Stacks(unit 2.1)

DEFINITION

A stack is an ordered collection of homogeneous data elements where the insertion and deletion operations
take place at one end only. The insertion and 'deletion operations in the case of a stack are specially termed
PUSH and POP, respectively, and the position of the stack where these operations are performed is known
as the TOP of the stack. Anelement in a stack is termed an ITEM. The maximum number of elements that a
stack can accommodate is termed SIZE. Figure shows a typical view of a stack data structure.

PUSH POP
tem1 J*+—TOP
[ltem2]
L {tem 3 :
[itemd4]
Bottom

Figure 4.2 Schematic diagram of a stack.

REPRESENTATION OF ASTACK
A stack may be represented in the memory in various ways. There are two main ways: using
a one-dimensional array and a single linked list.

Array Representation of Stacks: First we have to allocate a memory block of sufficient size to
accommodate the full capacity of the stack. Then, starting from the first location of the memory block, the
items of the stack can be stored in a sequential fashion.

In Figure, Itemi denotes the ith item in the stack; | and u denote the index range of the array in use; usually
the values of these indices are 1 and SIZE respectively. TOP is a pointer to point the position of the array up
to which it is filled with the items of the stack. With this representation, the following two ways can be
stated:

EMPTY: TOP <

FULL: TOP>u
index 1D Amay Stack_Head
| temi |Botiom l :
f+1 ltem 2] | e B e
1“:{ L] -ﬁ I:e‘ﬂlﬂll - "T"’P —
I+2 . T
: : Top
f+i-1 em, e —Top ltem2
u Item1
Sesu+i=1
(a) Array representation of a stack (b} Linked list representation of a stack

Figure 4.3 Two ways of representing stacks.

Linked List Representation of Stacks: Although array representation of stacks is very easy and convenient
but it allows the representation of only fixed sized stacks. In several applications, the size of the stack may
vary during program execution. An obvious solution to this problem is to represent a stack using a linked
list. A single linked list structure is sufficient to represent any stack. Here, the DATA field is for the ITEM,
and the LINK field is, as usual, to point to the next' item. Above Figure b depicts such a stack using a single
linked list.

In the linked list representation, the first node on the list is the current item that is the item at the top of the
stack and the last node is the node containing the bottom-most item. Thus, a PUSH operation will add a new
node in the front and a POP operation will remove a node from the front of the list.

OPERATIONS ON STACKS
The basic operations required to manipulate a stack are:
PUSH:To insert an item into a stack, POP:To remove an item from a stack,
STATUS: To know the present state of a stack

Algorithm Push_Array

Input: The new item ITEM o be pushed onto it

Ouipur: A stack with a newly pushed ITEM at the TOP position.
Dara structure; An array A with TOP as the pointer,

Steps:
1. If TOP = SIZE then
2. Print “Stack is full”
3. Else
4. TOP = TOP + 1
5. A[TOP] = ITEM
6. EndIf
7. Stop

Here, we have assumed that the array index varies from 1 to SIZE and TOP points the
location of the current top-most item in the stack. The following algorithm Pop_Array defines
the POP of an item from a stack which is represented using an array A.

Algorithm Pop_Array

Inpur: A stack with elements.

Output: Removes an ITEM from the top of the stack if it is not empty.
Dara srructure: An array A with TOP as the pointer.

Steps:
1. If TOP < 1 then
2. Print “Stack is empty”
3. Else
4. ITEM = A[TOP]
5. TOP = TOP - 1
6. EndIf
7. Stop

In the following algorithm Status_Array, we test the various states of a stack such as whether
it is full or empty, how many items are right now in it, and read the current element at the top
without removing it, etc.

Algorithm Status_Array

Input: A stack with clements.

Ourput: States whether it is empty or full, available free space and item at TOP,
Data structure: An array A with TOP as the pointer.

Steps:

If TOP < 1 then
Print “Stack is empty™
Else
If (TOP 2 SIZE) then
Print “Stack is full”
Else
Print “The element at TOP is”, A[TOP]
free = (SIZE — TOPY/SIZE * 100
Print “Percentage of free stack is”, free
EndIf
EndIf
. Stop

P S0 081 0h th B 10 1D ke

Now let us see how the same operations can be defined for a stack represented with a single
linked list.
Algorithm Push_LL
Input: ITEM is the item to be inserted.
Output: A single linked list with a newly inserted node with data content ITEM.
Data structure: A single linked list structure whose pointer to the header is known from
STACK_HEAD and TOP is the pointer to the first node.

Steps:

1. new = GetNode(NODE)

/¥ Insert ar from %/
new=DATA = ITEM
new==LINK = TOP

TOP = new
STACK_HEAD—LINK = TOP

Stop

B ol

Algorithm Pop_LL

Inpui: A stack with elements.

Qutput: The removed item is stored in ITEM.

Data structure: A single linked list structure whose pointer to the header is known from
STACK_HEAD and TOP is the pointer to the first node.

Steps:
1. If TOP = NULL
2 Print “Stack is empty”
3. Exit
4. Else
5. ptr = TOP-LINK
6. ITEM = TOP-DATA
7. STACK_HEAD-LINK = pir
8. TOP = ptr
9. Endlf

10. Stop

Algorithm Status_LL()

Inpur: A stack with elements.

Outpur: Status information such as its state (empty or full), number of items, item at the TOP.
Data structure: A single linked list structure whose pointer to the header is known from
STACK_HEAD and TOP is the pointer to the first node.

Steps:

1. ptr = STACK_HEAD—LINK
If (ptr = NULL) then
Print “Stack is empty”
Else
nodeCount = 0
While (ptr # NULL) do
nodeCount = nodeCount + |
ptr = ptr—LINK
EndWhile
Print “The item at the front is”, TOP—DATA, “Stack contains”, nodeCount,
“Number of items”
11. EndIf
12. Stop

SRENOMRLN

APPLICATIONS. OF STACKS

1. Evaluation of Arithmetic Expressions: An arithmetic expression consists of operands and operators.
Operands are variables or constants and operators are of various types such as arithmetic unary and binary
operators and Boolean operators. In addition to these, parentheses such as ‘(' and ‘)" are also used. A simple
arithmetic expression is cited below: A+B*C/D-E"F*G

Table 4.1 Precedence and associativity of operators

Operators Precedence Associativity
~ (unary), +(unary), NOT 6 -
A (exponentiation) 6 Right to left
* (multiplication), / (division) 5 Left to right
+ (addition), — (subtraction) 4 Left to right
<, <=, +, < >, >= 3 Left to right
AND 2 Left to right
OR, XOR 1 Left to right

Thus, with the above rules of precedence and associativity of operators, the evaluation will
take place for the above-mentioned expression in the sequence (sequence is according to the
number 1, 2, 3, ... , etc.) stated below:

A+B"C/D=-EAF" G

~/ g
1 \/ 2
\/3 /
5\/

6
Notations for arithmetic expressions
There are three notations to represent an arithmetic expression, viz. infix, prefix and postfix (or
suffix). The conventional way of writing an expression is called infix. For example,

A+B,C-D,E*F, G/H,etc.

