# Floristic composition and diversity in Upper Manaslu Conservation Area, Central Nepal

Rita Chhetri<sup>1\*</sup> and Prakash Bhattarai<sup>2</sup>

<sup>1</sup>National Herbarium and Plant Laboratories, Lalitpur, Nepal <sup>2</sup>Central Department of Botany, Tribhuvan University, Kirtipur, Nepal

(Accepted November 20, 2013)

## ABSTRACT

This study presents the floristic composition pattern of Manaslu Conservation Area (MCA), Central Nepal. We recorded a total of 161 species from 70 different sampling plots within an altitudinal range of 1400 m between 3000-4400 m. The study area has found to be dominated by the family Asteraceae with 12 genera and 20 species followed by Ranunculaceae with 5 genera and 13 species. The frequency distribution of *Potentilla cuneata* and *Viola biflora* were found the highest among all those recorded species, and the most dominant species. Detrended Correspondence Analysis (DCA) was used to analyse the distribution and composition patterns of species. A unimodal relationship of the species composition was found with altitude.

Key words: DCA diagram, eigen value, altitudinal gradient, unimodal relationship

## **INTRODUCTION**

Nepal comprises 0.09 % of global land area that possesses disproportionately a huge diversity of flora and fauna (HMG/MFSC 2002). This diversity is manifested by the tropical forests in the Terai, the deciduous and coniferous forests in the subtropical and temperate regions and the meadows and grasslands at the high altitude subalpine and alpine regions of Nepal. The subalpine and alpine regions of the Nepalese Himalayas are rich in floristic diversity. Therefore, subalpine and alpine regions are considered as an ideal place to carry out further scientific researches (Korner, 2000).

Altitude increases/changes as one ascends up from tropical to the subalpine and alpine regions. This affects physiographical, topographical and environmental factors that influence the floristic composition and diversity of that area (Ellu and Obua, 2005). Diversity of life-forms i.e., floristic composition usually changes with change in altitude and remains one or two life-forms at extreme altitudes (Pavon, *et al.*, 2000). Floristic diversity varies with life-forms or functional groups of plants such as woody and herbaceous, monocots and dicots (Peet, 1978; Bhattarai and Veetas, 2003), pteridophyte (Jacobsen and Jacobsen, 1989; Bhattarai, *et al.*, 2004a; Kluge *et al.*, 2006), bryophytes (Grau *et al.*, 2007), lichens (Baniya *et al.*, 2010) and orchids (Acharya *et al.*, 2011).

Floristic diversity and composition along the altitudinal gradient had been a subject of ecosystem. Various researches had been carried out in different parts of the country to explore the floristic composition including all the vegetation and habitat types. Bhattarai and Vetaas (2003) studied the floristic composition and richness along the subtropical altitudinal gradient from

east Nepal, Streade *et al.*(2002) from Royal Chitwan Natioanl Park including the natural and community forest, Subedi and Shakya (1993) in Oak Forest of Rasuwa district. Grytnes and Vetaas (2002), Panthi *et al.*(2007), Bhatt and Lekhak (2009), Baniya (2010) had also carried out the similar work in the subalpine and alpine areas. Recently, Joshi and Khadka (2013) had studied the floristic compostion and species diversity on lowlands of Siwalik and Churia regions. Similarly, Bhattarai and Vetaas (2013) had focussed their study on the herbaceous species composition and diversity in different land types of Eastern Nepal.

Manaslu Conservation Area is one of the remote conservation areas in Nepal. This area declared as conservation area in 1998, since then scientific researches on this area are emerging. King Mahendra Trust for Nature Conservation (1998) carried out the feasibility study of this area during the declaration as the conservation area that estimated an occurrence of about 1500- 2000 plant species. The main objective of this study is to document the floristic composition patterns of species encountered between 3000-4400 m in Manaslu Conservation Area, Central Nepal especially at two VDCs, Samagaun and Lho.

## **MATERIALS AND METHODS**

#### STUDY AREA

This study was conducted at areas belonged to two Village Development Committees (VDCs), namely Samagaun and Lho of Manaslu Conservation Area, Gorkha District of Central Nepal (Figure 1). Both VDCs lie at the northern part of this district and fall under the subalpine and alpine vegetation zones of Nepal.

<sup>\*</sup>Corresponding Author's E-mail: ritachhetrinhpl@gmail.com

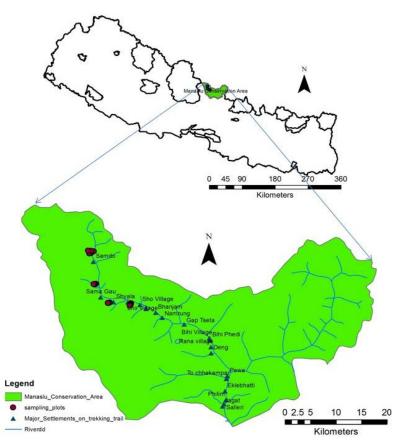



Figure 1. Location Map of the study area with black dots representing studied areas.

Manaslu Conservation Area (MCA) represents an ideal place for the diverse flora and fauna, their scenic beauties and vegetation due to their sharp altitudinal difference and abundance of different topographies and microclimatic conditions. The KMTNC (1998) categorized the flora of MCA into 19 different forest types and about 1500-2000 species of flowering plants species. This study area is dominated by conifer forests. The Buri Gandaki Valley at Lho is also well known as the Land of Conifer Diversity (KMTNC, 1998). Some other species of this vegetation zone are *Picea smithiana*, *Larix himalaica*, *Tsuga dumosa*, *Abies spectabilis*, *Pinus wallichiana* and *Juniper* species. This area also harbors several species of *Rhododendron*, *Betula utilis* forest, alpine meadows and grasslands.

#### DATA COLLECTION

Preliminary study of finding study sites, selecting sampling areas and some basic information of local flora were carried out during December 12-30, 2009. Second visit was conducted during October 15-30, 2010 and all the necessary data were collected.

A semi-systematic representative sampling method was applied to collect the floristic diversity in all the possible habitats and vegetation types ranging from 3000 - 4000 m altitude. Abundance of each species quantified at  $10 \times 10$  m<sup>2</sup> quadrat laid at an interval of 100 m elevation and a total of 5 times at a single elevational band. The species presence data were recorded and plant specimens were collected. A total of 70 sampling plots were laid to cover the whole study area. Latitude, Longitude, altitude, slope and aspect of each

sampling plots were recorded. Correct identification of all collected specimens was done by comparing each herbarium specimens deposited at Tribhuvan University Central Herbarium, Kirtipur (TUCH), and National Herbarium and Plant Laboratories, Godavari (KATH). The plants were also identified after consulting relevant literature such as: Polunin and Stainton (1984), Stainton (1997), Grierson and Long (1983-2001), Noltie (1994, 2000 and 2002), etc. The nomenclature of each species was validated after using the latest taxonomic literature (Press *et al.*, 2000).

