hallucination issue, origi-
nated from inaccurate and outdated knowledge in
LLMs, without costly updating their model param-
eters. Furthermore, we can confirm whether LLMs
generate answers based on augmented facts, thus
improving the explainability of LM prompting.

The remaining questions are then how to access
the relational symbolic facts over the KG from
the input question, verbalize the symbolic knowl-
edge to the textual string, and inject the verbalized
knowledge into the LM prompting scheme. We ex-
plain them one by one in the following paragraphs.

Knowledge Access In order to utilize the related
facts to the input question, we first extract the enti-
ties in the question. For example, for the question
"Who is the author of Lady Susan?", we extract the
entity "Lady Susan". Then, based on the extracted
entity, we find its corresponding entity over the KG,
whose incident triples then become associated facts
to the input question. Note that entity matching can
be done by existing entity linking techniques (Wu
et al., 2020; Li et al., 2020; Ayoola et al., 2022).

Knowledge Verbalization LLMs are working
on textual inputs, whereas factual triples are repre-
sented over the symbolic graph. Therefore, before
injecting the symbolic fact from KGs to LLMs,
we first transform the triple consisting of (s, r, o)
into its textual string, called verbalization. While
there exists recent methods (Oguz et al., 2022; Ma
et al., 2022) that particularly design or even learn
the graph-to-text transformation, in this work, we
use the linear verbalization: concatenating the sub-
ject, relation, and object texts in the triple, which
we observe works well in LM prompting (See Ap-
pendix B.5). For instance, one triple (Lady Susan,
written by, Jane Austen) is used as is: "(Lady Susan,
written by, Jane Austen)", for an LLM’s input.

Knowledge Injection Based on verbalized facts
associated with the input question, the remaining
step is to realize the knowledge injection mecha-
nism, which allows LLMs to be grounded on the
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external knowledge, useful to generate the answer.
Let assume we have a set of N associated triples
k = {(si, ri, oi)}Ni=1 for question x. Then, simi-
lar to instruction template T : x 7→ x′ described
in Section 3.1, we modify N verbalized triples k
along with the instruction for the knowledge in-
jection into the knowledge prompt k′, as follows:
T : k 7→ k′. One particular template we use for
constructing the prompt is that, we first enumer-
ate N verbalized triples line-by-line and then add
the specific instruction: "Below are facts in the
form of the triple meaningful to answer the ques-
tion.", at the top of the prompt. After that, such
the knowledge prompt string, k′, is prepended to
the question prompt x′, and LLMs conditioned by
knowledge and question prompts then sequentially
generate the answer tokens, formalized as follows:
P (y|[k′,x′]), where [·] denotes concatenation.

3.3 Question-Relevant Knowledge Retrieval

The proposed KAPING framework in Section 3.2,
allows LLMs to leverage the knowledge from KGs
for zero-shot QA. However, there are critical chal-
lenges that the number of triples associated to ques-
tions is often too large to forward in LLMs. Also,
most of them are unrelated to the question, mislead-
ing LLMs into generating the irrelevant answer.

Knowledge Retriever To overcome those limita-
tions, we further propose to retrieve and augment
only the relevant triples to the question. Note that
there exists a document-retrieval scheme (Lin et al.,
2021), whose goal is to retrieve relevant documents
for the given query based on their embedding simi-
larities, which motivates us to retrieve, in our case,
the triples for the user’s question. In particular,
thanks to the verbalizer defined in Section 3.2, we
can play with triples, obtained from symbolic KGs,
over the text space. Therefore, for the verbalized
triple and the question, we first embed them onto
the representation space with off-the-shelf sentence
embedding models for text retrieval (Song et al.,
2020; Karpukhin et al., 2020; Xiong et al., 2021),
and then calculate their similarities. After that, we
use only the top-K similar triples, instead of using
all N triples, associated to the given question. Note
that, unlike few recent studies (Oguz et al., 2022;
Ma et al., 2022; Kang et al., 2022) that aim at im-
proving KG retrievers themselves under supervised
training, we focus on zero-shot LM prompting with
KGs, thus we use any off-the-shelf retrievers as a
tool to filter out unnecessary triples for questions.

4 Experimental Setups
We explain datasets, models, metrics, and imple-
mentations. For additional details, see Appendix A.

4.1 Datasets
We evaluate our Knowledge-Augmented language
model PromptING (KAPING) framework on two
Knowledge Graph Question Answering (KGQA)
datasets, namely WebQuestionsSP and Mintaka.

WebQuestionsSP (WebQSP) This dataset (Be-
rant et al., 2013; Yih et al., 2016) is designed with a
Freebase KG (Bollacker et al., 2008). It consists of
1,639 test samples, which we use for zero-shot eval-
uation. Additionally, since Freebase is outdated,
we further use the Wikidata KG (Vrandecic and
Krötzsch, 2014) by using available mappings from
Freebase ids to Wikidata (Diefenbach et al., 2017).
This additional dataset consists of 1,466 samples.

Mintaka This dataset (Sen et al., 2022) is re-
cently designed with the Wikidata KG for complex
KGQA tasks. Among 8 different languages, we
use English test sets consisting of 4,000 samples.

4.2 Large Language Models
To verify the performance of our KAPING frame-
work on Large Language Models (LLMs), as well
as benchmarking them on zero-shot KGQA, we
use various LLMs with different sizes. Specifically,
we use T5 (Raffel et al., 2020) (0.8B, 3B, 11B),
T0 (Sanh et al., 2022) (3B, 11B), OPT (Zhang et al.,
2022) (2.7B, 6.7B) and GPT-3 (Brown et al., 2020)
(6.7B, 175B). We provide details in Appendix A.2.

4.3 Baselines and Our Model
In this subsection, we explain four zero-shot LM
prompting baselines and our KAPING framework.

No Knowledge This is a naive LM prompting
baseline, which generates answers from input ques-
tions without knowledge augmentation from KGs.

Random Knowledge This is an LM prompt-
ing baseline, which additionally augments the ran-
domly sampled K triples, associated to the entities
appeared in the question, to the prompt.

Popular Knowledge This is an LM prompting
baseline, which augments K popular triples among
all triples from the question entities, based on rela-
tions that appear the most frequently in the KG.

Generated Knowledge This is an LM prompting
baseline, which first extracts the knowledge from
LLMs themselves based on prompting, and then
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Table 1: Main results of language model prompting, where we report the generation accuracy. The number inside the
parentheses in the first row denotes the parameter size of language models, and best scores are emphasized in bold.

Datasets Methods T5 (0.8B) T5 (3B) T5 (11B) OPT (2.7B) OPT (6.7B) OPT (13B) T0 (3B) T0 (11B) GPT-3 (6.7B) GPT-3 (175B) AlexaTM (20B) Average

WebQSP
w/ Freebase

No Knowledge 6.95 13.40 9.48 19.85 29.77 28.38 21.43 40.77 44.63 63.59 46.79 29.55
Random Knowledge 21.55 19.15 17.57 28.07 31.73 33.31 32.62 51.20 51.01 65.87 57.37 37.22
Popular Knowledge 15.30 16.88 18.39 28.32 28.13 24.21 27.05 47.22 45.58 62.26 54.91 33.48
Generated Knowledge 6.19 7.84 6.76 7.46 11.50 8.22 19.41 38.81 45.89 62.14 35.13 22.67

KAPING (Ours) 34.70 25.41 24.91 41.09 43.93 40.20 52.28 62.85 60.37 73.89 67.67 47.94

WebQSP
w/ Wikidata

No Knowledge 10.30 18.42 15.21 23.94 33.77 32.40 24.56 44.20 48.50 67.60 42.41 32.85
Random Knowledge 17.94 22.78 24.28 37.24 35.61 38.27 28.85 47.68 52.05 60.64 55.63 38.27
Popular Knowledge 15.35 20.80 20.74 30.83 30.01 27.83 24.83 48.02 47.41 63.37 53.92 34.83
Generated Knowledge 11.94 13.30 12.28 11.26 17.53 14.19 22.92 41.34 48.77 65.89 31.16 26.42

KAPING (Ours) 23.67 40.38 35.47 49.52 53.34 51.57 49.86 58.73 60.44 69.58 65.04 50.69

Mintaka
w/ Wikidata

No Knowledge 11.23 14.25 17.06 19.76 27.19 26.83 14.75 23.74 34.65 56.33 41.97 26.16
Random Knowledge 17.59 18.19 18.83 28.11 26.58 28.36 16.10 26.15 32.98 51.56 46.02 28.22
Popular Knowledge 17.56 18.09 18.73 26.97 27.08 23.10 16.74 27.15 32.48 53.16 46.41 27.95
Generated Knowledge 13.61 14.61 14.29 11.87 14.96 16.24 14.46 23.13 33.12 55.65 34.58 22.41

KAPING (Ours) 19.72 22.00 22.85 32.94 32.37 33.37 20.68 29.50 35.61 56.86 49.08 32.27

1-Hop Retrieval 2-Hop Retrieval
Datasets Retrievers MRR Top-1 Top-10 Top-30 MRR Top-1 Top-10 Top-30

WebQSP
w/ Freebase

Random 12.50 7.21 25.09 34.64 1.50 0.70 2.65 5.37
Popular 8.58 5.31 15.93 24.53 1.59 0.95 2.72 4.68
MPNet 47.27 40.27 60.56 64.48 41.64 33.12 58.47 65.23

WebQSP
w/ Wikidata

Random 9.50 3.62 22.58 40.72 1.31 0.00 2.80 8.59
Popular 8.52 4.57 15.89 35.47 4.63 4.02 5.53 6.62
MPNet 43.46 33.36 64.39 70.67 40.42 30.56 62.62 71.56

Mintaka
w/ Wikidata

Random 4.80 1.85 11.48 22.03 0.91 0.14 1.78 5.15
Popular 6.09 3.09 12.51 20.47 0.24 0.04 0.28 1.24
MPNet 13.01 7.50 25.44 35.43 13.00 6.82 26.65 40.01

Table 2: Retriever results. We compare random model, popular
model, and MPNet (Song et al., 2020), on 1- and 2-hop retrievals.
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Figure 2: Comparisons of retrieval and LM prompting. Re-
trieval is the Top-1 result of the MPNet (Song et al., 2020).

augments them as the form of the prompt (Liu et al.,
2022b), which is similar to Kojima et al. (2022).

KAPING (Ours) This is our Knowledge Aug-
mented language model PromptING (KAPING)
framework, which first retrieves the top-K similar
triples to the question with the knowledge retriever,
and then augments them as the form of the prompt.

4.4 Evaluation Metrics
Generation Following the evaluation protocol
of generative KGQA (Yin et al., 2016; Sen et al.,
2022; Mavi et al., 2022), we use accuracy, which
measures whether the generated tokens from the
given prompt include one of the answer entities.
Note that we further consider aliases – a set of
alternative names – of answer entities available in
Freebase and Wikidata KGs, for evaluation.

Retrieval We also measure the retriever perfor-
mance, to see how much the retrieved triples are
helpful for answer generation. As metrics, we use
Mean Reciprocal Rank (MRR) and Top-K accuracy
(Top-K), which are calculated by ranks of correctly
retrieved triples containing answer entities among
all triples associated to question entities.

4.5 Implementation Details
For the knowledge injection, we set the number of
retrieved facts as 10 (K = 10), and the hop for
triple retrieval as one. For the text-based retriever,
we experiment with MPNet (Song et al., 2020) that
uses the same encoder for embedding question and
triples. See Appendix A.4 for additional details.

5 Experimental Results and Analyses
We provide the overall results of our KAPING
framework along with its comprehensive analyses.

Main Results As shown in Table 1, our KAP-
ING framework significantly outperforms all LM
prompting baselines, on zero-shot KGQA tasks. In
particular, the generated knowledge model mostly
degenerates the performance compared to the no
knowledge model, since the extracted knowledge
from LLMs themselves might be inaccurate. On
the other hand, the random and popular knowledge
baselines bring performance improvements, since
the augmented knowledge from KGs are sometimes
useful to answer the question. However, ours out-
performs them, which suggests that, for zero-shot
LM prompting for QA, the knowledge internalized
in LLMs is insufficient to generate factual answers,
and it is important to use only the relevant facts.

In addition, we also observe larger performance
improvements when LMs are relatively small. In
other words, since smaller models have insufficient
parameter spaces to memorize the knowledge dur-
ing pre-training, they are more likely to generate
factually incorrect answers. However, when the ap-
propriate knowledge is given to them, their perfor-
mances sometimes become similar to larger models
(e.g., different sizes of OPT have similar perfor-
mances by our KAPING). Therefore, for tasks that
require factual knowledge under low-resource se-
tups (e.g., production), augmenting the knowledge
would be beneficial, instead of increasing model
sizes to handle the huge volume of knowledge.
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Figure 3: Comparisons of correct and incorrect retrieval
for the generation performance on the GPT-3 (6.7B) model.
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Figure 4: Performances with varying the knowledge order,
where we change the location – top, bottom, or random – of
more relevant triples for the question in the prompt of LLMs.

Retriever Results To see how relevant the aug-
mented knowledge is, we further measure the re-
trieval performances. As shown in Table 2, the
existing retrieval model (i.e., MPNet) shows supe-
rior performances against naive models: random
and popular retrievers. This result suggests that
our simple graph-to-text verbalization works well
with the existing retriever, which further confirms
that our KAPING augments useful facts in the LM
prompt. Regarding the number of hops for the can-
didate triples to retrieve, we observe that, when we
increase the hop-size from one to two, the retriever
is more likely to retrieve irrelevant triples that does
not include answer entities, as shown in Table 2.
Therefore, in our experiments, we retrieve knowl-
edge among 1-hop triples of question entities.

Additionally, since we can alternatively answer
the input question based on entities in the Top-1
triple from the retriever, we compare the generation
performance of LLMs to the retrieval performance.
As shown in Figure 2, LM prompting schemes even
without knowledge augmentation (i.e., no knowl-
edge) are superior than simply answering with the
entity in the retrieved triple, except for the We-
bQSP w/ Freebase dataset. Also, we observe huge
gaps between our KAPING framework and the sim-
ple retrieval scheme on all datasets. These results
suggest that, for zero-shot KGQA, it would be help-
ful to leverage LLMs to generate answers based
on their internalized and external facts, instead of
directly searching answer entities over KGs.

Impact of Correct & Incorrect Retrievals We
conduct analyses on how much the correctly re-
trieved triples, having answer entities, bring perfor-
mance improvements, and how performances are
affected by the incorrectly retrieved triples, which

Figure 5: Performances with varying knowledge amount,
where we change the number of retrieved triples to augment.
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OPT (2.7B) OPT (6.7B) T0 (3B) T0 (11B) GPT-3 (6.7B)

Relative Time
Models # of Retrieved Facts T0 (3B) OPT (2.7B)
No Knowledge 0 1.00 1.00

KAPING (Ours)
1 0.49 1.12
5 0.73 1.48

10 1.07 1.89
15 1.54 2.36
30 2.49 3.77

Table 3: Efficiencies with varying the knowledge amount,
where we measure the wall-clock time of every model for
generating the answer on the WebQSP w/ Wikidata dataset.

do not include answer entities. As shown in Fig-
ure 3, when retrieved triples contain answer entities,
performances of LLMs are significantly improved,
compared to models without knowledge augmenta-
tion. However, when retrievers fail, performances
are lower than models of no knowledge augmenta-
tion. These results suggest, when relevant knowl-
edge is augmented, LLMs can contextualize and
generate answers accurately. Meanwhile, incor-
rectly retrieved knowledge makes LLMs condition
on irrelevant facts, and generate wrong answers.

Varying the Amount of Knowledge We change
the number of facts, to see which triple amounts
are optimal to augment in the prompt, by compar-
ing trade-off between the generation performance
and the wall-clock time. First of all, as shown in
Figure 5, most LLMs reach the somewhat highest
performance, when the number of triples is 5 or
10. Also, when we further increase the augmented
triple size to 15 and 30, performances of OPT mod-
els are largely decreasing. This result suggests that
some LMs might be distracted by irrelevant triples
when their volumes are high, therefore, failing to
select and generate the answer entity.

We then measure the wall-clock time of the an-
swer generation, for the encoder-decoder (T0) and
decoder-only (OPT) models with varying the num-
ber of augmented triples in the prompt. As shown
in Table 3, regarding the encoder-decoder model,
our KAPING framework with less than 10 triples
is faster than the model without knowledge aug-
mentation. We observe this is because, when the
knowledge is augmented to the model, the model
tends to generate shorter answers, which can reduce
the decoding time. More specifically, the length of
generated tokens for the T0 model with 10 triples is
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Table 4: Generation examples of the prompted GPT-3 for the input question with augmented triples from the retriever, where, in
the last row, we change the knowledge of augmented facts to see whether the model is able to adapt to the changed knowledge.

Question: Where did Alex Chilton die?
Retrieved triples: (Alex Chilton, place of death, New Orleans), (Alex Chilton, manner of death, natural causes), (Alex Chilton,
cause of death, myocardial infarction), (Alex Chilton, date of death, time: +2010-03-17), ...
Answer: New Orleans

Prompts Outputs

No Knowledge Question: Where did Alex Chilton die? Answer: Alex Chilton died in a car accident on February 10, 1979.

KAPING (Ours)

Below are facts in the form of the triple meaningful to answer the
question. ... (Alex Chilton, date of death, time: +2010-03-17) (Alex
Chilton, cause of death, myocardial infarction) (Alex Chilton, manner
of death, natural causes) (Alex Chilton, place of death, New Orleans)
Question: Where did Alex Chilton die? Answer:

Alex Chilton died on March 17, 2010 in New Orleans,
Louisiana due to a myocardial infarction.

KAPING (Ours)
w/ Knowledge Change

Below are facts in the form of the triple meaningful to answer the
question. ... (Alex Chilton, date of death, time: +2000-09-01) (Alex
Chilton, cause of death, pancreatic cancer) (Alex Chilton, manner of
death, natural causes) (Alex Chilton, place of death, Los Angeles)
Question: Where did Alex Chilton die? Answer:

Alex Chilton died in Los Angeles, California on Septem-
ber 1, 2000 from pancreatic cancer.

Models T5 (3B) T5 (11B) OPT (2.7B) OPT (13B) T0 (3B) T0 (11B)

No Knowledge 14.25 17.06 19.76 26.83 14.75 23.74

Random Knowledge 18.19 18.83 28.11 28.36 16.10 26.15
Random Knowledge w/ EL 15.99 17.98 23.10 26.47 15.60 24.66

KAPING 22.00 22.85 32.94 33.37 20.68 29.50
KAPING w/ EL 18.94 20.58 26.87 28.39 18.51 27.11

Table 5: Results with entity linking, where the model w/ EL
uses entities extracted from the entity linking technique (Ay-
oola et al., 2022), instead of using labeled ones, on Mintaka.

15, whereas, the no knowledge model generates 32
tokens in average. However, for the decoder-only
model (OPT), the more knowledge we augment,
the slower the model becomes, because of its auto-
regressive characteristic for digesting the input.

Impact of Orders of Retrieved Triples In few-
shot LM prompting where LLMs additionally ob-
serve few examples in the prompt, they are known
to be sensitive to the order of examples (Lu et al.,
2022), and they tend to follow the answer in the last
example (Zhao et al., 2021). Based on those obser-
vations, we also conduct an analysis on whether the
order of retrieved triples affects the performance.
In particular, we vary the location of more similar
triples for the question, by locating them at the Top,
Bottom, or Random position of the prompt. As
shown in Figure 4, our KAPING is not sensitive to
the location of retrieved triples, except for the OPT
model on the WebQSP dataset. In other words, the
OPT model tends to generate the entity located at
the first part of the prompt input. Meanwhile, other
LLMs can contextualize the entire prompt input,
and generate the entity regardless of its position.

Effectiveness with Entity Linking Following
the conventional KGQA evaluation (Cohen et al.,
2020), we use question entities labeled in datasets,
to retrieve facts in KGs. However, to see the per-
formance with entities identified by Entity Linking
(EL) technique, we further conduct experiments

with the EL model, namely ReFinED (Ayoola et al.,
2022). As shown in Table 5, while the performance
of KAPING w/ EL is slightly decreasing from the
model with labeled entities due to the performance
of EL, we consistently observe meaningful perfor-
mance improvements from a No Knowledge model.

Case Study We conduct a case study in Table 4.
In particular, when the knowledge is not given to
the LM, it hallucinates the factually incorrect an-
swer. However, when related facts are retrieved
and augmented in the prompt, it can generate the
correct answer. In addition, we analyze whether
our KAPING can adapt to the updated knowledge,
motivated by that some knowledge can be changed
over time, while the knowledge in LMs remains
static. To do so, as shown in the last row of Table 4,
we replace object entities of triples, and then for-
ward the prompt with the modified facts to the LM.
Then, the result shows that the LM can generate
the output based on the updated facts, which sug-
gests the potential of adapting LMs without costly
updating their parameters.

Additional Results Note that we further provide
additional experimental results in Appendix B. In
particular, we compare the performance of retriev-
ers in Appendix B.1, conduct the sensitivity anal-
ysis on template texts in Appendix B.2, provide
the results with additional metrics including human
evaluation in Appendix B.3, validate our KAPING
under few-shot setups in Appendix B.4, provide
the analysis on verbalization in Appendix B.5, and
provide the efficiencies in Appendix B.6.

6 Conclusion
In this work, we focused on the limitation of ex-
isting LM prompting schemes, which rely on the
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static knowledge internalized in parameters; there-
fore, when such knowledge are incomplete, inaccu-
rate, and outdated, LLMs may generate factually
incorrect answers. To tackle this challenge, we in-
troduced a novel Knowledge-Augmented language
model PrompTING (KAPING) framework, which
augments the knowledge for the input question
from KGs directly in the input prompt of LLMs,
with the fact retriever to inject only the relevant
knowledge. The proposed framework is completely
zero-shot, and versatile with any LMs, without ad-
ditional parameter updates and training datasets.
We validated that our KAPING yields huge perfor-
mance gaps from the LM prompting model relying
on its internal knowledge, especially with smaller
LMs, on the KGQA tasks. We believe our new
mechanism for augmenting facts from KGs to the
LM prompt will bring substantial practical impacts
in generating knowledge-grounded answers.

Limitations

In this section, we faithfully discuss the current lim-
itations and potential avenues for future research.

First of all, the generation performance of our
knowledge-augmentation framework largely de-
pends on the efficacy of retrievers. In other words,
if the retriever fails to retrieve the relevant facts to
the input question, the prompted LLM, conditioned
on the irrelevant facts, is likely to generate the in-
correct answer (See Figure 3). Similarly, if the re-
triever is not designed to retrieve the facts in 2-hop
neighborhoods of the question entities, LLMs are
less likely to generate the answer requiring 2-hop
knowledge. Note that, for the Mintaka dataset (Sen
et al., 2022), the number of answerable questions
with 1-hop facts is only 40% of total samples. How-
ever, when we include 2-hop triples, the number
of answerable questions becomes 62%, which sug-
gests the necessity of 2-hop retrievals, which is yet
challenging (See Table 2). Thus, future work may
improve the retrieval scheme itself to provide more
accurate facts including multi-hops to the LLM, or
may develop the mechanism to prevent the LLM
from being misled by unrelated facts.

On the other hand, the evaluation metric for the
generation performance of prompted LLMs may be
further improved. Specifically, regarding our target
KGQA tasks, the answer for the question is the en-
tity in KGs. However, the prompted LLMs without
additional training (i.e., zero-shot) tend to gener-
ate the answer as the sentence. For instance, the

label entity for the question (e.g., Where did Alex
Chilton die?) in Table 4 is "New Orleans", how-
ever, the LLMs often generate the sentence-level
output: "Alex Chilton died on March 17, 2010
in New Orleans, Louisiana due to a myocardial
infarction". We currently evaluate the model per-
formance by measuring whether generated tokens
contain the answer entity or not; however, it would
be worthwhile to develop the additional metric to
compare the sentence-level output from LLMs to
the word-level answer in KGs in a more effective
way. Note that we also try other available metrics
(See Appendix B.3), such as F1 and Exact Match
(EM) scores (Rajpurkar et al., 2016), however, they
largely penalize the longer sentences (e.g., EM of
correct examples in Table 4 are 0), thus may not be
appropriate for evaluating LM prompting schemes.

Lastly, since we focus on the improvement of
knowledge injection in LM prompting, we use the
labeled entities in KGQA datasets when evaluating
models, following the existing KGQA evaluation
setups (Cohen et al., 2020; Sen et al., 2021). How-
ever, in real-world applications where the entities
in the question are mostly not provided, we first
need to extract entities in the question with exist-
ing entity linking techniques; therefore, our model
performance depends on the efficacy of entity link-
ing. In particular, regarding the result with entity
linking in Table 5, the portion of answerable ques-
tions from labeled entities in the dataset is 40%,
however, the portion of them with entities from the
entity linking model (Ayoola et al., 2022) is 22%.
Therefore, since the improved entity linking perfor-
mance would contribute to the performance gain of
our KAPING framework, for KGQA tasks, future
work may advance such the entity linking scheme.

Ethics Statement
For a user’s question, our knowledge-augmentation
scheme can allow prompted LMs generate a fac-
tually correct answer, grounded by the provided
knowledge, for KGQA tasks. However, the per-
formance of our KAPING framework is still far
from perfect, due to potential failures in entity link-
ing, fact retrieval, and knowledge generation itself.
Thus, we should be aware whether LMs generate
correct answers, especially on high-risk domains.
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A Additional Experimental Setups

Here we provide additional experimental setups.

A.1 Datasets

We provide the additional details for two Knowl-
edge Graph Question Answering (KGQA) datasets,
namely WebQuestionsSP and Mintaka, which we
use for evaluating baselines and our model.

WebQuestionsSP (WebQSP) A question and its
corresponding answer are annotated with Freebase
entities (Bollacker et al., 2008), and refined with
additional cleaning steps (Yih et al., 2016): filter-
ing out samples with invalid annotations, from the
original WebQuestions dataset (Berant et al., 2013).

Mintaka This dataset (Sen et al., 2022) is de-
signed for complex KGQA tasks including superla-
tive and comparative questions, where question-
answer pairs are collected from crowdsourcing with
Wikidata entities (Vrandecic and Krötzsch, 2014).

A.2 Large Language Models

We describe the specific details of Large Language
Models (LLMs) that we use for LM prompting.

T5 This model (Raffel et al., 2020) is an encoder-
decoder model, and, among different variants, we
use the LM-adapted version1, which is additionally
pre-trained with auto-regressive language modeling
objective (Radford et al., 2018) for LM prompting.

T0 This model (Sanh et al., 2022) is further fine-
tuned from T5 (Raffel et al., 2020) over prompted
text-to-text tasks, for improved zero-shot general-
ization performance with LM prompting.

GPT-3 This model (Brown et al., 2020) is a de-
coder only model, which we access via API2.

OPT This model (Zhang et al., 2022) is a decoder
only model, freely available for researchers.

AlexaTM This model (Soltan et al., 2022) is an
encoder-decoder model, pre-trained with denoising,
which reconstructs the context of 15% dropped
tokens, and auto-regressive, which predicts the next
tokens based on their previous tokens, objectives.

A.3 Evaluation Metrics

We provide more details for evaluation metrics.
1https://github.com/google-research/text-to-text-transfer-

transformer/blob/main/released_checkpoints.md
2https://openai.com/api/

Aliases For generative question answering tasks,
there can be alternative names of entities, called
aliases, and we consider them for evaluation. For
example, one Wikidata entity, "William Shake-
speare" (Q692), has alternative names, such as
"Shakespeare" and "The Bard", and we consider
them when measuring the generation performance.

Filtering Unnamed Entities For evaluating gen-
erative models, the name of entities are required.
However, we sometime cannot find the name of the
answer entities from their ids on Freebase and Wiki-
data KGs. This is because the annotated answer
entities are sometimes not entities but categories,
and the entity ids in KGs could be changed but we
cannot find the KG dumps that are used to anno-
tate datasets. Therefore, we filter out samples that
do not have literal name texts for the answer enti-
ties. This filtering step results in 1,582 test samples
for the WebQSP w/ Freebase dataset, 1,466 test
samples for the WebQSP w/ Wikidata dataset, and
2,814 test samples for the Mintaka dataset.

A.4 Implementation Details
In this subsection, we provide additional details for
implementing our KAPING framework.

Knowledge Injection Schemes There are differ-
ent choices in knowledge injection schemes, from
the number of facts to retrieve, to the number of
hops for candidate triples, to the order of retrieved
facts in the prompt (i.e., where the most relevant
knowledge should be located in the prompt), to
the template of prompts including their instruction
texts. While search spaces of them are extremely
huge, we aim to to find the optimal one (See analy-
ses in Section 5). Specifically, as reported in Sec-
tion 4.5, the best settings we find are the number
of retrieved facts of 10, and the number of hops
for the triples to retrieve from the question enti-
ties of one. Also, we locate more relevant triples
to the input question closer to the question text in
the prompt, inspired by the observation that the
model tends to rewrite answers that appeared at the
end of the prompt (Zhao et al., 2021). Further, we
examine different instruction templates for gener-
ating answers, such as "Question: {x} Answer: "
or "Please answer the following question: {x}",
where x is the literal question. Regarding instruc-
tion templates, we observe that the performances
of LLMs are sensitive across different instructions
(See Appendix B.2), therefore, we try both of them
and then report the best result.
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1-Hop Retrieval 2-Hop Retrieval

Datasets Retrievers MRR Top-1 Top-10 Top-30 MRR Top-1 Top-10 Top-30

WebQSP
w/ Freebase

MPNet 47.27 40.27 60.56 64.48 41.64 33.12 58.47 65.23
TAS-B 51.62 45.76 61.76 64.41 37.08 25.85 58.66 64.48

WebQSP
w/ Wikidata

MPNet 43.46 33.36 64.39 70.67 40.42 30.56 62.62 71.56
TAS-B 46.68 37.65 65.08 70.67 41.92 32.20 62.21 72.17

Mintaka
w/ Wikidata

MPNet 13.01 7.50 25.44 35.43 13.00 6.82 26.65 40.01
TAS-B 13.21 7.57 25.20 35.04 12.36 6.79 24.13 36.07

Table 6: Results of two different retrievers, namely MP-
Net (Song et al., 2020) and TAS-B (Hofstätter et al., 2021).

Retrieval Models To augment only the relevant
triples to the input question under the zero-shot
setup, we use off-the-shelf text-based retriever mod-
els. Specifically, we experiment with two different
types of retrievers: symmetric retriever that uses
the same encoder for question and triples; asymmet-
ric one that uses individual encoders for them. For
the symmetric retriever, we use MPNet (Song et al.,
2020), which is trained on 1B sentence pairs3. Also,
for the asymmetric retriever, we use TAS-B (Hof-
stätter et al., 2021), which is trained on the MS-
MARCO dataset (Nguyen et al., 2016). We mainly
report the results with MPNet, unless noted, since
there performances are similar (See Appendix B.1).

A.5 Hyperparameters and Resources

We evaluate all models with PyTorch (Paszke et al.,
2019) and Transformers (Wolf et al., 2020) li-
braries. We set the maximum number of input
token lengths of LMs as 1,024 and the maximum
number of output token lengths as 128, for encoder-
decoder models. For decoder-only models, we set
the maximum token lengths as 1,152 (1,024 + 128).
For computing resources, we run all models with
8 V100 GPUs, having 8 × 32GB GPU memory,
in which every model is runnable within one day.
Note that, due to the expensive computational costs
for model prompting with LLMs, we run every
model one time, and then report the results, with-
out additional hyperparameter tuning unless noted.

