
DistGNN: Scalable Distributed Training for Large-Scale Graph
Neural Networks

Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evangelos Georganas,
Alexander Heinecke, Dhiraj Kalamkar, Nesreen K. Ahmed, Sasikanth Avancha

[vasimuddin.md,sanchit.misra,guixiang.ma,Ramanarayan.Mohanty,evangelos.georganas,
alexander.heinecke,dhiraj.d.kalamkar,nesreen.k.ahmed,sasikanth.avancha]@intel.com

Intel Corporation

ABSTRACT
Full-batch training on Graph Neural Networks (GNN) to learn the
structure of large graphs is a critical problem that needs to scale
to hundreds of compute nodes to be feasible. It is challenging due
to large memory capacity and bandwidth requirements on a single
compute node and high communication volumes across multiple
nodes. In this paper, we present DistGNN that optimizes the well-
known Deep Graph Library (DGL) for full-batch training on CPU
clusters via an efficient shared memory implementation, communi-
cation reduction using a minimum vertex-cut graph partitioning
algorithm and communication avoidance using a family of delayed-
update algorithms. Our results on four common GNN benchmark
datasets: Reddit, OGB-Products, OGB-Papers and Proteins, show up
to 3.7× speed-up using a single CPU socket and up to 97× speed-up
using 128 CPU sockets, respectively, over baseline DGL implementa-
tions running on a single CPU socket.

KEYWORDS
Graph Neural Networks, Graph Partition, Distributed Algorithm,
Deep Learning, Deep Graph Library
ACM Reference Format:
Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evan-
gelos Georganas, Alexander Heinecke, Dhiraj Kalamkar, Nesreen K. Ahmed,
Sasikanth Avancha. 2021. DistGNN: Scalable Distributed Training for Large-
Scale Graph Neural Networks. In The International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’21), Novem-
ber 14–19, 2021, St. Louis, MO, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3458817.3480856

1 INTRODUCTION
Graphs are ubiquitous across multiple domains: social networks,
power grids, biological interactomes, molecules etc. In the fast-
emerging domain of geometric deep learning [5], a specific field
called Graph Neural Networks (GNN) has recently shown impres-
sive results across a spectrum of graph and network representa-
tion learning problems [12, 24, 36, 38]. [34] shows that GNNs are a
very powerful mechanism to learn the structure of non-Euclidean

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3480856

data such as graphs. GNNs combine low-dimensional embeddings
associated with each vertex in a graph with local neighborhood
connectivity for downstream machine learning analysis, e.g., vertex
property prediction, link property prediction and graph property
prediction.

Scaling GNN training for large graphs consisting of hundreds
of millions of vertices and edges is a huge challenge, due to high
memory capacity and bandwidth requirements as well as high
communication volume to ensure convergence. For large graphs,
memory capacity requirements during training restrict the size
of the problem that can be solved on a single socket. Mini-batch
training works around these restrictions via neighborhood sam-
pling [6, 8, 13, 36], to create a mini-batch of graph samples, which
reduces the working set size. Another technique to mitigate mem-
ory capacity problems is to use the aggregate memory capacity of
a distributed system [18, 22, 29]. It has been shown that, in some
cases, neighborhood sampling achieves lower accuracy compared
to full-batch training [18]. In this work, we focus on full-batch
training and discuss distributed memory solutions that scale across
mutliple Intel® Xeon® CPU sockets; we plan to address scaling
mini-batch training in future work.

Challenges of Full-batch Training: GNN training poses the following
specific challenges compared to traditional DL workload training:
(a) Communication volume increases because vertex feature vec-
tors and parameter gradients must be communicated, increasing
pressure on the communications network, which could become
a bottleneck; (b) lower flops density and sequential nature of the
training operations make it challenging to overlap computation
with communication, exposing communication time; (c) due to
high byte-to-flop ratio, the aggregation operation tends to be mem-
ory and communication bandwidth bound. On a single CPU socket,
optimal cache and memory bandwidth utilization are important
factors in achieving good performance, while in a distributed set-
ting, graph partitioning [19, 21, 32] plays a crucial role in managing
the communication bottleneck among compute sockets.

Current graph processing frameworks [11, 20, 23, 33] are capable
of processing large graphs, but they do not support DL primitives.
Consequently, the research community has developed libraries
such as DGL [31] and PyTorch Geometric (PyG) [10] with capability
of message passing in the graphs. These libraries employ current
DL-based frameworks such as TensorFlow [1], PyTorch [27], and
MXNet [7], coupling DL primitive operations with message passing.
However, a huge challenge is that key compute primitives within
these libraries are typically inefficient for single-socket shared-
memory and multi-socket distributed-memory CPU settings. We
chose DGL due to its rich functionality and flexibility. However,

1

https://doi.org/10.1145/3458817.3480856
https://doi.org/10.1145/3458817.3480856
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SC ’21, November 14–19, 2021, St. Louis, MO, USA

DGL’s shared memory performance is poor on CPUs and it does not
support full batch training on distributed systems. In this work,
we enhance DGL by developing highly optimized single-socket and
distributed solutions.

Present Work. In this work, we discuss DistGNN, which consists
of a set of single-socket optimizations and a family of scalable,
distributed solutions for large-scale GNN training on clusters of Intel
Xeon CPUs. Our key contributions are as follows:
• A highly architecture-optimized implementation of multi-
ple variants of the aggregation primitive implemented as
a customized SpMM (Sparse Matrix-Matrix Multiplication)
operation for single socket CPUs. This is achieved by effi-
cient cache blocking, dynamic thread scheduling and use of
LIBXSMM [14] for loop reordering, vectorization and JITing
to reduce instruction count. On a single CPU socket (Intel
Xeon 8280 with 28 cores), compared to the DGL baseline,
we achieve 3.66× speedup for the GraphSAGE full-batch
training on the Reddit dataset [13] (this is 3.1× faster than
what is reported in [3]) and 1.95× speedup on OGB-Products
dataset [15].
• Novel application of vertex-cut based graph partitioning
to large-graphs to achieve an optimal solution to reduce
communication across CPU sockets during full-batch GNN
training.
• Novel application of delayed update algorithm to feature
aggregation to achieve optimal communication avoidance
during full-batch GNN training. To reduce the impact of com-
munication, we overlap it with computation by spreading it
across epochs; overlap occurs at the expense of freshness –
aggregation uses stale, partially-aggregated remote vertex
features. Our optimizations for single socket make it even
more challenging and critical to overlap communicationwith
computation.
• First-ever demonstration of full-batch GNN training on CPU-
based distributed memory systems. We showcase the per-
formance of our distributed memory solution on the OGB-
papers dataset [15], which contains 111 million vertices
and 1.6 billion edges. Our solution scales GraphSAGE full-
batch training to 128 Intel Xeon CPU sockets, achieving 97×
speedup compared to the DGL (un-optimized) baseline and
83× compared to our optimized implementation, respectively,
running on a single CPU socket.

The paper is organized as follows. Section 2 describes the core
operation of GNN, the aggregation function, and DGL library. Sec-
tion 3 positions the related literature. In Section 4, we discuss our
shared memory solution. We analyze compute characteristics of
GNN operations and detail various architecture-aware optimizations.
Section 5 describes graph partitioning and a set of distributed algo-
rithms. Section 6 demonstrates the performance of our solutions.
Section 7 summarizes our work and discusses future work.

2 BACKGROUND
GNNs learn graph structure through low-dimension embeddings of
vertices or edges. They compute these embeddings using an aggre-
gation function, which recursively gathers multi-hop neighborhood

features to encode vertex or edge features. The aggregation func-
tion also learns the shared weights by training a shallow neural
network on the gathered features. Depending on the application,
neighborhood aggregation precedes or succeeds the neural network
layers. The aggregation function operates via message-passing be-
tween vertices or/and edges using an Aggregation Primitive (AP),
which constitute a core part of the aggregation function.

2.1 Aggregation Primitive
Let G(V, E) be an input graph with verticesV and edges E, and let
𝑓V and 𝑓E be the vertex and edge features, respectively. The sizes of
𝑓V and 𝑓E are |V|×𝑑 and |E |×𝑑 , respectively, where𝑑 is the feature
vector size. In effect, the AP is a tuple (𝑓V , 𝑓E , ⊗, ⊕, 𝑓O), where ⊗
and ⊕ are element-wise operators on 𝑓V or 𝑓E (or a combination
thereof) to produce output features 𝑓O .

