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There is a desire for robotic spacecraft to perform exploration in unknown, dynamic environments. The Europa

LanderMission Concept is one such mission that needs to deal with an extremely limited lifetime and energy supply,

manage intermittent communications with long blackouts, face numerous environmental dangers, and ultimately

take place too far from Earth to rely on human control. No missions to date have operated with the required level of

autonomy and under the same level of communication constraints, uncertainty, and mission concept complexity as

this mission. As a result, the viability of the autonomy must be demonstrated before it will be trusted with mission-

critical planning. In this paper, we present an autonomous software prototype that can demonstrate and test the

ability of different planners and executives to carry out complex, science-centric missions with limited interventions

from humans. The prototype uses a hierarchical utility model that is used to maximize both the amount of expected

science return as well as the number of mission objectives imposed by the ground. We demonstrate how this system

handles some of the autonomous tasks expected of complex space missions such as decision making, in-situ data

acquisition and analysis, data prioritization, resourcemanagement, and failure response handling in both simulation

and on actual hardware.Through several scenario-based experimentswe showhowdifferent planners and executives

can meet the challenges of the Europa LanderMission Concept. We also demonstrate that this system can be used in

concert with a hardware prototype for autonomy field tests.

I. Introduction

A S ROBOTS are tasked with exploring complex and unstruc-

tured environments under limited observability, they will need

the means to act with little to no intervention from humans. This

requires various autonomous behaviors, such as monitoring resource

usage, making decisions based on sensor and instrument data, exe-

cuting complex tasks in the real world, and determining what infor-

mation should be communicated. The need for increased autonomy

for robotic space exploration has been recognized in numerous

reports, including the 2013–2022 Planetary Science Decadal Survey

[1], the 2023–2032 Planetary ScienceDecadal Survey [2], the NASA

Astrobiology Strategy [3], and the National Academy of Sciences

Astrobiology Strategy [4] reports. An example of a mission that

requires a larger degree of autonomy than any space mission to date

is the Europa Lander Mission Concept [5,6]. The Europa Lander

Mission Concept would send a robotic lander, depicted in Fig. 1, to

Europa, an icymoon of Jupiter, and look for signs of life. Themission

plan includes excavating at least 10 cm below the icy surface,

collecting and analyzing material samples for potential biosigna-

tures, and communicating the data back to Earth. While the science

mission may sound comparable to prior missions, Europa poses

additional challenges. No surface mission has been performed on

Europa, and most knowledge about Europa comes from satellites

orbiting Jupiter [7]. Therefore there is extremely limited information

about Europa at this point in time, and even less information about the

surface and subsurface characteristics. While the Europa Clipper

mission [8] is expected to arrive at Europa in 2030 before a potential

Europa Lander mission, the Clipper mission will likely not provide

the detailed surface characteristics required to plan a surfacemission.

Communication with the Lander will also be limited. The distance to

Europa results in a 45-min communication delay. Additionally, every

42 out of 84 h there will be a communication blackout with the Earth

due to Europa’s orbit. Finally, the Lander’smission is planned to span

only 30 days; this is due to both a nonrechargeable battery energy

source and the extremely inhospitable environment primarily caused

by radiation from Jupiter. The short lifetime of the Lander means that

efficient use of mission time is imperative.

The limited lifetime, extreme uncertainty, and communication

blackouts require the Lander to act as quickly as possible. Specifi-

cally, the mission requires an autonomous system that can make

planning decisions on its own with limited human intervention. This

includes the following design objectives:
1) Objective 1: System must maximize the number of completed

mission objectives. The Lander must attempt to accomplish as many
of its objectives specified by the ground as possible.
2) Objective 2: System must maximize the expected overall

science return. The Lander must attempt to accomplish its objec-
tives in such a way that produces the greatest amount of positive
scientific results. Note that this is different from Objective 1 as
mission objectives may not maximize the expected science return,
such as if the Lander must wait for approval from the ground before
continuing. The Lander is expected to obey all mission objectives
such as waiting for the ground but do so in a way that maximizes
expected science return.
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3) Objective 3: System must determine what information to send
home and when. Limited bandwidth means that not all information
onboard the Lander will make it back to Earth by the time the Lander
runs out of energy. As such, the autonomy must prioritize what
information to send to the ground. This includes information needed
to convey the intent of the Lander, as ground operators want insight
intowhat the Lander is planning to do as well as why it is choosing to
perform (or not perform) certain actions.
4) Objective 4: System must manage its finite resources. For

example, with its limited battery, the Landermust consider the energy
impact of every action in order to have enough energy remaining to
achieve its science objectives.
5) Objective 5: System must react to off-nominal conditions and

hardware degradation. Due to the uncertainty about the environ-
ment, the Lander autonomy needs to have the flexibility to respond to
unexpected events. It should act as a closed-loop systemwhere it both
recognizes off-nominal conditions and takes appropriate actions to
remedy them.
6) Objective 6: System must collect data from its instruments and

interpret its own scientific findings to plan. In-situ analysis of col-
lected samples will need to be performed. The Lander will need to
determine for itself if it has found a biosignature and how to proceed,
acting as a closed-loop system with respect to science.
The contributions of our paper consist of implementing an autono-

mous prototype that can model the mission challenges and inves-
tigate how different planners and executives fulfill these objectives.
Specifically, we use a hierarchical utility model that allows the
system to compare different actions and select the most promising
ones while respecting the science objectives of the mission (objec-
tives 1, 2, and 3). High-level tasks (such as mission goals) and low-
level tasks (such as behaviors needed for survival) can be reconciled
in this architecture. Furthermore, the proposed framework allows for
mission designers to communicate the relative priority of actions so
that the system will accomplish tasks according to the intent of the
designers (objectives 3 and 5). This priority can be made context
dependent so that the priority of tasks will change throughout the
mission. We also simulate Lander hardware, such as science instru-
ments and energy systems, as well as the Europan environment, such
as frigid temperatures and Europan quakes (objectives 4 and 6).
Using the prototype, we can test how a planner or executive responds
to different mission scenarios to achieve all the objectives listed
above. The prototype can be integrated with physical hardware, such
as to conduct a field test as described in Sec. V.D. Note that while we
did consider the efficiency of all algorithms and designs, we did not
restrict our design based on available computational power. A current

subprogram of the Europa Lander Pre-Project worked on having the
necessary hardware to meet our computational needs. While also not
a strict requirement, we wanted a system that could reproduce the
same results when run with the same inputs so that we could more
easily verify the autonomy works as intended.
This paper is ordered as follows. First, a literature review is

performed to compare our autonomy architecture to existing autono-
mous missions as well as existing autonomy architectures. Next, an
overview of the system autonomy is described followed by a descrip-
tion of the various components that make up the full autonomy
architecture. We address how our system handles various autono-
mous behaviors, including autonomous decisionmaking, in-situ data
acquisition and analysis, data prioritization, resource management,
and failure response handling. We also describe how this software
architecture acts as a simulation testbed in order to evaluate different
autonomy algorithms. Finally, an analysis of the autonomy architec-
ture is performed based on its ability to respond to various goals and
challenges taken from the Europa Lander Mission Concept.

II. Related Work

Comparing theEuropaLanderMissionConcept to existing robotic
surface missions highlights the need for increased autonomous capa-
bilities. Mars serves as a good comparison to explain why heritage
software cannot be directly used.Mars surfacemissions are generally
planned on the order of years, and there is considerable history of
Mars missions lasting for much longer than their nominal science
mission. This is fundamentally different from the Europa Lander
Mission Concept, which is expected to last for no more than 30 days,
presenting the challenge of an extremely limited lifespan.
Despite the relatively large bandwidth when compared to Europa,

the Mars surface operations still must deal with constrained commu-
nication and limited information, such as the limited availability of
sun-synchronous orbiters that can result in delays in mission execu-
tion [9,10]. This poses anothermajor challenge for theEuropaLander
Mission; not only will the mission have constrained communication
like Mars, but it will also have communication blackouts that occur
for 42 out of every 84 h. These communication and information
constraints restrict mission planners with how far in advance they can
plan and how detailed those plans can be. Planners forMars missions
will create a variety of plans, such as strategic (30–90 sols in
advance), supratactical (7–10 sols in advance), and tactical (1–3 sols
in advance) plans [11]. The tactical plan defines the actual activities
that will be executed on the rover; this plan cannot be generated too
early in advance due to changing environmental conditions that will

Fig. 1 An artistic depiction of the Europa Lander is shown top left. Photographs of a Prototype Europa Lander, shown on the right, and a collected
sample, shownbottom left, were taken during a field test inAlaska. The field test used our autonomy software to collect the sample, respond to off-nominal
events, and communicate the data to a ground station. This test demonstrated the capabilities of our autonomous system in a real-world environment.
(Images courtesy NASA/JPL-Caltech.)
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affect traversability and close-contact operations, as well as limited
information such as the inability to select specific science targets until
additional data are collected from the rover (as orbital imagery is
usually not sufficient) [9,10].
Because of this, mission planners use the results of activities

performed during the previous sol to make decisions about the
current sol [9]. The decisions involve planning, control, and failure
response and are carried out by teams of experts from the Payload
Downlink Lead (PDL) to the Science Operations Working Group
(SOWG) [12]. These mission planners author sequences (a set of
specific actions) containing hundreds of commands and thousands of
arguments that are uploaded to the robot; the robot carries out the
sequences exactly as scripted by the ground [13]. Every new and
changed sequence uploaded each sol requires command-by-com-
mand review by the team of experts [14]. This kind of ground-in-
the-loop (GITL) decision making would be too time-consuming for
the short duration of the Europa LanderMission, especially given the
desire not to have the Lander do nothing whilewaiting for the ground
to make a decision during the approximately 42 h communication
blackout between Earth and Europa.
For Mars missions, the ground team is also heavily involved in

planning the scientific mission. The 2007 Phoenix mission used a
robot arm to excavate and sample soil and ice [15,16]. Information
about the surface was already known through the Mars Odyssey
spacecraft [17] as well as the prior Viking lander mission [18]. With
this prior information, a plan to perform excavation was generated
offline rather than in real-time. Downlinked images were used by the
ground team to generate command sequences used to control the
lander [15]. This same method was used for the Insight mission,
where the ground used downlinked panoramas and terrain meshes to
select where to deploy instruments [19,20], as well as for current
rover missions such as MSL, where downlinked terrain meshes are
used by ground operators to select and upload target sites for sam-
pling [14]. Newer missions such as the M2020 (Perseverance) mis-
sion have increased automated capabilities such as scheduling
activities with preheats and autogenerating awake activities [21].
However, these plans are still uploaded from the ground, and the
ground has full control over the order of activities. The Mars Ingen-
uity Helicopter also has several autonomous capabilities, such as
taking off, flying, and landing autonomously; however, it still follows
a set of predetermined, manually selected waypoints when flying
[22] andmust land and take off from “certified” safe airfield as it does
not have automated safe landing site detection capabilities [23].
The short 20–30-Earth-day (5–9-Europan-sol) lifetime of the