Here, the notation is: <operand> <operator> <operand>.

Input: ((A + (B * C) = D)) * (E - (A/C)))
(A fully parenthesized expression)

(A+((BAC)-D))"(E-(A/C)))

kN gt

(Arrows point from operators to their corresponding right parenthesis.)
(ABC*"D-+(E(AC/~*
(Operators are moved to their respective right parentheses.)

Outpu: ABCA"D-+EAC/-*

(All parentheses are removed yielding the postfix expression.)

A similar technique can be applied to obtain the prefix notation for a given infix notation but
moving the operators corresponds to the left parenthesis.

Three notations for the given arithmetic expression are listed below:

Infix: ((A + (B~ C)-D)) * (E - (A/C)))

Prefix: * + A — ~ BCD - E/AC

Postfix: ABC*D -+ EAC/ - *

This is called infix because the operator comes in between the operands. The prefix notation,
on the other hand, uses the convention. <operator> <operand> <operand>

Here, the operator come before the operands. The following are simple expressions in prefix
notation: +AB, -CD, *EF, IGH, etc.

The last notation is called the postfix (or suffix) notation where the operator is suffixed by

operands: <operand><operand><operator>

The following expressions are in postfix notation: AB+, CD-, EF*, GH/, etc.

The following example illustrates this conversion. For simplicity, let us consider a fully
parenthesized expression.

Conversion of an infix expression to postfix expression
First, we have to append the symbol ') as the delimiter at the end of a given infix
expression and initialize the stack with ‘(. These symbols ensure that either the input or the
stack is exhausted.

ReadSymbol(): From a given infix expression, this will read the next symbol.

ISP(X): Returns the in-stack priority value for a symbol X.

ICP(X): This function returns the in-coming priority value for a symbol X

Output(X): Append the symbol X into the resultant expression.

Algorithm InfixToPostfix

Input: E, simple arithmetic expression in infix notation delimited at the end by the right parenthesis "),
incoming and in-stack priority values for all possible symbols in an arithmetic expression.

Output: Anarithmetic expression in postfix notation.

Data structure: Array representation of a stack with TOP as the pointer to the top-most element.

! Steps:
E 1. TOP =0, PUSH('(") M Initialize the stack
| 2. While (TOP > 0) do
ER item = E.ReadSymbol() /f Scan the next symbol in infix expression
4, x = POP() /I Get the next item from the stack
5. Case: item = operand {1 Tf the symbol is an operand
6. PUSH(x) fl The stack will remain same
7. Output(item) /I Add the symbol into the output expression
8. Case: itcm = '), /! Scan reaches to its end
9, While x = (" do M Till the left match is not found
10, Output(x)
11. x=POP()
12 EndWhile
13. Case: ISP(x) = ICP{item)
14, While (ISP(x) 2 ICP(itcm)) do
15, Outputix)
16, x = POR()
17. EndWhile
18, PUSH(x)
19, PUSH (item)
20, Case: ISPi(x) < ICP(item)
21. PUSH(x)
22, PUSH (item}
23, Otherwise:
Print “Invalid expression”
24. EndWhile
25, Stop

EXAMPLE: Let us illustrate the procedure InfixToPostfix with the following arithmetic expression:
Input: (A+B)*"C- (D *E)/F) (infix form)

Read Stack Ouitput
symbol
Initial (
1 (
2 ((A
3 ((+ A
4 ((+ AB
5 (AB+
6 i AB+
7 (» AB + C
8 (- AB +CA
9 (—(AB+C~*
10 (= AB+C*D
1 (-(* ' AB+CAD
12 (=-(* AB + C ~ DE
13 (- AB+C*DE*
14 (-7 AB + CADE *
15 (-7 AB+C~DE*F
16 AB+C*"DE*F/-

Output: AB + CADE * F/ -~ (postfix form)

Evaluation of a postfix expression

Algorithm EvaluatePostfix

Inpur: E, an expression in postfix notation, with values of the operands appearing in the
expression.

Output: Value of the expression.

Data structure: Array representation of a stack with TOP as the pointer to the top-most

element.

Steps:

I. Append a special delimiter *#° at the end of the expression

2. item = E.ReadSymbol() /! Read the first symbol from E
3. While (item # ‘#') do

4 If (item = operand) then

5. PUSH(item) /1 Operand is the first push into the stack
6 Else

7 op = ilem /I The item is an operator
8 ¥y = POP() /f The right-most operand of the cumrent operator
9, x = POP() I/ The left-most operand of the current operator
10. r=xopy # Perform the operation with operator ‘op’ and operands x, y
11. PUSH(1) N Push the result into stack
12, Endlf
13. item = E.ReadSymbol() // Read the next item from E
14, EndWhile

15. value = POP() If Get the value of the expression
16. Return(value)

17. Stop

EXAMPLE 4.2

To illustrate the algorithm EvaluatePostfix, let us consider the following expression:
Infix: A+(B*C)/D
Postfix: ABC*D/ +
Inpur: ABC*D/+#withA=2B=3C=4andD=6

Read symbol Stack

A 2 PUSH(A = 2)

B 23 PUSH(B = 3)

C 234 PUSH(C = 4)

. 212 POP(4), POP(3), PUSH(T = 12)
D 2126 PUSH(D = 6)

/ 22 POP(6), POP(12), PUSH(T = 2)
- 4 POP(2), POP(2), PUSH(T = 4)
value = POP()

Conversion of a postfix expression to a code

Using a stack, we can easily generate an assembly code for an expression given in reverse
Polish notation (postfix). In order to simplify our example, we will assume the arithmetic
expressions with four arithmetic operations- + (addition), - (subtraction), * (multiplication)
and / (division) only-and the assembly codes are in single address form. The following
assembly code mnemonics are assumed:

LDA A To load the accumulator with the memory content of A and the content of A will
remain unchanged.

