Supplementary information

Table of contents:

Supplementary tables

Table S1. Sample size information, including the number of individuals and fecal samples used in analyses of the dataset rarefied to 3,000 reads.

Table S2. Unweighted UniFrac dissimilarity comparison within and between mammalian orders or diet types.

 Table S3. Diet items included in each diet category.

Table S4. CCA analysis of environment and host factors for the 3,000-read dataset.

Table S5. Best-supported generalized linear mixed model (Poisson-link) explaining variation in abundance of the four most common bacteria phyla for the subset of 76 samples with diet data. Individual identity is a random effect in all models.

Table S6. Mantel test of correlation between sampling time interval and microbiota weighted Unifrac dissimilarity between samples that were collected from the same individual..

Table S7. Genus level abundance table of 47 adult baboon samples used in the enterotype analysis.

Supplementary figure legends

Figure S1. The distribution patterns of the unclassified and classified OTU at the phylum level across the samples. OTUs have been sorted into bins based on their prevalence in the samples (X-axis). Y-axis is the count of OTUs in each bin.

Figure S2. PCoA analysis of the weighted UniFrac dissimilarities comparing baboon gut microbiota. Each point corresponds to a sample colored by (A) individual identity, (B) sex, (C) ageclass and (D) season, (E) diet group. Baboons with diet composition information (n = 76) were divided into 3 diet groups by the relative abundance of grass, fruit and invertebrate in their diet guided by the PCoA plot of diet Bray-Curtis dissimilarity: 1. Fruit, if fruit percentage is >=20%; 2. Invertebrate, if there is invertebrate in diet; 3. Grass, if grass percentage is >=70%.

Figure S3. The first principal coordinate of variation in diet composition (diet PC1) as a function of the 11 primary diet components (Table S3). Blue lines represent lowess regression fits. PC1 explained 46% of the variation in diet composition and is associated with a tradeoff in the proportion of grass (-) versus fruit (+) in the baboons' diets.

Figure S4. The second principal coordinate of variation in diet composition (diet PC2) as a function of the 11 primary diet components (Table S3). Blue lines represent lowess regression fits. PC1 explained 23% of the variation in diet composition and is associated with a tradeoff in proportion of insects (-) versus fruit (+) in the baboons' diets.

Figure S5. The third principal coordinate of variation in diet composition (diet PC3) as a function of the 11 primary diet components (Table S3). Blue lines represent lowess

regression fits. PC1 explained 11% of the variation in diet composition and is associated with the proportion of the diet attributed to 'unknown' categories (-).

Supplementary tables

Individual	Sex	Number of samples	Range of years samples were collected	Age range or age at time of sample collection (years)
BEAM	М	9	1994 - 2001	5.95 - 13.16
DUNLIN	F	8	1996 - 1997	0.72 - 1.56
OCEAN	М	5	1997 - 2000	0.6 - 3.78
OKOT	М	5	1996 - 1998	1.32 - 2.81
VANGA	М	5	1995 - 1998	3.05 - 6.05
DRONGO	F	3	1996 - 1997	6.99 - 8.09
GOLON	М	3	1997 - 1999	19.19 - 20.63
LAWYER	М	3	2001 - 2001	1.19 - 1.98
HONEY	F	2	1999 - 2000	1.85 - 2.75
LEBANON	М	2	1998 - 2000	1.57 - 3.21
OXYGEN	F	2	2001 - 2001	1.62 - 2.16
VIXEN	F	2	1994 - 1997	17.06 - 19.97
DYNAMO	М	1	1998	0.94
ECHO	F	1	1997	5.88
HEKO	F	1	1997	14.27
LARK	F	1	1997	9.71
VOGUE	F	1	1998	1.08

Table S1. Sample size information, including the number of individuals and fecal samples used in analyses of the dataset rarefied to 3,000 reads.