Europa Lander means that the science objectives must be completed
as soon as possible to allow ample margins for exogenous events and
contingencies. The nominal surface operation timeline, described by
[24], shows that an area of the surface must be selected and an
excavation performed on the very first sol after landing. With this
extremely short turnaround, only one GITL cycle can be performed
before the excavation site is both selected and excavated. Previous
missions, such as Phoenix, have used multiple GITL cycles to assess
different candidates [25]. As such, in order to meet these objectives,
the decision-making process must be greatly expedited. One of the
best ways to achieve this is by allowing the Lander to make its own
science assessments and activity selection. The ground team should
validate these decisions rather than make them.
Autonomous decision making has been performed in existing

missions and is expected to be used in future missions.Most practical
uses of autonomy, however, has not been performed at the complexity
and scope required by the Europa Lander. For example, Autonomous
Exploration for Gathering Increased Science (AEGIS) is a system
used by the MSL rover to collect observations of autonomously
selected scientifically interesting targets [26,27]. While AEGIS is
used to identify science targets and take observations, the data are
processed by the ground, and the ground makes planning decisions
based on the collected data. As described by [14], many different
automated planning and execution approaches have been built such
as for Earth orbiters [28,29] and prototype deep space missions like
Europa Clipper [30], but none have been used to date in surface
missions. Gaines et al. [9] describe the productivity that autonomy

might afford existingMars missions. The paper details howmanaging
operations on Earth do not always alignwith activities onMars such as
when data can be downlinked and uplinked. The schedulingmismatch
causes periods where little to nothing is performed as the team waits
until the next Mars morning to uplink products to the rover. Sugges-
tions to improve productivity include performing autonomous in-situ
science as well as using an onboard planner [9,21,31,32]. These
features are included in our autonomy prototype. Recent work such
as theMars 2020 onboard planner [33] is capable of in-situ science and
planning, but the design is highly tailored to the mission and only
focuses onvariable activity durationswhile theEuropaLanderMission
Concept requires additional capabilities such as reprioritization of
activities and the abilities to respond to exogenous events.
Our autonomy prototype architecture most closely resembles

Framework for Robust Execution and Scheduling of Commands
On-Board (FRESCO) and Coupled Layer Architecture for Robotic
Autonomy (CLARAty). FRESCO is a framework that relies on state-
based goal definitions and centralized management of state knowl-
edge. It employs hierarchical reasoning to provide clear abstractions
between different resources [34]. Inspired by FRESCO, the autonomy
prototype also includes these features. FRESCO does not include data
prioritization or in-situ analysis, key elements of our system.
CLARAty [35] is also an inspiration for our autonomy architecture
with many concepts used in its design such as separating the architec-
ture into a planning layer and a functional layer. We expand on the
capabilities of decision making and goal monitoring described in the
CLARAty paper through our hierarchical utility model.
There are many other existing autonomy frameworks that integrate

or have the potential to integrate science autonomy with robotic
autonomy, such as Robot Operating System Plan (ROSPlan) [36],
Europa [37], “C” Language Production System (CLIPS) [38], Plan
Execution Interchange Language (PLEXIL) [39], and Reactive
Model-based Programming Language (RMPL) [40]. The Remote
Agent (RAX) [41] is one example of an existing autonomy framework
that has flown in space and controlled the Deep Space 1 spacecraft for
twoperiods of time totaling about 48h. These architectures allwork on
the same premise of updating state information using sensor reading; a
planner is able to query the current world state and generate a plan. In
addition, they employ an executive to oversee the execution of the plan
and adapt the plan tooff-nominal events.These frameworks sometimes
struggle with specifying relative priorities of tasks.
Missions like the Europa Lander can be thought of as multi-

objective decision-making problems, where there are several compet-
ing objectives, including maximizing science return, maximizing the
number ofmission objectives that are achieved, aswell as ensuring that
resource constraints are met. There are several ways that these com-
peting criteria might be implemented through existing autonomy
architectures. One way is to impose constraints on the ordering of
actions to meet the mission objectives like those used by ROSPlan
[36]. While this strategy can be effective, it may produce suboptimal
plans by imposing unnecessary time constraints. Another way to
balance science return and mission objectives is scaling utility to
achieve some preference-based ordering as described by [42]. The
greatest challenge in using this strategy comes from lost contextual
information. For example, a plan that has a very high science return but
meets only a handful of the science objectives (i.e., a single collected
samplewith a positive biosignature) may be treated equal to a plan that
achieves relatively low science return but meets a large number of the
science objectives (i.e., two collected samples with negative biosigna-
tures as well as seismographic and panorama data). Implementing this
strategy successfully requires very careful consideration of theweight-
ing of the science objectives so that the combinationof different actions
does not have unintended consequences. This is infeasible for a mis-
sion like theEuropaLander,which has avery large set of behaviors and
objectives. A third strategy, as described by [43], is to balance the two
maximization criteria of science return and number of achieved mis-
sion objectives by calculating a set of policies such that for every
possible combination of the maximization criteria, a maximizing
policy is in the set. Generating multiple plans in this way requires
computational processing that is not available for space missions like
the Europa Lander.
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Our utility model avoids the problem of choosing appropriate
weights by using a hierarchical data structure that preserves both
the achieved mission objectives (design objective 1) as well as the
science return (design objective 2). The concept of a hierarchical
utility model is not new.Wellman and Doyle [44] use utility trees as a
tool toweightmaximization criteria. The utility trees generate a scalar
utility value that could be used to compare which action to take next.
Rather than collapsing to a scalar value, our hierarchical model
preserves strict preferences between the different tasks. A major
constraint of this prototype is that the Lander is expected to follow
the rules and guidelines imposed on it by mission operations regard-
less of the likelihood of preferable results. For example, if it is
possible to collect a sample, even if the likelihood of that sample
producing a positive biosignature is extremely small, the action is still
preferred over collectingmore seismometer data, whichmight have a
higher probability of producing high-value science information. As
such, our model is not considering expected utility, but instead only
utility. This can be seen as an extension built upon the work in [42].
Our model forces the planners to adhere to the mission objectives;
even if the Lander could collect an infinite number of seismometer
data, if the mission planners place a strict preference on collecting a
sample, the Lander should pick the plan that collects one sample over
the plan that has an infinite amount of seismometer data but no
collected sample. This concept of selecting one action over another
regardless of the actual utility or expected utility value is referred to as
dominance and is further described in Sec. III.A. The strategy of
dominance between actions is used to guarantee that the Lander will
(attempt to) accomplish certain objectives, whereas a classic utility
model makes no such guarantees. If the units for utility are all the
same as is commonly used in classic utility theory, it is possible for
the planner to prefer selecting several lower-reward goals rather than
a single higher-reward goal.
This approach still affords the planner flexibility in selecting

actions when the mission objectives are underspecified or partially
ordered. For example, if collecting seismometer data and collecting
episodic panoramas are preferred equally (in other words they are at
the same level in the hierarchical model), the Lander might choose to
take 10 panoramas and no seismometer data, 10 seismometer data
and no panoramas, or some combination of the two. Although this is
beyond the scope of this paper, it is possible to incorporate expected
utility here by considering the likelihood of receiving a given utility
for every task in the same level (but not with respect to the likelihood
between levels). Basich et al. [45] as well as an upcoming related
paper more focused on the planners mentioned in this paper describe
other approaches for dealing with uncertainty during planning. This
includes using periodic replanning and sampling-based optimization
to handle uncertainties that may arise.
Unlike [43], our hierarchical model allows mission designers to

reason about the utility of tasks at various levels of abstraction and
implement new rules without having to consider the numerical utility
value assigned to a task. This also allows for a simplistic comparison
of different plans as it is immediately clear which objectives or
criteria caused one plan to be preferred over another as further
described in Sec. III.A rather than just a numeric ranking of plans.
Existing research has also looked at the benefits of hierarchical
models in planning domains for hierarchical task networks. Lekavý
and Návrat [46] compare hierarchical task nets (HTNs) to STRIPS
planning domains, which are similar to scalar utility models, and
show that they have similar expressivity. Erol et al. [47] also point out
that HTNs are a user-friendly way of injecting domain knowledge
into the task net, which is similar to the concept of dominance in our
hierarchical utilitymodels. Amajor element of our autonomy is that it
must work with human experts; this requires building a system that
the experts can understand, which can be achieved by building a good
mental model of the planner.
Note that we do notmake any claims regarding the optimal science

return of the Lander using our model. It is entirely possible that an
expected utility model that does not support our concept of domi-
nance is able to perform additional science as the expected utility
model does not have to spend time performing actions for which the
likelihood of a high-value science return is low. As described earlier,

heritageNASAmissions such asMarsmissions involve sophisticated
missions operations teams that perform a lot of the high-level plan-
ning for the given robot. This strategy has proven highly successful.
Our approach for the Europa Lander Mission Concept is to strike a
balance between the two sides of manual control and full autonomy.
The Lander is expected to follow the high-level orders of the mission
operations (design objective 1) but is able to autonomously determine
the actual execution of said orders tomaximize science return (design
objective 2).
The work described in this paper was part of the larger Europa

