Achropuce 29 novembre 2023

Anomalies chromosomiques identifiées par séquençage de génome en fœtopathologie

Bilan SeqOIA

Tania ATTIE-BITACH

Hôpital Necker-Enfants Malades

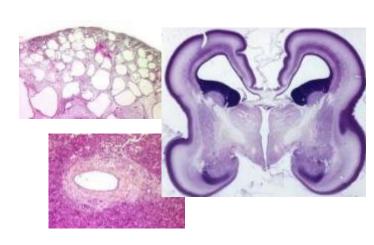
AP-HP. Centre

Paris, France

Examen foetopathologique

- Décès foetal /neonatal J28
- Interruption médicale de grossesse

Examen clinique


Histologie

Protocole spécifique (HAS) Diagnostic retrospectif +++

Guide les explorations complémentaires

L'examen fœtopathologique (Vfr) - YouTube

La Société Française de **Fœtopathologie**, avec le soutien de la filière de santé AnDDI-Rares et l'ERN ITHACA, présente une vidéo sur l'**examen** ...

YouTube · Filière de santé AnDDI-Rares · 21 juil. 2021

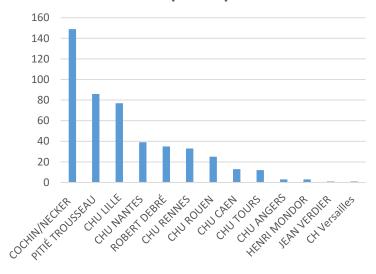
https://www.youtube.com/watch?v=Jy2y0B_ULIM

SG en foetopathologie -> Avril 2023, inclusions

Thèse de Spécialité – Agnese Feresin

Citères d'inclusion:

- ✓ Après examen foetopathologique: IMG, MFIU, FCS, nnés jusqu'à J28
- ✓ ACPA réalisée
- ✓ Association de plusieurs anomalies ou récidive (37)
- ✓ Après conseil génétique, histoire familiale, consentements


Objectifs:

- → Décrire l'apport du SG en foetopathologie
 - > Taux diagnostic: analyse conclusive / non conclusive avec VSI / non conclusive
- → Spectre mutationnel
- → Comparaison à l'approche ACPA + exome prénatal

Centres

Centres prescripteurs

NECKER

Tania ATTIE-BITACH Caroline MICHOT Laurence HEIDET Jeanne AMIEL Geneviève BAUJAT Julie STEFFANN

Thèse: Agnese Feresin

COCHIN Sarah GROTTO

PITIÉ SALPÊTRIÈRE / TROUSSEAU

Alexandra AFENJAR Solveig HEIDE **Delphine HERON** Daphné LEHALLE Linda MOUTHON Sandra WHALEN

CHU LILLE

Odile BOUTE Cindy COLSON Catherine DELORME Anne DIEUX Florence PETIT Clémence VANLERBERGHE

CHU NANTES

Claire BENETEAU **Bertrand ISIDOR** Leila GHESH Mathilde NIZON Marie VINCENT

ROBERT DEBRÉ

Yline CAPRI Lyse RUAUD Laurence PERRIN-SABOURIN Louise GOUJON

CHU RENNES

Mélanie FRADIN Morel GODELIEVE Alinoé LAVILLAUREIX Sylvie ODENT Laurent PASQUIER Chloé QUELIN

CHU ROUEN

Anne-Claire BREHIN Anne-Marie GUERROT Alice GOLDENBERG Gabriella VERA

CHU TOURS

Méderic Jeanne Stéphanie ARPIN

CHU CAEN

Arnaud MOLIN Manon GODIN

CH Versailles

B Simon-Bouy

CHI CRÉTEIL

Rakia BHOURI

CH VANNES

Florence DEMURGER

CHU ANGERS

Estelle COLIN Radka STOEVA

CHU BREST

Severine AUDEBERT

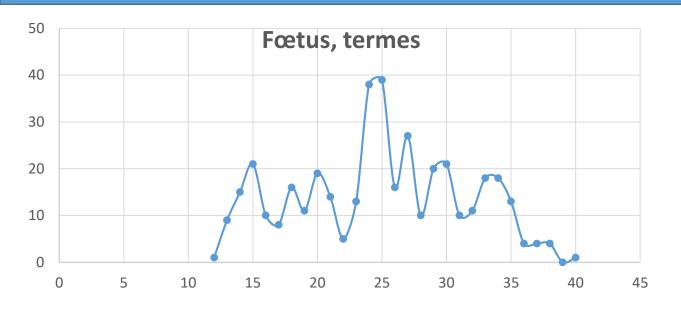
HENRI MONDOR

Ariane LUNATI-ROZIE **Benoit FUNALOT**

JEAN VERDIER

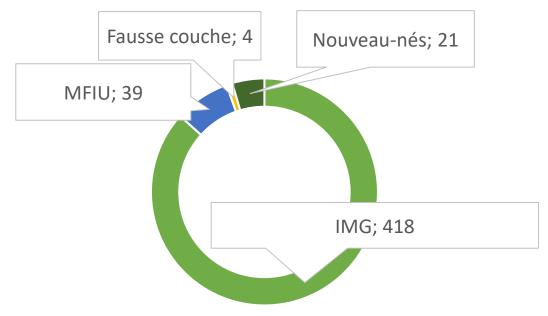
Andrée DELAHAYE-DURIEZ

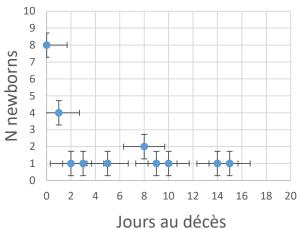
INTERPRETATEURS


Tania ATTIE-BITACH **Boris KEREN** Thomas SMOL Benjamin COGNE Christel DUBOURG Pierre BLANC Jonathan LEVY Paul GUEGUEN Melania RAMA Sophie RONDEAU Corinne COLLET Laurence HEIDET Lydie BURGLEN Severine DRUNAT Fabienne ESCANDE Lucile BOUTAUD Pascale SAUGIER **Audrey BRIAND** Andrée DELAHAYE-DURIEZ Marie FAOUCHER Nathalie COUQUE Yoann VIAL Andrée DELAHAYE-DURIEZ Adeline Alice BONNARD Agnès GUICHET Flavie ADER Guillaume JEDRASZAK Jean-Madeleine DE SAINTE AGATHE Arnaud MOLIN Laila EL KHATTABI Olivier GRUNEWALD

Severine BACROT

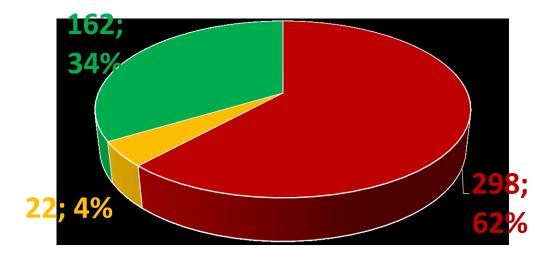
Caroline THAMBO


SG en foetopathologie – cohorte SeqOIA - Avril 2023



482 CI

248 M et 234 F



Nouveau-nés, age

SG en foetopathologique - spectre génétique – Avril 2023

Total (482 CI)

CNV (13)

- Autosomique dominant (7)
- Autosomique récessif (6)
 - homozygotes (4)
 - Hétérozygotes composites (2)

Anomalie chromosomique (5)

- Déséquilibres
 - Mosaïque fœtale (3)
 - Trisomie 8 (1)
 - Tetrasomie 12p (1)
 - Trisomie 10p (1)
 - Homogènes ? (1)
 - Délétion chromosome 7 de 10 Mb
- > Inversion équilibrée 7q 4.3 Mb

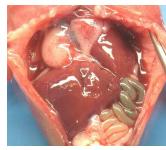
Causes monogéniques (157)

- Autosomique dominant (87)
 - de novo (77)
 - Hérité (10 -3 mosaïques parentales)
- Autosomique récessif (53)
 - Hétérozygotes composites (36)
 - Homozygotes (17)
- Lié à l'X (17)
 - Filles (3)
 - Garçons (14)

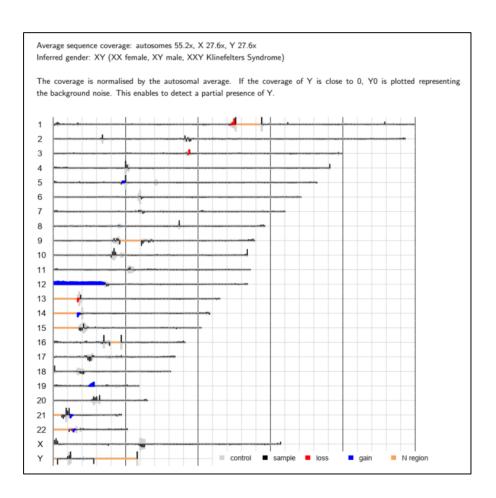
Spice 365F8, Necker, TAB Analyse : TAB, P. Blanc

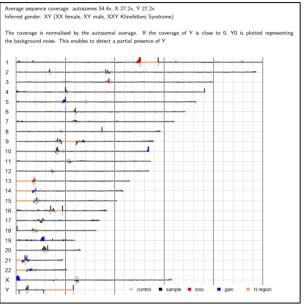
Mosaïque fœtale (1)

IMG à 15SA pour hernie de coupole diaphragmatique

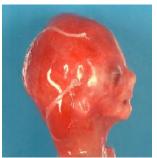

Echo T1: HCD

ACPA sur villosités normale





SG sur tissu foetal: Seq[GRCh38] 12p13.33p11.1(1092001_34692000)x3~4 dn Tétrasomie 12p mosaique

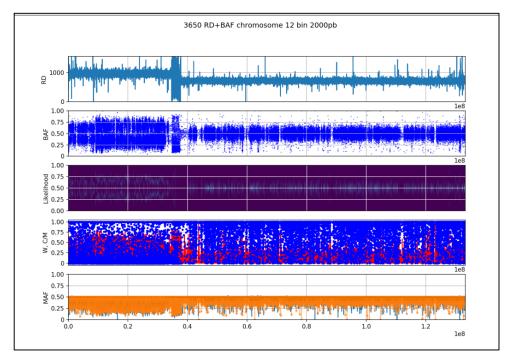

Spice 365F8, Necker, TAB Analyse : TAB, P. Blanc

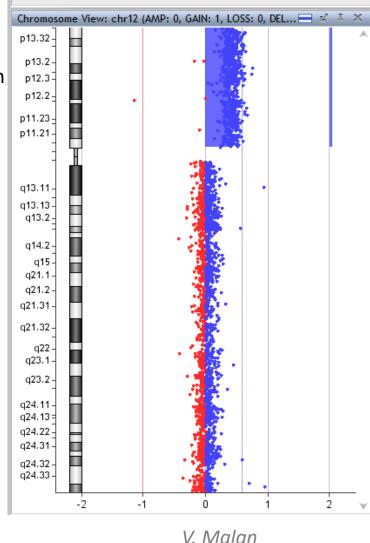
Mosaïque fœtale (1)

IMG à 15SA pour hernie de coupole diaphragmatique

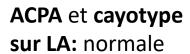
Echo T1: HCD

ACPA sur villosités normale

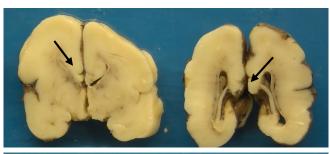




SG sur tissu foetal: Seq[GRCh38] 12p13.33p11.1(1092001_34692000)x3~4 dn Tétrasomie 12p mosaique

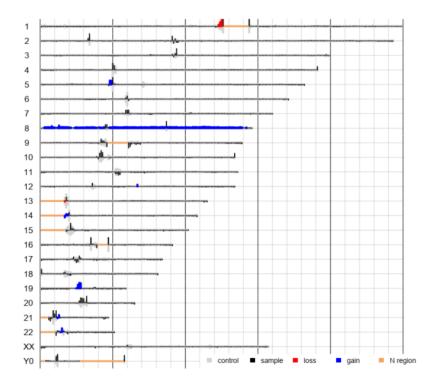

Confirmation par CGH sur ADN extrait de poumon

Spice 11A901, Cochin, S Grotto Analyse: TAB, B Keren


Mosaïque fœtale (2)

IMG, 27 SA pour anomalies du corps calleux

Echo T2: absence de visualisation du CC


21NF00178, N. Roux

SG sur <u>tissu fœtal (poumon)</u>: seq(8)×2~3 dn: Trisomy 8 en mosaique

3 Coverage by chromosome

Average sequence coverage: autosomes 45.1x, X 45.1x, Y 0x Inferred gender: XX (XX female, XY male, XXY Klinefelters Syndrome)

The coverage is normalised by the autosomal average. If the coverage of Y is close to 0, Y0 is plotted representing the background noise. This enables to detect a partial presence of Y.

Spice 11A901, Cochin, S Grotto Analyse: TAB, B Keren

Mosaïque fœtale (2)

IMG, 27 SA pour anomalies du corps calleux

Echo T2: absence de visualisation du CC

sur LA: normale

21NF00178, N. Roux

Séquençage de génome sur tissu fœtal (poumon):

 $seq(8)\times 2^3 dn$:

Trisomy 8 en mosaique

COMMENTAIRES ET CONCLUSION:

L'analyse chromosomique par puce ADN (ACPA) a mis en évidence une amplification de tout le chromosome 8, dont le log2 ratio fait suspecter la présence d'une mosaïque à environ 30% dans le tissu analysé. Ce résultat confirme celui de l'analyse par séquençage de génome entier et peut expliquer les signes cliniques observés, notamment la dysplasie du corps calleux.

Une réanalyse de l'ACPA réalisée sur le prélèvement de liquide amniotique à 24SA ne retrouve pas de déséquilibre au niveau du chromosome 8, ce qui est en faveur d'une mosaïque tissulaire foetale.

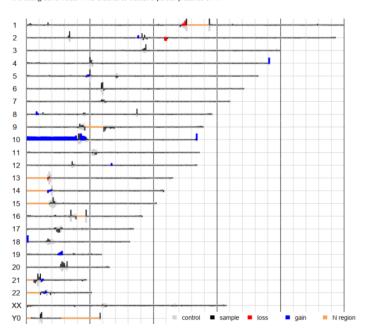
ACPA, sur tissu fœtal (muscle): T18 - 30%

P. Jordan, JM. Dupont A. Coussement

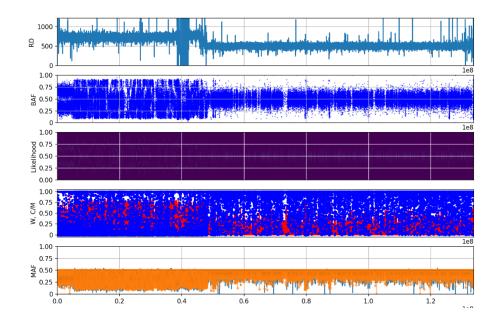
Mosaïque fœtale (3)

IMG 20,3 SA DPNI négatif

Echo 19,5 SA: ventriculomégalie, coeur gros, myocarde épaissi, hyperechogénicité des anses intestinales, oligoamnios ...dans le contexte d'une seroconversion CMV


Amniocentèse

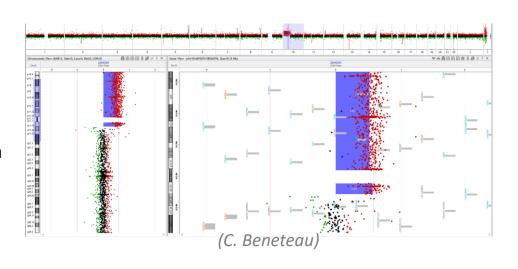
ACPA Microdélétion interstitielle d'une taille minimale de 1,88 Mb en 2q12.3q13 maternelle PCR CMV négative


- o Microcéphalie
- V4 large
- Dysmorphie

20N00036 M. Joubert Average sequence coverage: autosomes 39x, X 39x, Y 0x Inferred gender: XX (XX female, XY male, XXY Klinefelter's Syndrome)

The coverage is normalised by the autosomal average. If the coverage of Y is close to 0, Y0 is plotted represen the background noise. This enables to detect a partial presence of Y.

