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1. Introduction
Marine water quality has a huge effect on aquatic 
ecosystems, especially in marine life. Many aquatic 
organisms went endangered due to the increased 
threshold level of pollutant in the water (Edward et al., 
2021). The major causes of pollution in every aspect 
of the environment are population shifts from rural to 
urban environments, excessive industrial expansion, and 
overexploitation (Masood et al., 2016). The COVID-19 
pandemic was one of the deadliest pandemics in history, 
affecting nearly the entire world (Fang et al., 2022). 
Several countries have implemented various forms of 
nationwide lockdowns to slow down the spread of the 
virus through human contacts. Meanwhile, about half 
of the world’s population was under strict lockdown 
and normal life had been brought to a halt because 
of the pandemic (Pant et al., 2021). However, the 
lockdown helped to reduce anthropogenic activities, 
which improved the environment to some extent over 
the world and the polluted ecosystems in terms of water 

and natural habitats seems to be recovered (Corlett et al., 
2020; Islam et al., 2021). Many studies have shown that 
the water quality in rivers and the ocean has significantly 
improved throughout the lockdown period (Shah, 2020; 
Chakraborty et al., 2021)

Calanoid copepods play an important role in the 
marine ecosystem as an energy carrier to higher trophic 
levels by consuming a significant amount of primary 
producers. They also serve a crucial role in the transport 
of organic matter to the deep ocean either through 
defecation or through their remnants after death or by 
daily vertical migration and the biological pump (Abo-
Taleb et al., 2020; Sivakumar et al., 2021). Copepods of 
the family Pontellidae are usually large and show clear 
sexual dimorphism and their diverse shape and structure 
have attracted many scientists to study and review this 
group (Mulyadi, 2002; Othman and Toda, 2006; Abo-
Taleb, 2019; Smith et al., 2019). They include 9 genera and 
more than 140 accepted species worldwide. The genus 
Labidocera is the most diverse, with 79 acknowledged 
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species (Walter and Boxshall, 2021), most of which are 
found in temperate to tropical waters and can be used as 
bio-indicators of different water masses, inshore-offshore 
divisions, and biogeographical boundaries (Fleminger 
et al., 1982; Murniati and Mulyadi., 2018). Most 
Labidocera species can be found during both day and 
night in the neuston zone, which extends down to about 
10–15 m depth (Fleminger and Moore, 1977). Genus 
Calanoipia, Pontella, and Pontellopsis consist of 20, 106, 
and 37, species respectively (Walter and Boxshall, 2021). 
Pontellopsis species are commonly found in temperate 
and tropical surface waters, and their taxonomy is still 
evolving due to their morphological complexity and 
incomplete descriptions (Suarez-Morales and Kozak, 
2012). Generally, environmental conditions, biological 
interactions, and species-specific eco-physiological 
performances are some of the factors that affect the 
copepod diversity in the marine environment (Bode et 
al., 2018).

In India, 44 species of pontellid copepod belonging to 
6 genera have been reported (Roy, 2018). Kasturirangan 
(1963) described 14 species of pontellid copepods 
in his manual. Seven species of pontellid have been 
reported from the offshore region of Tuticorin (Kavitha 
et al., 2018). In the present study, 11 species of pontellid 
copepods were observed from the Covelong (Kovalam) 
coast. Covelong is a fishing town in Chennai, located 40 
km south of the city on the East Coast Road on the way to 
Mahabalipuram. However, there is a lack of literature on 

the diversity of pontellid copepods from Indian waters. 
The main aim of the present study was to compare the 
diversity and density of pontellid copepods along with 
the physicochemical parameters before and after the 
COVID-19 lockdown and to find out the important 
parameters that affect the diversity and distribution of 
pontellid copepods from the Covelong coast. 

