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1. INTRODUCTION 
 
Dual Polarization radar measurements of precipitation 
provide valuable information about the shape, size, 
orientation, phase state, and fall dynamics of 
hydrometeors.  Characteristics of polarimetric signals 
from bulk hydrometeors and other scatterer types have 
been well documented within the research community. 
Utilizing this information for classification is a challenging 
mapping problem.  Some of the classification techniques 
have often used a subset of polarimetric covariance 
matrix elements such as co-polar data measurements; 
some are specialized for hail identification. Initially, 
contours of Boolean logic equations were used to depict 
distinct populations of empirically identified hydrometeor 
classes in the parameter space.  In the last decade, the 
fuzzy logic algorithms have proven successful, validated 
by in-situ observations (Liu and Chandrasekar 2000, 
Bringi and Chandrasekar 2001, Zrnić et al 2001, Lim et 
al. 2005, Baldini et al. 2005, Ryzhkov et al. 2005).  
 
The fuzzy approach manages polarization diversity 
measurements that are available with varied levels of 
uncertainty. The procedure combines complementary 
knowledge from physical models, empirical information, 
and direct validation information – all which have value 
with acknowledged model uncertainties. The practical 
classification systems can be seen as a major outcome 
of the radar research community, and they have been 
applied to initial operational testing (Schuur et al 2003).  
Typically, these analyses have been constructed to 
consider data from full volume scans, which causes a 
delay of a volume scan time that is relevant in 
operational use. 
 
In the fuzzy logic algorithms for radar echo classification, 
the input variables are first converted into membership 
functions (MBFs).  MBFs quantify the degree of 
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consistency between the polarimetric input variables. A 
low value (minimum 0) suggests the input variable has 
poor consistency with a class hypothesis, while a high 
value (maximum 1) indicates a good match.  The 
membership sets are combined as expressions of rule 
strengths (RS). Each class is associated with a RS value 
that characterizes the overall consistency with inputs. 
The classification results are presented by labeling each 
bin with the hydrometeor class that is most compatible 
with the observations, i.e. by choosing the class of 
highest rule strength (defuzzification).  Quality is 
controlled by imposing minimum thresholds for 
acceptable RS. The fuzzification into MBFs, the RS 
function inferences and defuzzification output formalize 
the meteorological interpretation encoded in the 
classification system. The algorithms are specified by the 
set of MBF and RS function parameters and thresholds, 
which can be customized for particular climates and 
application uses.  

Polarimetric weather radars are becoming standard in 
operational nationwide networks, and commercial uses 
are emerging in the U.S television market. These call for 
general purpose hydrometeor classification techniques, 
which are robust, tunable, and output a compact set of 
hydrometeor classifications, promptly available in the 
rapidly developing environment.  We chose to adapt the 
Lim et al. 2005 technique, hereafter known as the CSU 
classifier, which was configured to process co-polar 
variables available in the simultaneous transmission and 
reception mode of dual polarization. The method uses 
both additive and product rules in inference, which 
maximizes the degree of correct classifications and 
minimizes the degree of error.   
 
Conceptually, the CSU classifier considers 
meteorological echoes in a smoothed, quality controlled 
data cube, while our implementation runs gate by gate 
on ray data.  This motivates additional quality 
considerations.  A fuzzy classification scheme for 
meteorological vs. non-meteorological targets evaluated 
in the Joint Polarization Experiment (JPOLE) (Schuur et 
al 2003) suited well as a quality enhancement tool, in 
combination with the quality control criteria of Doppler 
signal processing. In the preferred mode of operation the 



range gate data that are subject to signal processing 
thresholds are first passed to the JPOLE pre-classifier.  
Bins classified as precipitation are forwarded to the CSU 
classifier for consideration of the precipitation class. As 
net outcome, if Zh has been thresholded by the signal 
processor at any given range bin the classification as 
precipitation is excluded.  If Zh is available but Zdr, Kdp, 
and ρhv are all thresholded, classification is also 
excluded.  In all other cases of input combinations, and 
outputs passing the RS thresholds, the result is a definite 
hydrometeor class. Figure 1 shows the processing steps 
of the overall implementation.   
 
These classification techniques have been adapted to 
run within a signal processor using only one radial of 
input at any given moment.  The classification can then 
be treated as a data type sent ‘real-time’ to a product 
generator along with the traditional polarimetric and 
Doppler moments.  The radial approach implies that 
viable hydrometeor classifications could be available to a 
forecaster every 20 seconds (3 RPMs) compared to 
down-stream volume analysis which may have latencies 
from 5-15 minutes. The equivalent functionalities are 
implemented for processing archived radar data, which 
allows evaluation and optimization studies. We believe 
this is the first use of a hydrometeor classification 
algorithm within a signal processor. 
 