Further, frequency of each individual species and their dominance were calculated. All collected species were classified as dicot, monocot and gymnosperms. Besides that the dominant families and their broad life-form categories: trees, shrubs and herbs were also categorized. Floristic composition of the whole study area was analyzed through the Detrended Correspondence Analysis (DCA; Hill and Gouch 1980). DCA is an explorative weightage average technique (Jongman *et al.*, 1995). Each sample and species disperse in their space based upon their weightage average. CANACO version 4.5 (ter Braak, 2002) and its graphical program CANOCO DRAW (Šmilauer, 2002) were used to analyze the compositional pattern from the data set.

## **RESULTS**

A total of 161 species (Table 1) were recorded from 70 different sampling plots of the study. Altogether, this study represented 44 families, 93 genus and 161 species. Among them the most dominant family was the Asteraceae (12 genera, 20 species), followed by

AJCB Vol. 2 No. 2, pp. 111-121, 2013

### Floristic composition and diversity

| Table 1. List of recorded Plants | species with their famil | y, habit, frequency a | nd geographical location. |
|----------------------------------|--------------------------|-----------------------|---------------------------|
|                                  |                          |                       |                           |

| SI<br>No. | Plant Species                                | Family         | Habit | Life-<br>forms  | Abbrev. | Fre-<br>quency | Latitude<br>(°) | Longitude<br>(°) |
|-----------|----------------------------------------------|----------------|-------|-----------------|---------|----------------|-----------------|------------------|
| 1         | Abies spectabilis (D.Don) Mirb.              | Pinaceae       | Tree  | Gymno-<br>sperm | Abi spe | 42.857         | 28.6076         | 84.6366          |
| 2         | Acer acuminatum Wall. ex D. Don              | Aceraceae      | Tree  | Dicot           | Ace acu | 4.285          | 28.5702         | 84.7064          |
| 3         | Acer campbelli Hook. F. and Thomson ex Hiern | Aceraceae      | Tree  | Dicot           | Ace cam | 4.285          | 28.5702         | 84.7064          |
| 4         | Aconitum bishma (BuchHam.)<br>Rapaics        | Ranunculaceae  | Herb  | Dicot           | Aco bis | 18.571         | 28.6075         | 84.6338          |
| 5         | Aconitum dhowjii Lauener                     | Ranunculaceae  | Herb  | Dicot           | Aco dho | 7.142          | 28.6687         | 84.6234          |
| 6         | Aconitum ferox Wall. ex Ser.                 | Ranunculaceae  | Herb  | Dicot           | Aco fer | 21.428         | 28.6072         | 84.6358          |
| 7         | Aconitum nepalense Lauener                   | Ranunculaceae  | Herb  | Dicot           | Aco nep | 15.714         | 28.6687         | 84.6234          |
| 8         | Aconitum spicatum (Bruhl) Stapf              | Ranunculaceae  | Herb  | Dicot           | Aco spi | 15.714         | 28.6072         | 84.6358          |
| 9         | Aconogonon molle (D. Don) H. Hara            | Polygonaceae   | Herb  | Dicot           | Aco mol | 31.428         | 28.568          | 84.7056          |
| 10        | Actaea spicata (Wall. ex Royle) H.<br>Hara   | Ranunculaceae  | Herb  | Dicot           | Act spi | 20             | 28.568          | 84.7056          |
| 11        | Allium przewalskianum Regel                  | Amaryllidaceae | Herb  | Monocot         | All prz | 22.857         | 28.6687         | 84.6234          |
| 12        | Allium wallichi Kunth                        | Amaryllidaceae | Herb  | Monocot         | All wal | 20             | 28.6076         | 84.6366          |
| 13        | Anaphalis contorta (D. Don) Hook.f.          | Asteraceae     | Herb  | Dicot           | Ana con | 37.142         | 28.6078         | 84.6352          |
| 14        | Anaphalis subumbellata C.B. Clarke           | Asteraceae     | Herb  | Dicot           | Ana sub | 8.571          | 28.6687         | 84.6234          |
| 15        | Anaphalis triplinervis (DC.) Airy Shaw       | Asteraceae     | Herb  | Dicot           | Ana tri | 44.285         | 28.6677         | 84.6334          |
| 16        | Andropogan munroi C. B. Clarke               | Poaceae        | Herb  | Monocot         | And mun | 20             | 28.6687         | 84.6234          |
| 17        | Androsace lehmannii Wall. ex Duby            | Primulacea     | Herb  | Dicot           | And leh | 35.714         | 28.6645         | 84.6276          |
| 18        | Androsace sarmentosa Wall.                   | Primulacea     | Herb  | Dicot           | And sar | 25.714         | 28.6072         | 84.6358          |
| 19        | Androsace strigillosa Franch.                | Primulacea     | Herb  | Dicot           | And str | 27.142         | 28.6645         | 84.6276          |
| 20        | Arisaema jacquemontii Blume                  | Araceae        | Herb  | Monocot         | Ari jac | 5.714          | 28.6072         | 84.6358          |
| 21        | Artemisia dubia Wall. ex Besser              | Asteraceae     | Herb  | Dicot           | Art dub | 5.714          | 28.5919         | 84.7275          |
| 22        | Artemisia gmelinii Weber ex Stechm.          | Asteraceae     | Herb  | Dicot           | Art gme | 30             | 28.568          | 84.7056          |
| 23        | Arundinella hookerii Munro ex Keng           | Poaceae        | Herb  | Monocot         | Aru gme | 12.857         | 28.5689         | 84.7065          |
| 24        | Aster albescens (DC.) HandMazz.              | Asteraceae     | Herb  | Dicot           | Ast alb | 28.571         | 28.6076         | 84.6363          |
| 25        | Aster sikkimensis Hook.                      | Asteraceae     | Herb  | Dicot           | Ast sik | 10             | 28.5708         | 84.7070          |
| 26        | Aster himalaicus C.B. Clarke                 | Asteraceae     | Herb  | Dicot           | Ast him | 18.571         | 28.6076         | 84.6366          |
| 27        | Astilbe rivularis BuchHam. ex D. Don         | Saxifragaceae  | Herb  | Dicot           | Ast riv | 22.857         | 28.5708         | 84.7070          |
| 28        | Astragalus melanostachys Benth. ex<br>Bunge  | Fabaceae       | Herb  | Dicot           | Ast mel | 42.857         | 28.6687         | 84.6234          |
| 29        | Astragalus floridus Benth. ex Bunge          | Fabaceae       | Herb  | Dicot           | Ast flo | 20             | 28.5725         | 84.6607          |
| 30        | Berberis aristata DC.                        | Berberidaceae  | Shrub | Dicot           | Ber ari | 2.857          | 28.5919         | 84.7275          |
| 31        | Berberis erythroclada Ahrendt                | Berberidaceae  | Shrub | Dicot           | Ber ery | 31.428         | 28.6076         | 84.6338          |
| 32        | Berberis mucrifolia Ahrendt                  | Berberidaceae  | Shrub | Dicot           | Bet muc | 34.285         | 28.6076         | 84.6338          |
| 33        | Betula utilis D. Don                         | Betulaceae     | Tree  | Dicot           | Bet uti | 38.571         | 28.6645         | 84.6276          |
| 34        | Bistorta affinis (D. Don) Greene             | Polygonaceae   | Herb  | Dicot           | Bis aff | 20             | 28.6076         | 84.6338          |
| 35        | Bistorta amplexicaulis (D. Don) Gree-<br>ne  | Polygonaceae   | Herb  | Dicot           | Bis amp | 21.428         | 28.5678         | 84.7053          |
| 36        | Bistorta emodi (Meisn.) H. Hara              | Polygonaceae   | Herb  | Dicot           | Bis emo | 14.285         | 28.6677         | 84.6334          |
| 37        | Bistorta macrophylla (D. Don) Sojak          | Polygonaceae   | Herb  | Dicot           | Bis mac | 12.857         | 28.6677         | 84.6334          |