E1E0_S20 RD+BAF 2000 chromsome 10



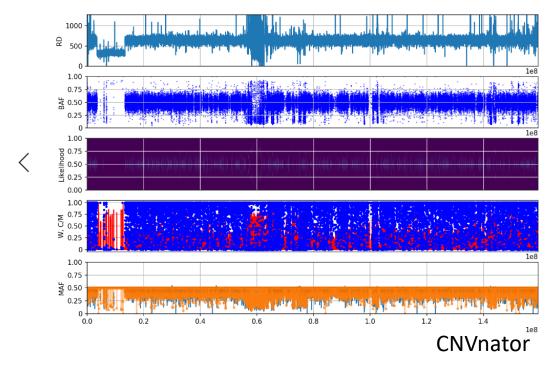
Seq[GRCh38]10p15.3q10x3dn

Microdélétion 2q12.3q13 maternelle vue

ACPA sur ADN extrait de peau

Duplication 39Mb bras court + petite region sous-centromérique en 10q11.22 Caryotypes des parents normaux

Spice E6F33, Nantes Analyse : TAB


Délétion 7p22.2p21.3 de 10 Mb

E6F0_S1 RD+BAF 2000 chromsome 7

IMG 15SA + 5 HCN 5,5 à 12,2 SA Oedeme sous cutané généralisé BT: FISH 13, 18, 21 pas de culture possible. Echo 14,6 SA anamnios, encéphalocèle occipitale

- RCIU
- œdème cervical
- Dysmorphie cranio-faciale: Fente labio-gingivale droite, micro-rétrognathisme
- Encéphalocèle occipitale,
- Rein G microkystique, dysplasique
- VDDI type Fallot,
- Poumon droit monolobé,
- Une micro-rate accessoire,
- Artère ombilicale unique

21N00036 M. Joubert

seq[GRCh38] del(7)(p22.2p21.3)dn NC_000007.14:g.3513644_13389557del

Echec ACPA

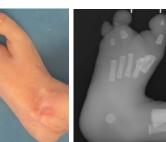
délétion 7p confirmée par FISH chez fœtus Absence de la délétion chez les parents. Spice 160763, Necker TAB Analyse: S. Rondeau

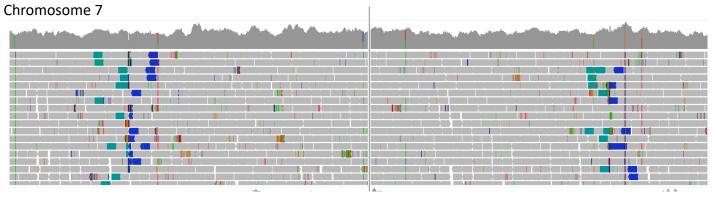
Inversion en 7q équilibrée

IMG, 25SA pour ectrodactylie

Echo T2, 3 rayons détectés aux mains et pieds

ACPA sur LA normale





21NF00245, L. Loeuillet

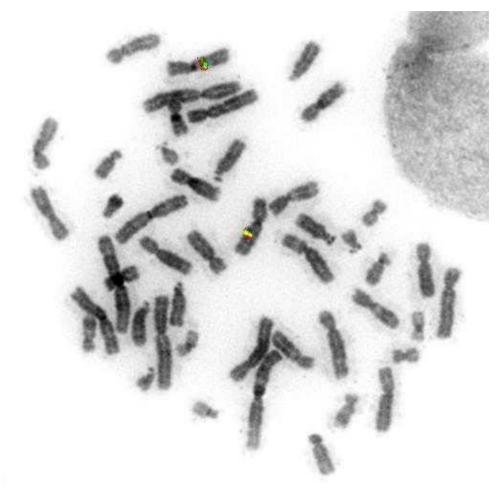
SG sur tissu (poumon): inversion en 7q21.2q21.3, de novo, (4,3 Mb) impliquant la région régulatrice SHFM1 (Split Hand and Foot Malformation)

Characterization of the **split hand/split foot** malformation **locus** SHFM1 at 7q21.3-q22.1 and analysis of a candidate gene for its expression during limb development.

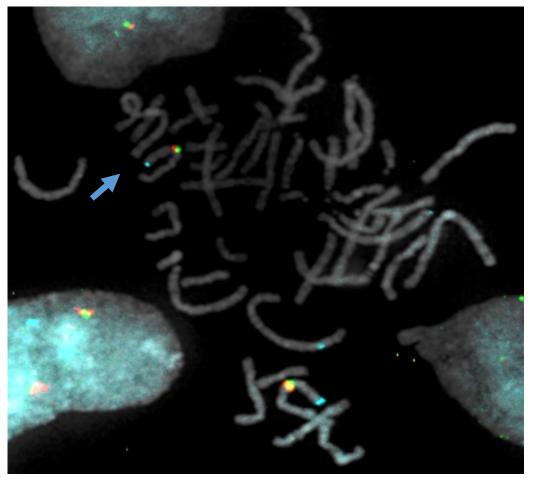
Crackower MA, Scherer SW, Rommens JM, Hui CC, Poorkaj P, Soder S, Cobben JM, Hudgins L, Evans JP, Tsui LC.

Hum Mol Genet. 1996 May;5(5):571-9. doi: 10.1093/hmg/5.5.571.

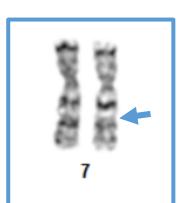
Spice 160763, Necker TAB Analyse: S. Rondeau

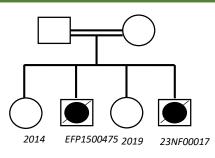

Inversion en 7q équilibrée

IMG, 25SA pour ectrodactylie


Echo T2, 3 rayons détectés aux mains et pieds

ACPA sur LA normale


SG sur tissu (poumon): inversion en 7q21.2q21.3, de novo, (4,3 Mb) impliquant la région régulatrice SHFM1 (Split Hand and Foot Malformation)


confirmation de l'inversion par **FISH**

M. Lesieur, V. Malan

Délétion infra CGH prénatale

IMG à 30SA

LA: ACPA sans déséquilibre

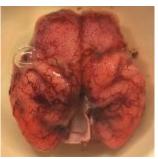
23SA+1J: **PC 3°p**, CC vu, cavum ballonisé, kyste sous

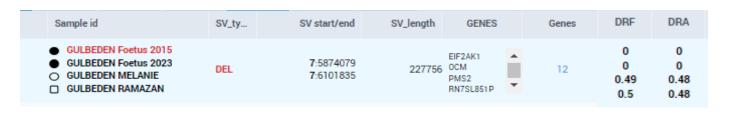
épendimaire

26SA+1J: microcéphalie - infléchissement PC <3° avec un corps calleux fin avec agénésie du genou, kystes paraventriculaires en frontal et en temporal

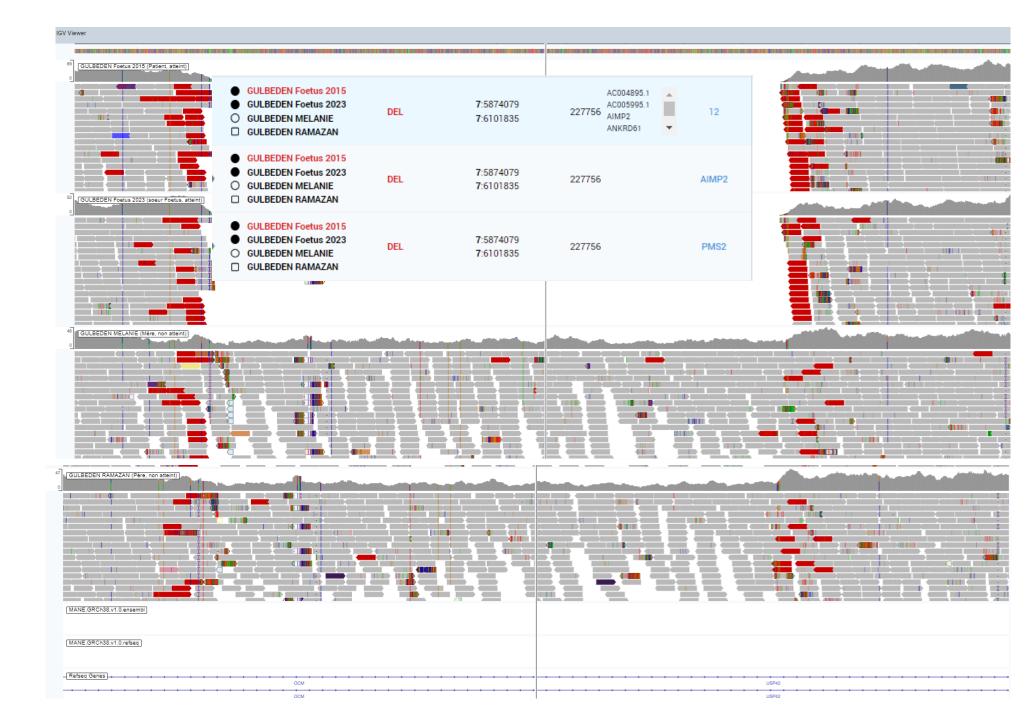
28SA+1J: microcéphalie < 1°p, corps calleux très aminci, kystes paraventriculaires, mains crispées

Exome : VSI homozygote de *PLK4*




23NF00017

21NF00178, N. Roux

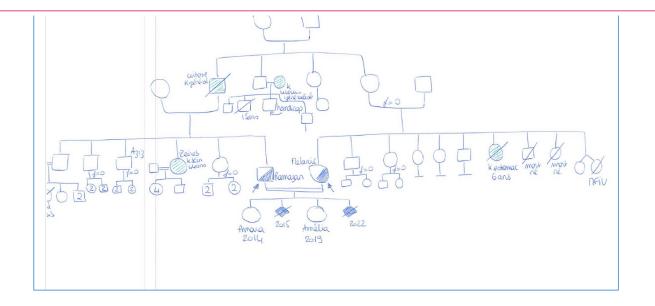

WGS en quatuor SeqOIA

AC004895.1 AC005995.1

AIMP2

ANKRD61 CCZ1 EIF2AK1 OCM PMS2

RN7SL851P RNU6-218P RSPH10B SNORA80D


PMS2

Location	henotype View Clinical Synopses		Phenotype MIM number	Inheritance
7p22.1	Lynch syndrome 4		614337	
	Mismatch repair cancer syndr	ome 4	619101	AR

Syndrome de Lync AD

Définition

Syndrome familial rare avec prédisposition aux cancers caractérisé par une prédisposition à une grande variété de cancers, notamment les néoplasmes du tube digestif, des voies urinaires, des reins, de l'endomètre, des ovaires, du cerveau et de la prostate, ainsi que les tumeurs sébacées de la peau, selon le gène impliqué. Les tumeurs peuvent survenir à tout âge, mais elles se présentent souvent chez les jeunes. Le risque individuel de tumeur dépend des facteurs suivants : le sexe, l'âge, le gène affecté et les antécédents personnels de cancer.

ABDOMEN

Gastrointestinal

- Adenomatous colonic polyps

AR

SKIN, NAILS, & HAIR

Skin

- Cafe-au-lait spots
- Axillary freckling

NEUROLOGIC

Central Nervous System

- Agenesis of the corpus callosum
- Gray matter heterotopia
- Interhemispheric cyst

IMMUNOLOGY

- Immunoglobulin class switch recombination deficiency
- Recurrent infections

NEOPLASIA

- Astrocytoma
- Glioblastoma
- Oligodendroglioma
- Neuroblastoma
- Supratentorial primitive neuroectodermal tumor (SPNET)
- Mucoepidermoid cancer of the parotid
- Colorectal adenocarcinoma
- Ovarian neuroectodermal tumor
- Endometrial adenocarcinoma
- Leukemia
- Lymphoma

LABORATORY ABNORMALITIES

- Elevated IgM
- Decreased IgG2 and IgG4
- Decreased IgA

AIMP2

Location	Phenotype	Phenotype MIM number	Inheritance	Phenotype mapping key	Gene/Locus
7p22.1	Leukodystrophy, hypomyelinating, 17	618006	AR	3	AIMP2

GROWTH

Height

- Short stature

Other

- Poor overall growth

HEAD & NECK

Head

- Microcephaly (-10 SD) 1

Face

- Dysmorphic features, variable
- Prognathism 👤

Nose

- Low hanging columella
- Anteverted nostrils

Mouth

- Thick lip vermilion
- Gum hypertrophy

Teeth

- Widely spaced teeth

RESPIRATORY

- Breathing difficulties

ABDOMEN

Gastrointestinal

- Poor feeding

SKELETAL

- Contractures

Svine

- Kyphoscoliosis

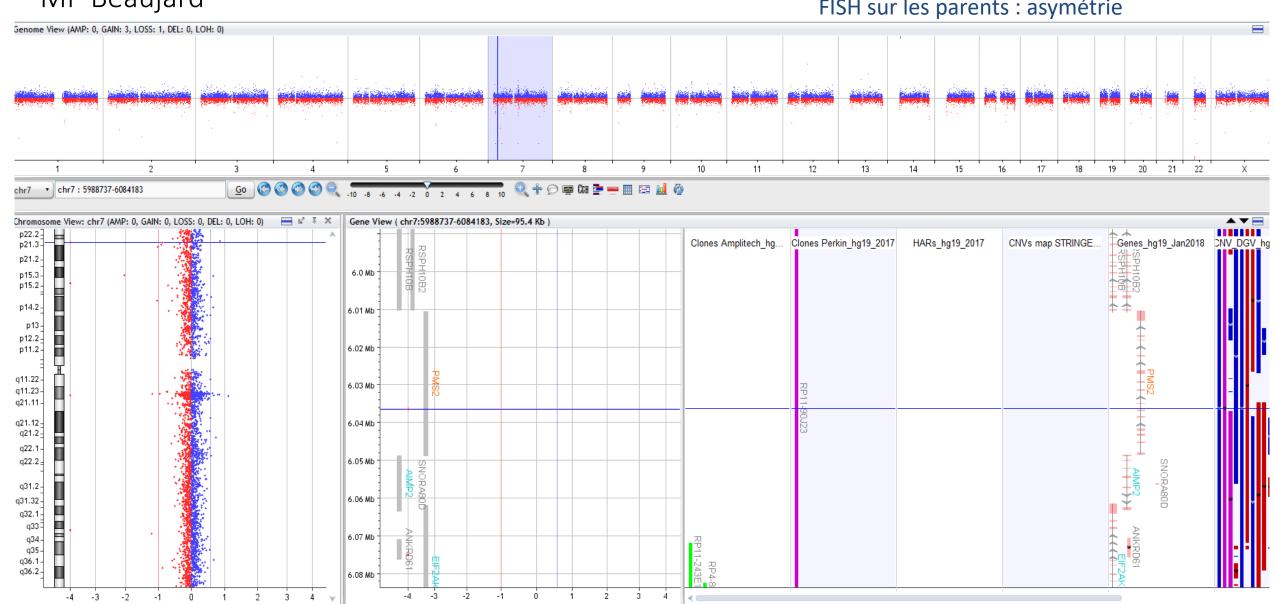
SKIN, NAILS, & HAIR

Hair

NEUROLOGIC

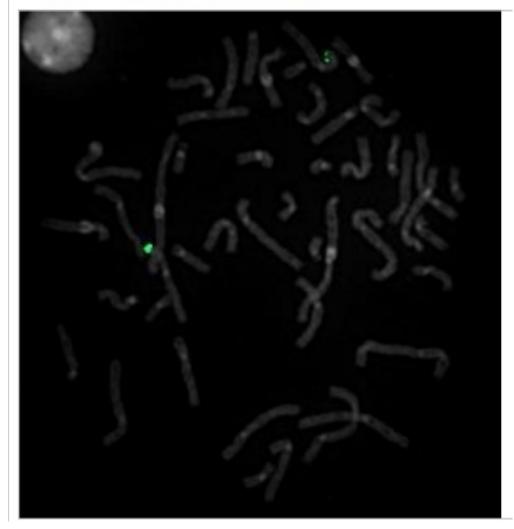
Central Nervous System

- Lack of developmental milestones
- Intellectual disability, profound
- Inability to walk
- Absent speech
- Seizures, early-onset, intractable
- Multifocal spike wave discharges seen on EEG
- Hypsarrhythmia
- Cerebral atrophy
- Cerebellar atrophy
- Thin corpus callosum
- Spinal cord atrophy
- T2-weighted hypointensities in the basal ganglia
- Hypomyelinating leukodystrophy
- Paucity of white matter