2.  THE PRE-CLASSIFIER  
 
The first processing step in our adaptation is called the 
pre-classifier and is similar to that of Schuur et al (2003).   
Five radar variables are used to classify the data in the 
range bins as Ground Clutter / Anomalous Propagation, 
biological targets, or hydrometeor scatterers.  The 
variables are horizontal reflectivity Zh, differential 
reflectivity ZDR, co-polar correlation coefficient ρhv, 
texture variables of the Zh field TX (Zh), and of differential 
phase TX (Фdp).   

The textures are useful in separating meteorological 
echoes from other signals. These signatures are found to 
be general over various radar wavelengths. The other 
input variables characterize general features of 
precipitation, with reduced dependency on radar 
parameters.  These aspects justify our convention to use 
the reference parameter settings for C-band, originally 
evaluated at S-band wavelength. For varied climatic 
regimes and applications, this approach is simple 
enough to allow adjustments, for example to improve 
sensitivity to weaker echoes. 

3.  THE HYDROMETEOR CLASSIFIER  
 
The CSU classifier was developed using radar 
measurements from the CSU-CHILL radar which is an S-
band, Doppler radar with full polarization agility and 
diversity at Colorado State University. The referenced 
classification system represents state-of-the-art 
knowledge and it has been verified by comparing the 

CSU-CHILL measurements with in-situ airborne 
observations made with instruments such as a 2-D cloud 
particle measurement probe, high volume particle 
sampler (HVPS) and hail spectrometer (Liu  and 
Chandrasekar 2001 and Lim et al. 2005).   

The reference CSU classifier characterized MBFs for 
eleven classes, while the results were interpreted in the 
scheme of nine final output classes. Reducing the 
number of classifications is useful when data is being 
used for operational forecasting purposes.  The CSU 
classifier system was modified to have five output 
classifications namely: rain, wet snow, dry snow, 
graupel/small hail, and large hail.  We believe these five 
classes will provide operational users with the needed 
hydrometeor types without causing information overload.  
A sixth category of ‘rain and hail’ is used internally to 
characterize mixture of these hydrometeors in a realistic 
fashion.  However, as the design is intended for 
operational users, this ‘rain and hail’ class is merged into 
the final output classification of hail. 
 
The existing CSU MBFs and rule strength coefficients 
were optimized for C-band weather radars operating in 
the simultaneous H/V transmit mode for these five output 
classes.  Data samples of summer convection, winter 
storms, and stratiform frontal precipitation from the 
University of Helsinki research radar (Puhakka et al 
2006) were used in the optimization.  Data from other 
dual-polarized C-band weather radars were then 
processed for evaluation and the results are presented in 
section 4. 
 
Depending on seasonal change it is appropriate to use 
different MBFs and rule strength to correctly identify the 
bulk hydrometeors.  A set of ‘warm season’ MBFs and 
rule strength coefficients are used when the melting level 
(ML) has a positive value.  During periods when the large 
scale melting layer may be absent, ML < 0, the MBF for 
height, rain, and wet snow change along with a different 
set of rule strength coefficients.  However liquid forms of 
precipitation are not excluded during the ‘cold season’ 
(warm fronts, freezing rain) and significant convection 
may also occur in the ‘cold season’ producing heavy 
solid hydrometeors (hail).  The ML height is taken from 
outside sources and fed to the signal processor.   
 
This classification implementation has run smoothly in 
real-time with up to 2000 bins per radial while continuing 
to perform all of the other functions of the signal 
processor.  The output delay of a radial while running 
this hydrometeor classification is in the order of 10’s of 
microseconds.  The primary product generator 
application may then apply a consensus smoothing 
algorithm or produce volumetric data products from the 
hydrometeor classification data type. 

4.  RESULTS 
 
Hydrometeor classification data from the University of 
Helsinki research radar during a stratiform precipitation 



event with a ML height of 1600 m appear in figure 2.   
Rain precipitation types appear at the lower altitudes 
near the radar.  As the beam propagates into the melting 
layer the algorithm starts to classify hydrometeors as wet 
snow.  Above the melting layer dry snow hydrometeor 
type becomes dominant.  At the higher elevation angle 
the same effects are seen but now this transition 
happens closer to the radar as the beam gain altitude 
faster.  These classifications seem to fit our current 
understanding of the general structure of hydrometeors 
in a vertical column. 
 