AJCB Vol. 2 No. 2, pp. 111-121, 2013

| 38       | Bistorta vaccinifolia (Wall. ex                     | Polygonaceae        | Herb             | Dicot           | Bis vac        | 21.428 | 28.6686 | 84.6248 |
|----------|-----------------------------------------------------|---------------------|------------------|-----------------|----------------|--------|---------|---------|
| 39       | Meisn.) Greene<br>Cassiope fastigiata (Wall.) D.Don | Ericaceae           | Shrub            | Dicot           | Cas fas        | 14.285 | 28.6645 | 84.6276 |
| 39<br>40 | Caragana brevispina Royle                           | Fabaceae            | Shrub            | Dicot           | Cas Jas        | 5.714  | 28.6643 | 84.0270 |
|          |                                                     |                     |                  |                 |                |        |         |         |
| 41       | Caragana gerardiana Royle                           | Fabaceae            | Shrub            | Dicot           | Car ger        | 50     | 28.5919 | 84.7275 |
| 42       | Caragana sukiensis C.K. Schneid.                    | Fabaceae            | Shrub            | Dicot           | Car suk        | 14.285 | 28.5919 | 84.7275 |
| 43       | Carex atrofusca (Boott) T. Koyama                   | Cyperaceae          | Herb             | Monocot         | Car atr        | 15.714 | 28.6656 | 84.6266 |
| 44       | Carex cruenta Nees                                  | Cyperaceae          | Herb             | Monocot         | Car cru        | 10     | 28.6656 | 84.6266 |
| 45       | Carex filicina Nees                                 | Cyperaceae          | Herb             | Monocot         | Car fil        | 67.142 | 28.6075 | 84.6326 |
| 46       | Carex gracilenta Bott ex Strachey                   | Cyperaceae          | Herb             | Monocot         | Car gra        | 12.857 | 28.5734 | 84.6645 |
| 47       | Ceropegia pubescens Wall.                           | Asclepiada-<br>ceae | Herb climber     | Dicot           | Cer pub        | 14.285 | 28.5919 | 84.7275 |
| 48       | Cirsium falconeri (Hook.f.) Petr.                   | Asteraceae          | Herb             | Dicot           | Cir fal        | 25.714 | 28.6656 | 84.6266 |
| 49       | Clematis barbellata Edgew.                          | Ranuncu-<br>laceae  | Woody<br>climber | Dicot           | Cle bar        | 10     | 28.5702 | 84.7036 |
| 50       | Clematis montana BuchHam. ex DC.                    | Ranuncu-<br>laceae  | Woody<br>climber | Dicot           | Cle<br>mon     | 17.142 | 28.5689 | 84.7065 |
| 51       | Codonopsis rotundifolia Benth.                      | Campanu-<br>laceae  | Herb             | Dicot           | Cod rot        | 8.571  | 28.5689 | 84.7065 |
| 52       | Coeloglossum viride (L.) hartm.                     | Orchidaceae         | Herb             | Monocot         | Coe vir        | 34.285 | 28.5689 | 84.7065 |
| 53       | <i>Corydalis flaccida</i> Hook. f. and Thomson      | Papaveraceae        | Herb             | Dicot           | Cor fla        | 7.142  | 28.5678 | 84.7053 |
| 54       | Corydalis juncea Wall.                              | Papaveraceae        | Herb             | Dicot           | Cor jun        | 17.142 | 28.6686 | 84.6236 |
| 55       | Cotoneaster frigidus Wall. ex Lindl.                | Rosaceae            | Shrub            | Dicot           | Cot fri        | 7.142  | 28.5919 | 84.7275 |
| 56       | Cotoneaster microphyllus Wall. ex<br>Lindl.         | Rosaceae            | Shrub            | Dicot           | Cot mic        | 47.142 | 28.6686 | 84.6236 |
| 57       | Cremanthodium nepalense Kitam.                      | Asteraceae          | Herb             | Dicot           | Cre nep        | 4.285  | 28.5919 | 84.7275 |
| 58       | Cremanthodium oblongatum C.B.<br>Clarke             | Asteraceae          | Herb             | Dicot           | Cre obl        | 18.571 | 28.6978 | 84.6352 |
| 59       | <i>Cremanthodium purpureifolium</i><br>Kitam.       | Asteraceae          | Herb             | Dicot           | Cre pur        | 21.428 | 28.6978 | 84.6352 |
| 60       | <i>Cremanthodium reniforme</i> (DC.) Benth.         | Asteraceae          | Herb             | Dicot           | Cre ren        | 21.428 | 28.6978 | 84.6352 |
| 61       | Crepis himalaica Kitam.                             | Asteraceae          | Herb             | Dicot           | Cre him        | 18.571 | 28.6645 | 84.6276 |
| 62       | Cyathula capitata Moq.                              | Amarantha-<br>ceae  | Shrub            | Dicot           | Cya            | 4.285  | 28.5919 | 84.7275 |
| 63       | Cynanthus lobatus Wall. ex Benth                    | Campanu-<br>laceae  | Herb             | Dicot           | cap<br>Cyn lob | 30     | 28.6645 | 84.6276 |
| 64       | Dactylorhiza hatagirea (D. Don)<br>Soo              | Orchidaceae         | Herb             | Monocot         | Dac hat        | 11.428 | 28.6076 | 84.6366 |
| 65       | Delphinium denudatum Wall. ex<br>Hook.f.            | Ranuncu-<br>laceae  | Herb             | Dicot           | Del den        | 5.714  | 28.5730 | 84.6639 |
| 66       | Delphinium himalayai Munz                           | Ranuncu-<br>laceae  | Herb             | Dicot           | Del him        | 45.714 | 28.6076 | 84.6366 |
| 67       | Ephedra gerardiana Wall. ex Stapf                   | Ephedraceae         | Shrub            | Gymno-<br>sperm | Eph ger        | 14.285 | 28.6645 | 84.6276 |
| 68       | Epilobium latifolium P. H. Raven                    | Onagraceae          | Herb             | Dicot           | Epi lat        | 15.714 | 28.6078 | 84.6358 |
| 69       | Euphorbia stracheyi Boiss.                          | Euphor-<br>biaceae  | Herb             | Dicot           | Eup str        | 22.857 | 28.5919 | 84.7275 |
| 70       | Fragaria nubicola Lindl. ex Lacaita                 | Rosaceae            | Herb             | Dicot           | Fra nub        | 94.285 | 28.5919 | 84.7275 |
| 71       | Fritillaria cirrhosa D. Don                         | Lilaceae            | Herb             | Monocot         | Fri cir        | 34.285 | 28.5717 | 84.7071 |
| 72       | Galium paradoxum Maxim.                             | Rubiaceae           | Herb             | Dicot           | Gal par        | 32.857 | 28.5734 | 84.6645 |
| 73       | Gentiana depressa D. Don                            | Gentianaceae        | Herb             | Dicot           | Gen<br>dep     | 94.285 | 28.6076 | 84.6366 |
| 74       | Gentiana ornata (G. Don) Griseb.                    | Gentianaceae        | Herb             | Dicot           | Gen            | 67.142 | 28.6645 | 84.6276 |
|          |                                                     |                     |                  |                 | orn            |        |         |         |