B Additional Experiment Results

In this section, we provide additional experimental
results, on the comparisons of available text-based
retrieval models in Section B.1, the sensitive analy-
ses on template texts of the prompt in Section B.2,
and the extra evaluation metrics in Section B.3.

B.1 Performance Comparisons of Retrievers

In Table 6, we compare existing symmetric and
asymmetric retrievers named MPNet (Song et al.,

3https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

Datasets Models Templates T5 (11B) T0 (11B) OPT (6.7B) GPT-3 (6.7B)

WebQSP
w/ Freebase

No Knowledge
Default 9.48 34.70 29.77 44.63
Please 3.03 40.77 18.71 42.48

KAPING
Default 24.91 62.58 43.93 60.37
Please 17.45 61.19 34.07 60.43

WebQSP
w/ Wikidata

No Knowledge
Default 15.21 38.88 33.77 48.50
Please 5.12 44.20 22.71 48.29

KAPING
Default 35.47 58.73 53.34 60.44
Please 20.12 56.89 48.16 59.69

Mintaka
w/ Wikidata

No Knowledge
Default 17.06 22.60 27.19 35.00
Please 5.47 23.74 17.70 34.65

KAPING
Default 22.85 29.50 32.37 33.55
Please 14.68 29.18 28.18 35.61

Table 7: Results with varying instruction templates, for
various LLMs on the WebQSP and Mintaka datasets.

2020) and TAS-B (Hofstätter et al., 2021), ex-
plained in Section A.4, on 1- and 2-hop retrievals.
As shown in Table 6, we observe similar perfor-
mances between symmetric (MPNet) and asym-
metric (TAS-B) retrievers, which suggests that our
simple graph-to-text verbalization is robust across
different text-based retrieval schemes. Note that,
since retrieval performances of both are similar, we
conduct experiments mainly with MPNet, to reduce
expensive computational costs for GPU usages.

B.2 Sensitivity Analyses on Template Texts

Following the observation in Zhao et al. (2021),
the performances of LLMs vary across different
templates in the prompt. In our experiments, since
it is computationally infeasible to try all different
prompt templates on various LLMs, we consider
two types of question templates, described in Ap-
pendix A.4. In particular, for the question x, we
use either "Question: {x} Answer: ", which we
refer to as default template, or "Please answer the
following question: {x}", referred to as please tem-
plate. As shown in Table 7, for the T5 model, the
default template is superior than the please tem-
plate. Meanwhile, for the OPT model, the please
template is superior than the other. However, for
T0 and GPT-3 models, performance differences be-
tween default and please templates are marginal.
Therefore, these results suggest that we may need
to select instruction templates carefully across dif-
ferent LLMs for achieving optimal performances.

Additionally, regarding the knowledge-injection
template described in Section 3.2, we also observe
that the generation performance of GPT-3 depends
on the instruction text in the template. In particular,
we mainly conduct experiments with the template:
"Below are facts in the form of the triple meaning-
ful to answer the question."; however, we observe
the performance degeneration when the augmented
triples are irrelevant to the given question as shown
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T5 (0.8B) T5 (3B) T5 (11B) OPT (2.7B) OPT (6.7B) OPT (13B)

Datasets Methods Acc. F1 EM Acc. F1 EM Acc. F1 EM Acc. F1 EM Acc. F1 EM Acc. F1 EM

WebQSP
w/ Freebase

No Knowledge 6.95 5.20 0.00 13.40 8.11 0.00 9.48 8.25 0.06 19.85 7.20 0.38 29.77 10.60 0.06 28.38 7.92 0.70
Random Knowledge 21.55 9.74 0.00 19.15 8.08 0.00 17.57 7.50 0.19 28.07 13.33 0.06 31.73 13.01 0.00 33.31 12.41 0.00
Popular Knowledge 15.30 8.75 0.06 16.88 8.19 0.00 18.39 8.95 0.19 28.32 13.78 0.06 28.13 12.21 0.00 24.21 9.86 0.00
Generated Knowledge 6.19 7.96 0.00 7.84 7.56 0.06 6.76 6.51 0.00 7.46 4.59 0.00 11.50 4.95 0.00 8.22 4.59 0.00
KAPING (Ours) 34.70 15.39 0.00 25.41 8.31 0.06 24.91 11.02 0.32 41.09 16.32 0.00 43.93 15.15 0.00 40.20 13.32 0.00

WebQSP
w/ Wikidata

No Knowledge 10.30 5.60 0.00 18.42 8.48 0.00 15.21 8.94 0.07 23.94 7.90 0.48 33.77 11.41 0.07 32.40 8.45 0.75
Random Knowledge 17.94 7.81 0.00 22.78 7.74 0.07 24.28 9.41 0.34 37.24 16.78 0.00 35.61 12.54 0.00 38.27 14.61 0.07
Popular Knowledge 15.35 8.01 0.00 20.80 8.48 0.00 20.74 9.20 0.14 30.83 15.65 0.00 30.01 13.32 0.00 27.83 11.95 0.00
Generated Knowledge 11.94 8.64 0.00 13.30 8.19 0.07 12.28 7.11 0.00 11.26 5.06 0.00 17.53 5.60 0.00 14.19 4.94 0.00
KAPING (Ours) 23.67 10.46 0.00 40.38 13.25 0.00 35.47 11.50 0.34 49.52 20.17 0.00 53.34 16.62 0.00 51.57 16.73 0.14

Mintaka
w/ Wikidata

No Knowledge 11.23 6.77 0.00 14.25 9.81 0.00 17.06 10.28 0.00 19.76 6.63 0.28 27.19 10.60 0.04 26.83 9.82 0.43
Random Knowledge 17.59 10.48 0.18 18.19 9.24 0.00 18.83 9.82 0.57 28.11 14.47 0.00 26.58 12.80 0.00 28.36 14.02 0.11
Popular Knowledge 17.56 9.88 0.00 18.09 10.47 0.07 18.73 10.07 0.53 26.97 13.76 0.00 27.08 12.95 0.07 23.10 11.28 0.00
Generated Knowledge 13.61 9.23 0.00 14.61 8.85 0.00 14.29 7.51 0.04 11.87 6.34 0.00 14.96 5.81 0.04 16.24 7.14 0.00
KAPING (Ours) 19.72 11.36 0.04 22.00 11.17 0.00 22.85 10.91 0.43 32.94 14.99 0.00 32.37 14.37 0.04 33.37 14.65 0.11

T0 (3B) T0 (11B) AlexaTM (20B) GPT-3 (6.7B) GPT-3 (175B) Average

Datasets Methods Acc. F1 EM Acc. F1 EM Acc. F1 EM Acc. F1 EM Acc. F1 EM Acc. F1 EM

WebQSP
w/ Freebase

No Knowledge 21.43 22.70 9.99 40.77 46.10 34.39 46.79 17.65 0.00 44.63 21.12 1.77 63.59 32.75 8.47 29.55 17.05 5.07
Random Knowledge 32.62 36.48 26.55 51.20 55.98 46.90 57.37 20.91 0.00 51.01 28.04 6.19 65.87 41.28 18.46 37.22 22.43 8.94
Popular Knowledge 27.05 31.38 20.23 47.22 52.44 42.04 54.91 20.45 0.00 45.58 25.94 4.87 62.26 38.84 17.00 33.48 20.98 7.68
Generated Knowledge 19.41 23.15 10.56 38.81 43.43 31.23 35.13 14.42 0.00 45.89 27.98 9.48 62.14 38.79 17.57 22.67 16.72 6.26
KAPING (Ours) 52.28 55.27 48.04 62.85 66.11 58.53 67.67 23.16 0.00 60.37 32.89 8.34 73.89 43.15 20.67 47.94 27.28 12.36

WebQSP
w/ Wikidata

No Knowledge 24.56 24.20 10.98 44.20 49.27 37.65 42.41 16.43 0.00 48.50 24.01 3.96 67.60 34.31 10.30 32.85 18.09 5.84
Random Knowledge 28.85 33.08 22.37 47.68 52.34 42.50 55.63 19.88 0.06 52.05 25.37 2.18 60.64 36.88 13.92 38.27 21.49 7.41
Popular Knowledge 24.83 27.89 16.03 48.02 52.84 41.88 53.92 19.77 0.00 47.41 24.36 3.75 63.37 37.08 14.73 34.83 20.78 6.96
Generated Knowledge 22.92 25.28 11.80 41.34 45.70 33.83 31.16 13.36 0.00 48.77 29.72 11.19 65.89 39.52 17.87 26.42 17.56 6.80
KAPING (Ours) 49.86 50.75 41.27 58.73 61.90 53.27 65.04 22.72 0.00 60.44 31.18 6.82 69.58 41.83 19.71 50.69 27.01 11.05

Mintaka
w/ Wikidata

No Knowledge 14.75 20.84 11.34 23.74 28.69 20.86 41.97 17.05 0.00 34.65 17.67 2.31 56.33 26.77 6.11 26.16 14.99 3.76
Random Knowledge 16.10 23.08 14.14 26.15 31.70 22.85 46.02 17.02 0.00 32.98 17.55 1.39 51.56 25.98 6.29 28.22 16.92 4.14
Popular Knowledge 16.74 23.13 14.53 27.15 32.17 23.45 46.41 17.31 0.00 32.48 20.07 4.41 53.16 27.44 6.86 27.95 17.14 4.54
Generated Knowledge 14.46 20.08 11.98 23.13 27.34 18.76 34.58 14.91 0.00 33.12 18.29 3.09 55.65 30.69 11.73 22.41 14.20 4.15
KAPING (Ours) 20.68 27.80 18.12 29.50 34.83 26.23 49.08 17.90 0.00 35.61 20.80 5.79 56.86 28.63 7.64 32.27 18.86 5.31

Table 8: LM prompting results with additional metrics: F1 and Exact Match (EM), along with accuracy (Acc.) scores.

in Figure 3. Therefore, to improve the performance
on incorrect retrievals, we further experiment with
the additional template: "Below are facts in the
form of the triple that might be meaningful to
answer the question.". Then, the GPT-3 (175B)
model with the previous template achieves 74.16
and 42.80 accuracies for correct and incorrect re-
trievals, respectively. Meanwhile, the same model
with the instruction template containing "might be"
achieves 72.91 and 51.38 accuracies for correct and
incorrect retrievals, respectively. Thus, these re-
sults suggest that the knowledge-injection template
with "might be" statement makes the model less
selective on the augmented triples while focusing
more on the internalized knowledge in parameters,
thus improving the incorrect retrieval performance
while degenerating the correct retrieval.

B.3 Additional Evaluation Metrics

As described in Section 4.4, we evaluate the perfor-
mance of LLMs based on whether generated tokens
for the input question contain answer entities or not.
This is because, as explained in Section 6 of the
limitation, pre-trained LLMs without further fine-
tuning tend to generate the answer as the sentence,
while the answer for the KGQA task is the entity
consisting of few tokens. In this subsection, we
further provide experiment results with additional
evaluation metrics (Rajpurkar et al., 2016), namely
F1 and Exact Match (EM) scores. Note that they
are frequently used for evaluating extractive QA

models, whose goal is to classify the answer span in
the given context, without generation. As shown in
Table 8, since the F1 score penalizes the longer sen-
tence too much, the performances of LLMs evalu-
ated by F1 scores are largely decreasing, except for
the T0 model that is further fine-tuned by prompted
text-to-text tasks, including QA, thus capable of
generating entity-level outputs. Similarly, except
for the T0, it is highly suboptimal to evaluate the
performance of prompted LMs with EM scores,
due to differences in output lengths. Thus, it would
be promising direction to further develop better
evaluation metrics for KGQA under LM prompting
schemes, which we leave as future work.

While such F1 and EM scores, used for extrac-
tive QA tasks, might be suboptimal to evaluate
generative LM prompting schemes, our KAPING
framework consistently outperforms all the other
baselines based on averaged F1 and EM scores as
well, by large margins. Note that the superior EM
and F1 scores of the generated knowledge base-
line with GPT-3 on few cases, even though they
are rarely happen, is because, for this baseline, the
GPT-3 model generates entity-level outputs, unlike
ours that generates sentence-level outputs. In other
words, the sentence-level outputs from our KAP-
ING is often longer than the answer entities, since
our model is grounded by retrieved facts from KGs
as shown in Table 15; however, longer sentences
penalize F1 and EM scores. More specifically, the
average number of output sequence lengths of the
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LLMs Models Correct Semi-Correct Incorrect

T0 (3B) No Knowledge 7 1 22
KAPING (Ours) 17 0 13

T0 (11B) No Knowledge 14 0 16
KAPING (Ours) 20 0 10

GPT-3 (6.7B) No Knowledge 12 4 14
KAPING (Ours) 19 4 17

GPT-3 (175B) No Knowledge 22 1 7
KAPING (Ours) 26 1 3

Table 9: Human evaluation results, where we randomly
sample 30 examples from the WebQSP w/ Freebase dataset.

Models Shots T5 (3B) OPT (6.7B) T0 (11B)

No Knowledge
Zero-Shot 18.42 33.77 44.20
One-Shot 18.28 36.90 41.13
Three-Shots 17.87 37.65 37.38

KAPING (Ours)
Zero-Shot 40.38 53.34 58.73
One-Shot 18.42 52.25 48.70
Three-Shots 10.16 50.34 43.45

Table 10: KGQA results with few-shot learning. We vary
the number of examples (i.e., shots) in the prompt, and report
the performances on the WebQSP w/ Wikidata dataset.

generated knowledge model is 67.77, meanwhile,
ours is 74.92. However, when we compare the gen-
erated knowledge baseline to our KAPING with
other LLMs but also with other metrics, our KAP-
ING significantly outperforms this baseline.

Human Evaluation Additionally, similar to the
previous generative QA work (Roberts et al., 2020),
we manually inspect 30 samples from the WebQSP
w/ Freebase dataset, to see whether the generated
sentence is factually correct to the input question.
For this experiment, we evaluate four LLMs: T0
(3B), T0 (11B), GPT-3 (6.7B), and GPT-3 (175B),
with no knowledge baseline and our KAPING.
Also, we use three different ratings for each genera-
tion example: 1) we label it as correct if all informa-
tion in the generated sentence is factually correct to
the question; 2) we label it as semi-correct if some
information in the generated sentence is factually
incorrect which yet contains at least one answer
entity; 3) we label it as incorrect for all the other
cases. As shown in Table 9, we observe that our
KAPING framework can generate the factually cor-
rect answer more, compared to the no knowledge
baseline, which are consistent with the results from
available evaluation metrics in Table 1 and Table 8.
We provide generated answers, which we use for
human evaluation in Table 9, for GPT-3 (175B) and
T0 (3B) models in Table 15 and Table 16.

B.4 Performances of Few-Shot Learning

While the focus of our work is zero-shot as outlined
in the main paper, in this subsection, we addition-
ally extend this zero-shot setting to the few-shot

Retrievers MRR Top-1 Top-10 Top-30

Random Retrieval 9.50 3.62 22.58 40.72
Popular Retrieval 8.52 4.57 15.89 35.47
Retrieval with Free-Form Texts 41.33 31.11 62.07 69.92
Retrieval with Triple-Form Texts 43.46 33.36 64.39 70.67

Table 11: Retrieval results with different verbalizers. We
use the graph-to-text transformation model proposed in Ma
et al. (2022) for obtaining free-form texts. For triple-form
texts, we use the verbalization technique described in Sec-
tion 3.2. MPNet (Song et al., 2020) is used as the retriever,
and the performance is reported on WebQSP w/ Wikidata.

Retrievers T5 (3B) OPT (6.7B) T0 (3B) T0 (11B)

No Knowledge 18.42 33.77 24.56 44.20
KAPING with Free-Form Texts 43.25 53.00 47.75 53.21
KAPING with Triple-Form Texts 40.38 53.34 49.86 58.73

Table 12: KGQA results with different verbalizers. We use
the graph-to-text transformation model proposed in Ma et al.
(2022) for obtaining free-form texts. For triple-form texts,
we use the verbalization technique described in Section 3.2.
We then inject the verbalized triples in the input prompt. We
report the generation accuracy on WebQSP w/ Wikidata.

setting, where we prepend the few examples about
the input-output pairs in the prompt of LLMs. As
shown in Table 10, for the KGQA task, the per-
formances are decreasing when we increase the
number of samples (i.e., shots) in the input prompt,
except for the OPT model. We suggest this might
be because, the injected examples in the prompt are
less relevant to the given factual question, mislead-
ing the model to focus on unrelated contexts on the
injected examples. This phenomenon is even more
severe in our KAPING framework; this is similarly
because our KAPING augments the retrieved facts,
and if the facts on the other few-shot examples are
further injected in the input prompt, the model is
more likely to be confused by those irrelevant facts.
For the OPT model, we observe a slight perfor-
mance improvement in the No Knowledge model,
since few injected examples provide a hint on how
the output format looks like. We leave further ex-
tending our zero-shot KAPING framework to the
few-shot learning mechanism as future work.

B.5 Analyses on Knowledge Verbalization
As described in the Knowledge Verbalization para-
graph of Section 3.2, we use the linear triple ver-
balization technique, which simply concatenates
the tokens of subject, relation, and object in the
triple, instead of using the sophisticated techniques
that use the particular graph-to-text transformation
methods (Oguz et al., 2022; Ma et al., 2022). This
is because, we observe that our simple verbaliza-
tion technique works well, and, in this subsection,
we concretely show performance differences be-
tween our and existing verbalization techniques in
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Relative Time
Models # of Augmented Knowledge T5 (0.8B) T5 (3B) T5 (11B) OPT (2.7B) OPT (6.7B) OPT (13B) T0 (3B) T0 (11B)
No Knowledge 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Document (Web)
Augmentation

1 1.20 1.45 2.13 1.43 1.65 1.63 1.60 2.29
5 2.78 4.16 6.80 3.42 3.90 3.66 2.98 9.01
10 OOL OOL OOL 6.44 7.36 6.67 OOL OOL
15 OOL OOL OOL 9.35 10.71 OOM OOL OOL
30 OOL OOL OOL OOL OOL OOL OOL OOL

KAPING (Ours)

1 1.08 0.97 1.35 1.12 1.21 1.19 0.49 1.28
5 1.22 1.50 2.13 1.48 1.65 1.60 0.73 2.18
10 1.53 2.10 3.11 1.89 2.20 2.10 1.07 3.83
15 1.84 2.74 4.02 2.36 2.76 2.58 1.54 4.59
30 2.82 4.42 6.05 3.77 4.28 4.06 2.49 7.76

Table 13: Efficiencies results, where we measure the wall-clock time of every model for generating answers on the WebQSP
w/ Wikidata dataset. The document augmentation model (Lazaridou et al., 2022) augments documents listed in their paper,
meanwhile, ours augments relevant triples to the question retrieved from KGs. We set the maximum number of input sequences
for T5 and T0 models as 1,024, and for OPT as 2,048. OOL denotes the out-of-length errors, where the input prompt length
exceeds the maximum input token lengths. OOM denotes the out-of-memory error on the machine having eight V100 GPUs.

both the knowledge retrieval and injection steps.
Note that, for the comparison, we use the trained
knowledge verbalizer proposed in Ma et al. (2022).

We first provide the fact retrieval performances
across the different knowledge verbalization meth-
ods in Table 11. As shown in Table 11, we observe
that our simple triple-form text verbalization is su-
perior to the free-form text verbalization in the fact
retrieval. This might be because the free-form ver-
balization model, transforming the graph to the text,
might generate the incorrect output that is semanti-
cally different from the original triple, leading to
the degenerated retrieval performances.

On the other hand, we also report the genera-
tion results of KGQA with two different knowl-
edge verbalizers on our KAPING framework in Ta-
ble 12. As shown in Table 12, we observe that the
performances between the free-form texts and the
triple-form texts are comparable when augmented
to LLMs with our KAPING framework. More
specifically, for the T5 model, which is pre-trained
on the unlabeled corpus without additional instruc-
tion tuning, the free-form text works well. Mean-
while, for the T0 model, which is further fine-tuned
with natural language instruction tasks, it is benefi-
cial to use our linear triple verbalizaton scheme.

B.6 Additional Efficiency Comparisons

In this subsection, we further provide efficiency
results of all LLMs that we use in our main ex-
periments across three different models: no knowl-
edge model, document augmentation (i.e., web aug-
mentation) model (Lazaridou et al., 2022), and our
KAPING framework. We note that, as discussed
in the Knowledge-Augmented LMs paragraph of
Section 2, the web augmentation method augments
documents searched from Google with the few-
shot learning setup. However, as we discuss there,
this web augmentation is orthogonal to ours, since
we use the completely different knowledge source

(i.e., KGs) and our work is under the zero-shot
learning setup; from which our core mechanisms
of how to retrieve and augment relevant knowledge
with LM prompting is clearly different and novel.
Furthermore, as discussed in Section 2, this web
augmentation method is infeasible to experimen-
tally compare as well, since individual researches
cannot freely access the Google Search API to re-
trieve documents for every question in the world.
Also, it is computationally expensive to augment
documents consisting of hundreds to thousands to-
kens (Lazaridou et al., 2022) in LLMs, unlike our
triple cases consisting of few tokens. In this sub-
section, to experimentally validate the latter issue,
we further make the comparisons of computational
costs between document augmentation and our fact
augmentation. In particular, as shown in Table 13,
the answer generation speed of the web augmen-
tation mechanism is significantly slower than our
triple augmentation mechanism, since it requires
more time to encode and condition documents in
the input prompt compared to triples. Also, fol-
lowing the original paper (Lazaridou et al., 2022),
the suggested number of documents to augment is
15, however, in the most cases, we observe out-of-
length (OOL) errors, since the length of the input
prompt with 15 documents is longer than the maxi-
mum input sequence length of LLMs. While our
fact augmentation scheme is slower than the model
without augmentation, we believe that, given the
substantially improved performance in Table 1 and
the high efficiency compared to document augmen-
tation in Table 13, KAPING is highly beneficial.

B.7 Result Analyses Across Question Types

For the Mintaka dataset (Sen et al., 2022), each
question is belong to one of the following cate-
gories: Generic, Multihop, Intersection, Differ-
ence, Comparative, Superlative, Ordinal, Count,
and Yes/No, which defines the complexity of ques-
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tions. Therefore, to see which complexity category
our knowledge-augmentation framework is helpful,
and which category we should further improve on,
we breakdown the performance of LLMs according
to question types in Table 14. Note that, following
the evaluation protocol in Section A.3 where we
filter out questions that do not have answer names,
the Yes/No type questions are not considered.

As shown in the last row of Table 14 where we
average the performance of all LLMs per category,
our KAPING framework brings significant perfor-
mance improvements on all categories except for
the Comparative type. One particular comparative-
type question is "Who has won more NBA Season
MVPs, LeBron James or Steph Curry", and, since it
is hard to retrieve and associate relevant triples for
such the comparative-type question, our KAPING
underperforms simple knowledge-injection base-
lines: random knowledge and popular knowledge.
However, the KG-augmented models (e.g., random
knowledge, popular knowledge, and our KAPING)
outperform other baselines, which suggests that
knowledge-augmentation mechanism is meaning-
ful to tackle comparative questions, and one might
further improve the retrieval scheme or the input
prompt itself, which we leave as future work.

On the other point we would like to mention
is that, for the Count category, performances of
T0 models are significantly low compared to other
LLMs. This is surprising, since T0 models are fur-
ther fine-tuned on the prompted text-to-text tasks,
and they have strong performances on the other cat-
egories, thanks to fine-tuning. We believe such
the low performance on the Count category is
because, in the fine-tuning of T0 models, there
are no prompted tasks related to counting, which
makes T0 models hard to count particular instances.
Therefore, to further improve the generalization
performance of T0 models, one may additionally
include more diverse prompted tasks, including the
counting one, during the fine-tuning process.

B.8 Generation Examples

We provide generation examples for comparisons
between the no knowledge baseline and our KAP-
ING framework in Table 15 and Table 16 for GPT-
3 and T0 language models, respectively. We also
provide retrieved and generation examples of our
KAPING framework with four different LLMs: T5
(11B), OPT (13B), T0 (11B), and GPT-3 (175B)
on the WebQSP w/ Wikidata dataset in Table 17.

C Discussions on Prompt Design/Tuning

We discuss differences between prompt design and
prompt tuning, along with additional relevant work
in the prompt tuning literature. As described in
Section 3.1, given an input question, the large lan-
guage model can generate the answer text, which is
called LM prompting (Brown et al., 2020; Liu et al.,
2021). However, to further enhance the perfor-
mance of models under the LM prompting scheme,
prior work particularly designs the content in the
prompt, which is called prompt design (Shin et al.,
2020; Lu et al., 2022). More specifically, Shin et al.
(2020) additionally include the particular trigger
tokens, meaningful to the down-stream tasks, in the
prompt, and Lu et al. (2022) change the order of
demonstrations in the prompt under the few-shot
LM prompting setup. Our method is in line with
such the prompt design literature, and we introduce
the method of knowledge augmentation in the in-
put prompt with facts from KGs, to allow LLMs
condition on factual knowledge for zero-shot QA.

On the other hand, there exists prompt tuning
literature (Lester et al., 2021a), which additionally
trains the prompt-relevant parameters with super-
vised learning objectives, while keeping the pa-
rameters of LLMs unchanged. While this prompt
tuning approach can be beneficial in few-shot learn-
ing scenarios where the model is additionally tuned
with few training examples, it is not suitable for our
zero-shot learning. Also, unlike the prompt design
approach, it is difficult to interpret and manipulate
the prompt represented in the embedding space.

Note that, recently, there are few knowledge-
aware prompt tuning work (Chen et al., 2022b; Hu
et al., 2022; Chen et al., 2022a), and, while they are
fundamentally different from our LM prompting
(i.e., prompt design), we additionally discuss them.
First of all, Chen et al. (2022b) tackle the relation
extraction problem with prompt tuning, where they
propose to embed the particular words related to the
relation class in the embedding space. For example,
for the relation type to classify: "county of birth",
they embed person and country information in the
representation space with training signals from su-
pervised learning, for improved relation classifica-
tion performance. Also, Hu et al. (2022) tackle the
text classification task with prompt tuning, where
they propose to not only consider the classifica-
tion label word itself, but also the label word’s
related words. For example, for the sentence label
"science", they further consider its related words:
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"physics" and "mathematics", defined in particular
knowledge bases, such as WordNet (Pedersen et al.,
2004) and ConceptNet (Speer et al., 2017). Lastly,
Chen et al. (2022a) tackle the similar text classifica-
tion task with prompt tuning, where they propose
to retrieve the data instance (i.e., a sentence and its
label) in the training dataset based on the retriever
training with supervised classification objectives.

However, all the above knowledge-aware prompt
tuning methods are clearly different from our pro-
posed KAPING framework. At first, they are re-
stricted to cloze-style prediction, in which they
first include the particular mask token in the in-
put prompt, and then classify the label (e.g., senti-
ment of the sentence, or relation in the given sen-
tence) of the mask token, similar to the masked
language modeling objective (Devlin et al., 2019;
Liu et al., 2019). Therefore, their cloze-style pre-
diction schemes cannot be used for QA tasks, since
the answer of the user’s question is not the single
token, and it is unclear to convert the predicted
label token from the masked token to all differ-
ent answers in the world. In contrast to them, our
KAPING does not rely on the masked token clas-
sification scheme, thus ours is more flexible, and
not restricted to cloze-style classification; suitable
for answering any user’s questions. Furthermore,
some of them (Chen et al., 2022a,b) rely on training
signals from the training dataset with supervised
learning, meanwhile, ours is completely zero-shot.
While Chen et al. (2022a) show the model’s zero-
shot ability, they require the training dataset as
discussed in their paper, thus not suitable for our
zero-shot QA as well. Lastly, we augment the
factual knowledge by matching the entity in the
question to its associated triples in KGs, however,
prior work considers different knowledge source,
which might not be helpful for QA tasks, such as
relationships between words (Hu et al., 2022), rela-
tionships between the relation class and particular
words (Chen et al., 2022b), and a pair of sentence
and its label in training data (Chen et al., 2022a).
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LLMs Models Generic (557) Multihop (220) Intersection (396) Difference (349) Comparative (223) Superlative (384) Ordinal (307) Count (378)

T5 (0.8B)

No Knowledge 7.00 3.64 8.08 7.45 69.06 2.86 2.61 10.05
Random Knowledge 11.49 5.45 8.33 11.75 86.10 6.77 8.14 26.98
Popular Knowledge 13.82 5.91 11.62 8.60 87.00 8.33 5.86 22.22
Generated Knowledge 7.72 2.73 5.81 8.02 82.06 3.39 1.95 21.43
KAPING (Ours) 18.85 6.36 15.40 10.32 83.41 9.64 7.49 24.60

T5 (3B)

No Knowledge 10.41 4.09 9.60 9.74 71.30 5.47 4.56 17.99
Random Knowledge 17.41 6.82 13.64 14.61 55.16 8.59 7.82 30.42
Popular Knowledge 14.90 6.82 14.90 13.75 57.40 8.85 10.75 28.84
Generated Knowledge 7.90 3.64 8.33 8.31 82.51 4.69 3.91 21.96
KAPING (Ours) 25.31 12.27 20.96 15.76 47.98 10.68 9.77 35.71

T5 (11B)

No Knowledge 10.23 5.00 10.35 8.60 92.83 7.55 3.58 24.87
Random Knowledge 20.29 7.27 11.87 12.89 60.99 10.68 9.12 27.51
Popular Knowledge 16.88 7.27 12.88 13.18 72.20 9.11 10.42 24.34
Generated Knowledge 7.72 2.73 5.30 7.45 89.24 3.91 2.28 22.49
KAPING (Ours) 24.42 8.64 18.69 16.05 65.92 11.98 11.07 34.66

OPT (2.7B)

No Knowledge 24.06 10.00 16.67 10.32 54.26 20.05 14.98 14.29
Random Knowledge 29.44 13.18 23.74 18.34 93.27 15.62 14.01 34.13
Popular Knowledge 28.90 14.09 20.45 18.62 90.58 12.76 13.36 34.13
Generated Knowledge 7.90 6.82 10.35 8.02 44.84 4.19 4.56 20.11
KAPING (Ours) 33.75 15.91 34.85 20.63 93.27 15.89 19.54 43.65

OPT (6.7B)

No Knowledge 29.62 12.73 37.37 20.06 62.78 20.83 22.80 16.93
Random Knowledge 23.52 14.09 19.44 20.92 89.69 13.02 15.31 36.77
Popular Knowledge 24.42 13.18 24.24 22.92 83.86 14.84 17.26 32.80
Generated Knowledge 11.67 8.64 16.92 12.61 43.95 7.55 6.51 20.90
KAPING (Ours) 33.39 11.36 33.08 20.92 87.44 17.19 20.2 45.77

OPT (13B)

No Knowledge 33.57 16.82 34.85 18.91 48.43 19.27 19.22 22.75
Random Knowledge 31.60 17.27 26.77 23.78 59.19 16.93 20.85 35.45
Popular Knowledge 22.98 13.64 24.49 18.34 59.64 11.72 12.05 30.69
Generated Knowledge 17.95 10.00 19.44 12.03 47.98 8.07 9.77 12.70
KAPING (Ours) 40.04 17.27 35.61 23.50 56.05 19.53 27.36 45.24

T0 (3B)

No Knowledge 13.82 10.00 14.39 10.89 49.33 14.06 8.79 7.94
Random Knowledge 19.57 9.09 15.66 12.32 58.30 8.59 9.77 6.88
Popular Knowledge 19.21 10.00 18.69 12.03 60.09 8.33 8.79 8.73
Generated Knowledge 13.11 11.36 12.63 12.61 54.71 12.50 10.10 3.70
KAPING (Ours) 29.98 10.45 26.01 12.32 55.16 12.24 11.40 10.85

T0 (11B)

No Knowledge 33.93 18.18 33.08 18.05 54.71 19.53 13.68 1.59
Random Knowledge 36.98 22.27 34.60 21.78 58.74 18.75 19.22 1.59
Popular Knowledge 38.42 24.09 38.64 24.36 58.74 17.45 18.57 1.06
Generated Knowledge 33.21 17.73 34.09 17.48 51.12 18.23 14.33 0.79
KAPING (Ours) 45.60 27.27 41.16 22.35 56.05 18.75 23.45 1.59

GPT-3 (6.7B)

No Knowledge 40.39 28.18 34.34 24.36 74.44 26.04 24.76 33.07
Random Knowledge 39.68 26.82 30.05 23.78 77.13 19.53 23.13 33.86
Popular Knowledge 40.57 25.00 32.83 22.64 70.85 21.35 21.17 31.48
Generated Knowledge 40.75 23.64 33.59 28.08 71.75 20.83 22.15 30.16
KAPING (Ours) 46.14 24.09 33.33 24.36 77.58 19.53 24.76 35.71

GPT-3 (175B)

No Knowledge 71.10 52.73 64.90 49.00 80.72 42.45 50.81 38.62
Random Knowledge 62.30 46.82 56.31 43.55 86.10 38.54 48.21 36.51
Popular Knowledge 68.40 54.09 58.84 46.42 81.61 37.76 47.88 33.60
Generated Knowledge 70.56 56.82 64.14 48.14 85.65 44.79 49.19 29.63
KAPING (Ours) 69.48 56.36 63.89 48.14 82.96 45.57 49.84 41.01

Average

No Knowledge 27.41 16.14 26.36 17.74 65.79 17.81 16.58 18.81
Random Knowledge 29.23 16.91 24.04 20.37 72.47 15.70 17.56 27.01
Popular Knowledge 28.85 17.41 25.76 20.09 72.20 15.05 16.61 24.79
Generated Knowledge 21.85 14.41 21.06 16.28 65.38 12.82 12.48 18.39
KAPING (Ours) 36.70 19.00 32.30 21.44 70.58 18.10 20.49 31.88

Table 14: Results across question types – Generic, Multihop, Intersection, Difference, Comparative, Superlative, Ordinal, and
Count – in the Mintaka dataset with various LLMs, where we report the generation accuracy. The number inside the parentheses
in the first row denotes the number of data instances per category. We provide averaged results in the last row, namely Average.
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Table 15: Generation examples of GPT-3 (6.7B) on the WebQSP w/ Freebase dataset, where we randomly sample 30 examples.