2. Materials and methods
2.1. Sampling site and sampling method
Samples were collected from Kovalam (Covelong, India) 
(12°47′13.2″ N, 80°15′1.44″ E), one of the longest sandy 
beaches on the Chennai coast, which is popular for 
tourism and fishing activity (Figure 1). To collect plankton 
samples, a standard zooplankton net made of Bolton silk 
with a mesh size of 150 micron was used. A monthly 
sample was collected for 2 years, in Jan–Dec 2019 and 
Jan–Dec 2021. Samples were collected five nautical miles 
away from the beach at a depth of 5 m by horizontally 
pulling the zooplankton net from the motor boat for 15 
min during the early morning hours. Collected samples 
were immediately preserved in 5% formalin buffered 
with seawater and transported to the laboratory.
2.2. Identification and enumeration of pontellid 
copepods
Pontellid copepods were separated from the rest of 
the zooplankton sample. Under a high-magnification 
compound microscope, the adult samples were dissected 
and identified up to species level using standard 

Figure 1. Site of collection—Covelong beach, Chennai.
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taxonomic key characters (Kasturirangan, 1963; Boxshall 
and Halsey, 2004; Razouls et al., 2022). A Sedgwick-
Rafter counting cell was used to count the number of 
pontellid copepod species. The zooplankton samples 
were well mixed and 1 mL (20-drops) of sample was 
extracted using a wide mouthed pipette and transferred 
to the counting chamber for counting and enumerating 
them as triplet values using the compound microscope. 
The mean values of three subsamples after enumeration 
were calculated. Number of zooplankton per cubic meter 
(m–3) was also calculated following the method used by 
Perry (2010) and Sivakumar (2021).

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁	𝑝𝑝𝑝𝑝𝑝𝑝	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	𝑖𝑖𝑖𝑖	𝑡𝑡ℎ𝑒𝑒	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ×
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	𝑖𝑖𝑖𝑖	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	𝑖𝑖𝑖𝑖	𝑡𝑡ℎ𝑒𝑒	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 	
𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑜𝑜𝑜𝑜	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁	𝑜𝑜𝑜𝑜	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁	𝑝𝑝𝑝𝑝𝑝𝑝	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	𝑖𝑖𝑖𝑖	𝑡𝑡ℎ𝑒𝑒	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ×

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	𝑖𝑖𝑖𝑖	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	𝑖𝑖𝑖𝑖	𝑡𝑡ℎ𝑒𝑒	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 	
𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑜𝑜𝑜𝑜	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁	𝑜𝑜𝑜𝑜	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  where Volume = πr2L; Length (L) is derived from 

equation = Speed × Time.
Average number of animals per drop is calculated by: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁	𝑝𝑝𝑝𝑝𝑝𝑝	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	𝑖𝑖𝑖𝑖	𝑡𝑡ℎ𝑒𝑒	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ×
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	𝑖𝑖𝑖𝑖	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	𝑖𝑖𝑖𝑖	𝑡𝑡ℎ𝑒𝑒	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 	
𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑜𝑜𝑜𝑜	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁	𝑜𝑜𝑜𝑜	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

2.3. Analysis of physicochemical parameters
Physicochemical parameters such as temperature, 
salinity, pH, dissolved oxygen, calcium, magnesium, 
phosphate, nitrite, and ammonia were measured each 
month. Water temperature was measured using the 
standard mercuric thermometer; salinity was estimated 
using Mohr’s method (Belcher et al., 1957). pH was 
measured using a standard pH meter and dissolved 
oxygen was estimated following a modified Winkler’s 
method (Golterman, 1983). The calcium and magnesium 
level of seawater was estimated using a standard protocol 
by titrating to the distinct photometric endpoint with 
EDTA (Malmstadt and Hadjiioannou, 1959). Phosphate, 
nitrite, and ammonia level was measured following the 
standard procedure (Strickland and Parsons, 1972). 
The nitrate in the water was completely transformed 
to nitrite when a sample was passed through a column 
containing cadmium filings lightly coated with metallic 
copper. The nitrite (NO2) level was then determined 
by producing a vividly colored azo dye and it was 
colorimetrically measured at 540 nm (Wood et al., 1967). 
The colorimetric approach was used to analyze inorganic 
phosphate (PO4) in seawater by producing a highly 
colored blue Phosphomolybdate complex (Murphy 
and Riley, 1962). Ammonia was estimated by treating 
seawater in an alkaline citrate medium with sodium 
hypochlorite and phenol in the presence of the catalyzer 
sodium nitroprusside (Soloranzo, 1969).
2.4. Statistical analysis
All statistical analysis was carried out using PAST 4.09 
(Hammer et al., 2001) and JASP 0.16 (Love et al., 2019). 