Lander Advanced Development project. This project supported sev-
eral research threads crucial to advancing the technological readiness
for the Europa Lander Mission Concept. Among the related projects,
the work on sampling autonomy, the Blackbird simulator, and the
ground operations design simulations fed directly into this autonomy
prototype design. Sampling autonomy is the control and planning
system used to generate trajectories for the Lander’s robotic arm [48].
This is a separate autonomous system from our prototype. The
prototype can command the sampling autonomy system to perform
actions but otherwise treats it as a black box. We demonstrate
integration with the sampling autonomy system in Sec. V.B. Black-
bird [49] is a tool that has been developed using a modeling and
simulation framework to quickly evaluate mission and operational
concepts. It is not a real-time simulation like the autonomy prototype.
Thework performed by Blackbird and through other mission model-
ing efforts, such as the work done by [50], has been used to drive the
mission objectives and feature requests for the prototype. Finally, as
part of Europa Lander Advanced Development, several design sim-
ulations for ground operations were performed. Despite being an
autonomous system, human operators will still be involved in the
mission, monitoring the progress of the Lander and overriding deci-
sions when necessary. As such, it is critical to understand the best
ways to communicate the state of the Lander and provide sufficient
situational awareness for the human operators such that the human
operators and autonomy can work together. For each design simu-
lation, large teams of scientists and engineers were brought together
to experience a realistic operations scenario of different aspects of a
Europan mission. A paper describing in much greater detail the
methodology and findings of the design simulations is currently
under development. These design simulations were crucial for pro-
viding early and realistic feedback into the autonomy prototype and
ground operations software by evaluating the thought processes and
desired features of the mission’s ops teams. During the simulations,
data were provided using the instrument simulations from our soft-
ware, and constraints of the autonomy prototype were enforced.
While the design simulation did not directly use our software, they
did validate many of the existing behaviors and the overall autonomy
architecture for the Europa Lander.
Other work has developed both hardware and software testbeds to

enable researchers to develop technologies relevant to the Europa
Lander Mission Concept and other mission concepts. The Ocean
World Lander Autonomy Testbed [51] is a physical testbed that
simulates a lander with a robotic arm and sampling tool in low
gravity. Edwards et al. [52] describe the OceanWATERS software
simulation testbed that provides a high-fidelity simulation ofmany of
the physical properties of Europa, such as the expected surface
geometry and terrain dynamics as well as a 3D model of the Lander.
Our architecture can be used to replace the generic autonomymodule
in OceanWATERS. The paper of Touma et al. [53] is another paper
that has looked at autonomy for the Europa Lander, specifically
recognizing and handling failures or anomalies during the mission.
This work is parallel to ours as the architecture focuses on using the
MONSID diagnostic tool to estimate the health of the Lander and
communicate this information to the planner. As described in the
paper, this tool can be integrated with TRACE, which is one of the
executives we tested our system with as described in Sec. V.A.2.
McMahon et al. [54] and its predecessor [55] propose the develop-
ment of an autonomy architecture that, like ours, is used to maximize
science return. The papers describe a Shared Science Value Map
(SSVM) that is used by their task planner to determine the location
surrounding the Lander that should be sampled. This is similar to our
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hierarchical utility model, except that the authors do not explain how
their model can be generalized to other (lower-priority) tasks such as
collecting seismometer data and taking panoramic images. Further-
more, their simulation assumes that the science value of a given task
or data product is already known (left as future work), while our
model calculates this information onboard.
In contrast to the aforementioned work, the work described in this

paper was part of the Europa Lander Pre-Project, and therefore
directly embodies the best available knowledge for a potential future
Europa Lander Mission. As such, the autonomy software described
in this paper was integrated with several flight-like flight software
components that were testedwith actual hardware inmultiple venues,
culminating in field trials in Alaska as described in Sec. V.B.

III. Europa Lander Autonomy Prototype

The Europa Lander Autonomy Prototype is a simulation of the
environment, hardware, and software of a Europa Lander Mission.
We developed this prototype to serve as an autonomy testbed, from
low-level autonomy, such as autonomic heating and energy manage-
ment, all the way up to high-level autonomy, such as task planning
and execution.As such, it mustmeet themission objectives described
in the Introduction, namely, making decisions with limited human
intervention, managing finite resources, reacting to off-nominal con-
ditions, collecting data and interpreting findings to (re)plan, and
determining what data to send home and when.
To model these complex objectives, the Europa Lander system

architecture, as shown in Fig. 2, is composed of several different
modules. The planning and execution and system behavior modules
shown in the diagram are responsible for choosing tasks and selecting
when to execute them (objective 1 and 2). These modules also
monitor tasks for off-nominal behaviors (objective 5). The energy
and thermal autonomics modules are responsible for resource man-
agement by estimating the amount of remaining energy and current
temperature of the system (objective 4). The instrument and analysis
modules, along with the sampling subsystem, collect information
about the surrounding environment, produce data products, and
analyze data products (objective 6). The data product manager,
downlink manager, and communications manager all work together
to determine what data to send home and when (objective 3). Finally,
the System State Manager is a database where the various modules
share data to enable autonomous decision making. For example, the
planning layermust be informed of the latest scientific findings of the
instruments in order to adapt its behaviors to perform the greatest
amount of science.
In this section, we will describe each of these modules, how they

contribute to meeting mission objectives, and how they support
autonomy validation.

A. Autonomous Decision Making

The planning and execution layer is used to make decisions and
then robustly execute those decisions. Due to the modularity of the
architecture, the autonomy is agnostic to the actual planner or exec-
utive that is used so long as it can support the hierarchical utility
model. This layer is used to achieve the design objective of maxi-
mizing the number of completed mission objectives (objective 1),
maximizing the expected overall science return (objective 2), man-
aging finite resources (objective 4), as well as reacting to off-nominal
events (objective 5).
The hierarchical utility model maps mission-level behaviors to

scientific measurements by grouping raw sensor data into abstract
data structures that represent the task-level value of the scientific
findings. The hierarchical model proposed in this paper ensures that
the priority of tasks as determined by the mission designers is
preserved. In other words, the mission objectives are maximized
directly through the hierarchical structure of the model; the priorities
of the objectives are compared such that higher-priority objectives
dominate (are preferred over) lower-priority objectives. Note that
lower-priority objectives can still be achieved, but a plan that has a
single higher-priority objective will dominate a plan that contains
several lower-priority objectives. At the same time, combiningmulti-
ple science values at different levels within the hierarchy ensures that
the science return can be maximized. The utility model also provides
greater explainability for the mission designers as the sequence of
information used to make decisions is encapsulated in the util-
ity model.
There are two different types of utility described in this paper, task

utility and plan utility. Task utility is the utility assigned to particular
actions, while plan utility is the summation of all task utilities for a
given set of actions. We will first describe the hierarchical model for
task utility and then describe how to select a plan.

1. Task Utility Calculation

We represent the task utility model as a tree, with the leaf nodes of
the tree representing scalar utility values that are organized hierarchi-
cally according to mission priorities. The task utility hierarchy is
shown in Fig. 3with increasing levels of abstraction from left to right.
At the left-hand leaf nodes, values are assigned to sensor measure-
ments based on their information content, or science value. Measure-
ments that contain “interesting” data such as recording a Europan
quake will have a higher science value. At the next level, the science
values are combined to score data collection tasks. These values
allow for easy categorization and comparison of the science objec-
tives that a plan or task achieves. This layer is used to quickly
disregard plans that do not contribute toward the science objectives
of the mission. In addition to science objectives, the top level of the
model represents mission-level constraints that may be imposed on

Fig. 2 Overview of the entire autonomy architecture where both the science autonomy components and robotic autonomy components interact through
the shared hierarchical utility data structure in the center.
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plans, such as limiting the number of samples that can be collected

from a given location.

By performing a tree traversal, we can compare the utility values in

hierarchical order. In practice, we flatten the utility model to an array,

as shown in Fig. 4a. The flattenedmodel represents the traversal order

while allowing formore rapid comparison of utility values. The labels

of the diagram also show how values can belong to multiple hier-

archies, such as the precollection imagery (0.7), which belongs to the

collection score, the sampling score, and the science component of

the given task utility. Note that precollection imagery is an image

taken before the Lander has collected a sample, while postcollection

imagery is an image taken of a sample after it has been collected.

The mission component has the highest priority as represented by

being first in the tree traversal. The mission component is a leaf node

that represents the objectives the ground team wishes to enforce. For

example, the mission component is used to enforce the rules of site

selection so that no more than three samples are collected at a given

site. Another mission rule might be that episodic panoramas must be

taken at least 15 min apart from any previous panoramas. As such, if

the planner considers adding a task that violates this rule, the mission

componentwill have a very lowvalue.While any value between [0,1]

can be used for this utility, we generally choose either 0 or 1 as most

rules represent binary constraints.

The next node in the top layer is the science component. The

science component is a subtree that combines scores from all the

science objectives that are achieved by a given task. Scores may be

leaf nodes such as the analysis sampling score, ormay branch to other

scores such as the collection score. These additional branches can be

thought of as subobjectives that are achieved by a given task.

The calculation of utility at leaf nodes can be different for each leaf.

For example, for the science component, the leaf nodes represent data

products from different science instruments. Each data product is

analyzed to produce a science value (see Sec. III.B). A science value

is a numeric value between 0 and 1, which reflects the scientific

importance of the data. For example, if analysis of a collected sample

indicates a positive biosignature, the science value would be high,

indicating that the data product is of extreme interest to the ground.

Conversely, the lack of a biosignature in a data product should cause

the science value to be lower. Note that a leaf will only be assigned a

science value if the data product is scheduled to be downlinked;

otherwise it is assigned a value of 0. Because the Lander is expected

to not just perform science but also communicate that sciencewith the

ground, science values are assigned only when data products are

destined to be communicated with the ground.

The sampling score component groups several data products

together that represent the achievement of the given science objec-

tive. Because the scoresmap data products to science objectives, they

can be used to compare different parameters for the same task. For

example, in the Europa Lander, it is necessary to compare excavation

outcomes for the different sites fromwhich the Lander may choose to

Fig. 3 Overview of utility model hierarchy showing how data products shown on the left are grouped into scores that are grouped into utilities. The
numeric value of each level is determined by the science value of the data product, which itself is determined by combining the outputs of various sensor
data. (Data Products graphics created by Krys Blackwood, JPL.)
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Fig. 4 A visualization of the calculation of task and plan utility using our hierarchical model.
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collect a sample. By following tree traversal order, the comparison
still workswhen there is limited information about the sites, such as in
Fig. 5. In this example, Sample Target 1 is preferred over Sample
Target 2 even without access to sample analysis or postcollection
imagery. The traversal continues until postcollection imagery is
available for comparison.
The default component is the last (leaf) node in the first level of the

hierarchy. The default component is used to assign a numeric value to
each task. This value is important for tasks that do not achieve any
specified science objectives but are still important to the mission,
such as preparing the high-gain antenna to transmit data products.
Practically, the value is almost always set to one so that it is better for a
plan to include the task than to not include the task.

