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Abstract: In this paper we consider some extended eigenvalue problems for some quasinormal operators. The spectrum

of an algebra homomorphism defined by a compact normal operator is also investigated.
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1. Introduction

Let H be an infinite separable complex Hilbert space and denote by L(H) the set of bounded linear operators

on H . A complex number λ is said to be an extended eigenvalue of a bounded operator A if there exists a

nonzero operator T such that

TA = λAT.

T is called a λ eigenoperator for A and the set of extended eigenvalues is represented by σext (A). This

condition takes place in quantum mechanics and analysis for their spectra [6]. Moreover, there is a nonzero

operator Y such that

XA = AY (1.1)

and εA is the set of all X satisfying (1.1), and then it is easily seen that εA is an algebra. When A has

dense range, one can define the map ΦA : εA → L (H) by ΦA (X) = Y and verify that ΦA is an algebra

homomorphism. This homomorphism is a closed (generally unbounded) linear transformation. Biswas et al.

defined an eigenvalue of ΦA as an extended eigenvalue of A and proved that the set of extended eigenvalues of

the Volterra operator V is equal to the interval (0,+∞) in [2]. Karaev gave the set of extended eigenvectors

of the Volterra operator V on L2[0, 1] in [11]. However, the problem is open as to the other spectrum parts of

ΦV . Furthermore, Biswas and Petrovic derived the following result as

σext (A) ⊂ {λ ∈ C : σ (A) ∩ σ (λA) ̸= ∅}

by using the Rosenblum theorem [3] where σ(A) is the set of spectrum of A .

An operator A is called quasinormal if A and A∗A are commutative. The purpose of this paper is

to exploit a few facts about the extended eigenvalues for a quasinormal operator. Also, if A is a compact

normal operator and has dense range, then the spectrum of ΦA has been given. Note that Cassier and Alkanjo

described the extended spectrum and extended eigenspace for any pure quasinormal operator [5].
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Throughout this work σp(A), σc(A), and σess(A) are denoted as the point spectrum, the continuous

spectrum, and the essential spectrum of A , respectively.

2. Extended eigenvalues for some quasinormal operators

Lemma 2.1 Let A ∈ L(H) be a quasinormal operator such that 0 ∈ σp (A) ; then σext (A) = C .

Proof Let A = U |A| , where U is a partial isometry and |A| is the square root of A∗A such that

KerU = Ker |A| , be the polar decomposition of A . Since A is a quasinormal operator, U |A| = |A|U
is true [9]. Because 0 ∈ σp (A), there exists a nonzero element x0 in H such that Ax0 = 0 and for every x ∈ H

(x0 ⊗ x0)U |A|x = (U |A|x, x0)x0 = (x, x0)U |A|x0 = U |A| (x0 ⊗ x0)x = 0

is obtained. This means that σext (A) = C .

2

Theorem 2.2 If A : H → H is a quasinormal operator but not a normal operator and 0 /∈ σp(A) , then{
λi

λj
∈ C : λi, λj ∈ σp (A)

}
∪ {0} ⊂ σext (A) .

Proof Because A is a quasinormal and not a normal operator, the equality AA∗A = A∗AA is correct. Hence,

(AA∗ −A∗A)A = 0 = 0A (AA∗ −A∗A) ,

i.e. 0 ∈ σext (A). On the other hand, if a complex number λ is in σp (A), then λ ∈ σp (A
∗). Therefore, for

λi, λj ∈ σp (A) such that Axj = λjxj and A∗xi = λixi ,

(xj ⊗ xi)A =
λi

λj
A (xj ⊗ xi)

is provided. 2

Theorem 2.3 Letting A ∈ L(H) be a self-adjoint operator and the essential spectrum σess (A) = ∅ , then

σext (A) = {λ ∈ C : σp (A) ∩ σp (λA) ̸= ∅} .

Proof If A is a self-adjoint operator on H , then σess(A) consists precisely of all points in σ(A) except the

isolated eigenvalues of finite multiplicity [7]. Since σess (A) = ∅ , the spectral problem for self-adjoint operators

shows that

A =
∞∑

n=1

λnPn

with mutually orthogonal finite rank projection Pn, n ∈ N [12]. This fact and the proof of the previous theorem

give the relation σext (A) = {λ ∈ C : σp (A) ∩ σp (λA) ̸= ∅} . 2

The following result is obtained from the spectrum structure of a compact normal operator[10]:
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Corollary 2.4 Letting A ∈ L(H) be a compact normal operator, then

σext (A) = {λ ∈ C : σp (A) ∩ σp (λA) ̸= ∅} .

Theorem 2.5 Assume that A : H → H is a compact normal operator and 0 ∈ σc(A) . For the algebraic

homomorphism ΦA : εA → L (H) ,

σ (ΦA) = σp (ΦA).