### Floristic composition and diversity

| 76  | Geranium pratense L.                                  | Geraniaceae           | Herb             | Dicot           | Ger pra | 50     | 28.6978 | 84.6352 |
|-----|-------------------------------------------------------|-----------------------|------------------|-----------------|---------|--------|---------|---------|
| 77  | Gerbera nivea (DC.) Sch. Bip.                         | Asteraceae            | Herb             | Dicot           | Ger niv | 91.428 | 28.6687 | 84.6239 |
| 78  | Hedysarum kumaonense Benth. ex<br>Baker               | Fabaceae              | Herb             | Dicot           | Hed kum | 35.714 | 28.5679 | 84.7055 |
| 79  | Heracleum lallii C. Norman                            | Apiaceae              | Herb             | Dicot           | Her lal | 32.857 | 28.5687 | 84.7059 |
| 80  | Hippophae salicifolia D. Don                          | Elaeagnaceae          | Tree or<br>shrub | Dicot           | Hip sal | 12.857 | 28.5679 | 84.7055 |
| 81  | Hippophae tibetana Schltdl.                           | Elaeagnaceae          | Tree or<br>shrub | Dicot           | Hip tib | 14.285 | 28.6645 | 84.6276 |
| 82  | Hypericum elodioides Choisy                           | Guttiferae            | Shrub            | Dicot           | Hyp elo | 18.571 | 28.5734 | 84.6645 |
| 83  | Inula hookeri C.B. Clarke                             | Asteraceae            | Herb             | Dicot           | Inu hoo | 45.714 | 28.5919 | 84.7275 |
| 84  | Iris clarkei Baker ex Hook. f.                        | Iridaceae             | Herb             | Monocot         | Iri cla | 41.428 | 28.5919 | 84.727  |
| 85  | Iris stantonii H. Hara                                | Iridaceae             | Herb             | Monocot         | Iri sta | 15.714 | 28.5734 | 84.6645 |
| 86  | Iris kemaonensis D. Don ex Royle                      | Iridaceae             | Herb             | Monocot         | Iri kem | 48.571 | 28.5734 | 84.6645 |
| 87  | Juniperus communis L.                                 | Cupressaceae          | Shrub            | Gymno-<br>sperm | Jun com | 77.142 | 28.5687 | 84.7059 |
| 88  | Juniperus indica Bertol.                              | Cupressaceae          | Shrub            | Gymno-<br>sperm | Jun ind | 11.428 | 28.6078 | 84.6358 |
| 89  | Juniperus macropoda Boiss.                            | Cupressaceae          | Tree             | Gymno-<br>sperm | Jun mac | 4.2857 | 28.6078 | 84.6358 |
| 90  | Juniperus recurva Buch Ham. ex<br>D. Don              | Cupressaceae          | Shrub            | Gymno-<br>sperm | Jun rec | 54.285 | 28.6078 | 84.6358 |
| 91  | Juniperus squamata Buch Ham. ex<br>D. Don             | Cupressaceae          | Shrub            | Gymno-<br>sperm | Jun squ | 77.142 | 28.5919 | 84.727  |
| 92  | <i>Kobresia duthiei</i> C.B. Clarke in Hook.f.        | Cyperaceae            | Herb             | Monocot         | Kob dut | 57.142 | 28.6078 | 84.635  |
| 93  | Kobresia fragilis C.B. Clarke                         | Cyperaceae            | Herb             | Monocot         | Kob fra | 57.142 | 28.5687 | 84.705  |
| 94  | Kobresia laxa Nees                                    | Cyperaceae            | Herb             | Monocot         | Kob lax | 41.428 | 28.5687 | 84.705  |
| 95  | Kobresia nepalensis (Nees) Kuk.                       | Cyperaceae            | Herb             | Monocot         | Kob nep | 30     | 28.6677 | 84.6334 |
| 96  | Larix himalaica W.C. Cheng and L.K. Fu                | Pinaceae              | Tree             | Gymno-<br>sperm | Lar him | 41.428 | 28.5708 | 84.7070 |
| 97  | Leontopodium jacotianum Beauverd                      | Asteraceae            | Herb             | Dicot           | Leo jac | 27.142 | 28.6645 | 84.6276 |
| 98  | Ligularia fischeri (Ledeb.) Turcz.                    | Asteraceae            | Herb             | Dicot           | Lig fis | 95.714 | 28.5708 | 84.7070 |
| 99  | Lilium nepalense D. Don                               | Lilaceae              | Herb             | Monocot         | Lil nep | 18.571 | 28.5708 | 84.7070 |
| 100 | Lomatogonium carinthiacum (Wulfen) Rchb.              | Gentianaceae          | Herb             | Dicot           | Lom car | 54.285 | 28.5679 | 84.7055 |
| 101 | Lonicera angustifolia Wall. ex DC.                    | Caprifoilaceae        | Tree             | Dicot           | Lon ang | 31.428 | 28.5708 | 84.7070 |
| 102 | Lonicera lanceolata Wall.                             | Caprifoilaceae        | Shrub            | Dicot           | Lon lan | 12.857 | 28.6079 | 84.6355 |
| 103 | <i>Lonicera obovata</i> Royle ex Hook. f. and Thomson | Caprifoilaceae        | Shrub            | Dicot           | Lon obo | 21.428 | 28.6079 | 84.6355 |
| 104 | Meconopsis regia G. Taylor                            | Papaveraceae          | Herb             | Dicot           | Mec reg | 28.571 | 28.6645 | 84.6270 |
| 105 | Morina polyphylla Wall. ex DC.                        | Dipsacaceae           | Herb             | Dicot           | Mor pol | 55.714 | 28.6686 | 84.6320 |
| 106 | Nardostachys grandiflora DC.                          | Valerianaceae         | Herb             | Dicot           | Nar gra | 44.285 | 28.6685 | 84.6254 |
| 107 | Neopicrorhiza scrophulariiflora<br>(Pennell) Hong     | Scrophulari-<br>aceae | Herb             | Dicot           | Neo scr | 28.571 | 28.6685 | 84.6254 |
| 108 | Nepeta lamiopsis Benth. ex Hook. f.                   | Lamiaceae             | Herb             | Dicot           | Nep lam | 48.571 | 28.5708 | 84.7070 |
| 109 | Origanum vulgare L.                                   | Lamiaceae             | Herb             | Dicot           | Ori vul | 44.285 | 28.5708 | 84.7070 |
| 110 | Oxytropis microphylla (Pall.) DC.                     | Fabaceae              | Herb             | Dicot           | Oxy mic | 50     | 28.5676 | 84.7050 |
| 111 | Parnassia nubicola Wall. ex Royle                     | Paranassi-<br>aceae   | Herb             | Dicot           | Par nub | 54.285 | 28.5679 | 84.705  |
| 112 | Pedicularis poluninii Tsoong                          | Scrophulari-<br>aceae | Herb             | Dicot           | Ped pol | 21.428 | 28.5676 | 84.7050 |
|     |                                                       |                       | ** 1             | Direct          | Dadmaa  | 28.571 | 28.6684 | 84.6252 |
| 113 | <i>Pedicularis pseudoregeliana</i> P.C. Tsoong        | Scrophulari-<br>aceae | Herb             | Dicot           | Ped pse | 41.428 | 28.0084 | 84.0232 |