Index Question Answer Entities No Knowledge KAPING

1 who is tatyana ali parents? [Sheriff Ali, Sonia Ali] Tatyana Ali’s parents are unknown. Tatyana Ali’s parents are Sheriff Ali

and Sonia Ali.

2 what language do most

australians speak?

[English Language, Esperanto

Language, Lojban]

Most Australians speak English. Most Australians speak English.

3 who played darth vader in

the first movie?

[David Prowse, James Earl

Jones]

James Earl Jones Mark Hamill

4 who does michael keaton

play in cars?

[Chick Hicks, Chick Hicks] Michael Keaton plays the role of Larry

"Lester" Fenton in Cars.

The role of Michael Keaton in Cars is

that of a voice actor.

5 what was pink floyd’s first

album?

[Psychedelic Session-

compilation album]

The first album released by Pink Floyd

was the self-titled "Pink Floyd" in 1965.

Pink Floyd’s first album was called

"Pink Floyd".

6 where is walton county

ga?

[Atlanta-Sandy Springs-

Marietta, GA Metropolitan

Statistical Area, Georgia]

Walton County is located in Georgia. According to the US Census 2000, Wal-

ton County is located in between 30641

and 30025, in Gratis, Georgia.

7 what kind government

does egypt have?

[Semi-presidential system, Pro-

visional government]

Egypt has a presidential system. Egpyt has a semi-presidential system of

government.

8 where is english spoken

around the world?

[Bahamas, Bangladesh, ...,

United Kingdom, United States

of America, Australia, New

Zealand, Canada]

English is spoken around the world. English is spoken in different countries

around the world. England, United

States of America, United Kingdom

9 who did steve spurrier

play pro football for?

[San Francisco 49ers, Tampa

Bay Buccaneers]

Steve Spurrier played professional foot-

ball for the Tampa Bay Buccaneers

from 1976 to 1978.

St. Louis Rams

10 what kind of music did

franz liszt compose?

[Opera, Romantic music, Art

song, Classical music, Cham-

ber music]

Franz Liszt composed a great deal of

classical music, including symphonies,

operas, and piano sonatas.

Franz Liszt composed both classical

and popular music. Some of his most

famous works include the opera Don

Giovanni, the symphonies Annabella

and Egmont, and the song Totentanz.

11 what was the currency

used in france before the

euro?

[Assignat, French franc] Until the late 1990s, France used the

franc as its official currency.

the currency used in France before the

euro was the French franc.

12 where is the riviera

casino?

[Las Vegas] The Riviera Casino is located in Las

Vegas, NV.

Riviera casino is located on the Las Ve-

gas strip in Nevada.

13 what does wh smith stand

for?

[WHSmith] Whit Smith is an American printing

and publishing company. It exclusively

publishes books for children and young

adults.

William Henry Smith

14 who will play mr gray in

the film?

[Jamie Dornan] Mr. Gray has not been announced, but

it is likely that the role will be played

by a younger actor.

The film will be based on the book

"Fifty Shades of Grey" by E.L. James,

and the character Mr. Grey will be

played by Jamie Dornan.

15 what religions are popular

in france?

[Catholicism] There are a number of religions popular

in France, some of which are Christian-

ity, Islam, Hinduism, and Judaism.

According to the 2016 census, 51.6%

of the population of France identify as

Christians, including 35.9% who iden-

tify as Catholic and 14.4% as Protes-

tant. The remaining 5.1% of the popu-

lation identify with other religions. Fur-

thermore, according to the 2012 census,

French is the language most commonly

spoken at home by the population of

France. It is also the language most

commonly spoken in the administrative

regions of metropolitan France, with

Italian second and French Creole third.

16 who did nasri play for be-

fore arsenal?

[Olympique de Marseille] he played for Universidad de Chile and

Monaco before joining Arsenal in 2011.

Samir Nasri played for different teams

before Arsenal, including Manchester

City and Marseille.

Continued on the next page
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Table 15 – Continued from the previous page

Index Question Answer Entities No Knowledge KAPING

17 who plays ziva david on

ncis?

[Cote de Pablo] Ziva David is played by Sandra Oh. Ziva David is played by actress Debra

Messing in the NBC television series

NCIS.

18 where did adolf hitler die? [Berlin] Adolf Hitler died in his home town of

Braunau am Inn, Austria on April 30,

1945, days before German forces un-

conditionally surrendered in World War

II.

Adolf Hitler committed suicide in

Berlin, Germany.

19 what was hitler the leader

of?

[Hitler Youth, Gestapo, 1st

SS Panzer Division Leibstan-

darte SS Adolf Hitler, Nazi

Party, Schutzstaffel, Waffen-SS,

Wehrmacht, Sturmabteilung]

Hitler was the leader of Nazi Germany,

which was a fascist dictatorship in Eu-

rope during the 1930s and 1940s.

The leader of Nazi Germany was Adolf

Hitler.

20 what types of art did andy

warhol do?

[Modern art, Pop art] Andy Warhol did a variety of art, includ-

ing paintings, sculptures, and prints.

visual_art.visual_artist.artworks, men

in her life

21 who owns the portland

press herald?

[Blethen Maine Newspapers,

Inc.]

The Portland Press Herald is not owned

by any specific individual or entity. It

is an independent, locally owned news-

paper.

The Portland Press Herald is owned by

the Blethen Maine Newspapers, Inc.

22 where was the vietnam

war location?

[Vietnam, Cambodia, Laos,

Southeast Asia, South Vietnam,

North Vietnam]

The Vietnam War was fought in Viet-

nam, Cambodia, and Laos

The Vietnam War was fought in Cam-

bodia, Laos, North Vietnam, and South

Vietnam.

23 who was isaac newton and

what did he do?

[Chemist, Philosopher, Math-

ematician, Physicist, Scientist,

Astronomer]

Isaac Newton was a physicist, mathe-

matician, astronomer, and author of the

Newtonian Theory of Motion. He is

most famous for his three laws of mo-

tion and his theory of universal gravita-

tion.

Isaac Newton was a scientist, mathe-

matician, and philosopher.

24 what standard time is

michigan?

[UTC-05:00, Central Time

Zone, Eastern Time Zone]

Daylight Saving Time is in effect in

Michigan from the first Sunday in April

to the last Sunday in October.

Michigan is in the Eastern Time Zone.

25 what is the kentucky state

bird?

[Cardinal] The Kentucky state bird is the cardinal. The kentucky state bird is the pigeon.

26 what do people in jamaica

speak?

[Jamaican English, Jamaican

Creole English Language, Ja-

maican English]

people in Jamaica speak English. Jamaican Creole English Language

27 who wrote the jana gana

mana?

[Ram Singh Thakur, Ra-

bindranath Tagore]

The author of the Jana Gana Mana is

unknown.

Jana Gana Mana was written by the

composer Ram Singh Thakur.

28 what is the currency of the

czech republic?

[Czech koruna] The Czech Republic currency is the

Czech koruna.

The currency of the Czech Republic is

the Czech koruna.

29 what highschool did

harper lee go to?

[Monroe County High School] Harper Lee attended the Monroeville,

Alabama high school.

Harper Lee attended Monroeville High

School.

30 what did michael crabtree

do?

[Wide receiver, Athlete, Amer-

ican football player, Wide re-

ceiver]

Michael Crabtree is a former football

player who played for the Baltimore

Ravens. Crabtree caught a pass in the

end zone to tie the game against the San

Francisco 49ers in the final seconds of

the game in 2013.

He is an American football player.
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Table 16: Generation examples of T0 (3B) on the WebQSP w/ Freebase dataset, where we randomly sample 30 examples.

Index Question Answer Entities No Knowledge KAPING

1 who is tatyana ali parents? [Sheriff Ali, Sonia Ali] ali is the daughter of ali khan and

tatyana ali

Sheriff Ali

2 what language do most

australians speak?

[English Language, Esperanto

Language, Lojban]

Australian English English Language

3 who played darth vader in

the first movie?

[David Prowse, James Earl

Jones]

Darth Vader George Lucas

4 who does michael keaton

play in cars?

[Chick Hicks, Chick Hicks] a narrator George A. Douglas

5 what was pink floyd’s first

album?

[Psychedelic Session-

compilation album]

The Pink Floyd album Pink Floyd

6 where is walton county

ga?

[Atlanta-Sandy Springs-

Marietta, GA Metropolitan

Statistical Area, Georgia]

Walton County is a county in the U.S.

state of Ohio.

Walton County, Georgia

7 what kind government

does egypt have?

[Semi-presidential system, Pro-

visional government]

government Semi-presidential system

8 where is english spoken

around the world?

[Bahamas, Bangladesh, ...,

United Kingdom, United States

of America, Australia, New

Zealand, Canada]

The English language is spoken by ap-

proximately 6.1 million people in the

United Kingdom, with the remainder

in the United States, Canada, Australia,

New Zealand, Canada, and the United

States Virgin Islands.

England

9 who did steve spurrier

play pro football for?

[San Francisco 49ers, Tampa

Bay Buccaneers]

the New York Giants the New York Giants

10 what kind of music did

franz liszt compose?

[Opera, Romantic music, Art

song, Classical music, Cham-

ber music]

classical Art song

11 what was the currency

used in france before the

euro?

[Assignat, French franc] The pound was used in France before

the euro.

French franc

12 where is the riviera

casino?

[Las Vegas] Riviera Maya, Mexico Las Vegas

13 what does wh smith stand

for?

[WHSmith] smith is a scottish slang word for a

smith

William Henry Smith

14 who will play mr gray in

the film?

[Jamie Dornan] Corey Haim Christian Grey

15 what religions are popular

in france?

[Catholicism] Roman Catholicism Protestantism

16 who did nasri play for be-

fore arsenal?

[Olympique de Marseille] Arsenal Arsenal

17 who plays ziva david on

ncis?

[Cote de Pablo] sarah savage Donald P. Bellisario

18 where did adolf hitler die? [Berlin] in a concentration camp Berlin

19 what was hitler the leader

of?

[Hitler Youth, Gestapo, 1st

SS Panzer Division Leibstan-

darte SS Adolf Hitler, Nazi

Party, Schutzstaffel, Waffen-SS,

Wehrmacht, Sturmabteilung]

the Nazi Party World War I

20 what types of art did andy

warhol do?

[Modern art, Pop art] art visual art.visual_artist.artworks, Men in

Her Life

21 who owns the portland

press herald?

[Blethen Maine Newspapers,

Inc.]

The Portland Press Herald is a local, in-

dependent newspaper based in Portland,

Oregon, United States.

Blethen Maine Newspapers

Continued on the next page
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Table 16 – Continued from the previous page

Index Question Answer Entities No Knowledge KAPING

22 where was the vietnam

war location?

[Vietnam, Cambodia, Laos,

Southeast Asia, South Vietnam,

North Vietnam]

Vietnam War Vietnam

23 who was isaac newton and

what did he do?

[Chemist, Philosopher, Math-

ematician, Physicist, Scientist,

Astronomer]

was a british physicist physicist

24 what standard time is

michigan?

[UTC-05:00, Central Time

Zone, Eastern Time Zone]

Standard time is local time in the United

States.

Midwestern United States

25 what is the kentucky state

bird?

[Cardinal] a red-winged blackbird Pigeon

26 what do people in jamaica

speak?

[Jamaican English, Jamaican

Creole English Language, Ja-

maican English]

People in Jamaica speak English Jamaican Creole English Language

27 who wrote the jana gana

mana?

[Ram Singh Thakur, Ra-

bindranath Tagore]

the author of the jana gana mana is a

poet

Rabindranath Tagore

28 what is the currency of the

czech republic?

[Czech koruna] the czech koruna Czech koruna

29 what highschool did

harper lee go to?

[Monroe County High School] Harper Lee High School Monroeville High School

30 what did michael crabtree

do?

[Wide receiver, Athlete, Amer-

ican football player, Wide re-

ceiver]

did not have a job American football player
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Table 17: Generation examples of our KAPING framework with four different models: T5 (11B), OPT (13B), T0 (11B), and
GPT-3 (175B) on the WebQSP w/ Wikidata dataset. Note that the answer entities are labeled entities in the test dataset.

Index Question Retrieved Triples Answer Entities Generated Answers

1

what is the name of

the currency used in

china?

(People’s Republic of China, currency, renminbi),

(People’s Republic of China, short name, text: Chine),

(People’s Republic of China, short name, text: Chiny),

(People’s Republic of China, language used, Chinese),

(People’s Republic of China, central bank, People’s

Bank of China), (People’s Republic of China, language

used, China Buriat), (People’s Republic of China,

demonym, text: Chinesin), (People’s Republic of

China, language used, Jingpho), (People’s Republic of

China, language used, Langnian Buyang), (People’s

Republic of China, language used, Then)

[Renminbi]

T5: Renminbi

OPT: Renminbi

T0: renminbi

GPT-3: The name of the currency used in

china is renminbi.

2

what does george

wilson do for a

living?

(George Wilson, country of citizenship, United States

of America), (George Wilson, occupation, American

football player), (George Wilson, sex or gender, male),

(George Wilson, given name, George), (George

Wilson, instance of, human), (George Wilson, place of

birth, Paducah), (George Wilson, member of sports

team, Arkansas Razorbacks football), (George Wilson,

member of sports team, Detroit Lions), (George

Wilson, member of sports team, Buffalo Bills),

(George Wilson, educated at, Paducah Tilghman High

School)

[American

football player]

T5: Wilson, George was born on August

10, 1972 in Paducah, Kentucky. He is an

American football player.

OPT: George Wilson is an American foot-

ball player.

T0: American football player

GPT-3: George Wilson is an American

football player.

3
what was augustus

caesar famous for?

(Augustus, Roman cognomen, Caesar), (Augustus,

father, Julius Caesar), (Augustus, occupation, Ancient

Roman politician), (Augustus, child, Lucius Caesar),

(Augustus, child, Gaius Caesar), (Augustus, Roman

cognomen, Caepias), (Augustus, relative, Julius

Caesar), (Augustus, Roman praenomen, Gaius),

(Augustus, father, Gaius Octavius), (Augustus, family,

Julii Caesares)

[Roman emperor,

Politician]

T5: Augustus was a Roman politician who

ruled from 14 BC to 14 AD. He was the

son of Gaius Octavius and Octavia. He

was the first emperor of the Roman Em-

pire.

OPT: Augustus Caesar was famous for

being the first Roman emperor.

T0: He was the first Roman Emperor

GPT-3: Augustus Caesar was famous for

being the first Roman Emperor.

4

what document did

james madison

write?

(James Madison, described by source, Obalky

knih.cz), (James Madison, described by source, The

Nuttall Encyclopædia), (James Madison, Commons

Creator page, text: James Madison), (James Madison,

writing language, English), (James Madison, described

by source, Brockhaus and Efron Encyclopedic

Dictionary), (James Madison, notable work, Federalist

Papers), (James Madison, occupation, statesperson),

(James Madison, occupation, writer), (James Madison,

described by source, Library of the World’s Best

Literature), (James Madison, position held, President

of the United States)

[Federalist

Papers]

T5: federalist papers

OPT: I think the answer is "The Federalist

Papers"

T0: Federalist Papers

GPT-3: the Federalist Papers

5

where did george

michael go to

school?

(George Michael, educated at, Bushey Meads School),

(George Michael, occupation, singer), (George

Michael, occupation, singer-songwriter), (George

Michael, place of birth, East Finchley), (George

Michael, occupation, record producer), (George

Michael, occupation, multi-instrumentalist), (George

Michael, occupation, recording artist), (George

Michael, occupation, composer), (George Michael,

occupation, songwriter), (George Michael, country of

citizenship, United Kingdom)

[Bushey Meads

School]

T5: . Question: where did george michael

go to school? Answer: bushey meads

school

OPT: Bushey Meads School

T0: Bushey Meads School

GPT-3: Bushey Meads School

Continued on the next page
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Index Question Retrieved Triples Answer Entities Generated Answers

6
what college did

joakim noah?

(Joakim Noah, educated at, University of Florida),

(Joakim Noah, educated at, Lawrenceville School),

(Joakim Noah, educated at, United Nations

International School), (Joakim Noah, educated at, Poly

Prep Country Day School), (Joakim Noah, sport,

basketball), (Joakim Noah, league, National Basketball

Association), (Joakim Noah, league, NCAA Division I

men’s basketball), (Joakim Noah, member of sports

team, Florida Gators men’s basketball), (Joakim Noah,

member of sports team, Florida Gators men’s

basketball), (Joakim Noah, league, NBA G League)

[University of

Florida]

T5: Joakim Noah, college, University of

Florida

OPT: University of Florida Question:

what sport did joakim noah? Answer: bas-

ketball Question: what league did joakim

noah? Answer: NBA

T0: University of Florida

GPT-3: Joakim Noah attended the Univer-

sity of Florida.

7
where does tim

cook work?

(Tim Cook, occupation, businessperson), (Tim Cook,

occupation, engineer), (Tim Cook, occupation,

computer scientist), (Tim Cook, place of birth,

Mobile), (Tim Cook, occupation, chief executive

officer), (Tim Cook, described by source, Lentapedia),

(Tim Cook, country of citizenship, United States of

America), (Tim Cook, employer, Apple Inc.), (Tim

Cook, residence, Palo Alto), (Tim Cook, educated at,

Fuqua School of Business)

[Apple Inc.]

T5: Tim Cook, educated at, Fuqua School

of Business Question: where does tim

cook work? Answer: Tim Cook, resi-

dence, Palo Alto Question: where does

tim cook work? Answer: Tim Cook, em-

ployer, Apple Inc.

OPT: I think the answer is "Apple Inc."

T0: Apple Inc.

GPT-3: Tim Cook works at Apple Inc.

8

what is the political

system of south

africa?

(South Africa, basic form of government,

representative democracy), (South Africa, basic form

of government, parliamentary republic), (South Africa,

Democracy Index, quantity: +7.05 - unit: 1), (South

Africa, Democracy Index, quantity: +7.24 - unit: 1),

(South Africa, Democracy Index, quantity: +7.24 -

unit: 1), (South Africa, Democracy Index, quantity:

+7.24 - unit: 1), (South Africa, legislative body,

Parliament of South Africa), (South Africa, executive

body, Government of South Africa), (South Africa,

office held by head of government, State President of

South Africa), (South Africa, member of, Southern

African Development Community)

[Constitutional

republic,

Parliamentary

republic]

T5: Question: what is the political system

of south africa? Answer: Answer: parlia-

mentary republic

OPT: South Africa is a parliamentary re-

public. Question: what is the capital of

south africa? Answer: Pretoria is the capi-

tal of South Africa. Question: what is the

currency of south africa? Answer: South

African Rand. Question: what is the pop-

ulation of south africa? Answer: South

Africa has a population of about 50 mil-

lion. Question: what is the official lan-

guage of south africa? Answer: Afrikaans

is the official language of South Africa.

T0: parliamentary republic

GPT-3: The political system of South

Africa is a parliamentary republic.

9

what record label is

kelly clarkson

signed with?

(Kelly Clarkson, record label, RCA Records), (Kelly

Clarkson, record label, Atlantic Records), (Kelly

Clarkson, record label, Syco Music), (Kelly Clarkson,

record label, 19 Recordings), (Kelly Clarkson,

occupation, record producer), (Kelly Clarkson,

occupation, recording artist), (Kelly Clarkson,

occupation, musician), (Kelly Clarkson, occupation,

singer), (Kelly Clarkson, genre, pop music), (Kelly

Clarkson, given name, Kelly)

[RCA Records,

Sony BMG, Sony

Music

Entertainment, 19

Recordings]

T5: Kelly Clarkson is a singer, song-

writer, and actress. She is signed to RCA

Records, a division of RCA Records.

OPT: 19 Recordings Question: what is

kelly clarkson’s first name? Answer: kelly

Question: what is kelly clarkson’s last

name? Answer: clarkson

T0: RCA Records

GPT-3: RCA Records

Continued on the next page
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Index Question Retrieved Triples Answer Entities Generated Answers

10

what kind of

products does nike

sell?

(Nike, product or material produced, sports

equipment), (Nike, product or material produced,

clothing), (Nike, product or material produced,

footwear), (Nike, industry, retail), (Nike, industry,

clothing industry), (Nike, instance of, brand), (Nike,

subsidiary, Air Jordan product line), (Nike, industry,

industry), (Nike, Commons category, text: Nike, Inc.),

(Nike, subsidiary, Converse)

[Athletic Shoes

& Apparel,

Footwear

Manufacturing,

Fashion accessory,

Sports equipment,

Clothing,

Footwear]

T5: Nike, Inc. is a multinational corpora-

tion headquartered in Beaverton, Oregon,

United States. It is the world’s largest

manufacturer of athletic shoes and apparel,

and the second-largest manufacturer of

sports equipment. It is the world’s largest

sportswear manufacturer, and the world’s

largest manufacturer of footwear for men,

women and children.

OPT: shoes

T0: Footwear

GPT-3: Nike sells products in the cate-

gories of footwear, clothing, and sports

equipment.
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Abstract
Large language models show an emergent abil-
ity to learn a new task from a small number
of input-output demonstrations. However, re-
cent work shows that in-context learners largely
rely on their pre-trained knowledge, such as
the sentiment of the labels, instead of finding
new associations in the input. However, the
commonly-used few-shot evaluation settings
using a random selection of in-context demon-
strations can not disentangle models’ ability to
learn a new skill from demonstrations, as most
of the randomly-selected demonstrations do not
present relations informative for prediction be-
yond exposing the new task distribution.

To disentangle models’ in-context learning abil-
ity independent of models’ memory, we intro-
duce a Conceptual few-shot learning method
selecting the demonstrations sharing a possibly-
informative concept with the predicted sample.
We extract a set of such concepts from anno-
tated explanations and measure how much can
models benefit from presenting these concepts
in few-shot demonstrations.

We find that smaller models are more sensi-
tive to the presented concepts. While some of
the models are able to benefit from concept-
presenting demonstrations for each assessed
concept, we find that none of the assessed in-
context learners can benefit from all presented
reasoning concepts consistently, leaving the in-
context concept learning an open challenge.

1 Introduction

In-context learning (ICL) is the alternative to the
conventional training of Large Language Models
(LLMs) for specific task(s), where models are ex-
pected to learn a new task solely from the input text.
In few-shot in-context learning that we focus on,
the input text contains a set of demonstrations, i.e.
the input-output examples of the task to be learned
(Brown et al., 2020).

An ability to learn unseen tasks from natural in-
structions has practical and theoretical implications,

Does the following hypothesis ENTAIL or
NOT ENTAIL the premise?

Premise: "Writing Java is not too different
from programming with handcuffs."
Hypothesis: "Writing Java is similar to
programming with handcuffs."
Label: ENTAIL

Premise: "The market is about to get
harder, but not impossible to navigate."
Hypothesis: "The market is not about to
get harder, but impossible to navigate."
Label: NOT ENTAIL

Premise: "If the scheme does not
correspond, a negative impact on the
results would be expected."
Hypothesis: "If the scheme does not
correspond, it would not be unexpected for
it to negatively impact the results."
Label:

Does the following hypothesis ENTAIL or
NOT ENTAIL the premise?

Premise: "The cat sat on the mat"
Hypothesis: "The cat did not sit on the
mat"
Label: NOT ENTAIL

Premise: "Some dogs like to scratch their
ears."
Hypothesis: "Some animals like to
scratch their ears."
Label: ENTAIL

Premise: "If the scheme does not
correspond, a negative impact on the
results would be expected."
Hypothesis: "If the scheme does not
correspond, it would not be unexpected
for it to negatively impact the results."
Label:

In-context Learner
ENTAIL
(correct)

NOT ENTAIL
(incorrect)

Demonstrations sharing concept
(double negation)

Random demonstrations
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Figure 1: In this work, we assess In-context learners’
ability to improve when presented with demonstrations
using a reasoning concept applicable in the prediction
(§2). We extract these concepts from human explana-
tions (§3.2) and assess models’ ability to learn to use
these concepts, as reflected in improving their predic-
tion quality.

both of which are of great significance; Understand-
ing free-form user requests allow applying LLMs in
applications of restricted, or limited data availabil-
ity without over-specialization (Goodfellow et al.,
2014). In-context learning can provide a handle
of models’ behaviour, enabling the model to avoid
specific erroneous predictions. In theory, a training
process resulting in accurate new-task learner de-
fines the sufficient conditions for the emergence of
a specific level of generalization.

Recent LLMs trained on vast mixtures of tasks
(Sanh et al., 2022a; Wang et al., 2022b; Chung
et al., 2022) show a certain level of new-task
ICL and gradually bring more attention and ex-
pectations in this direction. However, counter-
intuitively to the overall evaluations, in-context
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learners (ICLs) also expose surprising behavioural
artefacts; Liu et al. (2022) show ICLs’ sensitivity
to the ordering of in-context demonstrations. Simi-
larly, Lu et al. (2022) find surprising sensitivity of
ICLs to the specific wording of the prompts. Min
et al. (2022b) show that most of the model perfor-
mance is persisted even when the contents of the
demonstrations are randomly swapped. Contrary
to the ability to learn from input, Wei et al. (2023)
propose to attribute this to the over-reliance of in-
context learners on semantics of the label tokens,
especially in smaller models.

We find that the discrepancy in the perceived
abilities of ICLs might be attributed to their lim-
ited evaluation, commonly performed with a ran-
dom set of task demonstrations. However, for
many open-ended tasks, such as Question Answer-
ing, or Translation, randomly-chosen demonstra-
tions rarely present a reasoning pattern which can
help with the prediction of new input (Figure 1;
Right). We argue that the evaluation with mostly
non-informative contexts also can not reflect on
the ability of learning, as observed in humans1,
as the gain of extrapolating associations presented
in non-informative demonstrations can only bring
little benefit to the practice.

We note that in the absolute numbers, the
random-demonstrations evaluation also favours
very large LLMs with a capacity to remember
a wider variety of input distributions from pre-
training; Conditioned by the capacity, very large
LLMs can better modulate the behaviour based on
demonstrations’ distribution, instead of learning
new association(s) from the context.

Hence, in Section 2, we propose to evaluate
models’ in-context learning ability primed with
the demonstrations that exhibit a reasoning analog-
ical to the one required for a robust prediction of
the predicted sample (Fig. 1). We measure how
well can the recent few-shot learners utilize iden-
tified concepts for more accurate predictions (§3)
and find large discrepancies among the models and
concepts.

Our main contributions are following: (i) We
introduce a task of Conceptual Few-shot Learning,
disentangling models’ ability to learn a new rea-
soning concept from other aspects of prediction
quality. We show how such reasoning concepts can
be extracted from human explanations. (ii) For a

1We restrain from discussing a concept of learning in the
psychological scope, but we note that Concept learning fits
well into a definition of Associative learning (Plotnik, 2012).

wide variety of recent in-context learners, we mea-
sure the ability to benefit from presented reasoning
concepts. We show that while some models are
better at learning concepts on average, this ability
can not be attributed to the models’ size or training
strategy.

Problem Definition Given a dataset D : {(x1 →
Y1), .., (xi → Yi)} ∈ D containing pairs of input
xj with associated label Yj , an in-context few-shot
learner Θ(x) → y aims to predict a correct label
yk+1 = Yk+1 given a sequence of k input-output
demonstrations, and the predicted input xk+1:

Θ([x1 → Y1, .., xk → Yk], xk+1) → yk+1 (1)

We expect in-context few-shot learner Θ to model
the relation of xi and yi by (i) identifying and (ii)
extrapolating the relations of input and output pre-
sented in demonstrations. Each such relation is
modelled by one or more latent concepts C:

∀ (xi, Yi) ∈ D : ∃ C : C(xi, Yi) = 1 (2)

We broadly define a concept C as any function
C(x, y) → {0, 1}, constraining a space of valid
outputs y to the ones where C(x, y) = 1. Thus, if
Θ learns a concept C, it will never predict for x
such y that C(x, y) = 0. In a composition {C}=
{C1, .., Cj}, all Ci∈{C} must evaluate to 1.

Given that modelling of each C valid for the task
of D restrain a set of possible predictions of Θ ex-
clusively from incorrect predictions, extending a
set of concepts learned in-context with complemen-
tary one(s) should never decrease the performance
of the model Θ on D.

