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A B S T R A C T   

Understanding grassland dynamics and their relationship to weather and grazing is critical for pastoralists whose 
livelihoods depend on grassland productivity. Studies investigating the impacts of climate and human factors on 
inter-seasonal grassland dynamics have focused mostly on changes to vegetation structure. Yet, quantifying the 
impact of these on the inter-seasonal dynamics of specific grassland communities is not known. This study uses 
digital repeat photography to examine how intra-seasonal grassland dynamics of different grassland communities 
are affected by precipitation, temperature, and grazing in a heterogeneous semi-arid savannah in Kenya. A low- 
cost digital repeat camera network allowed for fine-scale temporal and spatial variability analysis of grassland 
dynamics and grazing intensity. Over all grass communities, our results show precipitation driving mainly early- 
season and in some cases mid-season flushing, temperature driving end-of-season senescence, and grazing 
influencing mid-season declines. Yet, our study quantifies how these three drivers do not uniformly impact 
grassland species communities. Specifically, Cynodon and Cynodon/Bothriochloa communities are rapidly and 
positively associated with precipitation, where mid-season declines in Cynodon communities are associated with 
grazing and late-season declines in Cynodon/Bothriochloa communities are associated with temperature in-
creases. Setaria communities, on the other hand, have weaker associations with the drivers, with limited positive 
associations with precipitation and grazing. Kunthii/Digitaria diverse communities had no association with the 
three drivers. Highly diverse mixed communities were associated with increased precipitation and temperature, 
as well as lower intensity grazing. Our research sheds light on the complex interactions between plants, animals, 
and weather. Furthermore, this study also demonstrates the potential of digital repeated photography to inform 
about fine-scale spatial and temporal patterns of semi-arid grassland vegetation and grazing, with the goal of 
assisting in the formulations of management practises that better capture the intra-annual variability of highly 
heterogeneous dryland systems.   

1. Introduction 

Grasslands cover more than one-third of the global land area (Rey-
nolds et al., 2005). They are critical for food security (Boval & Dixon, 
2012; O’Mara, 2012), ecological services (Bengtsson et al., 2019), car-
bon sequestration (Yang et al., 2019), and cultural heritage (Mire, 
2017). In African drylands, grasslands are also vital to pastoralist com-
munities who rely on them as the primary source of fodder for their 
livestock (Reid et al., 2008). Their livelihoods depend on regular access 

to palatable pastures, but pastoralists also significantly contribute to 
local, national, and regional economies (Caroline King-Okumu et al., 
2015; Republic of Kenya, 2012, 2021). Changes to grassland produc-
tivity, particularly when they happen within the season, can therefore 
substantially impact food security, and cause wider socio-economic and 
ecological implications. Yet little is known about these intra-seasonal 
grassland dynamics and the corresponding drivers in the drylands. 

In Kenya, grasslands support pastoralism, a sector worth US$1.13 
billion in the country’s economy (Nyariki & Amwata, 2019). Further, 
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they are the primary food source for the livestock and pastoralist com-
munities (Mganga et al., 2015) and represent rich plant biodiversity 
(Akwee et al., 2017; Cheche et al., 2015; Jawuoro et al., 2017). How-
ever, grasslands are under threat of degradation due to the shifting land 
management practices (Said et al., 2016), overgrazing (Kioko et al., 
2012), invasive plant species (Githae, 2018; Muthoka et al., 2021; Strum 
et al., 2015), and a changing climate (Nicholson, 2014). 

Several studies have described the effects of climate and human 
intervention on grassland dynamics across different regions and seasons 
(Linderman et al., 2010; Liu et al., 2019a, 2021; Zarei et al., 2021). 
Mostly, these studies focused on disentangling the role of climate and 
human factors in grassland inter-seasonal dynamics and long-term 
degradation trends (Liu, Wang, et al., 2019; Polley et al., 2014; Yu 
et al., 2022) but less on distinguishing the specific roles of weather 
variation and human activities such as grazing on seasonal grassland 
dynamics. The few studies that looked at seasonal vegetation dynamics 
mostly differentiated the dynamics based on the vegetation structure 
(D’Adamo et al., 2021; Liu et al., 2021; Tong et al., 2019) but not on 
species composition, although weather and grazing impacts may differ 
depending on plant community composition and diversity (Ondier et al., 
2019). Also, previous research has not looked into separately quanti-
fying the effect of grassland communities, weather and grazing factors. 
As a result, the impacts of species composition, precipitation, tempera-
ture, and grazing on semi-arid savannah grassland seasonal dynamics 
are still unclear (Cheng et al., 2020). 

Earth Observation, specifically satellite remote sensing and in-situ 
digital cameras (phenocams), is a valuable tool for studying the impacts 
of climate and grazing on grassland dynamics (D’Adamo et al., 2021; 
Gómez-Giráldez et al., 2020; Zhou et al., 2017). Due to its spatial and 
temporal coverage, satellite imagery allows assessing grassland pro-
ductivity and phenology for larger regions (Caparros-Santiago et al., 
2021; Reinermann et al., 2020). However, cloud cover, high data 
dimensionality and costs, especially for high-resolution data, are 
drawbacks of using satellite remote sensing (Ali et al., 2016). As an 
alternative, phenocams are a low-cost, “near ground” tool for collecting 
frequent and spatially-detailed information on vegetation dynamics 
(Richardson, 2019). In addition, it offers an automated observation of 
vegetation dynamics instead of direct visual observations by dedicated 
field staff volunteers (van Vliet et al., 2014). Phenocams are stationary 
digital cameras set up in the field to take repeated pictures at pre-
determined intervals, allowing for the temporal tracking of phenology. 
Vegetation indices derived from phenocams can effectively measure 
fine-scale changes in greenness (Cheng et al., 2020; Matongera et al., 
2021). Therefore, the deployment of inexpensive digital repeat cameras 
across different grassland communities can provide an effective 
approach to understanding how their productivity and dynamics vary 
throughout the season as a function of species composition, weather, 
and grazing. However, despite the use of digital repeat cameras in a 
variety of biomes, ecosystems, and regions with much focus on the 
United States, China, Japan, the United Kingdom, and Malaysia, digital 
repeat cameras have not been used frequently in Africa’s semi-arid 
savannah grasslands (Cheng et al., 2020; Jonge et al., 2022; Seyednas-
rollah et al., 2019; D. Yan et al., 2019). 

This paper aims to understand how grassland communities, precip-
itation, temperature, and grazing affect grassland dynamics in a semi- 
arid grassland located in Kenya’s Kapiti research station. A time series 
of digital repeat photographs acquired by a network of seven digital 
cameras in 2019 is used to determine changes in the grassland com-
munity’s greenness and estimate the number of wild and domestic 
grazers. In addition, the dataset was used to evaluate relationships with 
key drivers of grassland dynamics selected based on the existing litera-
ture (Ondier et al., 2019; Polley et al., 2014; Yan et al., 2019; Yu et al., 
2012; Zarei et al., 2021; Zhang et al., 2018). A better understanding of 
the fine-scale spatial variations and the rapid temporal dynamics is 
essential for providing insights into the complexity of rangelands in arid 
and semi-arid environments. 

