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Abstract: In this paper we consider some extended eigenvalue problems for some quasinormal operators. The spectrum

of an algebra homomorphism defined by a compact normal operator is also investigated.
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1. Introduction
Let H be an infinite separable complex Hilbert space and denote by L(H) the set of bounded linear operators
on H. A complex number A is said to be an extended eigenvalue of a bounded operator A if there exists a
nonzero operator 1" such that

TA = \NAT.
T is called a A\ eigenoperator for A and the set of extended eigenvalues is represented by ..t (A). This
condition takes place in quantum mechanics and analysis for their spectra [6]. Moreover, there is a nonzero
operator Y such that

XA =AY (1.1)

and e4 is the set of all X satisfying (1.1), and then it is easily seen that €4 is an algebra. When A has
dense range, one can define the map ®4 : €4 — L(H) by ®4(X) =Y and verify that ®4 is an algebra
homomorphism. This homomorphism is a closed (generally unbounded) linear transformation. Biswas et al.
defined an eigenvalue of ®4 as an extended eigenvalue of A and proved that the set of extended eigenvalues of
the Volterra operator V is equal to the interval (0,+o00) in [2]. Karaev gave the set of extended eigenvectors
of the Volterra operator V' on L?[0,1] in [11]. However, the problem is open as to the other spectrum parts of

®y . Furthermore, Biswas and Petrovic derived the following result as
Oext (A) C{A € C:0(A)N o (NA) # 0}

by using the Rosenblum theorem [3] where o(A) is the set of spectrum of A.

An operator A is called quasinormal if A and A*A are commutative. The purpose of this paper is
to exploit a few facts about the extended eigenvalues for a quasinormal operator. Also, if A is a compact
normal operator and has dense range, then the spectrum of ® 4 has been given. Note that Cassier and Alkanjo

described the extended spectrum and extended eigenspace for any pure quasinormal operator [5].
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Throughout this work ¢,(A), 0c.(A4), and ocss(A) are denoted as the point spectrum, the continuous

spectrum, and the essential spectrum of A, respectively.

2. Extended eigenvalues for some quasinormal operators
Lemma 2.1 Let A € L(H) be a quasinormal operator such that 0 € o, (A); then oeq. (A) =C.

Proof Let A = U|A|, where U is a partial isometry and |A| is the square root of A*A such that
KerU = Ker|A| , be the polar decomposition of A . Since A is a quasinormal operator, U |A| = |A|U

is true [9]. Because 0 € o, (A), there exists a nonzero element zy in H such that Azy =0 and for every z € H
(o @ o) U|Alx = (U|A|x,x0)x0 = (2,20)U|Alzo = U|A| (20 @ Z9) 2 =0

is obtained. This means that e, (A) = C.

Theorem 2.2 If A: H — H is a quasinormal operator but not a normal operator and 0 ¢ o,(A), then
s
% €C: A\, A\j€0,(A) 2 U{0} Coear (A).

Proof Because A is a quasinormal and not a normal operator, the equality AA*A = A*AA is correct. Hence,
(AA* —A*A)A=0=0A(AA" — A*A),

i.e. 0 € ey (A). On the other hand, if a complex number A is in o, (A), then X € o, (4*). Therefore, for
/\ia)\j € op (A) such that AZZ?]‘ = )\jl‘j and A*xZ = )\71:171 s

A
(2; @) A= Alz; @ :)
J

is provided. O

Theorem 2.3 Letting A € L(H) be a self-adjoint operator and the essential spectrum oess (A) = 0, then
Oext (A) ={A€C:0,(A)No, (NA) # 0}.
Proof If A is a self-adjoint operator on H, then o.s5(A) consists precisely of all points in o(A) except the

isolated eigenvalues of finite multiplicity [7]. Since oess (A) = @ , the spectral problem for self-adjoint operators
shows that

A=>"\P,
n=1
with mutually orthogonal finite rank projection P,, n € N [12]. This fact and the proof of the previous theorem
give the relation oeqzt (A) = {A € C: 0y (A) Nop (AA) # 0} O

The following result is obtained from the spectrum structure of a compact normal operator[10]:
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Corollary 2.4 Letting A € L(H) be a compact normal operator, then

Oeat (A) ={A € C:0,(A)N 0, (ANA) # 0} .

