
1

Stacks(unit 2.1)

DEFINITION

A stack is an ordered collection of homogeneous data elements where the insertion and deletion operations
take place at one end only. The insertion and 'deletion operations in the case of a stack are specially termed
PUSH and POP, respectively, and the position of the stack where these operations are performed is known
as the TOP of the stack. An element in a stack is termed an ITEM. The maximum number of elements that a
stack can accommodate is termed SIZE. Figure shows a typical view of a stack data structure.

REPRESENTATION OF A STACK
A stack may be represented in the memory in various ways. There are two main ways: using
a one-dimensional array and a single linked list.

Array Representation of Stacks : First we have to allocate a memory block of sufficient size to
accommodate the full capacity of the stack. Then, starting from the first location of the memory block, the
items of the stack can be stored in a sequential fashion.

In Figure, Itemi denotes the ith item in the stack; l and u denote the index range of the array in use; usually
the values of these indices are 1 and SIZE respectively. TOP is a pointer to point the position of the array up
to which it is filled with the items of the stack. With this representation, the following two ways can be
stated:

EMPTY: TOP < l
FULL: TOP ≥ u

Linked List Representation of Stacks : Although array representation of stacks is very easy and convenient
but it allows the representation of only fixed sized stacks. In several applications, the size of the stack may
vary during program execution. An obvious solution to this problem is to represent a stack using a linked
list. A single linked list structure is sufficient to represent any stack. Here, the DATA field is for the ITEM,
and the LINK field is, as usual, to point to the next' item. Above Figure b depicts such a stack using a single
linked list.

2

In the linked list representation, the first node on the list is the current item that is the item at the top of the
stack and the last node is the node containing the bottom-most item. Thus, a PUSH operation will add a new
node in the front and a POP operation will remove a node from the front of the list.

OPERATIONS ON STACKS
The basic operations required to manipulate a stack are:

PUSH:To insert an item into a stack, POP:To remove an item from a stack,
STATUS: To know the present state of a stack

Here, we have assumed that the array index varies from 1 to SIZE and TOP points the

location of the current top-most item in the stack. The following algorithm Pop_Array defines
the POP of an item from a stack which is represented using an array A.

In the following algorithm Status_Array , we test the various states of a stack such as whether
it i s full or empty, how many items are right now in it, and read the current element at the top
without removing it, etc.

3

Now let us see how the same operations can be defined for a stack represented with a single
linked list.

4

 APPLICATIONS. OF STACKS

1. Evaluation of Arithmetic Expressions : An arithmetic expression consists of operands and operators.
Operands are variables or constants and operators are of various types such as arithmetic unary and binary
operators and Boolean operators. In addition to these, parentheses such as '(' and ')' are also used. A simple
arithmetic expression is cited below: A+B*C/D-E^F*G

Thus, with the above rules of precedence and associativity of operators, the evaluation will
take place for the above-mentioned expression in the sequence (sequence is according to the
number 1, 2, 3, ... , etc.) stated below:

Notations for arithmetic expressions

There are three notations to represent an arithmetic expression, viz. infix, prefix and postfix (or
suffix). The conventional way of writing an expression is called infix. For example,

A + B, C - D, E * F, G/H, etc.
Here, the notation is: <operand> <operator> <operand>.

5

This is called infix because the operator comes in between the operands. The prefix notation,
on the other hand, uses the convention. <operator> <operand> <operand>
Here, the operator come before the operands. The following are simple expressions in prefix
notation: +AB, -CD, *EF, IGH, etc.

The last notation is called the postfix (or suffix) notation where the operator is suffixed by
operands: <operand><operand><operator>
The following expressions are in postfix notation: AB+, CD-, EF*, GH/, etc.
The following example illustrates this conversion. For simplicity, let us consider a fully
parenthesized expression.

Conversion of an infix expression to postfix expression

First, we have to append the symbol ')' as the delimiter at the end of a given infix
expression and initialize the stack with '('. These symbols ensure that either the input or the
stack is exhausted.

ReadSymbol(): From a given infix expression, this will read the next symbol.
ISP(X): Returns the in-stack priority value for a symbol X.
ICP(X): This function returns the in-coming priority value for a symbol X.
Output(X): Append the symbol X into the resultant expression.

Algorithm InfixToPostfix
Input: E, simple arithmetic expression in infix notation delimited at the end by the right parenthesis ')',
incoming and in-stack priority values for all possible symbols in an arithmetic expression.
Output: An arithmetic expression in postfix notation.
Data structure: Array representation of a stack with TOP as the pointer to the top-most element.