2. Study area and data 

2.1. Study area 

The research was conducted at the Kapiti research station (Fig. 1), 
located in Machakos County at an altitude of 1615–1920 m above sea 
level (m.a.s.l). The International Livestock Research Institute (ILRI) 
owns the station, covering 128 km2. It is home to approximately 2500 
cattle herds and 1450 sheep and goats (ILRI, 2019). Furthermore, it 
serves as an important migration corridor for wild animals migrating 
from Nairobi National Park to Tsavo National Park. However, as urban 
infrastructure development has increased across and around the 
migration corridor, the research station has become a haven for wildlife, 
including herbivores and carnivores. 

The Kapiti research station is located in a semi-arid land. It receives 
annual average precipitation of 550 mm (ILRI, 2019) over two seasons 
(i.e. “long rains” in March, April, and May and “short rains” in October, 
November, and December). Herbaceous plants (i.e., grasses and forbs) 
and patchy savanna woody species such as Acacia nubica dominate the 
farm’s vegetation. Additionally, the herbaceous species include peren-
nials (e.g., Setaria trinervia, Themeda triandra, Cynodon dactylon, Digitaria 
macroblephara, Microchloa kunthii), annuals (e.g., Eragrostis tenuifolia, 
Aristida keniensis, Lolium temulantum), and forbs (e.g., Blepharis hilde-
brandtii, Sida ovata, Schkuhria). The research station’s major soils are red 
cotton in the ridges and black cotton in the plains, with patches of sandy 
soils primarily along ephemeral channels (ILRI, 2019). 

2.2. Data 

2.2.1. Grassland community surveys and soil properties 
During a field campaign undertaken between April and July 2019, 

two 3 km-long transects running East-West (EW) and North-South (NS) 
were identified (see Fig. 1) for detailed site sampling of herbaceous 
composition and soil properties across different vegetation commu-
nities, grazing characteristics, and slope gradients (Table 1). In the two 
transects, initially, we had more grassland sites sampled; however, due 
to camera malfunction, not all were retained for the analysis. Both 
livestock and wildlife graze these areas, and the elevation is relatively 
uniform, ranging from 1631 to 1685 m.a.s.l. The distance between each 
sampled site was about 1 km, and each site measured 30 m × 30 m (900 
m2). As a result, the seven grassland sites were chosen in consultation 
with the Kapiti research station to represent best the community of 
grasslands and forbs found in the region, including palatable and pref-
erential grasses for livestock and wildlife. 

The herbaceous composition was estimated at each grassland site, 
where four 0.5 m × 0.5 m quadrants were randomly nested in each 900 
m2 sample plot. Next, individual plants of a specific herbaceous species 
were counted within each quadrant to estimate frequency density and 
cover, calculated based on the proportion of area covered by the grass 
compared to the total soil area within the quadrants. Finally, we 
calculated the cover-abundance values for each plant taxon using the 
Braun-Blanquet method (Braun-Blanquet, 1932) and saved them in the 
TURBOVEG program (Hennekens & Schaminée, 2001). 

Also, we sampled soil at each site using a cross-diagonal pattern with 
uniform collection subsamples (i.e., six per diagonal and 12 total for 
each 900 m2 sample plot) (Soil Survey Staff, 2014). The subsample was 
collected at depths of 0–20 cm and 20–40 cm, yielding two composite 
samples per grassland site. Each composite was thoroughly mixed, and 
two cups were placed in a sample bag labelled for subsequent laboratory 
analysis. Finally, soil organic carbon (OC), alkalinity (pH), nitrogen (N), 
phosphorus (P), and potassium (K) levels were determined for both 
depths. 

2.2.2. Precipitation and temperature data 
Precipitation and temperature data were based on an in-situ weather 

station inside the Kapiti research station and situated at a 0.8–3.6 km 
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distance from the seven sampling plots. These data were recorded every 
15 min. Temperature measurements were processed to obtain the daily 
average temperature, whereas precipitation was aggregated to daily 
precipitation values. In addition, missing data in our precipitation data 
were filled using CHIRPS (Funk et al., 2015) rainfall estimates from rain 
gauge and satellite observation; this is after the station broke down. 

2.2.3. Near ground digital photography time-series data 
Time-series of digital photographs were obtained at each plot with 

Bushnell Trophy Cam Essential cameras (i.e., Phenocam) at 12 mega-
pixels and saved in JPEG format. All cameras were programmed to take 
photos every 30 min for 12 h (0600 – 1800Hrs). All phenocams were 
installed at approximately 2 m above the ground surface at the southern 
edge of each plot. They were positioned at an inclination depression 
angle of at least 8◦ (Vrieling et al., 2018), ensuring that the camera had a 
10–30 m field of view of the plot. We used the data collected from the 
end of March to the end of July 2019, which corresponds to the long 
rains growing season. 

Fig. 1. An overview of the Kapiti research station overlaid on a 5 m resolution Digital Terrain Model of the study area, which was generated from data acquired with 
a Leica ALS60 aerial LIDAR (panel a) as well as the grassland site locations. Plotted alongside is a map showing the study location in Kenya (panel b). 

Table 1 
Description of the grassland sites.  

Transect Site Latitude Longitude Elevation 
(m) 

Soils Site description 

1 KIT1A  − 1.607  37.094 1638 Clay and loam Open grasslands with sparse shrub vegetation are dominated by herbaceous cover (90 %). 
Located about 200 m away from an active sheep and goat “boma” and grazed by both livestock 
and wildlife. 

KIT1B  − 1.604  37.098 1639 Clay Open grasslands with sparse shrub vegetation are dominated by the herbaceous cover (90 %). 
Located 500 m away from a watering pan and is grazed by livestock and wildlife. 

KIL1F  − 1.598  37.111 1637 Clay and loam Open grassland with sparse shrub vegetation and dominated by herbaceous cover (90 %). This 
site is grazed by both wildlife and livestock. 

KIL1E  − 1.591  37.121 1631 Clay (deep 
back cotton) 

Mixed grassland and shrubs vegetation dominated by the herbaceous cover (60 %). Located in an 
area susceptible to flooding with structurally high herbaceous species characterised by low 
animal grazing. 

2 KIL2A  − 1.616  37.136 1685 Clay (red 
cotton) 

Open grasslands with sparse shrub vegetation are dominated by the herbaceous cover (90 %). 
Located in well-drained soils and grazed by both livestock and wildlife. Historically the site was 
an animal holding unit “boma”. 

KIL2C  − 1.604  37.130 1659 Clay (red 
cotton) 

Open grassland with sparse shrub vegetation is dominated by the herbaceous cover (90 %). This 
site is grazed by both wildlife and livestock. 

KIL2D  − 1.593  37.126 1636 Clay (deep 
back cotton) 

Mixed grassland and shrubs vegetation dominated by the herbaceous cover (60 % cover). Located 
in an area susceptible to flooding with structurally high herbaceous species and characterised by 
low animal grazing. 