STA B To store the content of the accumulator in memory location 8.

ADD A To add the value of memory content A with the value of the accumulator and
the result will be stored in the accumulator; the value of memory content A will
remain unchanged.

SUB B To subtract the value of memory content B from the value of the accumulator
and the result will be stored in the accumulator; the memory content 8 will
remain unchanged.

MUL € To multiply the value of memory content C with the value of the accumulator
and the result will be stored in the accumulator; the memory content C will
remain unchanged.

DIV D To divide the value of the accumulator by the value of the memory content D
and the result of the division will be stored in the accumulator; the value of the
memory content D will remain unchanged.

EXAMPLE: For example, let the infix expression be A + B and its postfix form be AB+. The assembly code
for this expression will be
LDAA; ADDB; STAT

For writing such codes, let us assume one procedure ProduceCode(A, B, op, Temp) with four arguments. For
instance, with AB +, op is ADD and Temp is T. With these, the algorithm for converting a postfix expression
to its equivalent assembly code, PostfixToCode, is framed as follows:

Algorithm Postfix To Code

Input: An arithmetic expression E in postfix notation.
Output: Assembly code.

Data structure: A stack with TOP as the pointer to the top-most element.

Srepx:
1. Append a delimiler '#° at the and of the cxpression
2. item = £.ReadSymbol{) M Read the first symbol from the expression
3. i= 1, TOP =0 i Stoack is initialired: an integer will be used as index
4. While (item £ ‘#") de
5. Case: item = operand
i} PUSH{iem) A Push the iwem inue the stack
7. Case: item = '+
& x = POP) f7 Pop two operands from the stack
9, v = POF)

10, ProduceCodely, x, *ADD, Ti) ff TP is the ih temporary
11 PUSH (T7)

L2, Case: item = -’

13, x = POP()

4. v = PAP()

15, ProduceCodel(y, x, “SUB", ¥7)

16, PUSH(Tq)

17. Case:z ftem = **°

18, x=TFOP)

L9, » = PFOP()

20, FroduceCode(y, x, ‘MUL", T§)

21. PLISH({Ti)

22, Case: item = '/

23, x = POM Y

24. ¥ = POP()

23. ProduceCode (v, x. “DIV", Ti)

26. PUSH{T7}

27. Oiherwise:

28. Print “Error in input™

29 Exit

30 item = EReadSymbol() Y Read for the next symbol from £

31. Fem a1 I The index is incremented

32. End¥While

313, Stop

EXAMPLE:

The above algorithm is illustrated with the following example:
Infix: A+B)*C/D
Postfix: AB+C *D/
Input: AB+C*D/

The production of codes according to the algorithm PostfixToCode is given below:

Scanned Content of stack Action Code generated
symbol
A A PUSH(A)
B AB PUSH(B)
+ T1 x=B,y=A LDA A
PRODUCE_CODE(A, B, ‘ADD",T1) ADD B
PUSH(T1) STATI
THC PUSH(C)
L T2 x=C.y=TI LDA Ti
PRODUCE_CODE(TI, C, ‘MUL",T2) MUL C
PUSH(T2) STA T2
D T2 D PUSH(D)
/ T3 x=D,y=T2 LDA T2
PRODUCE_CODE(T2, D, ‘DIV’, T3) DIV D
PUSH(T3) STA T3
T3 Stop

2. Code Generation for stack Machines

let us consider the following arithmetic expressions:
A=B*C-A

The corresponding postfix notation can be obtained as follows:
ABC*A-=

The instruction code according to the stack machine is as given below:

PUSH A /l Load operand A into the stack

PUSH B /f Load operand B into the stack

PUSH C /f Load operand C into the stack

MUL /f Multiply B * C

PUSH A /f Load operand A into the stack

SUB /f Subtract B * C - A

POP A /! Store the result in the memory location for A

The various states of the stack are depicted in Figure 4.5.

c A
i 57| [sc] [#c] [pea
RS AR R
Empty Push A Push B Push C MUL Push A suB POP

To generate machine codes for a stack machine when an arithmetic expression is given

postfix notation, an algorithm PostfixToCodeForStackMachine is described below.

Algorithm PostfixToCodeForStackMachine
Inpur: An arithmetic expression E in postfix notation.
Outpur: Equivalent codes for stack machine

Data structure: Array representation of a stack with TOP as the pointer to the top-most

clement,

Steps:
I. Add a delimiter ‘#' at the end of the expression

3. While (item # ‘#") do
ProduceCode('PUSH’, item)

4
5
6.
7. Case: item = ‘+'
8 ProduceCode (‘ADD")
9

2. item = E.ReadSymbol() // To read an element from the expression E

If (item = anOperand) /! For the operand only

Else // Ttem is the operator

; Case: item = -’
10. ProduceCode (‘SUB")
11. Case: item = ‘¥
12 ProduceCode ("MUL’)
13. Case: item = '/’
14. ProduceCode (*DIV’)
13, EndIf
16. item = E.ReadSymbol() I Read the next symbol from E
17. EndWhile
I8. Stop

3.Implementation of Recursion
nNt=nxMh-1)xn-2)x..x3x2x1

As a simple example, let us consider the case of calculation of the factorial value for an integer n.

Or
nl=nx(n-1)!

in

The last expression is the recursive description of the factorial whereas the first is the iterative
definition. Using a pseudo code, the above two types of definitions are expressed as follows:

9

Factorial_l
Inpus: An integer number N.

Outpur: The factoral value of N, that is NI,

Remark: Code using the iterative definition of factorial.

Steps:
1. fact =1
2. For(i=1toN) do
3. fact = i * fact
4. EndFor
5. Return(fact)
6. Stop

{f Return the result

Here, Step 2 defines the iterative definition for the calculation of a factorial. Now, let us see

the recursive definition of the same.

Factorial_R
Input: An integer number N.

Output: The factoral value of N, that is N!.

/ICode using the recursive definition of factorial

Remark: Code using the recursive definition of factorial.

Steps:
1. If (N =0) then
2. fact = 1
3. Else
4. fact = N * Factorial_R(N - 1)
5. EndIf
6. Return(fact)
7. Stop

// Termination condition of repetition

/! Return the result

We will illustrate the implementation of three popular recursive computations:

1. Calculation of factorial value
2. Quick sort
3. Tower of Hanoi problem

For each problem, we will describe the

recursive description, then the translation of the

recursive description to a non-recursive version using stacks.