Pearson’s Correlation Analysis was carried out to find 
out the positive and negative relationship between the 
copepods and the physicochemical parameters. Regression 
analysis was carried out between the total pontellid 
copepods from both stations and the physicochemical 
parameters to emphasize the relationship between 
different species and how much the surroundings 
influence the population of copepods. The regression 
coefficient (R2) was calculated. Redundancy analysis 
(RDA) with 9 explanatory variables (physicochemical 
parameters) was constructed to visualize the relationship 
between the pontellid species and the environmental 
parameters. Shannon’s (Spellerberg et al., 2003) diversity 
indices of pontellid copepods at different months were 
also calculated throughout the study period.

3. Results
Physicochemical parameters before the lockdown and 
after the lockdown showed considerable differences 
in each month. Mean temperature, nitrite, inorganic 
phosphate, and ammonia level was found to be higher 
before the lockdown period (30.3 ± 4.2 °C, 2.8 ± 0.6 mg 
L–1, 1.4 ± 0.2 mg L–1, 0.08 ± 0.02 mg L–1), respectively, 
whereas mean salinity, magnesium, and dissolved oxygen 
was found to be lower before lockdown (32.9 ± 1.1 ppt, 
1.05 ± 0.06 mg L–1, 5.17 ± 0.75 mg L–1), respectively. Figure 
2 shows a comparison between various physicochemical 
parameters in different months. Figure 3 shows the 
relationship between the physicochemical parameters. 
A constant negative correlation coefficient was observed 
between temperature, pH, salinity, dissolved oxygen, 
and phosphate during both the prelockdown and 
postlockdown periods. Temperature relatively increases 
from April to June. Nitrite, phosphate, and ammonia 
levels were high during the postmonsoon season from 
both pre- and postlockdown times (Oct–Dec). Dissolved 
oxygen level was relatively low during May–August. pH, 
salinity, and calcium do not show much difference from 
both pre- and postlockdown time.

A total of 11 species of pontellid copepods were 
recorded in the entire study. Six species of pontellid 
copepods were recorded during prelockdown period, 
whereas 10 species were recorded during postlockdown 
period. Labidocera aestiva was found to be dominant 
among pontellid copepods during prelockdown 
period, whereas they were completely absent during 
the postlockdown period. Table 1 shows the monthly 
mean density of pontellid copepods throughout the 
pre- and postlockdown periods. L. acuta, L. pavo, C. 
elliptica, P. danae, and P. scotti were found during both 
the prelockdown and postlockdown periods. L. minuta, 
L. bengalensis, C. aurivilli, C. minor, and P. herdmani 
were some pontellid copepods observed only after 
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the lockdown period. Correlation between pontellid 
copepods and physicochemical parameters reveals that 
temperature and nitrite have a big negative impact on 

the population of pontellid copepods with a considerable 
negative coefficient compared to other parameters (–0.749 
and –0.782). The relationship between temperature and 

Figure 2. Comparison between physicochemical parameters observed during prelockdown and postlockdown period: (a) 
temperature, (b) dissolved oxygen, (c) total pontellid density, (d) nitrite, (e) phosphate, (f) ammonia.