P – perennial, F - forbs and A – annuals. Dominant species are highlighted in bold. 
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3. Methods 

3.1. Determining grassland community and soil properties 

The herbaceous composition data collected during the field 
campaign were imported into TURBOVEG and then exported into JUICE 
software (Tichý, 2002) for subsequent statistical analysis. Within JUICE, 
we statistically computed the herbaceous species richness (R) (i.e. the 
average number of species in all quadrats in which the species occurs), 
the herbaceous plant diversity (using the Shannon-Wiener Diversity 
Index (Equation (1))), the herbaceous species evenness (E) (Equation 
(2)), and the dominant herbaceous species based on cover and frequency 
threshold of 50 and 60 respectively as outlined by Chytrý et al. (2003). 
Also, we qualitatively characterized the grassland community based on 
grassland site herbaceous species composition. 

H = −
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where S is the number of species and pi is the proportion of the in-
dividual species cover relative to the total cover. 

The Walkley-Black method described in the FAO (2019) guideline 
was followed to calculate soil organic carbon (OC) using chromic 
oxidation. When two volumes of sulfuric acid are mixed with one vol-
ume of dichromate acids and one volume of nitrogen potassium, the 
dichromate solution oxidises oxidisable matter in the soil, generating 
heat. The remaining dichromate is titrated with ferrous sulphate, the 
solution of which is inversely proportional to the amount of carbon in 
the soil. Additionally, the total nitrogen (N), phosphorus (P), and po-
tassium (K) levels in the soil were measured following the guidelines 
established by Motsara and Roy (2008). First, total N was determined 
using the modified Kjeldahl method, which employs salicylic acids and 
converts available organic and inorganic salts into an ammonium form 
that is distilled and estimated using standard acid at the end of digestion. 
Second, P was determined using the Olsen method for neutral and alkali 
soils, which produces coloured compounds when appropriate reagents 
are added to a solution. The intensity is proportional to the concentra-
tion of the elements being estimated. Third, the presence of P in the soil 
is extracted using one molar neutral ammonium acetate, and finally, the 
pH was determined using a glass electrode technique (Okalebo et al., 
2002). 

3.2. Extraction of animal counts from digital photography time-series 

This study used animal presence as a proxy for grazing intensity, 
defined as the daily aggregate of animals found within the phenocam 
field of view, assuming that presence implies grazing activity. We used 
the phenocam 30 min time-series photographs to compute an aggregate 
daily animal presence count by counting individual ruminants (i.e., 
cattle, sheep, goats, and wildlife) in each picture frame. To detect the 
animals, we used a pre-trained model called MegaDetector and devel-
oped by Microsoft for processing camera trap data (Beery et al., 2019; 
Microsoft, 2020). MegaDetector model is based on a Faster Region- 
Based Convolutional Neural Network (RCNN) with an inceptionRes-
Netv2 base network and trained with the TensorFlow Object Detection 
API with millions of bounding box labels from different habitats. The 
choice of the model was informed by success in the pre-trained object 
detection model and application in wildlife ecology (Fennell et al., 2022; 
Norouzzadeh et al., 2021). MegaDetector model has three categories of 
classification (i.e., humans, animals, and vehicles) and based on our 

interest in deriving grazing intensity, we settled on the animal category. 
Also, we set critical prediction thresholds of the model at 45 % confi-
dence and did not consider detection with < 45 % confidence. The 
reader is referred to Beery et al. (2019) for further details on the RCNN 
algorithm and its implementation. Finally, the model’s accuracy in an-
imal detection was evaluated by cross-checking the model counts 
against visually determined animal counts for seventy randomly 
selected frames. We computed the root mean square error (RMSE) to 
assess the difference between the two methods. 

3.3. Assessing grassland dynamics from phenocam time-series 

We used the “Phenopix” R package (Filippa et al. 2016) to assess 
changes in vegetation greenness from the photo time series as a proxy of 
the phenological behaviour of the vegetation within the camera foot-
print. First, we performed a visual quality check on the image time series 
and manually removed all blurred photographs or for which an indi-
vidual animal was directly in front of the camera, prohibiting a good 
observation of the scene. Then, a Region of Interest (ROI) was created 
within the phenocam field of view in patches of homogeneous herba-
ceous species (see Fig. 2). Within the ROIs, we extracted the mean digital 
numbers (DN) in the red (R), green (G) and blue (B) spectral ranges from 
each of the photos and derived the Green Chromatic Coordinate (Gcc) 
(Gillespie et al., 1987), which allowed us to compute the greenness 
relative to total brightness using Equation (3): 

GDN

RDN + GDN + BDN
(3)  

where GDN, RDN, and BDN correspond to the digital numbers of green, 
red, and blue. 

While we acknowledge the existence of other indices, such as the 
green excess index (Woebbecke et al., 1995), we chose to use Gcc due to 
its extensive use in vegetation and phenology analysis especially 
employing near ground remote sensing of digital repeat photography 
(Cheng et al., 2020; Filippa et al., 2016; Richardson, 2019; Seyednas-
rollah et al., 2019; Vrieling et al., 2018) and its ability to overcome 
changes in scene brightness (Sonnentag et al., 2012). Additionally, using 
the extracted ROI-mean, we further filtered the data to reduce noise 
caused by different illumination by identifying the 90th percentile 
values based on a three-day moving window as proposed by Sonnentag 
et al. (2012) and widely used in similar studies (Cheng et al., 2020; 
Gómez-Giráldez et al., 2020; Seyednasrollah et al., 2019; Vrieling et al., 
2018). 

3.4. Assessing the drivers of intra-seasonal grassland dynamics 

We used quantitative and qualitative analyses to deduce the rela-
tionship between changes in vegetation greenness and weather and 
grazing factors. First, Pearson’s correlation coefficient was used to 
examine the strength and relationship between greenness (Gcc) and 
precipitation (PRCP), air temperature (AT), and grazing (animal fre-
quency A) factors for the season. Here, we used the number of days that 
indicated a strong correlation as the minimum number of days that show 
a change in greenness for the aggregation days. For example, to arrive at 
the Gcc change, we computed the difference in greenness based on the 
aggregation periods (4 days representing one lag). Next, we analysed 
this relationship with multiple lags of PRCP, AT, and A. Previous 
research has revealed a time lag between vegetation and climatic vari-
ables (Pei et al., 2019; Udelhoven et al., 2009; Wen et al., 2019; Wu 
et al., 2015). Finally, we performed multiple linear regression (Equation 
(4)) to model the association between Gcc and optimal lags for PRCP, 
AT, and A at a standard significance level (p = 0.05) with an adjusted R2 

score to compare the same variables across grassland sites, analysed for 
the relative importance (Gromping, 2006), and making sure we tested 
for the main linear regression assumptions of normality and 
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multicollinearity (Daoud, 2017; Gareth et al., 2021): 

y = β0 + β1X1 + β2X2 +⋯+ βkXk + ∊ (4)  

where y is the predicted variable (Gcc), β0 is the y-intercept, β1, β2 is the 
slope, X1 through Xk is the independent variable (PRCP, AT, A), and β1 
through βk are the estimated regression coefficients, and ∊ is the model’s 
random error (residual). 