4. Factorial Calculation

Factorial(N)
Steps:
1. If (N = 0) then
% fact=1
3. Else
4, fact = N * Factorial(N - 1)
5. Endlf
6. Return (fact)
7. Stop

To implement the above, we require two stacks: one for storing the parameter N and another
to hold the return address. No stack is necessary to store local variables, as the procedure does
not possess any local variable. Let these two stacks be PARAM (for parameter) and ADDR (for

return address).

10

We assume PUSH(X, Y) operation to push the items X and Y into the stack PARAM and
ADDR, respectively.

Algorithm FactorialWithStack

Inpur: An integer N, and MAIN, the address of the main routine, say.
Output: Factorial value of N (that is N!).

Data structure: Array representation of stack.

Steps: !

val = N, top = 0, addr = Step 15
PUSH (val, addr) f/ Initialize the stack
val = val - 1, addr = Step 11 /f Next value and return address
If (val = 0) then
fact = 1
Go to Step 12
Else
PUSH(val, addr) /f Val pushed into PARAM and addr pushed into ADDR
Go to Step 3
10. EndIf
11. fact = val * fact
12. val = POP_PARAMY(), addr = POP_ADDR()
13. Go to addr
14. Return (fact)
15. Stop

I

The above implementation is illustrated for N =5 in Figure

Action Exacution Stap Stack content
1. val=5, TOP=0 1
addr = Step 10
PUSH(5, Step 10) 2 oraed B
val=4, addr = Step7 3 ADDR 1?0
2, vale>0 4 S| 4
PUSH(4, Step 7) 6 07
1
3. val=3, addr=Step7 3
val<> 0 4 31419
PUSH(3, Step?) 6 077
t
4 g:i. ;ddr:Step? : AHEE
PUSH(2, Step7) 6 107|717
t
5. val=1, addr=Step? 3
10 4 §14|3([2]1
PUSH(1, Step 7) § wl7|7|7]7
t
6. val=0, addr=Step7 3 s514l3l2]1
val=0 4
fact= 1 5 w7777
t

11

4 val=1, addr=Step? 8 51413)21
fact= 1°1(=1) 7 |77 77
t
8. val=2, addr=Step7 8 5
fact=2"1(=2) 7 0 7
box
0. val=3, addr=Stap? 514
fact=3'2(=6) 1077
t
10. val=4, addr=Step7 8 5|4
fact=4'6(=24) 7 ol
X
1. val=5, addr=Step7 8 5
fact=5"24(=120) 7 10
t x
12, GotoStep 7 10

Figure 4.6 Computation of a factorial (recursively) using a stack.

5. Quick Sort

The quick sort algorithm is based on the divide and conquer technique. The principle behind the divide and
conquer technique is to divide a problem into a number of sub-problems. Again each sub-problem is divided
into a number of smaller sub-problems and so on till a sub-problem is not decomposable. Solving a problem
means solving all the sub-problems.

In the case of quick sort, the list to be sorted is partitioned into two sub-lists so that sorting these two sub-
lists is sorting the main list; sorting the sub-list again follows the same procedure recursively. Note that
partition is to be done in such a way that sorting of the sub-lists is the sorting of the original list. The
question is how can this be done. One simple idea is to select any element in the list (let it be the first
element and be termed pivot element). Place the pivot element on the list so that all the elements before the
pivot element are smaller and all the elements after the pivot element are larger than it. As an illustration, let
us consider the following list of numbers to be sorted:

41 79 65 35 21 48 59 87 52 %f

Here, 41 is selected as the pivot element, which is encircled. In order to place 41 in its right position, first
compare this element with the element at the extreme right end (shown with an upright arrow below it, we
call this the pointer), swap the elements if they are not in order (that is, if the element at the extreme right
end is smaller than the pivot element); otherwise move the pointer to left one step and repeat the
comparison. Inthe given list, we see that the pivot element is greater than the element at the extreme right
end and hence they are swapped. The list after the swap operation is shown below:

28;?65352148598752ﬂ

We see that this swap places the pivot element at the extreme right end. We now compare the pivot element
with the element which is next to the element just swapped, see the pointer). In this case, a swap will occur if
the comparison tells that they are not in order (that is, the pivot element is smaller than the element on the
left), otherwise move the pointer to right one step and repeat the comparison. In the above list, the
comparison leads to a swap operation and the list after the swap appears as shown below.

28 41 65 35 21 48 59 87 ?ﬁ 9

12

Repeatedly applying the above steps one can get the following observations. Comparisons with the pivot
will shift the pointer to the left side from 52to 87, 87to 59, 59 to 48 and 48 to 21, when we find that the pivot
element is larger than 21. So a swap will take place:

28 21 65 35 48 59 87 5 79
41
¢ —
Comparing from left, we get the following change:
28 21 35 65 48 59 87 5 79
41
¢

Another comparison from right yields

28 21 35 41 65 48 59 87 2 19

we observe that 41 is now placed in its final position, and we get two sub-lists, one containing all the
elements to the left of 41 which are smaller than 41 and another list to the right of 41 containing elements
which are larger than 41.

28 21 35 41 65 48 59 87 52 79

After getting the two sub-lists, we have to apply the same procedure on each sub-list. Then a sub-list is
divided into two other sub-lists and the repetition continues until there is a sub-list containing no e lements or
a single element (this is the terminal stage of the repetition over a sub-list). Basically, the repetition is in a
recursive manner. Now, here is the application of a stack. Whenever a sub-list is divided into two sub-
lists, one sub-list has to be pushed onto the stack before sorting the other list. When taking care of this list,
pop the next list to be considered and the procedure will continue till the stack is empty.

The quick sort algorithm now can be defined recursively as follows: Let L be the original list and FL, EL be
the locations of the front and end elements of L, respectively.

Algorithm QuickSort

Input: L is the list of elements under sorting with FL and EL being the two pointers at the two
extremes.

Output: The list L is sorted in ascending order.

Remarks: List is in the form of an array and the algorithm is defined recursively.

1. If (EL-FL <1) then f/ Termination check: List is empty or contains a single element
2, Exit // Terminate the QuickSort for the list
3. Endlf
4. loc = Divide(FL, EL) /f Partition the list into two sub-lists
5. H{loc=-FL)>1 /! If the leftmost list L contains more than one element
6. QuickSort(FL, loc-1) /I Apply quick sort on the leftmost list
7. EndIf
8. If (EL-loc) = 1 M If the rightmost sub-list contains more than one element
9. QuickSort(loc+1, EL) I Apply quick sort on the rightmost list
10. EndIf
11. Stop

Note that a sub-list can be identified by the location of its two extreme elements. Here SizeOf(L) is assumed

to determine the number of elements in L. Before going to describe quick sort using a stack, let us assume
the following:

(i) The list of elements is stored in an array A.