2 Conceptual Few-shot Learning

We reformulate in-context few-shot learning (1) to
a conceptual few-shot learning, evaluating the abil-
ity of a few-shot learner Θ to identify and apply a
user-chosen reasoning concept C shown in demon-
strations. First, we classify evaluation samples such
that the samples of the same category Xi require
the concept Ci to map x to Y . Subsequently, in
conceptual few-shot learning, we let the learner
to infer a prediction for input xk+1 by presenting
it with demonstrations (xj → Yj)1..k ∈ Xi, thus
sharing the reasoning concept Ci with the predicted
input xk+1:

Θ([x1 → Y1, .., xk → Yk], xk+1)

where ∀(x1..k, Y1..k) ∈ Xi and xk+1 ∈ Xi
(3)
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We note that Θ can rely on other features than
Ci, and such reliance is not easy to disentangle.
Therefore, we propose to contextualize the results
of Conceptual few-shot learning on a concept Ci a
difference to the performance obtained in a random
selection of demonstrations.

Additionally, to make the predictions based on
two different sets of demonstrations mutually com-
parable without systematic bias (e.g. in samples’
complexity), we perform both random and concept-
sharing evaluations with the same predicted sam-
ples xk+1, and only change the demonstrations2.

Informative Concepts Extraction Constructing
a scaled evaluation with annotated reasoning con-
cepts C is challenging since the annotations of such
concepts in associated with the datasets are rare.

However, we find such reasoning inherently cap-
tured in human explanations of some datasets,
where annotators are asked to collect answers
to a question “why is [input] assigned [output]?”
(Wiegreffe and Marasović, 2021).

The form of these explanations ranges from
free-text explanations, including annotator-specific
slang and stylistics, to semi-structured and struc-
tured explanations, cast to a pre-defined format,
often consisting of a set of relations in a form “[sub-
ject1] [relation] [subject2]” that transitively maps
[input] to [output] (Jansen et al., 2018). We focus
on extracting the concepts from the subset of the
semi-structured and structured explanations where
the format consistency and non-ambiguity of the
operands are reassured.

3 Evaluations

This section introduces few-shot learners that we
evaluate for Conceptual few-shot learning and the
datasets allowing us to extract reasoning concepts.

3.1 Few-shot Learners

T0 (Sanh et al., 2022b) introduce a set of in-
context learning models fine-tuned from a T5
model (Raffel et al., 2020) on a variety of tasks
in zero-shot settings, aiming to perform well on a
task of previously-unseen categories. T0 is trained
for seq2seq generation over a large set of diverse
tasks cast to a unified input-output format provided
by task-specific templates of Promptsource project
(Bach et al., 2022).

2The implementation of Conceptual few-shot learning is
available on https://github.com/MIR-MU/CoAT.

TK-INSTRUCT (Wang et al., 2022a) is a set of
models trained for comprehension of annotator-
like instructions, consisting of a free-text task de-
scription and a set of input-output pairs, collected
for more than 1,400 tasks of NATURALINSTRUC-
TIONS collection (Mishra et al., 2022). Note that,
in contrary to T0, TK-INSTRUCT models can ad-
vance from being trained in the few-shot learning
format, where the model was exposed to the for-
mat of a few input-output examples already in the
fine-tuning.

FLAN (Chung et al., 2022) scales the approach
of fine-tuning in a few-shot learning format to
over 1,800 tasks of 146 categories including all
resources of T0 and TK-INSTRUCT. Contrary to
the former models, the training data mixture in-
cludes several datasets with chain-of-thought la-
bels, where the model is trained to follow the an-
notated reasoning chain explicitly. We evaluate all
publicly available T5-based FLAN models.

GPT3 (Brown et al., 2020) is a well-known
causal language model that has first shown that
in-context few-shot learning ability can emerge
solely from vast amounts of unsupervised training
data and parametrization, without fine-tuning. Al-
ternatively to other approaches, INSTRUCTGPT
(Ouyang et al., 2022) fine-tunes GPT3 to follow
human instructions using obtained user feedback.
We evaluate both these models through OpenAI
APIs3.

3.2 Datasets

Following is a description of datasets that we use
in Conceptual few-shot evaluation. Note that for
each dataset, we highlight a single concept that
we use in Conceptual few-shot evaluation as the C
(§2). In the case of each model and dataset, we first
evaluate all templates available in Promptsource
and report the gain of utilising the chosen concept
for the best-performing template.

WorldTree (Jansen et al., 2018; Xie et al., 2020)
is a collection of 5,114 science exam questions with
the explanations in the form of 9,216 shared facts
supporting the assignment of the correct answer.

We use the shared facts as the concepts C and
evaluate with the demonstrations of a maximal
facts’ intersection with the predicted sample. Con-
trary to the other datasets, in WorldTree evaluation,

3https://beta.openai.com
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Figure 2: Conceptual few-shot evaluation: Relative performance change of the assessed in-context learners
between using random demonstrations (k=3) and concept-sharing demonstrations (§2), with concepts of the datasets
described in §3.2. Models are ordered by a number of parameters. Error bars show a 95% confidence interval of the
bootstrapped results (100 samples, 200 repeats). Absolute results for both selection strategies are in Figure 4.
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Figure 3: Conceptual few-shot evaluation: all con-
cepts: Error change of the assessed in-context learners
between random demonstrations and concept-sharing
demonstrations (§2) aggregated over all assessed con-
cepts. Experimental setup is consistent with Figure 2.

we prepend the facts for all the demonstrations in
the context before the demonstrations.

OpenBookQA (Mihaylov et al., 2018) is a collec-
tion of elementary-grade single-choice questions re-
quiring common sense knowledge about the world.
A set of 4,957 explanations take the form of a triple
of (object, relation, object), such as “a stove gener-
ates heat” for a question “Which one of these can
help a person cook their food? [four options]” and
a correct option “a counter cooker appliance”.

To extract informative concepts C, we perform
syntactic analysis of the explanation and extract

the relation, identified as a root of the sentence’s
parse tree. Hence, in conceptual few-shot learning,
we prime the aforementioned question with other
question-options-answer pairs of the questions an-
swerable by relating the input to output through the
“generate” relation.

HotpotQA (Yang et al., 2018) is a QA dataset
composed of questions requiring the QA model
to jointly reason over multiple passages of multi-
document contexts. Inoue et al. (2020) enrich the
dataset with explanations from three human an-
notators. The explanations are structured in the
form of triples (e1, r, e2), associating two entities
(e1 and e2) through a relation r, such as (“Scott
Derrickson”, “is”, “an American director”).

We extract the shared concepts C as pairs of
(r, e2); Hence, Conceptual few-shot will prime the
prediction with questions and contexts presenting
the same entities in analogical relations to the ones
the model should understand for correct prediction.

GLUE Diagnostic (Wang et al., 2018) contains
approximately 1,100 diagnostic samples of Natural
Language Inference intended to fool a simple sta-
tistical model. While the concepts are heuristically
extracted in other cases, GLUE diagnostic directly
annotates 30 distinct logical concepts needed in
prediction, such as double negation, conjunction,
or existential quantification. We directly use these
logical concepts as the reasoning concepts C.
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3.3 Baseline model (BASELINE-TK-QA-1B)

To contextualize the results of existing In-context
learners, we additionally evaluate a simple newly-
created few-shot in-context learner trained on a
single QA dataset. Similarly to TK-INSTRUCT,
we construct the training examples of the meta-
learning task in the explicit few-shot learning for-
mat, as initially proposed by Min et al. (2022a),
where the model is updated to predict correct la-
bels with a set of randomly-selected demonstra-
tions included in the input (Eq. (1)). This way, we
fine-tune a T5-LARGE model (Raffel et al., 2020)
on AdversarialQA dataset (Bartolo et al., 2021) un-
til convergence on a validation split. We assess the
resulting model on Conceptual few-shot learning
together with other in-context learners, denoting its
results as BASELINE-TK-QA-1B.

4 Results and Discussion

Figure 2 shows the change of models’ error be-
tween a random selection of demonstrations and
Conceptual few-shot learning, i.e. with demonstra-
tions sharing a selected concept (§2), ordered by
models’ size.

For each of the assessed concepts, we observe
statistically significant improvement for at least
one of the models, which confirms our initial as-
sumption on the informativeness of the extracted
concepts in prediction.

However, we can see that the selection of demon-
strations makes a large difference in many cases,
and the difference also largely depends on the in-
spected concept. Following the results of specific
models, we see many cases where the model is
able to utilise one concept but fails to utilise, or
even worsen the prediction then exposed to the
other. The variance is larger for instruction-tuned
TK-INSTRUCT models, excelling in utilising shared
reasoning logic of GLUE, but to the contrary, de-
grading when being exposed to demonstrations sup-
ported by the shared facts in WorldTree. Contrary
to these results is the case of InstructGPT that is
agnostic to concepts except for GLUE.

Figure 3 shows the average of changes of Con-
ceptual few-shot evaluation over the inspected
four concepts. The aggregation uncovers that the
gain from providing informative demonstrations
largely varies among models, with T0 and smaller
models (≤3B) benefiting from the presented con-
cepts slightly more often; This could be caused by
larger models’ increasing reliance on their memo-

rized knowledge. However, within the model-type
groups, we also note that this trend is disputed by
T0 and FLAN models.

5 Conclusion

This work introduces a task of conceptual few-shot
learning that reflects on in-context learners’ ability
to learn to apply a specific reasoning concept that
can be informative for prediction. We assess a set
of recent in-context learners for this ability over a
set of concepts extracted from human explanations.

We find that none of the learners can benefit
consistently from all concepts, even though at least
one of the other models proves the concept to bear
an informative value. Despite that, we still observe
some interesting trends, such as the models of T0
are able to benefit from the concepts more often
than others or that the concept-learning ability does
not appear to relate to the model size.

We believe the future work can inspire in identi-
fying possibly complex reasoning concepts in the
explanations of human annotators and will scale
the conceptual evaluation to a wider variety of con-
cepts. We trust that an evaluation with a compre-
hensive selection of the concepts will allow us to
more realistically assess the abilities of the newly-
designed language models in the fast-progressing
development of new in-context learners.

Limitations

Concepts In this work, we extract the concepts
from semi-structured explanations whose format
reassures consistency and non-ambiguity of the ex-
ploited concept(s). The selection of datasets and
corresponding concepts is primarily conditioned
by data availability, as the semi-structured explana-
tions are available merely for a small set of datasets.

We acknowledge that our selection of concepts
is not representative for a vast variance of concepts
that users might expect models to learn from con-
text in interaction. Some important concepts’ fea-
tures that we identify are following: (i) a number
of premises or reasoning inference steps needed to
map the input to output, (ii) the granularity of the
reasoning steps, (iii) a type of the premises; For
instance, whether the familiarity with a given con-
cept requires a memorization of an entity property
(such as “sun emits light”), or a reasoning mechan-
ics such as analogical reasoning (“if animals can
run and cat is an animal, then a cat can run”).

We invite future work to identify or propose a
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taxonomy that would better reflect the wide vari-
ance of reasoning concepts that models are ex-
pected to comprehend in order to serve a wide
scope of unseen tasks. Such taxonomy can moti-
vate a more targeted collection of concepts from
explanations, or annotation of new explanations
demonstrating new concepts.

Models We acknowledge the limitation in a vari-
ance of evaluated models given by their availability
and our computational possibilities. We evaluate
only two models of the GPT family due to the us-
age limits of OpenAI API. Outside GPT models,
we do not evaluate models over 20B parameters,
given the infrastructure requirements of such set-
tings. Nevertheless, we argue that the relevance
of the models with constrained access, or resource
requirements exceeding the limits of most organi-
zations also remains a subject of open question.

Datasets One should note that the sizes of our
evaluation datasets, for which we are able to extract
concepts from explanations (Fig. 2), are too small
to compare concept sensitivity between models.
The sizes of our sensitivity evaluation datasets are
the following: WorldTree: 2,204 samples, Open-
BookQA: 792, GLUE Diagnostics: 282 samples,
HotpotQA: 182 samples.

Ethical Considerations & Broader Impact

As outlined in Section 1, in-context learning re-
cently presents a research direction of broad pub-
lic interest, where the outstanding results on NLP
benchmarks often do not meet the users’ expec-
tations. It is understandable that the focus of de-
velopment in in-context learning LLMs goes to
measurable improvements on existing benchmarks,
as ecologically-valid evaluations (de Vries et al.,
2020) on end use-cases are timely and challenging
to compare to related work.

Nevertheless, in this highly-exposed and fast-
paced direction, we identify the necessity for the
emergence of fast proxy measures that can shed
light on the decision-making of the LLMs as ex-
pected by their end users.

The presented evaluation of models’ sensitivity
to demonstrated reasoning concepts introduces a
technical framework for quickly assessing models’
compliance with our expected functioning; How-
ever, a selection of a comprehensive set of concepts
that we can agree our models should be able to
learn remains a subject of open discussion.
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A Details of Concept-aware Evaluations

Unless stated otherwise, we evaluate all models
over all datasets and both demonstrations selec-
tion strategies consistently for ROUGE-L in default
settings of Lin (2004), using a number of demon-
strations k = 3 and contexts constructed in the
following format:

“Input: x1 Prediction: Y1 Input: x2 Prediction: Y2
Input: x3 Prediction: Y3 Input: xpred”

Among both random and concept-sharing evalu-
ations, we share the same xpred and only permute
the demonstrations; We find cases where the filter-
ing of predicted samples (xpred) to the ones sharing
a concept with sufficient amount of (3) different
samples needed for demonstrations makes the task
systematically easier.

We diverge from the stated configuration only in
the following cases:

• TK-INSTRUCT-11B and HotpotQA: we limit
the evaluation contexts to at most 3.500
unique words, as we can not fit longer con-
texts into the memory. This might make the
absolute results in this configuration overly op-
timistic, but still comparable within the Con-
ceptual few-shot evaluation.

• GPT and HotpotQA: We completely exclude
these evaluations given the fixed context win-
dow size of these models will exclude the
xpred from prediction input in too many cases.

We choose evaluated GPT APIs based on Ope-
nAI documentation4, picking for GPT and IN-
STRUCTGPT models marked as DAVINCI and
TEXT-DAVINCI-003. Note that these identifiers
might change in time, thus disallowing us to guar-
antee the reproducibility of their evaluations.
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Figure 4: Conceptual few-shot evaluation: ROUGE-L of models using random demonstrations (left) and
demonstrations exploiting a concept of prediction (§3.2; right). Boxes and confidence intervals cover 50% and 95%
of the bootstrapped results, respectively (100 samples, 200 repeats). Models marked with ∗ were exposed to the
evaluation task (but not samples) in training. Training datasets of GPT∗ models are unknown.

B Computational Requirements

We run both training and evaluation experiments us-
ing single NVIDIA A100-SXM-80GB. The time
and computational requirements of evaluation de-
pend largely on the size of the evaluated model;
We can evaluate the models up to 11B parame-
ters on a single NVIDIA A100-SXM-80GB. The
evaluation of Concept Few-shot learning on all our
datasets, together with the Random reference eval-
uation takes approximately 2 hours for a 1B model.

4https://beta.openai.com/docs/
model-index-for-researchers
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Abstract

Argumentation is an important means of com-
munication. For describing especially argu-
ments about consequences, the notion of effect
relations has been introduced recently. We pro-
pose a method to extract effect relations from
large text resources and apply it on encyclope-
dic and argumentative texts. By connecting the
extracted relations, we generate a knowledge
graph which we call effect graph. For evalu-
ating the effect graph, we perform crowd and
expert annotations and create a novel dataset.
We demonstrate a possible use case of the effect
graph by proposing a method for explaining ar-
guments from consequences.

1 Introduction

Argumentation is a challenging task because its
goal is to convince an audience. One broadly used
type of arguments is the argument from conse-
quences, which has been specifically addressed
in recent literature (Reisert et al., 2018; Al-Khatib
et al., 2020; Kobbe et al., 2020). The premise of
an argument from consequences states that if A
is brought about, good or bad consequences will
plausibly occur, which leads to the conclusion that
A should or should not be brought about (Walton
et al., 2008). The following statement is such an
argument in favor of legal abortions:

Legal abortions protect women.

At the core of an argument from consequences is
what Al-Khatib et al. (2020) call effect relation:
A typically expresses either a positive or nega-
tive effect on an instance B, which we denote by
A

+−→ B or A −−→ B. In the example, the effect
relation is legal abortions +−→ women because of
the positive effect expressed by the verb protect.
Our main motivation is to further back up such
premises by generating structured explanations. Ta-
ble 1 shows some potential explanations.

1 Abortions protect women from the harm
caused by giving birth and being pregnant.

2 Abortions prevent long term damage caused
by complications during the pregnancy and
birth process.

3 Legal Abortions protect the women’s right
to self-determination.

4 Abortions protect women from the financial
burden of raising a child.

5 Abortions can protect girls from becoming
mothers too early.

Table 1: Some possible explanations.

First, we note that it is not possible to find the
one and only explanation for why legal abortions
protect women. As demonstrated, there exist multi-
ple different explanations and, from merely reading
the statement, we cannot know which of these ex-
planations the author had in mind. Thus, our goal
is not to reconstruct the original explanation, but
to propose meaningful ones.

For automatically generating possible explana-
tions, we propose an approach that is specific for
explaining effect relations. Given A→ B, we aim
to find an instance C such that A → C → B. Be-
cause of the structure of such an explanation, we
call it Effect-Effect-Explanation. Of course, this
way, we cannot capture all the details in the ex-
planations in table 1. But we can capture some
key aspects and describe the explanations in a well-
defined way that allows for further processing in
downstream tasks. Table 2 shows possible formal-
ized versions of explanations 1 to 4.

Effect-Effect-Explanations are, however, still
very limited in their nature. While we cannot fully
overcome this limitation, we show that it is possible
to expand upon them for instance by incorporating
lexical knowledge: Given A → B, an explanation
could also be (A → C, C instanceOf / hypernym
/ synonym B) or, vice versa, (A instanceOf / hy-
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1 Abortions −−→ harm −−→ women
2 Abortions −−→ long term damage −−→ women
3 Legal Abortions +−→ right to self-determi-

nation +−→ women
4 Abortions −−→ financial burden −−→ women

Table 2: Formalized Effect-Effect-Explanations.

pernym / synonym C, C → B). Analoguesly, we
call these Effect-Lexical-Explanation. An example
for explanation 5 in table 1 would be Abortions +−→
girls

hypernym−−−−−→ women.
The main challenge for both of the proposed

explanation schemes is to get the additional infor-
mation (i.e., C and its links to A and B). For
the lexical relations, we use WordNet (Fellbaum,
2010). For the effect relations, we propose a simple,
yet efficient, extraction method which we denote
by EREx (Effect Relation Extractor). We then
apply it on large text resources and connect the
extracted relations in a graph which we refer to as
effect graph1. While we build the graph having
explanation generation in mind, it might also be of
value for other tasks as it contains a widely used
type of knowledge.

In the following, we discuss related work (sec-
tion 2). In section 3, we describe the generation
of the effect graph which we evaluate in section 4.
Lastly, we showcase our envisioned explanation
generation (section 5) and conclude with a discus-
sion (section 6).

2 Related Work

Our method to extract effect relations is most sim-
ilar to the one proposed by Kobbe et al. (2020).
They extract effect relations in order to classify
stances of arguments from consequences. Just as
ours, their extraction method is purely heuristic
and relies on dependency parsing. The main dif-
ferences we introduced are due to the following
reasons: First, the method of Kobbe et al. (2020)
relies on sentence-topic pairs to identify the effect
relation’s subject, instead of sentences only. Sec-
ond, it requires the effect relation’s object to have
a sentiment in order to calculate the stance which
is not necessary for our task. Because of this and
the first reason, the subjects and objects which are
derived by detecting patterns in the dependency

1The resources created for this paper are available at
https://github.com/dwslab/Effect-Graph.

parse are no longer controlled for by either linking
to the topic or a sentiment lexicon, so we pose other
restrictions on both of them. Third, it is designed
to extract an effect relation whenever possible, thus
emphasizing recall, in order to enable the stance
detection. In contrast, we want to rather focus on
precision.

Al-Khatib et al. (2020) also extract effect rela-
tions from argumentative text and, like ourselves,
use them to build a knowledge graph. Their graph
is then used as background knowledge by Al Khatib
et al. (2021) who use it to support neural argument
generation, and by Yuan et al. (2021) who try to
identify the correct response to an argument among
five possible options. However, in terms of method-
ology, there are only little similarities to our ap-
proach. While EREx is completely unsupervised,
Al-Khatib et al. (2020) divide the relation extrac-
tion task into several subtasks for which they train
specific classifiers, with one exception: For identi-
fying the effect relation’s subject and object, they
use the supervised OpenIE model of Stanovsky
et al. (2018).

OpenIE (Open Information Extraction) is the
task to extract relationships between entities from
text. In contrast to conventional information extrac-
tion, in OpenIE, the relationships are not predefined
(Etzioni et al., 2008). However, OpenIE can also be
applied for relation extraction with domain specific
relations by performing Relation Mapping (Soder-
land et al., 2010). While Soderland et al. (2010)
propose a supervised approach, in our case, we
consider it sufficient to filter and map the relations
using an effect lexicon. Similarly to Corro and
Gemulla (2013), Angeli et al. (2015), Gashteovski
et al. (2017), we base our relation extraction on
dependency parsing. In comparison to these works,
however, our effect relation extraction approach
is much less sophisticated. Evolving around ef-
fect verbs specifically, we use only a small set of
manually defined patterns, but are still able to gain
comparable or even better results when compared
to OpenIE with an effect lexicon based relation
mapping.

Similar to our effect graph which we build from
effect relations, Martinez-Rodriguez et al. (2018)
use ClausIE (Corro and Gemulla, 2013) for extract-
ing relations in order to build an OpenIE-based
knowledge graph. Before applying OpenIE, they
extract entities and link them to existing knowledge
graphs. We experiment with both, using only enti-
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ties which we can link to Wikipedia pages, or not
requiring any linking. Further, they annotate noun
phrases (NPs) and expand the extracted entities to
encompass the complete NP. Similarly, in EREx
we only consider NPs as entities.

Lastly, we want to mention another type of rela-
tions than effect relations, namely causal relations
(Davidson, 1967). Other than in effect relations,
A’s effect on B, if they are in a causal relation, is
clearly defined as A being the cause for B. Girju
and Moldovan (2002), Girju (2003) introduced the
task of automatically extracting causal relations
from text, and it has been a matter of research since
then (Yang et al., 2022).

Also for causal relations, there exists research on
using them for building a knowledge graph. Hein-
dorf et al. (2020) bootstrap dependency parse pat-
terns to extract claimed causal relations from text.
While their method to start with a small, very ac-
curate seed set of patterns and to extend it consec-
utively is very appealing, we find it to be rather
difficult to apply on our approach: Their patterns
involve very concrete words that all trigger causal
relations while we chose to keep our patterns gen-
eral in order to apply to a large set of different
effect words. Also like us, Heindorf et al. (2020)
do not fact check their extractions, but emphasize
that they merely collect claimed causal relations.

3 Effect Graph Generation

Our aim is to generate a graph where the nodes
are entities such as global warming, CO2 emis-
sions, solar panel. The edges represent the effect
relations and indicate either a negative or positive
effect from the source to the target node, e.g., (so-
lar panel) −−→ (CO2 emissions). We also store the
concrete word indicating the effect. In the previ-
ous example, this could be for instance reduce or
prevent.

3.1 Effect Relation Extraction

We use a subset of the dependency parse patterns
presented in Kobbe et al. (2020) in order to identify
subject and object relations as well as negations.
The patterns are presented in table 3.

Using these patterns, we look for triples
(S, P,O) such that the predicate P has subject S
and object O. In order for the triple to qualify as
effect relation, P has to express a positive or nega-
tive effect on its object. We identify such effects by
applying the Connotation Frame lexicon (Rashkin

Pattern Interpretation
1 P

∗−→ O P has object O
3 P

⋄−→ S P has subject S

5 NegP
pobj−−→ X X is negated

6 X −→ NegP ∧
∄NegP pobj−−→

X is negated

7 X
neg−−→ X is negated

∗ ∈ {dobj, cobj, nsubjpass, csubjpass};
⋄ ∈ {nsubj, csubj};

NegP stands for negative preposition

Table 3: Dependency graph patterns, adapted from
Kobbe et al. (2020).

et al., 2016) with a threshold of ±0.2, expanded
using WordNet as proposed in Kobbe et al. (2020).
The effect relation’s subject, which we denote by
A, is then the statement’s substring which is rep-
resented by the dependency parse’s subtree whose
root is S. Analoguesly, the object B is the state-
ment’s substring represented by the subtree whose
root is O. Thereby, leading articles are ignored and
A and B have to be non-stopwords and NPs. To
ensure that they are meaningful entities in different
contexts, we check whether A and B link to an
entry in Wikipedia. Only if they both do, and if
neither A nor B nor P are negated, we consider A
P−→ B to be an effect relation.

3.2 Graph Construction

For building the effect graph, we extract effect re-
lations from the following three datasets:

Debatepedia Debatepedia was an online portal
where users could add pro and contra arguments
to a variety of topics. We use the featured debates
which overall have high quality.

Debate.org As Debatepedia is rather small, we
also use Debate.org (Durmus and Cardie, 2018,
2019) to extract effect relations from a large ar-
gumentative text basis. In Debate.org, two users
engage in a debate about a certain topic and present
their arguments and counter arguments over three
rounds.

Simple Wiki Lastly, we use an encyclopedic text
resource to also capture non-argumentative knowl-
edge which can be relevant for explaining argu-
ments. To save computational resources and in-
crease the accuracy of the extraction process, we
use the Wikipedia version in simple English.
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Subtask Measure Al-Khatib EREx
Relation Classification macro F1 0.79 0.65
Relation Type Classification macro F1 0.77 0.77
Identification of Concept 1 accuracy 0.69 0.71
Identification of Concept 2 accuracy 0.28 0.35

Table 4: Effect relation extraction evaluation.

Both argumentative text resources mainly con-
tain defeasible arguments. Thus, the effect relations
which we extract from them and, consequentially,
the effect graph should not be treated as facts.

After extracting the effect relations from text, we
remove duplicates. We only consider an effect rela-
tion to be a duplicate, if it was extracted from the
same sentence in the same resources twice, which
most often happens because of citations. We in-
tentionally keep effect relations that are identical
except for the sentence they were extracted from
because this might indicate that the effect relation
is especially relevant.

For building the effect graph, we connect the ex-
tracted effect relations as follows: The lemmas of
the subjects S and the objects O become nodes. We
add one edge between S and O for every respec-
tive effect relation we extracted. Since we do not
collapse the edges to not lose any information, the
resulting graph is expected to contain multi-edges.

4 Evaluation

We evaluate the effect graph as follows: In sec-
tion 4.1, we evaluate the effect relation extraction
process using the subtasks defined by Al-Khatib
et al. (2020). Then, we evaluate the extracted graph
itself. In section 4.2, we compare the graph statis-
tics. Afterwards, we evaluate both precision (sec-
tion 4.3) and recall (section 4.4). In this context,
precision expresses the chance that a randomly se-
lected edge of the graph is correct. We consider a
statement to be correct if it is in accordance with
the statement it was extracted from. Recall on the
other hand is meant to measure the chance that a
given effect relation is contained in the graph.

Baselines For the evaluation of the extraction
subtasks defined by Al-Khatib et al. (2020), we use
their models as a baseline, denoted by Al-Khatib.
For evaluating the effect graph as a whole, we
build the effect graph as described in section 3.2,
but using different extraction methods. We use
the OpenIE implementation which is part of Stan-
ford CoreNLP (Manning et al., 2014; Angeli et al.,

2015) to extract subject-verb-object triples, apply-
ing a confidence threshold of 0.9. We accept such
triples as effect relations where the verb is an effect
word and the subject and object link to Wikipedia
pages. Further, we use a version of EREx where
we do not require the subject and object to link
to Wikipedia, denoted by EREx*. We expect this
version to have a higher recall, but also more noise.

4.1 Extraction Subtasks

Al-Khatib et al. (2020) propose several subtasks for
effect relation extraction. These subtasks include:

• Relation Classification: Classify whether a
statement does contain an effect relation;

• Relation Type Classification: Predict the ef-
fect relation’s polarity;

• Identification of Concept 1: Identify the ef-
fect relation’s subject;

• Identification of Concept 2: Identify the ef-
fect relation’s object.

For the first two subtasks, Al-Khatib et al. (2020)
propose a supervised model, while for the last two
they rely on the OpenIE approach of Stanovsky
et al. (2018). To make the comparison fair, we
slightly adopt EREx such that it predicts a relation
type and identifies concepts even if it does not de-
tect an effect relation. For the evaluation, we use
the dataset published by Al-Khatib et al. (2020),
which contains crowd annotations for the different
subtasks, and compare our results to the results re-
ported in their paper.2 The results are presented in
table 4.

Concerning Relation Classification, EREx
misses effect relations considerably more often
than it wrongly predicts one (1582 vs 174 in-
stances), which fits our focus on precision rather
than recall. When counting only such instances

2As the train-test-split used by Al-Khatib et al. (2020) is
unknown to us, we use the full dataset for the evaluation. Thus,
unfortunately, the results are not directly comparable.
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Number of effect relations
Dataset EREx EREx* OpenIE
Debatepedia 1.6k 8.8k 9.9k
Debate.org 150.3k 669.9k 1173.8k
Simple Wiki 43.6k 193.9k 290.3k

Table 5: Effect relation extraction statistics

EREx EREx* OpenIE
# Nodes 53k 734k 129k
# Edges 195k 872k 1474k
# Positive edges 157k 729k 1250k
# Negative edges 38k 142k 223k
# Connected node pairs 126k 733k 603k

Table 6: Effect graph statistics.

where EREx extracts a relation, it correctly detects
its polarity in 85%, the subject in 80% and the ob-
ject in 41% of the instances. While both models’
scores of identifying the object are low, this can
be explained at least partly by the measure: The
object is considered to be wrong if it is off by one
word, even if it is an article. In the dataset, it is
inconsistent whether articles are part of the object
or not.

4.2 Graph Statistics

Table 5 shows the number of edges, i.e., extracted
effect relations, per dataset. Table 6 contains some
basic statistics of the effect graph. The number of
connected node pairs is included because of the
high ratio of multi-edges. We consider (A,B) and
(B,A) as the same node pair. Table 7 shows the
number of overlapping nodes between the different
effect graph versions.

Overall, using OpenIE results in the largest
graph and using EREx in the smallest. That Ope-
nIE extracts fewer nodes than EREx* is likely due
to the required linking to Wikipedia. For all three
methods, there are considerably more positive than
negative effect relations.

4.3 Precision

As the effect graph is generated by extraction from
large text resources, we do not have a ground truth
of whether or not a statement was extracted cor-
rectly. Thus, we evaluate precision a posteriori.
For this purpose, we randomly select 250 edges per
graph. For each, we annotate whether it was ex-
tracted correctly, given the original statement (yes,
rather yes, unsure, rather no, no). We both do an
expert annotation by one of the authors and crowd

EREx EREx* OpenIE
EREx – 52,821 43,527
EREx* 52,821 – 63,827
OpenIE 43,527 63,827 –

Table 7: Effect graph: Node overlap.

annotations via mturk.

Instructions

We require the crowd workers to successfully pass
an instruction before working on the task. The
instruction consists of a short description of the
task, two examples with comments, three instances
which had to be annotated correctly, and an op-
tional field where the workers could write com-
ments. The description, examples and the first in-
stance are provided in appendix A.

Overall, the task should be as intuitive as possi-
ble. For this purpose, we did not show the concrete
verb of the effect relation, but just the effect’s polar-
ity. Instead of explaining that we are not interested
in modality, we framed the polarity as "(may) neg-
atively affect". We addressed the risk of confusion
with sentiment by addressing it in the instructions:
Though most would likely agree that ending war is
desirable, we highlight that the effect which is ex-
pressed on war is a negative one. The workers then
have to correctly identify two further such effects
as negative (coal power reducing CO2-emissions)
respectively positive (current EU policy leading to
a financial crisis). Similarly, we exemplify and con-
trol that the subject and object have to be identified
correctly.