Figure 3. Correlation between physicochemical parameters in (a) prelockdown period and (b) postlockdown period (shades of 
brown indicate the coefficient towards –1 and shades of blue indicate the coefficients towards +1).
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nitrite in pontellid copepods was also expressed by linear 
regression analysis with regression (R2) coefficients of 
0.571 and 0.682, respectively. However, a strong positive 
correlation and regression coefficient were found between 
pontellid copepods and dissolved oxygen. Table 2 shows 
the correlation coefficients between several pontellid 
copepod species and physicochemical parameters.

Similarly, the regression coefficient between various 
pontellid copepod species and physicochemical 
parameters given in Table 3 and Figure 4 depicts 
the association between pontellid species and 
physicochemical parameters using redundancy analysis 

(RDA). RDA shows that pontellid copepods were 
negatively correlating with temperature from both 
study periods. High species diversity was observed 
between the months of Jan and March from both pre- 
and postlockdown periods with (4, 5, 4) and (6, 8, 5) 
species respectively. Between May and October, there 
was very limited species diversity, with only one species 
present at any given time. Table 4 shows the diversity 
indices of pontellid copepods before and after the 
lockdown. Shannon’s diversity indices were found to be 
high during February from the pre- and postlockdown 
period.

Table 1. Mean density of Pontellid copepods throughout the months from pre- and postlockdown 
period. 

Name of the pontellid copepod species
Prelockdown
(×100 ind. m–3)
(mean ± SD)

Postlockdown
(×100 ind. m–3)
(mean ± SD)

Labidocera aestiva (Wheeler, 1900) 11.8 ± 10.9 -
Labidocera acuta (Dana, 1849) 4.7 ± 6.9 5.2 ± 7.5
Labidocera pavo (Giesbrecht, 1889) 2.3 ± 4.1 3.2 ± 5.8
Labidocera minuta (Giesbrecht, 1889) - 0.7 ± 1.9
Labidocera bengalensis (Krishnaswamy, 1952) - 8.6 ± 8.2
Calanopia minor (Scott A., 1902) - 2.05 ± 4.5
Calanopia aurivilli (Cleve, 1901) - 1.9 ± 4.2
Calanopia elliptica (Dana, 1849) 6.4 ± 7.9 3.75 ± 5.6
Pontella danae (Giesbrecht, 1889) 0.25 ± 0.6 0.27 ± 0.71
Pontellopsis scotti (Sewell, 1932) 0.3 ± 0.8 0.5 ± 1.3
Pontellopsis herdmani (Thompson I.C. & Scott A., 1903) - 0.84 ± 1.7
Total pontellidae 25.96 ± 27.72 27.26 ± 34.67

Table 2. The correlation coefficient of various calanoid copepod species with physico-chemical parameters.

Species Temperature pH Salinity DO Calcium Magnesium Nitrite Phosphate Ammonia

L. aestiva –0.413 0.236 –0.127 0.788 0.146 0.045 –0.526 0.645 –0.082
L. acuta –0.683 0.456 0.384 0.754 –0.181 –0.439 –0.697 0.426 –0.134
L. pavo –0.675 0.401 0.315 0.647 –0.119 –0.366 –0.669 0.458 –0.173
L. minuta –0.558 0.608 0.161 0.368 –0.277 –0.126 –0.611 0.050 –0.414
L. bengalensis –0.618 0.246 0.446 0.666 –0.123 –0.401 –0.523 0.678 –0.401
C. minor –0.625 0.255 0.465 0.536 –0.578 –0.422 –0.723 0.219 –0.635
C. aurivilli –0.520 0.416 0.389 0.515 –0.522 –0.364 –0.653 0.174 –0.585
C. elliptica –0.529 0.202 0.221 0.649 0.0486 –0.026 –0.507 0.412 0.0114
P. danae 0.115 –0.016 0.022 0.422 –0.214 –0.017 –0.285 –0.373 –0.089
P. scotti –0.377 –0.237 0.412 0.286 –0.499 –0.270 –0.602 0.141 –0.570
P. herdmani –0.155 0.0097 –0.061 0.234 –0.642 –0.205 –0.131 –0.370 –0.313
Total pontellid –0.749 0.360 0.303 0.732 –0.183 –0.285 –0.782 0.451 –0.502
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4. Discussion
The Government of India considers the Covelong coast 
to be a suitable location for the deployment of artificial 
reefs because of the diverse range of life forms (Kumar 
et al., 2021). Many previous studies claim that COVID 
lockdown has improved water quality in the aquatic 
ecosystem (Shah, 2020; Edward et al., 2021). In the present 