MISCELLANEOUS

- Onset in infancy
- Progressive disorder
- Death in childhood may occur

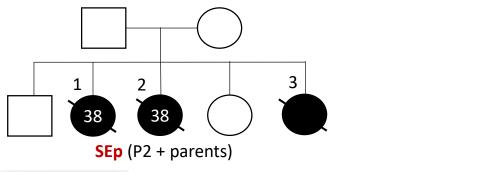
aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 essential for the assembly and stability of macromolecular tRNA synthetase complex


CGH Fœtus 2023 MP Beaujard

Une sonde sur AMPS2 Une sur *EIF2AK1* et *ANKRD61-* pas *AIMP2* FISH sur les parents : asymétrie

Mère Père

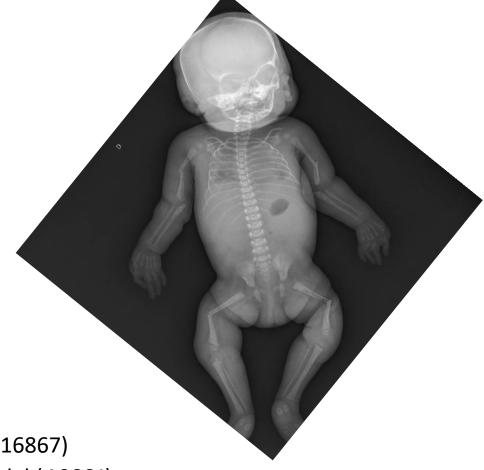
Sonde: RP11-90J23/V + RP11-161C7/R Sonde: RP11-90J23/V + RP11-161C7/R



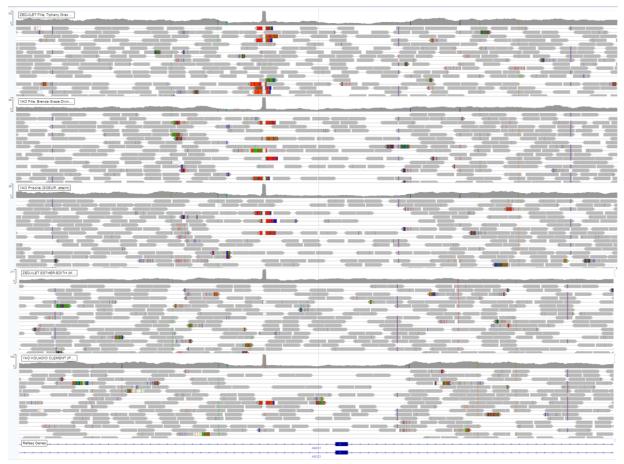
SG - ASCC1 2 délétions intragéniques

Hypothèse diagnostique confirmée par SG après SE non conclusif

3 décès néonataux dans le contexte d'une akinésie foetale



Hydramnios, arthrogrypose; naissance à 39SA, décès néonatal



ASCC1: AR, amyotrophie spinale avec fractures congénitales (OMIM 616867)

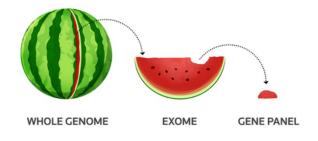
seq[GRCh38] del(10)(q22.1)mat NC_000010.10:g.72151844_72153529del (ASCC1)

seq[GRCh38] del(10)(q22.1)pat NC_000010.10:g.72095673_72097550del (ASCC1)

SG > SE : couverture exonique, détection / interprétation des microremaniements

Délétion exon 7 héritée du père

Délétion dernier exon 10 héritée de la mère


Comparaison SEp / SGf

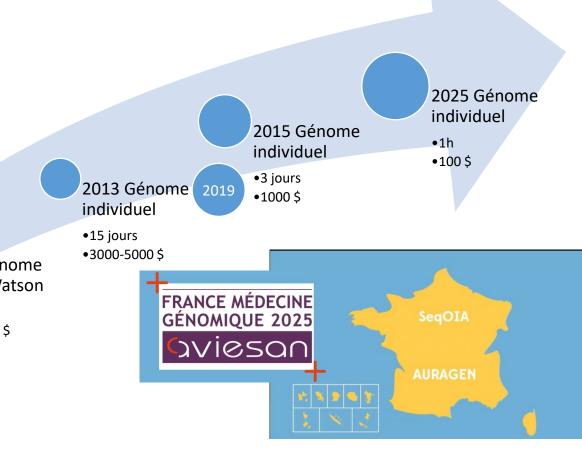
11/162 ont eu préalablement un SE (7 %)

3% (6/162) des diagnostics non accessibles par l'approche ACPAp + SEp

- Mosaïque fœtale (3)
- Rearrangement équilibré(1)
- Variants régions non codantes (2)

+ 13 CNV monogéniques

Perspectives en médecine fœtale


Séquençage de génome prénatal

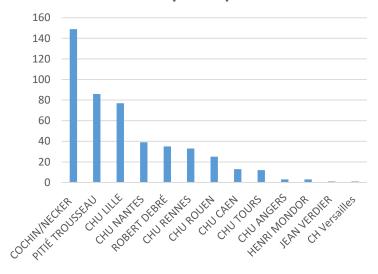
Expertise et solidarité interbiologistes

Rapide
SV + SNV
Plus efficace que le Sep
Examen unique
(ACPA + SEPs séquentiels)

- ✓ Mosaïques
- √ 10j-3 sem
- ✓ SEp

2007 Génome James Watson

- •2 £mois
- •2 millions \$


2003 Human Genome project

- •13 ans
- •3 milliards \$

Centres

Centres prescripteurs

NECKER

Tania ATTIE-BITACH Caroline MICHOT Laurence HEIDET Jeanne AMIEL Geneviève BAUJAT Julie STEFFANN

Thèse: Agnese Feresin

COCHIN Sarah GROTTO

PITIÉ SALPÊTRIÈRE / TROUSSEAU

Alexandra AFENJAR Solveig HEIDE **Delphine HERON** Daphné LEHALLE Linda MOUTHON Sandra WHALEN

CHU LILLE

Odile BOUTE Cindy COLSON Catherine DELORME Anne DIEUX Florence PETIT Clémence VANLERBERGHE

CHU NANTES

Claire BENETEAU **Bertrand ISIDOR** Leila GHESH Mathilde NIZON Marie VINCENT

ROBERT DEBRÉ

Yline CAPRI Lyse RUAUD Laurence PERRIN-SABOURIN Louise GOUJON

CHU RENNES

Mélanie FRADIN Morel GODELIEVE Alinoé LAVILLAUREIX Sylvie ODENT Laurent PASQUIER Chloé QUELIN

CHU ROUEN

Anne-Claire BREHIN Anne-Marie GUERROT Alice GOLDENBERG Gabriella VERA

CHU TOURS

Méderic Jeanne Stéphanie ARPIN

CHU CAEN

Arnaud MOLIN Manon GODIN

CH Versailles

B Simon-Bouy

CHI CRÉTEIL

Rakia BHOURI

CH VANNES

Florence DEMURGER

CHU ANGERS

Estelle COLIN Radka STOEVA

CHU BREST

Severine AUDEBERT

HENRI MONDOR

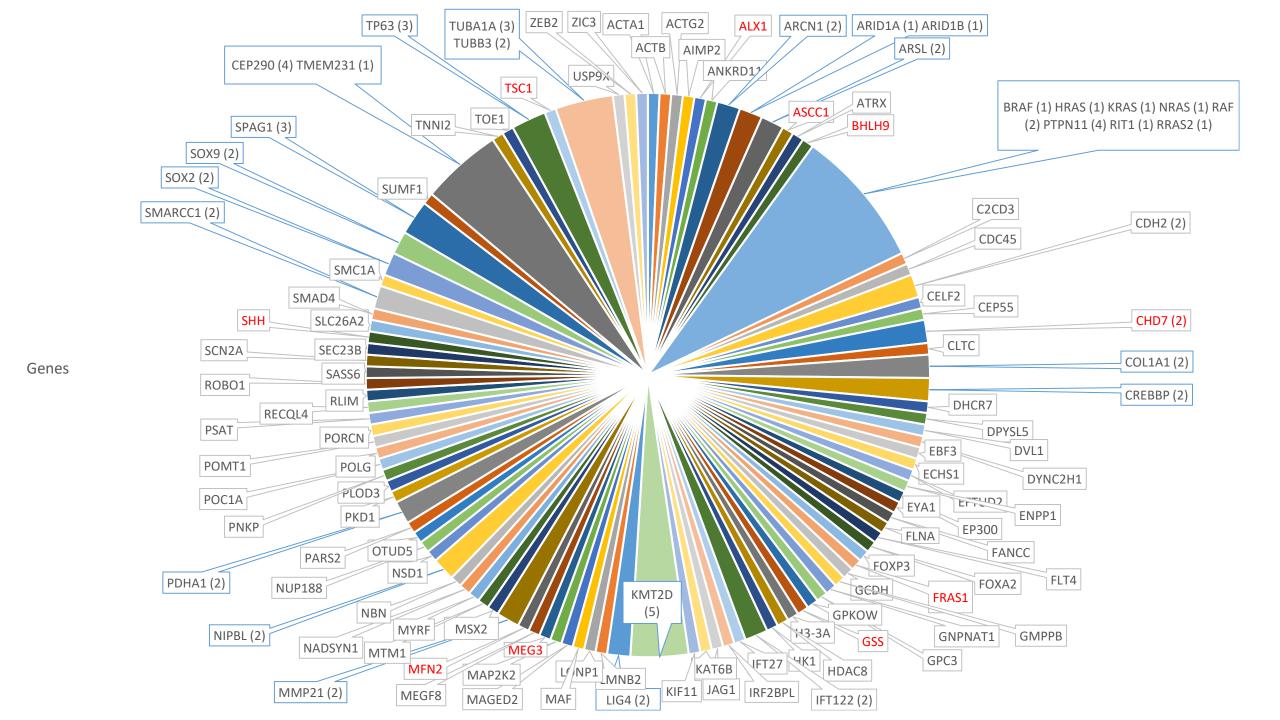
Ariane LUNATI-ROZIE **Benoit FUNALOT**

JEAN VERDIER

Andrée DELAHAYE-DURIEZ

INTERPRETATEURS

Tania ATTIE-BITACH **Boris KEREN** Thomas SMOL Benjamin COGNE Christel DUBOURG Pierre BLANC Jonathan LEVY Paul GUEGUEN Melania RAMA Sophie RONDEAU Corinne COLLET Laurence HEIDET Lydie BURGLEN Severine DRUNAT Fabienne ESCANDE Lucile BOUTAUD Pascale SAUGIER **Audrey BRIAND** Andrée DELAHAYE-DURIEZ Marie FAOUCHER Nathalie COUQUE Yoann VIAL Andrée DELAHAYE-DURIEZ Adeline Alice BONNARD Agnès GUICHET Flavie ADER Guillaume JEDRASZAK Arnaud MOLIN Laila EL KHATTABI


Jean-Madeleine DE SAINTE AGATHE

Olivier GRUNEWALD

Severine BACROT

Caroline THAMBO

Analyses conclusives avec variations héritées (10 - 3 mosaiques)

Gène	Maladie	Parent	Clinique	Contexte
SMARCC1	Hydrocéphalie	paternelle	Asymptomatique	Défaut de pénétrance
SMARCC1	Hydrocéphalie	maternelle	Asymptomatique	Défaut de pénétrance
FLT4	Cardiopathie	maternelle	Asymptomatique	Défaut de pénétrance
ZEB1	Corps calleux	maternelle	Asymptomatique	Mosaïque
MEG3	akinésie	maternelle	Asymptomatique	Empreinte
PTPN11	Noonan	maternelle	Symptomatique	Lien post SG
TSC1	STB	paternelle	Symptomatique	Mosaique
BHLH9	Extrodactylie	maternelle	Atteinte	Forme familiale
MSX2	Encephalocele	maternelle	Symptomatique	Evaluation post SG
CHD7	CHARGE	paternelle	Symptomatique	Duplication en tandem exons 2_4 Non détéctable chez le père en génome ou panel > PCR de jonction

Reclassification: VSI -> P / LP

C2CD3 c.1844-14G>A RNA, splice

IFT172 chr2(hg38) :g.27489819G>A RNA, monoallelic expression

MFN2 seq[GRCh38] del(1)(p36.22), del(1p36.22) RNA analysis on fibroblast: exon 16 skipping,

Major abnormalities of the mitochondrial network


HDAC6 X inactivation

RLIM XL X inactivation and de novo in mother

TMEM231 Familial segregation / recurrence

MSX2 Clinical examination and X ray mother

Variations de signification incertaine

Class 1: benign

Class 2: likely benign

Class 3: variant of uncertain significance (25)

Class 4: likely pathogenic

Class 5: pathogenic

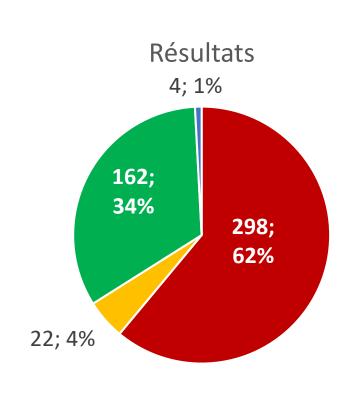
Known disease gene with uncertainty on the variant 7 already reclassified from VSI -> P / LP

Predisposing gene

2 (au moins) – dysraphisme / cardiopathie

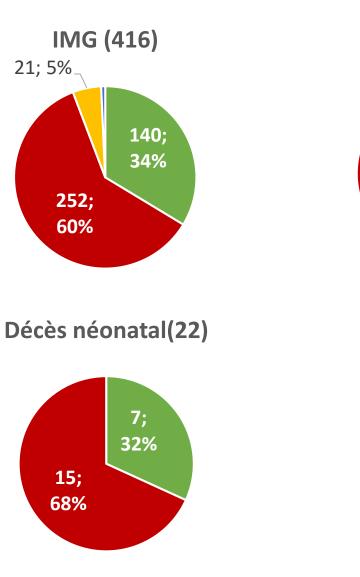
Known disease gene with unkwown fetal phenotype

EP300 (2)

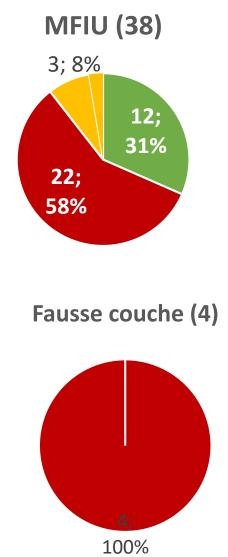

Autre?