In AP, operator ⊗ can be an element-wise binary or unary opera-
tor. In binary form, it operates on a pair of inputs; valid pairs are
(𝑓V , 𝑓V) and (𝑓V , 𝑓E), in an appropriate order. Operator ⊕ acts as
element-wise reducer that reduces the result of binary operation on
to the final output. Mathematically, AP can be expressed as,

AP(𝑥,𝑦, ⊗, ⊕, 𝑧) : ⊕(⊗(𝑥,𝑦), 𝑧), (1)
∀𝑥,𝑦, 𝑧 ∈ 𝑓V , 𝑓E

If one of the inputs is NULL, then operator ⊗ takes the unary form;
it copies the input features and reduces them to the final output.
Mathematically, assuming 𝑦 = 𝜙 , (where 𝜙 stands for NULL) AP
using the unary operator is,

AP(𝑥, 𝜙, ⊗, ⊕, 𝑧) : ⊕(𝑐𝑜𝑝𝑦 (𝑥), 𝑧), (2)
∀𝑥, 𝑧 ∈ 𝑓V , 𝑓E

Given a graph, Equations 1 and 2 can be formulated as SpMM:
𝑓𝑂 = 𝐴 × 𝑓𝑋 , where 𝐴 is the graph adjacency matrix and 𝑓𝑋 is the
dense feature matrix. DGL featgraph [17] models the AP primitive
as SpMM and provides a single template API for AP computations.
In section 4, we describe variants of SpMM for different forms of AP
and rigorous architecture-aware optimizations to accelerate it.

2.2 GNN Libraries
DGL and PyG are the two prominent emerging libraries for perform-
ing GNN operations. Due to its rich set of features, in this work, we
use DGL to implement our single-socket and distributed algorithms.

DGL provides graph abstractions with rich set of functionality
for manipulation and utilization of graph objects. It defines gen-
eral computations on graphs as the message passing paradigm. For
computations on vertices, the message-passing functionality is for-
mulated as SpMM. For computations on edges, the message-passing
functionality is formulated as sampled dense-dense matrix multi-
plication (SDDMM). It provides in-built support for various binary
and reduction operators as well as support for user-defined func-
tions. The distillation of the core GNN operations as a few matrix
multiplication operations enables parallelization and various other
optimizations, such as vectorization. Additionally, DGL relies on pop-
ular DL frameworks for its neural network operations. It provides

2

DistGNN: Scalable Distributed Training for Large-Scale Graph Neural Networks SC ’21, November 14–19, 2021, St. Louis, MO, USA

the flexibility of selecting from popular backend DL frameworks
such as TensorFlow, PyTorch, and MXNet.

3 RELATEDWORK
Prior art in this field encompasses both full-batch and mini-batch
training approaches. Due to small model sizes relative to other DL
workloads, distributed GNNs employ data parallelism, by partitioning
the input graph across CPU sockets or GPU cards.

A few approaches have been proposed for GPU-based distributed
memory systems, which we describe briefly below. NeuGraph [22]
describes a single node multi-GPU parallel system for training
large-scale GNN. It introduces a new programming model for GNN,
leveraging a variant of vertex-centric parallel graph abstraction
GAS [11]. NeuGraph partitions the input graph using min-cut Metis
partitioning. Roc [18], a distributed multi-GPU GNN training system,
applies an online regression model to get the graph partitions. Cou-
pled with sophisticated memory management between the host and
the GPU and a fast graph propagation optimized GPU tool called Lux,
Roc showcases scalable performance for large graphs on distributed
GPU system. Leveraging their scalable solution, Roc trains more com-
plex GNN model architecture to achieve better model accuracy. Roc
demonstrates the efficacy of their solution on small benchmark
datasets of Reddit and Amazon. CAGNET [29] implemented a suite
of parallel algorithms: 1D, 1.5D, 2D, and 3D algorithms, for GNN
training using complete neighborhood aggregation. Inspired by
SUMMA algorithm [30] for matrix multiplication, they apply dif-
ferent kinds of matrix blocking strategies for work division among
the compute nodes. Their solution uses optimized cuSPARSE for
the SpMM computations; however, it suffers from poor scaling due
to communication bottlenecks.

For CPU-based distributed systems, all the approaches proposed
so far have been for mini-batch training as described below. Ali-
Graph [35] presents a comprehensive framework building various
GNN applications. It supports distributed storage, sampling, and
aggregator operators, along with a suite of graph partitioning tech-
niques including vertex- and edge-cut based ones. AliGraph im-
plements and showcases the efficacy of the interesting concept of
caching the neighbors of important vertices to reduce the communi-
cation load. However, AliGraph does not report the scaling of their
solution. Dist-DGL [37], a distributed GNN processing layer added
to the DGL framework. It holds the vertex features in a distributed
data server which can be queried for data access. Due to the large
execution time of their inefficient graph sampling operation, it man-
ages to overlap communication with the sampling time. Dist-DGL
demonstrates linear scaling on the largest benchmark dataset, the
OGBN-Papers.

Various graph processing frameworks for graph analytics and
machine learning have been proposed in the literature [11, 20, 23,
33]. The most notable property of these frameworks is the Gather-
Apply-Scatter (GAS) model. The aggregate step in GNN is a simple
message passing step between the neighbors with synchronization
at the end of the step. These frameworks using synchronous GAS
can naturally implement the aggregate step of GNN; however, they
lack the support for implementing various graph neural network
operations as well as the graph attention models.

4 DISTGNN: SHARED-MEMORY ALGORITHM
AP accounts for a majority of the run-time in GNN applications. In
this section, we describe techniques we have created to accelerate
their implementations within DGL for a shared memory system.

4.1 Baseline Implementation of Aggregation
Primitive in DGL

Alg. 1 provides a pseudo code of the AP in DGL. It uses a customized
SpMM-like formulation. Given an input graph G(V, E), let 𝐴 be
its adjacency matrix in CSR format. 𝐴[𝑣] gives the list of neighbors
of 𝑣 from which there is an edge incident on 𝑣 . For each edge
𝑒𝑢𝑣 ∈ E, we call 𝑢 the source vertex and 𝑣 the destination vertex.
DGL pulls messages from vertex 𝑢 and edge 𝑒𝑢𝑣 and reduces them
into vertex 𝑣 . More formally, for each edge 𝑒𝑢𝑣 incident from vertex
𝑢 to vertex 𝑣 , DGL computes the binary operator ⊗ element-wise
between corresponding vertex feature vector of 𝑢 (𝑓V [𝑢]) and edge
feature vector of 𝑒𝑢𝑣 (𝑓E [𝑒𝑢𝑣]). Subsequently, it reduces the result
with the vertex features of 𝑣 in the output feature matrix (𝑓O [𝑣]) by
computing the reduction operator ⊕ element-wise and stores it into
𝑓O [𝑣]. ⊗ can also be a unary operator. In that case, ⊗ is computed
on either 𝑓V [𝑢] or 𝑓E [𝑒𝑢𝑣] and reduced with 𝑓O [𝑣]. Table 1 details
various binary/unary operators (⊗) and reduction operators (⊕)
used in DGL.

The computation is parallelized by distributing destination ver-
tices across OpenMP threads. This way, there are no collisions
because only one thread owns the feature vector 𝑓O [𝑣] at each des-
tination vertex (𝑣) and reduces the pulled source feature vectors
into 𝑓O [𝑣].

Algorithm 1 Aggregation Primitive in DGL

Require: Matrix 𝐴 of size |V | × |V | in CSR format
Require: Input feature matrix 𝑓V of size |V | × 𝑑 (Vertex feature set)
Require: Input feature matrix 𝑓E of size |E | × 𝑑 (Edge feature set)
Require: Output feature matrix 𝑓O of size |V | × 𝑑 (Initialized to zeros)
Require: Unary/Binary operator: ⊗, Reduction operator: ⊕
1: for 𝑣 ∈ V in parallel do
2: for 𝑢 in 𝐴 [𝑣] do
3: 𝑓O [𝑣] ← 𝑓O [𝑣] ⊕ (𝑓V [𝑢] ⊗ 𝑓E [𝑒𝑢𝑣])
4: end for
5: end for

Table 1: Binary/Unary and Reduction Operators in DGL

Unary/Binary operands Reduction output (𝑧)
Operator (⊗) Operator (⊕)

add/sub/mul/div 𝑥 ,𝑦 sum/max/min 𝑧 ⊕ (𝑥 ⊗ 𝑦)
copylhs 𝑥 , 𝜙 sum/max/min 𝑧 ⊕ (copy(𝑥))
copyrhs 𝜙 , 𝑦 sum/max/min 𝑧 ⊕ (copy(𝑦))

4.2 Efficient Aggregation Primitive
In case of large graphs, the feature matrices – 𝑓V , 𝑓E and 𝑓O – don’t
fit in cache. Moreover, real world graphs are typically highly sparse.
To aggregate the feature vector of a vertex, the feature vectors of
all its neighbors and the corresponding edges must be accessed.
Feature vectors of edges incident on a vertex can be contiguously

3

SC ’21, November 14–19, 2021, St. Louis, MO, USA

stored in 𝑓E and are only accessed once in Alg. 1. This effectively
makes it a contiguous access of large enough block of memory that
is used once - hence, a memory bandwidth (BW) bound streaming
access. On the other hand, those of the neighbors in 𝑓V can be non-
contiguous, sparsely located (leading to random gathers) and will be
used as many times as the number of their neighbors. Moreover, a
feature vector, 𝑓V [𝑣], accessed once and brought into cachemay get
thrashed out before it is needed again. Hence, in many cases, 𝑓V [𝑣]
needs to be fetched from memory despite having been accessed
before. Each such access adds to memory BW requirement and also
has to pay the memory latency cost for the first few cache lines
before the hardware prefetcher kicks in.