(i) Inorder, to push a list onto the stack we actually push the locations of the first element and the last
element; hence two stacks are required. Let these two stacks be represented using two arrays,
namely FRONT and END.

13

Algorithm Divide

Inpur: FL and EL are boundaries, that is, the locations of the front and end elements of the list
to be divided.

Output: LOC is the location of the pivot element which is between the two sub-lists after the
divide.

Data structure: Array representation of a stack with TOP as the pointer to the top-most

element.
Steps:
1. left = FL, right = EL / Initialization: left and right are two pointers at the extremes
2. loc=FL /I loc denotes the location of the pivot
3. While (loc # right) and (A[loc] £ A[right]) do // Compare from right, pivot is being at left
4 right = right-1 // Move to the left
5. EndWhile
6. If (loc = right) then /l List is scanned fully or list contains a single element
7 Return (loc) /I Element is placed in its final position
8. Else /f Elements are not in order and hence swap
9, Swap (Alloc], Alright]) /! Interchange the pivot and the element on the right of it
10. left = loc+l {/ Set the left marker
11 loc = right /I New position of the pivot element
12. EndIf
13. While (loc # left) and (Alloc] 2 Alleft]) do // Compare from left pivot is being at right
14. left = left + 1 /f Move to the right
15. EndWhile
16. If (loc = left) then /l List is fully scanned as it contains a single clement
17. Return(loc) i Element is placed in its final position
18. Else {/ Elements are nat in order and swap
19. Swap (Alloc], Alleft]) I Interchange the pivot and the element on the left of it
20. right = loc - 1 /I Set the right marker
21, loc = left /I New position of the pivot element
22. EndIlf
23. Go to Step 3 // Repeat the steps of scanning
24. Stop

Now, we shall define the quick sort algorithm.
Algorithm QuickSort
Input: An array A with N elements
Outpur: Sorted list of elements in A in ascending order
Data structure: Array representation of stack with TOP as the pointer to the top-most element.

Steps:
1. il=1l,el=N // Boundaries of the list
2. top = NULL, ff Stacks are empty inibally
3. IF(N = 1) f/f If the list is not empty or has more than a single element
4. PUSHI1, el) /f Push the values into their respective stacks
5. EndIf
6. 'While (top = NULL) do /f Till the stack is not empty
7. POP(11, el) /f Pop a sub-list from stacks
B. Divide (11, el, loc) /l Divide the list into two sub-lists and get the position of pivot
9. If (f1 < loc — 1) then /f Test for left sub-list whether it has more than one element
10. PUSH(f1, loc — 1) / The left sub-list is large enough and will be considered later
11. EndIf
12. If (el > loc + 1) then /f Test for right sub-list whether it has more than one clement
13, PUSH(loc + 1, el} // The right sub-list is large enough and will be considered later
14. EndIf
15. EndWhile
16. Stop

In the above algorithm QuickSort(), we assume PUSH(FL, EL) to push FL and EL into the FRONT and END
of stacks, respectively. Similarly, POP(FL, EL) is to POP the items from two stacks FRONT and END and
they are stored as FL and EL, respectively. The details of the quick sort method are illustrated through an
example as shown in below figure. Note that an element with a dotted circle indicates that the element is
placed at the final position. The circled element is the present pivot element. A 'X' in the stack pointer
position indicates the deletion of the entry, that is a POP.

TOP
t
6 2 3 4 5§ 6 7 8 9 10 FRONT! 1
A 79|65|35|21|48(59(87|52|28
0 REAR | 10
Input iist Stack
(a) Initialty the entire list (1, 10) is Pushed into the stack
TOP
4
1 2 38 5§ 6 7 8 9 10 FRONT! 1 | 5
Al28(21]|35 65|48 | 59|87 |52 |79
‘ REAR [10 | 10

e || i <+ L2 >
(b) The list (1, 10) is POPed and divided into two sub-lists L1(1, 3) and L2(5, 10)
using the Divide procedure and pushed into the stack
TOP
«

1 2 3 4 5 6 7 8 9 10 FRONT| 1 1 5| 9

Al28|21]3s] a1 52485987 79

REAR [3 | 7 | 10

1> - | 2—>

(c) The list (5, 10) is POPed and divided into two sub-lists L1(5, 7) and L2(9, 10)
using the Divide procedure and pushed into the stack

T?P
1 2 3 4 5 66 7 B 6 10 FRONT/| 1 5
Al28)21|35|41|52|48|59|65|79
REAR | 3 | 7
+L-1-l- L2 is NULL
{(d) The list (8, 10) is POPed and divided into two sub-lists L1(9, 8) and
L2(empty) using the Divide procedure.
No push operation for either list as they are either empty or containing single element.
TOP
_— '
i 2 3 4 5 6 7 B8 8 10 FRONT/| 1
A[28] 21|35 41] a8{(s2) 50|65 70 |87
REAR | 3

L1 L2

{e) The list (5, 7) is POPed and divided into two sub-lists L1(5, 5) and

L2(7. 7) using the Divide procedure.
No push operation for sither list as each of them contains a single element.

T?P
1 2 3 4 5 6 7 8 9 10 FRONT
Al 21 35|41 | 4852159 |65(79|87
-
.
L1 L2

{f) The list (1, 3) is POPed and divided into two sub-lists L1(1, 1) and
L2(3, 3) using the Divide procedure.
No push operation for either list as each of them conlains a single element.

Figure 4.7 lllustration of recursive execution of quick sort using stacks,

15

6. Tower of Hanoi Problem
Suppose there are three pillars A, Band C. There are N discs of decreasing size so that no
two discs are of the same size. Initially, all the discs are stacked on one pillar in their decreasing
order of size. Let this pillar be A. The other two pillars are empty. The problem is to move all
the discs from one pillar to another using the third pillar as an auxiliary so that

e Only one disc may be moved at a time.

e A disc may be moved from any pillar to another pillar.

e At no time can a larger disc be placed on a smaller disc.
Figure represents the initial and final stages of the tower of Hanoi problem for N = 5 discs.