Novel gene? Match with mouse model and /or genematch

CTU1

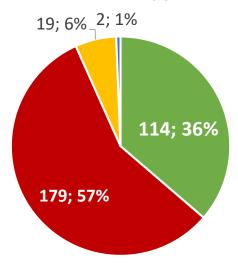

HIC2

SG après examen foetopathologique 2020 – Avril 2023, taux diagnostic

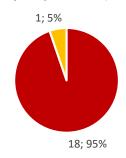


Conclusif

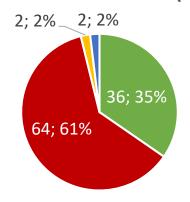
Non conclusif avec VSI

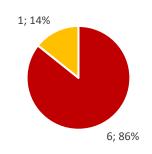


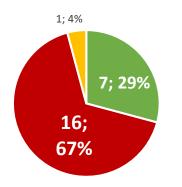
Non-conclusif

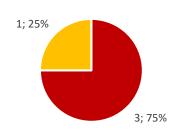


Rendement diagnostic selon l'indication


Anomalies du développement(314)


Dysraphisme (19)


Anomalies cérébrales (104)

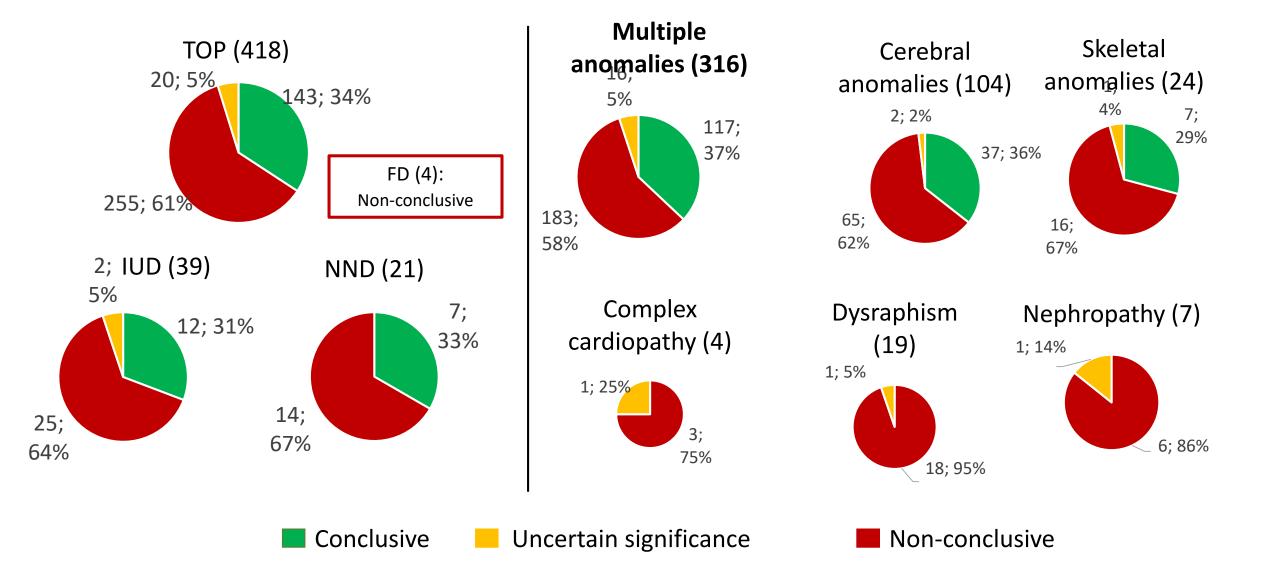

Nephropathie (7)

Maladies osseuses (24)

Cardiopathie (4)

Conclusive

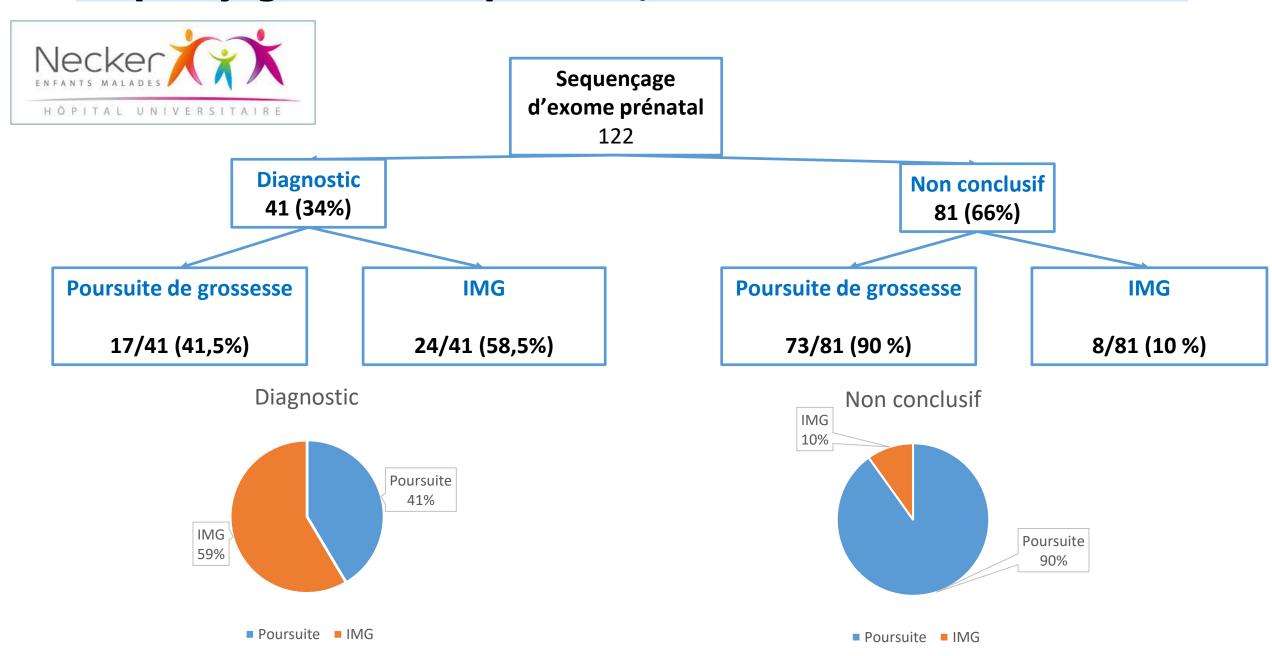
Non conclusive avec VSI



Non-conclusive

En cours

Results - Diagnostic yield


Perspectives dans les cas négatifs

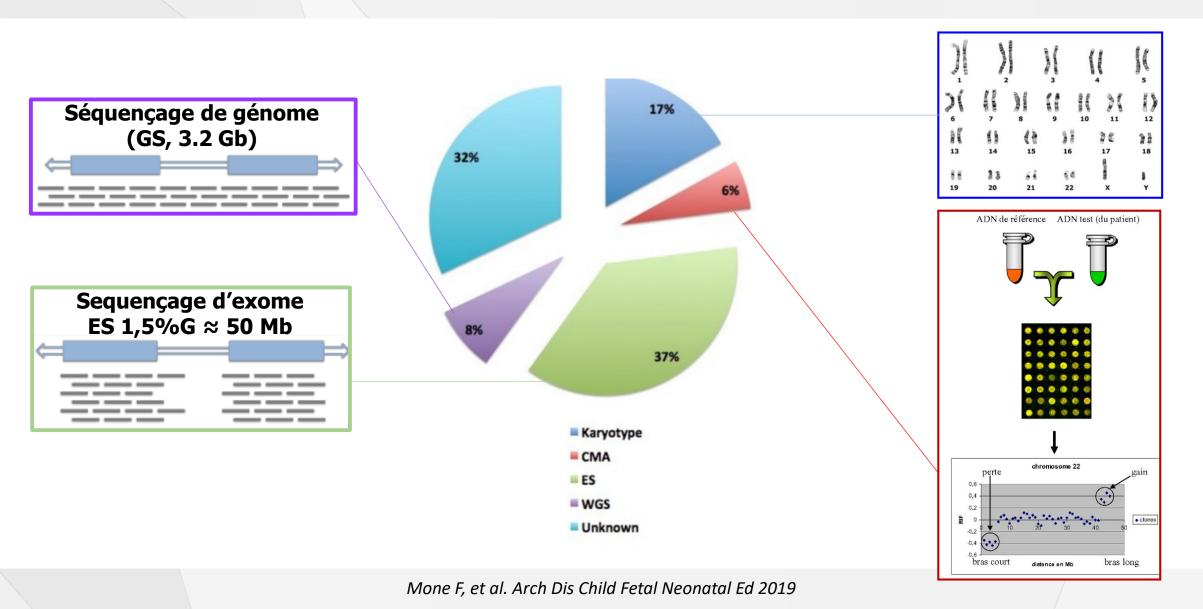
480 WGS cases

66% sans diagnostic

- ✓ Ré-analyse : nouveaux outils, nouvelles connaissances
- ✓ Partage de données
- ✓ Approche multi-omiques
- ✓ Long reads
- ✓ Mechanismes alternatifs / épigénétique
- ✓ Autre tissu?

Séquençage d'exome prénatal, résultats Necker 2020-2023

SGp avec anomalie fœtale, problèmes éthiques ? Groupe éthique FFGH - SEp— L. Pasquier — P. Saugier — G. Cogan


❖ Accès inégal

- Harmonisation sur l'ensemble du territoire de l'accessibilité aux explorations prénatales
- ➤ Prise en charge locale
- ➤ Multi-expertise RICB
- ➤ Collegialité / solidarité RICB +++

Pratiques différentes

- Harmoniser les indications
- Harmoniser les modalités
 - Terme ?
 - Conservation de cultures pour étude ultérieure si besoin ?
- Harmoniser les pratiques : transmission des VSI / données incidentes en prénatal
- Suivi systématique des grossesses (VSI / données incidentes)
- Suivi psychologique des couples

Causes génétiques diagnostiquées par les techniques génomiques

Séquençage de génome prénatal Ethique ?

- o Information diagnostique pourrait préciser les risques / modifier le
- Le devenir de la grossesse
- la prise en charge du nouveau né
- Implications thérapeutiques
- En trio
- Conseil génétique pré et post-test
- Equipe multidisciplinaire
- Informations concernant les données incidentes, les variations de significations incertaines
- Réanalyses ultérieures avec plus de données phénotypiques (postnatale / postmortem)

Données additionnelles : incidentes et secondaires

Données secondaires

une variation pathogène sans relation directe avec l'indication initiale et recherchée activement en analysant une liste de gènes préétablie

Données incidentes

variation pathogène sans relation directe avec l'indication initiale et de découverte fortuite.

Autres données:

Variations hétérozygotes dans gènes récessif

Non recommandé Guidelines Européens Non autorisé en France (Loi) Va devenir possible (France, Loi)

Distinguer les diagnostics de pathologies pédiatriques sévères des maladies de l'adulte / prédispositions

Respecter souhait des parents

Attitudes variables

Séquençage d'exome / génome prénatal: pour qui ?

- > Ce n'est pas un test de dépistage
 - Risque augmenté au dépistage combiné
 - Signes échographiques

> Toute anomalie pour laquelle une ACPA a été réalisée ?

One major or multiple anomalies

for which no genetic diagnosis was found after CMA and a clinical genetic expert review considers the phenotype suggestive of a possible genetic etiology. or which the multiple anomaly "pattern" strongly suggests a single gene disorder

ISPD 2022

When multidisciplinary review considers a monogenic disorders is likely, and a molecular diagnosis may influence pregnancy or early neonatal management NHS England

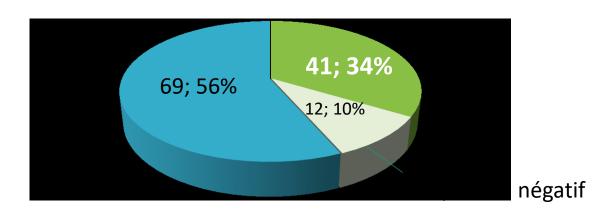
Variations de signification incertaine (VSI)

American College of Medical Genetics and Genomics

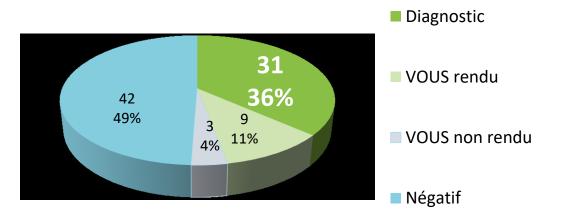
ACMG STATEMENT

Genetics inMedicine

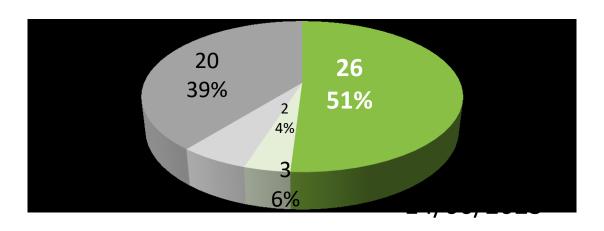
The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG)

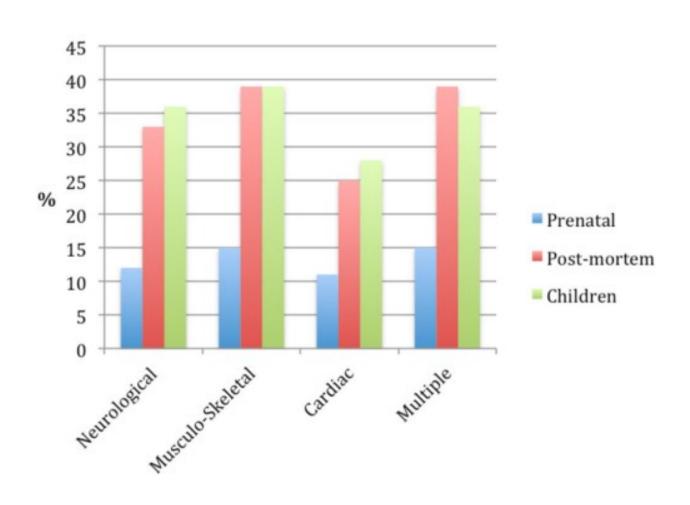

Kristin G. Monaghan, PhD¹, Natalia T. Leach, PhD², Dawn Pekarek, MD³, Priya Prasad, MD⁴ and Nancy C. Rose, MD⁶; on behalf of the ACMG Professional Practice and Guidelines Committee

Known disease genes


 It is recommended that laboratories offering prenatal ES report pathogenic and likely pathogenic variants, as determined using ACMG variant interpretation guidelines in known disease genes consistent with the reported fetal phenotype.^{18,21}

Exome rapide, résultats Necker 2020-2023


1 – Signes d'appel échographiques (122)

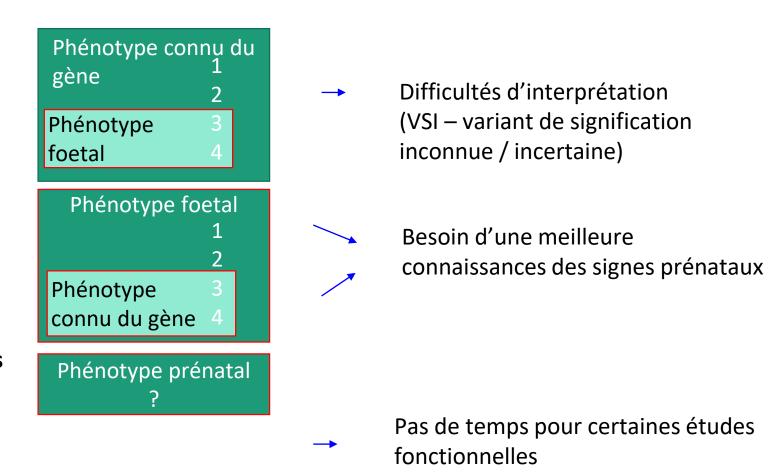

2-Nouvelle grossesse, cas index sans diagnostic (86)