Cache blocking. Therefore, we need to apply cache blocking to take
advantage of the cache reuse present in the graph, and avoid random
gathers. We can either block 𝑓V and run through entire 𝑓O for every
block of 𝑓V or block 𝑓O and run through entire 𝑓V for every block
of 𝑓O . In the latter case, we need to parallelize across source vertices
(𝑢) leading to race conditions on destination vertices (𝑣). Therefore,
we block 𝑓V . Alg. 2 illustrates how we apply cache blocking using
blocks of size 𝐵. First, we create 𝑛𝐵 blocks by creating a CSR matrix
for each block for easy access of neighbors. For each block, we go
through all the destination vertices (𝑣) in parallel ensuring that
all threads work on one block of 𝐵 source vertices at a time. As
a result, any feature vector in 𝑓V read by some thread 𝑡 could be
in the L2 cache of the CPU if/when some other thread 𝑡 ′ reads the
same feature vector. Therefore, 𝑓V is read from memory only once
but we make 𝑛𝐵 passes over 𝑓O . Each additional pass of 𝑓O adds
to BW requirement. Hence, the block size (𝐵) should be as large
as possible while ensuring that a block of 𝑓V can fit into cache.
Sparser graphs allow us to have larger 𝐵 as not all feature vectors
of 𝑓V are active in a block. However, finding the best block size is
challenging since many graphs follow a power law and there could
be vertices with extremely large neighborhoods resulting in more
feature vectors being active in the corresponding block of 𝑓V .

Algorithm 2 Application of Blocking on Aggregation Primitive
Require: Matrix 𝐴 of size |V | × |V | in CSR format
Require: Input feature matrix 𝑓V of size |V | × 𝑑 (Vertex feature set)
Require: Input feature matrix 𝑓E of size |E | × 𝑑 (Edge feature set)
Require: Output feature matrix 𝑓O of size |V | × 𝑑 (Initialized to zeros)
Require: Unary/Binary operator: ⊗, Reduction operator: ⊕
Require: Block size, 𝐵
1: 𝑛𝐵 ←

⌈
|𝑉 |
𝐵

⌉
{Number of blocks}

2: {𝐴0, 𝐴1, . . . , 𝐴𝑛𝐵−1 } ← Create CSR matrices for all blocks
3: for 𝑖 ∈ 0, . . . , 𝑛𝐵 − 1 do
4: for 𝑣 ∈ V in parallel do
5: for 𝑢 in 𝐴𝑖 [𝑣] do
6: 𝑓O [𝑣] ← 𝑓O [𝑣] ⊕ (𝑓V [𝑢] ⊗ 𝑓E [𝑒𝑢𝑣])
7: end for
8: end for
9: end for

Multithreading. Many graphs following the power law could result
in a significant difference in number of neighbors across vertices.

Therefore, we use dynamic thread scheduling with OpenMP, al-
locating a chunk of contiguous destination vertices at a time to
ensure that a thread writes to contiguous feature vectors of 𝑓O .

Loop reordering and Vectorization with LIBXSMM. Applying SIMD
to the innermost loop of Alg. 2 (lines #5-7) for the large variety
of binary/unary and reduction operators in DGL using manually
written intrinsics could be a time consuming task. Instead, we
use the LIBXSMM library [14] that provides highly architecture
optimized primitives for many matrix operations including our use-
cases. LIBXSMM reorders the loop (Alg. 3) to ensure each 𝑓O [𝑣] is
written to only once per block. It generates optimal assembly code
with SIMD intrinsics where applicable using JITing thus providing
more instruction reduction than manually written intrinsics based
code.

Algorithm 3 Reordering of the loop at lines #5-7 in Alg. 2
Require: SIMD Width,𝑊
1: for 𝑗 ∈ 0, . . . , 𝑑 − 1, step𝑊 do
2: 𝑡 ← 𝑓O [𝑣] [𝑗 : 𝑗 +𝑊 − 1]
3: for 𝑢 in 𝐴𝑖 [𝑣] do
4: 𝑡 ← 𝑡 ⊕ (𝑓V [𝑢] [𝑗 : 𝑗 +𝑊 − 1] ⊗ 𝑓E [𝑒𝑢𝑣] [𝑗 : 𝑗 +𝑊 − 1])
5: end for
6: 𝑓O [𝑣] [𝑗 : 𝑗 +𝑊 − 1] ← 𝑡

7: end for

5 DISTGNN: DISTRIBUTED-MEMORY
ALGORITHM

In this section, we describe our distributed algorithms using Graph-
SAGE GNN model. As seen in the previous sections, feature aggre-
gation operation is the dominant runtime component. GNN models
consist of a relatively small enough number of parameters, which
can be processed on a single socket. However, with the increase
in graph size, the aggregation operation is limited by the avail-
able memory. Hence, our distributed parallel solutions use data-
parallelism. The model, being smaller in size, is replicated on the
sockets and the input graph is partitioned.

It is desirable that partitions communicate less frequently during
aggregation. Ideally, partitions would be fully self-contained and
require no communication with each other; however, this is not
practical and will result in lower training accuracy. In practice, we
partition the graph to minimize communication.

5.1 Graph Partitioning
Real-world graphs follow power-law degree distribution. [2] shows
that vertex-cut produces minimal cuts for power-law graphs. Dis-
tributed graph processing frameworks have shown the efficacy of
vertex-cut based partitioning [11]. In this work, we use vertex-cut
based graph partitions. These partitioning techniques distribute the
edges among the partitions. Thus, each edge is present in only one
partition, while a vertex can reside in multiple ones. Each vertex
that splits due to the vertex-cut carries with it a partial neighbor-
hood of the original vertex from the input graph. Thus, any update
to such a vertex must be communicated to its clones in other par-
titions. The number of such clones (for each original vertex that
is split) is called replication factor. The goal of the partitioning is

4

DistGNN: Scalable Distributed Training for Large-Scale Graph Neural Networks SC ’21, November 14–19, 2021, St. Louis, MO, USA

two-fold: (a) to reduce communication across partitions and (b)
generate balanced partitions. The first goal can be achieved by
maintaining a lower replication factor. Towards the second goal, we
use uniform edge distribution as the load balancing metric. In this
work, we use a state-of-the-art tool called Libra [32] to partition
our un-weighted input graph. Libra works on a simple principle
for graph partitioning. It partitions the edges by assigning them to
the least-loaded relevant (based on edge vertices) partition. Libra
uses a greedy heuristics-based approach to partition the edges such
that replication factor is minimized. Also, Libra aims to balance
partitions by randomly distributing edges across partitions. For
GNN benchmark datasets, we observe that Libra produces balanced
partitions in terms of edges.

(a) Original graph (b) Partitioned graph into three parti-
tions

Figure 1: Example original and vertex-cut partitioned graph

5.2 Partition Setup
A partition contains two types of vertices: split-vertices and non-
split vertices. Split-vertices have their own copy of the feature
vector. Thus, each vertex in a partition is associated with a fea-
ture vector and takes part in local aggregation. All split-vertices
communicate to receive feature vectors from their neighborhood
and perform aggregation. Vertices in each partition have global
and local IDs. Global IDs are the vertex IDs from the original input
graph. We assign consecutive local IDs to vertices starting from
partition 0 to partition 𝑛 − 1. A global data structure vertex_map
stores the local ID range of each partition. A vertex’s local ID, along
with the vertex_map, pinpoints its partition and location within
the partition. For each split-vertex, we use an array to store the
local IDs of all its clones.

5.3 Delayed Remote Partial Aggregates
Once the input graph is partitioned, we assign each partition to a
socket for training the model. We implement the following three dis-
tributed algorithms with varying communication intensity during
the aggregation operation.

(1) 0c: During training, at each layer, each partition first per-
forms local aggregation. After local aggregation, each split-
vertex has aggregated from its local partial neighborhood.
0c completely avoids communication by ignoring remote

partial neighborhoods of split-vertices. Due to no communi-
cation and its related pre- and post-processing computations,
0c is the fastest of all the three proposed algorithms and pro-
vides a performance roofline for scaling GraphSAGE on the
given dataset across multiple CPU sockets. It is also the most
optimistic with respect to accuracy. We evaluate its accuracy
in section 6.