6

EXAMPLE: Let us illustrate the procedure InfixToPostfix with the following arithmetic expression:
 Input: (A + B) ̂C - (D * E) / F) (infix form)

Evaluation of a postfix expression

7

Conversion of a postfix expression to a code
Using a stack, we can easily generate an assembly code for an expression given in reverse
Polish notation (postfix). In order to simplify our example, we will assume the arithmetic
expressions with four arithmetic operations- + (addition), - (subtraction), * (multiplication)
and / (division) only-and the assembly codes are in single address form. The following
assembly code mnemonics are assumed:

EXAMPLE: For example, let the infix expression be A + B and its postfix form be AB+. The assembly code
for this expression will be

LDA A; ADD B; STA T

For writing such codes, let us assume one procedure ProduceCode(A, B , op, Temp) with four arguments. For
instance, with AB +, op is ADD and Temp is T. With these, the algorithm for converting a postfix expression
to its equivalent assembly code, PostfixToCode, is framed as follows:

Algorithm Postfix To Code
Input: An arithmetic expression E in postfix notation.
Output: Assembly code.
Data structure : A stack with TOP as the pointer to the top-most element.

8

EXAMPLE:
The above algorithm is illustrated with the following example:

Infix: (A + B) * C / D
Postfix: AB + C * D /
Input: AB + C * D /

2. Code Generation for stack Machines
let us consider the following arithmetic expressions:

A=B*C-A
The corresponding postfix notation can be obtained as follows:

ABC*A-=

9

To generate machine codes for a stack machine when an arithmetic expression is given in
postfix notation, an algorithm PostfixToCodeForStackMachine is described below.

3.Implementation of Recursion
n! = n x (n - 1) x (n - 2) x ... x 3 x 2 x 1
As a simple example, let us consider the case of calculation of the factorial value for an integer n.
Or
n! = n x (n - I)!
The last expression is the recursive description of the factorial whereas the first is the iterative
definition. Using a pseudo code, the above two types of definitions are expressed as follows:

10

We will illustrate the implementation of three popular recursive computations:
1. Calculation of factorial value
2. Quick sort
3. Tower of Hanoi problem

For each problem, we will describe the recursive description, then the translation of the
recursive description to a non-recursive version using stacks.

4. Factorial Calculation

To implement the above, we require two stacks: one for storing the parameter N and another
to hold the return address. No stack is necessary to store local variables, as the procedure does
not possess any local variable. Let these two stacks be PARAM (for parameter) and ADDR (for
return address).

11

We assume PUSH(X, Y) operation to push the items X and Y into the stack PARAM and
ADDR, respectively.

The above implementation is illustrated for N = 5 in Figure

12

5. Quick Sort
The quick sort algorithm is based on the divide and conquer technique. The principle behind the divide and
conquer technique is to divide a problem into a number of sub-problems. Again each sub-problem is divided
into a number of smaller sub-problems and so on till a sub-problem is not decomposable. Solving a problem
means solving all the sub-problems.
In the case of quick sort, the list to be sorted is partitioned into two sub-lists so that sorting these two sub-
lists is sorting the main list; sorting the sub-list again follows the same procedure recursively. Note that
partition is to be done in such a way that sorting of the sub-lists is the sorting of the original list. The
question is how can this be done. One simple idea is to select any element in the list (let it be the first
element and be termed pivot element). Place the pivot element on the list so that all the elements before the
pivot element are smaller and all the elements after the pivot element are larger than it. As an illustration, let
us consider the following list of numbers to be sorted:

41 79 65 35 21 48 59 87 52
28


Here, 41 is selected as the pivot element, which is encircled. In order to place 41 in its right position, first
compare this element with the element at the extreme right end (shown with an upright arrow below it, we
call this the pointer), swap the elements if they are not in order (that is, if the element at the extreme right
end is smaller than the pivot element); otherwise move the pointer to left one step and repeat the
comparison. In the given list, we see that the pivot element is greater than the element at the extreme right
end and hence they are swapped. The list after the swap operation is shown below:

28
79


65 35 21 48 59 87 52 41

We see that this swap places the pivot element at the extreme right end. We now compare the pivot element
with the element which is next to the element just swapped, see the pointer). In this case, a swap will occur if
the comparison tells that they are not in order (that is, the pivot element is smaller than the element on the
left), otherwise move the pointer to right one step and repeat the comparison. In the above list, the
comparison leads to a swap operation and the list after the swap appears as shown below.

