

Using qPCR to track whirling disease in Alberta using DNA

Rapid, Multi-Parameter Assessment of Natural Recreational Waters in Alberta: Detection of Health Risks, Invasive Species and Nuisance Organisms using Point of Contact Molecular Tests

Patrick C. Hanington University of Alberta

AI WIP Forum

What is whirling disease?

- Debilitating and chronic disease of fish caused by the myxosporean parasite Myxobolus cerebralis
- Affects salmonid fish
- Juvenile fish are most susceptible because the parasite infects cartilage
- Causes nerve damage and skeletal deformities, characteristic black tail
- Affected fish have reduced mobility, inability to feed and increased mortality
- Currently no treatment is available

 $http://media.spokesman.com/photos/2009/07/20/WHIRLING_DISEASE_RAINBOW_TROUT_07-20-2009_PTGJFJM.jpg_architecture. The property of the propert$

https://fishpathogens.ne

Myxobolus cerebralis is most closely related to jellyfish

A nematocyst in a cnidocyte - Cnidarian

A polar capsule - Myxozoan

What is whirling disease?

Image credit: Barry Nehring

The history of whirling disease in North America and why we should care about it being in Alberta

- Discovered in 1893 in Germany, from non-native, imported fish
- First found in commercial fisheries in the USA in the late 1950s
- First confirmed in natural populations in the Rocky Mountains in the United States around 1990 (1987 Colorado)
- First found in Canada in August 2016 in Johnson Lake in Banff National Park, Alberta
- Concerns with reduced populations affecting the recreational fishing industry
 - In 2010, \$171 million CAD was spent in Alberta on fishing related expenses

Figure 4.2. Upper Colorado River historic rainbow trout length-frequencies at Kemp-Breeze State Wildlife Area.

Featherman et al, 2014

Whirling disease in Alberta

Water

TAM (triactinomyxon) stage of

Lifecycle of

Testing for whirling disease (*M. cerebralis*): it's all in the head

FIGURE 3.—Pepsin-trypsin digests of the spores of (A) neurotropic Myxobolus sp. and (B) M. cerebralis showing no obvious morphological differences; bars = $4 \mu m$. Hogge et al. 2004

How we detect M. cerebralis DNA

Quantitative (q) Polymerase Chain Reaction (PCR)

- Method of looking for a specific gene target (or specific DNA sequence) in a DNA sample
- q= quantitative
 - The gene target is replicated (or amplified) using primers that are found at each end
 - As each gene target is replicated, a fluorescent dye is released from a probe and detected by a camera in the qPCR machine
 - This allows calculation of the number of gene copies in the original sample and detection down to a single copy of a gene

Environmental monitoring program for whirling disease

Wild site data summary: 688 locations sampled

Summary of our three-year surveillance

Environmental surveillance allows us to target investigations and resources for assessment and control

Using DNA to identify species of worm susceptible to *M.*cerebralis in Alberta

All watersheds in Alberta are suitable for whirling disease transmission

Summary: How DNA-based monitoring improves our ability to track whirling disease in Alberta

- DNA-based testing is incredibly sensitive, it allows us to detect single parasite spores in fish, water, sediment or worms
 - This is critical when an invasive species is establishing and our opportunity to curb or prevent invasion is highest
- The same test can be used to test each type of sample, this unifies testing methodologies and allows for direct comparison between sites and sample types
- Using DNA to ID species that are susceptible can highlight sites of high potential for transmission
- Integrating environmental sampling reduces pressure for lethal fish sampling and allows for routine monitoring at sites of interest
 - Especially important for fish species at risk

Acknowledgments

Danielle Barry | Sydney Rudko | Alyssa Turnbull

Jacob Hambrook | Hongyu Li | Abdullah Gharamah | Brooke McPhail | Norm Neumann | Heather Proctor | Simon Otto | Bradley Peter | Kathryn Wagner | Andre Morson | Jay White | Leah Brummelhuis | Arnika Oddy-van Oploo | Clayton James | Marie Veillard | Trish Kelly | Peter Giamberardino | Emmanuel Pila | Julie Alexander