2. Plan Utility Calculation

Plan utility is the utility of performing a set of tasks, or plan.
Comparing plan utilities is how a planner chooses between alternate
plans and partial plans. To calculate the utility of a given plan, utility
trees of the tasks are summed as shown in Fig. 4b. In the event that
there is no matching component (i.e., Task 2 does not have a sample
analysis), its value is assumed to be zero during the summation. Once
the plan utilities have been calculated by summing the task utilities,
the plan utilities can then be compared as shown in Fig. 4c. This is
done by comparing each component in tree traversal order. If any one
node has a higher utility, the traversal is stopped and the tree with the
higher node wins. In the event of a tie, the next highest ranked
components are compared. For example, in Fig. 4c, the mission
components have the same score. Therefore, the comparison contin-
ues to the sample analysis node,where PlanB is preferred over PlanA

because Plan B’s sample analysis utility is higher. Had the sample

analysis components been the same, the comparison would have
continued to the postcollection imagery components, and so on.
In comparing the components of the utility model in this way, the

hierarchical model ensures total dominance of certain activities. For

example, sampling activities are considered more important than

seismometer activities. This is reflected in the utilitymodel by having

sampling task utilities earlier in the tree traversal than seismometer

tasks, as shown in Fig. 4a. Using a nonhierarchical utility model, it

might be possible to have a large number of seismometer tasks that

when summed together produce a higher utility value than a planwith

a single sampling task. The hierarchical model does not allow this, as
a plan with a sampling task will always dominate a plan with no

sampling tasks.
It is important to note that while the concept of dominance estab-

lishes a strict preference for some actions over others, it poses no

restrictions on the planner to schedule activities in a given order. For

example, in a plan with both sampling and seismometer tasks, it does

not matter whether the sampling task or seismometer task is per-

formed first. In this way, the planner is allowed to select the best

ordering of actions. In practice, the planner tends to schedule the

higher priority science objectives first as this is used as a heuristic for
the forward search, but this is not a requirement.
This concept of dominance can be extended further to enforce

more complex prioritization of tasks. For example, as shown in Fig. 6,

it might be desired by the mission designers that collecting one

sample is the task of utmost importance, followed by performing a

seismometer task. This in turnmay be followed by taking a panorama

of the surface and then collecting the second and third samples. These

Fig. 5 Sample Target 2 is preferred over Target 1 because of its higher precollection imagery value. This shows how the planner can adapt behaviors to

the expected science return even when not much information is known about a given target.

Fig. 6 Alternative utility model showing how the tree structure can be constructed to account for different science objective orderings. In this example,
only the first sample dominates a seismometer task. The seismometer takes precedence over subsequent samples.
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priorities can be translated to the utility model by adding them in the

order of dominance, where the first sample is at the highest level,

followed by the seismometer at the next, panorama at the third level,

and so on. This guarantees that if there is not enough remaining

energy to complete all actions, actions will be removed from the plan

in order of lowest priority, such as the action to collect samples 2 and

3 will be removed from the plan before removing the first panorama.

Because the planners typically schedule highest priority tasks earlier,

this also means that samples 2 and 3 will likely be collected after the

first sample, seismometer, and panorama data have been collected.

3. Predicted Utility vs Executed Utility

After a task has been performed, it is assigned an executed utility.

The executed utility is calculated from data products that have

actually been generated. It is used to update the utility of a plan in

progress. Therefore, the behavior of the Lander may be modified

when science activities are executed as the planner can now make

more informed decisions based on the collected data.

For planners that perform a forward search, a predicted utility is

assigned to tasks that are planned to be executed in the future. We

approximate the utility as the average of all data products associated

with a particular task utility. Priors are initially used when there is a

lack of sensor and execution information at the start of the mission.

These priors, initially set by the ground, are updated during the

mission using the executed utility. For example, at the beginning of

the mission, the planner may be configured with priors to bias the

planner to perform sample collection by setting the priors for positive

biosignatures to be high.As the Lander performs behaviors, executed

utility is updated to reflect the real data product science value rather

than the priors. This approach was chosen for its simplicity. While

more sophisticated approaches could also be used, such as Bayesian

networks or a least-squares approach, defining an accurate system

model can be difficult for places like Europa where little is known.

The dominance feature of the utility model biases the planner

toward completing the mission objectives even when the predicted

science return may be inaccurate. For example, the planner will still

attempt to collect samples due to the dominance of sampling over

other tasks even if it has little information regarding the expected

science return of sampling.

B. In-Situ Science Collection and Analysis

A primary objective of the Europa Lander Mission Concept is to

look for signs of life on Europa. As such, the instruments and

corresponding analytics modules must provide an accurate assess-

ment of science instrument data in order to guide the rest of the

mission. The data products these modules produce are used to

determine which sampling site to go to next and also produce the

primary metrics for establishing the success of the mission. The

communication constraints of the mission pose several challenges

to the instruments. Because of the limited oversight from the ground,

the instruments must be robust enough to handle data analysis on

their own. Because of the limited communication bandwidth, the

instruments must be able to determine what and how much data are

needed to send to the ground in order to verify the results of the

onboard analysis as not all data can be sent. Both the instruments and

analytics modules realize design objective 6, which is to collect data

and interpret the findings of any analysis performed on the data.

The instrument simulation modules provide a realistic, stochastic

simulation of science instruments that might be required for a given

mission. For the purposes of the Europa Lander, the instruments that

are currently implemented are categorized as sampling instruments

and episodic instruments. The sampling instruments include a gas

chromatography–mass spectrometer (GCMS), Raman spectrometer

(Raman), and microscope. A sample collected by the Lander is

passed to all the sampling instruments, whose respective data, shown

in Fig. 7, is sent to the analytics module to look for a positive

biosignature. The episodic instruments include a seismometer and

a science camera, which are used to detect changes in the environ-

ment, such as water plumes.

A major aspect of these simulations is to allow instrument param-
eters to be dynamically changed in order to simulate different scenar-
ios, such as generating scientifically interesting data or changing the
data size and duration. Instrument and science data simulations must
produce realistic data product sizes to support realistic downlink
planning. All instruments support three predefined scenarios that
produce data products of differing science values. To maintain the
realistic role separation in the simulation, the science instrument
simulation only produces data products and relies on the analysis
module to assign an appropriate science value.
The analytics module is an independent module; it is responsible

for analyzing data and preprocessing science data for downlinking.
For all instruments, the analytics produces one or several science
values within the normalized interval [0,1]. The science value is a
metric that captures the complexity and number of interesting fea-
tures of the data [56]. For example, a GCMS-simulated instrument
produces science values indicating abundance of chemical com-
pounds and their similarity to a known library of biosignatures. A
combination of these science values from all the prototype instru-
ments attributes whether a sample has a high likelihood of a positive
biosignature as discussed below.
For the purposes of the Europa Lander, multiple instruments are

used to detect positive biosignatures. Multiple instruments are used
as a form of redundancy so that false positives and false negatives are
limited; only if multiple instruments detect a positive biosignature
should the Lander (and ground) consider a sample as actually con-
taining signs of life. To determine how to combine the information
taken by multiple instruments to determine a biosignature, we use a
chart, shown in Table 1, which describes the set of combined mea-
surements that yield strong evidence of a positive biosignature [5].
The model consists of nine independent lines of evidence shown by
the columns in the table. A certain combination of these lines of
evidence in a sample produces a positive biosignature. This table is
used by the Europa Lander system to score a sample’s likelihood of
containing a biosignature. Note that the value for each line of evi-
dence is determined by thresholding the science values to obtain a
binary 0 or 1 for biosignatures. The threshold can be configured by
the ground; however, it is implemented to be 0.5 for the prototype.
In addition to producing a science value for all instruments, the

analytics module also provides data reduction and assigns data a
downlink priority bin. Data reduction reduces the size of the data by
reducing noise while retaining the most interesting features. The
degree to which the data are reduced is based on a content-dependent
analysis. Data with high science values are generally reduced less
than data with low science values as the details are more likely to be
interesting to the ground team. The highest level of data reduction
returns only summary statistics. A low level of data reduction will
return a data product very close to the raw data product. Because this
reduction is content dependent and determined by the science objec-
tives of specific instruments, a separate reduction procedure is
defined for each instrument. Figure 7 shows examples of raw data
products and the associated analysis to obtain the corresponding
science value produced by the analytics module. Note that regular
data compression, such as GZIP [57], which is not content dependent
and can be applied to any data product, is performed later in the
pipeline regardless of whether the data product is raw or reduced.
As described in Sec. III.A, after the analytics module generates

data products, the science values associated with data products are
added to the hierarchical utility model. This step ties together the
high-level actions proposed by the planner with the results of execut-
ing a particular action. The assessor uses these values determined
during execution to predict the quality of science that will be returned
from future actions, allowing the planner to consider actions that will
maximize the overall expected science return.

C. Sampling Functional Autonomy

The Lander prototype also includes a sampling autonomy module
known as SamplingAutonomy for the EuropaLander (SAEL).While
the planning and execution modules perform temporal planning for
resource management, communication scheduling, and other higher
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Table 1 Biosignature evidence chart from [5] used to fuse information frommultiple instruments to determine if a collected sample
has a positive or negative biosignature.

GCMS Microscope Raman Remote sensing

Abundance Pattern Chirality Isotopes Cell-like structures Cellular properties Biominerals Context Endo vs Exo Biosignature

1 1 1 1 1 0 1 1 1 Positive
0 0 0 0 1 0 1 1 1 Negative
1 1 1 0 1 0 0 1 1 Positive
1 1 0 0 1 0 0 1 1 Positive
1 0 1 0 1 0 0 1 1 Positive

“Endo” is short for endogenous origin. “Exo” is short for exogenous origin. Each category is populated by the science value from a given sample that is thresholded to

be either 0 or 1 in the analytics module.