| 115 | Pedicularis wallichii Bunge                                   | Scrophulari-         | Herb            | Dicot   | Ped wal | 25.714 | 28.6677 | 84.6261 |
|-----|---------------------------------------------------------------|----------------------|-----------------|---------|---------|--------|---------|---------|
| 116 | Pinus wallichiana A.B. Jacks.                                 | aceae<br>Pinaceae    | Tree            | Gymno-  | Pin wal | 24.285 | 28.5919 | 84.7275 |
| 110 | Plantago erosa Wall.                                          | Plantaginaceae       | Herb            | sperm   | Pla ero |        |         |         |
| 117 | Podophyllum hexandraum Royle                                  | Berberidaceae        | Herb            | Dicot   | Pod hex | 71.428 | 28.5919 | 84.7275 |
| 110 |                                                               |                      | neib            | Dicot   |         | 32.857 | 28.5919 | 84.7275 |
| 119 | Polygonatum cirrhifolium (Wall.)<br>Royle                     | Lilaceae             | Herb            | Monocot | Pol cir | 34.285 | 28.5714 | 84.7071 |
| 120 | Polygonatum hookeri Baker                                     | Lilaceae             | Herb            | Monocot | Pol hoo | 34.285 | 28.6655 | 84.6362 |
| 121 | Polygonatum verticillatum (L.) All.                           | Lilaceae             | Herb            | Monocot | Pol ver | 31.428 | 28.5919 | 84.7275 |
| 122 | Potentilla biflora Wild. ex Schltdl                           | Rosaceae             | Herb            | Dicot   | Pot bif | 24.285 | 28.6677 | 84.6261 |
| 123 | Potentilla cuneata Wall. ex Lehm.                             | Rosaceae             | Herb            | Dicot   | Pot cun | 98.571 | 28.5919 | 84.7275 |
| 124 | Potentilla fruticosa Lindl. ex Lehm.                          | Rosaceae             | Shrub           | Dicot   | Pot fru | 44.285 | 28.6076 | 84.6366 |
| 125 | Primula concinna Watt                                         | Primulacea           | Herb            | Dicot   | Pri con | 2.857  | 28.6077 | 84.6363 |
| 126 | Primula denticulata Sm.                                       | Primulacea           | Herb            | Dicot   | Pri den | 57.142 | 28.6077 | 84.6363 |
| 127 | Primula rotundifolia Wall.                                    | Primulacea           | Herb            | Dicot   | Pri rot | 4.285  | 28.6684 | 84.6252 |
| 128 | Primula wigramiana W.W. Sm.                                   | Primulacea           | Herb            | Dicot   | Pri wig | 11.428 | 28.6684 | 84.6252 |
| 129 | Ranunculus diffuses DC.                                       | Ranunculaceae        | Herb            | Dicot   | Ran dif | 44.285 | 28.5708 | 84.7070 |
| 130 | Rheum australe D. Don                                         | Polygonaceae         | Herb            | Dicot   | Rhe aus | 27.142 | 28.6080 | 84.6375 |
| 131 | Rheum moorcroftianum Royle                                    | Polygonaceae         | Herb            | Dicot   | Rhe moo | 28.571 | 28.6684 | 84.6252 |
| 132 | Rhodendron anthopogon D. Don                                  | Ericaceae            | Shrub           | Dicot   | Rho ant | 47.142 | 28.6080 | 84.6375 |
| 133 | Rhododendron arboreum Sm.                                     | Ericaceae            | Tree            | Dicot   | Rho arb | 17.142 | 28.5708 | 84.7070 |
| 134 | Rhododendron barbatum Wall. ex G.<br>Don                      | Ericaceae            | Tree            | Dicot   | Rho bar | 18.571 | 28.5708 | 84.7070 |
| 135 | Rhododendron campanulatum D. Don                              | Ericaceae            | Shrub           | Dicot   | Rho cam | 41.428 | 28.5708 | 84.7070 |
| 136 | <i>Rhododendron lepidotum</i> Wall. ex G. Don                 | Ericaceae            | Shrub           | Dicot   | Rho lep | 38.571 | 28.5708 | 84.7070 |
| 137 | Rhododendron nivale Hook. f.                                  | Ericaceae            | Shrub           | Dicot   | Rho niv | 20     | 28.6687 | 84.6246 |
| 138 | Rosa macrophylla Lindl.                                       | Rosaceae             | Shrub           | Dicot   | Ros mac | 40     | 28.5708 | 84.7070 |
| 139 | Rosa sericea Lindl.                                           | Rosaceae             | Shrub           | Dicot   | Ros ser | 27.142 | 28.5708 | 84.7070 |
| 140 | Rubia manjith Roxb. ex Fleming                                | Rubiaceae            | Herb<br>climber | Dicot   | Rub man | 8.571  | 28.5708 | 84.7070 |
| 141 | Rumex nepalensis Spreng                                       | Polygonaceae         | Herb            | Dicot   | Rum nep | 40     | 28.5708 | 84.7070 |
| 142 | Salix calyculata Hook. f. ex Andersson                        | Salicaceae           | Shrub           | Dicot   | Sal cal | 14.285 | 28.6080 | 84.6375 |
| 143 | Salix daltoniana Andersson                                    | Salicaceae           | Shrub           | Dicot   | Sal dal | 21.428 | 28.6080 | 84.6375 |
| 144 | Salix sikkimensis Andersson                                   | Salicaceae           | Shrub           | Dicot   | Sal sik | 20     | 28.6687 | 84.6246 |
| 145 | Saxifraga poluninana H. Sm.                                   | Saxifragaceae        | Herb            | Dicot   | Sax pol | 10     | 28.5687 | 84.7059 |
| 146 | Selinum candollei DC.                                         | Apiaceae             | Herb            | Dicot   | Sel can | 34.285 | 28.5705 | 84.7066 |
| 147 | Senecio wallichi DC.                                          | Asteraceae           | Herb            | Dicot   | Sel wal | 14.285 | 28.6687 | 84.6246 |
| 148 | Sibbaldia cuneata Hornem. ex Kuntze                           | Rosaceae             | Herb            | Dicot   | Sib cun | 21.428 | 28.6075 | 84.6333 |
| 149 | Silene indica Roxb. ex Otth                                   | Caryophylla-<br>ceae | Herb            | Dicot   | Sil ind | 31.428 | 28.5708 | 84.7070 |
| 150 | Smilax menispermoidea A. DC.                                  | Lilaceae             | Woody climber   | Dicot   | Smi men | 12.857 | 28.5708 | 84.7070 |
| 151 | Sorbus foliolosa (Wall.) Spach                                | Rosaceae             | Tree            | Dicot   | Sor fol | 18.571 | 28.5714 | 84.7071 |
| 152 | Sorbus lanata (D. Don) Schauer                                | Rosaceae             | Tree            | Dicot   | Sor lan | 18.571 | 28.5714 | 84.7071 |
| 153 | Swertia angustifolia BuchHam. ex D. Don                       | Gentianaceae         | Herb            | Dicot   | Swe ang | 5.714  | 28.5714 | 84.7071 |
| 154 | Swertia paniculata Wall.                                      | Gentianaceae         | Herb            | Dicot   | Swe pan | 28.571 | 28.5725 | 84.6607 |
| 155 | <i>Tanacetum tibeticum</i> Hook.f. and Thomson ex C.B. Clarke | Asteraceae           | Herb            | Dicot   | Tan tib | 21.428 | 28.6656 | 84.6266 |