3-Néonat / Pédiatrie urgent (52)

Séquençage d'exome prénatal Difficultés et incertitudes - causalité

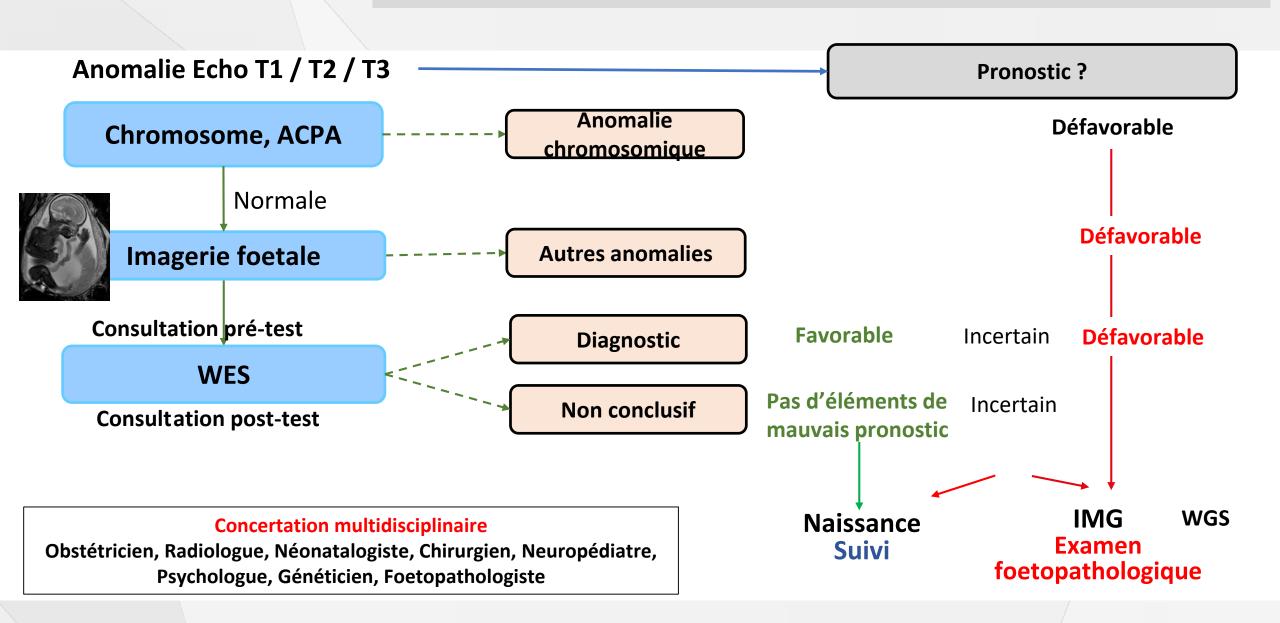
Séquençage d'exome prénatal Difficultés et incertitudes - causalité

Phénotypes partiels

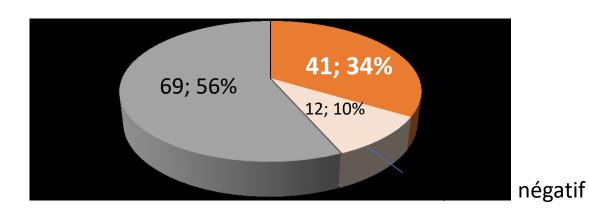

Signes fonctionnels non vus en prénatal Non accessible à l'imagerie Absents à cette période

Spectre de sévérité

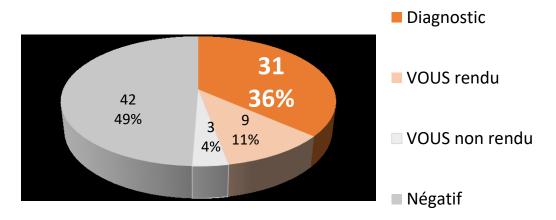
Variabilité clinique des syndromes Phénotypes modérés ou extrêmes


Signes prénataux des maladies génétiques méconnus

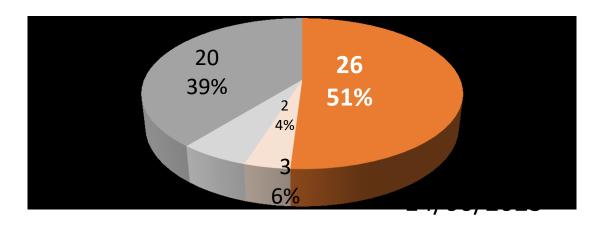
Dans le temps imparti de la grossesse


Phénotypage = étape cruciale pour établir un diagnostic

Stratégies d'explorations génétiques prénatales



Exome rapide, résultats Necker 2020-2023


1 – Signes d'appel échographiques (122)

2-Nouvelle grossesse, cas index sans diagnostic (86)

3-Néonat / Pédiatrie urgent (52)

Exome prénatal exemples d'indications retenues ou non retenues

> Exemples d'indications non retenues

- Clarté nucale 1^{er} trimestre
- Anomalie de fermeture du tube neural isolé
- Cardiopathie isolée
- o Fente labiale, labiopalatine isolée
- Pronostic défavorable et demande d'IMG

> Exemple d'indications retenues

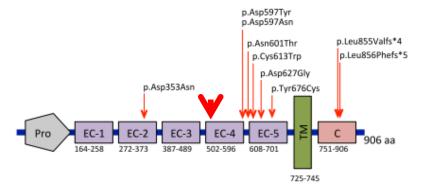
- Signes d'appel échographiques ≥ 2
- Hypeclarté nucale persistante à 16SA, ACPA normale, echocardiographie
- Lymphothorax + autre signe
- Anasarque
- RCIU précoce et sévère
- Incurvation fémorale
- Chondrodysplasie ponctuée
- Fente palatine
- Agénésie du corps calleux
- Akinésie...

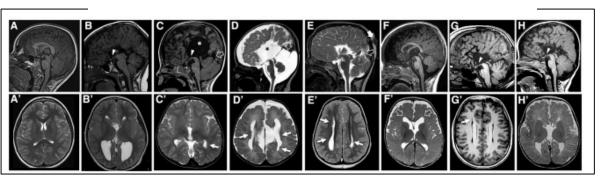
Grossesse géméllaire BCBA ACC chez les deux foetus féminins, apparemment isolée à 24SA

Parents: IRM cérébrale normale

ACPA: normal

pWES: CDH2 (N-cadherin, neuronal)


NM_001792.4: c.1522G>A, p.(Glu508Lys) de novo


-> Interruption médicale de grossesse

N = 9 mutations de novo CDH2	Total
ACC	8/9
Head circumference (> 3 DS)	2/9
Dysmorphism	7/9
Hypothalamic adhesion	5/9
Interhemispheric cysts	2/9
Periventricular nodular heterotopia	4/9
Tentorium hypodysplasia	4/9
Cardio-vascular anomalies	7/9
Ocular anomalies : Peters anomaly, cataract	7/9
Urogenital: Micropenis, cryptorchidy	4/9

De Novo Pathogenic Variants in N-cadherin Cause a Syndromic Neurodevelopmental Disorder with Corpus Callosum, Axon, Cardiac, Ocular, and Genital Defects

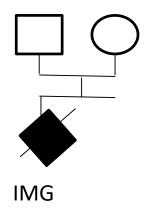
Andrea Accogli,¹,²,²,³,²³ Sara Calabretta,⁴,²³ Judith St-Onge,⁵ Nassima Boudrahem-Addour,⁵ Alexandre Dionne-Laporte,⁶ Pascal Joset,⁶ Silvia Azzarello-Burri,⁷ Anita Rauch,⁷ Joel Krier,⁶ Elizabeth Fieg,՞ Juan C. Pallais,⁶ Undiagnosed Diseases Network, Allyn McConkie-Rosell,⁶ Marie McDonald,⁶ Sharon F. Freedman,¹⁰ Jean-Baptiste Rivière,⁶ Joël Lafond-Lapalme,⁶ Brittany N. Simpson,¹¹ Robert J. Hopkin,¹¹ Aurélien Trimouille,¹²,¹³ Julien Van-Gils,¹²,¹³ Amber Begtrup,¹⁴ Kirsty McWalter,¹⁴ Heron Delphine,¹⁶ Boris Keren,¹⁶ David Genevieve,¹⁶ Emanuela Argilli,¹७ Elliott H. Sherr,¹Դ Mariasavina Severino,¹⁶ Guy A. Rouleau,⁶,¹⁷ Patricia T. Yam,⁶ Frédéric Charron,⁴,²₀,²,²,²,²,² and Myriam Srour¹,⁵,¹,²,*

Couple non apparenté
Pas d'antécédents notables
1ere grossesse

Echo T2: **CC court, épais**, < 1°p

Echo 29 SA : < 1°p

ACPA normale


Parents: IRM cérébrale normale

pWES trio: DCC NM_005215.4:

c.4140_4143dup, p.(Ala1382Asnfs*24) *de novo*

Mouvements en mirroirPas de Déficit intellectuel

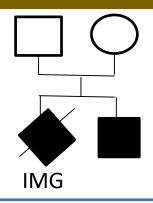
-> Poursuite de la grossesse

1ere grossesse: IMG at 30 SA pur

dysgénésie du corps calleux (court, épais)

ACPA: normale

Examen foetopathologique: DCC


confirmée, isolée

Panel callosome: normal

CC court, épais 30x7 mm Genu non visible

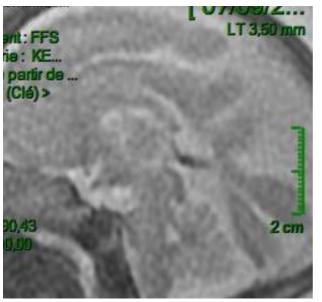
<u>1ere grossesse</u>: IMG at 30 SA pur dysgénésie du corps calleux (court, épais)

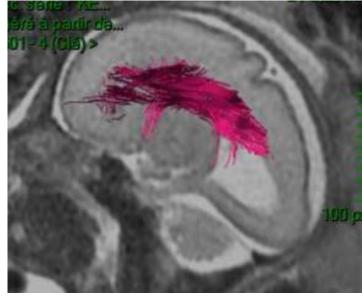
ACPA: normale

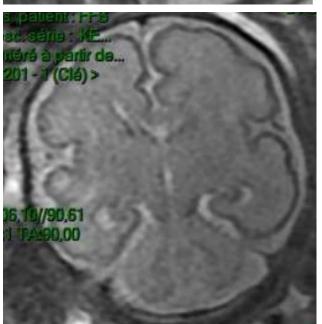
Examen foetopathologique: DCC

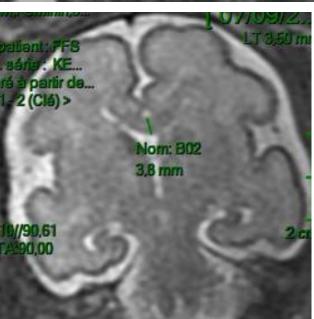
confirmée, isolée

Panel callosome: normal


<u>2eme grossesse</u>: CC court pariassant


complet, isolé


Parents: IRM cérébrale normale


IRM cérébrale 28SA avec tractographie

WES 2 foetus et parents: non conclusif

28 w

Dilemme ++, Poursuite de la grossesse

pWES

Amale Achaiaa Sophie Chuon Lynda Haddad Ghislaine Royer

Tania Attié-Bitach Lucile Boutaud Giulia Barcia Juliette Nectoux Véronique Pingault Sophie Rondeau Julie Steffann

MP Beaujard Valérie Malan Marie Laure Maurin Serge Romana Aurélie Coussement Jean-Michel Dupont

Fetalpathology

Bettina Bessières Laurence Loeuillet Nathalie Roux Emmanuel Spaggiari Ferechté Encha-Razavi

Fetal Medicine Necker

Yves Ville
Philippe Roth
Laurent Salomon
Julien Stiernemann
Thomas Bourgon

Fetal Medicine Port-Royal

François Goffinet
Vassilis Tsatsaris
Mathilde Barrois
Olivia Amsellem
Emmanuelle Pannier

Clinical Genetics

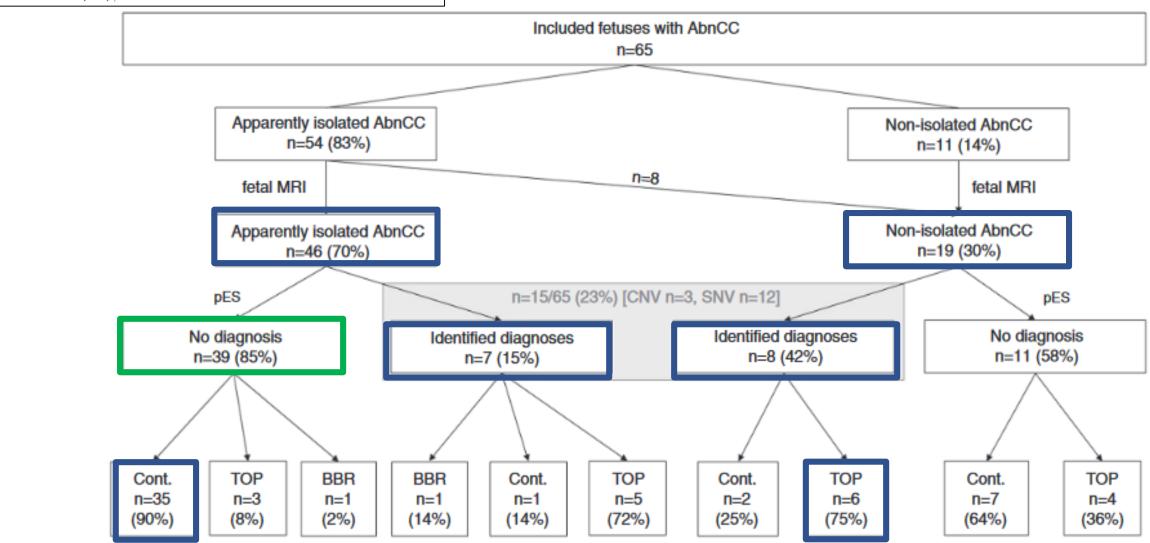
Jeanne Amiel Geneviève Baujat Valérie Cormier-Daire Anne Guimier Stanislas Lyonnet Pauline Marzin Caroline Michot

Genetic counselor

Roxana Borghèse Joana Bengoa Marine Rajaoba Clémence Molac

Genomics & BioinformaticPatrick Nistchke, Christine Bole-Feysot

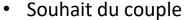
Brief Communication | Published: 22 June 2020


Prenatal exome sequencing in 65 fetuses with abnormality of the corpus callosum: contribution to further diagnostic delineation

Solveig Heide MD [□], Myrtille Spentchian MS, CGC, [...] Delphine Héron MD

Genetics in Medicine (2020) | Cite this article

Pitié-Sapetrière and Trousseau Hospitals, Paris


Flowshart

Exome prénatal, parcours

Consultation pré-test

- Histoire familiale
- Information sur les tests, limites, possibles résultats

Analyse en trio

Minimise les VSI, interpretation et telmps du rendu

Séquençage

- WES ≠ WGS. Couverture: régions non séquencées
- Des maladies génétiques / épigénétiques ne sont pas diagnostiquées par séquençage