(2) cd-0: During model training, at each layer, each partition
perfoms local aggregation. All split-vertices communicate
partial aggregates to their remote clones. Consequently, each
vertex in each partition receives its complete neighborhood.
cd-0 waits for communication to be completed before mov-
ing to the next step. Since each vertex receives its complete
neighborhood, it is expected to produce the same accuracy
as the single socket algorithm. cd-0 provides a lower-bound
performance for scaling GraphSAGE on the given dataset
across multiple CPU sockets.

(3) cd-r: Even after partitioning, the communication cost could
be overwhelming (demonstrated in section 6). To further
reduce communication volume, we apply a communication
avoidance mechanism. In this algorithm, we overlap remote
aggregate communication with local computation. The de-
pendence between consecutive steps in an epoch leaves no
scope for intra-epoch overlap. Consequently, we apply inter-
epoch compute-communication overlap. cd-r delays com-
municating partial aggregates among split-vertices; each
split-vertex starts communication in epoch 𝑖 and asynchronously
receives and processes aggregates in epoch (𝑖 + 𝑟). We be-
lieve that delaying feature-vector aggregation during GNN
training will lead to better scalability without significant
loss of accuracy. This idea of delaying the aggregate updates
is inspired by Hogwild! [25] which employs this scheme
to delay weight updates. Communication can be further re-
duced by involving only a subset of split-vertices (through
binning) in each epoch. We assess the impact on accuracy in
section 6 and demonstrate that accuracy is within 1% of the
state-of-the-art baseline for each dataset.

The operation of distributed aggregation using the Delayed Re-
mote Partial Aggregates (DRPA) algorithm is described in Algo-
rithm 4. A 1-level tree structure facilitates communication among
the split-vertices in cd-0 and cd-r. For each original vertex 𝑖 ∈ 𝑣𝑠 ,
we create a tree 𝑇𝑖 in which we randomly assign one of its split-
vertices as the root, while the rest of them become leaves. To syn-
chronize aggregates across split-vertices, communication between
leaves and the root occurs in two phases: (i) all leaves send their par-
tial aggregates to the root (Line 11), (ii) the root receives and aggre-
gates them and then communicates the final aggregates back to the
leaves (Lines 13-16). Each partition performs a pre-processing and
post-processing step for each partial aggregate communication. The
pre-processing step involves local gather operation (Lines 10, 15);
it gathers features of split-vertices. Post-processing involves a local
scatter-reduce operation (Lines 14, 20). All received partial aggre-
gates are scattered and reduced to corresponding vertices. Note
that, only scatter operation is performed in the post-processing
of root to leaf communication (Line 20). DRPA behaves like cd-0
when there is no delay for the communication i.e. 𝑟 = 0. When

5

SC ’21, November 14–19, 2021, St. Louis, MO, USA

𝑟 > 0, DRPA functions as cd-r, performing delayed partial aggre-
gations. Ignoring all the communication and associated pre- and
post-processing in DRPA produces the functionality of 0c.

Algorithm 4 Delayed Remote Partial Aggregates
Require: Graph partitions𝐺𝑝 along with the vertices𝑉𝑝 and features 𝑓𝑉𝑝
Require: 𝑣𝑠 , a set of original vertices of𝐺𝑝 which get split
Require: Tree𝑇𝑖 for vertex 𝑣𝑠 [𝑖], ∀𝑖 ∈ [0, |𝑣𝑠 |) .
Require: Root features𝑇𝑖 .𝑟𝑜𝑜𝑡 ∈ 𝑓𝑉𝑝 and leaf features𝑇𝑖 .𝑙𝑒𝑎𝑓 ∈ 𝑓𝑉𝑝
Require: Delay parameter 𝑟
1: Allocate𝐺𝑝 per socket 𝑐
2: for each 𝑐 in parallel do
3: 𝑘 ← |𝑣𝑠 |/𝑟
4: for i=1 𝑡𝑜 𝑟 do
5: 𝑆𝑖 ← {𝑇𝑖∗𝑘 . . .𝑇(𝑖+1)∗𝑘 }
6: end for
7: for epoch 𝑒 do
8: 𝑓𝑣 ← ⊕(copy(𝑓𝑢), 𝑓𝑣) ∀𝑢, 𝑣 ∈ 𝑉𝑝
9: 𝑖 ← 𝑒%𝑟
10: 𝑓𝑣𝑠𝑙 ← gather(𝑆𝑖 [𝑗] .𝑙𝑒𝑎𝑓 , ∀𝑗)
11: async_send(𝑓𝑣𝑠𝑙)
12: if 𝑒 ≥ 𝑟 then
13: 𝑆𝑖 [𝑗] .𝑟𝑜𝑜𝑡 ← async_recv(𝑓𝑣𝑠𝑙), ∀𝑗
14: 𝑓𝑉 ← scatter_reduce(𝑆𝑖 [𝑗] .𝑟𝑜𝑜𝑡), ∀𝑗
15: 𝑓𝑣𝑠𝑟 ← gather(𝑆𝑖 [𝑗] .𝑟𝑜𝑜𝑡), ∀𝑗
16: async_send(𝑓𝑣𝑠𝑟)
17: end if
18: if 𝑒 ≥ 2 × 𝑟 then
19: 𝑆𝑖 [𝑗] .𝑙𝑒𝑎𝑓 ← async_recv(𝑓𝑣𝑠𝑟), ∀𝑗
20: 𝑓𝑉 ← scatter(𝑆𝑖 [𝑗] .𝑙𝑒𝑎𝑓), ∀𝑗
21: end if
22: end for
23: end for

6 EXPERIMENTAL EVALUATION
6.1 Experiment Setup
We perform our single-socket experiments on Intel Xeon 8280 CPU
@2.70 GHz with 28 cores (single socket), equipped with 98 GB of
memory per socket; the theoretical peak bandwidth to DRAM on
this machine is 128 GB/s. The machine runs CetnOS 7.6. For dis-
tributed memory runs, we use a cluster with 64 Intel Xeon 9242
CPU@2.30 GHz with 48 cores per socket in a dual-socket system.
Each compute node is equipped with 384 GB memory, and the com-
pute nodes are connected through Mellanox HDR interconnect
with DragonFly topology. The machine runs CentOS 8. We use a
single-socket machine with memory capacity of 1.5TB to measure
the single-socket runtime for OGBN-Papers dataset.

We use GCC v7.1.0 for compiling DGL and the backend PyTorch
neural network framework from their source codes. We use a re-
cent release of DGLv0.5.3 to demonstrate the performance of our
solutions and PyTorch v1.6.0 as the backend DL framework for all
our experiments. We use PyTorch Autograd profiler to profile the
performance of the applications.

Datasets. Table 2 shows the details of the five datasets: AM, Red-
dit, OGBN-Products, OGBN-Papers, and Proteins [4, 29], used in
our experiments. HipMCL [4] generated Proteins graph using iso-
late genomes from IMG platform. It performs sequence alignment

among the collected sequences to generate a graph matrix. Entries
in the graph matrix are generated based on sequence similarity
scores. In the absence of vertex embeddings, we randomly gen-
erate features for the Proteins dataset. The AM dataset contains
information about artifacts in the Amsterdam Museum [9]. Each
artefact in the dataset is linked to other artifacts and details about
its production, material, and content. It also has an artifact category,
which serves as a prediction target. For this dataset, in the absence
of vertex features, vertex ID is assigned as the feature.

Models and Parameters. In the GraphSAGE model, we use two
graph convolutional layers for the Reddit dataset with 16 hidden
layer neurons. For the remaining datasets, we use three layers
with the 256 hidden layer neurons. In this paper, we employed GCN
aggregation operator where (i) ⊕ is element-wise sum and (ii) as a
post-processing step, it adds the aggregated and original features of
each vertex and normalizes that sum with respect to the in-degree
of the vertex. All the reported epoch run-times are averaged over
1-10 epochs for 0c and cd-0 algorithms, while for cd-r we average
run-time for epochs 10-20 due to the communication delay of 5.

Table 2: GNN benchmark datasets. Edges are directed. Each
original un-directed edge of Reddit, OGBN-Products, and
Proteins is converted into two directed edges.
Datasets #vertex #edge #feat #class
AM 881,680 5,668,682 1 11
Reddit 232,965 114,615,892 602 41
OGBN-Products 2,449,029 123,718,280 100 47
Proteins 8,745,542 1,309,240,502 128 256
OGBN-Papers 111,059,956 1,615,685,872 128 172

Implementation in DGL. All our optimized single code is written
in C++ as part of DGL’s backend. Our optimizations use LIBXSMM
library [14].

For distributed code, we use torch.distributed package of
PyTorch coupled with Intel OneCCL [26] for efficient collective com-
munication operations, with one MPI rank per socket; two cores on
each socket are dedicated to OneCCL. We use AlltoAll collective for
communicating the partial aggregates between the root and leaves
in the 1-level tree. For parameter sync among the models, in each
epoch, we use AllReduce collective operation. We note that this
collective communication operation is synchronous i.e., all compute
nodes exchange weight gradients every iteration. All the distributed
code is written in Python and C++ in DGL. Our code is available at
https://github.com/dmlc/dgl/pull/2914 (commit: cfb73e2).