Figure 4.8 represents the initial and final stages of the tower of Hanoi problem for N = 5 discs.

A

-

Figure 4.8 Tower of Hanoi problem with 5 discs.

The solution of this problem can be stated recursively as follows:
Move N discs from pillar A to C via the pillar B means

Moving the first (N — 1) discs from pillar A to B.
Moving the disc from pillar A to C.
Moving all (¥ = 1) discs from pillar B to C.

The solution of this problem can be stated recursively as follows:
Move N discs from pillar A to C via the pillar B means

Moving the first (N - 1) discs from pillar A to B.

Moving the disc from pillar A to C.

Moving all (N - 1) discs from pillar B to C.
The above solution can be described by writing a function, say Move(N, ORG, INT, DES), where N is the
number of discs, ORG, INT and DES are origin (from pillar), intermediate (via pillar) and destination (to
pillar), respectively. Thus, with this notation, Move(5, X, Z, Y) means moving 5 discs from pillar X to pillar
Y taking the intermediate pillar as Z. With this definition in mind, the problem can be solved with recursion
as follows:

Algorithm Move

Input: Number of discs in the tower of Hanoi N, specification of ORG as from the pillar and
DES as to the pillar, and INT as the intermediate pillar.
Cutput: Steps of moves of N discs from pillar ORG to DES pillar.

Steps:

1. IfN >0 then /' N = 0 is the termination condition
2 Move(N = 1, ORG, DES, INT)

3 ORG — DES (Move from ORG to DES)

4. Move (N - 1, INT, ORG, DES)

5. EndIf

6. Stop

For N = 3, how will this recursion solve the problem as shown in Figure 4.9.

Move (1, A, B, C) A-C

Move (2, A, C, B)

A= Borenann A—B

Move (1,C, A, B) C—-B

Move (3,A,B,C) ———— A C A-sC
/an.s,c.A) BoA
Move (2, B, A, C) B—C- . -~ B—=C

MoveE (1,A,B,C) A C
Figure 4.9 Tower of Hanoi (with N = 3) solution with recursion.

16

Now, let us implement this recursion using stacks. For this purpose, we have to assume the
following stacks.

STN is to store the number of discs
STA is to store the pillar of origin
STB is to store the intermediate pillar
STC is to store the destination pillar
STADD for the return address

PUSH (N, X, Y, Z, R) and POP (N, X, Y, Z, R) are the two stack operations over these stacks

and are expressed as follows:

PUSH(N, X, Y, Z R)

TOP = TOP + 1
STN[TOP] = N
STA[TOP] = X
STB[TOP] = ¥
STC[TOP] = Z

STADD[TOP] = R
Algorithm HanoiTower

POP(N, X, Y, Z, R)

N = STN[TOP]
X = STA[TOP]

Y = STB[TOP]

Z = STC[TOP]

R = STADD[TOP)
TOP = TOP - 1

Input: N = number of discs, A = origin, B = intermediate and C = destination pillar.

Ourpur: Steps of movements.

Data structure: Array representation of a stack.

Steps:

1

2

3. addr = Step 26

4. PUSH(n, org, int, des, add)
5. Il (STN[top] = 0} then

. Go to STADD[top]

7. Else
8

3 n = STN[top] —]
9. org = STA[top]
10. imt = STCtop]
11. des = STH|top]
12. addr = Step 15
13, Go to Step 4
14. EndIf

15. POP(n, org, ini, des, r)
16. Frint “Move disc from:" org = des
17. Do the following:

18. n = STN[top] =]
19. org = STB[top]

20. int = 8TA[top]

21, des = STC|top]

22. addr = Step 24

23, Go to Step 4

24. POP{n, org, int, des, r)
25, Gowr

26. Stop

Log="A",int="B des="'C",n=N

Initially all the stacks are empty
N [nitialization of the parameters

/ Retum to the end step
f{ Push the imitial value to the stacks

!/ Terminal condition reached

f{ Translation of move (N -1, 4, C, B)

After completing these moves return to Step 6

ff Move the nth disc from A 1o C

ff Translation of move (N =1, B, A, O)

i Return address

To verify the algorithm HanoiTower, the reader can trace down the steps for N =1, N = 2,

N=3, and N =4 discs. It may be observed that the minimum number of moves required with

N discs is 2" -1

17

7. Activation Record Manage ment

The block structured (also called procedural) programming language allows a user to define a number of
variables having the same name or different names in various blocks. The scope of a variable is defined as
the regions (that is the blocks) over which the variable is accessible. For example, consider the block
structured program depicted in Figure. A

Declare X

B

Declare X
D

Refer 1: X

Refer2:X

Figure 4.10 A block structured program.

Here, the variable X is declared in block A as well as in block C. Now references of the variable name at
locations say, Refer 1 and Refer 2, are corresponding to which declaration? This can be decided by a scope
rule. There are two scope rules: the static scope rule and the dynamic scope rule. The static scope rule
defines the scope of a name in terms of the syntactic structure of a program. This rule is called 'static’
because one can determine a variable's definition by looking at the program text alone. The static scope rule
can be defined as below:

e The scope of a variable declared in a particular block consists of that block, exclusive of any block
nested within it that declares the same identifier.

e If a variable is not declared within a block, then it obtains the declaration from the next outer block,
if not there then the next outer block, and so on until a declaration is found. Such a rule is known as
the 'most closely nested rule'.

Thus, with this rule, reference of a variable at Refer 2 (see Figure) will be resolved from the declaration in
block A, whereas reference at Refer 1 will be resolved from the declaration in block C.

In the dynamic scope rule, on the other hand, reference of an identifier is resolved during the execution of
the program and the same variable name may be defined at several points within the same program, that is,
the variable name may change its definition as the execution proceeds. This is why the dynamic scope rule is
also termed 'fluid binding'. This rule is stated as follows.

e The declaration of a variable is referred from the most recently occurring and still active definition
of the name during the execution of the program.

For example, consider the program structure shown in below Figure. P is the main program. During its
execution, at a certain point, the procedure ‘call A* occurs. Here, procedure A is in the currently active block
P . So, for any reference, X in A will be obtained from the declaration in P. For the other procedure 'call2 C',
as it itself has declaration for X (Declare 3) so any reference of X will be resolved from that only. Now,
suppose B is on execution. B in turn calls Procedure A (as ‘calld A"): Here, reference of X will be obtained
from Declare 2 as B is the most recently occurring block. Thus, for a given reference of X in A, its

declaration is once resolved from Declarel and another from Declare 2 in the same program.
P

Declare 1: X
call3 C
Refer1:X

A

Declare 2 : X

call4 A

Daclare 3: X
Refer2: X

calll A
cal2C
call3B

Figure 411 Dynamic scope rule.