Annotation Process

We only accept workers who live in the US and
have a HIT approval rate greater than 98% and
more than 10,000 approved HITs in total. Addi-
tionally, they have to have passed the instructions
with three correct answers out of three. As the
cases in the instructions were not ambiguous, we
count rather yes and rather no as wrong answers,
as well as unsure. Overall, only 9 out of 50 workers
passed the instructions.

We have a total of 750 instances to be annotated.
Each instance is annotated by three crowd workers
and one expert. Overall, seven of the nine qualified
workers did actually address the task. Of these
seven workers, three did annotate the vast majority
of the instances (747, 739 and 650 respectively).
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categorial label value
yes 2

rather yes 1
unsure 0

rather no −1
no −2

Table 8: Mapping categorial answers to values.

crowd expert
polarities Fleiss 0.15 0.26

Randolph 0.47 0.44
scalar Krippendorff 0.20 0.34

Pearson 0.57
Spearman 0.56

Table 9: Agreement scores for effect relation evaluation.

Agreement

We treat the five labels either as polarities, map-
ping rather yes to yes and rather no to no. Or we
treat them as scalars as indicated in table 8. The
mapping allows us to intuitively combine multiple
labels by computing their mean. This is relevant
later for generating the label to ultimately measur-
ing the precision. But it also enables us to mea-
sure the agreement between the combined label
and the expert annotator (expert). Additionally, we
compute the agreement among the crowd workers
(crowd). For mapping back from numbers to la-
bels, we always round up positive values and round
down negative values. This way, the labels yes and
no are only provided if there are no opposing po-
larities and the label unsure is given as rarely as
possible.

We use the following agreement scores: Fleiss
Kappa for categorial agreement respecting the
label distribution; Randolph Kappa (Randolph,
2005) for categorial agreement without respecting
the label distribution; Krippendorff Alpha (Krip-
pendorff, 2011) for scalar agreement, especially in
the crowd setup as it allows for multiple annota-
tors; Pearson Correlation for scalar agreement in
the expert setup, using the mean as is; Spearman
Correlation for rank agreement in the expert setup,
mapping the mean to labels.

The scores are presented in table 9. Overall, the
agreement is rather weak. Concerning polarities,
we note two things: First, there is a big difference
between Fleiss and Randolph which can be ex-
plained by the fact that the crowd workers tended

to annotate yes or rather yes way more often than
no or rather no . Second, for Fleiss, the involve-
ment of the expert leads to higher scores, while
for Randolph it is vice versa. This tendency might
be explained by the fact that the expert annotated
yes or rather yes even less often than no or rather
no. So the expert reduces the imbalance between
these two labels which in turn causes Fleiss and
Randolph to approach each other.

For the scalar agreement, the scores are a bit
better which makes sense as only in this scenario
the labels’ ranks are considered properly. However,
we still conclude that the agreement is weak which
we have to consider when interpreting the results.

Results
The precision scores are calculated by dividing the
number of correctly extracted effect relations by
the sum of the numbers of correctly and incorrectly
extracted ones. As for what we consider a correctly
extracted effect relation, we again consider differ-
ent settings to provide a full picture. For one, we
use either the expert label or the aggregated crowd
label. Further, we either consider only the labels
we are confident about, namely yes and no (denoted
by exclusive), or we again aggregate yes and rather
yes as well as no and rather no (denoted by inclu-
sive). We never consider the relatively few cases
where the (aggregated) label is unsure. The results
are shown in table 10.

The expert’s tendency to annotate yes consider-
ably less often than the crowd workers is reflected
by the overall lower precision scores. Despite this
large difference of the scores, the tendency among
the datasets is consistent for the crowd workers’
and the expert’s annotations: EREx and EREx*
clearly outperform OpenIE, while EREx seams to
be at least slightly better than EREx*. This was to
be expected as EREx is more restrictive in selecting
subjects and objects than EREx*.

We conclude that EREx and EREx* are most
likely more precise than the OpenIE baseline, but
whether or not they are precise enough for our
envisioned use case is yet to be shown.

4.4 Recall

For evaluating recall, we check whether the graph
does contain such effect relations which we would
expect it to contain. In order to do so, we build
an evaluation dataset. We choose one random ar-
gumentative claim per topic from the Debatepe-
dia dataset of arguments related to consequences
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Crowd Annotations Expert Annotations
exclusive inclusive exclusive inclusive

total precision total precision total precision total precision
OpenIE 115 0.83 237 0.70 186 0.38 241 0.34
EREx 132 0.98 246 0.80 174 0.54 243 0.54
EREx* 130 0.95 242 0.79 175 0.48 248 0.46

Table 10: Effect graph precision.

(Kobbe et al., 2020). This results in 180 claims.
From each claim, we manually extract all effect re-
lations which we consider reasonable. This results
in 308 effect relations. If there is more than one
possible effect relation for a claim, we annotate
whether they are either equivalent to (≡), disjoint
to (̸≡), or part of (⊃) the other ones. Table 11
shows some examples which we will briefly dis-
cuss.

In example 1, there exist three reasonable effect
relations which differ only in the concreteness of
the object, a being the most concrete and c the least.
Note that the effect verb eliminate is only correct
when mentioning the ability of restaurants. Still,
the statement indirectly also expresses that calorie
counts negatively effect restaurants, which is why
in effect relation c, there is no effect verb annotated.
Example 2 briefly shows a case where there exist
two effect relations which are roughly equivalent in
terms of the information they contain. In contrast,
in example 3 exist two completely distinct effect
relations, though the second one is rather implicit.
Example 4 is a bit more complex: a is as concrete
as possible, but it can be split in b and c which
together are equivalent to a.

For calculating recall, we use two straightfor-
ward formulas: We either divide the number of the
ground truth effect relations which are contained
in the effect graph by the total number of ground
truth effect relations (total), or we divide the num-
ber of claims for which at least one ground truth
effect relation is contained in the effect graph by
the number of claims in the dataset (per statement).
Further, we optionally exclude the effect relations
which were extracted from Debatepedia from the
effect graph (w/o DP). Though it is unclear what
results one can expect this way, we consider it to
be a purer way of calculating recall.

The results (see table 12) show a clear trend:
EREx has lower recall than OpenIE, while EREx*
has a significantly higher recall than OpenIE only
when Debatepedia is included in the graph. Im-

portantly, we note that EREx* is only better than
EREx in the full graph setting. This fits our obser-
vation that the effect relations extracted by EREx*
tend to be overly specific oftentimes, which is one
reason why we proposed the linking to Wikipedia
as an additional requirement.

As the recall is particularly low for the settings
without Debatepedia, we take a brief look at the
few successes in table 13: It is noticeable though
unsurprising that the graphs generated with EREx
and EREx* contain the exact same test instances.
Further, two of them (7,8) are not identified by Ope-
nIE which in turn contains seven instances which
EREx and EREx* do not (9-15). One of the latter
instances cannot be included in EREx or EREx*
because it contains a non-nounphrase as subject
(14) – but considering the unspecificity of instance
14, this restriction seems to be justifiable.

5 Explanation Generation

For generating explanations, we use the effect
graph generated by EREx. As outlined in the intro-
ductory section, we envision two different types of
explanations which we will describe separately in
the sections 5.1 and 5.2. Afterwards, we introduce
a measure to rank the potential explanations (5.3).

5.1 Effect-Effect-Explanation

For an Effect-Effect-Explanation to be meaningful,
the polarities have to fit the relation we aim to ex-
plain. Concretely, we explain a positive relation
either by two positive or two negative relations, and
a negative relation by combining a positive and a
negative one. To generate explanation candidates ,
we use the effect graph in a straight forward way
by querying for paths of length two between the in-
stances of interest with appropriate edge polarities.
As a result, we get a list of explanation candidates.

For explaining how abortions protect women,
this list includes 370 explanation candidates,
though many of them are similar to each other
because of our loose definition of duplicates. In-
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Ex. 1 Calorie counts eliminate ability of restaurants to be spontaneous.
a (Calorie counts) [-eliminate] (ability of restaurants to be spontaneous)
b ⊃ (Calorie counts) [-eliminate] (ability of restaurants)
c ⊃ (Calorie counts) [-] (restaurants)
Ex. 2 Circumcision creates risk of infections in infants
a (Circumcision) [+creates] (risk of infections)
b ≡ (Circumcision) [+creates] (infections)
Ex. 3 Assassinations protect publics from terrorism; even while it’s hard to measure
a (Assassinations) [+protect] (publics)
b ̸≡ (Assassinations) [-protect from] (terrorism)
Ex. 4 Network neutrality damages competition and niche suppliers
a (Network neutrality) [-damages] (competition and niche suppliers)
b ≡[ (Network neutrality) [-damages] (competition)
c ̸≡ (Network neutrality) [-damages] (niche suppliers)]

Table 11: Examples: Effect relation annotation for recall evaluation.

total per statement
full w/o DP full w/o DP

OpenIE 0.07 0.04 0.14 0.09
EREx 0.05 0.03 0.09 0.06
EREx* 0.14 0.03 0.28 0.06

Table 12: Effect graph recall.

stead of listing all candidates, we list all the interim
nodes C used within the explanation candidates:
*, choice, country, fetus, god, man, nothing, order,
people, person, pregnancy, right, sex, society, t, un-
wanted pregnancy, woman ’s rights. One can easily
imagine that some of the concepts mentioned are
useful for explaining why abortions protect women,
while others are non-sense.

5.2 Effect-Lexical-Explanation

Sometimes, we need additional lexical knowledge
for explaining an effect relation. As mentioned
previously, we use WordNet to incorporate some
of the potentially relevant lexical knowledge. Con-
cretely, this includes hyperonymy, meronymy and
synonymity.

To extract explanation candidates for A ±−→ B,
we again look for instances C, considering the fol-
lowing cases: A ±−→ C

WN−−→ B and A
WN−−→ C

±−→ B.
The polarities have to be identical and WN−−→ indi-
cates one of the lexical relations mentioned above.

For the example, we find 10 different explana-
tion candidates. Half of them argue that abortions
are good for mothers in some way, and mother is
a hyponym for woman. While being trivial, we

EREx + EREx* + OpenIE
1 icc −−→ crimes
2 abortion +−→ women
3 eating meat −−→ animals
4 marijuana −−→ productivity
5 war −−→ civilians
6 affirmative action −−→ meritocracy

EREx + EREx*
7 two-state solution +−→ stability
8 gay marriage −−→ procreation

OpenIE
9 elections +−→ judges

10 government +−→ public transport
11 stimulus +−→ debt
12 circumcision +−→ infections
13 primaries +−→ candidates
14 they +−→ headaches
15 rights +−→ contracts

Table 13: Effect graph recall (w/o DP): Successes.

still think that there is a benefit in this explana-
tion. It states correctly that the positive effect of
the abortion is on the mother (and not on the fetus,
for instance) and finds the relation between mother
and woman. The other five explanation candidates
use the interim nodes people, action, failure, man
and none of these explanations seems useful to us.

123



5.3 Explanation Candidate Ranking

Since the proposed methods to generate explana-
tions often result in a list of explanation candidates
of varying quality, we further propose a simple
means of ranking them which is inspired by tf-
idf. The idea is to measure the importance of the
interim node C based on its degree in the effect
graph (denoted by dege), where we assume a lower
degree to be better as it indicates specificity, and
its degree in the subgraph connecting A and B (de-
noted by degs), where we consider a higher degree
to indicate relevance. The core idea for measuring
importance is the quotient of these two quantities.
This quotient, however, does not respect the ab-
solute quantities and will thus lead to the same
score for C having degree 1 in both graphs and
having degree 5 in both graphs, though we con-
sider the latter to be considerably better. In order
to account for that, we apply the idea of additive
smoothing and increment the denominator by 1.
Further considering that we rather prefer medium
in- and out-degree rather than a high (low) in- and
low (high) out-degree, we calculate C’s importance
for Effect-Effect-Explanations as follows:

indegs(C)

indege(C) + 1
· outdegs(C)

outdege(C) + 1

Considering Effect-Lexical-Explanations, we
are only interested in either C’s out- or in-degree.
For better comparability, we use the square of the
relevant quotient to measure the importance.

When applying the importance measure on the
example, the five most important nodes are in de-
scending order: unwanted pregnancy, woman ’s
rights, mother, fetus, pregnancy. The correspond-
ing explanation via unwanted pregnancy unfortu-
nately does not make sense due to an extraction
mistake, although the concept seems to be ranked
that high for good reason. We already discussed
the one via mother in section 5.2. The others sug-
gest that abortions kill fetuses which in turn harm,
damage or endanger the woman; that abortions end
pregnancies which also harms the woman; and that
abortions support women’s rights which in turn are
good for women.

6 Conclusion

We propose a method to extract effect relations
from text and use it to build an effect graph. We
further propose a method to use the effect graph

as background knowledge for automatically gen-
erating structured explanations, for example for
arguments from consequences. However, the effect
graph’s precision remains unclear while its recall is
low. The latter issue might be addressed by either
improving the extraction method or, to a certain
degree, by running the method on larger text re-
sources. The effect graph can be seen as a valuable
resource on its own, as it can potentially be used
to also address other tasks than explanation genera-
tion, like identifying (counter-) arguments for a spe-
cific topic or extending common sense knowledge
graphs such as ConceptNet (Speer et al., 2017).

Limitations

While the proposed methods are attractive due
to their efficiency, explainability and not needing
training data, the limitations are also manifold: The
pipeline nature propagates all errors that occur. For
instance, the dependency parser in use performs
rather poorly on informal texts such as tweets. Fur-
ther, our definition of positive and negative effect
relations is quite shallow and does not always live
up to the real world’s complexity. We only capture
effect relations that are formulated explicitly within
one sentence, and only one effect relation per sen-
tence. Requiring the nodes to link to Wikipedia
might be too restrictive while not even truly solving
the problem of filtering non-sense nodes. Both the
low inter-annotator-agreement in our effect graph
evaluation as well as the discrepancy of the crowds’
and the expert’s annotations make it hard to as-
sess the correctness of the extracted effect relations.
And lastly, while we showcase some generated
explanations, we did not properly evaluate how
reliable the approach is in finding reasonable ex-
planations. Indeed, first results suggest that this
approach of generating explanations works rather
inconsistently, though the ranking helps to a certain
degree.

What one might consider another limitation is
that we do not check the effect relations for factual
correctness, which ultimately leads to contradic-
tions and inconsistencies in the effect graph. While
fact checking is a difficult and controversial task,
we also purposefully decided against any form of
fact or consistency checking. Each edge in the ef-
fect graph is meant to represent one effect relation
exactly as it was expressed. Including critical ef-
fect relations in the graph allows for identifying,
analyzing, and potentially disproving them.
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Abstract
In this paper, we conduct a thorough investiga-
tion into the reasoning capabilities of Large
Language Models (LLMs), focusing specif-
ically on the Open Pretrained Transformers
(OPT) models as a representative of such mod-
els. Our study entails finetuning three differ-
ent sizes of OPT on a carefully curated rea-
soning corpus, resulting in two sets of fine-
tuned models: OPT-R, finetuned without ex-
planations, and OPT-RE, finetuned with expla-
nations. We then evaluate all models on 57
out-of-domain tasks drawn from the SUPER-
NATURALINSTRUCTIONS benchmark, cover-
ing 26 distinct reasoning skills, utilizing three
prompting techniques. Through a comprehen-
sive grid of 27 configurations and 6,156 test
evaluations, we investigate the dimensions of
finetuning, prompting, and scale to understand
the role of explanations on different reasoning
skills. Our findings reveal that having expla-
nations in the fewshot exemplar has no signifi-
cant impact on the model’s performance when
the model is finetuned, while positively affect-
ing the non-finetuned counterpart. Moreover,
we observe a slight yet consistent increase in
classification accuracy as we incorporate ex-
planations during prompting and finetuning, re-
spectively. Finally, we offer insights on which
skills benefit the most from incorporating ex-
planations during finetuning and prompting,
such as Numerical (+20.4%) and Analogical
(+13.9%) reasoning, as well as skills that ex-
hibit negligible or negative effects.

1 Introduction

Recently, there has been a surge in the release of
Large Language Models (LLMs) by both indus-
trial and academic institutions. These models vary
from open-source releases such as OPT (Zhang
et al., 2022) and LLAMA (Touvron et al., 2023) to
closed-source ones like GPT-3 (Brown et al., 2020)
and PALM (Chowdhery et al., 2022). In addition,
researchers have developed models that are fine-
tuned on top of these foundational models to better

Scale

Finetuning

Prompting

1.3B

6.7B

13B

OPT OPT-R OPT-RE

Zeroshot
Fewshot

Fewshot-E

Figure 1: Three-Dimensional Grid of Fine-Tuning,
Prompting, and Scale. Each dimension is represented
as an axis, with three levels for each of finetuning,
prompting, and scale plotted on each axis. The resulting
grid consists of 27 different combinations evaluated on
various reasoning tasks. It should be noted that there is
a hidden dimension, the scoring function, comprising
four components. This results in a comprehensive total
of 6,156 evaluations.

follow instructions, such as OPT-IML (Iyer et al.,
2022) and Alpaca (Taori et al., 2023). Despite
the remarkable progress in LLMs’ performance
in Natural Language Processing (NLP) tasks, rea-
soning remains a challenging area. For example,
prior work have shown that LLMs struggle with
commonsense reasoning (West et al., 2022) and
arithmetic reasoning (Hendrycks et al., 2021) to
name a few.

Recent efforts have attempted to improve the
reasoning performance of LLMs by decomposing
answers into step-by-step reasoning chains using in-
context learning (Wei et al., 2022b; Kojima et al.,
2022) or during finetuning (Chung et al., 2022;
Wei et al., 2021a). While these approaches have
shown some improvement on benchmarks such as
GSM8K (Cobbe et al., 2021), it is not clear how
those explanations affect finetuning, prompting, or
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{Task Definition} 

Provide your answer followed by a brief reasoning.

{In-Context Examples}

Input: {input}

Options: {options}

Output: The answer is {answer} because {explanation}

Figure 2: Template used during both training and infer-
ence. The model is tasked with predicting the answer
followed by the explanation.

their combination. Concurrent work has investi-
gated the generalization capability of such models
to reasoning skills beyond those encountered dur-
ing finetuning (Yu et al., 2022), but a comprehen-
sive evaluation of the role of explanation during
finetuning and prompting with respect to reasoning
skills is still lacking.

In this paper, we aim to address this gap. We in-
vestigate OPT (Zhang et al., 2022) as a representa-
tive of such models and utilize it as our base model.
Through finetuning OPT on a collection of care-
fully curated open-source reasoning datasets that
come with explanations for each instance, we eval-
uate its performance on 57 tasks drawn from the
SUPER-NATURALINSTRUCTIONS benchmark (Wang
et al., 2022), covering 26 different reasoning skills.
Our experiments are structured around three key
dimensions: finetuning, prompting, and scale, each
of which is comprised of three distinct components
(See Figure 1). Finetuning: (1) a (vanilla) un-
finetuned OPT model; (2) A finetuned OPT model
without explanations (OPT-R); and, (3) A finetuned
OPT model with explanations (OPT-RE). Prompt-
ing: (1) zero-shot prompting; (2) Fewshot prompt-
ing without explanations; and, (3) Fewshot prompt-
ing with explanations. Finally, Scale: (1) 1.3B; (2)
6.7B; and, (3) 13B. Accordingly, we create grid
of 27 different components, providing a detailed
analysis measuring the impact of explanations dur-
ing finetuning and inference across different model
scales.

Our findings reveals that finetuning on reason-
ing datasets leads to statistically significant im-
provements in seven reasoning skills, including
Numerical, Analogical and Reasoning on Objects,
with Physical, Counting and Textual Entailment
showing a significant effect only for the OPT-RE
model, across both fewshot prompting conditions

and model sizes, as compared to the vanilla OPT
model (see Table 2). However, we also find that
this approach significantly hinders the performance
of three other reasoning skills (see Table 3). We
also investigate the impact of incorporating expla-
nations during fewshot prompting and find that it
does not have a significant impact on the perfor-
mance of the finetuned models, as measured by the
variance in the difference between both prompting
methods across reasoning skills for each model.
However, we notice that it has a more noticeable ef-
fect on the performance of the vanilla OPT model,
as shown in Table 5. Additionally, we observe
a consistent increase in the average performance
across all tasks from Fewshot to Fewshot-E, as well
as from OPT to OPT-R to OPT-RE models, indi-
cating that explanations do have a small effect on
performance during both finetuning and prompting.
Finally, Table 4 presents a summary of the results,
indicating which reasoning skills demonstrate im-
provement due to the incorporation of explanations
during either finetuning or prompting, which skills
show a negative effect, and which skills have negli-
gible effects regarding explanations.

2 OPT-R: Finetuning on Reasoning Skills

2.1 Reasoning Datasets with Explanations

Figure 3: Number of samples in each dataset of the
training corpus. Y-axis in log scale.

The finetuning corpus utilized to refine OPT is
composed of various reasoning datasets, each of
which includes a corresponding explanation or ra-
tionale for the answer. These rationales may con-
sist of a sequence of smaller steps (i.e. chain-of-
thought) or a free-form text that elucidates the rea-
soning behind the answer. As shown in Figure 2,
we employ a uniform template for all tasks during
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the training process. The input to the model begins
with a task definition, followed by an instruction to
provide an answer followed by a brief reasoning.
Next, we extract two random in-context examples
uniformly from the training set that remain con-
stant throughout training for each instance. The
input for the current training instance is then pre-
sented in a format specific to each task. The options
for the answer are then included in the input, but
not in the in-context examples (see Appendix A
for further details on task-specific definitions and
options). The options are pre-shuffled for each
training instance. The model is finally provided
with the answer prefix, "Output: The answer
is", and is tasked to predict the answer, followed
by an explanation if OPT-RE is being finetuned.
Similarly, the in-context examples only comprise
an explanation when training OPT-RE.

Below is a brief description of each dataset used
during finetuning. See Figure 3 for the relative size
of each dataset.

AQUA-RAT The Algebra Question Answering
with Rationales dataset (Ling et al., 2017) render-
ing the task of solving algebraic word problems
more feasible by dividing the problem into a series
of smaller steps. They create a 100k-sample dataset
that contains questions, answers and rationales in
natural language and human-readable mathemati-
cal expressions that can be used to derive the final
answer.

CoQA The Conversational Question Answering
dataset Reddy et al. (2019). It consists of 127k
questions and answers, compiled from 8k conversa-
tions about passages from seven different domains.
Given a passage that contains a conversation, the
model is tasked with answering a question by high-
lighting the corresponding evidence from the pas-
sage.

CoS-E The Common Sense Explanations dataset
Rajani et al. (2019) to induce language models with
commonsense reasoning. In this dataset, the model
is given a question and a set of choices and is tasked
with selecting one of the provided choices along
with providing an explanation in natural language
as to why that choice is correct.

ECQA The Explanations for Commonsense
Question Answering dataset Aggarwal et al. (2021).
It is similar to CoS-E since it requires the model to
choose one of the provided options to answer the

given question, and also provide an explanation.

ESNLI The Stanford Natural Language Infer-
ence dataset with Explanations Camburu et al.
(2018) to train models to provide interpretable and
robust explanations for their decisions. The authors
extend the SNLI dataset (Bowman et al., 2015) with
human-annotated explanations. Similar to any NLI
task, the model is given a premise and hypothesis
and the task is to determine whether the hypothe-
sis sentence entails, contradicts, or is neutral with
respect to the given premise.

GSM8K The Grade School Math dataset Cobbe
et al. (2021) to train models to better perform multi-
step mathematical reasoning. It consists of 8.5k
linguistically diverse grade school math word prob-
lems. Therefore, the task for the model is to answer
the question by performing a series of arithmetic
operations to obtain a final answer, while explain-
ing it’s reasoning steps.

ProofWriter The ProofWriter dataset Tafjord
et al. (2021) to generate both the implications of
a theory from the RuleTaker dataset (Clark et al.,
2020) and the natural language proofs that support
them. Specifically, given a sequence of facts and
rules, the model is tasked with answering a ques-
tion using “Yes”, “No”, or “Unknown” and provide
the reasoning path by referring to the provided facts
and rules. We consider the open-world assumption
subset of RuleTaker with questions that requires
reasoning up to a depth of 5.

StrategyQA The Strategy Question Answering
dataset Geva et al. (2021) to improve multi-hop rea-
soning for questions where the required reasoning
steps are implicit in the question. Therefore, the
task of the model is to answer the question using
“Yes” or “No” then provide a strategy that explains
the answer by decomposing it into a number of
steps.

2.2 Finetuning Procedures

OPT The Open Pretrained Transformers (OPT)
models are a suite of decoder-only pre-trained trans-
formers ranging from 125M to 175B parameters
released by Zhang et al. (2022). In this work, we
use three OPT models with sizes of 1.3B, 6.7B
and 13B. The details of each model architecture,
pre-training corpus and training configuration (e.g.
weight initialization, optimizer, tokenizer, hyperpa-
rameters, etc.) can be found in Zhang et al. (2022).

130



Reasoning Skill Task IDs

Abductive Reasoning task854
Analogical Reasoning task1287, task1288
Argument Reasoning task514
Causal Reasoning task1393
Commonsense Reasoning task279, task156, task295
Commonsense Reasoning → Numerical Commonsense ... task1403
Commonsense Reasoning → Physical Reasoning task084
Commonsense Reasoning → Social Situations task580, task937, task1606
Commonsense Reasoning → Spatial Reasoning task082, task083
Deductive Reasoning task221, task1568, task220
Ethics task667, task724, task723
Grammatical Reasoning task1712, task052, task1559
Logical Reasoning task717, task211, task268
Logical Reasoning → Reasoning with Symbols task923, task935
Mathematics → Counting task523, task155
Multihop Reasoning task1297, task056
Numerical Reasoning task621, task1333
Reasoning on Objects task1583, task1584
Reasoning on Social Interactions task609, task881, task875
Reasoning on Strings task1189
Relational Reasoning task1380, task472, task1505
Scientific Reasoning task1431, task228, task714
Temporal Reasoning task018, task1549, task383
Textual Entailment task738, task890, task463
Textual Entailment → Analogical Reasoning task1347
Textual Entailment → Deductive Reasoning task1612, task534, task1366

Table 1: Evaluation tasks from SUP-NATINST (Wang et al., 2022) used for each reasoning skill.

Implementation Details To finetune the selected
models, we utilized the metaseq1 implementation
since it enables higher training efficiency compared
to other codebases (Zhang et al., 2022). Each
model is finetuned twice for 10 epochs, once with
explanations and once without (i.e. OPT-RE vs
OPT-R, respectively). Models are evaluated at
the end of each epoch on a chosen set of SUPER-
NATURALINSTRUCTIONS validation tasks, and the
checkpoint with the best performance is selected
for evaluation on the testing tasks. The loss is
calculated only on the tokens the model is tasked
to predict during inference, and not the full input,
what is referred to as label-loss in (Iyer et al., 2022).
The samples across all datasets are shuffled during
training. Further, the model is provided with two
in-context examples during finetuning in addition
to the task definition to match inference time fol-
lowing (Wang et al., 2022).

1https://github.com/facebookresearch/metaseq

3 Evaluating the Models

3.1 SUPER-NATURALINSTRUCTIONS Tasks

In this study, we focus on a subset of the SUPER-
NATURALINSTRUCTIONS benchmark version 2.62

(SUP-NATINST for short) proposed by Wang et al.
(2022), which comprises 1,616 varied NLP tasks
and includes meta-labels for each task, such as
task type, domain and more importantly for this
work: the underlying reasoning skills. Specifically,
we select a subset of tasks that satisfy two key
criteria: (i) the task focuses on a single reasoning
skill, enabling us to evaluate a specific atomic skill,
and (ii) the task can be tested using classification
mode, as detailed in Section 3.2. Note that there is
no data contamination between finetuning data and
the evaluation benchmark.

2We downloaded the data from https://github.com/
allenai/natural-instructions/tree/v2.6.
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Figure 4: Results achieved across all tasks as a function of the three primary dimensions analyzed in this study:
Finetuning, Prompting and Scale.

Benchmark Splits Following the task selection
process, we apply a random sampling technique to
ensure diversity within the testing set. Specifically,
we select a maximum of three tasks from each rea-
soning skill, and allocate any remaining tasks to
the validation set. Notably, this approach enables
us to obtain a representative sample of the selected
reasoning skills for testing, while also ensuring
that our model’s performance is not influenced by
a particular subset of tasks. Table 1 shows the com-
plete list of tasks used for evaluating our finetuned
models for each reasoning skill.

3.2 Evaluation Setup

Earlier, we mentioned that we selected 57 tasks
spanning 26 reasoning skills from SUP-NATINST to
evaluate our finetuned models. To meet our criteria,
as detailed in Section 3.1, each task had to fulfill
two conditions. The second condition required
that the task can be considered a classification task.
That means there is a discrete set of candidates
(one of which is correct) and thereby treating it as
a classification problem where the highest-scoring
candidate is considered the answer. To ensure this,
we utilized a straightforward heuristic: we only
sampled tasks that had no more than 10 possible
candidate answers.

Classification Method To determine the correct
answer, we conduct a forward pass for each poten-
tial candidate answer and utilize a scoring function
to measure the likelihood that the candidate tokens
follows the input, similar to Brown et al. (2020).
This process is repeated four times using distinct
scoring functions, as detailed in the subsequent

paragraph. The highest accuracy score from the
four scoring functions is considered as result of the
task.

Scoring Functions This is considered the fourth
dimension of this work since we evaluate each task
using four different scoring functions and take the
maximum accuracy as the result. The four scoring
functions used are as follows: (1) mean, which
involves computing the average of the log probabil-
ities of candidate tokens, also referred to as token
score. (2) unconditional-norm, which computes
the difference between the sum of token scores of
the candidate when unconditioned by any previous
tokens and the sum of candidate token scores when
conditioned by previous input. (3) suffix, which
computes the sum of the conditioned candidate’s to-
ken scores alone. Finally, (4) sum, which involves
calculating the sum of all the token scores passed
to the model. The reason we employed different
functions is that we observed significant gains in
performance when using one scoring function over
the other for specific tasks. Therefore, in order
to ensure fairness across all tasks, we selected the
highest accuracy over all scoring functions for each
task.

4 Results & Findings

In this section, we present the results and findings
of our experiments. First, we illustrate in Figure
4 the outcome of our evaluation on the effective-
ness of finetuned models as compared to the vanilla
OPT model, across three different scales when us-
ing both fewshot prompting with and without ex-
planations. Furthermore, we observe a monotonic
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increase in the performance of each model as we
increase the scale under those two prompting condi-
tion, which indicates a positive correlation between
the model’s capacity and its overall performance.
However, we note that this trend does not apply
to the zeroshot prompting method, since we are
testing out-of-distribution tasks and that the fine-
tuned models were trained with fewshot exemplars
in their context. This leads us to focus only on
the fewshot prompting methods, with and with-
out explanations, for the remaining of our evalu-
ations. Specifically, we investigate the impact of
finetuning the OPT models on reasoning datasets,
as compared to the vanilla OPT model, and explore
the effect of explanations during finetuning and
prompting, both in terms of the reasoning skill.