28 41 65 35 21 48 59 87
52



79

13

Repeatedly applying the above steps one can get the following observations. Comparisons with the pivot
will shift the pointer to the left side from 52 to 87, 87 to 59, 59 to 48 and 48 to 21, when we find that the pivot
element is larger than 21. So a swap will take place:

28 21 65 35
41

48 59 87 52 79

 

Comparing from left, we get the following change:

28 21
41

35 65 48 59 87 52 79

 

Another comparison from right yields

28 21 35 41 65 48 59 87 52 79

we observe that 41 is now placed in its final position, and we get two sub-lists, one containing all the
elements to the left of 41 which are smaller than 41 and another list to the right of 41 containing elements
which are larger than 41.

28 21 35 41 65 48 59 87 52 79

After getting the two sub-lists, we have to apply the same procedure on each sub-list. Then a sub-list is
divided into two other sub-lists and the repetition continues until there is a sub-list containing no elements or
a single element (this is the terminal stage of the repetition over a sub-list). Basically, the repetition is in a
recursive manner. Now, here is the application of a stack. Whenever a sub-list is divided into two sub-
lists, one sub-list has to be pushed onto the stack before sorting the other list. When taking care of this list,
pop the next list to be considered and the procedure will continue till the stack is empty.
The quick sort algorithm now can be defined recursively as follows: Let L be the original list and FL, EL be
the locations of the front and end elements of L, respectively.

Algorithm QuickSort
Input: L is the list of elements under sorting with FL and EL being the two pointers at the two
extremes.
Output: The list L is sorted in ascending order.
Remarks: List is in the form of an array and the algorithm is defined recursively.

Note that a sub-list can be identified by the location of its two extreme elements. Here SizeOf(L) is assumed
to determine the number of elements in L. Before going to describe quick sort using a stack, let us assume
the following:

(i) The list of elements is stored in an array A.
(ii) In order, to push a list onto the stack we actually push the locations of the first element and the last

element; hence two stacks are required. Let these two stacks be represented using two arrays,
namely FRONT and END.

14

Now, we shall define the quick sort algorithm.

15

In the above algorithm QuickSort(), we assume PUSH(FL, EL) to push FL and EL into the FRONT and END
of stacks, respectively. Similarly, POP(FL, EL) is to POP the items from two stacks FRONT and END and
they are stored as FL and EL, respectively. The details of the quick sort method are illustrated through an
example as shown in below figure. Note that an element with a dotted circle indicates that the element is
placed at the final position. The circled element is the present pivot element. A 'X' in the stack pointer
position indicates the deletion of the entry, that is a POP.

16

6. Tower of Hanoi Problem
Suppose there are three pillars A, Band C. There are N discs of decreasing size so that no
two discs are of the same size. Initially, all the discs are stacked on one pillar in their decreasing
order of size. Let this pillar be A. The other two pillars are empty. The problem is to move all
the discs from one pillar to another using the third pillar as an auxiliary so that

 Only one disc may be moved at a time.
 A disc may be moved from any pillar to another pillar.

 At no time can a larger disc be placed on a smaller disc.
Figure represents the initial and final stages of the tower of Hanoi problem for N = 5 discs.

The solution of this problem can be stated recursively as follows:

Move N discs from pillar A to C via the pillar B means
Moving the first (N - 1) discs from pillar A to B.
Moving the disc from pillar A to C.
Moving all (N - 1) discs from pillar B to C.

The above solution can be described by writing a function, say Move(N, ORG, INT, DES), where N is the
number of discs, ORG, INT and DES are origin (from pillar), intermediate (via pillar) and destination (to
pillar), respectively. Thus, with this notation, Move(5, X, Z, Y) means moving 5 discs from pillar X to pillar
Y taking the intermediate pillar as Z. With this definition in mind, the problem can be solved with recursion
as follows:

17

To verify the algorithm HanoiTower, the reader can trace down the steps for N = 1, N = 2,
N = 3, and N = 4 discs. It may be observed that the minimum number of moves required with
N discs is 2

N
 -1

18

7. Activation Record Management
The block structured (also called procedural) programming language allows a user to define a number of
variables having the same name or different names in various blocks. The scope of a variable is defined as
the regions (that is the blocks) over which the variable is accessible. For example, consider the block
structured program depicted in Figure.

Here, the variable X is declared in block A as well as in block C. Now references of the variable name at
locations say, Refer 1 and Refer 2, are corresponding to which declaration? This can be decided by a scope
rule. There are two scope rules: the static scope rule and the dynamic scope rule. The static scope rule
defines the scope of a name in terms of the syntactic structure of a program. This rule is called 'static'
because one can determine a variable's definition by looking at the program text alone. The static scope rule
can be defined as below:

 The scope of a variable declared in a particular block consists of that block, exclusive of any block
nested within it that declares the same identifier.