Fig. 7 Raw data (shown on the left for each instrument example) are analyzed onboard (shown on the right). The analysis is used to calculate science
values, and the resulting raw or reduced data product may be downlinked to the ground. The data analysis detects and preserves the interesting
characteristics of the rawdata productwhile reducing the overall size of the data product, such as cropping the science camera image shown in the top right

to only the interesting sections. Note that the analyzed data shown here are for visualization purposes and demonstrate the detections and other metrics
obtained from the analysis, e.g., thumbnailed regions in microscope images (red); the actual data product will likely be a different format.
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level activities, SAEL is responsible for identifying suitable excava-
tion sites, adaptively planning toolmotions to prepare those sites, and
transferring samples to the receiving science instrument. More infor-
mation about SAEL can be found in [48]. For the purposes of this
paper, these activities are treated as black boxes that produce data
products that feed into the hierarchical utility model.

D. Resource Management

Automated resource management is a central concept to the
Lander and is implemented through several autonomics modules.
Autonomicity can be thought of as “mission self-management” [58],
wherein an autonomic module is an isolated, self-governing module
that performs a critical set of tasks that aremeant to abstract complex-
ity from the rest of the system. The name “autonomic” comes from
the “autonomic nervous system” [59] that deals with (continuous)
tasks such as breathing or pumping blood. For the Europa Lander,
autonomic tasks include energy and thermal management. These
tasks are abstracted from the plan, so the planner or executive can
focus on “higher-level” tasks. As described by Horn [60], autonomic
modules have a detailed knowledge of system components, are aware
of and can adapt to the environment, perform some form of self-
protection and can recover from faults, and ultimately hide complex-
ity. These features are needed to achieve the design objectives of
managing the Lander’s finite resources (design objective 4) and
reacting to off-nominal conditions (design objective 5). The auto-
nomics produce data products that characterize the state of the Lander
and are responsible for some basic safety checks such as turning off a
heater that is about to exceed the allowed temperature for a given
thermal zone.

1. Energy Autonomics

As the Europa Lander Mission Concept is heavily constrained by
the remaining energy in the battery, it is important to provide accurate
state-of-charge information to the planner. Many external factors can
affect the state of charge of the battery, from radiation to temperature
changes. Furthermore, the state of charge often cannot be measured
directly. The energy autonomics system provides a best estimate
based on tracked usage; this value is an uncertain estimate. Dealing
with this uncertainty was a major focus of the experimentation. We
experimented with starting the mission with a lower state of charge
than expected and with the state of charge suddenly dropping to a
lower value.
The energy subsystem consists of both an onboard autonomics

module that monitors energy usage, and an energy simulation that
models hardware components such as current sensors. The onboard
module is responsible for keeping track of both the present and
historical power. It also tracks energy draw of devices and the
activities for which those devices were used. It provides realistic
estimates to the planner regarding the state of charge of the battery so
that the planner knows how much energy the system has left. It can
provide the planner with the expected power draw of individual
activities so that the planner can predict howmuch energywill remain
after an activity has completed.
The energy simulation mimics real hardware by publishing the

current draw of a device when it is in use. The simulation allows for
sensor values and parameters to be dynamically changed in order to
simulate different scenarios, such as causing an actuator to draw
double the expected amount of current, causing the battery to become
significantly depleted due to radiation, or adding sensor noise into the
simulation. There is also an interface to support external modules,
something used during the field tests described in Sec. V.B to
calculate the power draw of the robotic arm.

2. Thermal Autonomics

The thermal autonomics consists of both an onboard autonomics
module that monitors temperature and controls the heaters, and a
thermal simulation that models hardware components such as tem-
perature sensors and heaters.
The onboard module is responsible for maintaining the temper-

ature of predefined thermal zones on the Lander, or regions of the

Lander with distinct thermal properties. All devices are expected to
have a nominal temperature range at which they should be operated.
The ambient temperature of Europa is about 100 K. All hardware,
especially actuators, should not be commanded to move due to
hardware risk until the zone is at the nominal temperature. The
autonomics is responsible for monitoring the temperature of these
different zones as well as commanding the heaters to maintain a zone
at its nominal temperature. The autonomics is also responsible for
maintaining a minimal safe range for all zones when not in use,
referred to as survival heating, which ensures that hardware is not
damaged when not in use. Survival heating can be disabled, some-
thing the ground may choose to do late in the mission in order to
conserve more energy at the risk of damaging hardware.
The thermal simulation mimics real hardware by publishing tem-

perature sensor readings and modeling heating using a thermal
resistor-capacitor (RC) circuit model for each thermal zone. Several
assumptions were made regarding the thermal simulation. As a
simplification, we do not model temperature gradients in the actuator
lubricant. Furthermore, only a conductive model of heat was used;
both convection and radiation were ignored. The time of day was not
factored into the ambient temperature, as it was expected that the
ambient temperature does not vary extensively on Europa. Parasitic
heating was also ignored, such that each zone was considered ther-
mally isolated from other zones. The simulation does consider the
impact of devices drawing energy within a thermal zone as a config-
urable percentage of that energy is lost to heat and thus contributes to
the temperature of the zone. This is used to simulate some likely
scenarios on the Lander such as the communication modules over-
heating and requiring a cooldown period if used for too long.

E. Data Prioritization

For the Europa Lander, the large distance between the Earth and
Europa means long light time delays as well as low achievable
bandwidth. These difficulties drive the need for an autonomous
communications subsystem that is capable of managing when to
downlink data, what data should be downlinked, and in what order.
The communication stack of the Lander is used to achieve design
objective 3, which is to determine what information to send home
and when.

1. Priority

The system also uses a categorization scheme to classify the
relative importance of data products and information. This relative
importance is referred to as priority. These priorities specify the order
in which data products are downlinked. To determine the relative
importance of each data product in the eyes of the ground, four data
product priorities are defined along with the rules that detail their
required handling:
1) Transmit Now: Downlink the data product now, creating a new

communication window if necessary.
2) Decisional: Downlink the data product at the next available

communication window (e.g., scheduled uplink).
3) Mandatory: Downlink the data product before end of mission.
4) Residual: Downlink the data product only after all other data

products have been downlinked.
Note that all downlinks, including for Transmit Now, must sched-

ule downlinks around Europan blackout periods, such as scheduling
a downlink as soon as a blackout is over. The priority of the data
product will generally be selected according to its science value. For
example, on the Europa Lander, if a sample analysis data product has
found the presence of a biosignature, it will be marked as Transmit
Now as it is important for the ground to receive this information as
soon as possible. The mapping between science value and priority is
configurable by the ground.

2. Communication Stack

The communication stack consists of several components. On the
simulation side, a Deep Space Network (DSN) module simulates the
radio receiver and transmitter on Earth that talks to the spacecraft. All
commands that are sent to the spacecraft go through theDSNmodule.
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The DSN module is connected to a Space Simulation module that
simulates the light delay between the spacecraft and Earth. Onboard
software includes the communication manager and the downlink
manager. The communication manager is used to manage the radio
transmitter and receiver to downlink data products and uplink ground
information. The downlinkmanager is used to assign data products to
downlink packages.
The downlink manager must balance several requirements when

deciding which data products to downlink and when to downlink
them. The software supports adding a data prioritymanagement table
that details how to set the priorities of data products for each data
product type. This table selects data product priority given a certain
sciencevalue. It also specifieswhat reduction level should be used for
each data product. An example configuration is shown in Fig. 8. The
priority table is configurable by the ground team.
Priority is not the only constraint in choosing data products to

downlink. The downlink must not consume more energy than allo-
cated, it must not overheat the communication hardware, and it must
also complete before Earth-set as communication will be lost when
the Earth is out of view. The downlink manager selects a subset of
existing data products, such that the priority rules and constraints are
respected and the number of total downlinked data products is
maximized. This is a constrained optimization problem similar to
bin-packing, where downlinks are considered to be fixed-sized bins,
and data products are fixed-sized items thatmust fit within those bins.
The downlinkmanager usesGoogle’sOR-Tools [61] as the solver for
this optimization problem. The Lander currently supports options to
either downlink data at the earliest possible opportunity as well as at
the latest possible opportunity. The former is a better risk posture but
will consume more energy.

F. System Execution

The modules involving system execution, namely, the System
Behavior Manager (SBM), are used to oversee the execution of the
plan generated by the planning layer. The behaviors that the system
execution modules perform are used to physically perform all of the
design objectives.

1. System Behavior Manager

To simplify the design of the planners, an abstraction was devel-
oped tomap high-level tasks to low-level actions. Doing so allows the
planners to avoid concerning themselves with low-level details such
as heating elements of the hardware before they are used,maintaining
that heating during use, and turning heaters off afterward. This
abstraction also insulates the planners from changes to the imple-
mentation of behaviors.
An example of the mapping between high-level behaviors and

low-level actions on the Europa Lander is the “Collect and Transport

Sample” behavior. This high-level behavior, performed after an
excavation site has been excavated and a sample target has been
identified, runs the following low-level actions in order: 1) heat the
arm to its nominal temperature; 2) collect the sample target using
the arm; 3) capture an image of the collected sample; 4) transport the
sample to the onboard instruments; 5) turn of the heat for the arm. The
planner or executive requests the high-level behavior, and the system
behavior manager commands the low-level actions. These low-level
actions can be run sequentially or in parallel. The planners are able to
make requests of the low-level parts of the system directly should that
be desired; however, they will normally make their requests by
requesting the high-level behavior.
In addition to providing an interface to allow the planners to

request high-level behaviors, the SBM also includes the ability to
easily redefine the mapping between high-level behaviors and low-
level actions during operations. This includes which actions to
execute and in what order, what information flows between actions,
and how to respond to errors. A companion scripting language
describes behaviors in text files, which can be uploaded to the Lander
to redefine behaviors. This capability allows the ground tomodify the
exact implementation of a behavior during the mission to provide
fault handling should something go wrong with a behavior.