study, comparatively low amounts of nitrite, phosphate, 
and ammonia in postlockdown period compared 
to prelockdown period were observed. Inorganic 
phosphate, ammonia, and nitrites are brought into the 
aquatic ecosystem by both natural and anthropogenic 
activities (Toetz, 1981; Shanmugam et al., 2007). High 
phosphate, nitrite, and nitrate levels in the water will 
promote the rapid growth of phytoplankton, which 
cause algal bloom and the various toxins produced by 
algae result in a low copepod population (Fadiran et al., 
2008; Hong et al., 2012; Umer et al., 2020). Magnesium is 
required for various biological functions such as protein 
synthesis, enzyme activity, energy transfer, and cellular 
homeostasis. They can be toxic to aquatic organisms at 
high concentrations; however, the toxicity of magnesium 
depends on the concentration of calcium in the water 
(Van Dam et al., 2010).

Recent studies indicated that the COVID lockdown 
reduces the nutrient concentration of water, consequently 
improving the population of marine fish (Edward et al., 
2021). In the current study, the diversity of pontellid 
copepods was significantly high when there was a 
decrease in the nutrient content of the water during the 
postlockdown phase. Pontellid copepods showed high 
diversity and density during winter (Jan-Mar) from 
both periods and their population declined for the rest 
of the season. This is because temperature and nutrient 
content of the water was relatively low during these 
months compared to the rest of the season. This clearly 
shows that pontellid copepods are extremely sensitive to 

Table 4. Diversity indices of pontellid copepods from Covelong 
coast during the prelockdown and postlockdown periods. 

Number of species Shannon index (H)

Months 2019 2021 2019 2021

January 4 6 1.29 1.759
February 5 8 1.468 2.012
March 4 5 1.205 1.345
April 1 2 - 0.6719
May 1 1 - -
June 0 1 - -
July 1 1 - -
August 1 3 - 1.14
September 1 1 - -
October 1 1 - -
November 2 2 0.6345 0.6088
December 4 3 1.377 1.105

Figure 4. RDA (redundancy analysis) of pontellid copepods and physicochemical parameters in (a) prelockdown period and 
(b) postlockdown period.
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changes in environmental temperature. Temperature is 
the governing factor that determines the diversity and 
density of various zooplankton communities including 
copepods (Peck et al., 2015; García et al., 2018; Rugebregt 
and Nurhati, 2020). There has to be a constant migration 
pattern in pontellid copepods during unfavorable 
environmental conditions. However, seasonal variation 
and circadian migration in pontellid copepods are also 
supported by various studies (Jeong et al., 2014; Smith 
et al., 2019).

In the present study, we can see a significantly high 
dissolved oxygen level in water after the lockdown 
period. Wang (2022) reported decreased calanoid 
copepod diversity and density in low dissolved oxygen 
environment from Taiwan. Dissolved oxygen is the most 
essential parameter, which is responsible for the survival 
of the aquatic organism (Kulkarni, 2016; Song et al., 2019). 
During lockdown, the water quality of Covelong beach 
improved but the nutrient level fluctuated throughout 
the research period. However, the ammonia level was 
significantly low during the postlockdown period 
compared to the prelockdown period. Nitrite and nitrate 
are naturally occurring components of the nitrogen 
cycle that cause a variety of physiological problems in 
aquatic organisms, even at low concentrations. They are 
known to convert oxygen-transporting pigments into an 
ineffective form. As a result, aquatic organisms take up 
less oxygen (Jensen, 2003). Ammonia is naturally present 
in the aquatic environment as an excretory product of 
aquatic animals, but human activities have triggered an 
increase in the level of ammonia in the aquatic ecosystem 
in the past few decades (Eddy, 2005). High ammonia 
levels in water are considered hazardous to many aquatic 