6.2 Single-Socket Performance
Applicationperformance. Figure 2 compares the per epoch train-
ing time and execution time of AP for DGL 0.5.3 with our optimized
implementation for four of our workloads that fit on a single socket
with 98GB memory. It confirms that the runtime of many applica-
tions is dominated by AP. Our optimizations achieve up to 4.41×
speedup for AP, thereby, achieving up to 3.66× speedup for end-
to-end training time over DGL 0.5.3. Optimization of AP for shared
memory systems was also presented in [3]. Due to lack of availabil-
ity of source code, we can only compare with the results presented

6

https://github.com/dmlc/dgl/pull/2914

DistGNN: Scalable Distributed Training for Large-Scale Graph Neural Networks SC ’21, November 14–19, 2021, St. Louis, MO, USA

(a) GraphSAGE on Reddit (b) GraphSAGE on OGBN-Products

(c) GraphSAGE on Proteins (d) RGCN-hetero on AM

Figure 2: Comparison of runtime of entire training epoch (Total) and Aggregation Primitive (AP) for baseline DGL and our
optimized version on the benchmark datasets. The labels on top of bars for optimized version show the speedup for Total
time and AP time, respectively.

in that paper. [3] reports training time of 2.7 secs/epoch for Reddit
achieving a speedup of 7.7× over DGL 0.4.3, while we consume only
0.88 secs/epoch. Compared to the DGL 0.4.3, our current perfor-
mance on Reddit is nearly 24× faster.

In the following, we explain the factors that affect performance
gain of AP kernel using the two benchmarks that achieve the highest
speedup. Analysis of access to edge features is straightforward since
they are accessed in streaming fashion. Therefore, we focus only on
the vertex features by using ⊗ as copylhs.Without loss of generality,
we use ⊕ as sum in our analysis.

Table 3: Cache reuse achieved for the AP kernel with respect
to density of graph and the number of blocks (𝑛𝐵). Density
is defined as the number of non zero cells divided by total
cells in the adjacency matrix. Ideal cache reuse is the aver-
age vertex degree of the graph – 492 for Reddit and 50.5 for
OGBN-Products.

𝑛𝐵
Dataset Density 1 2 4 8 16 32 64
Reddit 0.002 3.1 4.3 7.3 16.1 27.0 16.7 9.6
OGBN- 0.00002 2.3 2.2 2.2 2.1 2.1 2.0 1.8
Products

Effect of block size. Table 3 and Figure 3 illustrate the effect of
block size (𝐵), and hence, the number of blocks (𝑛𝐵). In the ideal
scenario, every feature vector (𝑓V [𝑢]) would be loaded only once
from memory and would be used to update feature vectors in 𝑓O of
all its neighbors. Similarly, every feature vector in 𝑓O would also be

(a) Reddit

(b) OGBN-Products

Figure 3: Time consumed and amount of data read, written
and totalmemory IO (data read +written) for APwith respect
to the number of blocks (𝑛𝐵).

7

SC ’21, November 14–19, 2021, St. Louis, MO, USA

written to memory only once. Therefore, maximum average reuse
of the feature vectors in 𝑓V and 𝑓O is the average vertex degree of
the graph. While ideal reuse is not possible, our blocking method
tries to maximize reuse. Clearly, the sparser the graph, the less
likely it is to reuse the feature vectors. When we use just one block,
the blocks of 𝑓V start getting thrashed out of cache after processing
a few rows of the adjacency matrix, thus, preventing reuse. As the
blocks get smaller, chances of blocks of 𝑓V staying in the cache
increase, thereby, increasing reuse in 𝑓V . At the same time, we
need more passes of 𝑓O decreasing its reuse. This gets reflected in
data read from and written to memory as clearly seen in Figure 3.
The best performance is at the sweet spot where the sum of data
read and written is the smallest. For denser graphs (like Reddit),
the sweet spot is more to the right compared to sparser graphs (like
OGBN-Products).

Figure 4: Effect of Dynamic Scheduling (DS), Blocking
(Block) and Loop Reordering with LIBXSMM (LR LXMM) on
the totalmemory IO and execution time of AP for Reddit and
OGBN-Products.

Breakup of speedup with respect to optimizations. Figure 4
shows the breakup. There is a clear correlation between memory
IO required and execution time. Dynamic scheduling has no effect
for Reddit but plays a major role in improving performance for
OGBN-Products. On the other hand, blocking has a massive impact
for Reddit but has no effect for OGBN-Products where we end up
using only one block. Loop reordering and JITing with LIBXSMM
improves the performance in both cases.

6.3 Distributed Algorithm Performance

Table 4: Average replication factor due to vertex-cut based
graph partitioning using Libra
Datasets/ 2 4 8 16 32 64 128#Partitions
Reddit 1.75 2.94 4.66 6.93 - - -
OGBN-Products 1.49 2.16 2.98 3.90 4.85 5.74 -
Proteins 1.33 1.65 1.91 2.11 2.27 2.37 -
OGBN-Papers - - - - 4.63 5.63 6.62

Graph Partition. As seen in the previous sections, data movement
during aggregation is directly related to the number of edges, and
hence the run-time. Thus, we use the simple criteria of equal edge

allocation among the partitions as the load balancing mechanism.
Libra, despite having no hard constraints on maintaining an equal
distribution of edges to the partitions, produces highly balanced
partitions in terms of the number of edges.

Table 4 shows the average vertex replication for a different num-
ber of partitions produced by Libra. Reddit, the densest of the bench-
mark datasets, results in relatively more split-vertices during par-
titioning than all other datasets. Proteins results in a significantly
smaller replication factor. It exhibits natural clusters of protein
families (sequence homology), thus leading itself to high-quality
partitioning. OGBN-Products and OGBN-Papers, with the least
average vertex degree, have similar replication factors. A lower
replication factor is desirable. On single socket, a higher replication
factor leads to a sparser partitioned graph which results in more
pressure on the memory bandwidth, whereas in a distributed set-
ting, an increase in replication factor with the number of partitions
leads to more communication and hampers the scalability of the
solution.

Scaling. In all our experiments, we run cd-r algorithm with delay
of 𝑟 = 5 epochs. Figure 5 shows the per epoch time and speed-
up of our solutions with increasing socket-count. Owing to the
high replication factor in Reddit partitioning, the decrease in parti-
tion size from 2 to 16 partitions is highly sub-linear. This directly
leads to a sub-linear decrease in local and remote aggregation time.
For 16 sockets, we observe 0.98×, 2.08×, and 2.91× speed-up us-
ing cd-0, cd-5, and 0c, respectively compared to the optimized
DGL single-socket performance. In contrast to Reddit, the Proteins
dataset exhibits nearly linear decrease in partition size from 2 to
64 partitions. For 64 sockets, we observe 37.9×, 59.8×, and 75.4×
speed-up using cd-0, cd-5, and 0c, respectively compared to the
optimized DGL single-socket performance. Due to the usage of mem-
ory from multiple Non-Uniform Memory Access (NUMA) domains,
the single-socket run is slower, leading to a super-linear speedup
for 0c.

The quality of partitions for OGBN-Products, as reflected in
its replication factor, is in-between those of Reddit and Proteins
datasets. OGBN-Papers has slightly better quality partitions com-
pared to OGBN-Products. For OGBN-Products, for 64 sockets, we
observe 6.3×, 9.9×, and 16.1× speed-up using cd-0, cd-5, and 0c,
respectively compared to the optimized DGL single-socket perfor-
mance.

For OGBN-Papers, for 128 sockets, we observe 27.43×, 83.16×,
and 123.13× speed-up using cd-0, cd-5, and 0c, respectively com-
pared to the optimized DGL single-socket performance. Compared
to un-optimized DGL on single socket, we observe 32×, 97×, and
143× speed-up using cd-0, cd-5, and 0c, respectively. Here, due
to very high memory requirements (1.4TB), a single-socket run
uses memory from multiple NUMA domains and thus runs slower.
Similarly, 32 and 64 socket runs also use memory from multiple
NUMA domains and run slower. Owing to high memory demands,
we could not run OGBN-Papers dataset below 32 sockets. Note that
for multi-socket runs, two cores per socket are reserved for OneCCL
library.