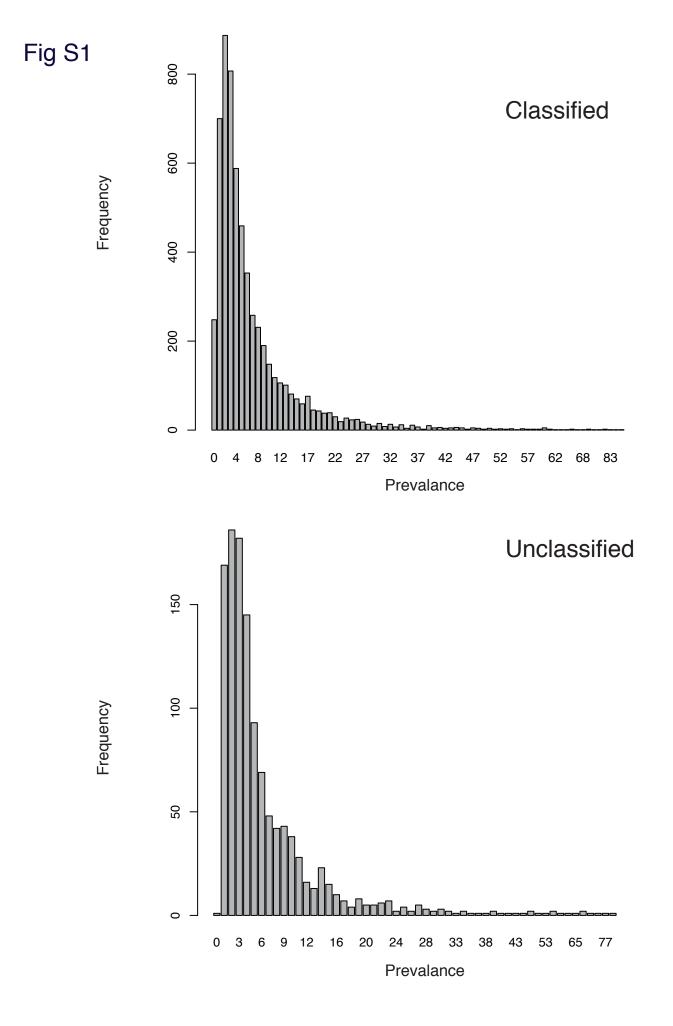
Table S2. Unweighted UniFrac dissimilarity comparison within and between mammalian orders or diet types.

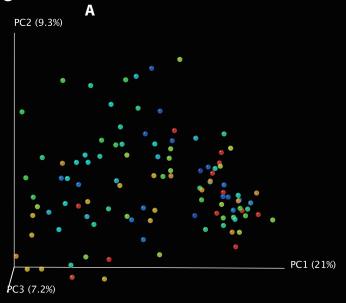
Group	Average within group dissimilarity	Average between group dissimilarity	<i>P</i> value (Wilcoxon rank sum test)
Order	0.80	0.86	2E-16
Diet type	0.82	0.87	2E-16

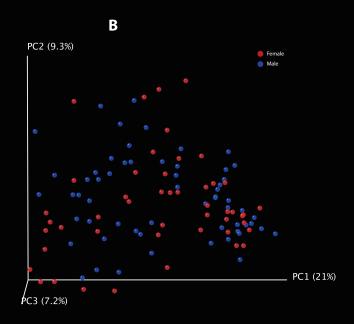
Diet category	Diet item		
Grass	Grass corms (all species)		
	Grass leaves (all species)		
	Grass blade bases (all species)		
	Grass seed head (all species)		
Gum	Gum from Acacia xanthophloea		
Leaves	Lyceum sp. leaves		
	Azima tetracantha leaves		
	Acacia xanthophloea leaves		
	Salvadora persica leaves		
	Suaeda monoica leaves		
	Tribulus terrestris leaves		
Fruits	Trianthema ceratosepala fruits		
	Azima tetracantha fruits		
	Abutelon sp. fruits		
	Lyceum sp. fruits		
	Ramphicarpa montana fruits		
	Salvadora persica fruits		
	Solanum dubium fruits		
	Tribulus terrestris fruits		
	Withania sp. fruits		
Blossoms	Acacia xanthophloea blossoms		
	Ramphicarpa montana blossoms		
	Acacia tortilis blossoms		
Bark	Bark from Acacia xanthophloea		
Pods	Fresh, green seed pods of Acacia		
G 1	spp.		
Seeds	Dried seeds of Acacia spp.		
Invertebrates	Invertebrates of unknown species		
Dung	Liquid from or items in elephant dung		
Unknown	Unknown diet items (i.e. those that could not be seen by observers)		

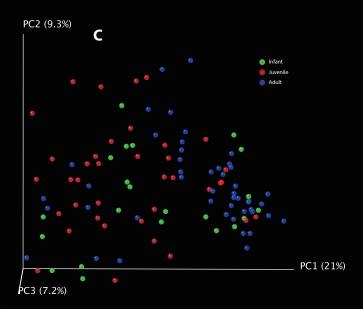
 Table S3. Diet items included in each diet category.