organisms, particularly copepods as it reduces the 
success of hatching eggs in copepods (Buttino, 1994; 
Jepsen et al., 2015; Kennedy et al., 2019). However, most 
calanoid copepods especially the pontellid copepods are 
known for producing diapause eggs, which only hatch 
when the environmental conditions are favorable for 
their survival (Marcus, 1984; Hairston and Bohonak, 
1998; Wu et al., 2007). This could be another reason for 
the appearance of more pontellid copepods after the 
lockdown period as the water quality was significantly 
improved. L. bengalensis, a species first described from 
the Madras coast (old name of Chennai) almost 70 years 
ago (Krishnaswamy, 1951) has not been reported again 
from the Chennai coast, but its members were often cited 
from Indonesian waters (Mulyadi 2002, 2020). There is 
also disappearance of L. aestiva after the prelockdown 
period. The reappearance of L. bengalensis in the present 
study after the lockdown period strongly indicates the 
migratory pattern of this copepod. However, there is not 
enough literature available regarding the disappearance 
and reappearance of these copepods in this region.

5. Conclusions
Copepods play a vital role in the aquatic food chain 
and serve as bioindicators since they respond quickly 
to changes in the environment. However, because of 
their unique characteristics, pontellid copepods have 
attracted the attention of many researchers worldwide. 
In the current study, we observed improved water 
quality parameters in the coastal ecosystem after the 
COVID-19 lockdown period. The coastal zone after 
lockdown showed significantly reduced levels of nitrite, 
phosphate, and ammonia, which are all known to cause 

Table 3. The regression (R2) coefficient of various calanoid copepod species with physico-chemical parameters.

Species Temperature pH Salinity DO Calcium Magnesium Nitrite Phosphate Ammonia

L. aestiva 0.198 0.056 0.016 0.621 0.022 0.002 0.277 0.304 0.044
L. acuta 0.467 0.209 0.148 0.569 0.033 0.193 0.522 0.115 0.155
L. pavo 0.455 0.161 0.099 0.419 0.014 0.134 0.463 0.027 0.102
L. minuta 0.328 0.37 0.026 0.136 0.077 0.016 0.383 0.556 0.14
L. bengalensis 0.468 0.061 0.199 0.444 0.015 0.161 0.285 0.107 0.268
C. minor 0.409 0.065 0.217 0.288 0.334 0.178 0.773 0.119 0.424
C. aurivilli 0.271 0.174 0.152 0.266 0.273 0.133 0.72 0.266 0.412
C .elliptica 0.28 0.041 0.049 0.422 0.002 0.001 0.585 0.253 0.144
P. danae 0.013 0 0 0.278 0.046 0 0.025 0 0.003
P. scotti 0.119 0.002 0.128 0.125 0.106 0.051 0.374 0.025 0.039
P. herdmani 0.054 0 0.004 0.055 0.413 0.042 0.018 0.039 0.132
Total pontellid 0.571 0.13 0.092 0.636 0.033 0.081 0.682 0.177 0.257
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rapid growth of phytoplankton thereby significantly 
lowering copepod productivity. This could be the reason 
for the high diversity of pontellid copepods after the 
lockdown period. However, temperature and dissolved 
oxygen are also observed to play an important role in 
governing the population composition of pontellid 
copepods throughout the study period. The appearance 
of more pontellid copepods after the lockdown period 
indicates that pontellid copepods either migrate or 
produce diapause eggs and reappear when the conditions 
are favorable. Since it is not easy to study the community 
structure and factors affecting the pontellid copepods in 
a laboratory, this study will provide a useful reference 
in understanding the population structure of copepods 
belonging to the family Pontellidae from the Covelong 
coast, India.
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