As described in Section 5, the aggregation step involves local
and remote aggregation sub-steps in cd-0 and cd-r, whereas for
0c, it comprises of only the former sub-step. Remote aggregation

8

DistGNN: Scalable Distributed Training for Large-Scale Graph Neural Networks SC ’21, November 14–19, 2021, St. Louis, MO, USA

Reddit OGBN-Products

Proteins OGBN-Papers

Figure 5: Runtime performance and speedup of three distributed algorithms of DistGNN on the benchmark datasets.

not only involves actual communication but also pre- and post-
processing. Local aggregation does not involve communication,
therefore local aggregation time (LAT) remains the same across
cd-0, cd-r, and 0c. Figure 6 shows that in the forward pass, LAT
scales linearly with the number of sockets, except for Reddit. It also
shows that remote aggregation time (RAT) scales poorly with the
increase in the number of sockets; this is solely an artifact of the
replication factor and number of split-vertices per original vertex.
For cd-5, we observe that a negligible amount of time is spent in
waiting for asynchronous overlapped communication; thus, RAT
is purely composed of pre- and post-processing times. For Reddit
and Proteins, local aggregation dominates remote aggregation. For
OGBN-Products, remote aggregation consumes a significant por-
tion of the overall execution time beyond 16 sockets, reducing AP
scalability. For OGBN-Papers, RAT is always higher than LAT, due
to much higher pre- and post-processing cost compared to other
datasets. Due to high communication volume in cd-0, RAT is higher
than LAT for all datasets, except Proteins.

Accuracy. The GraphSAGE model reports single-socket test accu-
racy of 93.40% and 77.63% for Reddit and OGBN-Products respec-
tively. We evaluate the test accuracy of all the three distributed
algorithms on a number of partitions (Table 5). We use the delay
factor 𝑟 = 5 for our cd-r experiments. For both the datasets, all the
distributed algorithms report the accuracy within 1% of the best
accuracy. For 8 and 16 sockets using Reddit dataset, we observe
that accuracy recovers with increased training time from 200 to

300 epochs. Algorithms cd-5 and 0c, for some cases, on both the
datasets, report accuracy better than single-socket accuracy. One
possible reason for this increase is clustering due to partitioning.
In all the experiments with cd-r, we do not see any discernible
improvements in accuracy with values of 𝑟 < 5, while large values
of 𝑟 (e.g., 𝑟 = 10) degraded the accuracy due to increasingly stale
feature aggregates.

Due to the absence of the features and labeled data for the Pro-
teins dataset, we were unable to validate training accuracy with
test data. For OGBN-papers, we use GraphSAGE as the primary GNN
model – same as the Dist-DGL. We show how to scale OGB-papers
across 128 sockets. While the accuracy of vanilla GraphSAGE (Ta-
ble 5) for this dataset is significantly lower than that reported in
OGB leaderboard [16], there are techniques (such as [28]) to bridge
the accuracy gap, which we plan to explore. Table 5 also reports the
test accuracy attained by our distributed algorithms. Further experi-
ments with hyperparameters tuning are required for OGBN-Papers
dataset.

Memory andCommunicationAnalysis. In this section, we chart
out the memory requirements of the GraphSAGE model and re-
port the actual memory consumption for the OGBN-Papers dataset.
As discussed in Section 6.1, the GraphSAGE model contains three
layers; within each layer, the neighborhood aggregation step is
followed by the multi-layer perceptron (MLP) operations. Let 𝑁 ,
𝑓 , ℎ1 and ℎ2, and 𝑙 be the number of partition vertices, features,
first hidden layer neurons, second hidden layer neurons, and labels,

9

SC ’21, November 14–19, 2021, St. Louis, MO, USA

Reddit OGBN-Products

Proteins OGBN-Papers

Figure 6: Forward pass scaling performance of local and re-
mote aggregate operation of cd-0, cd-5, and 0c on bench-
mark datasets. The remote aggregation involve pre- and
post-processing time for communication. Due to the ab-
sence of communication in 0c, its time is same as local ag-
gregation time.

respectively. Also, let𝑤1,𝑤2, and𝑤3 be the weight matrices at each
of the three layers of the MLP. Memory required by the GraphSAGE
model is as follows. (1) The weight matrix dimensions,𝑤1: 𝑓 × ℎ1,
𝑤2: ℎ1 ×ℎ2, and𝑤3: ℎ2 × 𝑙 . (2) The input feature matrix dimensions,
𝑁 × 𝑓 . (3) The neighborhood aggregation output dimensions at
each of the three layers, 𝑁 × 𝑓 , 𝑁 ×ℎ1, and 𝑁 ×ℎ2. (4) Similarly, the
MLP operation output dimensions at each of the three layers, 𝑁 ×ℎ1,
𝑁 ×ℎ2, and 𝑁 × 𝑙 . The intermediate results at each layer need to be
stored to facilitate the backpropagation of the gradients. Addition-
ally, in a distributed setting, memory is required for buffering the
data for communication. In cd-0 and cd-r algorithms, the amount
of communication per partition is directly proportional to the num-
ber of split-vertices in the partitions. Table 6 shows the memory
consumption of the distributed algorithms and the percentage of
split-vertices per partition for a different number of partitions for
OGBN-Papers dataset.

Comparison with Current Solutions. As far we know there is
no state-of-the-art for distributed full batch training on CPUs. There-
fore, we compare our solution with a recent distributed solution for
mini-batch training with neighborhood sampling on CPUs, called
Dist-DGL. On account of a different aggregation strategy used in
Dist-DGL, we compare our full-batch training approach with it
based on total aggregation work and time per epoch. We use the
same GNN model architecture as Dist-DGL for OGBN datasets. In
Dist-DGL, during each mini-batch computation, the amount of ag-
gregation work varies at each hop, depending on the number of
vertices, their average degree (fan-out), and feature vector size. For

Table 5: Test accuracy of single socket and distributed algo-
rithms using Reddit, OGBN-Products, OGBN-Papers dataset,
with corresponding learning rate (𝑙𝑟) and number of epochs.
We set weight decay,𝑤𝑑 = 5𝑒−4 for all the experiments.

Reddit
cd-0 cd-5 0c

#soc-
kets

Acc.(%) 𝑙𝑟 Acc.(%) 𝑙𝑟 Acc.(%) 𝑙𝑟 #epochs

1 93.40 0.01 93.40 0.01 93.40 0.01 200
2 93.70 0.028 93.59 0.028 93.58 0.028 200
4 93.44 0.028 93.25 0.028 93.39 0.028 200
8 93.14 0.028 93.33 0.08 93.14 0.07 300
16 92.86 0.028 92.62 0.08 92.38 0.07 300

OGBN-Products
cd-0 cd-5 0c

#soc-
kets

Acc.(%) 𝑙𝑟 Acc.(%) 𝑙𝑟 Acc.(%) 𝑙𝑟 #epochs

1 77.63 0.01 77.63 0.01 77.63 0.01 300
2 77.12 0.05 77.65 0.05 78.42 0.08 300
4 77.35 0.05 79.14 0.07 78.91 0.08 300
8 77.49 0.08 79.18 0.07 79.10 0.08 300
16 77.47 0.08 78.00 0.08 78.95 0.08 300
32 77.45 0.07 78.00 0.08 78.37 0.08 300
64 77.25 0.07 77.64 0.08 77.76 0.08 300

OGBN-Papers
cd-0 cd-5 0c

#soc-
kets

Acc.(%) 𝑙𝑟 Acc.(%) 𝑙𝑟 Acc.(%) 𝑙𝑟 #epohs

1 41.29 0.03 41.29 0.03 41.29 0.03 200
128 37.9 0.01 37.65 0.01 36.74 0.01 200

Table 6: Per epoch peak memory requirements of the dis-
tributed algorithms and split-vertices percentage in a parti-
tion for OGBN-Papers dataset.

Partitions 32 64 128
cd-0 Memory (GB) 199 124 78
cd-5 Memory (GB) 311 196 120
0c Memory (GB) 180 112 70
Split-vertices/partition (%) 90 92 93

full-batch training, the amount of work at each hop varies with
feature vector size only.

Out of 2,449,029 vertices of OGBN-Products dataset, 196,615 are
labeled training vertices. Table 7 & 8 show the number of vertices,
average degree, and feature vector size per hop. In Dist-DGL, with
equal distribution of training vertices per socket, each socket pro-
cesses a roughly equal number of batches. Table 7 & 8 also highlights
the total work that Dist-DGL and DistGNN do on single and 16 sock-
ets, in terms of Billions of Ops (B Ops). The total work per hop is
calculated as the product of number of vertices, feature size, and av-
erage vertex degree. Our solution performs ≈ 4 × −13× more work
(≈ 77.18𝑒9/19.98𝑒9 ops) and (≈ 18.8𝑒9/1.41𝑒9 ops), respectively, per
epoch than Dist-DGL due to complete neighborhood aggregation.
However, even with this increase in amount of work, our solution
reports comparable or even better epoch time on similar hardware

10

DistGNN: Scalable Distributed Training for Large-Scale Graph Neural Networks SC ’21, November 14–19, 2021, St. Louis, MO, USA

(Dist-DGL uses either of Intel Xeon Skylake or Cascade Lake CPU
with 96 VPUs on AWS instance m5.24xlarge) (Table 9). We see
a similar trend with OGBN-Papers dataset which has 1,207,179
training vertices out of 111,059,956 vertices in the graph.