	Number	-	Best model at		
Dataset	of samples	Factors tested	phylum level	genus level	OTU level
Full dataset	54	age, rainfall, sex, individual ID, social group, natal social group, group size	rainfall (P=0.12), age (P=0.13)	rainfall (P=0.09)	None
Subset with diet diversity info	38	age, rainfall, sex, diet diverisity (richness, Shannon's H or PCoA axis), individual ID	None	rainfall (P=0.08), diet PC1 (P=0.05),	None

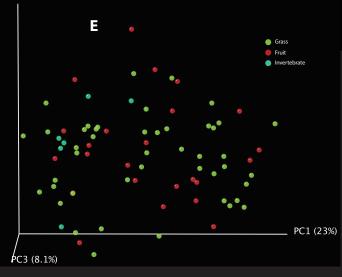

Table S4. CCA analysis of environment and host factors for the 3,000 read dataset.

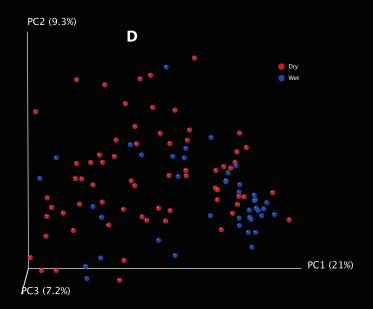

Bacteria phylum	Fixed effect	estimate	S.E.	Z	p-value
Actinobacteria	rainfall	-0.005	0.000	-15.126	<0.001*
	diet PC1	0.248	0.041	6.086	<0.001*
	diet PC2	1.858	0.113	16.403	<0.001*
	diet PC3	1.981	0.097	20.365	<0.001*
Bacteroidetes	rainfall	-0.002	0.000	-5.101	<0.001*
	diet PC1	-0.849	0.073	-11.70	<0.001*
	diet PC2	-0.537	0.106	-5.048	<0.001*
	diet PC3	1.044	0.161	6.471	<0.001*
Firmicutes	age	-0.006	0.002	-2.68	0.007*
	rainfall	0.001	0.000	13.53	<0.001*
	diet PC1	-0.578	0.026	-22.60	<0.001*
	diet PC2	-0.770	0.034	-22.57	<0.001*
	diet PC3	-0.549	0.056	-9.78	<0.001*
	age	0.041	0.011	3.91	<0.001*
Proteobacteria	diet PC1	3.270	0.071	46.00	<0.001*
	diet PC2	-0.706	0.089	-7.96	<0.001*

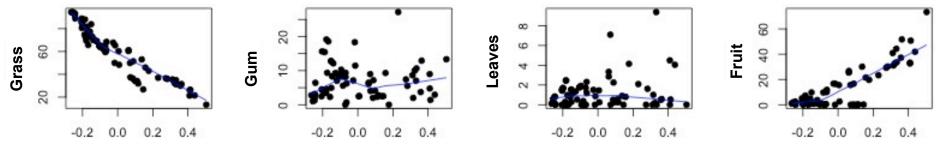

Table S5. Best-supported generalized linear mixed model (Poisson-link) explaining variation in abundance of the four most common bacteria phyla for the subset of 76 samples with diet data. Individual identity is a random effect in all models.

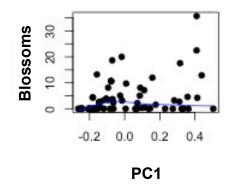

Table S6. Mantel test of correlation between sampling time interval and microbiota weighted Unifrac dissimilarity between samples that were collected from the same individual.

