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INTRODUCTION

Given the similarities between speaker recog-
nition and musical instrument recognition, we
adapt speaker recognition algorithms to the task
of learning meaningful instrumental timbre rep-
resentations.

e Introduced a group of trainable filters ini-
tialized with Mel and MIDI filter bank to
address the mismatch between speech and
musical instrument sound.

The modified speaker recognition model
was capable of generating discrimina-
tive embeddings for instrument and
instrument-family, performing well in both
closed-set and open-set scenarios.

Conducted extensive experiments to char-
acterize the encoded information in learned
timbre embeddings.
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RESULT I: RECOGNITION

e Two Recognition Scenarios: instrument ver-
ification, instrument-family identification.

METHODS

Instrument Classification Instrument Family Classification

 Database: NSynth Dataset [8] (individual

Timbre Encoder
! notes from 1,006 instruments)

(ResNet34) ~~~""""""77"7°» ...
Residual Block ooooooaooool,

e Training Strategy:
Angular-Softmax.

data augmentation,

Acoustic Feature

1-D
Convolution

Table 1: Instrument verification and instrument-family
identification results on NSynth database.

EER

Melspec-aug-asm 3.186
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Figure 1: Architecture of proposed musical instrument recognition model inspired by speaker recognition

e Transform Layer based on SincNet[1] * Dual outputs based on Angular-Softmax [4]

e Encoder based on ResNet [2] and LDE [3] e MIDI filter bank initialization

RESULT I1I: PROBING THE ENCODED INFORMATION

RESULT II: GENERALIZATION

e Task: generalize the model trained on
NSynth to RWC dataset [9] (45 categories).

e Results: some meta information is encoded
in embeddings, such as pitch, source.

e Task: probing the encoded information in
the timbre embeddings obtained from the

. . roposed model in a similar way to [7].
e Training Strategy: training from the scratch, prop y to [7]
Prediction results using embeddings extracted from

the wav-transMel-aug-asm system

training based on pre-trained model.
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Figure 2: F1-Scores on RWC dataset. Solid lines indi-
cate training from scratch, and dashed lines indicate
fine-tuning from pre-trained model.

FUTURE RESEARCH

* Construct the instrument timbre space for
polyphonic musical instrument sound input

e Apply the timbre representation in multi-
instrument sound synthesis
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