4. Results 

4.1. Grassland characterization 

4.1.1. Analysis of herbaceous composition. 
The results on herbaceous species richness, diversity and evenness 

are presented in Table 2. Overall, 84 herbaceous species were recorded 

at the Kapiti grasslands, with forbs (54 species) outnumbering grasses 
(30 species) across all grassland sites. Among the 30 grass species, 22 
were perennial, and eight were annual grass species. Also, the hetero-
geneity among our grassland sites is evident from our analysis presented 
in the form of species richness, diversity, and evenness. We found single 
dominant community (KIL1E, KIL2A, and KIL2D) to have the lowest 
(1.62, 1.36, and 1.71) plant diversity, while co-dominant (KIT1A, 
KIT1B), and mixed community (KIL1F and KIL2C) to have the highest 
herbaceous plant diversity (2.45, 2.48, 2.3, and 2.61, respectively). Also, 
the single dominant community (KIL2A) had a low mean herbaceous 
species of all grassland communities. Finally, we observed similar spe-
cies evenness between KIL1E and KIL2D and between co-domince and 
mixed community (KIT1A, KIT1B, KIL1F, and KIL2C) grasslands. 

Table 3 highlights the results of grassland communities found in the 
Kapiti grasslands. Our findings show that Setaria trinervia (95 %) was the 
dominant single species at sitesKIL1E and KIL2D (hereafter referred to as 
“Setaria community” and Cynodon dactylon (75 %) (hereafter “Cynodon 
community” was the dominant single herbaceous species at site KIL2A. 
Site KIT1A and KIT1B have co-occurrence of Bothriochloa insculpta/ 
Cynodon dactylon and Microchloa kunthii/ Digitaria macroblephara, spe-
cies o- (hereafter “Bothriochloa/Cynodon community and Kunthii/Dig-
itaria species”), sites KIL1F and KIL2C. Other species of high frequency 
included Mariscus macropus, Sporobolus pyramidalis, Sporobolus dis-
cosporus, Euphorbia inaequilatera, Aristida adoensis, Pennisetum mezianum, 
Craterostigma pumilum, Themeda triandra, Bothriochloa insculpta, Har-
pachne schimperi, Microchloa kunthii, and Indigofera volkensii. 

Fig. 2. Panel (a)-(g) shows sample photos taken at Kapiti research station on May 1st, 2019 at 09:59 (EAT) by cameras KIT1A, KIT1B, KIL1F, KIL1E, KIL2A, KIL2C, 
and KIL2D, respectively. The top row corresponds to the camera position along transect one, while the second row depicts the camera position and field of view 
draped on the Google Earth image. Panel (e)-(g) correspond to the transect two cameras, as well as camera positions and field of view. The red box depicts the area of 
interest used to sample and calculate average Gcc values. 

Table 2 
Plant species richness, diversity, and evenness at the various grassland sites.  

Grassland 
site 

Species 
richness (R) 

Mean 
species/ plot 

Mean species 
diversity (H) 

Mean species 
evenness 

KIT1A 34  17.50  2.45  0.87 
KIT1B 48  22.5  2.48  0.81 
KIL1F 39  18.25  2.30  0.80 
KIL1E 25  11.00  1.62  0.66 
KIL2A 19  8.25  1.36  0.68 
KIL2C 42  21.25  2.61  0.86 
KIL2D 29  13.00  1.71  0.66  
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4.1.2. Analysis of soil properties 
Fig. 3 presents the results of soil physio-chemical characteristics for 

the grassland communities. First, we found the Cynodon community to 
have higher levels of OC (>1.9) at shallow depths as compared to other 
grassland communities with low levels of OC (<1.9) at all depths. Sec-
ondly, the single (KIL2D) co-occurrence (KIT1B) and the mixed (KIT1B, 
KIL1E, KIL1F) grassland communities had acidic soil levels (pH < 7.0). 
In contrast, the co-occurrence Bothriochloa and Cynodon (KIT1A), single 
dominance Cynodon, and mixed (KIL2C) had alkaline soil levels (pH >
7.0). Third, we found mixed (KIL1F) and Cynodon (KIL2A) communities 
to have high P concentration levels (ppm > 20) and moderate K con-
centration levels (between 110 and 250 mg/kg) at all depths compared 
to other grassland communities (P < 9 ppm, K < 110 ppm). Fourth, only 
the Cynodon (KIL2A) community contained moderate N levels (0.15 – 
0.3 %), as compared to low levels (<0.15 %) for the other communities. 
Overall, we found that grassland communities with moderate to high 
levels of OC, P, N, and/or K content had a higher average Gcc than those 

with low levels. The highest average Gcc was found for the Cynodon 
(KIL2A) community, and coincided with high levels of OC, P, K and N). 

4.2. Animal frequency derived from phenocams 

Fig. 4 shows an example frame with the animals detected using the 
MegaDetector RCNN model. Analysing the sampled frame images and 
comparing MegaDetector identification against the manual identifica-
tion indicates that 87.15 % of the model variability is explained by the 
in-animal counts and an RMSE of 1.157 (see Supplementary Fig. S2). 
Furthermore, we found the detection confidence level was greater than 
60 %. Finally, wet weather hindered accurate identification due to mist 
and water droplets on the camera lens, while warm and sunny condi-
tions were the best. 

4.3. Grassland variation derived from phenocams 

Fig. 5a depicts the time series of grassland greenness as determined 
by the Green Chromatic Coordinate (Gcc) for all seven grassland com-
munities from the end of March to the end of July 2019. The time-series 
profile and rates of green-up and senescence differed between grass 
communities. Three grassland communities had two distinct peaks in 
greenness during the period, with Gcc troughs by late May and early 
June. Co-occurrence Bothriochloa and Cynodon (KIT1A) and single 
dominance Cynodon (KIL2A) communities had the most pronounced 
mid and end season Gcc drops, with less prominent drops for the co- 
dominant (KIT1B) and mixed (KIL1F and KIL2C) communities. Addi-
tionally, our data shows that the Gcc levels for Setaria (KIL1E and KIL2D) 
community were the lowest. Overall, we found co-dominant (Kit1B) and 
mixed (KIL1F and KIL2C) communities to have greenness profiles that 
were generally similar, greening up in early May and senescing in mid- 
June. 

4.4. Analysis of precipitation and air temperature 

The corresponding PRCP and AT observations are shown in Fig. 5b. 
First, PRCP shows two significant episodes of higher precipitation, i.e., 
in late April and early June. The highest daily cumulative PRCP was 
53.6 mm on 24 April during the first episode and 24.9 mm on 2 June 
during the second PRCP episode. Furthermore, our data show a single 
PRCP event of 9.4 mm recorded on 18 May. Following the first PRCP in 
late April, we observed a green-up phase for all seven grasslands com-
munities, with the most rapid increases in the co-occurrence Bothrio-
chloa and Cynodon (KIT1A) and single dominance Cynodon (KIL2A) 
communities. Here, Gcc drops in mid-May for the co-occurrence 
Bothriochloa and Cynodon (KIT1A), single dominance Cynodon (KIL2A) 
and mixed (KIL2C) communities, followed by a second PRCP episode in 
early June, resulting in a secondary green-up peak by mid-June. 