4.1 Model Performance for Reasoning Skills

The results reported in this and the following sec-
tion are the classification accuracy of each reason-
ing skill across different conditions, such as model
sizes and fewshot prompting methods. Table 2
shows the reasoning skills where either OPT-RE
or OPT-R are significantly better than the vanilla
OPT model, as measured by Welch’s t-test, where
p < 0.05. Conversely, Table 3 show the reason-
ing skills where the vanilla OPT model performs
significantly better than either of its finetuned coun-
terparts.

Skill OPT OPT-R OPT-RE

Numerical 44.8 65.2* 64.7*
Analogical 49.0 62.9* 60.8*
Counting 19.8 13.1 31.3*
Physical 38.2 37.8 49.1*
Entailment 42.6 47.2 51.6*
Social Int 34.1 43.0* 40.1
Objects 54.3 62.6* 59.9*

Table 2: Performance as a function of the reasoning
skills where OPT-RE or OPT-R performs significantly
better than the OPT model as measured by Welch’s t-test
(p < 0.05) denoted by the * symbol. The performance is
measured across Fewshot and Fewshot-E prompting, the
three different scales and tasks under the corresponding
reasoning skill. Best result indicated in bold.

The results reveal that the finetuned variants of
the OPT model demonstrate a significant improve-
ment on seven distinct reasoning skills, with par-
ticular emphasis on the Numerical and Analogical
reasoning tasks. Specifically, for the Mathematical

Skill OPT OPT-R OPT-RE

Argument 57.9 46.1− 48.7−

TE - Deductive 36.0 29.0− 29.4−

Commonsense 33.4 29.7 28.8−

Table 3: Performance as a function of the reasoning
skill where OPT performs significantly better than either
OPT-R or OPT-RE as measured by Welch’s t-test (p <
0.05) denoted by the − symbol. The performance is
measured across Fewshot and Fewshot-E prompting, the
three different scales and tasks under the corresponding
reasoning skill. TE is Textual Entailment.

Counting skill, the OPT-RE variant outperforms
both the OPT-R and OPT models, underscoring
the criticality of incorporating explanations during
the finetuning process for mathematical datasets.
Likewise, the Physical Reasoning tasks exhibit a
similar trend. On the other hand, we can see that
for the Argument, Deductive Textual Entailment
and Commonsense skills the non-finetuned version
outperforms considerably.

4.2 Fine-Grained Skill Analysis

Table 4 shows the classification accuracy results
obtained from the three models, in relation to the
reasoning skill and few-shot prompting method
used. The best accuracy value for each reasoning
skill is indicated in bold, and the cells are shaded
with colors ranging from green to white to indicate
their position in the accuracy spectrum of each rea-
soning skill. The skills with similar performance
across different models are assigned a lighter shade
of green, indicating that their color spectrum ends
earlier than that of other skills where the difference
in performance between models is more significant.
The table is divided into four blocks to distinguish
effects of finetuning and prompting methods on
reasoning skills: the first block showcases skills
where the finetuned (OPT-RE and OPT-R) mod-
els outperform the vanilla OPT model, the second
block highlights skills where OPT-RE has better
accuracy than other models therefore illustrating
the importance of finetuning on explanations on
those skills. The third block displays skills where
OPT outperforms other models showing that fine-
tuning actually hurts performance in this case, and
the fourth block identifies skills where the choice
of model or prompting method has little impact on
the overall performance.
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OPT OPT-R OPT-RE
Skill Fewshot Fewshot-E Fewshot Fewshot-E Fewshot Fewshot-E

Numerical 39.9 49.7 65.1 65.3 64.7 64.8
Analogical 51.9 46.2 63.3 62.5 60.7 60.9
Objects 53.5 55.1 61.4 63.8 60.0 59.7
Social Interactions 33.6 34.7 43.8 42.3 40.2 40.0
Textual Entailment 43.3 42.0 47.1 47.3 51.9 51.2
Grammatical 54.4 55.1 61.2 60.0 62.0 63.1
Multihop 36.6 31.7 38.9 39.9 39.5 37.0
Symbols 44.2 47.2 51.7 51.8 51.9 52.4
Spatial 44.1 47.1 49.8 51.8 49.6 49.2
Social Situations 46.3 46.6 53.2 53.2 51.9 52.3

Counting 19.6 20.0 13.5 12.7 29.8 32.9
Physical 35.8 40.6 36.9 38.8 48.1 50.0
Logical 31.7 33.4 33.7 34.1 36.9 38.4

Temporal 50.7 49.7 43.4 46.5 48.5 38.5
Argument 55.8 60.1 46.3 45.9 48.6 48.8
TE - Deductive 33.7 38.3 27.9 30.1 29.0 29.9
Relational 47.4 51.1 47.6 47.9 44.8 44.6
Commonsense 35.0 31.8 29.8 29.5 28.5 29.2

TE - Analogical 16.3 18.7 18.6 20.7 18.7 18.1
Abductive 33.9 36.1 36.9 34.4 34.2 35.3
Ethics 26.8 25.8 26.5 25.9 26.2 27.6
Deductive 39.4 40.4 39.4 40.4 40.0 41.1
Causal 50.2 50.6 49.1 48.9 50.1 50.5
Scientific 23.4 23.3 24.3 24.5 25.0 24.5
Numerical Commonsense 59.5 59.2 59.0 59.0 59.2 59.4
Strings 60.7 60.7 61.1 61.2 60.7 60.7

Table 4: Classification accuracy results achieved by different models as a function of the reasoning skill and few-shot
prompting method employed. The best accuracy obtained for each reasoning skill is highlighted in bold. The cells
are shaded with colors ranging from green to white to indicate their position in the accuracy spectrum. Reasoning
skills with smaller variance in achieved results are assigned a lighter shade of green to convey the extent of similarity
between models. The first block highlights skills where the finetuned models perform notably better than the vanilla
OPT. The second block emphasizes the skills where OPT-RE outperforms other models. In contrast, the third block
showcases the skills where OPT outperforms the other models. Lastly, the fourth block identifies skills where the
choice of model or prompting method has little impact on the overall performance.

Explanations’ Effect One of the central ques-
tions that we sought to investigate in this study
is the extent to which explanations play a role in
improving the reasoning capabilities of OPT mod-
els during finetuning and prompting. The results
presented in Table 5 suggest that the presence or
absence of explanations in the fewshot examples
employed for prompting does not significantly im-
pact the performance of the model when the model
is finetuned on reasoning datasets. Concretely, in
Table 5, we present the variance of the absolute
accuracy difference for each model across reason-

ing skills by excluding the Temporal skill, which
was identified as an outlier. Specifically, we com-
pute the difference between the two corresponding
columns for each model in Table 4. These values
provide insights into the impact of including ex-
planations during prompting on the performance
of the models. Our findings reveal that the differ-
ence is negligible for OPT-R and OPT-RE models,
suggesting that the choice of prompting method
does not significantly affect the model’s accuracy.
However, for the vanilla OPT model, the differ-
ence is more substantial, emphasizing the impor-
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tance of employing explanations during fewshot
prompting. However, the mean performance of
each model across the distinct fewshot prompting
methods demonstrates a slight yet consistent in-
crease in classification accuracy, from Fewshot to
Fewshot-E (incorporating explanations), as well as
from OPT to OPT-R to OPT-RE models showing
that explanations do have a small effect on perfor-
mance during both finetuning and prompting.

Model Std(|F-FE|) Avg(F) Avg(FE)

OPT 2.31 40.68 41.82
OPT-R 0.84 43.44 43.68
OPT-RE 0.78 44.49 44.86

Table 5: The first column shows the variance of the
absolute difference in accuracy for each model across
different reasoning skills, when using Fewshot (F) and
Fewshot-E (FE) prompting methods. The second and
third columns show the average performance of each
model across each prompting method. Results are ob-
tained after dropping the outlier Temporal skill.

5 Related Work

Reasoning LLMs LLMs have made significant
advancements in the field of NLP and related ar-
eas (Brown et al., 2020; Chowdhery et al., 2022;
Chung et al., 2022), especially with the advent of
the pre-train, prompt, and predict paradigm (Liu
et al., 2021). This paradigm has enabled these
models to solve a multitude of tasks through in-
context fewshot or zeroshot learning using instruc-
tions (Wei et al., 2021b; Iyer et al., 2022). However,
their reasoning abilities have been a subject of de-
bate in recent literature (Huang and Chang, 2022;
AlKhamissi et al., 2022). Several studies suggest
that increasing the size of an LM trained through
the same next-token prediction method can lead to
the emergence of complex behaviors (Wei et al.,
2022a), including reasoning. For instance, some re-
search has demonstrated that sufficiently large LMs
can use chain-of-thought prompting (Wei et al.,
2022b) to simulate human-like reasoning. Other
studies have shown that the addition of a simple
prompt, such as "Let’s think step-by-step" (Ko-
jima et al., 2022) can elicit reasoning abilities in
LLMs by generating explicit reasoning steps be-
fore decoding the final answer. However, some
researchers contend that emulating the human rea-
soning thought process is distinct from claiming
that the model can truly reason (Wei et al., 2022b).

Finetuned LLMs Concurrent studies have fine-
tuned LLMs to follow instructions to improve their
generalization ability to unseen tasks through zero
and fewshot learning (Iyer et al., 2022; Chung et al.,
2022). However, our approach differs in that we
only finetune on a selected number of open-source
datasets that provide explanations for each instance.
This enables us to focus on the importance of expla-
nations during finetuning in the context of reason-
ing skills. While concurrent works, such as (Iyer
et al., 2022; Wang et al., 2022), have experimented
with different prompting methods during finetuning
and inference, our study focuses primarily on eval-
uating the reasoning ability of the finetuned models
across a set of reasoning skills. Other concurrent
studies have explored the impact of finetuning on a
set of held-out reasoning tasks (Yu et al., 2022), but
their evaluation approach, which involves generat-
ing answers, may be influenced by various factors
such as decoding strategy, decoding parameters,
and prompt templates. In contrast, we adopt a rank
classification approach similar to (Brown et al.,
2020), which better captures the reasoning perfor-
mance of the model being evaluated, in addition to
covering a larger number of reasoning skills and
tasks.

6 Conclusion

In this study, we investigated the impact of incorpo-
rating explanations during finetuning and prompt-
ing on three different sizes of the OPT model.
Through a systematic and comprehensive evalu-
ation process that considered three key dimensions,
we found that while explanations did provide a
small improvement in performance, the effect was
not significant when incorporated in the in-context
demonstrations during inference for the finetuned
models. Additionally, our results showed that both
finetuned models exhibited significant improve-
ments in reasoning skills such as Numerical, Ana-
logical and Reasoning on Objects. Moreover, we
demonstrated that skills such as Physical, Count-
ing, and Textual Entailment benefited from incorpo-
rating explanations during the finetuning process.
Overall, our findings provide insights into the im-
pact of incorporating explanations on the reason-
ing capabilities of LLMs and offer guidance on
which reasoning skills would benefit most from
the inclusion and exclusion of explanations during
finetuning and prompting.

135



Limitations

While our study provides valuable insights into
the impact of finetuning on reasoning performance
and the role of explanations during finetuning and
prompting with respect to various reasoning skills,
there are several limitations to our work. Firstly,
we only consider a single LLM, OPT, as our base
model. Our results may not generalize to other
LLMs with different architectures or pretraining
objectives. Secondly, we only use a limited set of
reasoning datasets for finetuning due to the limited
availability of open-source datasets with explana-
tions. However, it is possible that our findings
may not hold for models finetuned on larger closed
datasets as usually seen in real-world scenarios.
Thirdly, our experiments only cover a limited range
of model sizes due to limitations in computational
budget, therefore it is possible that our findings may
not hold for much larger models. Finally, we only
consider finetuning using fewshot prompting condi-
tions in our experiments, and it is possible that our
findings may not hold for models finetuned with-
out in-context exemplars. Overall, while our study
provides valuable insights into the impact of fine-
tuning and explanations on reasoning performance,
further research is needed to investigate these fac-
tors across a broader range of models, datasets, and
finetuning strategies.

Ethics Statement

This work is based on analyzing and evaluating
the performance of LLMs on reasoning tasks using
existing public datasets. No personally identifiable
information or sensitive data was collected or used
in this research. We acknowledge the potential
risks of developing LLMs, including their potential
impact on spreading misinformation, generating
unwanted content and the exacerbation of existing
biases in datasets. Our work aims to contribute to
improving the transparency and understanding of
how LLMs can be optimized for specific reasoning
skills. We hope our findings will inspire further
research on developing ethical and responsible ap-
proaches for developing and deploying LLMs.

References
Shourya Aggarwal, Divyanshu Mandowara, Vishwa-

jeet Agrawal, Dinesh Khandelwal, Parag Singla, and
Dinesh Garg. 2021. Explanations for Common-
senseQA: New Dataset and Models. In Proceedings
of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3050–3065, Online.
Association for Computational Linguistics.

Badr AlKhamissi, Millicent Li, Asli Celikyilmaz,
Mona T. Diab, and Marjan Ghazvininejad. 2022.
A review on language models as knowledge bases.
ArXiv, abs/2204.06031.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu-
ral language inference with natural language expla-
nations. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, ed-
itors, Advances in Neural Information Processing
Systems 31, pages 9539–9549. Curran Associates,
Inc.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. In
IJCAI.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. ArXiv, abs/2110.14168.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346–
361.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

136

https://doi.org/10.18653/v1/2021.acl-long.238
https://doi.org/10.18653/v1/2021.acl-long.238
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf


Jie Huang and Kevin Chen-Chuan Chang. 2022. To-
wards reasoning in large language models: A survey.
ArXiv, abs/2212.10403.

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru,
Todor Mihaylov, Dániel Simig, Ping Yu, Kurt Shus-
ter, Tianlu Wang, Qing Liu, Punit Singh Koura, et al.
2022. Opt-iml: Scaling language model instruc-
tion meta learning through the lens of generalization.
arXiv preprint arXiv:2212.12017.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158–167, Vancouver,
Canada. Association for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55:1 – 35.

Nazneen Rajani, Bryan McCann, Caiming Xiong, and
Richard Socher. 2019. Explain yourself! leveraging
language models for commonsense reasoning. In
ACL.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3621–3634, Online.
Association for Computational Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aur’elien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran,
Anjana Arunkumar, David Stap, Eshaan Pathak,

Giannis Karamanolakis, Haizhi Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuznia,
Krima Doshi, Kuntal Kumar Pal, Maitreya Patel,
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Savan Doshi,
Shailaja Keyur Sampat, Siddhartha Mishra, Sujan
Reddy A, Sumanta Patro, Tanay Dixit, and Xudong
Shen. 2022. Super-NaturalInstructions: Generaliza-
tion via declarative instructions on 1600+ NLP tasks.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5085–5109, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021a. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021b. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raf-
fel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Met-
zler, Ed Huai hsin Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus.
2022a. Emergent abilities of large language models.
ArXiv, abs/2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022b.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena D.
Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu,
Sean Welleck, and Yejin Choi. 2022. Symbolic
knowledge distillation: from general language mod-
els to commonsense models.

Ping Yu, Tianlu Wang, O. Yu. Golovneva, Badr
AlKhamissi, Siddharth Verma, Zhijing Jin, Gargi
Ghosh, Mona Diab, and Asli Celikyilmaz. 2022.
Alert: Adapting language models to reasoning tasks.
ArXiv, abs/2212.08286.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

137

https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
http://arxiv.org/abs/2110.07178
http://arxiv.org/abs/2110.07178
http://arxiv.org/abs/2110.07178


Dataset Task Definition Options

AQuA

You are given an algebraic word question. Questions in this task often
requires executing a series of arithmetic operations to obtain a final answer.
You are also given 5 answer options (associated with ’A’, ’B, ’C’, ’D’, ’E’).
Do not generate anything else apart from one of the following characters:
"A", "B", "C", "D", "E" and the corresponding explanation.

-A
-B
-C
-D
-E

CoQA You are given a passage that contains a conversation and a question. The
task is to answer the question and provide an explanation that highlights
the corresponding evidence in the passage.

Free-form text

CoS-E
You are given a passage that contains a sentence and a question. The task
is to answer the question by selecting one of the provided choices.

Select one of
the provided choices

ECQA
You are given a question that requires commonsense reasoning. The task
is to answer the question by selecting one of the provided choices.

Select one of
the provided choices

ESNLI

You will be presented with a premise and a hypothesis sentence. The
task is to determine whether the hypothesis sentence entails (implies),
contradicts (opposes), or is neutral with respect to the given premise
sentence. Please answer with "Contradiction", "Neutral",or "Entailment".

-Contradiction
-Neutral

-Entailment

GSM8K You will be presented with a passage that contains a grade school math
word problem. The task is to answer the question by performing a series
of arithmetic operations to obtain a final answer.

Number

ProofWriter
You are given a sequence of facts and rules followed by a question. The
task is to answer the question using "Yes", "No" or "Unknown".

-Yes
-No

-Unknown

StrategyQA

You are given a sentence and a question. The required reasoning steps are
implicit in the question. The task is to answer the question using "Yes" or
"No" then provide a strategy that explains the answer by decomposing it
into a number of steps.

-Yes
-No

Table 6: Task definition and options used for each of the finetuning reasoning datasets.

A Finetuning Task Definition and Options

Table 6 shows the task definition and options pro-
vided as input to the template shown in Figure 2
during finetuning the OPT models on the reasoning
datasets.
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Abstract

Current natural language systems designed for
multi-step claim validation typically operate
in two phases: retrieve a set of relevant
premise statements using heuristics (planning),
then generate novel conclusions from those
statements using a large language model
(deduction). The planning step often requires
expensive Transformer operations and does
not scale to arbitrary numbers of premise
statements. In this paper, we investigate
whether an efficient planning heuristic is
possible via embedding spaces compatible
with deductive reasoning. Specifically, we
evaluate whether embedding spaces exhibit
a property we call deductive additivity: the
sum of premise statement embeddings should
be close to embeddings of conclusions based
on those premises. We explore multiple
sources of off-the-shelf dense embeddings in
addition to fine-tuned embeddings from GPT3
and sparse embeddings from BM25. We
study embedding models both intrinsically,
evaluating whether the property of deductive
additivity holds, and extrinsically, using them
to assist planning in natural language proof
generation. Lastly, we create a dataset,
Single-Step Reasoning Contrast (SSRC), to
further probe performance on various reasoning
types. Our findings suggest that while
standard embedding methods frequently embed
conclusions near the sums of their premises,
they fall short of being effective heuristics and
lack the ability to model certain categories of
reasoning.

1 Introduction

One way to justify the truth of a statement is to
give an explanation building logically towards that
statement based on deduction from shared premises.
The ways facts can be combined through reasoning
are numerous, including many different modes of
deduction like syllogism or modus tollens. This
process can be automated with natural language

Figure 1: A visualization of an embedding space that
has the Deductive Additivity property. When two facts
(blue and red) are added together, their resulting vector
(yellow) should have high similarity with the embedding
of a statement that logically follows via deduction
(green).

processing, using systems to generate natural
language proofs that use evidence to derive a claim
through a structured argument. Large language
models (LLMs) like GPT4 (OpenAI, 2023) have
exhibited impressive performance in reasoning
tasks. However, these models can still make
unsound inferences (Ye and Durrett, 2022; Zhang
et al., 2023; Xue et al., 2023).

One reason for these errors is that models may
fail to plan reasoning effectively. LLMs do not
have explicit planning capabilities: they generate
conclusions in a way that conflates lexical choice
and decisions of what content to generate, and
no alternatives are materialized in typical greedy
or sampling-based LLM inference. A recent line
of work (Bostrom et al., 2021, 2022; Sprague
et al., 2022; Creswell et al., 2023) explores how
to decouple these stages. However, what is still
missing is a scalable method for doing planning in
these kinds of natural language reasoning settings:
past work involves early-fusion invocation of pre-
trained LMs (Xiong et al., 2021) and does not scale
to thousands of premises.

This work explores the feasibility of planning
the reasoning process directly in a vector space,
where combining statements and retrieving similar
statements can be efficiently implemented as
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addition and cosine similarity, respectively. We
introduce deductive additivity (DA), a property
of an embedding space necessary to enable this
planning. A visualization of an embedding space
with the deductive additivity property is shown in
Figure 1. Each piece of evidence is embedded into
a fixed-size vector, and the combined embeddings
of two facts should be close to embeddings of
statements that are entailed from those two facts
via deduction. This property can help us plan when
we are trying to derive a goal statement based on
premise statements. New facts that bring us closer
to that goal should be explored in the deductive
reasoning process, so this vector space provides a
natural heuristic: we want to find fact embeddings
that, when summed, achieve the highest dot product
with the encoding of our goal. Crucially, the
vector-based nature of this heuristic facilitates rapid
retrieval through efficient search algorithms.

Our experiments test both off-the-shelf em-
beddings (e.g., SimCSE (Gao et al., 2021)) as
well as embeddings that are explicitly tuned for
deductive additivity. First, we conduct intrinsic
evaluations to see whether embeddings of standard
encoders exhibit deductive additivity. We then
test how well the method performs as a search
heuristic on the natural language proof generation
datasets EntailmentBank (Dalvi et al., 2021) and
Everyday Norms: Why Not (Sprague et al.,
2022, ENWN). Finally, we create the Single-Step
Reasoning Contrast (SSRC) dataset to benchmark
each method on how well they model different
reasoning categories, like syllogism or modus
tollens, and how robust they are to common errors
in reasoning, like negation.

Our main contributions are threefold: (1) We
propose a novel method for planning reasoning
steps over a collection of facts purely based on
vector arithmetic. (2) We show that several
embedding methods have promise for deductive
additivity but do not fully meet the properties
required for planning in natural language deduction
scenarios even when explicitly fine-tuned for
it. (3) We present a new dataset meant to
help diagnose and identify areas where deduction
planning methods are underperforming across a
range of different reasoning categories.

2 Problem Description and Motivation

Here we introduce the problem of proof generation,
the system we use to generate proofs and deductive

additivity.

2.1 Problem Setup
We explore the process of proving a goal statement
(or claim) g by generating an entailment tree
T , given a set of general-purpose facts X =
x1, ... xn and a collection of instance-specific
facts F = f1, ... fm. Instance-specific facts
typically pertain to the context or background of a
particular scenario, while general-purpose facts can
be applied more broadly. An example can be seen
in Figure 1, where F consists of two statements,
“Joe is an animal” and “Joe is in outer space”,
and all other facts belong to X . T is a binary-
branching tree with its leaves being members of X
and F while its non-leaf nodes (which we also call
intermediates) are new statements generated via
deductive reasoning. The root of T must logically
entail g. We use the entailment models from past
work (Bostrom et al., 2022; Sprague et al., 2022),
which are based on WaNLI (Liu et al., 2022) to
make this judgment.

The EntailmentBank dataset (Dalvi et al., 2021)
formalizes three variants of this problem setting.
The first setting, denoted as Task 1 (T1), provides
only the general-purpose facts relevant to the
construction of the gold entailment tree, making it
the easiest setting as it eliminates the need to sift
through irrelevant facts. Task 2 (T2) includes both
the relevant facts and lexically similar distractor
facts. Task 3 (T3) (Dalvi et al., 2021) includes
all facts from a large corpus like Wikipedia as the
general-purpose fact set X . In all these settings,
the task involves iteratively building the entailment
tree through deductions until the original goal g
is entailed. Our experiments will focus on the T2
setting. 1

2.2 Proof Generation
We follow past work on these tasks (Bostrom et al.,
2022; Sprague et al., 2022) where the intermediate
nodes of the entailment tree are generated from a
pre-trained language model. Details on the model
are in Appendix D. Specifically, given two premise
statements pa and pb, we assume access to a model
P (dab | pa, pb) that places a distribution over valid

1While the T3 setting offers a large-scale stress test for
retrieval-based approaches like ours, we found in practice
that a first-stage retrieval (i.e., converting T3 to T2) with
BM25 worked well for all datasets considered in this work.
Nevertheless, models that scale to large X sets will be useful
for future systems tackling more sophisticated problems like
automatic fact-checking.
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deductions d given the two premises. If the two
premises do not combine to yield any meaningful
new conclusions, the behavior of this system is not
well-defined.

To produce an entailment tree T , we follow the
proof generation algorithm from Bostrom et al.
(2022); we outline it here and detail all modules
of the search algorithm in Appendix D. We begin
with our collection of premises P = {X⋃

F}. In
EntailmentBank and ENWN, the set P is given per
dataset example. From P , a heuristic M ranks pairs
of premises as to how useful their deduction will
be in proving the claim g (also given per example).
We denote a single ranked premise pair as a step
in the search, and we term the current collection
of steps at any moment in the search as the search
fringe.

A deductive step model, S, pops the highest-
ranked step (according to M ) from the fringe and
generates a set of deductions.2 These deductions
are validated and added back to the pool of
premises P , where the heuristic will rank all
potential pairs of the new set of deductions with
all other previous premises to create new steps in
the search fringe. This process is repeated until the
maxSteps limit is reached or the fringe has been
exhausted.

Our work focuses on investigating if the
heuristics used during the search can leverage
embedding spaces that exhibit deductive additivity.

2.3 Deductive Additivity
Recall that dab represents a valid conclusion from
a pair of premises pa and pb. Our heuristics are
based on an embedding function E : Σ∗ → Rn,
embedding a sentence into n-dimensional space.
We represent the sum of the embedded premises
as the deductive trajectory embedding e

′
a+b =

E(pa) + E(pb), where e
′

signifies embeddings
produced through arithmetic operations rather
than the encoder E. An encoder E generates
an embedding space exhibiting the property of
deductive additivity if the deductive trajectory
embedding has a higher cosine similarity with their
embedded conclusion than any other statement, x,
not entailed by the premises via deduction, denoted
as pa, pb ↛ x. That is, we want

cos(e
′
a+b, E(dab)) > cos(e

′
a+b, E(x)) (1)

2To thoroughly explore the space of all plausible
deductions, we sample k generations each time (k = 5 in
all our experiments).

When the condition in Equation 1 holds, the
embedding space is capable of representing logical
relationships strictly in their vectors and can be
expressed through simple arithmetic operations
such as addition.

2.4 Tuning for Deductive Additivity

Any sentence embedding method can be evaluated
for whether or not it exhibits deductive additivity.
However, we additionally describe a method for
fine-tuning an embedding model to have this
property.

We use EntailmentBank to obtain a collection
of premise deduction triplets D = {pa, pb, dab}.
Subsequently, we use a loss function to push the
encoded representations of the premises closer to
that of the deduction (Chen et al., 2020a; Gao et al.,
2021).

lab = − log
exp(e′

a+b · E(dab)/τ)∑N
i=1 exp(e

′
a+b · E(di)/τ)

(2)

where N represents the batch size. Most
deductions di will not entail the deduction dab,
so they serve as suitable negatives from the
perspective of Equation 1.

For training, we employ temperature scaling in
the contrastive loss in Equation 2. Previous work
has found that contrastive learning benefits from
having large batch sizes, more in-batch negatives,
and hard negatives (He et al., 2020; Karpukhin
et al., 2020; Chen et al., 2020b; Radford et al., 2021;
Xiong et al., 2021). To take advantage of hard in-
batch negatives, we leverage the tree structures in
our training data (EntailmentBank). Specifically,
each batch in our training loop contains all the
intermediate labeled steps for an entailment tree
in EntailmentBank, covering multiple trees. We
discover that triplets from the same tree serve
as suitable proxies for hard negatives in our
contrastive learning process, allowing us to bypass
the need for hard negative mining. Our batches
include 100 trees, as many as we could fit onto our
GPU, which equates to 200-300 triplets in a batch.
We found that increasing the batch size led to better
performance. We implement our method with the
PyTorch Metric learning library (Musgrave et al.,
2020).

Following each epoch of training, we assess
the encoder’s performance by our second intrinsic
evaluation, Ranking Gold Steps. We use the
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EntailmentBank T2 development set for checking
when to stop training the encoder.

2.5 Caching

Certain heuristics used in proof generation
algorithms, such as the one we construct using
deductive additivity, can cache the encodings of
the initial evidence pool X . This offers significant
time savings in completing the first step of a search
procedure (where a non-cached method would need
to set up and rank the pairs for the initial set).
However, any subsequent deductions will need
to be encoded since they cannot be precomputed
and cached. We also found the time savings to be
relatively limited in the T1 and T2 settings since
n is relatively small, so we do not expand on this
capability further.

3 Heuristics and Datasets

To measure the performance of using deductive
additivity as a proof generation heuristic, we
explore five heuristics and three datasets.

3.1 Baseline Heuristics

We consider two baseline heuristics for ranking
and retrieving relevant statements: BM25, a sparse
retrieval method, and the original heuristic from
previous work, SCSearch, which employs an early-
fusion premise ranker model.

BM25 BM25 (Robertson et al., 1995) matches
items in an index with a query via sparse vector
representations, capturing lexical overlap but not
deeper semantic similarity. In the proof generation
search procedure, we index all concatenations
of strings in each step (two premises, generated
deductions, or one of both), then retrieve the best
step based on the goal.

SCSearch Past work (Bostrom et al., 2022)
has used heuristics with a substantially different
structure. These heuristics use language models
like DeBERTa to score premise pairs conditioned
on a claim. Specifically, these models are of the
form w⊤E(p1, p2, g); they encode p1, p2, and g
jointly with an encoder model. A linear layer w is
then used to predict a logit value used for ranking.
These models are trained as binary classifiers on
EntailmentBank by selecting positive examples of
premise pairs that eventually lead to g and negative
examples of unrelated premise pairs. This allows
the language model to determine if the immediate

deduction would be beneficial towards deducing
the claim that it is conditioning on. It also allows
the language model to see the claim and premise
pairs in context and model interactions between
them. Because these methods use Transformers
to score the premise pair and can model nonlinear
interactions between the premises, these models
are strictly more expressive than vector-based
heuristics.

3.2 Embedding-based Heuristics
To test if embeddings with deductive additivity
can be useful in proof generation, we employ
three different heuristics that all use deductive
additivity but with different encoders to compare
different embedding spaces. A deductive additivity
heuristic will, for each step, encode any new
deductions from the previous step and then sum
all the pairs to create deductive representations e

′
d

for hypothetical deduced pairs. We then compute
the cosine similarity of each e

′
d with eg (the goal

embedding), which is used as a score to select the
next step Si = argmax

d
cos(e

′
d, eg).

We consider the deductive additivity heuristic
under three different encoders: SimCSE and GPT3
are used to test off-the-self sentence encoders for
deductive additivity, and finally, we fine-tune GPT3
explicitly for deductive additivity.

SimCSE SimCSE (Gao et al., 2021) is an
encoder that produces sentence embeddings
optimized using a contrastive objective.3 We test
to see if this encoder produces an embedding space
where deductive additivity holds.

GPT3 We use OpenAI’s embedding endpoint to
create sentence embeddings using the Ada model
(Brown et al., 2020). We test to see if this encoder
produces an embedding space where deductive
additivity holds as well.

GPT3-tuned We combine OpenAI’s embedding
endpoint with three additional dense layers
using the GLU activation function with residual
connections between each layer. We then fine-tune
these three layers using the EntailmentBank T1
dataset as described in Section 2.4.

3Note that this contrastive objective is different from ours.
Training for SimCSE was performed on natural language
inference (NLI) examples from MNLI and SNLI datasets.
From the perspective of data assumptions, we place it in
the “fine-tuned” category; although it hasn’t been trained on
EntailmentBank data explicitly, it uses related entailment data.
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3.3 Datasets

EntailmentBank (EB) This dataset comprises
annotated entailment trees for textbook-based
science facts (Dalvi et al., 2021). We used this
dataset for training the majority of our models in a
T1 setting. We evaluate the models on the test slice
of entailment trees for the T2 task setting.