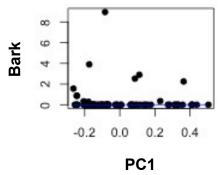
Individual	Number of samples	Mantel <i>r</i> statistic	<i>P</i> value
BEAM	10	-0.04	0.882
DUNLIN	10	-0.03	0.899
ОКОТ	10	0.40	0.095
OCEAN	8	-0.27	0.263
VIXEN	8	0.11	0.696
DRONGO	7	0.23	0.452
ECHO	7	-0.41	0.180
VANGA	7	0.61	0.038*
GOLON	6	-0.17	0.692
LAWYER	6	0.25	0.365
OXYGEN	6	0.10	0.792
HONEY	3	-0.64	0.481

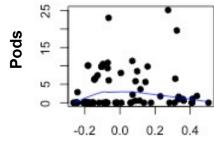


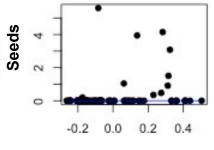


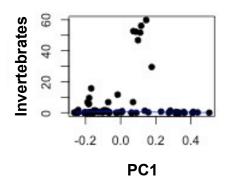


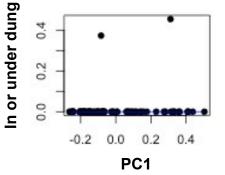


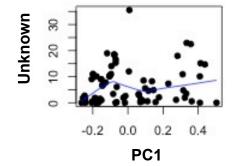


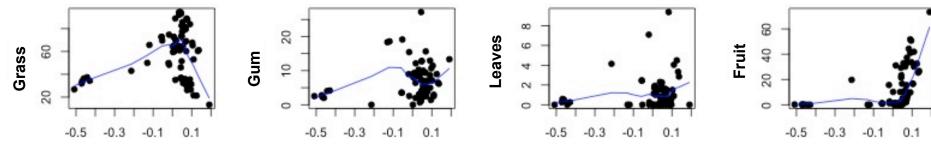




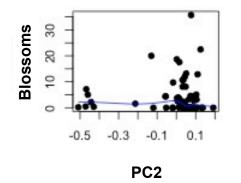


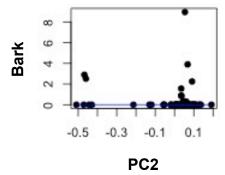




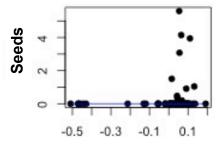

PC1

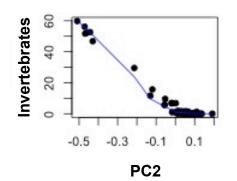
PC1

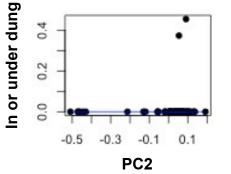


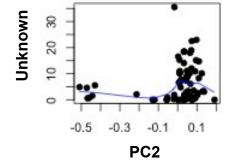

PC2

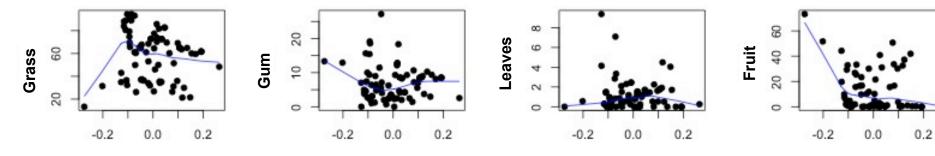
PC2


PC2

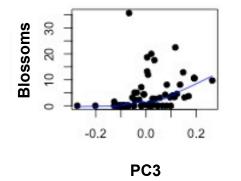


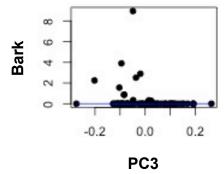


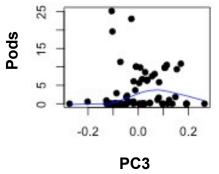

25 Pods 5 LO. 0 -0.5 -0.3 -0.1 0.1 PC2

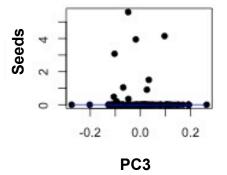


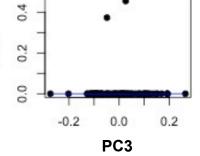
PC2

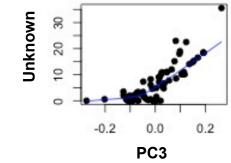





PC3


PC3





Invertebrates Invertebrates PC3