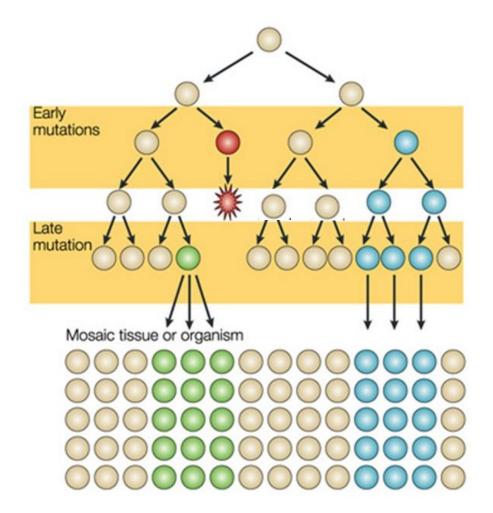
calling & annotation

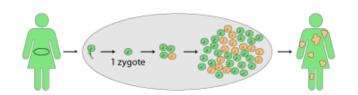
Pipelines bioinformatiques progressent avec le temps

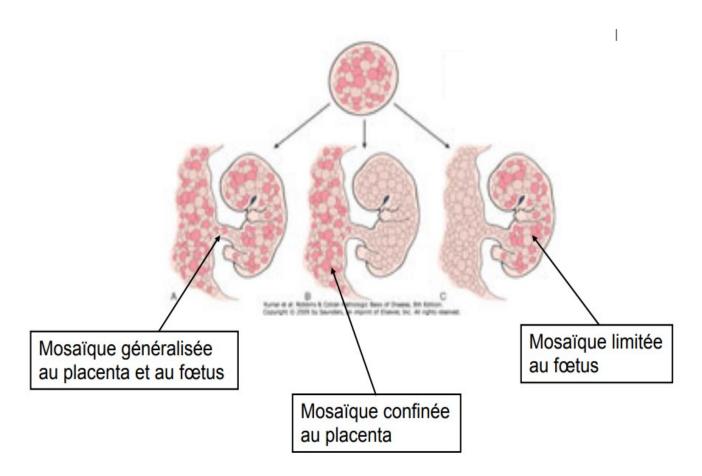
Interprétation

- Défis prénataux / phénotype
- Connaissances évoluent rapidement

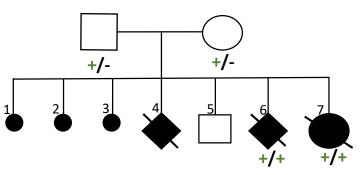
Résultat


VSI / données incidentes non rendues




Consultation post-test

- conseil génétique
- « un résultat négatif n'exclue pas une cause génétique »
- -> rénalayse des données avec plus de données cliniques, après la naissance / EFP


Mosaïques

Re-classification of VUS (twice)

4 FIUD, 29wg, IUGR, pre-ecalmpsia (FE not performed) 6 FIUD, 15wg, suspect of ciliopathy at FE 7 NND 31+3wg, recurrency of ciliopathy at FE

WGS result +: c.593T>C, p.(Ile198Thr), *TMEM231* in homozygosity

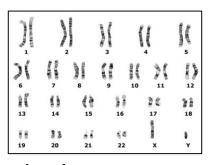
Class 3: variant of uncertain significance

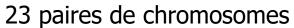
Further evidence is needed

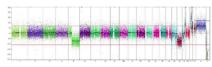
Ri-classification after case 7 and variant confirmation (Sanger)

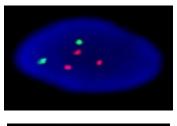
Class 4: likely pathogenic

Likely diagnosis and genetic counseling

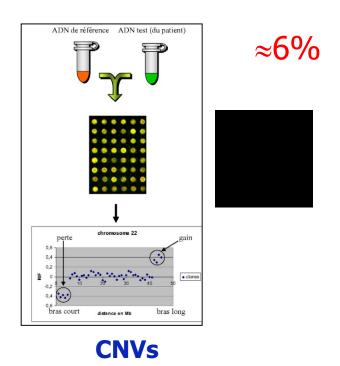


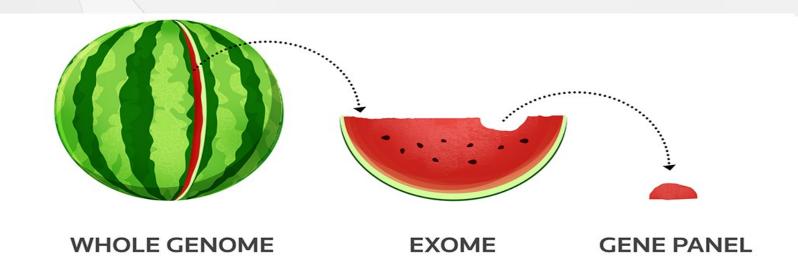

Comparaison exome / génome


	WES	WGS
Technique	Capture : biais / allonge délais	Pas d'étape de capture
Séquençage	1% génome Régions codantes et site épissage	95% génome Régions codantes et non codantes
Couverture moyenne	100X	40X
Variations	20 000 variations SNVs et remaniements quantitatifs	3,5 millions SNVs et SV y compris équilibrées (translocations, inversions)
+	85 % des variants pathogènes	Apport additionnel: 6-8%
!		Plus de données incidentes
	Laboratoires hospitaliers	France Médecine Génomique 2025 SeqOIA, AURAGEN


Variations de nombre ou de structure chromosomique

- Caryotype
- Méthodes ciblées: FISH





15 %

ACPA / CGH

Le séquençage haut débit (NGS)

95 % des 3 Milliards de pb

1,5 % génome 22 000 gènes Sélections de gènes

Séquençage de génome le plan France Médecine génomique 2025

Liste de pré-indications (62) proposées par les filières de santé maladies rares Maladies Rares, cancer, maladies communes

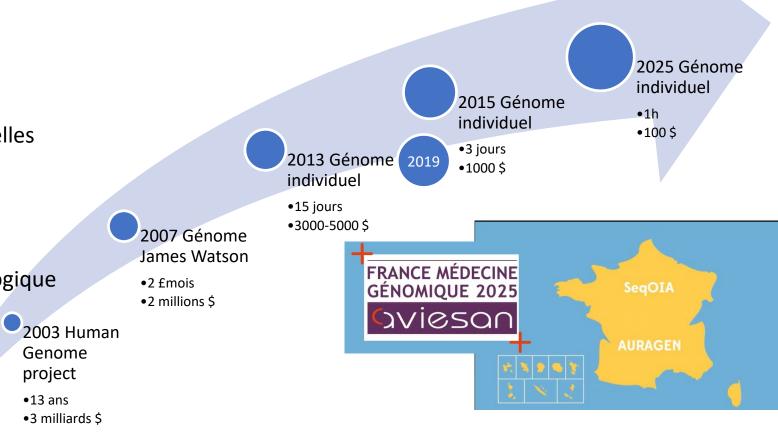
Genome

project

•13 ans •3 milliards \$

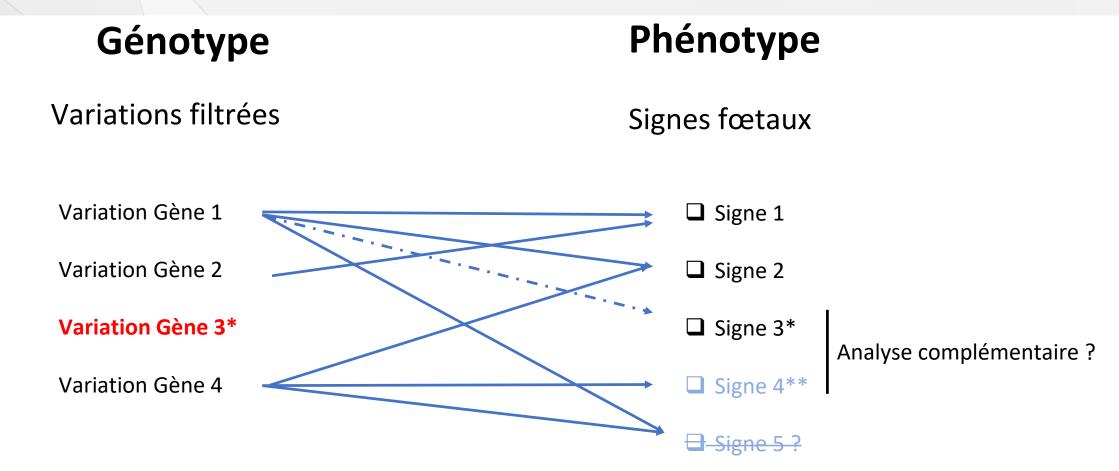
Exemples:

- Anomalies du développement
- Malformations cérébrales
- Maladies osseuses constitutionnelles
- 0


Post natal – enfants adultes

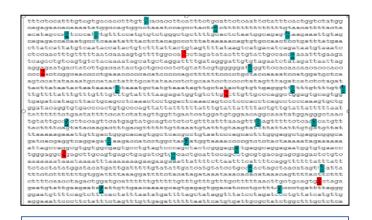
Post mortem: examen foetopathologique

Envoi tissu congelé, ADN extrait


Grossesse en cours

-> séquençage d'exome

Analyse centrée sur le phénotype



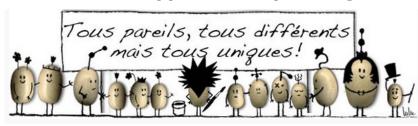
^{*} Imagerie suivante – phénotype dynamique

^{**} Autre analyse biologique

Interprétation des donnéesmassives

cgcgtatcagagagatcctcgcta-----gctctctataattatctcgctaatacgtgatcgtc
agtcgtacgataattatctcgctacagagagat

- Variant de tout type (changement d'une base, ajout, perte, duplication, inversion ...)
- de toute taille (d'une base à un chromosome)
- Peuvent avoir des implications différentes


1 variation toutes les 1 000 bases
 Entre 2 individus
 0.1 % de différences

Au niveau du génome

> 1 000 variants structuraux (CNV)

3 to 4 millions petites variations (SNV) 300 « délétères »

50-80 rapportées en pathologie

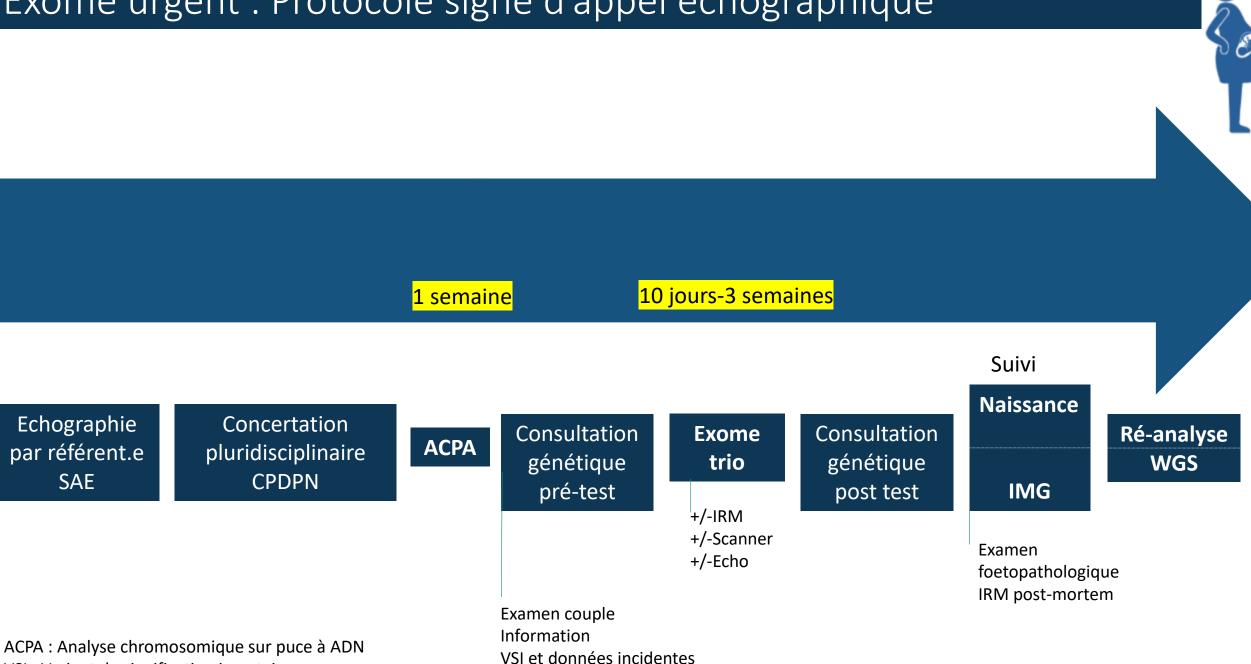
- > Sans effets
- Bénéfiques
- Responsables d'une maladie
- Facteurs de susceptibilité

Priorisation des variations

Variations codantes non-synonymes / d'épissage

> 10 000

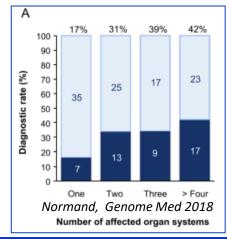
Variations rares (< 1 %)


500

Gènes de pathologie Humaine (OMIM)

80

Classification & Validation


Exome urgent : Protocole signe d'appel échographique

VSI: Variant de signification incertaine

Séquençage d'exome prénatal: rendement diagnostic

Multisystémique (15-19%)

Squelettiques

Épanchements / Hydrops Système nerveux central

Variable selon étude:

Nuques (3-12%)

Reins (0-16%)

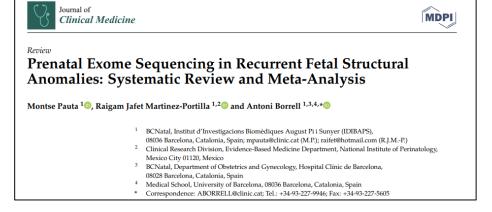
Cœur (5-11%)

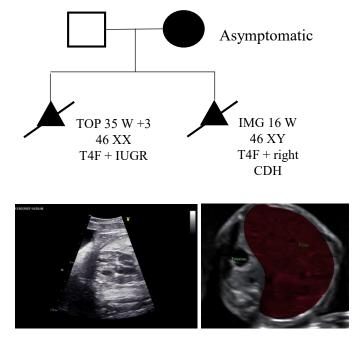
	Phenotype of fetal structural anomaly (number of fetuses)	Skeletal (n=65) Multisystem (n=143) Cardiac (n=81) Spinal (n=10) Hydrops (n=33) Large NT≥4·0 (n=93) Facial (n=32) Brain (n=69) Abdominal (n=45) Renal (n=16) Chest (n=23)		1 2	1	1 6	1 8	1 10	I 12	1 14	16
--	---	---	--	-----	---	-----	-----	------	---------	---------	----

6% 1 organe 19% multisystémic	Number of fetuses* ue	Diagnostic genetic variants (% trios)
Heart	77 (49)	4 (5%)
Nuchal	51 (32)	6 (12%)
Central nervous system	49 (29)	11 (22%)
Skeletal	34 (12)	8 (24%)
Intrauterine growth restriction	29 (5)	3 (10%)
Renal	25 (13)	4 (16%)
Lymphatic or effusion	21 (5)	5 (24%)
Other isolated anomalies‡	15 (15)	0