The AT is variable throughout the season, with the value (27.77◦) 
recorded on 23 June and the lowest (18.19◦) on 24 May. Across the 
study period, the highest AT occurred on average on dry days and lower 
AT’s on wet days, even though lower AT is also found during the dry 
early July. 

4.5. Drivers of grassland dynamics 

4.5.1. Site-level greenness and grazing intensity 
Fig. 6 compares the Gcc time series to that of animal grazing. Panels 

a, b, c, and d depict transect 1, while panels e, f, and g depict transect 2. 
Both Gcc and animal counts fluctuate strongly during the period. For 
example, we find moderate to low animal grazing in mixed and co- 
occurrence Bothriochloa and Cynodon (KIT1A, KIT1B, and KIL1F) and 
Setaria (KIL1E) grassland communities along transect 1. Similarly, we 
find a gradual increase in grazing animals from the single dominance 
Setaria (KIL2D) to Cynodon (KIL2A) grassland communities. The Cyn-
odon (KIL2A) community has the highest grazing animals among the two 

Table 3 
Synoptic table of a semi-arid Kapiti grasslands showing constant species and 
dominant species.  

Grassland 
community 

Species frequency 
(above 60 %) 

Dominant 
species 
(above 50 %) 

Bothriochloa/ 
Cynodon (KIT1A) 

Bothriochloa insculpta(P), 
Craterostigma pumilum(F), Cynodon 
dactylon(P), Digitaria macroblephara(P), 
Eragrostis tenuifolia(P), Indigofera 
volkensii(F), Microchloa kunthii(P), 
Pennisetum mezianum(P), Pentanisia 
ouranogyne(F), Sida ovata(F), 
Sporobolus discosporus(P), Themeda 
triandra(P)  

Cynodon (KIL2A) Cynodon dactylon (P), Digitaria 
scalarum (P), Justicia exigua (F), 
Schkuhria pinnata (F) 

75 % - Cynodon 
dactylon (P) 

Kunthii/Digitaria 
(KIT1B) 

Digitaria macroblephara(P), Eragrostis 
tenuifolia(A), Eustachys paspaloides 
(P), Hermania alhiensis(F), Microchloa 
kunthii(P), Pennisetum mezianum(P), 
Portulacca kermesina(F), Schkuhria 
pinnata(F), Sida cuneifolia(F), Sida 
ovata(F), Sporobolus pyramidalis(P), 
Themeda triandra(P)  

Mixed (KIL1F) Bothriochloa insculpta(P), 
Craterostigma pumilum(F), Crossandra 
subacaulis(F), Digitaria scalarum(P), 
Harpachne schimperi(P), Hyparrhenia 
lintonii(P), Indigofera volkensii(F), 
Microchloa kunthii(P), Senna 
mimosoides(F), Sida ovata(F), Sporobolus 
pyramidalis(P), Themeda triandra(P)  

Mixed (KIL2C) Becium obovatum(F), Bothriochloa 
insculpta(P), Craterostigma pumilum(F), 
Digitaria macroblephara(P), Digitaria 
scalarum(P), Harpachne schimperi(P), 
Heteropogon(P), Hyparrhenia lintonii(P), 
Mariscus macropus(P), Microchloa 
kunthii(P), Pennisetum mezianum(P), 
Sporobolus discosporus(P), Tephrosia 
pumila(F), Themeda triandra(P)  

Setaria (KIL1E) Ischaemum brachyatherum(P), 
Orthosphon parvifolius(F), Pennisetum 
mezianum(P), Rhynchosia minima(F), 
Setaria trinervia(P) 

95 % - Setaria 
trinervia (P) 

Setaria (KIL2D) Digitaria macroblephara(P), Ischaemum 
brachyatherum(P), Orthosphon 
parvifolius(F), Pennisetum mezianum(P), 
Rhynchosia minima(F), Setaria trinervia 
(P), Themeda triandra(P) 

95 % - Setaria 
trinervia(P) 

Species with high relative frequency during all field campaigns are represented 
by bold; species life-form is represented by brackets (); P = perennial, A =
annual, F = forbs. 
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transects, and also the highest overall Gcc levels. In addition, our find-
ings show that the low Gcc levels for the Setaria (KIL1E and KIL2D) 
communities correspond to fewer grazing animals. However, these 
communities show an increase in animal grazing during the early green- 
up (see Fig. 6c and 6 g). Our results show a large variability in animal 
grazing pressure among the different grassland communities. 

4.5.2. Quantitative assessment of drivers 
We first estimated the single variable correlations with lags. Table 4 

displays the lag correlation results between Gcc and PRCP, AT, and A. 

Many grassland sites respond positively to PRCP, with an optimal lag of 
four days, with single occurence Cynodon (KIL2A) and co-occurence 
Bothriochloa and Cynodon (KIT1A) communities showing the most sig-
nificant correlation coefficient of 0.72 and 0.75, respectively. Setaria 
community (KIL2D), on the other hand, had a longer lag, corresponding 
to 36 days, at a moderate correlation strength of 0.58. Digitaria/Kunthii 
(KIT1B) and Setaria (KIL1E) community data show no significant cor-
relation strength for the PRCP variable. 

The lag correlation results between Gcc and AT show that only the 
co-occurrence Bothriochloa/Cynodon (KIT1A), and mixed (KIL1F and 

Fig. 3. Soil physio- chemical characteristics at the seven field sites; (a) Organic carbon; (b) Alkalinity - pH; (c) Phosporous; (d) Potassium; (e) Nitrogen.  
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KIL2C) communities had a significant negative correlation (0.73, 0.60, 
and 0.59, respectively). 

The lag correlation between Gcc and A shows that the animal 
response to changes in greenness varies across grassland communities. 
We found that the Gcc range had a poor correlation to A ranging from 

− 0.50 to 0.65, with no significance for Digitaria/Kunthii (KIT1B) and 
Setaria (KIL1E) communities. However, at the Setaria (KIL2D) commu-
nity, we found a strong positive correlation between Gcc and A that 
corresponded to 12 days. Conversely, only Cynodon (KIL2A) showed a 
negative correlation (-0.50) between Gcc and A, with a lag of four days. 

Fig. 4. Sample frames showing MegaDetector identification for the Cynodon (KIL2A) grassland community. The top panel shows livestock detection and the bottom 
panel wildlife detection. The blue squares indicate the single animals that were retrieved, and the confidence score is highlighted in white. 
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Overall, our data show that mixed (KIL1F and KIL2C), and Bothriochloa/ 
Cynodon (KIT1A), had a significant correlation (p < 0.05) with PRCP, 
AT, and A. Digitaria/Kunthii (KIT1B) and Setaria (KIL1E) communities 
showed no significant correlation with any of the variables. 