2. Simulated Clock

Many of the driving requirements for the Europa Lander center
around the limited mission lifespan, and the desire to gather as much
science as possible before the battery dies and end of mission is
reached. Because of this, many testing and demonstration scenarios
involved running the software through the full mission timeframe. To
avoid long test times, we decided to simulate these scenarios faster
than real time. Originally developed for the CLARAty [35] program,
the Simulated Clock provides this capability in ROS using built-in
ROS features. The integrated system has many modules that run at
different times and have different requirements on how fast (or slow)
the clock can run. To coordinate these requirements, the Simulated
Clock allows clients to dynamically add and remove a “rate request,”
which specifies a maximum possible clock speed, and minimum
possible clock precision for that client. The Simulated Clock will
run at the slowest maximum speed and highest minimum precision
for the current set of active rate requests.

3. Hardware Modules

At the lowest level of the system are hardware modules that carry
out behaviors in the real world such as robotic actuators. These
modules are controlled by the System Behavior Manager as
instructed by the planner. For the Europa Lander, this can include
actions such as moving the robotic arm or pointing the high-gain
antenna. The software architecture can support various levels of

Fig. 8 Onboard assessment diagramshowsdata product priorities configuredby the ground. In this example, if GCMSmeasurementwas assessed a 0.75
science value, two data productswouldbe produced, onewith aBaseLevel reduction andMandatorypriority andanotherwith aReducedLevel reduction
and Decisional priority.
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fidelity in these behaviors. We ran experiments with “stubbed”
behaviors, which replace the behavior with a wait time, simulators,
and full hardware integration. For the purposes of the Europa Lander,
there is a separate module known as SAEL that performs autonomy
related to this hardware such as trajectory planning for the robotic
arm that is described in Sec. III.C.

IV. Reference Surface Mission

The overall goal of the Europa Lander Mission Concept is to
analyze samples collected from the Europan surface, look for signs
of biosignatures, and communicate that data back to Earth. There are
also several lower priority objectives such as taking panoramic
imagery of the Europan surface and collecting seismographic data.
Reference Surface Mission (RSM-1) is an example of a mission that
accomplishes these objectives. The purpose of the RSM-1 is to
explore the flight system and concept of operations (CONOPS)
complexities introduced by ground-in-the-loop (GITL) management
of initial excavation and sampling activities. During the mission,
realistic communication constraints are imposed.
Several mission constraints were chosen to help define the level of

autonomy and GITL control that would be tested in RSM-1. For
example, sampling activities shall only occur when Earth is in view.
This allows for a faster GITL intervention while not mandating GITL
control. Additionally, the ground team manages the first three excava-
tion and sampling activities.Autonomyonly takes over after these initial
activities when ground authorizes the vehicle to do sampling autono-
mously. Autonomy always manages the episodic activities, such as
panoramic imagery and seismometer, and the communication schedule.
The RSM-1 mission flow can be seen in Fig. 9. Our simulation

begins after landing on the surface of Europa and performing some
initialization activities such as starting the seismometer and episodic
panorama data collection.At the beginning of themission, theLander
does not have the authority to collect samples autonomously. This is
done so that the ground can confirm that the Lander is correctly
assessing the workspace. At each step within the sampling pipeline,
the Lander must stop and wait until it receives the authorization to
proceed. The GITL team must assess the Lander’s state and use this
information to accept ormodify future activities.Once theGITL team
is satisfied that the Lander autonomywill perform correctly, the team

may decide to enable full autonomy that will remove the “stop and
wait” points to allow the Lander to sample at will.
As shown in Fig. 10, the sampling pipeline is a loop that repeats for

each excavation site. It starts with taking an image of the Lander’s
workspace to identify potential excavation sites. The imagery is
assessed to select the most promising excavation site. The chosen site
is excavated. More imagery is taken of the excavated site to identify
locations within the site from which to collect samples. The most
promising sample is collected and transferred to the science instruments
for analysis.RSM-1defines theorder these steps shouldoccurbut leaves
the planner flexibility in deciding how to schedule them in concert with
other activities such as communications and episodic science.

A. Sample Selection Strategy

For RSM-1, samples are selected according to a sample selection
strategy shown in Fig. 11. The strategy imposes several constraints on
how samples are collected. The first is that no more than three
samples may be collected from a given site. This constraint is
imposed to ensure sample variability. The second is that, upon the
first negative biosignature at an excavation site, the Lander must
collect from a different excavation site. This constraint is imposed to
ensure that Lander does not waste its time collecting from a site that is
unlikely to have any biosignatures. An example path through site
selection, shown in Fig. 11, starts at the sitewith the highest predicted
utility according to the assessor, site A. If the sample does not contain
any biosignatures, the Lander switches to site B, which has the next
highest utility. Otherwise, the Lander would continue to collect
samples at site A. Green arrows show the site transition when a
positive biosignature is detected. Red arrows show the site transition
when no positive biosignature is detected. This selection criterion is
implemented through mission rules as explained in Sec. III.A.

B. Communicate Until Death

Another requirement of RSM-1 is the communicate-until-death
(CUD) transition. This transition occurs at the moment in time when
the energy needed to downlink all remaining decisional andmandatory
data products onboard the Lander is equal to the amount of energy left
in the battery, as shown in Fig. 12. At this point in time, the Lander is
expected to stop all activities and spend all the remaining energy
transmitting the remaining data products back to Earth. This transition

Fig. 9 This figure shows theReference SurfaceMission 1 overview. During sol 0, commissioning of the spacecraft will be performed, followed by starting
the instruments. For the following sols, theLanderwill continue to run the instrumentswhile attempting to collect andanalyze samples.Note that this is one
possible surface mission that could be provided to the planners to plan for and execute.
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is defined so that all required data productsmake it back toEarth before
the Lander dies. Note that residual data products (the lowest priority
level) are unlikely to make it back to Earth unless their priority is
changed by the ground. The CUD transition highlights the downlink
strategy of RSM-1; information that is needed by the GITL to make
decisions is transmitted immediately or at the next available oppor-
tunity, while data products that are scientifically valuable but not
immediately needed are not downlinked until the end of the mission.
Transitioning to CUD requires an accurate and robust prediction of
when the energy will run out based on the projected activities.

V. Experimentation

The Europa Lander Autonomy Prototype’s main purpose is as an
experimentation platform for the Europa Lander Mission Concept.
Verification and validation (V&V) is notoriously challenging for
most space missions, and will continue to become more challenging
as the amount of onboard autonomy increases [62]. These challenges
can come from both the technical side, where the autonomy needs to
perform the correct actions even in off-nominal situations, as well as
on the mission management side, where human mission controllers
need to monitor and understand the decisions of the autonomy. It
should be noted that the purpose of this paper is to describe theway in

which the Europa Lander autonomy architecture enabled sophisti-
cated missions as well as allowed for the evaluation and comparison
of two different types of planners for an actual mission. The results
shown here aremeant to demonstrate the capabilities of the autonomy
as demonstrated through scenario-based testing and not provide a
recommendation regarding which planner to use for the actual
Europa Lander Mission Concept. Instead, this section describes
how the autonomy was evaluated for correctness and the metrics that
were generated to evaluate the mission-readiness of the planners.

A. Selected Mission Planners

Two different planning and execution systems were used during
experimentation to investigate different planning and execution algo-
rithms. The first chosen system is a utility-based planner calledMulti-
mission Executive (MEXEC). MEXEC directly incorporates the
hierarchical utility model into its planning environment. The second
chosen system is a perspective executive, TRACE, which does not
look forward in time but instead reacts to events as they happen. At a
high level, TRACE is amuch simpler system to use and understand as
it is only an executive; its flowchart style plan is defined and uploaded
by the ground. MEXEC is a search-based planner that, while gen-
erally more difficult to understand than TRACE, is expected to
anticipate and react to off-nominal events faster, which will ulti-
mately conserve more energy.

1. MEXEC

MEXEC is a multimission activity scheduling and execution soft-
ware that was first created as a prototype demonstration for the Europa
Clipper project [63]. MEXEC uses hierarchical task networks to
encode abstract representations of command behavior, constraints on
timing, and resources usage in order to generate plans. MEXEC
performs a forward search where it simulates the impacts of various
actions in order to select the best sequence of actions. The best
sequence of actions is defined as the one that maximizes utility. For
the Lander prototype, this planner was adapted to incorporate the
hierarchical utility model described in Sec. III.A. MEXEC uses a
branch and bound search to find high utility plans while obeying
constraints. MEXEC includes an executive that is responsible for
executing each task at its scheduled time, delaying task execution
when constraints are not met, monitoring a task while it executes,
and aborting a task if constraints fail during execution. MEXEC
presents a few challenges for the Europa Lander system such as the
difficulties in understanding and visualizing what the planner will do.
Furthermore, the search-based approach does not always produce
plans the same way a human mission designer might.

Fig. 11 Overview of a hypothetical sample selection strategy showing
sampling choices for five excavation sites where site A dominates site B, B
dominates C, etc. The first negative sample or three positive samples at a

given site means that the Lander should switch to a different site.

Fig. 10 This figure shows the steps the Landerwill performwhen samplingwithout intervention from the ground. The process includes excavating a site

and taking pictures of the site, selecting and collecting a sample from the site, transferring the sample from the arm to the onboard instruments, analyzing
the sample, and then repeating the entire process with the prior results factored into future site and sample selections.
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2. TRACE

Traceable Robotic Activity Composer and Executive (TRACE) is

an onboard executive originally developed for naval applications

[64]. TRACE models activities graphically using the Business Proc-

ess Model and Notation (BPMN) language [65]. These diagrams

encapsulate sophisticated, event-driven behavior, especially involv-

ing contingency activities to address off-nominal execution. An

example diagram is shown in Fig. 13. TRACE is amenable to model

checking and formal verification methods. Its use of BPMN allows

for very easy understanding of the uploaded plan.

Because TRACE does not plan forward in time, it did not need to

make full use of the hierarchical utility model in the same way the

MEXEC does. TRACE only cares about the utility for the current

state. Because of this, TRACE does not make use of the assessor to

produce predicted utility values and instead only considers executed

utility values.