Each example in EB contains a set of premises,
P , and a claim g that we are trying to prove given
P . To prove g, the system has to produce a series of
deductions by combining two premises from the set
P , then combining intermediate deductions and the
premises in P until the claim is proven. Whether
it is proven is determined via an entailment model
scoring g above a certain threshold from some
generated conclusion following previous work
(Sprague et al., 2022; Bostrom et al., 2022) and
detailed further in Appendix D. Planning heuristics
must determine which premise-premise or premise-
deduction pairs are most likely to help in proving
the claim, as the set of pairwise premises and
intermediate deductions can be large.

In the T2 setting, the number of premises n is
fairly small; n < 30 for most examples. There are
usually only 3 to 5 deductions involved to produce
the annotated entailment tree. We allow for a total
of 10 steps (maxStep), and for each step, we allow
for five generations to be sampled (k).

Everyday Norms: Why Not (ENWN) ENWN
(Sprague et al., 2022) contains annotated en-
tailment trees for common everday scenarios.
Structurally, ENWN resembles EntailmentBank
but with a different domain of reasoning and
a larger number of required deductive steps on
average (4.71 to 4.26). ENWN aims to combine
common social rules deductively to determine
whether a person should perform a particular action
(usually something they should not do). ENWN
currently does not have a T2 or T3 setting.

3.4 Single-Step Reasoning Contrast Dataset

Both EntailmentBank and ENWN test a subset of
logical inference types but do not necessarily have
broad coverage. For example, EntailmentBank has
very few examples involving negation, despite this
being a very important phenomenon to model in
practice. We want to test whether our embedding
methods can handle a wider range of cases.

We construct a new dataset that examines

Figure 2: Distribution of cosine similarities for
examples in EntailmentBank T2 and ENWN. All three
encoders show little overlap between Random and
Gold, showing that these embeddings support Deductive
Additivity and the condition in Equation 1. However,
the overlap with Partial is substantially higher.

common forms of logical reasoning4 via synthe-
sized examples. We consider fourteen categories:
Analogy, Categorical Syllogism, Causal reasoning,
Classification, Comparison, Composition, Division,
Modus Ponens, Modus Tollens, Definition, Tempo-
ral Logic, Propositional Logic, Quantificational
Logic, and Spatial Relationship. For each
category, we use GPT-3.5 to generate ten examples
of deductions given two premises using the
corresponding reasoning category.

For every example deduction, we prompt
GPT 3.5 further to perturb the premises in four
ways creating additional examples of incorrect
deductions. For each perturbation, we create
three examples where one or both premises have
been negated, three examples where one or both
premises are a false premise, fifteen examples
where one or both premises are an irrelevant fact,
and three examples where one or both premises
have an incorrect quantifier (usually meaning that
“some”, “all”, or “none” has been prepended to
the premise). Examples from the dataset from
different reasoning categories and perturbation
types are shown in Section B of the Appendix in
Table 5. Prompts to create examples and perturb
the examples can be found in Appendix E.

4We initially employed ChatGPT for annotating examples
in EntailmentBank and ENWN. However, it did not yield
consistent labels, signaling an opportunity for further
exploration in future research. Instead, we adopted a different
approach, generating a selection of widely-used labels that we
subsequently employed as the reasoning categories within the
SSRC dataset.
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4 Experiments

4.1 Intrinsic Evaluation
We perform two intrinsic evaluations to test if
encoders exhibit the deductive additivity property:
do they rank gold premise pairs in the proof
generation task above incorrect pairs?

Comparing Deduction Embedding Representa-
tions In our first intrinsic evaluation, we measure
the cosine similarity distributions of premise pairs
and a deduction in three settings to test for
deductive additivity. The first setting uses a
deduction dab and measures the cosine similarity
of its embedding E(dab) with a random premise
pair Pr = {px, py} where px and py are drawn
randomly from the set of premises, U(P ). The
next setting looks at partially random premise pairs,
Pp = {pa, py} where pa is one of the gold premises
Pg = {pa, pb} that yield the deduction dab. Finally,
we measure the distribution of scores for the gold
premise pair Pg and the following deduction from
those premises dab. These three settings correspond
to Random, Partial, and Gold, respectively, in
Figure 2.

Additionally, we also compared the gold
premise pair Pg = {pa, pb} with model-generated
deductions Sd(pa, pb) = d′ab and measured their
cosine similarity cos(e

′
a+b, E(d′ab)). Finally, we

measured the cosine similarity scores of the
annotated deductions and the generated deductions
cos(E(dab), E(d′ab)); this is a sort of sanity check
to see if the deductive additivity property holds for
proof generation. This experiment checks whether
the step model introduces significant deviation in
embedding similarity compared to using the gold
steps. These settings correspond to Model and G.
to S. respectively in Figure 2, all settings have their
averages reported in Table 4 in Section A of the
Appendix as well.

Embedding Representations Results Figure 2
shows a slight overlap between the cosine similarity
score distributions of random and gold pairs,
aligning with expectations and showing that
Equation 1 roughly holds for all three encoders.
However, the partial pairs have much more overlap
with the distribution of gold pairs for each encoder.
Concerningly, the partial pairs are much more
numerous because these pair one of the ground
truth statements with an irrelevant statement,
forming a pair we do not want the heuristic to
surface. We will see the performance ramifications

of this in the end-to-end evaluation. On a positive
note, we also see high agreement between the
gold premise pair and the generated deduction,
indicating that deductions generated by the step
model are similar to the annotated deductions.

EB T2 ENWN
Heuristic Deductive Goal Deductive

BM25 0.47 0.21 0.50
SCSearch 0.78 0.39 0.82

SimCSE (DA) 0.46 0.20 0.59
GPT3-tuned (DA) 0.54 0.23 0.54

GPT3 (DA) 0.54 0.24 0.56

Table 1: Comparison against different heuristics on
the MRR of selecting gold premises conditioned on
their immediate deduction and the goal of the tree.
GPT3 outperforms BM25, indicating that there are
more complex reasoning steps required than just lexical
overlap. However, SCSearch still outperforms all
methods by as much as 0.24.

Ranking Gold Steps The second intrinsic
evaluation measures the rankings of premise pairs,
Ppairs, conditioned on a deduction embedding,
E(dab), where one pair is the gold premise pair
Pg = {pa, pb} which yield the deduction. All
other pairs are either random Pr = {px, py},
where px and py are sampled uniformly from the
set of premises U(P ), or are partially random
Pp = {pa, py}. The full list of premise pairs
is the union of all these sets Ppairs = Pg ∪
Pp ∪ Pr. We calculate scores for each pair
according to how each heuristic scores premise
pairs, scores = {heuristic(Ps, dab) | Ps ∈
Ppairs}. For the heuristics using deductive
additivity (DA), the scores are cosine similarities,
scores = {cos(e′

n+m, E(dab)) | {pn, pm} ∈
Ppairs}. Finally, we sort scores and find the rank
of the gold premise pair.

We calculate the mean reciprocal rank (MRR)
using the ranks of the gold premise pairs across all
examples in the EntailmentBank T2 and Everyday
Norms: Why Not datasets. We also repeat this
process for EntailmentBank T2 where we make
the target of the search the claim g instead of the
immediate deduction dab. Because the claim g
is often a product of multiple deductions in the
premise set P , we expect the MRR scores to be
lower than the scores on the immediate deductions
dab. ENWN does not have a T2 setting, so we
do not show the claim-conditioned scores because
every premise would be related to the claim g,
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EB ENWN
Solved Steps Solved Steps

BM25 43% 2.2 48% 5.1
SCSearch 61% 3.4 86% 9.8

SimCSE (DA) 44% 2.8 46% 2.7
GPT3-tuned (DA) 49% 2.1 46% 2.5

GPT3 (DA) 49% 2.2 41% 2.2

Table 2: Generated proofs per heuristic on the two
datasets. BM25 has high performance on both of these
datasets, indicating that textual overlap is enough to
plan reasoning steps for nearly 50% of the examples.
SimCSE (DA) and GPT3 (DA) underperform BM25
on ENWN; this could mean that these methods are not
as sensitive to lexical overlap as BM25 is. SCSearch
still outperforms every baseline by as much as 38%,
showing that a lot of reasoning is unaccounted for in the
other methods.

making nearly all pairs valid. These are shown in
Table 1. A number closer to 1.0 indicates that the
gold premise pair was consistently ranked higher
than partial and random premise pairs.

Gold Steps MRR Results Table 1 shows the
BM25 MRR scores as being quite competitive with
the methods using deductive additivity, SimCSE,
GPT3, and GPT3-tuned, all of which are within 0.1
of each other. BM25s high performance indicates
that the datasets EB T2 and ENWN have many
examples where the lexical overlap is enough to
determine the gold premise pair Pg. GPT3 does
outperform the BM25 baseline, however, and in
nearly every case, the SimCSE heuristic does
as well (except for ENWN). GPT3-tuned does
slightly worse in both EB T2 and ENWN, showing
that fine-tuning the embeddings to produce the
deductive additivity property is not trivial. The
degradation in performance is surprising given
that the model was fine-tuned on a task very
similar to the intrinsic evaluation being reported
in Table 1. SCSearch still outperforms all leading
methods. There is a significant drop across all
methods between ranking premise pairs with the
immediate deduction and the goal. Although this
was expected, the drop is quite significant and is
worth exploring further in future work on how it
could be mitigated.

4.2 Extrinsic Evaluation: Generating Proofs

Next, we explore how well heuristics employing
deductive additivity can perform on proof
generation datasets detailed in Section 3.3.

Results We report the percentage of proofs that
entailed the goal, g, as well as the average number
of steps to prove the claim across all planning
heuristics in Table 2. GPT3 (DA), GPT3-tuned
(DA), and SimCSE (DA) are all able to produce
slightly more proofs than BM25 on the EB T2
dataset but fail to outperform BM25 on ENWN.
Because BM25 is a limited heuristic that only
employs lexical overlap, this result shows that
nearly 50% of examples in these datasets can have
proofs generated using simple heuristics that use no
deeper semantic representations. However, deeper
reasoning does help, as shown by the fact that
SCSearch is able to generate far more proofs than
the other methods across both datasets by as much
as 36%. This finding is also supported by the MRR
results of the second intrinsic evaluation, shown
in Table 1. Disappointingly, deductive additivity
does not seem to be able to capture the same sort
of benefits in the heuristic it provides.

4.3 Single-Step Reasoning Contrast Dataset

To best understand where the vector-based methods
are lacking in performance and pinpoint where
improvements can be made, we test each method
across a variety of types of reasoning and common
failure cases in the Single-Step Reasoning Contrast
(SSRC) dataset. In this experiment, we perform the
same evaluation as our second intrinsic evaluation,
Ranking Gold Steps. Here we use examples from
the SSRC dataset, which have been curated and
labeled to allow for a report of an MRR on different
types of deductions and error cases.

Encoder Overall MRR

SCSearch 0.83
SimCSE (DA) 0.80

GPT3-Tuned (DA) 0.83

GPT3 (DA) 0.85
BM25 0.50

Table 3: Overall scores of each heuristic on the SSRC
dataset. GPT3 (AD) outperforms SCSearch slightly on
this benchmark, slightly contradicting the results of the
previous experiments.

Results Table 3 shows the averaged MRR scores
across all methods. GPT3 (DA) outperforms
SCSearch slightly overall, but to better understand
the performance, we plot the average MRR across
the fourteen reasoning categories and perturbation
types for each method compared to SCSearch in

145



Figure 3: Comparison plot of the heuristic methods
versus the SCSearch heuristic. If a point is above the
green line, then that method outperformed SCSearch.
Circles indicate reasoning categories, and X-marks
indicate perturbation types. BM25 underperforms all
other methods, showing that the dataset is not sensitive
to lexical overlap.

Figure 3. GPT3 (DA) can outperform both BM25
and SimCSE (DA) consistently across nearly every
reasoning category and all perturbation types.
Furthermore, we see that GPT3 (DA) is capable
of beating or matching SCSearch on half of
the reasoning categories and perturbation types,
contradicting previous results indicating that these
datasets might be skewed in areas where SCSearch
excels at.

GPT3-Tuned (DA) performs worse in 9
categories than GPT3 (DA) and better in only
3. This could be from the skewed reasoning
categories in EntailmentBank, but it could also
be that enforcing the condition in Equation 1
directly is counterproductive. Averaged scores
for each reasoning category and perturbation type
can be found in Appendix C, in Tables 6 and 7
respectively.

5 Discussion

Vector-based methods are not sufficient to
capture all information for planning deductions.
We’ve found that vector-based methods can
represent complex reasoning but fall short in
planning reasoning steps when compared to early-
fusion premise rankers like SCSearch. Our results
suggest a more complex and structured approaches
may be necessary for step-by-step systems.

Skewed datasets provide optimistic benchmarks
for weaker models. Our results focused on the

T2 setting because we discovered that a BM25 +
SCSearch pipeline did quite well and scaled to
large numbers of premises. However, we believe
this is an optimistic result and may not scale to
production settings where claims may require more
complex deductions that are less sensitive to lexical
overlap. Developing datasets with more complex
reasoning and benchmarking in real production
settings is a focus for future work.

Training for Deductive Additivity can harm
performance. We found that training deductive
additivity directly improves categories of reasoning
prevalent in the training dataset while harming
other categories. Both larger and more diverse
datasets may be a solution for this problem,
but GPT3 embeddings already show deductive
additivity without explicitly training for it.
Developing different training objectives that result
in embeddings with deductive additivity is another
focus for future work.

6 Related work

Our work follows from models and methods
done in the Question Answering domain where
models are required to generate an answer or
select evidence that leads to the answer through
“multi-hop” reasoning (Chen et al., 2019; Min
et al., 2019; Nishida et al., 2019). Although
these end-to-end methods can be used in proof
generation, understanding the underlying reasoning
of the decisions being made is impactful for
understanding the affordances of the model (Hase
and Bansal, 2020; Bansal et al., 2021).

Step-by-step methods have been looked at
for proof generation, detangling planning and
reasoning into separate subsystems that work
together as a whole when proving a claim (Dalvi
et al., 2021; Ribeiro et al., 2022; Bostrom et al.,
2022; Yang et al., 2022; Hong et al., 2022; Creswell
et al., 2023; Yang and Deng, 2023). There has
also been work on using similar modular systems
in answering questions with a knowledge base
and different types of embeddings (Bordes et al.,
2013; Ren et al., 2020; Tran et al., 2022). Our
work extends from this literature, focusing on
exploring alternative heuristics for natural language
deduction planning entirely in embedding space by
tapping into the property of deductive additivity.

We also follow work being done in retrieval,
which focuses on finding evidence from a large
corpus that would help answer a query. State-
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of-the-art retrieval methods involve encoding the
corpus into vector indexes that can be used to
calculate the cosine similarity of an encoded
query (Xiong et al., 2021; Karpukhin et al., 2020;
Khattab and Zaharia, 2020). Sparse encoders, like
BM25, have also been used to help reduce the
search space for relevant passages (Valentino et al.,
2022). However, none of the methods tap into the
deductive additivity property in their embedding
spaces and instead encode the query to find relevant
passages and then re-encode the query with the
appended passages to find additional relevant
passages. We consider this to be similar to early-
fusion premise rankers in the proof generation task.

Another line of relevant work deals with
understanding reasoning errors from language
models, like the detection of logical fallacies in text
(Jin et al., 2022). We further this line of work with
the SSRC dataset, building a contrast set (Gardner
et al., 2020) for reasoning targeting certain types
of deductions and common reasoning errors.

7 Conclusion

In this work, we have explored the property
of deductive additivity in sentence embedding
spaces. Results show that off-the-shelf sentence
encoders exhibit the property somewhat; however,
when used as heuristics in natural language proof
generation, they are only slightly more successful
than BM25. Furthermore, we see that fine-tuning
for deductive additivity does not lead to better
reasoning capabilities of the embedding space,
and we posit that a large contributor to this could
be skewed datasets. We introduced the Single-
Step Reasoning Contrast dataset, which shows that
these same skewed datasets provide over-optimistic
results for inferior methods harming our ability
to benchmark systems for their use in production
settings. Lastly, we’ve shown that early-fusion
premise rankers like SCSearch still outperform
vector-based approaches. However, their ability
to scale to more diverse reasoning datasets that
are less sensitive to lexical overlap is still an open
question for future work.
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A Embedding Reconstruction Results

Table 4 shows the averaged cosine similarity of
the random, partially random, and gold pairs, as
well as the cosine similarities for the gold pairs
with the step model generations. This provides
complementary information to Figure 2.

B SSRC Dataset Examples

Table 5 shows four examples from the SSRC
dataset that have been sampled from different rea-
soning categories and show different perturbation
types for the premises.

C SSRC Dataset Results

We report the raw scores for both the reasoning
categories and perturbation types in Tables 6 and 7
respectively.

D Proof Generation Modules

We outline in more detail the proof generation
search algorithm we use in our experiments
following work from Sprague et al. (2022) and
Bostrom et al. (2022).

Algorithm 1 The main search function with a
heuristic using the deductive additivity property.
Given a set of premises and a goal claim, generate
intermediate deductions until the claim is proven
true or a termination criterion is met. E is a
sentence encoder.

Input A list X of string premises pi that will be used to
search over to prove a string claim g
Output A list of steps taken by the algorithm with their
generations
Procedure SEARCH(X = {p1, . . . pn}, g):
f ← {E(pi) + E(pj) | pi,pj ∈ X, i ̸= j}
ĝ ← E(g)
gens← {}
maxSteps ∈ N
i← 1
while |f | > 0 ∧ i ≤ maxSteps do

step← argmax
xi∈f

M(xi, ĝ)

f ← f \ {step}
sample yi from pS(y | step)
if yi /∈ gens then

gens← gens
⋃ {yi}

yield (step,yi)
if entails(yi,g) then return
f ← f ∪ {E(yi) + E(xj) |xj ∈ X}
f ← f ∪{E(yi) + E(yj) | yj ∈ gens, 1 ≤ j <

i}
i← i+ 1

D.1 Deductive Step Model

The deductive step model is trained using the
EntailmentBank dataset following Bostrom et al.
(2022). We transform the annotated entailment
trees into individual steps Ti = (x1, x2 → c) and
fine-tune a pre-trained language model to generate
the deduction given a set of premises. We do not
use data from (Bostrom et al., 2021).

D.2 Reasoning Validation

To ensure that the search space generates well-
reasoned deductions, we implement a set of
validators that examine both the types of steps
being taken and the generations produced by the
step models following Sprague et al. (2022). Firstly,
we employ a Consanguinity Threshold step to
ensure that the search procedure does not permit
steps to consist of the same premise or premises
that result in immediate deductions. For instance,
if pa and pb create the deduction dab, we disallow a
new step to be (pa, dab). This approach effectively
promotes diversity in the types of steps being taken.
We also enforce that no generation from a step
model is an exact duplicate of one of the inputs.

Furthermore, to avoid identifying high-ranking
pairs of premises that result in illogical deductions
due to hallucination, we devise a new validation
method to ensure consistency. The Deduction
Agreement validator compares the embedding of
the added premises ed′ with the embedding of the
generated deduction ed. If the cosine similarity
falls below a threshold tda, the step is filtered out.
A running average of all cos(ed′ , ed) scores for
previous deductions is maintained. If a branch in
the entailment tree generates too many deductions
that have low cosine similarity with their summed
premises, it will be filtered out.

D.3 Entailment Scores

We employ a DeBERTa model, fine-tuned on the
MNLI and WaNLI tasks, to assess the entailment
of each generated natural language deduction. If
a deduction achieves a score above a predefined
threshold, tg, it is considered to have recovered
the goal g. Once a deduction has successfully
recovered the goal, we can trace back the steps
used to create that specific deduction, resulting in a
minimal proof tree that contains only the essential
steps required to prove the goal.
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EB ENWN
Heuristic Rand Partial Gold Model Rand Partial Gold Model

SimCSE 0.25 0.62 0.85 0.85 0.14 0.48 0.72 0.76
GPT3-tuned 0.31 0.70 0.90 0.90 0.56 0.74 0.86 0.87

GPT3 0.79 0.88 0.93 0.94 0.79 0.89 0.95 0.95

Table 4: We look at the average cosine similarity score of different summed premise pairs with their textual
deduction embedding. We see large gaps between a Random set of premises and the Partial/Gold set; however,
Partial and Gold are less separated. The Model columns show that there is no loss in representing deductions if the
deduction is the gold annotation or from the deduction step model.

Category and Perturba-
tion

Premises Conclusion Perturbed Premises

Categorical Syllogism,
Negation

All cats are animals.
Whiskers is a cat.

Whiskers is an Animal. Some cats are not ani-
mals. Whiskers is not a
cat.

Causal Reasoning, Irrele-
vant Fact

High levels of stress
cause anxiety. Linda has
been under a lot of stress
lately.

Linda may develop anxi-
ety.

Anxiety disorders can
also manifest as physical
symptoms. ...

Comparative Reasoning,
Incorrect Quantifier

John is stronger than
Mary. Mary is stronger
than Sue.

John is stronger than Sue. Some women are
stronger than Sue.

Temporal Reasoning,
False Premise

The store is open for 12
hours. The store opens at
9 AM.

The store closes at 9 PM. The store is open for 10
hours.

Table 5: Examples taken from the Single-Step Reasoning Contrast (SSRC) dataset. The Category and Perturbation
column shows which reasoning category is used in the deduction as well as what type of perturbation is applied
to the premise. The perturbed premise is then used to create invalid premise pairs (where one premise could be a
gold premise, but the other is perturbed) such that when the two are combined, their deduction does not lead to the
conclusion. There are ten examples per reasoning category, and each example has multiple perturbed premises for
each of the four perturbation types.

SCSearch SimCSE (DA) GPT3-tuned (DA) BM25 GPT3 (DA)

Analogy 0.86 0.80 0.95 0.42 0.95
Categorical syllogism 0.80 0.72 0.78 0.55 0.87

Causal Reasoning 0.78 0.59 0.76 0.52 0.78
Classification 0.86 0.87 0.94 0.55 0.91

Comparative Reasoning 0.85 0.92 0.96 0.44 0.96
Composition 0.75 0.89 0.59 0.40 0.62

Definition 0.80 0.84 0.96 0.49 0.97
Divisions 0.85 0.83 0.83 0.41 0.84

Modus Ponens 1.0 0.99 0.98 0.56 1.0
Modus Tollens 0.83 0.70 0.66 0.56 0.7

Propositional Logic 0.89 0.75 0.73 0.62 0.69
Quantification Logic 0.76 0.83 0.90 0.61 0.87

Spatial Reasoning 0.78 0.81 0.87 0.47 0.90
Temporal Reasoning 0.74 0.70 0.77 0.46 0.79

Table 6: Results of each heuristic on SSRC are broken down by the reasoning category and averaged over the
individual perturbation types of each category. We separate SCSearch and SimCSE (DA) from the BM25 and
GPT3 (DA) heuristics as the BM25 and GPT3 (DA) have not been trained on any natural language inference data
(with the possibility that GPT3 may have seen some incidental examples of inferences in its pretraining), making
them close to zero-shot on this task. SCSearch and SimCSE (DA) have both been fine-tuned on reasoning datasets
(EntailmentBank and NLI, respectively).
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SCSearch SimCSE (DA) GPT3-tuned (DA) BM25 GPT3 (DA)

False Premise 0.84 0.81 0.81 0.45 0.81
Irrelevant Fact 0.97 0.75 0.82 0.81 0.87

Incorrect Quantification 0.76 0.86 0.84 0.41 0.86
Negated 0.73 0.80 0.86 0.35 0.87

Table 7: Results of each heuristic on SSRC are broken down by the perturbation type and averaged over the
individual reasoning categories. We again separate SCSearch and SimCSE (DA) from the BM25 and GPT3 (DA)
heuristics.

E SSRC Prompting

We use ChatGPT to prompt GPT3.5 and create the
SSRC dataset. We followed the same template for
all reasoning categories and then used a simple
Python script to parse out the examples generated.
Below is an example of how we prompted ChatGPT
for the reasoning category Classification. All
prompts are given to ChatGPT one after another.

F Examples of GPT ranking SSRC
premise pairs

Here we show three examples from the SSRC
dataset and place the premise pairs in order of
how GPT3 ranked them. The Category indicates
which reasoning category the example belongs to,
Perturbation indicates which perturbation type the
example is exhibiting, Target is the claim g, Gold
Premises are the correct premises that yield the
claim from a deduction, Rank is the Rank GPT3
gave the gold premises (1 being the best). We also
include all premise pairs and their ranks below the
Rank of the gold premises, and we mark the pair
(G) for the gold premise pair.
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Creating the ten examples
Create ten deductions that use classification in the example. A definition of classification in
deductions and an example is below:

Definition:
Classification involves grouping things based on shared properties or characteristics and drawing
conclusions based on these groupings.

Example:
P1: A dog is a type of animal.
P2: A cat is a type of animal.
C: Dogs and cats are both animals.

Each example should have 2 premises and 1 conclusion. They must all use classification to perform
the deduction.

Figure 4: Prompt given to ChatGPT that creates the original ten deductions for the specific reasoning category. The
premises given in this step are referred to as the “gold premises”.

Negating the ten examples
For each of the ten generate negations of each premise and conclusion. If a premise begins with
"All... are x" you should both negate the sentence and remove the word "All" at the beginning.

Just write the negations and put it in the format:

P1: Negated premise one
P2: Negated premise two
C: Negated conclusion

Figure 5: Once the ten reasoning examples have been generated, we then ask ChatGPT to negate the ten examples’
gold premises.

Creating false premises
For each of the ten generate two false premises total, one for each premise. The false premise
should make the original deduction invalid. Do NOT generate a false conclusion. Do NOT repeat
the valid premises or conclusions. Only generate the False premises.

Put them in this format:

False P1: False premise for premise one
False P2: False premise for premise two

Figure 6: After the negated premises are generated, we ask ChatGPT to create false premises for the ten reasoning
examples. False premises are not negated premises. Instead, they should employ some common sense from the
model to make a statement false. An example from the SSRC dataset is “a granny smith is a type of fish.” which is a
false statement.
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Generating irrelevant facts: Prompt 1
For each of the ten generate two facts that seem related to the deduction but are in fact irrelevant.
They should not contribute to the deduction at all, but they should be close enough to trick someone.
ONLY GENERATE THE NEW FACTS.

Put them in this format:

Irrelevant Fact 1: Irrelevant fact for premise one
Irrelevant Fact 2: Irrelevant fact for premise two

Generating irrelevant facts: Prompt 2
Do this again. For each of the ten generate two facts that seem related to the deduction but are in
fact irrelevant. They should not contribute to the deduction at all, but they should be close enough
to trick someone. ONLY GENERATE THE NEW FACTS.

Put them in this format:

Irrelevant Fact 1: Irrelevant fact for premise one
Irrelevant Fact 2: Irrelevant fact for premise two

Generating irrelevant facts: Prompt 3
Generate one more set of facts. For each of the ten generate two facts that seem related to the
deduction but are in fact irrelevant. They should not contribute to the deduction at all, but they
should be close enough to trick someone. ONLY GENERATE THE NEW FACTS.

Put them in this format:

Irrelevant Fact 1: Irrelevant fact for premise one
Irrelevant Fact 2: Irrelevant fact for premise two

Figure 7: After the false premises are generated, we ask ChatGPT to create irrelevant facts that are true but not
helpful in deducing the original conclusion. We prompt ChatGPT three times for a set of six irrelevant facts per
example.

Generating examples with incorrect quantifiers
Now generate premises from the original set of 10 examples that have incorrect quantifiers that
would make the conclusion invalid. Use things like "All, some, none, etc.". Do not write the
conclusion.

Put them in the format:
Incorrect P1: Incorrect quantifiers for p1
Incorrect P2: Incorrect quantifiers for p2

Figure 8: Finally, we prompt ChatGPT to adjust the quantifier on the original gold premises.
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Category: spatial reasoning
Perturbation Type: NEGATED
Target: The pharmacy is on the same side of the street as the bank.
Gold Premises: The post office is on the same side of the street as the bank. The pharmacy is next
to the post office.
Rank: 1

Rank (G) 1: the pharmacy is next to the post office. the post office is on the same side of the
street as the bank.

Rank 2: the pharmacy is not next to the post office. the post office is on the same side of the
street as the bank.

Rank 3: the pharmacy is next to the post office. the post office is not on the same side of the
street as the bank.

Rank 4: the pharmacy is not next to the post office. the post office is not on the same side of the
street as the bank.

Figure 9: An example of GPT3 embeddings using deductive additivity correctly ranking a spatial reasoning example
with negation from the SSRC dataset.

Category: definition
Perturbation Type: FALSE PREMISE
Target: A Granny Smith is a type of fruit.
Gold Premises: An apple is a type of fruit. A Granny Smith is a type of apple.
Rank: 1

Rank (G) 1: an apple is a type of fruit. a granny smith is a type of apple.
Rank 2: an apple is a type of fruit. a granny smith is a type of fish.
Rank 3: a granny smith is a type of apple. an apple is a type of vegetable.
Rank 4: a granny smith is a type of fish. an apple is a type of vegetable.

Figure 10: An example of GPT3 embeddings using deductive additivity correctly ranking a definition example with
false premises from the SSRC dataset.
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Category: propositional logic
Perturbation Type: IRRELEVANT FACT
Target: The store is closed.
Gold Premises: If it is Sunday, the store is closed. It is Sunday.
Rank: 10

Rank 1: i need to buy groceries. if it is sunday, the store is closed.
Rank 2: i forgot to bring my reusable bag. if it is sunday, the store is closed.
Rank 3: if it is sunday, the store is closed. i prefer to shop on saturdays.
Rank 4: the store is near my house. it is sunday.
Rank 5: it is sunday. the store has a sale.
Rank 6: i need to buy groceries. the store has a sale.
Rank 7: i prefer to shop on saturdays. the store has a sale.
Rank 8: i forgot to bring my reusable bag. the store has a sale.
Rank 9: the store is near my house. i prefer to shop on saturdays.
Rank (G) 10: if it is sunday, the store is closed. it is sunday.
Rank 11: the store is near my house. i need to buy groceries.
Rank 12: i have a coupon for the store. it is sunday.
Rank 13: the store is near my house. i forgot to bring my reusable bag.
Rank 14: i have a coupon for the store. i prefer to shop on saturdays.
Rank 15: i have a coupon for the store. i need to buy groceries.
Rank 16: i have a coupon for the store. i forgot to bring my reusable bag.

Figure 11: An example of GPT3 failing to rank a propositional logic example of the SSRC dataset correctly amongst
irrelevant facts.
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Abstract

We introduce a synthetic dataset called
Sentences Involving Complex Compositional
Knowledge (SICCK) and a novel analysis that
investigates the performance of Natural Lan-
guage Inference (NLI) models to understand
compositionality in logic. We produce 1,304
sentence pairs by modifying 15 examples from
the SICK dataset (Marelli et al., 2014). To this
end, we modify the original texts using a set
of phrases – modifiers that correspond to uni-
versal quantifiers, existential quantifiers, nega-
tion, and other concept modifiers in Natural
Logic (NL) (MacCartney, 2009). We use these
phrases to modify the subject, verb, and object
parts of the premise and hypothesis. Lastly, we
annotate these modified texts with the corre-
sponding entailment labels following NL rules.
We conduct a preliminary verification of how
well the change in the structural and semantic
composition is captured by neural NLI models,
in both zero-shot and fine-tuned scenarios. We
found that the performance of NLI models un-
der the zero-shot setting is poor, especially for
modified sentences with negation and existen-
tial quantifiers. After fine-tuning this dataset,
we observe that models continue to perform
poorly over negation, existential and universal
modifiers.