Table 7: Aggregation work done (billion operations) per hop,
per mini-batch, and per socket using neighborhood sam-
pling by Dist-DGL. The mini-batch size is 2000. Dataset used:
OGBN-Products.

Hops #vertices
Avg.

#feats
Total work

deg. per socket
(B ops)

Hop-2 233,692 5 100 0.116
Hop-1 30,214 10 256 0.077
Hop-0 2,000 15 256 0.007
1 Mini-batch 0.202
1 Socket (99 Mini-batches per socket) 19.98
16 Sockets (7 Mini-batches per socket) 1.41

Table 8: Aggregation work done per hop and per full batch
using complete neighborhood aggregation by DistGNN. Here
full batch represents a partition and each socket executes
one partition. Dataset used: OGBN-Products.
#soc-

Hops
#vertices/ Avg.

#feats
Total work

kets partition deg. per socket
(B Ops)

1

Hop-2 2,449,029 51.5 100 12.61
Hop-1 2,449,029 51.5 256 32.29
Hop-0 2,449,029 51.5 256 32.29
Full Batch 77.19

16

Hop-2 596,499 51.5 100 3.07
Hop-1 596,499 51.5 256 7.86
Hop-0 596,499 51.5 256 7.86
Full Batch 18.80

Table 9: Training time for Dist-DGL and DistGNN on OGBN-
Products.

#sockets Dist-DGL time (s) DistGNN (cd-5) time (s)
1 20 11
16 1.5 1.9

CAGNET, a distributed solution to GNN training, performs com-
plete neighborhood aggregation on a GPU cluster. Due to very dif-
ferent cluster configuration and intra- and inter-node network
topologies, we do not compare DistGNN with CAGNET.

7 CONCLUSION AND FUTUREWORK
In this paper, we present DistGNN, the first ever and a highly effi-
cient distributed solution for full-batch GNN training on Intel Xeon
CPUs. The aggregate operation is data-intensive. On a single socket
Intel Xeon CPU, we accelerated it by identifying and optimizing com-
putational bottlenecks. Our distributed solutions employ avoidance
and reduction algorithms to mitigate communication bottlenecks

in the aggregation operation. To reduce communication volume,
we leveraged vertex-cut based graph partitioning and overlapped
communication with computation across epochs as delayed partial
aggregates. We demonstrated the performance of DistGNN on a
set of common benchmark datasets with the largest one having
hundred million vertices and over a billion edges. With our de-
layed partial aggregate algorithms the accuracy is sometimes better
than single-socket run and remains within 1% with the increase
in number of partitions. 0c algorithms showing superior accuracy
on OGBN-Products datasets points to the clustering effect on the
accuracy.

In futurework, we expect to demonstrate highly scalable DistGNN
for mini-batch training across various datasets. We will further an-
alyze the accuracy of 0c and cd-r algorithms on various datasets
and different GNN model architectures that have state-of-the-art ac-
curacy. We also expect to extend DistGNN to different GNN models,
beyond GraphSAGE. To further reduce communication volume, we
will deploy low-precision data formats such FP16 and BFLOAT16,
with convergence using DistGNN.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265–283.

[2] Réka Albert, Hawoong Jeong, and Albert-László Barabási. 2000. Error and attack
tolerance of complex networks. nature 406, 6794 (2000), 378–382.

[3] Sasikanth Avancha, Vasimuddin Md, Sanchit Misra, and Ramanarayan Mohanty.
2020. Deep Graph Library Optimizations for Intel (R) x86 Architecture. arXiv
preprint arXiv:2007.06354 (2020).

[4] Ariful Azad, Georgios A Pavlopoulos, Christos A Ouzounis, Nikos C Kyrpides,
and Aydin Buluç. 2018. HipMCL: a high-performance parallel implementation of
the Markov clustering algorithm for large-scale networks. Nucleic acids research
46, 6 (2018), e33–e33.

[5] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. 2017. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine 34, 4 (2017), 18–42.

[6] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In International Conference
on Learning Representations.

[7] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

[8] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 257–266.

[9] Victor de Boer, Jan Wielemaker, Judith van Gent, Michiel Hildebrand, Antoine
Isaac, Jacco van Ossenbruggen, and Guus Schreiber. 2012. Supporting Linked
Data Production for Cultural Heritage Institutes: The Amsterdam Museum Case
Study. In The Semantic Web: Research and Applications, Elena Simperl, Philipp
Cimiano, Axel Polleres, Oscar Corcho, and Valentina Presutti (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 733–747.

[10] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

[11] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed graph-parallel computation on natural graphs.
In 10th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 12). 17–30.

[12] William L Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure
Leskovec. 2018. Embedding logical queries on knowledge graphs. arXiv preprint
arXiv:1806.01445 (2018).

[13] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025–1035.

[14] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. 2016.
LIBXSMM: accelerating small matrix multiplications by runtime code genera-
tion. In SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 981–991.

11

SC ’21, November 14–19, 2021, St. Louis, MO, USA

[15] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020).

[16] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020). https:
//ogb.stanford.edu/docs/leader_nodeprop/

[17] Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru
Zhang, and Yida Wang. 2020. Featgraph: A flexible and efficient backend for
graph neural network systems. arXiv preprint arXiv:2008.11359 (2020).

[18] Zhihao Jia, Sina Lin, MingyuGao,Matei Zaharia, and Alex Aiken. 2020. Improving
the accuracy, scalability, and performance of graph neural networks with roc.
Proceedings of Machine Learning and Systems 2 (2020), 187–198.

[19] George Karypis and Vipin Kumar. 1997. METIS: A software package for parti-
tioning unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. (1997).

[20] Yucheng Low. 2013. GraphLab: ADistributed Abstraction for Large ScaleMachine
Learning. (2013).

[21] Guixiang Ma, Yao Xiao, Theodore L Willke, Nesreen K Ahmed, Shahin Nazarian,
and Paul Bogdan. 2020. A Vertex Cut based Framework for Load Balancing and
Parallelism Optimization in Multi-core Systems. arXiv preprint arXiv:2010.04414
(2020).

[22] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and
Yafei Dai. 2019. Neugraph: parallel deep neural network computation on large
graphs. In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19).
443–458.

[23] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135–146.

[24] Sameh K Mohamed, Vít Nováček, and Aayah Nounu. 2020. Discovering protein
drug targets using knowledge graph embeddings. Bioinformatics 36, 2 (2020),
603–610.

[25] Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J Wright. 2011. Hogwild!:
A lock-free approach to parallelizing stochastic gradient descent. arXiv preprint
arXiv:1106.5730 (2011).

[26] Intel OneCCL. 2020. https://github.com/intel/torch-ccl
[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems, Vol. 32. Curran
Associates, Inc.

[28] Yunsheng Shi, Zhengjie Huang, Shikun Feng, and Yu Sun. 2020. Masked label
prediction: Unified massage passing model for semi-supervised classification.
arXiv preprint arXiv:2009.03509 (2020).

[29] Alok Tripathy, Katherine Yelick, and Aydin Buluc. 2020. Reducing Communi-
cation in Graph Neural Network Training. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). IEEE Computer
Society, 987–1000.

[30] Robert A Van De Geijn and Jerrell Watts. 1997. Scalable universal matrix multi-
plication algorithm. Concurrency: Practice and Experience 9, 4 (1997), 255–274.

[31] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

[32] Cong Xie, Ling Yan, Wu-Jun Li, and Zhihua Zhang. 2014. Distributed Power-
law Graph Computing: Theoretical and Empirical Analysis.. In Nips, Vol. 27.
1673–1681.

[33] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013.
Graphx: A resilient distributed graph system on spark. In First international
workshop on graph data management experiences and systems. 1–6.

[34] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[35] Hongxia Yang. 2019. Aligraph: A comprehensive graph neural network platform.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 3165–3166.

[36] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[37] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. DistDGL: Distributed Graph
Neural Network Training for Billion-Scale Graphs. arXiv preprint arXiv:2010.05337
(2020).

[38] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. 2018. Modeling polyphar-
macy side effects with graph convolutional networks. Bioinformatics 34, 13 (2018),

i457–i466.
,

12

https://ogb.stanford.edu/docs/leader_nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/
https://github.com/intel/torch-ccl

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Installation steps (DistGNN):

1. Copy dgl/setup_env.sh, dgl/install_extra_dep.sh, &&
dgl/env.sh to a desired location XYZ (After this you may discard
dgl folder, as the scripts below will setup dgl separately)

2. cd XYZ
3. Set compiler, gcc 8.3.0
4. Run “XYZ/setup_env.sh”
a. It creates a XYZ/sub407 sub-folder
b. It installs all the dependencies (anaconda, OneCCL, Pytorch,

and other dependencies) as well as DGL in a new conda environ-
ment called “sub407”.

c. The DGL code is now present in sub407 sub-folder
d. The conda environment can be enabled as “source

sub407/miniconda3/bin/activate sub407”
5. Run “source XYZ/env.sh”
a. It activates the conda environment “sub407” and sets up all

the environment variables
6. Run “XYZ/install_extra_dep.sh”
7. The DGL (DistGNN) installation is ready to run the single

socket as well as distributed experiments, with DGL code present
in XYZ/sub407/dgl (follow “How to run” described in section D).