 If a variable is not declared within a block, then it obtains the declaration from the next outer block,
if not there then the next outer block, and so on until a declaration is found. Such a rule is known as
the 'most closely nested rule'.

Thus, with this rule, reference of a variable at Refer 2 (see Figure) will be resolved from the declaration in
block A, whereas reference at Refer 1 will be resolved from the declaration in block C.
In the dynamic scope rule, on the other hand, reference of an identifier is resolved during the execution of
the program and the same variable name may be defined at several points within the same program, that is,
the variable name may change its definition as the execution proceeds. This is why the dynamic scope rule is
also termed 'fluid binding'. This rule is stated as follows.

 The declaration of a variable is referred from the most recently occurring and still active definition
of the name during the execution of the program.

For example, consider the program structure shown in below Figure. P is the main program. During its
execution, at a certain point, the procedure 'call A' occurs. Here, procedure A is in the currently active block
P . So, for any reference, X in A will be obtained from the declaration in P. For the other procedure 'ca1l2 C',
as it itself has declaration for X (Declare 3) so any reference of X will be resolved from that only. Now,
suppose B is on execution. B in turn calls Procedure A (as 'ca1l4 A'): Here, reference of X will be obtained
from Declare 2 as B is the most recently occurring block. Thus, for a given reference of X in A, its
declaration is once resolved from Declarel and another from Declare 2 in the same program.

19

Implementation of scope rules using stack
The static storage allocation is easy to implement and efficient from the execution point of view. Here, all
variables which are required for a program are allocated during compile time. This is why static storage
allocation is known as a compile time phenomenon. In this scheme, each subprogram/subroutine of a
program is compiled separately and the space required for them is reserved till the completion of execution
of the program. The space required for a program is, thus, just the sum of the space needed for the program
and the subprograms-the space never changes as the program is running.

On the other hand, in dynamic storage allocation, the space for memory variables is allocated dynamically,
that is, as per the current demand during the execution. When a subprogram is invoked, space for it is
allocated and the space is returned when the subprogram completes its execution. Thus, the space required
to run a program is not fixed as in static allocation; rather it varies as the program is executed

When a subprogram is invoked, a block of memory required for it is allotted and as soon as the execution is
completed it is freed. A single chunk of storage, called an activation record, is used for this purpose. An
activation record typically contains the following information:

 Storage for variables local to the subprograms.

 Declaration of the procedures and pointers (address of the starting location) to the definitions of
procedures in the subprogram.

 The return address (after the end of subprogram, where the control should return).

 A pointer to the activation record of the location (the location of the block to which
the subprogram belongs).

Thus, for the above-mentioned information, the structure of an activation record can be represented as
shown in Figure.

A stack for storing the "activation records needs to be maintained during the execution of a program (note
that this stack should be with list structure because of the dynamic nature of the programs).
When the program control enters a new subprogram, its activation record is pushed onto the stack and when
the subprogram finishes its execution, the control returns to an address which can be obtained from the field
'Return Address' of the activation record and this activation record is removed from the stack by updating
the stack pointer. For example, for a program as shown in Figure 4.13, where A is the main program, it
invokes B, B in turn invokes C and D. When a subprogram finishes its execution, then the next

subprogram to be resumed can be decided by maintaining a stack. Next, we will see, how the scope of a
memory variable can be resolved. To do this, let us fi rs t consider the pseudo code of a program, as

listed in Figure.

20

Implementation of static scope rule

The reference of a variable will be resolved by consulting the current activation record, if it is not resolved
here then it will be resolved from the activation records of its caller, and so on. Here the caller means a
program/subprogram which calls the subprogram under discussion. The run-time stack view during the
execution of the program MAIN (code) is illustrated in below Figure.

21

22

Implementation of dynamic scope rule
Implementation of the dynamic scope-rule is much easier than the implementation of the static scope rule.
For the dynamic scope rule, the structure of an activation record is the same as for the static scope rule except
that here it is not required to maintain a pointer field to store the address of the locator.

On reference of a variable, its declaration will be searched first from the current activation record; if not
found then the next activation record on the stack and so on till the declaration is found or all the records on
the stack are searched. As in the static scope rule, here also the execution of a subprogram starts with
pushing its activation record onto the stack and, when the execution is finished, the activation record is
simply wiped out (that is popped). For the program(code) structure as mentioned, its execution using the
dynamic scope rule is illustrated in Figure.

23

24