Table 5 shows the results of the multivariate regression models for 
the seven grassland communities linking PRCP, AT, and A to greenness 
(see Supplementary Table S1 for the results of the Shapiro-Wilk 
normality test and multicollinearity results). Models 1–4 represent the 
various multi-variable combinations for the season (i.e., model 1 - PRCP 
and AT; model 2 - AT and A; model 3 - PRCP and A; model 4 - PRCP, AT 
and A). 

A comparison of regression results across the study area shows that 
many models produced significant (p < 0.05) results for single domi-
nance Cynodon (KIL2A), Setaria (KIL2D), co-occurrence Bothriochloa/ 
Cynodon (KIT1A), and mixed (KIT1B, KIL1F and KIL2C) communities. 
However, the Setaria (KIL1E) community models were not significant, 
indicating that the Gcc variability could not be explained by this site’s 
combined PRCP, AT, and A variability. Comparing the adjusted R- 
squared for all the models across the study area indicates that models 1 
(PRCP and AT) contributed the most to Gcc in Bothriochloa/Cynodon 
(KIT1A), with an adjusted R2 − 0.75. In contrast, model 2 (AT and A) 
contributed the most to Gcc in Digitaria/Kunthii (KIT1B), mixed (KIL1F), 
and Setaria (KIL2D) communities, with an adjusted R2 of 0.30, 0.45 and 
0.47, respectively. Furthermore, models 3 (PRCP and A) contributed the 
most to Gcc in Cynodon (KIL2A) community, with an adjusted R2 − 0.56, 
while model 4, which includes all three predictor variables (PRCP, AT, 
and A), indicates the contribution of all the variables to Gcc in mixed 
(KIL2C) community with an adjusted R2 − 0.57. Overall, PRCP played a 
role in three of the grasslands (Cynodon (KIL2A), Bothriochloa/Cynodon 

(KIT1A), and mixed (KIL2C)), AT in five (Bothriochloa/Cynodon (KIT1A), 
Digitaria/Kunthii (KIT1B) mixed (KIL1F, KIL2C), and Setaria (KIL2D)), 
and A also in five (Digitaria/Kunthii (KIT1B). mixed (KIL1F, KIL2C), 
Cynodon (KIL2A), and Setaria (KIL2D)) communities. Overall, only for 
three sites greater than 50 % of the Gcc variability could be explained 
from PRCP, AT, and A. Similarly, the drivers’ contribution per grassland 
community are given in Fig. S1, with PRCP contributing most to Cyn-
odon and Bothriochloa/Cynodon communities, AT contributing most to 
Bothriochloa/Cynodon and Highly-diverse mixed communities, and 
grazing contributing most to both Setaria communities and the Digitaria/ 
Kunthii community. 

5. Discussion 

5.1. Drivers of grassland variation 

Precipitation, temperature, and grazing influence grassland com-
munity greenness, albeit at different times. Precipitation is associated 
with early-season community grass flushing, temperature increases in-
fluence community grass senescence, and heavy grazing is associated 
with mid-season losses in community grass greenness. Using multivar-
iate regressions (Table 5), the inclusion of AT to PRCP or A to AT ex-
plains marginally better the variability in greenness for various 
grassland communities in semi-arid Kenya. These findings support pre-
vious research on the role of precipitation, temperature, and grazing in 
the structural dynamics of grasslands (D’Adamo et al., 2021; Liu et al., 
2021; Tong et al., 2019). However, this study provides new evidence of 
the association of precipitation, temperature and grazing drivers on the 
production of grasses in single, co-dominant, and mixed-species 

Fig. 5. (a) Seasonal Gcc phenology profiles for all the grassland communities; and (b) daily accumulation and mean for precipitation (mm) and air temperature (oC), 
respectively, for the study period. 
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communities. 
Our study quantifies how the three drivers precipitation, air tem-

perature and grazing do not impact grassland species communities 
uniformly. Precipitation and grazing were found to be significantly 
(adjusted R2 0.56) associated with the variability in the greenness of the 
Cynodon community (KIL2A). Specifically, precipitation rapidly (4 days) 
increased Cynodon community green-up (see Fig. 5). In contrast, animal 
grazing was associated with the loss in community grass greenness 
during the mid-season. These results confirm the association between 
precipitation and grazing as essential drivers of temporal variability in 
grasslands (Hoffmann et al., 2016; Liu et al., 2019a) and also confirm a 
strong presence of grazing in Cynodon communities. 

There are several possible explanations for the result. First, Cyn-
odon’s well-developed rhizomes and stolons can facilitate the absorption 
of water and soil nutrients, and help explain the plant’s rapid reaction to 
water availability following the early-season rainfall events. Using its 

well-formed root systems, Cynodon has been shown to withstand 
drought and other disturbances and rebound quickly following water 
influxes into the system due to its rhizome survival during dry months 
(Holm et al., 1977; Mureithi et al., 2016). Secondly, the high grazing 
intensity may be explained by the palatability and productivity of the 
Cynodon community. Indeed, Cynodon is a highly palatable and nutri-
tious grass species that encourages herbivory, resulting in trampling and 
defoliation (Dalle, 2020; Mureithi et al., 2016; Ondier et al., 2019). The 
mid-season decline in the Cynodon community greenness is consistent 
with literature describing the impact on grass defoliation shortly after 
animal trampling and grazing (Li et al., 2019; Watson et al., 2019). 
Finally, we found high organic carbon, phosphorus, potassium, and ni-
trogen levels in the Cynodon community soils (Fig. 3), which point to 
good soil conditions that favour root development and moisture reten-
tion (Leghari et al., 2016; Prajapati & Modi, 2012; Raghothama, 2015). 

Additionally, in the Bothriochloa/Cynodon co-occurrence grassland 

Fig. 6. Time-series of Gcc for each grassland community and derived animal counts across the season. Transect 1 is represented by grassland site a, b, c and d for 
KIT1A, KIT1B, KIL1E and KIT1F, respectively, whereas transect 2 by e, f, and g for KIL2A, KIL2C and KIL2D, respectively. 
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community, we found temperature and precipitation to be significantly 
associated with grass productivity (adjusted R2 0.75) but not herbivory. 
Although animals were present at this site throughout the season 
(Fig. 6a), Bothriochloa species are not highly regarded by grazers, 
especially with increased age (Skerman & Riveros, 1990). Also, 
Bothriochloa species are impacted by increases in temperature as they 
can only tolerate drought for short periods (Heuzé et al., 2016). This 
may result in mid-season declines in Bothriochloa greenness (Fig. 6a). 
The rapid greenup following the season’s first rains, similar in magni-
tude to the Cynodon dominated community (Fig. 5a), can be attributed 
to the presence of Cynodon in the community. 

Another important finding was that the Setaria community showed 
lower greenness levels when compared to other grassland communities, 
and the greenness variability is only weakly driven by precipitation and 
grazing (see Fig. 5 and Table 5). Setaria trinervia is a perennial grass 
species with long stems and bristle spikelets with less leafy green ma-
terial. Vrieling et al. (2018) suggest that the reduced greenness observed 
by cameras can also result from non-photosynthetic elements (stems, 
seed heads) on plant tops. Consequently, Setaria is a highly palatable 
species when young, but due to the stem dominance and low foliage 
later in the season, it loses preference for grazing (Skerman & Riveros, 
1990). The finding is consistent with those of Ondier et al. (2019), who 
found that reduced grazing disturbance allows a few plant species to 
become dominant and develop large populations with high biomass. 
Setaria is known to tolerates flooding, dry condotions and poor clay soils 
where it can spread if seeding takes place (Skerman & Riveros, 1990). 