Theorem 2.5 Assume that A : H — H is a compact normal operator and 0 € o.(A). For the algebraic
homomorphism ®4 :e4 — L(H),
o (Pa) =0p(Pa).
Proof Since A is a completely continuous normal operator with dense range, the spectral decomposition
theorem implies that
A:Z)\ixi@)xi, Ai = 0,1 — 400,
i>1
where the set {z1,z2,x3,...} is an orthonormal basis of H and {\,} C C[1]. It is well known that o (®4) is
a closed set. Now we consider that A € C\m and Y : H — H is any bounded linear operator on H. An
operator X : H — H defined by

+oo
X=> AN = M) (Yo, ® z,)
n=1
is bounded since for all n € N

HA(/\,L - )\A)_lH < sup{)\ni”;\Am : Ao Am € 0 (A)} < +o0.

+oo
Moreover, ®4 (X) = > A(An —AA) "' (Y2, @ 2,) and

n=1
(P4 —-NX=Y

and it means that ® 4 — A is surjective. From the last result and Corollary 2.4, A is in the resolvent set of ® 4. O

Corollary 2.6 If A: H — H is a compact operator with 0 € o.(A), then 0 € o(P4).

Proof Because A : H — H has dense range, it is obvious that 0 ¢ 0,(®4). Besides, there exist two
orthonormal sequences {z,} and {y,} in H and scalars {\,} such that A, — 0 and A can be represented as

follows:
“+oo

A= Z)\nxn@)yn.

n=1

In addition, it can be chosen as two subsequences {)\i(n)} , {)\j(n)} C {\.} satisfying

Ny
lim ——= =0,

+oo
and a linear bounded operator Y =} 4;m) ® ¥in) on H. If ®4 is surjective, then for the operator Y there
n=1

is a linear bounded operator X : H — H in €4 and ®4(X) =Y. However, for all n € N,

b
X — j(n) .
Tim = 3,0 00
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which means that X is not a bounded operator on H, so ®4 is not surjective. We have 0 € o(®4) and the

theorem is proved. O

Theorem 2.7 Let A € L(H) be a quasinormal operator but not normal; then

D={NeC: |\ <1} Coen(A).
Proof In this case, A: H — H can be written as A = A, ® A, where A,, is a normal part and A, is a pure

quasinormal part. Therefore, the assertion of the theorem can be directly derived from Corollary 2.6 of [5]. O

Lemma 2.8 Let A be a bounded operator on any Hilbert space H and S be a unilateral shift operator on
H® =HoH®... . IfT=[Tyl5_, , Tj:H—H and T(S®A) = A(S® A)T, then

i)T;; =0 for j>1i and

Z’L) TijA = )\ATi—Lj—l fOT ) 2 j

Conversely, if T = [Tij]?‘;zl is a bounded operator on H(*®) satisfying two conditions, T is an eigenoperator

of S®A.

It is easily seen that A and B are bounded operators and unitary equivalent, and then A and B have the

same extended eigenvalues, i.e. Tyt (A) = Oegr (B).

Theorem 2.9 Letting A € L(H) be a pure quasinormal operator, then

Text(|A]) C Text(A).

Proof Let A = U|A| be the polar decomposition of the pure quasinormal operator A. Because A is pure

quasinormal, U is an isometry. Also, the equality
H=KerU*©U (KerU*) @ U? (KerU*) @ ...

is verified and subspaces U™ (KerU*), n € N are invariant under |A|[4, 8]. We claim that there exist
eigenoperators for all extended eigenvalues of |A| such that they are nonzero on KerU* and KerU* invariant
under eigenoperators. Supposing that A is any extended eigenvalue of |A|, then there exists a nonzero operator
such that

T|A| = A|A|T.
Moreover, where P; are projection operators on U’(kerU*) for all i € N, there are two projection operators
P, and P,, such that the operator P,TP,, is nonzero. We define X = (U*)"P, TP, U™. This operator is

nonzero on KerU* and KerU* invariant under X and since |A| and U are commutative, then the equality is
XAl = MA] X.

According to [4], A is unitary equivalent B : (KerU*)™) — (KertU*)(™

S
Eooo
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From Lemma 2.8, 0eqt(|A|| goppy«) C Oeat(A) and the operator

X 0 0
W .= 0 X O
- X

is nonzero. Also, W B = ABW holds. The last result completes the proof of the theorem. O

Corollary 2.10 If A is a pure quasinormal operator, then

[10]

[11]

[12]

{A: A€ oeni(|Al), (] <1} C oeat(A).
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