Proof Since A is a completely continuous normal operator with dense range, the spectral decomposition

theorem implies that

A =
∑
i≥1

λixi ⊗ xi, λi → 0, i → +∞,

where the set {x1, x2, x3, . . . } is an orthonormal basis of H and {λn} ⊂ C [1]. It is well known that σ (ΦA) is

a closed set. Now we consider that λ ∈ C \ σp (ΦA) and Y : H → H is any bounded linear operator on H . An

operator X : H → H defined by

X =
+∞∑
n=1

A(λn − λA)
−1

(Y xn ⊗ xn)

is bounded since for all n ∈ N∥∥∥A(λn − λA)
−1

∥∥∥ ⩽ sup

{
λm

λn − λλm
: λn, λm ∈ σp (A)

}
< +∞.

Moreover, ΦA (X) =
+∞∑
n=1

λn(λn − λA)
−1

(Y xn ⊗ xn) and

(ΦA − λ)X = Y

and it means that ΦA−λ is surjective. From the last result and Corollary 2.4, λ is in the resolvent set of ΦA . 2

Corollary 2.6 If A : H → H is a compact operator with 0 ∈ σc(A) , then 0 ∈ σ(ΦA) .

Proof Because A : H → H has dense range, it is obvious that 0 /∈ σp(ΦA). Besides, there exist two

orthonormal sequences {xn} and {yn} in H and scalars {λn} such that λn → 0 and A can be represented as

follows:

A =
+∞∑
n=1

λnxn ⊗ yn.

In addition, it can be chosen as two subsequences
{
λi(n)

}
,
{
λj(n)

}
⊂ {λn} satisfying

lim
n→+∞

λi(n)

λj(n)
= 0,

and a linear bounded operator Y =
+∞∑
n=1

yj(n) ⊗ yi(n) on H . If ΦA is surjective, then for the operator Y there

is a linear bounded operator X : H → H in εA and ΦA(X) = Y . However, for all n ∈ N ,

Xxi(n) =
λj(n)

λi(n)
xj(n),
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which means that X is not a bounded operator on H , so ΦA is not surjective. We have 0 ∈ σ(ΦA) and the

theorem is proved. 2

Theorem 2.7 Let A ∈ L(H) be a quasinormal operator but not normal; then

D = {λ ∈ C : |λ| ≤ 1} ⊂ σext(A).

Proof In this case, A : H → H can be written as A = An ⊕Ap where An is a normal part and Ap is a pure

quasinormal part. Therefore, the assertion of the theorem can be directly derived from Corollary 2.6 of [5]. 2

Lemma 2.8 Let A be a bounded operator on any Hilbert space H and S be a unilateral shift operator on

H(∞) = H ⊕H ⊕ . . . . If T = [Tij ]
∞
i,j=1 , Tij : H → H and T (S ⊗A) = λ (S ⊗A)T, then

i)Tij = 0 for j > i and

ii)TijA = λATi−1,j−1 for i ⩾ j.

Conversely, if T = [Tij ]
∞
i,j=1 is a bounded operator on H(∞) satisfying two conditions, T is an eigenoperator

of S ⊗A .

It is easily seen that A and B are bounded operators and unitary equivalent, and then A and B have the

same extended eigenvalues, i.e. σext (A) = σext (B) .

Theorem 2.9 Letting A ∈ L(H) be a pure quasinormal operator, then

σext(|A|) ⊂ σext(A).

Proof Let A = U |A| be the polar decomposition of the pure quasinormal operator A . Because A is pure

quasinormal, U is an isometry. Also, the equality

H = KerU∗ ⊕ U (KerU∗)⊕ U2 (KerU∗)⊕ . . .

is verified and subspaces Un (KerU∗) , n ∈ N are invariant under |A| [4, 8]. We claim that there exist

eigenoperators for all extended eigenvalues of |A| such that they are nonzero on KerU∗ and KerU∗ invariant

under eigenoperators. Supposing that λ is any extended eigenvalue of |A| , then there exists a nonzero operator

such that
T |A| = λ |A|T.

Moreover, where Pi are projection operators on U i(kerU∗) for all i ∈ N , there are two projection operators

Pn and Pm such that the operator PnTPm is nonzero. We define X = (U∗)
n
PnTPmUm . This operator is

nonzero on KerU∗ and KerU∗ invariant under X and since |A| and U are commutative, then the equality is

X |A| = λ |A|X.

According to [4], A is unitary equivalent B : (KerU∗)
(∞) → (KerU∗)

(∞)

B :=


0 0 0 · · ·
|A| 0 0 · · ·
0 |A| 0 · · ·
· · |A| · · ·

 .
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From Lemma 2.8, σext( |A||KerU∗) ⊂ σext(A) and the operator

W :=

 X 0 0 · · ·
0 X 0 · · ·
· · X · · ·


is nonzero. Also, WB = λBW holds. The last result completes the proof of the theorem. 2

Corollary 2.10 If A is a pure quasinormal operator, then

{λµ : λ ∈ σext(|A|), |µ| ⩽ 1} ⊂ σext(A).
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