Some of the difficulties in using TRACE for the Europa Lander

system involve the limited ability to respond to off-nominal events

not encapsulated in the BPMN diagram (in other words, a state not

defined in the flow chart), the potential limitation of the plans

(execution traces) that can be expressed through the BPMN notation,

as well as the inability to project resources forward or backward in

time,making it difficult to consider the outcomes of particular actions

and how that might affect the finite onboard resources.

B. Mission Management Analysis

To support experimentation, the prototype includes tooling to

convey the state and current intent of the onboard autonomy to human

operators. Several tools and dashboards were developed to easily run

different experiments, visualize the current state of the Lander, uplink

new commands and files to the Lander, review the most recent

proposed plan generated by onboard autonomy, and postprocess all

collected data for a comprehensive mission analysis.

The Lander Dashboard conveys the current state of the Lander,

including the temperature of all the thermal zones, which instrument

is currently running, and the state of charge of the battery.Most of this

information would not be available to the ground team live during

operation, but it is a very useful tool for live analysis of the autonomy.

The GroundDashboard displays downlinked data products, such as a

panorama of Europa, as well as current science value assessments. It

also provides a means to uplink new commands to the Lander.

Finally, there are dashboards to visualize the planners and execu-

tives. The TRACE visualization displays a BPMN diagram, similar to

that shown in Fig. 13. The visualization showcases the current state of

TRACEbyhighlighting diagramblocks ingreen to representwhere the

Lander is in terms of execution. The MEXEC visualization includes a

Gantt chart of the current MEXEC plan, including future planned

activities. The MEXEC visualization also includes a resource timeline

that conveys how MEXEC expects resources to be consumed accord-

ing to the current plan, such as decreasing the battery state of charge.

C. Scenario-Based Experimentation

To test the autonomy’s behavior in RSM-1, we wished to evaluate

how different planners perform when presented with both nominal

and off-nominal scenarios.We evaluated the prototype by running 12

different simulated scenarios and comparing each scenario to a

Fig. 13 BPMN diagram showcasing an example TRACE plan. In this example plan, the Lander will first turn on the seismometer while also taking a
panorama when the Earth is in view. It will then identify excavation sites to sample from and later initiate a downlink. BPMN notation allows for
abstractions, such as the task “Find Excavation Sites,” which are made up of several other primitive tasks.

Fig. 12 Diagram showing the expected communicate until death (CUD) transition compared to the actual CUD transition for a given run. The black bar
shows when the system should transition into CUD, while the green bar shows when the actual transition occurred. The transition should occur when the
amount of energy left in the battery is equal to the energy needed to downlink all remaining decisional and mandatory data, or the intersection of the red
and blue lines. This figure shows an off-nominal casewhere the transition occurred after the intersection. In a nominal scenario, both the red andblue lines
should be equal to zero at the end; the failure shown means that the Lander did not have enough energy to downlink all the remaining data.
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nominal-baseline scenario. To compare scenarios, we established a

set of success criteria, examples of which are shown in Table 2. These

success criteria were selected as they represent fundamental require-

ments and constraints of RSM-1 such as listening for uplinks while

downlinking, transitioning to CUD at the appropriate time, and

choosing excavation sites in the order of highest utility. Successfully

achieving each of these fundamental requirements helps prove the

capability of the software and shows that it can be used to support

additional complexity. Each criterionwas evaluated by parsing all the

data at the end of a simulated run to ensure that constraints were met

and the Lander transitioned to the proper states (such as CUD) at the

proper times.

Ideally, for testing, a sensitivity analysis would be performed

wherein the various parameters in the system and scenario configu-

ration spaceswould be systematically varied. This could then be used

to determine the sensitivity (or ideally lack thereof) of the parameters

to the environment conditions. Unfortunately, running through the

full 30-day mission required over 24 h of simulation time. Therefore,

this testing approach was unfeasible. Instead, 12 scenarios were

developed that evaluated likely nominal and off-nominal situations

for the Lander.

The 12 scenarios are listed in Table 3. These scenarios test different

aspects of the system mission objectives, such as changing the

amount of remaining energy in the battery to evaluate how the Lander
manages its finite resources (design objective 4) or producing more
data than predicted to see how the Lander will prioritize sending
information back home (design objective 3) and maximizing the
expected overall science return (design objective 2).
Overall, both planners were able to meet a majority of the scenario

success criteria, and they successfully achieved the system design
objectives. However, the interesting results are in the details of how
they accomplished the RSM-1 mission. By using the prototype as a
testbed for different scenarios, we can investigate how changes in the
environment ormission rules are interpreted by the autonomy.Due to
the large amount of data procured from running these scenarios, we
will discuss only some of the results from a single baseline scenario
using the TRACE planner and explain the interesting findings from
running the off-nominal scenarios with both planners. These selected
examples highlight how the prototype can provide insight into the
autonomy and help the ground team identify tradeoffs in the mission
design.

1. Baseline Results

The baseline mission investigates how the RSM-1 mission would
be executed under ideal conditions. In this mission, all of the samples
collected have positive biosignatures. This means that there is a large
amount of scientifically valuable data to downlink. We expect this
mission to be executedmore quickly than the other scenarios because
more valuable data will be generated earlier in the mission. The large
amount of data should lead to an earlier CUD transition as well as
decreased episodic instrument data collection. For brevity, we will
discuss the TRACE results for the baseline mission, but the MEXEC
results were functionally the same.
The RSM-1 mission sets a rather conservative communication

strategy that attempts to downlink all interesting scientific data
before the end of the mission by using a CUD transition. In the
baseline mission, the CUD transition occurred after 79.5% of
the mission duration had elapsed (state of charge of the battery at
the time of transition was 34.2%) as shown in Fig. 14. Based on
these results, specifically the need to use more than 20% of the
battery to downlink the remaining data products, the ground may
consider whether the RSM-1 communication strategy is limiting the
overall success of the mission. Instead, they might decide to send
fewer data products back to Earth if thismeans thatmore science can
be achieved.
The hierarchical utility model attempts to maximize the amount of

scientific information downlinked by the end of the mission.
Throughout the baselinemission, the Lander downlinked 7167Mbits
of data as shown in Fig. 14a, of which about half was decisional and
the other half was mandatory. Sampling instrument analysis data
accounted for about 70% of the downlinked data, while the sampling
perception data accounted for about 26%. Science camera analysis,
seismometer instrument analysis, and engineering data products
made up the remaining 4%. Because all of the collected samples
had positive biosignatures, this mix of science data products is
expected. The majority of returned information should involve the
successful confirmation of biosignatures, but at the same time the
ground should still receive information from the episodic instru-
ments. Other scenarios might prefer a different weighting to these
data products depending on the results they contain, such as fewer
sampling data products if no biosignatures are found.
The three highest energy consuming onboard activities across the

mission were downlink (47.7%), uplink (18.8%), and thermal
(13.9%) as shown in Fig. 15. Collectively, these three activities
accounted for 80% of the total consumed energy. Downlinking used
almost half of the total onboard energy. This is interesting because, in
this scenario, the downlink decisions are made by the science
autonomy. In a real mission, ground has the option to override the
decisions of onboard autonomy and requests data that the Lander has
not downlinked. However, this result underscores that downlinking
significantly impacts the energy budget of the Lander. If the ground
team can trust the autonomy to make optimal downlink decisions, it
will likely lead to a more efficient mission.

Table 2 Sample of the scenario success criteria

Category Criteria

System State The Lander shall transition to CUD mode.
Sampling The Lander shall choose excavation sites in the order of

decreasing pre-excavation value.
The Lander shall follow the science subway map and then
collect from all uncollected targets.
The Lander shall perform sample activities only while
Earth is in view.

Episodic
Activities

The Lander shall collect and analyze seismometer data
until CUD transition.
The Lander shall take episodic panoramaswithin specified
time intervals until the CUD transition.

Communication The Lander shall downlink and/or uplink only while Earth
is in view.
The Lander shall listen for uplinks while downlinking and
at each scheduled uplink start time.
The Lander shall immediately initiate a downlink when
transmit-now decisional data are generated.
The Lander shall downlink all decisional data products at
the next available downlink opportunity.

GITL
Interaction

The Lander shall wait to receive a ground hold release
before resuming the mission.
The Lander shall receive and apply ground overrides to
onboard science values and scores.
The Lander shall receive and immediately switch to using
any ground-uplinked onboard plans.

Table 3 List of the tested scenarios for RSM-1

Category Scenario

Science Mission (Baseline mission) All collected samples have positive
biosignatures.
All collected samples have negative biosignatures.
The first collected sample has a negative biosignature.

Hardware Fault Multiple battery packs fail upon landing on Europa.
The battery suddenly depletes midmission.

Environmental The ambient temperature is 15 K lower than expected.
Communications A large amount of decisional data are generated.

A large amount of mandatory data are generated.
The downlink bandwidth suddenly decreases
midmission.
The energy allocation for the communications is
increased.

GITL Ground overrides the excavation and collection order.
Midmission, the ground uploads an alternate plan/task net
for the Lander to execute.
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2. Off-Nominal Scenario Results

Rigorously testing off-nominal scenarioswill ensure that the Lander
will continue to make acceptable decisions when dealing with unex-
pected events. Specifically we are interested in events such as the state

of charge of the Lander deviating from the expected value, the total
onboard data volume deviating from the expected value, unexpected
changes to the mission priorities, as well as hardware faults such as

several battery packs failing at once. We expect the Lander to recover
from these events by adapting to the latest information such as sched-
uling additional downlinks to handle the increased data volume or

decreasing the number of scheduled activities to deal with a decreased

state of charge. For faults or unexpected events of a catastrophic nature
such as the robotic arm breaking in two, the Lander is expected towait
for instructions from the ground.
Figure 14 shows results from our experimentation using the

TRACE planner. One of the largest variations between the baseline
and off-nominal scenarios is the number of samples collected as
shown in Fig. 14b. The scenarios with a low starting battery, sudden
low battery, and sudden downlink slowdown caused the fewest
number of samples collected with each collecting two to three
samples on average. These results make sense in that due to a lower
battery state of charge or slower downlinks requiring additional
energy, the number of samples is sacrificed in order to downlink
any remaining onboard data. This is yet another depiction of how the
ground may want to reprioritize data products in order to perform
additional science.
The results of scenario 2, where all collected samples had negative

biosignatures, demonstrate the impact of negative biosignatures on
the science return of the mission. Figure 14b shows that the Lander
collected all nine samples compared to an average of about five
samples collected in other scenarios. Because all nine samples were
negative, however, the Lander did not havemuch data to downlink, as
shownFig. 14a. The smaller data volume allows the Lander to live for
almost 30 Earth days and transition to CUD much later than the
baseline.
Scenario experimentation also confirms that the Lander is able to

perform an increased amount of science when operating in the fully
autonomous mode compared to when the Lander must wait for
instructions from the ground. Scenarios 4 and 6 involved the ground
updating the order in which the Lander will excavate sites and
replacing the entire onboard plan, respectively. Both scenarios down-
linked less data as shown in Fig. 14a and collected fewer samples than
the baseline scenario as shown in Fig. 14b. This is likely due to having
towait for the ground to upload instructions. This also showswhy the
Lander spent more time in CUD than the baseline; waiting for the
ground caused the Lander to collect additional science toward the end
of the mission. Rather than optimizing when to downlink data, the
majority of data had to be downlinked during CUD. The baselinewas

Fig. 15 Analysis of total onboard energy consumed by each activity
during the baseline mission with TRACE, dominated by communication
and heating.