AJCB Vol. 2 No. 2, pp. 111-121, 2013

| 156 | Thalictrum alpinum L.            | Ranunculaceae | Herb | Dicot           | Tha alp | 25.714 | 28.6658 | 84.6260 |
|-----|----------------------------------|---------------|------|-----------------|---------|--------|---------|---------|
| 157 | Thalictrum foliosum DC.          | Ranunculaceae | Herb | Dicot           | Tha fol | 18.571 | 28.5714 | 84.7071 |
| 158 | Tsuga dumosa (D. Don) Eichler    | Pinaceae      | Tree | Gymno-<br>sperm | Tsu dum | 15.714 | 28.5714 | 84.7071 |
| 159 | Valeriana hardwickii Wall.       | Valerianaceae | Herb | Dicot           | Val har | 15.714 | 28.5919 | 84.7275 |
| 160 | Viburnum erubescens Wall. ex DC. | Sambucaceae   | Tree | Dicot           | Vib eru | 4.285  | 28.5919 | 84.7275 |
| 161 | Viola biflora L.                 | Violaceae     | Herb | Dicot           | Vio bif | 98.571 | 28.6690 | 84.6218 |

Ranunculaceae (5 genera, 13 species), Rosaceae (6 genera, 11 species), Polygonaceae (9 species) and Cyperaceae (8 species). Other families like Primulaceae, Ericaceae, Fabaceae were represented by 7 species, Cupressaceae, Gentianaceae and Scrophulariaceae were represented by 5 species each, and Berberidaceae and Pinaceae with 4 species each. The plant species were further classified into their own functional groups and lifeforms. The total numbers of dicots, monocots and gymnosperms were 127, 24 and 10 respectively. Dicots were found dominant over the monocots representing 127 species and 24 species respectively. Similarly, the herbaceous flora was higher than shrubs and trees. The study area was represented by 13 tree species.

Among all recorded species, *Potentilla cuneata* and *Viola biflora* were found the most dominant with frequency 98.57%. Similarly, other most frequently occurring species were *Gentiana depressa*, *Gerbera nivea*, *Ligularia fischeri* etc. The plant species were further categorized into different life-forms and functional groups. Among them *Abies spectabilis* was found most dominant tree with frequency 42.85% followed by *Larix himalaica* 41.42% and *Betula utilis* 38.57%. *Juniperus communis* (77.14%), *Juniperus squamata* (77.14%) were the most frequently occurring gymnosperm and shrub species in the study area. Among the monocots, *Carex filicina* (67.14%) was found dominant. Other dominant monocot species were *Fritillaria cirrhosa*, *Polygonatum cirrhifolium*, and *Polygonatum hoookeri*.

Detrended correspondence analysis (DCA) on the species data showed strong gradient in species composition (Fig. 2). The first axis eigen value significantly expressed that altitude was the main underlying gradient which also hold true for the sampling method adopted in the study. The DCA axis first showed the gradient length of 3.33 SD unit and eigen value of 0.559 (Table 2). This showed that species composition along the first axis was more heterogeneous in comparison with second and third and complete turnover of species occurred there. The DCA diagram showed the dispersion of species in first two axes. Most of the species showed high abundance towards the positive end of the both axes.