Lord, Lancet 2019; 393: 747-57

Petrovski, Lancet 2019; 393: 758-67


variable en fonction des SAE, et de leur nombre


Séquençage d'exome prénatal: rendement diagnostic

Category	No.	Added diagnostic yield	Reference
Multisystem, selection not defined	698	31%	Mellis 2022 ³
	694	33%	Pauta 2022 ²⁰
Selected for likely monogenic etiology	140	40%	Pauta 2021 ²¹
	1293	42%	Mellis 2022 ³
Any abnormality (ies), no selection	2771	15%	Mellis 2022 ³
Isolated skeletal	424	53%	Mellis 2022 ³
Neuromuscular/Fetal akinesia deformation sequence (FADS)	33	37%	Mellis 2022 ³
Isolated hydrops/edema	137	22%	Mellis 2022 ³
Isolated cardiac abnormalities	773	11%	Mellis 2022 ³
Isolated increased NT (at presentation and throughout pregnancy)	290	2%	Mellis 2022 ³
Increased NT plus other anomaly at presentation or later	91	26%	Mellis 2022b ²²
Isolated CNS (single and complex)	417	17%	Mellis 2022 ³
Isolated congenital anomalies of kidneys and urinary tract (CAKUT)	278	9%	Mellis 2022 ³
Isolated echogenic kidneys	11	72%	Deng 2022 ²³
Isolated agenesis of the corpus callosum	45	29%	Lei 2022 ²⁴ ; Baptiste 2022 ²⁵

Received: 6 December 2021	Revised: 8 February 2022	Accepted: 10 February 2022
DOI: 10.1002/pd.6115		
ORIGINAL ARTIC	<u>LE</u>	PRENATAL DIAGNOSIS WILEY
	-	me sequencing for prenatal diagnosis nalies: A systematic review and meta-
Rhiannon Mellis ^{1,} Lyn S Chitty ^{1,2} ⁰	² Kathryn C	Oprych ³ Elizabeth Scotchman ¹ Melissa Hill ^{1,2}

HIC2 Frameshift variation

HIC2 strong congenital gene for conotruncal CHD

HIC2 is a novel dosage-dependent regulator of cardiac development located within the distal 22q11 deletion syndrome region

lain M Dykes ¹, Kelly Lammerts van Bueren ¹, Rebekah J Ashmore ¹, Thomas Floss ¹, Wolfgang Wurst ¹, Dorota Szumska ¹, Shoumo Bhattacharya ¹, Peter J Scambler ²

Affiliations + expand

PMID: 24748541 DOI: 10.1161/CIRCRESAHA.115.303300

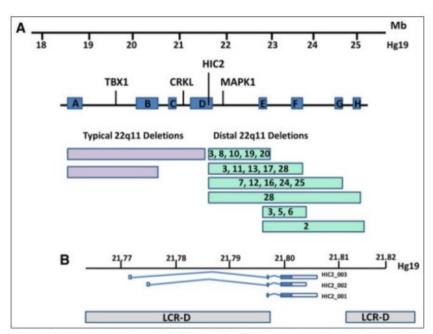


Figure 1. HIC2 is a candidate gene for distal 22q11 deletion syndrome. A, The location of typical (violet boxes) and distal (turquoise boxes) 22q11 deletions are indicated. Blue boxes indicate the position of the 8 low-copy repeats (LCRs) labeled A to H. Numbers are references for representative examples of each deletion provided in the Online Data Supplement. B, HIC2 is located in a small island of nonrepetitive DNA within LCR-D.

HIC2 is located in an island of nonrepetitive DNA at the distal end of LCR-D (Figure 1B) and is lost in the majority of D-22q11DS deletions, as well as in a minority of typical deletions (between 4% and 15% of cases)

RESEARCH ARTICLE

Phenotypic Variability of Distal 22q11.2 Copy Number Abnormalities

Tiong Yang Tan, ^{1,2,3,4}* Amanda Collins, ⁵ Paul A. James, ^{1,2} George McGillivray, ^{1,2} Zornitza Stark, ^{1,2} Christopher T. Gordon, ² Richard J. Leventer, ^{2,3,4} Kate Pope, ² Robin Forbes, ^{1,2} John A. Crolla, ⁶ Devika Ganesamoorthy, ^{1,2} Trent Burgess, ^{1,2} Damien L. Bruno, ^{1,2} Howard R. Slater, ^{1,2,3} Peter G. Farlie, ^{2,3} and David J. Amor^{1,2,3,4}

Received 21 April 2010; Accepted 17 March 2011

DISCUSSION

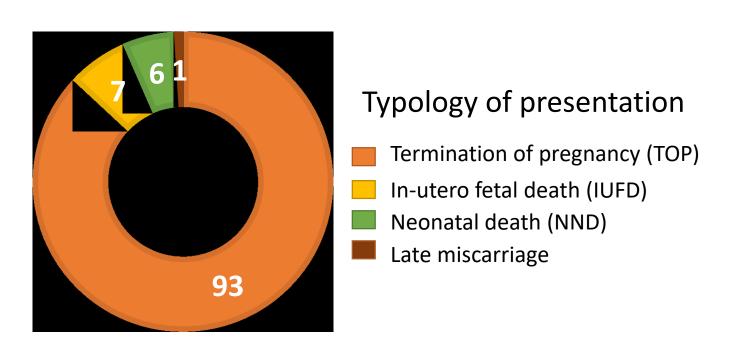
Our report adds several important observations to the distal chromosome 22q11.2 genomic imbalance literature. It expands the associated phenotypic spectrum to include diaphragmatic hernia, Mullerian fusion anomalies in distal chromosome 22q11.2 microdeletions; and frontal polymicrogyria and callosal agenesis in distal chromosome 22q11.2 microduplications. Furthermore, our report strengthens the relationship between Goldenhar syndrome and the distal 22q11.2 locus. Our data confirm that cardiac dextrorotation and tetralogy of Fallot are part of the distal 22q11.2 cardiac phenotype. Additionally, Patient 3 and his mother have the smallest microdeletion reported to date.

¹Genetic Health Services Victoria, Melbourne, Australia

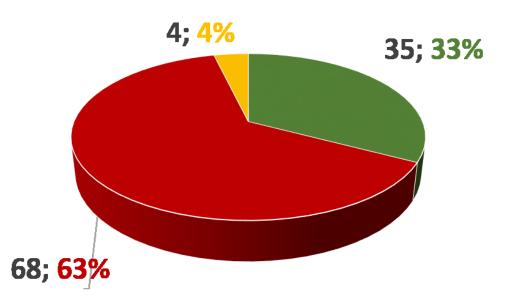
²Murdoch Children's Research Institute, Melbourne, Australia

³Department of Paediatrics, University of Melbourne, Melbourne, Australia

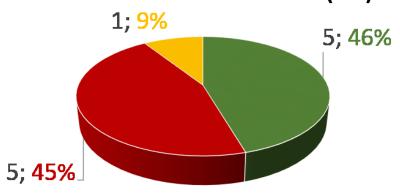
⁴Royal Children's Hospital, Melbourne, Australia


SWessex Clinical Genetics Service Princess Anne Hospital, Southampton, UK

⁶Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK

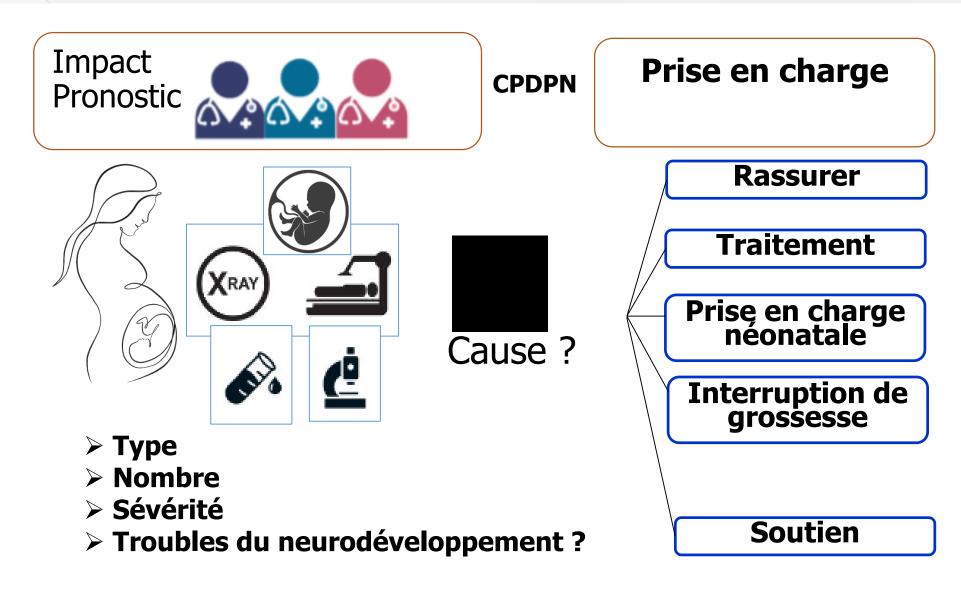

Etude monocentrique

11 familial recurrences of the same phenotype 2 twin pregnancies


56 males and 51 females

Total cases (107)

Intrafamilial recurrence (11)



Anomalies fœtales (Signes d'appel échographiques)

- ➤ Mineure
- ➤ Majeure

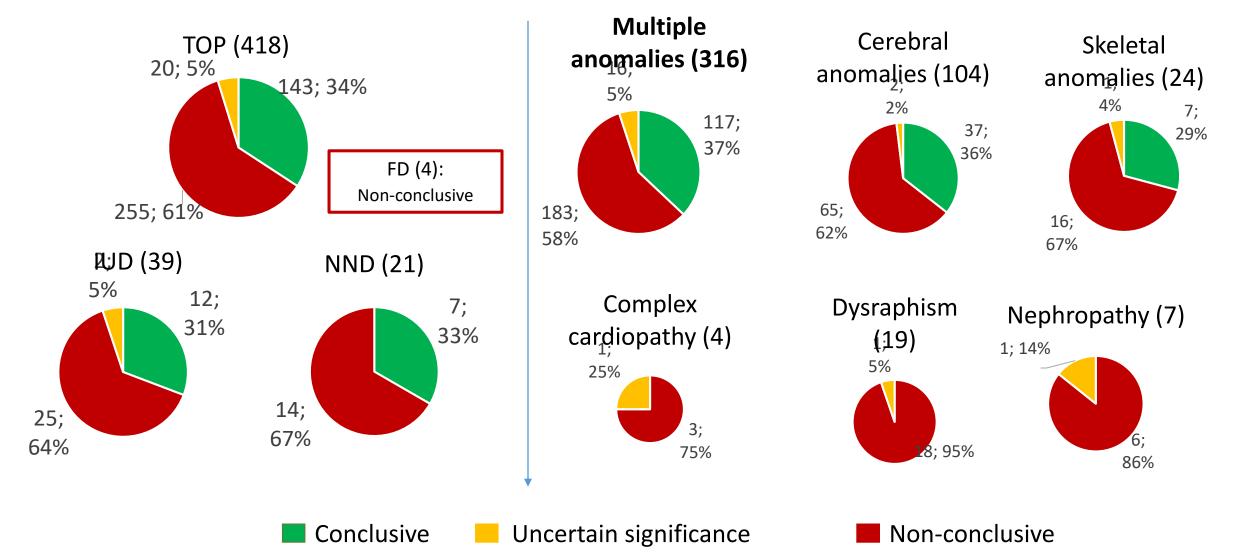
3% des grossesses

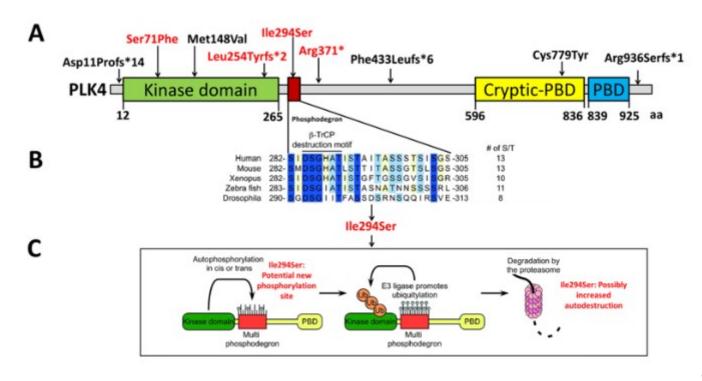
Investigations foetales

~3% des grossesses – anomalie echographique ~ 25% des décès périnataux lié a une malformation majeure

Cause annexielle
Placental/ amniotique / cordon

Infections (CMV, Parvovirus B19, Toxoplasmosis, ...)


Facteurs environnementaux


Maternal diseases, drugs, toxics

Results - Diagnostic yield

Presenting an **association of structural anomalies** as GS preindication significantly increased the chance of receiving a diagnosis by GS (OR: 1.58, 95% CI: 1.05-2.39; *p* value < 0.00001)

> Genet Med. 2019 Sep;21(9):2043-2058. doi: 10.1038/s41436-019-0464-7. Epub 2019 Mar 7.

Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly

Paranchai Boonsawat ¹, Pascal Joset ¹, Katharina Steindl ¹, Beatrice Oneda ¹, Laura Gogoll ¹, Silvia Azzarello-Burri ¹, Frenny Sheth ², Chaitanya Datar ³, Ishwar C Verma ⁴, Ratna Dua Puri ⁴, Marcella Zollino ⁵, Ruxandra Bachmann-Gagescu ¹, Dunja Niedrist ¹, Michael Papik ¹, Joana Figueiro-Silva ¹, Rahim Masood ¹, Markus Zweier ¹, Dennis Kraemer ¹, Sharyn Lincoln ⁶, Lance Rodan ⁶, Undiagnosed Diseases Network (UDN); Sandrine Passemard ⁸, Séverine Drunat ⁹, Alain Verloes ⁹, Anselm H C Horn ¹⁰, Heinrich Sticht ¹⁰, Robert Steinfeld ¹¹, Barbara Plecko ¹¹ ¹², Beatrice Latal ¹³, Oskar Jenni ¹³, Reza Asadollahi ¹, Anita Rauch ¹⁴ ¹⁵ ¹⁶

Affiliations + expand

PMID: 30842647 PMCID: PMC6752480 DOI: 10.1038/s41436-019-0464-7

Located in the phosphodegron element of PLK4 and **predicted to create an additional phosphorylation site** likely leading to a reduced protein level via accelerated autodestruction

Table 2 Summary of main clinical features and genetic findings in patients with P/LP or high-level candidate variants

Patients with P/LP findings in established disease genes

No	. Patient ID	Age ^a	Microcephaly subgroup	Main clinical feature	Cerebral MRI finding	Genetic finding	Disorder	Function/ pathway
3	74812	Aborted at 23 GW	PM	Autopsy: 2-lobed right lung and accessory spleen	Autopsy: Absence of corpus callosum	PLK4: c.[1111C>T]; [881T>G], p.[(Arg371*)]; [(lle294Ser)], AR (CH)	PLK4-related disorder (MIM 616171)	Centriole duplication
4	77804	0.8	PM	Moderate global DD, movement disorder	Simplified cortical gyri and dysgenesis of corpus callosum, larger cerebellum and brain stem relative to the supratentorial region	PLK4: c.[212C>T]; [760_761insAC], p.[(Ser71Phe)]; [(Leu254Tyrfs*2)], AR (CH)	PLK4-related disorder (MIM: 616171)	Centriole duplication