8. If you wish to rerun setup_env.sh then remove sub407 folder
and rerun the scripts.

How to run (Instructions are also present in
<path_to_dgl>/dgl/examples/pytorch/graphsage/experimental/README.md):

1. Single Socket experiments
Notes: Here, numactl is used for best performance in multi-numa

domains compute node. If the memory is not sufficient to run
the experiments, the run will be killed by the system. Memory
requirements for these runs: Reddit (8 GB), ogb-products (29 GB),
Proteins (175 GB), AM (6 GB).

cd <path_to_dgl>/dgl/examples/pytorch/graphsage
numactl -N 0 -m 0 python train_full.py –n-epochs 200 –dataset

reddit
numactl -N 0 -m 0 python train_full_ogbn-products.py –n-

epochs 300 –dataset ogbn-products
numactl -N 0 -m 0 python train_full_proteins.py –n-epochs 200

–dataset proteins
cd <path_to_dgl>/dgl/examples/pytorch/rgcn-hetero
numactl -m 0 -N 0 python entity_classify.py -d am –l2norm 5e-4

–n-bases 40 –testing –gpu -1 –n-epochs 200
2. Distributed-memory experiments
cd <path_to_dgl>/dgl/examples/pytorch/graphsage/experimental
Step 1: Perform input graph partitioning (2.1)
Step 2: Perform distributed-memory runs (2.2)
2.1 Graph partitioning
Notes:
a. Output partitions are created in the current directory.
b. By default it creates 2, 4, 8,16 partitions for Reddit;

2,4,8,16,32,64 partitions for OGBN-Products; 2,4,8,16,32,64

partitions for Proteins; 32,64,128 partitions for OGBN-
Papers100M. The number of partitions can be changed in
dgl/python/dgl/distgnn/partition/main_Libra.py:213.

c. As of now the Libra partitioning code is single-threaded python
code (which also involves data format conversions), so for large
datasets (Proteins, OGB), it takes time (in hrs) to produce the parti-
tions.

python ../../../../python/dgl/distgnn/partition/main_Libra.py
cora (small example as a demo) python
../../../../python/dgl/distgnn/partition/main_Libra.py reddit python
../../../../python/dgl/distgnn/partition/main_Libra.py ogbn-products
python ../../../../python/dgl/distgnn/partition/main_Libra.py pro-
teins python ../../../../python/dgl/distgnn/partition/main_Libra.py
ogbn-papers100M

2.2 Distributed-memory runs
Note: By default, the partitions are read from the current direc-

tory. Either you can use the scripts below for distributed runs or
you can use the command-line below.

I .Scripts:
Reddit: dist_reddit.sh – The script runs 2,4,8,16 partitions. Allo-

cation of 16 compute nodes is required.
OGBN-Products: dist_ogbn_products.sh - The script runs

2,4,8,16,32,64 partitions. Allocation of 64 nodes is required.
Proteins: dist_proteins.sh - The script runs 2,4,8,16,32,64 parti-

tions. Allocation of 64 nodes is required.
OGBN-Papers100M: dist_ogbn_papers.sh - The script runs

32,64,128 partitions. Allocation of 128 nodes is required.
Note: DistGNN runs are resource-intensive (compute, memory,

disk, network). The disk space can reach in TBs, while we used
384 GB memory per node for our experiments. In case of limited
resources, the scripts would fail. Command-line execution of each
experiment is also described below.

II. Manual:
Reddit:
cd-0:
sh run_dist.sh -n <num_nodes> -ppn 1 python train_dist_sym.py

–dataset reddit –n-epochs 200 –nr 1 –lr 0.03
cd-5:
sh run_dist.sh -n <num_nodes> -ppn 1 python train_dist_sym.py

–dataset reddit –n-epochs 200 –nr 5 –lr 0.03
0c:
sh run_dist.sh -n <num_nodes> -ppn 1 python train_dist_sym.py

–dataset reddit –n-epochs 200 –nr -1 –lr 0.03
OGBN-Products:
cd-0:
sh run_dist.sh -n <num_nodes> -ppn 1 python

train_dist_sym_ogbn-products.py –dataset ogbn-products
–n-epochs 300 –nr 1 –lr 0.03

cd-5:
sh run_dist.sh -n <num_nodes> -ppn 1 python

train_dist_sym_ogbn-products.py –dataset ogbn-products
–n-epochs 300 –nr 5 –lr 0.03

Md, et al.

0c:
sh run_dist.sh -n <num_nodes> -ppn 1 python

train_dist_sym_ogbn-products.py –dataset ogbn-products
–n-epochs 300 –nr -1 –lr 0.03

Proteins:
cd-0:
sh run_dist.sh -n <num_nodes> -ppn 1 python

train_dist_sym_proteins.py –dataset proteins –n-epochs 200 –nr 1
–lr 0.03

cd-5:
sh run_dist.sh -n <num_nodes> -ppn 1 python

train_dist_sym_proteins.py –dataset proteins –n-epochs 200 –nr 5
–lr 0.08

0c:
sh run_dist.sh -n <num_nodes> -ppn 1 python

train_dist_sym_proteins.py –dataset proteins –n-epochs 200 –nr -1
–lr 0.08

OGBN-Papers100M:
cd-0:
sh run_dist.sh -n <num_nodes> -ppn 1 python

train_dist_sym_ogbn-papers.py –dataset ogbn-papers100M
–n-epochs 200 –nr 1 –lr 0.08

cd-5:
sh run_dist.sh -n <num_nodes> -ppn 1 python

train_dist_sym_ogbn-papers.py –dataset ogbn-papers100M
–n-epochs 200 –nr 5 –lr 0.08

0c:
sh run_dist.sh -n <num_nodes> -ppn 1 python

train_dist_sym_ogbn-papers.py –dataset ogbn-papers100M
–n-epochs 200 –nr -1 –lr 0.08

Installation steps (baseline DGL, for establishing single-socket
baseline performance):

1. Copy dgl/setup_env_baseline.sh, dgl/install_extra_dep.sh, &&
dgl/env_baseline.sh to a desired location XYZ (After this you may
discard dgl folder, as the scripts below will setup dgl separately)

2. cd XYZ
3. Set compiler, gcc 8.3.0
4. Run “XYZ/setup_env_baseline.sh”
a. It creates a XYZ/sub407_baseline sub-folder
b. It installs all the dependencies (anaconda, Pytorch, and other

dependencies) as well as DGL in a new conda environment called
“sub407_baseline”.

c. The DGL code is now present in sub407_baseline sub-folder
d. The conda environment can be enabled as “source

sub407_baseline/miniconda3/bin/activate sub407_baseline”
5. Run “source XYZ/env_baseline.sh”
a. It activates the conda environment “sub407_baseline” and sets

up all the environment variables
6. Run “XYZ/install_extra_dep.sh”
7. TheDGL (Baseline) installation is ready to run the single socket

experiments, with DGL code present in XYZ/sub407_baseline/dgl
(follow “How to run” described in section D.1).

8. If youwish to rerun setup_env.sh then remove sub407_baseline
folder and rerun the scripts.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/dmlc/dgl/pull/2914

(Commit: cfb73e2)↩→

Artifact name: DistGNN

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Intel Xeon 8280/9242 CPU; Memory:
384GB

Operating systems and versions: CentOS 7.6/8.0

Compilers and versions: GCC 8.3.0

Applications and versions: DGLv0.6.0; PyTorch 1.7.1

Libraries and versions: OneCCL (git commit: d386f73); Python
version: 3.7.10 ; LIBXSMM (git commit:55c6a9f); cmake-3.19

Key algorithms: Optimized SPMM, Libra graph partitioning

Input datasets and versions: Reddit, OGBv1.1.1, AM, Proteins

	Abstract
	1 Introduction
	2 Background
	2.1 Aggregation Primitive
	2.2 GNN Libraries

	3 Related Work
	4 DistGNN: Shared-Memory Algorithm
	4.1 Baseline Implementation of Aggregation Primitive in DGL
	4.2 Efficient Aggregation Primitive

	5 DistGNN: Distributed-Memory Algorithm
	5.1 Graph Partitioning
	5.2 Partition Setup
	5.3 Delayed Remote Partial Aggregates

	6 Experimental Evaluation
	6.1 Experiment Setup
	6.2 Single-Socket Performance
	6.3 Distributed Algorithm Performance

	7 Conclusion and Future Work
	References