#### DISCUSSIONS

This study addresses the floristic diversity and life-forms patterns across a range of subalpine to alpine zones of per humid range, Central Nepal especially at Upper Manaslu Conservation Area. This study agreed the general finding of dominancy of Asteraceae in Nepal Himalayas, Tibet, Western Himalayas and elsewhere. Dominancy of Asteraceae found by Paudel (2010) from Sagarmatha National Park, Eastern Nepal, Klime and Dickore (2005) from Ladhak, Western Himalayas, Baniya (2010) from Tibet are similar at family rank but differed at their composition. This similarity exists not only at direct field data of direct observation but also on the data from herbarium specimens (Baniya, 2010). This similarity may suggest commonness of this family conservative to almost similar habitat range. Frequent occurrences of *Potentilla cuneata, Viola biflora, Gentiana ornata, Gerbera nivea* species further support that the present study area offered the most suitable subalpine to alpine habitat for their growth and development.

Diversity of Gymnosperms as of the total 34 species reported from Nepal (Press *et al.*, 2000), 29 % of them (10 species) are found within the short geographical range of this study. Luxuriant growth with pure stands of *Tsuga* forest met in this MCA may one of the unique locations so far reported until from Nepal. Likewise, pure growth of *Larix himalaica* in this study area showed another rich habitat as previously reported from Langtang.

Researches on species distribution and composition have often been used to determine the ecological drivers and the mechanism within the ecosystem. The length of gradient 3.33 (>2.5) indirectly supports the unimodal relationship of species with altitude (Okansen, 1996). Most species were occurred at the altitudes 3400-3600m, and their abundance are decreasing towards the lower and upper gradients thus predicting the patterns of species composition and richness as unimodal. This unimodal relationship of species with altitude resembled in many other studies in several mountain ranges (Grytnes, 2003; Oomen and Shanker, 2005; Grytnes and Vetaas, 2002). The woody species like Abies spectabilis, Larix himalaica, Rhododendron campanulatum, Berberis spp., etc are abundant more towards the lower altitudes which suggested their decreasing trend of the woody species composition and richness with altitude. The study done by Carpenter (2005) in Eastern Nepal, Aiba and Kitayama (1999) in Mount Kinabalu have also shown the similarity in species composition with the present study.

The DCA analysis has also revealed the range of species distributional along altitude, for example, *Kobresia laxa* (3000-3500m) and *Kobresia nepalensis* (3900-4400m) are visible distinctly on the figure, the former are seen at the left and the latter at right side, which may suggest that there are species that has their own distributional range though belonging to the same genus. Abundance of plants like *Morina polyphylla*,

## Plate-1: Some photographs of plant species of the study



Bistorta vaccinifolia (Wall.ex meisn.) Greene



Podophyllum hexandrum Royle



\ Neopicrorhiza scrophulariifolia (Pennell) Hong



Rhododendron lepidotum Wall.ex G. Don



Ephedra gerardiana Wall. ex Stapf



Viola biflora L.

|                                        | Axis 1 | Axis 2 | Axis 3 | Axis 4 | Total inertia |
|----------------------------------------|--------|--------|--------|--------|---------------|
| Eigen values                           | 0.559  | 0.058  | 0.046  | 0.037  | 2.077         |
| Lengh of gradient                      | 3.33   | 1.536  | 1.059  | 1.205  |               |
| Cummulative % variance of species data | 26.9   | 29.7   | 31.9   | 33.7   |               |



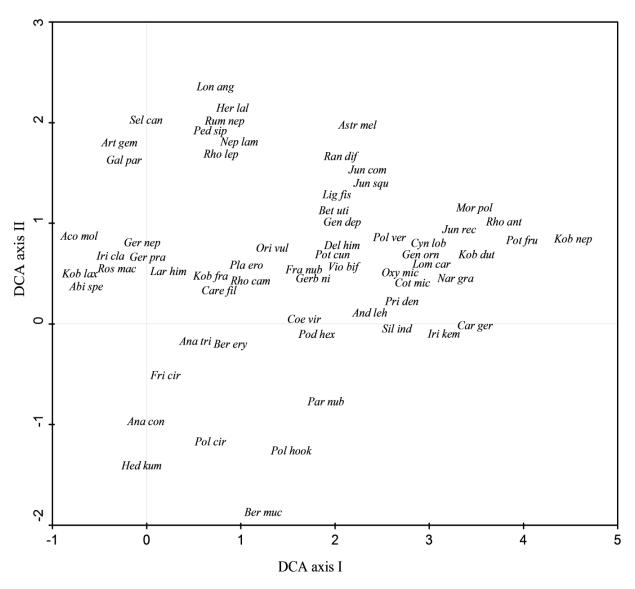



Figure 2. DCA diagram for species distribution. Species are labelled by the first three letters of generic and species name. Abbreviations are given in Table 1.

*Primula spp., Polygonatum spp., Nardostachys grandiflora*, etc towards the positive end of the DCA I axis in the figure well explained the range of these species as well as distribution and composition of plants at higher altitudes. However, there are few species distributed towards the lower and upper end of the figure not showing significant relationship with altitude. Such type of distribution may be due to the other influencing factors like soil moisture, pH or others which collectively interact with altitude to determine the species distribution and composition.

#### CONCLUSIONS

Present paper had documented the floristic composition and diversity at upper MCA area of Central Nepal and helped to explore the flora and species diversity patterns of that particular area. The study had documented the 161 plant species from that area with the dominancy of family Asteraceae and species like *Potentilla cuneata* and *Viola biflora*. The area was well represented by the herbaceous flora as compared to the tree and shrubs which is the characteristic of the subalpine and alpine flora. The DCA analysis of the floristic composition of the area showed the unimodal Relationship with altitude representing more species abundance at the mid-altitudes. Thus, the present study suggested that the study area was rich in terms of flora and more studies are required to document the overall flora and patterns of species composition of Manaslu Conservation Area.

## ACKNOWLEDGEMENTS

We would like to thank National Trust for Nature Conservation, Khumaltar, Lalitpur, Nepal for providing permission to carry out the research work in the Manaslu Conservation Area. We are very pleased to Professor Krishna Kumar Shrestha and Dr. Chitra Bahadur Baniya for their continuous help and suggestion during the preparation of the manuscript. We are grateful to Dr. John All, Fulbright Associate Professor, Western Kentucky University, Kentucky, USA for accompanying Rita Chhetri during preliminary fieldwork, and for his guidance. Thanks to Mr. Janardan Mainali for preparing the map of the study area. Last but not the least all teachers and staffs of Central Department of Botany, Tribhuvan University, Kirtipur, Nepal are thankfully acknowledged for their support and suggestions.