18

Implementation of scope rules using stack

The static storage allocation is easy to implement and efficient from the execution point of view. Here, all
variables which are required for a program are allocated during compile time. This is why static storage
allocation is known as a compile time phenomenon. In this scheme, each subprogram/subroutine of a
program is compiled separately and the space required for them is reserved till the completion of execution

of the program. The space required for a program is, thus, just the sum of the space needed for the program
and the subprograms-the space never changes as the program is running.

On the other hand, in dynamic storage allocation, the space for memory variables is allocated dynamically,
that is, as per the current demand during the execution. When a subprogram is invoked, space for it is
allocated and the space is returned when the subprogram completes its execution. Thus, the space required
to run a program is not fixed as in static allocation; rather it varies as the program is executed

When a subprogram is invoked, a block of memory required for it is allotted and as soon as the execution is
completed it is freed. A single chunk of storage, called an activation record, is used for this purpose. An
activation record typically contains the following information:
e Storage for variables local to the subprograms.
e Declaration of the procedures and pointers (address of the starting location) to the definitions of
procedures in the subprogram.
e The return address (after the end of subprogram, where the control should return).

e A pointer to the activation record of the location (the location of the block to which
the subprogram belongs).

Thus, for the above-mentioned information, the structure of an activation record can be represented as
shown in Figure.

Storage for local
variables

Declaration of
procedures and their
starting addresses

Retum address

Pointer to the location

Figure 4,12 Structure of an activation record.

A stack for storing the “activation records needs to be maintained during the execution of a program (note
that this stack should be with list structure because of the dynamic nature of the programs).

When the program control enters a new subprogram, its activation record is pushed onto the stack and when
the subprogram finishes its execution, the control returns to an address which can be obtained from the field
'‘Return Address' of the activation record and this activation record is removed from the stack by updating
the stack pointer. For example, for a program as shown in Figure 4.13, where A is the main program, it
invokes B, B in turn invokes C and D. When a subprogram finishes its execution, then the next
subprogram to be resumed can be decided by maintaining a stack. Next, we will see, how the scope of a
memory variable can be resolved. To do this, let us first consider the pseudo code of a program, as

listed in Figure.
A

i Stack Action
B A Activation record of
T A is pushed
o AB Alnvokes B
I:l ABC Bealls C
”D. AB C completes execution
|:| ABD Bcalls D
B AB D completes execution
A Retumio A
Run-time stack

A program structure
Figure 4.13 Execution of program and its run-time stack.

19

Program MAIN
02 A, B, C:integer
03 Procedure Q ———
04 Begin
05 A=A+l
06 C=C+2
07 End
08 Procedure R
09 C:integer
[L4] Hegin
11 C=2;
12 call Q;
13 B=A4+B
14 End
15 Procedure S
16 B, C: integer;
17
18
19
20
21
R
23
24
25
26
n
28
29
30
3
32
i3
34
Figure 4.14 A block structured program.

Figure 4.16 Node structure for linked list representation of a stack.

Pointer to the
aclivation record

!

Implementation of static scope rule
The reference of a variable will be resolved by consulting the current activation record, if it is not resolved
here then it will be resolved from the activation records of its caller, and so on. Here the caller means a
program/subprogram which calls the subprogram under discussion. The run-time stack view during the
execution of the program MAIN (code) is illustrated in below Figure.

TOP

MAIN

Q(4) R(10) S(22)

Line 34

-

l P » Pointer to tha
next node

MAIN
A B, C:integar e
{4}, Ri(10)
S(22)
[+=Relum address
MAIN (1} [] Main caler itsalf
Activation record for
MAIN
R
C :irtegar
#—— Ratum address
&—— Address of the
—— caller
Activation record for

procedure R in MAIM
s)

»—

—— Retumn address

»-

—— Address of the caller

Activation recard for
procedure G in MAIN

5

B, C intager
Q{18
#—— Relum address
®—— Address of the
callar

Activalion record for
procedure 5 in MAIN

#—— Return address

—— Addiess of the

Activatien recoard for
procadure QY in S

caller

Figure 415 Activation records of various procedures,

TOP
[I +
MAIN
C=1 As1,B=2,Ca3 |4
Q4) R(10) S(22)
Line 33 Line 34
"~ ~—

(a) MAIN begins its execution atfine 28, s activation record Is PUSHed o the stack (0) Program control reaches the ine 32, R is invoked and its activation record is PUSHed nto the stack

20

TOP
TOP

!
| I MMJL—I ‘."—Tﬂm] MAIN R MAIN
: 2

C= A<3, B=2, Cs5 C=2 A=3, B=5,C=5
(4] R(10) §(22) ' Q(4) R(10} S(22)
Line 13 Line 33 Line 34 Line 33 Line 34
0""1 [= *- *— *—
i (d) When Q finishes fts execution, control gets the retum address from its activation
mﬁﬁ;mxmﬂ:ﬁxw pmﬁmﬁﬁﬁ E o 'm'?ana“ ;_i record which is line 13. Activation record of Q is removed. Now, references 1o B
alline 4. References of A and C (atline 5 and 6) are resoived rom MAIN, the ouler block of Q. it 4704 e 12 i Ghoms i cactesmino In AR,
TOP
TOP
Q) S MAIN
S MAIN
Ba?Cu? Ax3, Ba§, Cu5 - s e
o(18) Q(4) R(10) S(22) S e o) Bitereen)
Line 34 Line 34 Line 26 Line 34 Line 34
: i N Procedure S begins its execution at line 22 and when control reaches the line 25 it
{e) When R completes its execution, control returns 1o line 33; the procedure S is invoked whose reference 5 () g
Is resoived by the current activation record namely, MAIN and record of S Is PUSHed into the stack invoives the procedure Q. The reference of Q is resolved from the current activation record,

that is, of S and then the activation record of Q is then PUSHed into the stack.