In the Digitaria/Kunthii co-occurrence grassland community, we 
found no association with precipitation, temperature and grazing. Dig-
itaria species require adequate rich soils and moisture levels greater than 
500 mm (FAO, 2012) for growth which may explain the lack of associ-
ation with precipitation given the low soil organic carbon, nitrogen, 
potassium and phosphorus in this community (see Fig. 3). Kunthii is a 
short, clustered grass species which can grown in shallow hardpan soils 
(Glover et al., 1964), and may be less rapidly influenced by precipitation 
buildup. The lack of association with grazing may be the result of 
moderate to low palatability of Digitaria/Kunthii community (Jawuoro 
et al., 2017; Skerman & Riveros, 1990), especially at the green-up phase. 
Also, as earlier noted, occurrence of Bothriochloa species (see Table 3) in 
the community could be a deterrent for the grazing animals. Interest-
ingly, the Digitaria/Kunthii community has the highest greenness and 

shallowest decrease in the late season senescence phase (Fig. 4a), which 
may explain the lack of association with temperature. 

Mixed communities (KIL1F/KIL2C) with high species richness 
(Table 2) were associated with precipitation and temperature, and were 
also positively associated with moderate intensity grazing. The rapid 
greenup following precipitation in some of the species is a result of the 
growth of ephemerals grass species (Jawuoro et al., 2017) such as Pen-
nisetum species. Ephemerals are grass species with rapid growth 
following precipitation event (Lugusa et al., 2016). Interestingly, in the 
mixed communities of this study, we found variability in greenness to be 
associated with the marginal herbivore activities (see Fig. 6b, d, and f 
also Table 4, 5). The marginal grazing intensity here may help to explain 
the species richness, diversity, and evenness (see Table 2). Marginal 
grazing intensity grazing sets up an environment that encourages 
grassland reproduction and plant diversity (Mureithi et al., 2010; 
Jawuoro et al., 2017) through growth of forbs in Kenya, while heavy 
grazing can reduce the density of selected species while promoting the 
growth of non-palatable forbs’ (Jacobs & Naiman, 2008; Todd, 2006). 

5.2. Limitations and future directions 

Grassland species composition, weather drivers, and grazing in-
tensity accounted for slightly more than 50 % of our study area’s spatial 
and temporal variation. However, there is still much-unexplained vari-
ability in grassland productivity, which may be explained by the com-
plex interactions between the various drivers and other factors that this 
work could not assess, such as terrain characteristics and plant func-
tional traits (growth form, water flux and below ground storage organs). 
For example, topography influences species diversity and available soil 
moisture (Gong et al., 2008), and plant functional traits (competition 
and growth rate) affect variability in vegetation among species (König 
et al., 2018). Thus it makes real-world dynamics challenging to model 
and limits our complete understanding of these complex interactions. 

The interaction of grassland communities, weather drivers and her-
bivory through grazing by wildlife and livestock is complex. While we 
attempted to unravel some of these interactions here, we also note that 
these are site-specific and depend on various factors such as species 
composition and weather drivers. Moreover, we acknowledge that our 
grassland communities likely do not represent all variability within 
drylands and possibly even within the Kapiti grasslands. Also, only one 

Table 4 
Pearson correlation coefficients between Gcc and lagged precipitation, air temperature and animal frequency. Each lag represents four days.  

Variables Grassland community Lags 

0 1 2 3 4 5 6 7 8 9 

PRCP Bothriochloa/Cynodon (KIT1A)  0.53  0.72**  0.15  0.01  0.1  − 0.24  − 0.53  − 0.09 − 0.01  0.16 
Cynodon (KIL2A)  0.64  0.75**  0.17  − 0.13  − 0.23  − 0.32  − 0.23  − 0.09 − 0.3  0.07 
Digitaria/Kunthii (KIT1B)  0.19  0.38  − 0.02  − 0.14  0.15  − 0.07  − 0.47  0.02 0.22  0.36 
Mixed (KIL1F)  0.2  0.58*  0.09  0.1  0.25  − 0.05  − 0.33  0.06 − 0.02  0.09 
Mixed (KIL2C)  0.47  0.55  0.31  − 0.13  0.13  − 0.17  − 0.5  − 0.21 0.19  0.08 
Setaria (KIL1E)  0.13  0.29  − 0.16  0.01  − 0.29  − 0.06  − 0.28  − 0.29 − 0.12  0.47 
Setaria (KIL2D)  − 0.02  0.23  0.34  − 0.15  − 0.23  − 0.29  − 0.35  0.06 0.58*  − 0.24 

AT Bothriochloa/Cynodon (KIT1A)  − 0.13  − 0.46  − 0.65  ¡0.73**  − 0.57  − 0.28  − 0.12  − 0.06 0.2  0.46 
Cynodon (KIL2A)  − 0.16  − 0.25  − 0.32  − 0.36  − 0.27  − 0.09  − 0.03  0.06 0.22  0.27 
Digitaria/Kunthii (KIT1B)  − 0.2  − 0.3  − 0.29  − 0.35  − 0.33  − 0.25  − 0.09  − 0.08 0.11  0.18 
Mixed (KIL1F)  − 0.08  − 0.25  − 0.41  − 0.53  ¡0.60*  − 0.45  − 0.22  − 0.13 0.19  0.31 
Mixed (KIL2C)  − 0.04  − 0.17  − 0.39  − 0.56  ¡0.59*  − 0.46  − 0.22  0.05 0.09  0.46 
Setaria (KIL1E)  0.14  − 0.1  − 0.39  − 0.34  − 0.13  0.16  0.25  0.21 0.35  0.07 
Setaria (KIL2D)  − 0.2  − 0.51  − 0.45  − 0.24  − 0.19  0.01  0.09  0.24 0  0.68 

A Bothriochloa/Cynodon (KIT1A)  0.27  0.36  − 0.03  − 0.05  0.14  0.09  0.13  0.38 0.56*  0.05 
Cynodon (KIL2A)  − 0.49  ¡0.50*  − 0.39  − 0.28  − 0.13  − 0.07  0.07  0.25 0.41  0.5 
Digitaria/Kunthii (KIT1B)  0.05  − 0.34  0.34  0.08  0.1  0.19  0.24  0.56 − 0.01  − 0.09 
Mixed (KIL1F)  0.05  0.22  − 0.01  − 0.08  0.28  0.27  0.01  − 0.11 0.51*  − 0.06 
Mixed (KIL2C)  − 0.3  − 0.27  0.13  0.21  − 0.11  0.34  0.50*  − 0.07 0.07  − 0.17 
Setaria (KIL1E)  − 0.2  0.12  − 0.08  0.32  − 0.1  − 0.11  − 0.08  0.25 0.19  0.42 
Setaria (KIL2D)  − 0.13  0.06  0.02  0.65*  − 0.15  0.11  0.41  0.25 − 0.08  − 0.02 

**=p < 0.01; *= ρ < 0.05; PRCP- Precipitation accumulation lag, AT – average Air temperature lag, 
A – Animals frequency accumulation count. 
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weather station was used in the study, and we hypothesise that local 
climate varies across spatial scales influencing species diversity. 
Nevertheless, our approach has demonstrated the ability to capture 
these fine-scale spatial and temporal variability and helps replicate in 
more locations to understand the complexities better. 