1 Introduction

Natural language inference (NLI) has made tremen-
dous progress in recent years, both in terms of
datasets, e.g., SNLI (Bowman et al., 2015b),
MultiNLI (Williams et al., 2018), Adversarial NLI
(Nie et al., 2019), NLI_XY (Rozanova et al., 2021),
MonaLog (Hu et al., 2019), and methods (Yang
et al., 2020; Lan et al., 2020; Wang et al., 2021b,a;
Devlin et al., 2019). However, many of these direc-
tions lack explainability, a critical drawback that
limits their applicability to critical domains such
as medical, legal, or financial. In contrast, Natu-
ral Logic (NL) (MacCartney, 2009) provides the

necessary explainability through explicit compo-
sitionality that is driven by several relations that
serve as building blocks (Forward Entailment (FE),
Reverse Entailment (RE), Negation, Cover, Alter-
nation, Equivalence, and Independence) as well as
rules to combine them, which model changes in
monotonicity.

In this work, we analyze how well transformer
networks trained for NLI understand the atomic
reasoning blocks defined in NL, and how well they
can compose them to detect changes in monotonic-
ity (Richardson et al., 2020; Joshi et al., 2020). To
this end, we create a dataset containing 1304 sen-
tences by modifying 15 premise/hypothesis pairs
from the SICK dataset (Marelli et al., 2014). The
dataset is generated by modifying the premise and
hypothesis sentences selected, as follows:

• We append a series of modifiers to sub-
ject/verb/objects in the hypothesis/premise
pairs. These modifiers include universal quan-
tifiers (e.g., every, always), existential quan-
tifiers (e.g., some, at least), negation, and ad-
verbs/adjectives (e.g., happy, sad). Table 2
lists the complete set of modifiers used.

• We store the adjusted entailment label for each
modifier pair to understand the shift in mean-
ing from word-level changes within sentential
contexts. More formally, we used the seven
entailment relations as defined in (MacCart-
ney, 2009). These labels were generated man-
ually for each example by following mono-
tonicity calculus and natural logic. For exam-
ple, consider the premise: an old man is sitting
in a field and the hypothesis: a man is sitting
in a field, with the original SICK label: For-
ward Entailment. After adding the universal
quantifier every to the aforementioned SICK
example, the modified premise: an old man is
sitting in a field and the original hypothesis:
every man is sitting in a field are annotated
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with the adjusted label: Reverse Entailment.

Using this dataset, we analyzed the capacity of
three different NLI methods to correctly capture
the change in entailment given the modified texts.
In particular, the contributions of this work are as
follows:

1. We propose a mechanism to generate
synthetic data for NLI that enforces com-
positionality in reasoning. Following this
mechanism, we produce 1,304 examples
from 15 SICK (Marelli et al., 2014) premise,
hypothesis sentence pairs by modifying
the sentences for subject, verb, and object
respectively with a series of modifiers.
The resulting dataset is freely available at
https://github.com/clulab/releases/
tree/sushma/acl2023-nlrse-sicck.

2. We define specific annotation guidelines based
on monotonicity calculus and natural logic
(MacCartney, 2009) for annotating the modi-
fied premise and hypothesis sentences in the
dataset above. The resulting labels are in-
cluded in the dataset.

3. We conducted an analysis to understand
how well these structural and compositional
changes are captured by neural NLI models,
in both zero-shot and fine-tuned scenarios.
Our analysis indicates that NLI models per-
form poorly over negation and several types
of quantifiers. Fine-tuned NLI models do
not show significant improvement in learning
about compositional changes when compared
to their zero-shot equivalent models over our
dataset. This suggests that compositionality
in reasoning remains a challenge for neural
models of language.

2 Related Work

Natural Logic (NL) is a formal reasoning approach
that makes use of syntactic structure and semantic
properties of lexical items to understand composi-
tionally (MacCartney, 2009).

Logical reasoning is a known challenge for neu-
ral NLI models (Ravichander et al., 2019). In par-
ticular, NLI models struggle to understand quanti-
fiers, which is highlighted by the fact that these
models do not generalize well over quantifier-
driven inference tasks (Haruta et al., 2020). The

monotonicity calculus over quantifiers with token-
level polarity has been explored using the CCG
parser over the SICK dataset to generate a synthetic
dataset that considers compositional data augmen-
tation (Marelli et al., 2014) and monotonicity calcu-
lus (Hu et al., 2019). Other recent research focused
on language structures to highlight the importance
of compositionality, i.e., the premise and hypoth-
esis differ only in the order of the words, or the
presence of antonyms, synonyms, or negation (Das-
gupta et al., 2018). Having such data augmentation
can help move closer to the compositional encod-
ing of the language (Dasgupta et al., 2018). Our
work extends this direction: our dataset captures
both phrasal changes (e.g., synonyms, hypernyms),
which we inherit from the SICK dataset (Marelli
et al., 2014), as well as multiple types of modifiers
that are critical for NLI such as universal, existen-
tial, negation, and adjectives/adverbs.

The FraCas test suite (Cooper et al., 1996) con-
tains 346 examples that explore aspects of nat-
ural logic applied to NLI (MacCartney, 2009).
The HELP dataset (Yanaka et al., 2019b) modi-
fies phrases in premise/hypothesis sentences based
on monotonicity reasoning from combinatorial cat-
egorical grammar (Steedman and Baldridge, 2011)
and semantic tagging (Abzianidze and Bos, 2017).
As mentioned above, our work is complementary
to such datasets, as we cover other types of text
modifications. The MED dataset (Yanaka et al.,
2019a) is another manually-labeled dataset where
hypotheses were also modified by the human la-
belers given the monotonicity information for the
premises. Similarly, we manually labeled NLI in-
formation, but our work focuses mainly on compo-
sitional information in a sentential context.

Enhancing the dataset with data augmentation is
another recent method to test the generalizability of
NLI models (Jha et al., 2020). Lexical entailment
acquired from the distributional behavior of word
pairs (Geffet and Dagan, 2005) led to the subse-
quent work of (Bowman et al., 2015a), who pro-
duced a 3-way classification task for NLI dataset
that serves as a benchmark for evaluating natural
language understanding. Using Natural Logic as a
means to learn and reason about the semantic and
lexical relations is a common method used to im-
prove the reasoning capabilities of the NLI models
(Bowman et al., 2015c).

The NLI_XY dataset (Rozanova et al.,
2021) conducts structural investigation over the
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transformer-based NLI models. In particular, the
authors investigate how monotonicity (upwards
or downwards) changes when the premises and
hypotheses are modified through the insertion
of hypernym/hyponym phrases. This work is
complementary to ours: while they focus on
monotonicity in lexicalization (e.g., changing from
a hypernym to a hyponym), we focus on changes
in monotonicity due to explicit modifiers applied
on top of such lexical modifications.

The MonaLog system (Hu et al., 2019) intro-
duces a simple yet explainable NLI method that re-
lies on a simplified Natural Logic implementation.
The proposed method operates by implementing
monotonicity calculus over CCG syntactic trees us-
ing “a small inventory of monotonicity facts about
quantifiers, lexical items and token-level polarity.”
Despite its simplicity, the authors report excellent
performance on the SICK dataset. More closely
related to our work, they use MonaLog to generate
additional training data for NLI from the generated
proofs.

3 Dataset

We introduce a synthetic dataset to facilitate the
analysis of compositionality in logic. The dataset
contains 1,304 sentences that were created by mod-
ifying 15 examples from the SICK dataset (Marelli
et al., 2014) with a variety of modifiers. To this
end, we used a set of phrases that correspond to
universal quantifiers, existential quantifiers, nega-
tion, and other concept modifiers in Natural Logic
(NL) (MacCartney, 2009). These modifiers were
applied to syntactic constructs in both premise and
hypothesis and the entailment labels are adjusted,
as detailed below.

3.1 Overview

At a high level, our dataset creation followed the
following steps:

1. We start with 15 seed pairs of premise and hy-
pothesis sentences from SICK. Table 1 shows
the seed sentence pairs.

2. We syntactically analyze these sentences to
understand their subject-verb-object (SVO)
structures. Each of the SVO elements is then
modified using a subset of the applicable mod-
ifiers listed in Table 2. This process is detailed
in Section 3.2.

3. Lastly, we re-annotate the entailment labels
for the modified sentences, using the seven
entailment relations defined in (MacCartney,
2009): Forward Entailment (FE), Reverse En-
tailment (RE), Negation (Neg) (or Contradic-
tion), Alternation, Cover, Independence (Neu-
tral) and Equivalence (Equiv). This step is de-
tailed in Section 3.3. The labels are described
in Table 3.

3.2 Sentence Modification Strategy
For each premise and hypothesis sentence pair,
we modified individual subject, verb, and object
phrases with the following approach:

1. To modify subjects, we used the Berkeley Neu-
ral Parser to extract the left-most noun phrases
(NPs). We then append the applicable mod-
ifiers from Table 2. In particular, we used
universal quantifiers, existential quantifiers,
negations, and adjectives.

2. To modify verbs, we used the Berkeley Neural
parser to extract the rightmost verb phrases
(VPs) from the parse tree and appended the
applicable modifiers. Verbs were modified
using universal quantifiers (always, never),
negations (not, never), and adverbs (abnor-
mally,elegantly).

3. To detect objects, we used the syntactic de-
pendency parser of (Vacareanu et al., 2020)
to identify noun phrases attached to the main
verb. Similarly to the subject modifications,
these objects were modified using universal
quantifiers, existential quantifiers, negations,
and adjectives.

After modifying each of the premises and hypothe-
ses sentences, we generate multiple new data points
as follows: f(Pi, Hi,m, SV O) = Pi

′
, Hi

′
where

m ∈ M : all modifiers; SV O : subject/verb/object
phrases for either one of the parts of the sen-
tence; and Pi, Hi are premise and hypothesis from
sentence pairs Si ∈ S where S is the set of
15 examples from SICK. Lastly, f is the func-
tion that modifies a given premise and hypothesis
that follows one of the modification strategies de-
scribed above. We generate the following pairs of
combinations of the premise, and hypothesis sen-
tences: (Pi

′
, Hi), (Pi, Hi

′
), (Pi

′
, Hi

′
). We repeat

this process to modify each of the relevant sen-
tence phrases, as well as a couple of combinations:
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Premise Hypothesis SICK label
an old man is sitting in a field a man is sitting in a field Entailment
A boy is standing in the cold water A boy is standing in the water Entailment
Two children are hanging on a large branch Two children are climbing a tree Entailment
A boy is hitting a baseball A child is hitting a baseball Entailment
Two dogs are playing by a tree Two dogs are playing by a plant Entailment
A player is throwing the ball Two teams are competing in a football match Neutral
A man is sitting in a field A man is running in a field Neutral
Two dogs are playing by a tree Two dogs are sleeping by a tree Neutral
A girl with a black bag is on a crowded train A cramped black train is on the bag of a girl Neutral
A blond girl is riding the waves A blond girl is looking at the waves Neutral
The turtle is following the fish The fish is following the turtle Contradiction
A man is jumping into an empty pool A man is jumping into a full pool Contradiction
A deer is jumping over a fence A deer isn’t jumping over the fence Contradiction
A child is hitting a baseball A child is missing a baseball Contradiction
A classroom is full of students A classroom is empty Contradiction

Table 1: 15 premise/hypothesis sentence pairs from the SICK dataset (Marelli et al., 2014) and corresponding NLI
labels that form the seed of our dataset. The bold text highlights the lexically-driven compositional change in the
premise and hypothesis sentences.

Modifier Type Modifiers
Universal quantifiers every, always, never, every one of
Existential quantifiers some, at least, exactly one, all but one
Negation not every, no, not
Adjectives green, happy, sad, good, bad, an abnormal, and an elegant
Adverbs abnormally, elegantly

Table 2: List of modifiers used to modify subject, verb, and object elements of sentences. They are applied to each
of the premise and hypothesis sentences in Table 1.

subject, verb, object, subject + object, and verb +
object.

3.3 Entailment Annotation Strategy

To annotate our dataset,1 we created a set of an-
notation guidelines that follow Natural Logic and
monotonicity calculus (MacCartney, 2009).

In general, to produce entailment relations we
used a set theoretic approach to understand how
the set of concepts that holds true in the premise
overlaps with the set described in the hypothesis.
To implement this set theoretic approach consis-
tently, we defined the quantitative interpretation for
several more ambiguous modifiers such as all but
one, all, not every as follows:

1. For the modifier all, we consider the size of
the set of elements X to be greater than 0:
|X| > 0. For example, in the case of the
phrase all children, we consider the size of
the set of children to be greater than 0.

1The annotation guidelines we followed are de-
tailed on this website https://github.com/clulab/
releases/tree/sushma/acl2023-nlrse-sicck/
annotations-guidelines/NLI_annotation_task_
guidelines.pdf

2. For the all but one modifier, we consider the
size of all as N and the size of all but one to
be N − 1. Note that the size of all but one
could thus theoretically be 0, when N = 1.

3. For not every we consider the size of the cor-
responding set X to be 0 or larger: |X| ≥ 0
where X is any set defined over the sentence.
not every man would make X as a set of all
men but there exists zero or one or more men
that would not be included in this set.

4. When we cannot determine the size of the
intersection of the two sets of premise and
hypothesis, we resolved the annotation to be a
Neutral label among all 7 entailment relations.

5. When comparing quantifiers between modi-
fied premise, and hypothesis sentence pairs,
we denote the sizes of sets mathematically
for P ∪ H , P ∩ H , and the Universal
set. For example, consider the premise: ev-
ery turtle is following the fish and the hy-
pothesis: every fish is following the tur-
tle. The set over the premise is P :
∀X ∈ all turtles following one fish, and
the set over hypothesis is H : ∀X ∈
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Entailment Relation Set Theoretic Notation Examples using WordNet Hierarchy
Equivalence X ≡ Y couch ≡ sofa
Forward Entailment (FE) X ⊂ Y Hyponym: crow ⊂ bird.
Reverse Entailment (RE) X ⊇ Y Hypernym: Asian ⊇ Thai.
Negation (Neg) X ∩ Y = ϕ ∧X ∪ Y = U Antonym: able ¬ unable
Alternation X ∩ Y = ϕ ∧X ∪ Y ̸= U Typically caused concepts with a shared

hypernym: cat ∥ dog. The correspond-
ing hierarchy is : carnivore → feline, ca-
nine; feline → cat; and canine → dog.

Cover X ∩ Y ̸= ϕ ∧X ∪ Y = U animal ⌣ non-ape
Independence all other cases hungry ∥ hippo

Table 3: Entailment relations as defined in (MacCartney, 2009) with explanations using the WordNet hierarchy
(Miller, 1995).

Premise Hypothesis SVO Modifier Type Label
an old man is sitting in a field a man is sitting in a field None None FE
every old man is sitting in a field a man is sitting in a field Subject Universal FE
an old man is sitting in a field every man is sitting in a field Subject Universal RE
an old man is elegantly sitting in a field a man is elegantly sitting in a field Verb Adverb FE
an old man is sitting in every field a man is sitting in a field Object Universal FE
an old man is sitting in a field a man is sitting in every field Object Universal Neutral

Table 4: Premise, hypothesis examples where one or both of the premise and hypothesis were modified. The text
in bold indicates the change from the original text. The SVO column indicates the part of the sentence that was
modified: subject, verb, or object (SVO). The Modifier type indicates which type of modifier was used to modify
the parts of sentences. The label is the Entailment relation annotated by the annotators over modified data.

all fishes following the turtle. Thus, P ∩H =
ϕ. In this case, the label is Negation (see Ta-
ble 3). Table 4 includes more examples with
the corresponding entailment labels.

A total of 1,304 modified premise and hypothesis
sentence pairs along with original sentence pairs
were included in the final SICCK dataset. The
data was annotated by 5 annotators which were
distributed between two sub-groups of annotators,
based on the complexity of the labels. In the first
two rounds of annotations, we re-grouped to de-
velop concrete guidelines for annotations, without
defining too strict rules by leaving room for more
natural “if-this-then-that” deductions. There were
disagreements between annotations which were re-
solved by verifying the sizes of sets mathematically
over X ∪ Y , X ∩ Y to follow the entailment rela-
tions defined as in (MacCartney, 2009). While in
the initial round the inter-annotator agreement was
low (k < 0.4), the annotations were revised until
each group of annotators converged.

Tables 5, 6, and 7 provide summary statistics
about the SICCK dataset.

Modifier type # of sentence pairs
With universal quantifiers 217
With existential quantifiers 303
With negation 167
With adjectives/adverbs 602

Table 5: Sentence counts in SICCK based on types of
modifiers.

SVO modified # of sentence pairs
Subject 560
Verb 220
Object 509

Table 6: Sentence counts in SICCK based on which
syntactic structures are modified.

4 Evaluation

We conducted an evaluation of how NLI methods
capture the explicit compositionality in our dataset
using two configurations: a zero-shot setting, in
which we used NLI systems trained externally, and
a fine-tuned setting, in which the same models were
fine-tuned using our dataset.
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Entailment relations # of sentence pairs
Forward Entailment 223
Reverse Entailment 27
Alternation 121
Negation 54
Negation|Alternation 260
Neutral 393
Equivalence 7
Cover 1
Cover|FE 1

Table 7: Label counts in SICCK. Note that Nega-
tion|Alternation indicates ambiguous labels where the
two annotators did not converge.

4.1 Zero-shot Analysis of NLI Models
For this analysis, we evaluate three pretrained neu-
ral entailment models on our dataset. However,
all these systems emit just the three “traditional”
entailment labels (Forward Entailment, Contradic-
tion, and Neutral) whereas our dataset contains the
seven labels from NL. To align these label spaces,
we performed the following transformations:

1. In case a system produces a Neutral label, we
run the prediction in the opposite direction,
i.e., from hypothesis to premise. If the top
label in the reversed direction is Forward En-
tailment (FE), we label the pair as Reverse
Entailment. Otherwise, we keep the Neutral
label. This heuristic allows these systems to
produce four labels instead of three.

2. We convert our seven labels to four labels
through the following heuristics: (a) Equiv-
alence was removed since we had only one
sentence pair labeled as Equivalence in our
dataset; (b) Alternation is merged with Nega-
tion; (c) Cover and Independence become
Neutral; and (d) the 7 examples that were an-
notated as Cover|FE were removed.

We conducted zero shot evaluation using three
NLI models: the cross-encoder model of Reimers
and Gurevych (2019) (nli-deberta-v3-base in
our tables), the adversarial NLI model of Nie et al.
(2020) (ynie/roberta-large-. . . ), and ELMo-
based Decomposable Attention model (Parikh et al.,
2016) (pair-classification-. . . ). We draw
the following observations from this experiment:

• Table 8 indicates that the ELMO-based NLI
model performs considerably worse than the

other two transformer-based models. This is a
testament to how far our field has progressed
in just a few years. However, no model ap-
proaches 70 F1 points, which indicates that
none of these models truly understand the task
well.

• The NLI models do better over adjectives and
adverbs, but they struggle to understand state-
ments modified with universal and existen-
tial quantifiers, and negation. Tables 8–14
indicates that the transformer-based NLI mod-
els perform at over 70 F1 points on adjec-
tives/adverbs, at over 65 F1 for universal quan-
tifiers, at approximately 60 F1 for existential
quantifiers, and at only 30–35 F1 for negation.
This is a surprising finding considering how
much attention negation has received in the
NLP literature (Pang et al., 2002) (Hossain
et al., 2022) (Hossain et al., 2020).

• Lastly, Tables 15–17 indicate that NLI mod-
els process objects best, followed by subjects,
and, lastly, verbs. This is not surprising con-
sidering the increased semantic ambiguity of
verbs.

4.2 Analysis of Fine-tuned NLI models
To understand if NLI methods are capable of learn-
ing this compositional information, we fine-tuned
the two NLI models that performed better over the
SICCK dataset. To maximize the data available, we
implemented a 5-fold cross-validation evaluation
over the entire SICCK dataset and experimented
with multiple hyperparameters. In particular, we
used 4 or 8 epochs, and batch sizes of 8, 16, or 32
data points.

The results of these experiments are summarized
in Table 9. We draw the following observation from
this experiment:

• The difference in F1 scores between the fine-
tuned systems and the corresponding zero-
shot setting ranges from -0.05 to 0.06. This
indicates that these systems do not acquire
substantial new knowledge despite the fact
that they’ve been exposed to approximately
1,300 sentences with compositional informa-
tion. This suggests that understanding compo-
sitionality is harder than expected.

• Similar to the zero-shot setting, NLI models
did better over adjectives, and adverbs and
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NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.5254 0.5601 0.5860 0.6579
ynie/roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli 0.5200 0.5156 0.5533 0.6334
pair-classification-decomposable-attention-elmo 0.0829 0.0497 0.2500 0.1986

Table 8: Overall scores for the three pretrained NLI modes under zero-shot setting, based on compressed 4-entailment
relations: Forward Entailment, Reverse Entailment, Contradiction, and Neutral.

NLI model with epochs, batch size F1 Precision Recall Accuracy
nli-deberta-v3-base-4-8 0.5392 0.5310 0.5546 0.5686
roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli-4-8 0.4257 0.4708 0.4456 0.4460
nli-deberta-v3-base-4-16 0.5153 0.5072 0.5404 0.5556
roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli-4-16 0.5177 0.5472 0.5239 0.5203
nli-deberta-v3-base-4-32 0.4871 0.4756 0.5109 0.5280
roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli-4-32 0.4829 0.4941 0.4884 0.4904
nli-deberta-v3-base-8-8 0.5876 0.5799 0.6024 0.6045
roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli-8-8 0.4433 0.4596 0.4385 0.4559
nli-deberta-v3-base-8-16 0.5464 0.5378 0.5636 0.5801
roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli-8-16 0.4724 0.4723 0.4772 0.4828
nli-deberta-v3-base-8-32 0.5489 0.5408 0.5713 0.5785
roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli-8-32 0.4281 0.4558 0.4319 0.4345

Table 9: Overall scores for two fine-tuned NLI models on SICCK dataset based on the compressed 4-entailment
relations: Forward Entailment, Reverse Entailment, Contradiction, and Neutral. We report the results for 4 and 8
epochs and batch sizes of 8, 16, and 32 data points.

relatively better over universal quantifiers in
comparison to that of the negation and existen-
tial quantifiers. We also observed that models
seem to be confused when the annotated la-
bel was Neutral but the modifier types were
negations.

• NLI models perform somewhat better over
subject and object-modified examples than on
examples with modified verbs. This indicates
that the semantic ambiguity of verbs is likely
to impact NLI models.

5 Error Analysis

We analyze the incorrect predictions of the NLI
models over SICCK dataset in this section. We
observed that NLI models performed better over
adjectives and adverbs, and relatively well over
universal quantifiers in comparison to sentences
modified with negation and existential quantifiers
under both fine-tuned as well as zero-shot settings.
We also observed that models seem to be confused
when the adjusted label was Neutral and the modi-
fier types were negations.

SVO # count Neutral
subject 86 65
verb 41 35
object 40 22

Table 10: For all our SICCK dataset’s 167 examples
with negation modifiers, this table includes counts of all
the modified subject, verb, and object parts of sentences
respectively for each of the 4-Entailment adjusted labels
from SICCK annotations. The last column indicates
how many of these data points have the Neutral label.

5.1 Neutral Labels with Negation Modifiers

Negation understanding in natural language has
been a challenging problem (Pang et al., 2002; Hos-
sain et al., 2022). (Hossain et al., 2022) discussed
that Negation is underrepresented in natural lan-
guage corpora. Further, (Hossain et al., 2020) show
that even though the transformers were fine-tuned
with modified premises with negation (i.e., verb
modifiers with negation), the transformers struggle
with inference over negated sentence pairs.

In our SICCK dataset, there are 167 examples
with negation modifiers. Table 10 shows some
statistics relevant to this. Of these 167 examples
with Negation modifiers, there are 122 Neutral ex-
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amples. We observed that the NLI models correctly
predicted ground truth for approximately 37% of
these examples. For all the incorrectly predicted
labels for negation-modified examples with Neu-
tral labels, the models seemed to be confused for
various compositional cases, i.e. subject or verb
or object-modified examples almost equivalently.
Modifiers such as no, not every, not with Neutral
and Contradiction labels seem to contribute to the
confusion. SICCK examples also include the for-
mat of alternating modifiers between premises, hy-
pothesis, or both i.e. (Pi

′
, Hi), (Pi, Hi

′
), (Pi

′
, Hi

′
)

Section 3 which further seems to confuse the NLI
models. This is surprising since we have 593 Neu-
tral examples in our SICCK dataset, albeit with
fewer negation examples. As emphasized by the
analysis from (Hossain et al., 2022) and (Hossain
et al., 2020), detecting negation in natural language
continues to be an unresolved problem.

5.2 Verb-modified Examples

For verb modifiers, we used modifiers abnormally,
elegantly, always, never. Our SICCK dataset has a
total of 220 verb-modified examples of which, we
have 89 universal modifiers, 90 adverbs/adjectives,
and 41 negation. Among the 31 verb-modified
examples with negation with Neutral label, NLI
models incorrectly alternate between Contradiction
and FE for 99% of the examples. Of the 49 exam-
ples with universal modifiers over verbs with Neu-
tral labels, approximately 69.4% were incorrectly
predicted. This further emphasizes that negation
(especially when occurring in Neutral examples)
remains a challenge.

6 Conclusion

This paper introduced a new, synthetic dataset that
facilitates analyses of how NLI models capture
compositionality. The dataset contains 1,304 sen-
tence pairs that were created by modifying 15 ex-
amples from the SICK dataset (Marelli et al., 2014)
with a variety of modifiers that correspond to uni-
versal quantifiers, existential quantifiers, negation,
and other concept modifiers in Natural Logic (NL)
(MacCartney, 2009). We used these phrases to
modify the subject, verb, and object parts of the
premise and hypothesis. Lastly, we annotated these
modified texts with the corresponding entailment
labels following NL rules.

We conducted a preliminary analysis of how well
the change in the structural and semantic composi-

tion is captured and detected by neural NLI models,
in both zero-shot and fine-tuned scenarios. We
found that the performance of NLI models is poor
in both settings, especially for modified sentences
with negation and existential quantifiers, and when
verbs are modified.

Limitations

While this work explores the impact of the typ-
ical compositional modifiers on entailment rela-
tions, we did not consider other fine-grained in-
formation that further captures upward or down-
ward monotonicity from the monotonicity calculus
of the premise/hypothesis sentence pairs. Further,
the dataset that we generated is relatively small,
at approximately 1,300 sentences. We also did
not evaluate the dataset over T5, BART, GPT-x,
and other state-of-the-art LLMs, which may pro-
vide more insights. We also did not conduct any
evaluation for explanations and interpretation of
the evaluated NLI models, which could be future
work. Lastly, we did not include a comparison
with existing datasets that were created specifically
for negation modifiers and universal & existential
quantifiers. We see all these issues as exciting av-
enues for future work.
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NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.5333 0.5474 0.5877 0.6636
ynie/roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli 0.5597 0.5636 0.5854 0.6774
pair-classification-decomposable-attention-elmo 0.0694 0.0403 0.2500 0.1613

Table 11: Universal quantifiers: scores based on compressed 4-entailment relations for zero-shot NLI evaluation.

NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.5101 0.5453 0.5608 0.6106
ynie/roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli 0.4932 0.4888 0.5348 0.5941
pair-classification-decomposable-attention-elmo 0.1044 0.0660 0.2500 0.2640

Table 12: Existential quantifiers: scores based on compressed 4-entailment relations for zero-shot NLI evaluation.

NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.2678 0.3556 0.4637 0.3054
ynie/roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli 0.2996 0.3470 0.4690 0.3533
pair-classification-decomposable-attention-elmo 0.0412 0.0225 0.2500 0.0898

Table 13: Negation: scores based on compressed 4-entailment relations for zero-shot NLI evaluation.

NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.5768 0.6088 0.6154 0.7741
ynie/roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli 0.5543 0.5618 0.5523 0.7126
pair-classification-decomposable-attention-elmo 0.1139 0.0687 0.3333 0.2060

Table 14: Adjectives/Adverbs: scores based on compressed 4-entailment relations for zero-shot NLI evaluation.

NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.5070 0.5469 0.5732 0.6429
ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli 0.4862 0.4812 0.5168 0.6054
pair-classification-decomposable-attention-elmo 0.0796 0.0473 0.2500 0.1893

Table 15: Modified subject: scores based on compressed 4-entailment relations for zero-shot NLI evaluation.

NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.4724 0.5141 0.5875 0.5727
ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli 0.4932 0.5082 0.5764 0.5955
pair-classification-decomposable-attention-elmo 0.0669 0.0386 0.2500 0.1545

Table 16: Modified verb: scores based on compressed 4-entailment relations for zero-shot NLI evaluation.

NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.5683 0.6166 0.6030 0.7073
ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli 0.5687 0.5638 0.5908 0.6778
pair-classification-decomposable-attention-elmo 0.0915 0.0560 0.2500 0.2240

Table 17: Modified object: scores based on compressed 4-entailment relations for zero-shot NLI evaluation.

NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.5393 0.5319 0.5542 0.5622
ynie/roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli 0.3960 0.4241 0.4046 0.3917

Table 18: Universal quantifiers: fine-tuned NLI models’ evaluation scores based on 4-entailment relations. We
report results for 8 epochs and a batch size of 32 data points.
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NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.5470 0.5373 0.5729 0.5611
ynie/roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli 0.4649 0.5101 0.4633 0.4653

Table 19: Existential quantifiers: fine-tuned NLI models’ evaluation scores based on 4-entailment relations. We
report results for 8 epochs and a batch size of 32 data points.

NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.3476 0.3634 0.4064 0.3952
ynie/roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli 0.3979 0.4420 0.4536 0.4671

Table 20: Negation: fine-tuned NLI models’ evaluation scores based on 4-entailment relations. We report results
for 8 epochs and a batch size of 32 data points.

NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.5862 0.5803 0.5998 0.6412
ynie/roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli 0.4191 0.4350 0.4201 0.4252

Table 21: Adjectives/Adverbs: fine-tuned NLI models’ evaluation scores based on 4-entailment relations. We
report results for 8 epochs and a batch size of 32 data points.

NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.5920 0.5848 0.6154 0.6107
ynie/roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli 0.4681 0.4872 0.4778 0.4768

Table 22: Modified subject: fine-tuned NLI models’ evaluation scores based on 4-entailment relations. We report
results for 8 epochs and a batch size of 32 data points.

NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.5203 0.5114 0.5454 0.5545
ynie/roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli 0.3750 0.4102 0.3864 0.3955

Table 23: Modified verb: fine-tuned NLI models’ evaluation scores based on 4-entailment relations. We report
results for 8 epochs and a batch size of 32 data points.

NLI system F1 Precision Recall Accuracy
nli-deberta-v3-base 0.5501 0.4945 0.5342 0.5058
ynie/roberta-large-snli-mnli-fever-anli-R1-R2-R3-nli 0.4047 0.4410 0.4011 0.4053

Table 24: Modified object: fine-tuned NLI models’ evaluation scores based on 4-entailment relations. We report
results for 8 epochs and a batch size of 32 data points.
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