## REFERENCES

- Acharya, K.P., Vetaas, O.R. and Briks, H.J.B. 2011. Orchid species richness along Himalayan elevation Gradient. *Journal of Biogeography* 38: 1821-1833.
- Aiba, S. and Kitayama, K. 1999. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. *Plant Ecology* 140: 139-157.
- Baniya, C. B. 2010. Vascular and Cryptogam Richness in the World's Highest Alpine Zone, Tibet. *Mountain Research and Development* 30:275-281.
- Baniya, C.B., Solhoy, T., Gauslaa, Y. and Palmer, M.W. 2010. The elevation gradient of lichen species richness in Nepal. *The Lichenologist* 42: 83-96.
- Bhatt, S.C. and Lekhak, H.D. 2009. Quantitative analysis of subalpine grasslands in trans-Himalyan region of Manang, Central Nepal. *Botanica Orientalis-*Journal of Plant Science 6:47-51.
- Bhattarai, K.R. and Vetaas, O.R. 2003. Variation in plant species richness of different lifeforms along a subtropical elevation gradient in the Himalayas, east Nepal. *Global Ecology and Biogeography* 12: 327– 340.
- Bhattarai, K.R., Vetaas, O.R. and Grytnes, J. A. 2004a. Fern species richness along a Central Himalayan elevational Gradient, Nepal. *Journal of Biogeography* 31:389-400.
- Bhattarai, K.R. and Vetaas, O.R. 2013. Herbaceous species richness relationship to different landtypes, Eastern Nepal. *Journal of Department of Plant Resources* 35:9-17.
- Carpenter, C. 2005. The environmental control of plant species density on a Himalayan elevation gradient. *Journal of Biogeography* 32: 999–1018.

- Ellu.G., and Obua, J. 2005. Tree condition and natural regeneration in disturb sites of Bwindi Impenetrable forest national park, southern western Uganda. *Tropical Ecology* 46 (1): 99-111.
- Grau, O., Grytnes, J.A. and Birks, H.J.B. 2007. A comparison of elevational species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. *Journal of Biogeography* 34: 1907-1915.
- Grierson, A.J.C. and Long, D.G. 1983-2001. Flora of Bhutan. Vol. 1, Part 1- 3; Vol. 2 Part 1-3, Royal Botanic Garden Edinburgh and Royal Government of Bhutan.
- Grytnes, J.A. 2003 Species-richness patterns of vascular plants along seven altitudinal transects in Norway. *Ecography* 26: 291–300.
- Grytnes, J. A. and Vetaas, O.R. 2002. Species richness and altitude, a comparison between simulation models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. *American Naturalist* 159: 294-304.
- Hill, M.O. and Gauch, H.G. 1980. Detrended correspondance analysis : An improved ordination technique. *Vegetatio* 42: 47-58.
- HMGN/MFSC, 2002. Nepal Biodiversity Strategy. HMGN? Ministry of Forest and Soil conservation.
- Jacobsen, WBG. and Jacobsen, NHG. 1989. Comparison of the pteridophyte floras of southern andeastern Africa, with special refrence to high altitude species. *Bullitin Jardin Botanique Belgique* 59: 261-317.
- Jongman, R. H. G., J. F. T. ter Braak, and O. F. R. Van Tongeren. 1995. Data Analysis in community and landscape ecology. Cambridge University Press, Cambridge.
- Joshi M.D. and Khadka M.K. 2013, Floristic composition and species diversity: A case study of churia region in Dhanusa and Mahhottari District. *Journal of Department of Plant Resources* 35:28-35.
- Kluge, J., Kessler, M. and Dunn, R.R. 2006. What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. *Global Ecology and Biogeography* 15: 358-371.
- Klimeš, L. and Dickoré, B. 2005. A contribution to the vascular plant flora of lower Ladakh (Jammu and Kashmir, India). *Willdenowia* 35:125-153.
- KMTNC, 1998. Project proposal for Manaslu Conservation Area. King Mahendra Trust for Nature Conservation, Jawalakhel, Lalitpur.
- Körner, C. 2000. Why are there global gradients in species richness? Mountains might hold the answer. *Trends in Ecology and Evolution* 15: 513–514.
- Noltie, H.J. 1994, 2000, 2002. Flora of Bhutan. Vol. 3, Part 1-3, Royal Botanic Garden Edinburgh.
- Oksanen J. 1996. Is the humped relationship between species richness and biomass an artefact due to plot size? *Journal of Ecology* 84: 293–295.
- Oommen, M.A. and Shanker, K. 2005. Elevational species richmess patterns emerge from multiple

local mechanisms in Himalayan woody plants. *Ecology* 86 (11): 3039-3047.

- Panthi, M.P., Chaudhary, R.P. and Vetaas, O.R. 2007. Plant species richness and composition in a trans-Himalayan inner valley of Manang district, central Nepal. *Himalyan Journal of Sciences* 4: (6), 57-64.
- Paudel, E.N., Shrestha, K.K. and Bhuju D.R. 2010. Enumeration of herbaceous flora of Imja Valley, Sagarmatha National Park, Nepal. In: PK Jha and IP Khanal (eds.) *Contemporary Research in Sagarmatha* (Mt. Everest) Region, Nepal: An Anthology. Nepal Academy of Science andTechnology, Lalitpur, Nepal. Pp. 173-188.
- Pavon, N.P., Hernandez Trejo, H., and Rico-Gray, V. 2000. Distribution of plant tife forms along an altitudinal gradients in the semi-arid valley of Zapotitlan, Maxico. *Journal of Vegetation Science* 11: 39-42.
- Peet, R.K. 1974. The measurement of species diversity. Annual Review of Ecology and Systematics 5: 285-307.

- Polunin, O. and Stainton, A. 1984. Flowers of the Himalaya. Oxford University Press, New Delhi.
- Press, J.R., Shrestha, K.K. and Sutton, D.A. 2000. Annotated Checklist of the Flowering Plants of Nepal. The Natural History Museum, London.
- Šmilauer, P. 2002. CANODRAW for window 4.0. Microcomputer Power, Ithaca NY USA.
- Stainton, A. 1997. Flowers of the Himalaya: A supplement. Oxford University Press, New Delhi
- ter Braak, C.J.F. 2002. CANACO- version 4.5. wageningen.
- Straede, S., Nebel, G. and Rijal, A. 2002. Structure and floristic composition of community forest and their compatibility with villager's traditional needs for forest products. *Biodiversity and Conservation* 11 (3): 487-508.
- Subedi, M.N. and Shakya, P.R. 1993. Structure and floristic composition of Oak (*Quercus semecarpifolia* Sm.) forest at Domje Chauki, Rasuwa District, Central Nepal. *Indian forester* 119 (6): 466-471.