Fig. 14 Comparison of selected results across all 12 scenarios for TRACE. This figure shows how different factors, such as the environment, hardware
failures, and interventions from the ground, impact the mission and overall science return.

WAGNER ETAL. 53

D
ow

nl
oa

de
d 

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n 

L
ab

or
at

or
y 

on
 M

ar
ch

 1
9,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
12

94
 



able to send data down earlier so that there would be less data to
downlink at the end and therefore spend less time in CUD. This
difference suggests that the autonomy can be trusted to maximize
science value and should rarely be overridden by GITL. Both scenar-
ios involved changing the Lander state or plan once. This had a
noticeable impact on the mission results, and would be expected to
increase if there were additional interventions made by the ground.
We believe that continued testing with off-nominal scenarios is a
major step in building trust in the autonomy.
We were also very interested to see when CUD occurred in differ-

ent scenarios, as shown in Fig. 14c, as this affects howmany scientific
data products are received by ground. Scenario 10, the slow heating
scenario, was particularly interesting because it had a later transition
to CUD relative to the baseline scenario despite having less energy. It
was discovered that sampling tasks, which require the most amount
of energy, were not performed as much as in the baseline; sampling
tasks produce the largest data products that require themost energy to
downlink. By shedding these activities, the planners were able to
perform additional episodic data collection (seismometer data, pan-
oramas), which produces relatively small data products that do not
require much energy to downlink. As a result, the CUD transition
happened later than the baseline.
The results of scenario 11, where the Lander suddenly takes longer

to downlink data, demonstrate the impact of exogenous events on the
science return of the mission. Figure 14a shows that a lot of data was
left onboard the Lander. This makes sense given that the Lander
cannot currently anticipate exogenous events and therefore was not
able to downlink all the data as planned. Figure 14d shows that the
Lander transitioned to CUD with the highest battery percentage out
of all the scenarios; this is because the Lander predicted that it would
need more energy to handle the suddenly slowed communications.
This also caused the Lander to sacrifice collecting additional samples
as shown in Fig. 14b.
Comparing the results of scenarios 7 and 12, where the Lander

produces additional decisional and mandatory data, respectively,
shows the impact of deciding when to schedule downlinks. In the
case of decisional data for RSM-1, the Lander is expected to down-
link the data at the next available opportunity. By downlinking the
decisional data at the next opportunity, the Lander in scenario 7 is still
able to collect six samples like in the baseline scenario. Additionally,
scenario 7 transitions to CUD later than the baseline, as depicted in
Fig. 14c. Note that it does produce significantly less mandatory data
than the baseline; this is because it did not collect as much seismom-
eter or panorama data so that it could instead collect more samples.
Unlike decisional data, mandatory data are only expected to come
down at some point before the end of the mission. Typically, the
Lander waits until the CUD transition to downlink all the mandatory
data. With this strategy, the Lander collected only four samples and
produced significantly less data overall compared to the baseline and

scenario 7. It also spent a significant amount of time inCUDas shown

in Fig. 14c. This scenario depicts the difficulty in deciding when to

transition to CUD as well as the tradeoffs the Lander must consider

regarding whether to downlink data it already has or try to collect
more science but reserve less energy for downlinking.
Overall it was found that both MEXEC and TRACE showed a

sensitivity to the expected duration of activities. In the worst cases,

MEXEC and TRACE would delay future activities due to long-

running tasks; this could cause the Lander to be late for or altogether
miss a scheduled uplink. This also highlighted the need for the ability

to pause or cancel certain activities. Pausing activities requires the

infrastructure to deconflict resource use, such as the ability to pause

the use of the high-gain antenna for taking an episodic panorama and

instead use the HGA to downlink data products.
Individually, TRACE was relatively easy to use as well as under-

stand the progress of TRACE in the mission. It was found that

TRACE will ultimately need a forward prediction capability in order

to better model the resources of the system as it is currently purely

reactive. For example, TRACE would sometimes run an activity that

produced a large data product right before the CUD transition. It did

not predict that producing a large data product right before the CUD
transition would cause the Lander to now have insufficient energy to

downlink all onboard data products.
It was found that MEXEC had a strong ability to respond to

unplanned events during the mission. For example, in one scenario,

MEXEC started the transition to CUD earlier than it needed to (this
was due to an overly conservative energy estimate). After all data

products had been downlinked, MEXEC saw that it had remaining

energy onboard and decided to transition out of CUD and collect

more data. This behavior was not explicitly defined and shows the

potential benefits of a utility-based planner. Despite this potential

benefit, a major challenge with MEXEC was understanding why the
planner chose to perform certain actions. Specifically, it was not

always clear how changing certain utility values would affect the

overall mission.

D. Alaska Field Test

Experimentation using our autonomy on actual hardware has
already begun. In June 2022, an operational readiness test (ORT)

of a prototype Lander with an attached arm was performed. Photo-

graphs of this test are shown in Fig. 16.Although the primary focus of

the test was validation of the SAEL framework to properly perform

excavations and sample collections, the autonomy software using the

TRACE executive commanded themission. Following the success of
the ORT, the prototype Lander and arm participated in a field test

demonstration inAugust 2022 on theMatanuskaGlacier inAlaska as

shown in Fig. 1. Bowkett et al. [66] present the results from this test.

The field test, using SAEL, the autonomy software, and TRACE,was

Fig. 16 Prototype Lander used during operational readiness test.
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designed to showcase the progression of activities that constitute
sample acquisition. Activities included the use of perception to
discriminate site selection, performing a site excavation with an
attached drill, and performing a sample collection from an excavated
site using an attached scoop. During the field test, the Lander suc-
cessfully demonstrated end-to-end sampling where it excavated
10 cm into the surface and collected 100 g of subsurface material.
The Alaska field test also used the TRACE executive as part of the 58
different sampling tests performed on the glacier. For more details,
please refer to the referenced paper.

VI. Future Work

The purpose of the Europa Lander Autonomy Prototype is to
strengthen the understanding of autonomydesign in differentmission
scenarios. As such, it has helped us identify a number of improve-
ments that can be made to the planners and the utility model.
One of the key areas of the hierarchical utilitymodel that should be

investigated next is incorporating uncertainty into the model. Doing
so will help make the system more robust to uncertainty such as
stochastic activity durations; if a task seems promising but is unlikely
to succeed given its constraints, the planner may decide on a different
course of action.Machine learning algorithms should be investigated
to further improve the capabilities of the autonomy, from modeling
activity durations to forecasting events, such as an erupting geyser, so
that theLander is prepared to take a picture. The limited knowledge of
Europa, in addition to the need to explain results to mission oper-
ations, will make this a very difficult but interesting challenge.
Our results suggest that the explainability of the planners can be

further improved. Although the hierarchical utility model can convey
intent within the system, it does not answer questions such as why the
planner did not choose alternative actions. For a mission like the
Europa Lander that heavily uses autonomy, mission operators will
need to be able to trust the autonomy tomake correct decisions.Aswe
have shown in this paper, running various experiments with off-
nominal situations can build confidence in the autonomy, but it does
not yet reach the level of trust desired bymission controllers. To reach
this level will require greater explainability within the system. This
includes a means to communicate not just the choices made but the
alternatives that were considered. This also includes compact ways to
better represent both the current and future set of actions chosen by
the planner.
This work can also be extended to benefit other missions. A focus

of this work has been to create a reusable architecture that will work
for more missions than just the Europa Lander. To that end, the
software is highly modular such that different components can be
replaced with ease.

VII. Conclusions

In this paper, we present an autonomous software prototype that
can execute complex and highly constrained missions with limited
interventions from humans. We define six design objectives that are
critical to the success of a Europa Lander Mission Concept, and
evaluate our design based upon its ability to achieve these objectives.
Many of these design objectives are achieved by using a hierarchical
utility model. This model allows for various information and data
products produced by the system to be grouped together and reasoned
about at levels of abstraction. The various levels of abstraction are
used by the Lander to fulfill all of its system design objectives,
namely, maximizing the number of completed mission objectives,
maximizing the expected overall science return, managing finite
resources, reacting to off-nominal events, collecting data and inter-
preting findings in situ, and finally determining what information to
send back to Earth and when. These objectives represent several of
themajor challenges the Landerwill face on Europa, such as a limited
lifetime, extreme uncertainty, and communication blackouts.
We further present a means to prioritize which data products

should be downlinked first and describe an architecture for in-situ
analysis of science data products.We show how the priority of data is
based on the information contained within the data product. We

evaluate the scientific value through both in-situ analysis using the
onboard instruments as well as a predicting scientific value based on
past measurements. These features allow the Lander to make deci-
sions about the quality of science performed, which in turn is used to
inform future actions.
We demonstrate our success in achieving the system design objec-

tives through several different scenario-based tests run both in sim-
ulation and on actual hardware as well as from different users studies
regarding the behaviors for the autonomy. These studies highlight the
capabilities and importance of autonomy for decision making, which
if performed on Earth instead of Europa, would lead to a vast
reduction in the total amount of science performed.
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