1790 Neitzel et al., Human Genetics (2022) 141:1785–1794

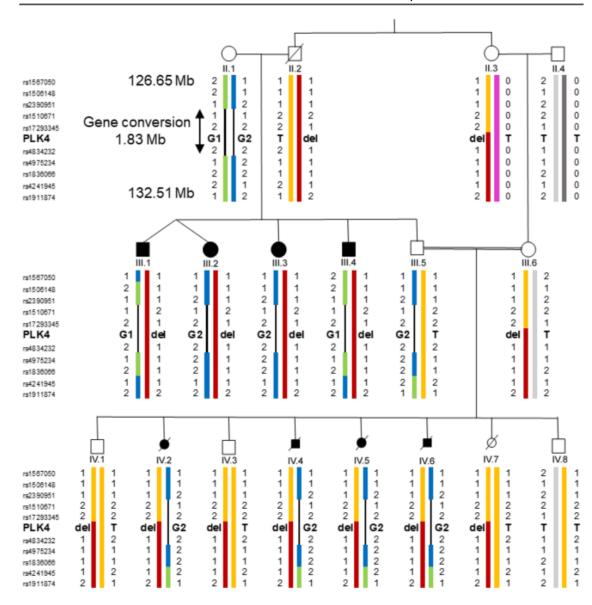


Fig. 3 Reconstruction of haplotypes based on manual analysis of SNPs and microsatellites (Suppl. Figure 1) flanking the *PLK4* gene and the region of gene conversion. The color changes point to the sites of crossovers, green—grandmother (II.1) haplotype G1 with the mutated *PLK4* allele c.881G, blue—grandmother haplotype G2 with

the mutated *PLK4* allele, red—grandfather (II.2) haplotype with the deletion, yellow—grandfather haplotype with the wild-type *PLK4* allele c.881 T, purple—grandmother (II.3) haplotype with the wild-type *PLK4* allele, light and dark gray—grandfather (II.4) haplotypes with the wild-type *PLK4* alleles

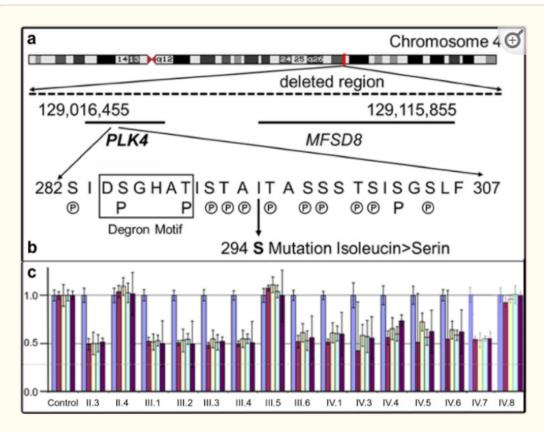


Fig. 2

a Deleted region of chromosome 4 identified by array-CGH. **b** Novel missense variant (c.811 T > G) in PLK4 near the Degron motif resulting in the replacement of isoleucine by serine (p.294lle > Ser). The known (P) and putative autophosphorylation sites P, which regulate the degradation of the protein, are indicated (after www.phosphosite.org/). Note, that the mutation creates a potential new autophosphorylation site. **c** qPCR analysis of exons 4, 5.1, 5.2 and 6 of PLK4 (brown-purple) and as a control exon 2 of the *Cystic fibrosis transmembrane conductance regulator (CFTR)* gene (blue)

Grand-mère saine homozygote pour la variation c.811T>G

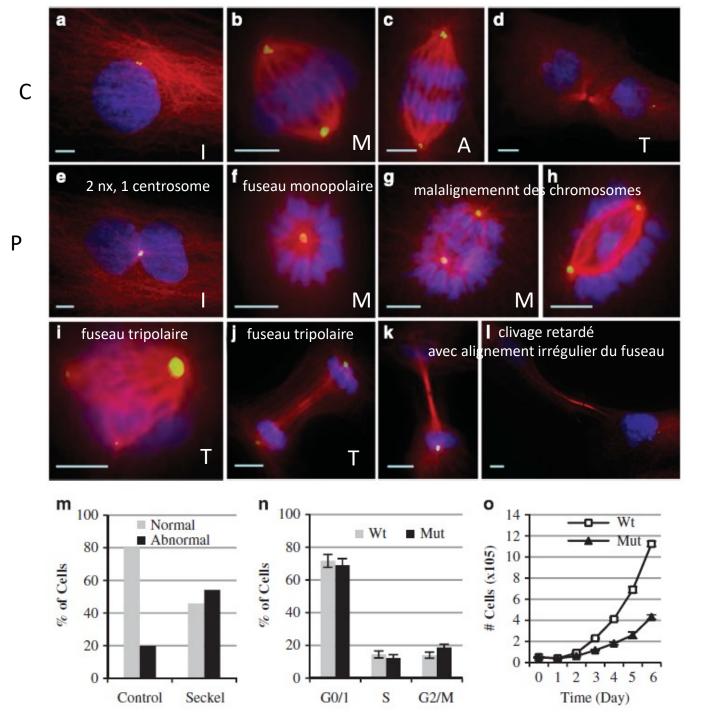
Analyse du fuseau mitotique et du centrosome

European Journal of Human Genetics (2017) 25, 1118-1125 © 2017 European Society of Human Genetics All rights reserved 1018-4813/17

www.nature.com/eih

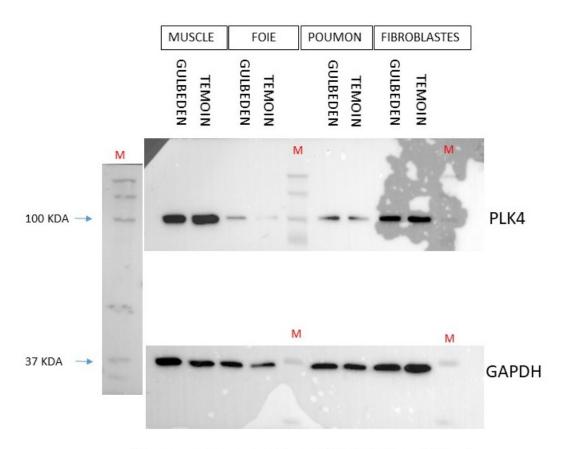
ARTICI F

Analysis of centrosome and DNA damage response in *PLK4* associated Seckel syndrome


Tuba Dinçer¹, Gülden Yorgancıoğlu-Budak², Akgün Ölmez³, İdris Er², Yavuz Dodurga⁴, Özmert MA Özdemir⁵, Bayram Toraman¹, Adem Yıldırım², Nuran Sabir⁶, Nurten A Akarsu⁷, C Nur Semerci⁸ and Ersan Kalay*,¹

Microcephalic primordial dwarfism (MPD) is a group of autosomal recessive inherited single-gene disorders with intrauterine and postnatal global growth failure. Seckel syndrome is the most common form of the MPD. Ten genes are known with Seckel syndrome. Using genome-wide SNP genotyping and homozygosity mapping we mapped a Seckel syndrome gene to chromosomal region 4q28.1-q28.3 in a Turkish family. Direct sequencing of PLK4 (polo-like kinase 4) revealed a homozygous splicing acceptor site transition (c.31-3 A>G) that results in a premature translation termination (p.[=,Asp1 lProfs*14]) causing deletion of all known functional domains of the protein. PLK4 is a master regulator of centriole biogenesis and its deficiency has recently been associated with Seckel syndrome. However, the role of PLK4 in genomic stability and the DNA damage response is unclear. Evaluation of the PLK4-Seckel fibroblasts obtained from patient revealed the expected impaired centriole biogenesis, disrupted mitotic morphology, G₂/M delay, and extended cell doubling time. Analysis of the PLK4-Seckel cells indicated that PLK4 is also essential for genomic stability and DNA damage response. These findings provide mechanistic insight into the pathogenesis of the severe growth failure associated with PLK4-deficiency.

European Journal of Human Genetics (2017) 25, 1118-1125; doi:10.1038/ejhg.2017.120; published online 23 August 2017

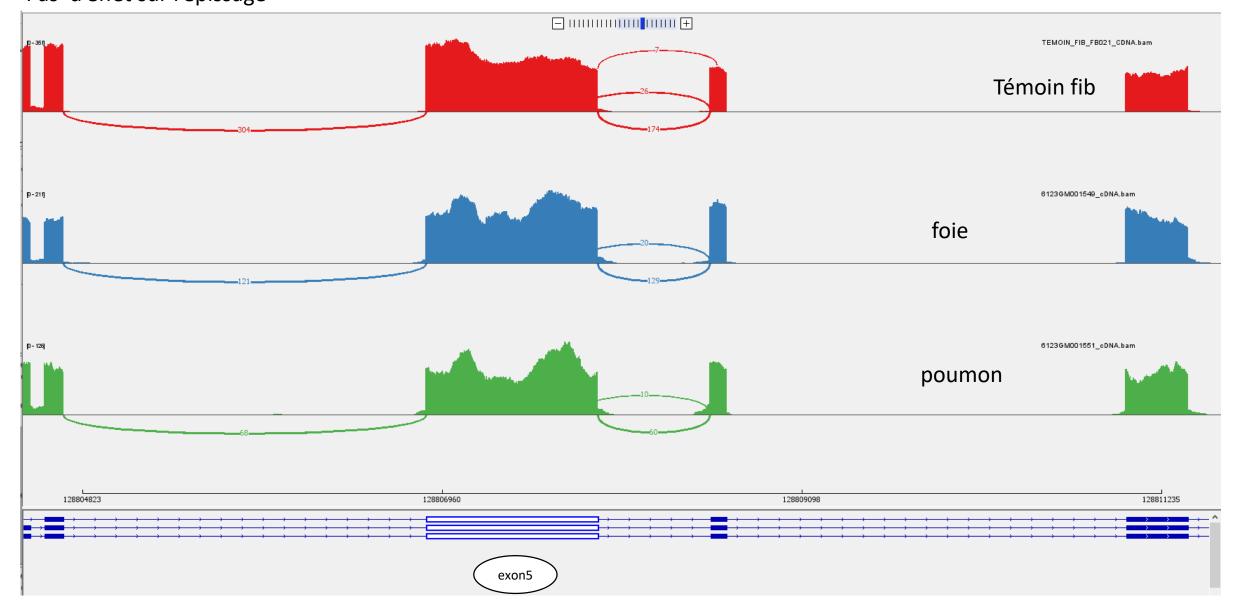

Pas d'anomalie du fuseau chez le foetus (Serge Romana)

Pas d'anomalie du centrosome chez le foetus (Sophie Thomas, Imagine)

Western Blott 4 tissus

Pas de diminution de l'expression protéique (Zahra Assouline, Ghilaine Royer, Lucile Boutaud)

<u>1^{er} gel</u>: membrane coupée pour 2 hybridations différentes


En haut: Hybridation PLK4 (nouvelle dilution d'Acs)

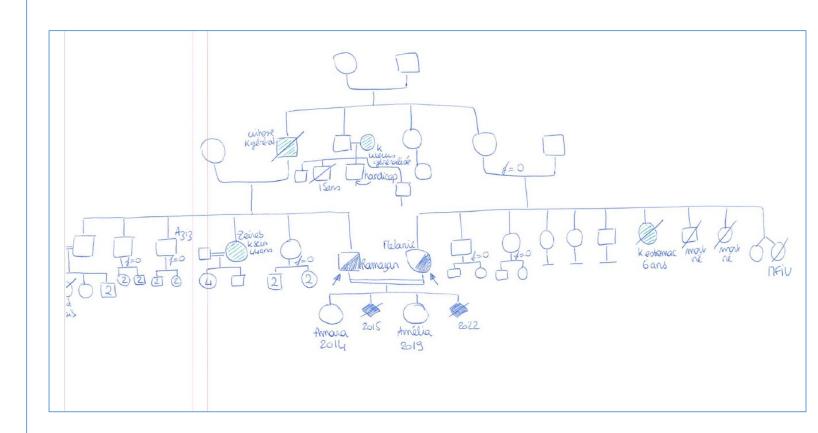
En bas: Hybridation GAPDH

RNA-seq

PLK4-exon5

Pas d'effet sur l'épissage

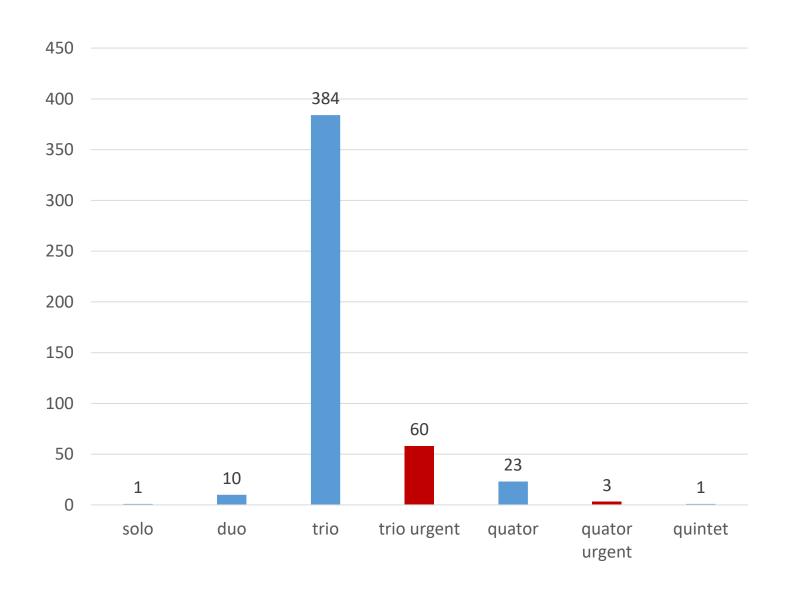
Couple apparenté


Mère 33 ans, G4P2:

- 2 filles bien portantes
- 2015, IMG 30SA pour microcéphalie
- 2018, IMG 30SA pour microcéphalie

Pas d'antécédent peronnels notables

Antécédents familiaux:


- trois cousins germains de chacun des membres du couple par un oncle présentent une déficience intellectuelle et une relative petite taille associée à une épilepsie. L'un de ces trois garçons serait décédé au décours d'une crise convulsive.
- une cousine germaine par une tante présentant une déficience intellectuelle légère et une déficience intellectuelle chez un cousin germain du côté de son père.

Explorations génétiques des fœtus 2 situations distinctes

	Après examen foetopathologique	En cours de grossesse
Contrainte temps	couple jeune, grossesse suivante rapide	 ++++ VSI Analyses complémentaires Ségrégation
Enjeu	Diagnostic Conseil génétique Prise en charge de la grossesse suivante	Décision concernant la grossesse <i>Thérapie ?</i> Conseil génétique Prise en charge de la grossesse suivante
Phénotype	Très précis Macroscopie, Radiographie, Histologie	Indirect, incomplet➤ Imagerie➤ Biologie
Explorations	Séquençage de génome	Séquençage ciblé Séquençage de panel Séquençage d'exome

SG après examen foetopathologique contexte « urgent » - Avril 2023

10j-3sem

Incertitudes du SEp

Prescription

incertitudes sur le bénéfice clinique mesuré en rendement diagnostique dans une indication donnée

.... plutôt en impact?

Clinique et pronostique

en raison de la variabilité d'expression...voir défaut de pénétrance

Interprétation

liées à une des corrélations génotype-phénotype, connaissance incomplète des phénotypes en prénatal, phénotype partiel

-> variants de signification incertaine (VSI)

Technologique

- faux-positifs ou de faux-négatifs,
- certaines altérations du génome sont inaccessibles
- -> Résultat non conclusif n'exclue pas une cause génétique

À l'anxiété du couple résultant de l'incertitude générée par la découverte de SAE, il ne saurait être question d'ajouter de nouvelles sources d'anxiété liée à ces incertitudes

Analyses pangénomiques prénatales pistes de réflexions

- Prescriptions de séquençage d'exome croissantes ...mais
- Accès inégal
- Indications non homogènes
- Avis / recommandations concernant le rendu des VSI
- Avis / recommandations concernant les données incidentes: lesquels, quand ?
- Conseil génétique pré et post-test professionnels formés
- Réanalyse ultérieure avec plus de données phénotypiques ++
- Importance du suivi
- Séquençage d'exome vs de génome ?