The relatively inexpensive camera traps have enormous potential to 
support dryland monitoring as they look at the temporal and spatial 
variability in these heterogeneous dryland systems. Compared to the 
phenological Webcam, that often requires an internet connection and is 
expensive to set up, especially for less developed countries with poor 
broadband connectivity. Because they are cheaper, multiple camera 
traps could be used instead of a single phenology webcam to get a 
broader range of samples for about the same amount of resources. Our 
study demonstrated that the low-cost camera systems provided com-
parable data to gain insights into the spatial and temporal grasslands 
dynamics. These findings are consistent with previous research high-
lighting the potential of inexpensive camera technology to support 
ecological monitoring (Cheng et al., 2020; Vrieling et al., 2018). 

Finally, in this study, we have successfully demonstrated how the 
pre-trained RCNN machine learning model can be used to estimate the 
grazing intensity of wildlife and livestock based on digital repeat pho-
tographs of single frames. In addition, we found the animal count based 
on the RCNN to be consistent with the manual count with an R2 of 87 % 
(see supp. Mat. Fig. 2). Our findings show comparable results with other 
studies of greater than 80 % detection (Beery et al., 2019; Carl et al., 
2020; Norouzzadeh et al., 2018). For example, Carl et al. (2020) ach-
ieved a detection accuracy of 94 % using a combination of Faster RCNN 
and Inception ResNet V2 pre-trained computer vision models to auto-
matically detect wild mammals in Europe. However, more research is 
required to address the limitations of poor animal detection in a high 
animal density frame. Also, in this study, for simplicity, we ignored the 
multispecies (wildlife and livestock) images and considered them all like 
animals. Future studies could determine how wildlife and livestock drive 
grassland variability by undergoing fine-scale herbivory characteriza-
tion. Such information is vital in rangeland management, especially in 
deciding the grassland productivity and carrying capacity. 

6. Conclusion 

This study demonstrated the potential of using low-cost digital 
repeat photography to assess the fine-scale spatial and temporal patterns 
of grassland dynamics in a heterogeneous semi-arid grassland influ-
enced by grassland species communities, weather and grazing factors. 
Although a substantial amount of greenness variability remains unex-
plained, precipitation, temperature, and grazing are shown to influence 
grassland community greenness, albeit at different times. For example, 

Table 5 
Regression analysis of Gcc and variable predictors of precipitation, land surface 
temperature, and animal frequency.  

Transect Grassland 
community 

model Formula Adjusted 
R2 

1 Bothriochloa/ 
Cynodon 
(KIT1A) 

1 Gcc = 0.051 +
0.0005PRCP** −
0.002AT**  

0.75**   

2 Gcc =
0.056–0.003AT** +
0.0002A **  

0.74**   

3 Gcc = − 0.004 +
0.0009PRCP* −
0.0001A  

0.45*   

4 Gcc = 0.052 +
0.0003PRCP −
0.003AT** −
0.0001A  

0.74**  

Digitaria/ 
Kunthii 
(KIT1B) 

1 Gcc = 0.023 +
0.0001PRCP −
0.001AT  

0.08   

2 Gcc =
0.015–0.001AT −
0.0003A*  

0.30*   

3 Gcc = − 0.014 +
0.0001PRCP −
0.0001A  

0.29   

4 Gcc = 0.012 +
0.0001PRCP −
0.001AT − 0.0001A  

0.25  

Setaria    
(KIL1E) 1 Gcc = 0.019 +

0.0001PRCP −
0.0001AT 

0.05    

2 Gcc =
0.009–0.001AT +
0.0001A  

0.07   

3 Gcc = − 0.005 +
0.0001PRCP +
0.0001A  

0.05   

4 Gcc = 0.009 +
0.0001PRCP −
0.001AT + 0.0001A  

0.01  

Mixed (KIL1F) 1 Gcc = 0.034 +
0.0001PRCP −
0.001AT  

0.42*   

2 Gcc =
0.036–0.002AT* −
0.0001A  

0.45**   

3 Gcc = − 0.011 +
0.0004PRCP −
0.0001A  

0.28*   

4 Gcc = 0.031 +
0.0001PRCP −
0.002AT* − 0.0001A  

0.45* 

2 Cynodon 
(KIL2A) 

1 Gcc = 0.0152 +
0.002PRCP** −
0.001AT  

0.50**   

2 Gcc =
0.035–0.001AT −
0.0001A  

0.14   

3 Gcc = − 0.004 +
0.001PRCP** −
0.0001A  

0.56**   

4 Gcc = − 0.008 +
0.001PRCP** −
0.0001AT − 0.000A  

0.53**  

Mixed 
(KIL2C) 

1 Gcc = 0.034 +
0.000PRCP −
0.002AT  

0.40*   

2 Gcc =
0.038–0.002AT** +
0.0002A *  

0.54**   

3 Gcc = − 0.014 +
0.0004PRCP −
0.0002A  

0.36*   

4  0.57*  

Table 5 (continued ) 

Transect Grassland 
community 

model Formula Adjusted 
R2 

Gcc = 0.030 +
0.0002PRCP −
0.002AT* −
0.0002A*  

Setaria 
(KIL2D) 

1 Gcc = 0.018 +
0.0001PRCP −
0.001AT  

0.28   

2 Gcc =
0.024–0.001AT +
0.0005A *  

0.47*   

3 Gcc = − 0.006 +
0.0001PRCP −
0.0001A  

0.36*   

4 Gcc = 0.023 +
0.0001PRCP −
0.001AT − 0.0001A  

0.41* 

PRCP– Precipitation; AT – air temperature; A – Animal frequency; *= ρ < 0.05, 
**= ρ < 0.01 and is highlighted in bold. 
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precipitation is associated with early-season community grass flushing, 
temperature influences community grass senescence, and heavy grazing 
is associated with mid-season community grass greenness losses. The 
Cynodon communities are affected by precipitation and herbivory, while 
the co-occurrence Bothriochloa/Cynodon communities have precipita-
tion and temperature, and Setaria communities have temperature and 
grazing as the main driver. This study’s technological application of the 
low-cost camera systems demonstrates how it adds value by providing 
temporal dynamics, spatial variability, and estimation of grazing re-
gimes. Our study is not conclusive about the drivers of semi-arid 
grassland dynamics but rather demonstrates the complexity of in-
teractions in these drylands and emphasizes their importance for 
designing more effective grassland management strategies. 
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