TOP
' ToP
L . 1 E
i Qas) ¢ s MAIN
ol R s MAIN
B=3C=2 Aot Gn5, C=3 C=? B=3C=2 A4, B=5, Cs5
Q(18) Q(4) R(10) S(22) Q(i8) Ql4) R(10) 5(22)
Line 26 Line 34 Line 34 Line 27 Line 34 Line 34
& 8 h) When Q finishes ils execution, control retums lo line 26, ils activation is then POPed
) Exacution 'ﬁ mﬁd,;rm'd ?;ﬁmnd&mﬁ;'.m 19andz0)0 coscs F s hrvoad. Thia Fl s seschvad Isorm e actieation rocose) of MARN.
® @ L R - 9 | ® -3
¥ Q{MAIN) + R v 8 ! MAIN
C=2 B=3C=2 E,— A=4, B=5, C=5 [+
Qi) Q{4) R(10) 5(22)
Line 13 Line 27 Line 34 Line 34
L L 4 L [3

(1) R begins its execulion at ling 10. Reference of C is resolved from the activalion record of R.
It again invokes Q for its activation record, R is searched, which in turn searches the activation
record of MAIN; so the reference of Q is resolved from MAIN.

21

, & » ® @ 9 @ "9
, Q(MAIN) i R 1 8 1 MAIN
Ca2 Ba3dC=2 o A=, B=5, Ca7 je
r—i
Q(18) Qi4) R(10) S(22)
Line 13 Line 27 Line 34 Line 34
¢ & ® @&

() Q starts execution at line 5; references of A and C at lines 5 and 6, respeclively, are resolved from MAIN.

TOP
®|® * | ® ®
R v S MAIN
C=2 B=3C=2 o A=6, B=11, C=7 [#
Q(18) Q(4) R(10) S(22)
Line 27 Line 34 Line 34
.—"-l ® ®

(k) When Q finishes its execution, control returns to line 13, Q's activation record is returmned;
current activation record is R. References of A and B (at line 13) are resolved from MAIN.
When R finishes its execution at line 14, control gets the retum address the line 27, R is removed;
control next returns to line 27. Line 27 is the end of S, so S is completed; control returns to line 34,
Line 34 is the end of the program MAIN. The execution of the program reaches its end.

Implementation of dynamic scope rule
Implementation of the dynamic scope-rule is much easier than the implementation of the static scope rule.

For the dynamic scope rule, the structure of an activation record is the same as forthe static scope rule except
that here it is not required to maintain a pointer field to store the address of the locator.

On reference of a variable, its declaration will be searched first from the current activation record; if not
found then the next activation record on the stack and so on till the declaration is found or all the records on
the stack are searched. As in the static scope rule, here also the execution of a subprogram starts with
pushing its activation record onto the stack and, when the execution is finished, the activation record is
simply wiped out (that is popped). For the program(code) structure as mentioned, its execution using the
dynamic scope rule is illustrated in Figure.

22

TOP TTP
| i |g| ° -
MAIN I I MAIN
A=7 C="? A=1,B=2,C=3
B=7
C=7
Q(4) R(10) S(22)

Q(4) R(10) S(22)
Line 34 Line 33 Line 34

» . ombk (b) During the execution of MAIN when control reaches line 32 and call
(a) Main W":,': ;’ggmi;";mml . ""_ Scthanion of R occurs, the activation record of R is PUSHed into the stack.

TOP
L L
Q R MAIN
C=2

A=1, B=2, C=3
Q(4) R(10)
S(22)

Line 13 Line 33 Line 34

{c) Conirol reaches line 12, the execution of Q is initiated. This Q will be referred
from the first activation record present in tha stack, that is, from MAIN.

B R, —E,,

A=3, B=2, C=3
Q(4) R(10)
S(22)

Line 13 Line 33 Line 34

(d) When Q begins its exacution at line 4 the reference of A is from MAIN and that of C is from R.

TOP TOP
, L t [2 >
) R [} MAIN z S I MAIN
C=4 A=3, B=5, C=3 B=?C=? A=3, B=5,C=3
Q(4) R(10) S(22) Q(18) Q(4) R(10) S(22)
Line 33 Line 34 Line 34 Line 34
(e) Q completes its execution, control returns to line 13; A and B are (f) When R finishes Its execution, control retumns to line 33; call of S occurs
referred from the activation record of MAIN. B is updated. and the activation record of S is PUSHed into the stack.
TOP
oo ¢ |of N
! Q(s) [S 4 MAIN
B=3C=1 A=3, B=5, C=3
o(18) Q(4SI{ 282{'1 0)
Line 26 Line 34 Line 34

{g) Execution of S begins al line 22 (referred from MAIN) and references of B and C are from
the activation record of S, When control reaches line 25, invocation of Q occurs. Reference
of Q is resolved from the first occurrence, that is, from the activation of S in stack.

23

TOP

¢ |® » 9 |@® - @
! Q(s) ‘ s) MAIN
B=3C=2 A=4 B=5, C=3
Q(4) R(10)
Line 26 Line 34 Line 34

{h) Q begins its execution at line 18. References of A and C (at lines 19 and 20, respectively)
will be resoived from MAIN and S, respectively.

TOP
9|0 o9 |® -9
1 R . s 1 MAIN
C=7? B=3C=2 A=4,B=5, C=3
Q(4) A(10)
i s(22)
Lina 27 Line 34 Line 34

(i) Q finishes its execution and control reaches line 26, R is initiated. Its activation
record is PUSHed into the stack, control jumps to line 10.

TOP
!
® | & ® @ S J
R S) MAIN
C=2 B=3C=2 A=4, B=5, C=3
a1s) 0‘;’&}‘”’
Line 27 Line 34 Line 34

(i) During the execution of R, C is resclved from the activation record of R. Nex!, when Q is

invoked, referanca of Q is resolved from the first occurrence, that is, from S. The Q is at line 18.

TOP
[L o e » 0 |@)
3 Q(s) R S i MAIN
C=3 B=3, C=2 A=5, B=5, C=3
Q(4) R(10) Q(4) R(10)
i s(22) s(22)
Line 13 Line 27 Line 34 Line 34

(k) During the execution of Q, reference of A is referred from MAIN and that of C is from R,

TOP
& @&
"R S MAIN
CcC=3 B=BC=2 A=5, B=5, C=3
Q(4) R(10)
Q(18) S(22)
Line 27 Line 34 Line 34

(i) After Q finishes its execution, control retums to line 13. For the reference of B and A at line 13,
B is resolved for S and A is from MAIN. Later, when the execution of A is completed, control
returns to line 27. which indicates that the execution of S is finished. then control
retumns to line 34 which is the end of the program MAIN.

Figure 4.18 (a)—{l) Execution of MAIN using the dynamic scope rule.

24

