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INTRODUCTION
Given the similarities between speaker recog-
nition and musical instrument recognition, we
adapt speaker recognition algorithms to the task
of learning meaningful instrumental timbre rep-
resentations.

• Introduced a group of trainable filters ini-
tialized with Mel and MIDI filter bank to
address the mismatch between speech and
musical instrument sound.

• The modified speaker recognition model
was capable of generating discrimina-
tive embeddings for instrument and
instrument-family, performing well in both
closed-set and open-set scenarios.

• Conducted extensive experiments to char-
acterize the encoded information in learned
timbre embeddings.
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Figure 1: Architecture of proposed musical instrument recognition model inspired by speaker recognition

• Transform Layer based on SincNet[1]

• Encoder based on ResNet [2] and LDE [3]

• Dual outputs based on Angular-Softmax [4]

• MIDI filter bank initialization
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FUTURE RESEARCH

• Construct the instrument timbre space for
polyphonic musical instrument sound input

• Apply the timbre representation in multi-
instrument sound synthesis

RESULT I: RECOGNITION
• Two Recognition Scenarios: instrument ver-

ification, instrument-family identification.

• Database: NSynth Dataset [8] (individual
notes from 1,006 instruments)

• Training Strategy: data augmentation,
Angular-Softmax.

Table 1: Instrument verification and instrument-family
identification results on NSynth database.

Systems EER Micro F1

Melspec-aug-asm 3.186 77.00
wav-transMel-aug-asm 3.424 77.34
wav-transMIDI-aug-asm 3.737 77.76

LEAF [5] 72.0
Baseline in [6] 73.78
Best in [6] 74.73

RESULT II: GENERALIZATION
• Task: generalize the model trained on

NSynth to RWC dataset [9] (45 categories).

• Training Strategy: training from the scratch,
training based on pre-trained model.

• Results: pre-trained parameters from
NSynth help the model to converge faster
and achieve higher accuracy on RWC.
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Figure 2: F1-Scores on RWC dataset. Solid lines indi-
cate training from scratch, and dashed lines indicate
fine-tuning from pre-trained model.

RESULT III: PROBING THE ENCODED INFORMATION

• Task: probing the encoded information in
the timbre embeddings obtained from the
proposed model in a similar way to [7].

• Models: a series of shallow classifiers.
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Figure 3: T-SNE visualization of embeddings extracted
from wav-transMel-aug-asm.

• Results: some meta information is encoded
in embeddings, such as pitch, source.
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Prediction results using embeddings extracted from 
 the wav-transMel-aug-asm system
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Figure 4: Prediction results.
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