The University of Helsinki research radar was used for 
testing the pre-classifier’s ability to distinguish between 
meteorological and other targets at the C-band 
wavelength.  Data was acquired during a convective 
event without using spectral clutter filters and minimal 
thresholding.  These scan parameters allowed for a large 
amount of non-meteorological targets, such as ground 
and sea clutter, radio frequency interference, birds, and 
ships within the data set. The polarimetric variables of 
this scan can be seen in figure 3.  A large majority of the 
non-meteorological data has been identified and is 
labeled as ‘non-met’ in figure 4.  The convective storms 
over Estonia are correctly identified as meteorological 
targets.  Areas of anomalous propagation from the 
coastline of Estonia is mistakenly identified as 
meteorological.  It is expected the use of spectral clutter 
filters would have reduced the number of these bins 
missed identified by the pre-classifier.    
 
The hydrometeor classification algorithm was tested with 
data sets from different radars and climatology’s from 
that of the University of Helsinki research radar.  This 
testing attempts to quantify if the optimization of C-band 
MBFs and rule strengths using data from specific radars 
can be applied to other sites.  Note that the algorithm is 
not running within the signal processor during these 
events.  We have used the raw radial data as input to the 
classification. 
 
Radar observations from the University of Huntsville 
ARMOR radar (Petersen et al 2005) during the 21 
February 2005 hailstorm event discussed in Baldini et al 
2005 are also evaluated.  Data was acquired without 
ground clutter filtering and minimal thresholding which 
allows us to test both the quality control measures of the 
pre-classifier and the hydrometeor identification system.  
Figure 5 shows Zh, Zdr, ρhv, and Kdp for this event.  
Ground clutter can be seen extending to a distance of 
~25 km in all directions around the radar.  Precipitating 
storms are also within this ground clutter coverage which 
is implied from the ρhv data.  Figure 6 shows the results 
of the classifications.  The identified non-meteorological 
range bins have been thresholded from the output.  The 
precipitation within the ground clutter has been identified 
as ‘rain’.  Performing hydrometeor classification in real 
time does not prevent volumetric products from being 
produced later in the processing chain.   Figure 7 is a 
cross section through the strongest convective storms 60 
km east of the radar.   
 

Initial ground verification has been conducted using 
public severe storm reports.  Data acquired by the 
University of North Dakota’s Polarimetric Doppler 
Weather Radar during the evening of 11 May 2004 was 
processed and compared to severe storm reports 
obtained from the Storm Prediction Center.   This data 
appears in figure 8.  Again clutter filtering and data 
thresholding within the signal processor were not in use 
during the event.  The pre-classifier has been fairly 
successful in identifying and eliminating non-
meteorological bins.  Ground clutter is mostly removed 
while second trip echo ‘meteorological’ bins remain 
processed by the by the classifier.  Hail reports within 
±15 minutes of the scan are plotted.  The hydrometeor 
classification successfully identifies areas of hail for all 
locations of severe hail reports.  The hail shaft southeast 
of the 0045Z report moves across the location during the 
0040Z scan (not shown).  A few other areas of possible 
hail were also identified but not positively verified. 
  
Figure 9 shows data collected at 0935Z and 1125Z by 
the University of Helsinki research radar on 15 May 
2006.  Hail and graupel are identified in the lowest 
elevation angle at only 13 km distance from the radar.  It 
is assumed this radar sample volume would be 
representative of the hydrometeor particles at the 
surface.  Two frozen precipitation events were reported 
at the location of the ‘+’ by an amateur observer.  These 
PPI’s correspond to the reported times of frozen 
precipitation.  The observer’s photographs of the 
hydrometeor particles during this event are shown in 
figure 10. 
 
5.  Summary and CONCLUSIONS 
 
We have successfully implemented a hydrometeor 
classification system using polarimetric variables in radial 
polar coordinates.   This allows classification in real-time.  
The parameters were optimized at one C band radar 
facility and successfully operated at other radar sites.  
Removing the non-meteorological echoes is very useful 
and adds value to the products further down the 
processing chain.  The algorithm has also proven to be 
robust as it has been in continuous use for more than a 
year at two different sites. 
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Figure 1.   Hydrometeor classification processing steps within the signal processor. 

Inputs (Zh, Zdr, Kdp, ρhv, Height)

Summer MBFs and RS (Zh, Zdr, 
Kdp, ρhv, Height, ML) 

Winter MBFs and RS (Zh, Zdr, 
Kdp, ρhv, Height)

ML < 0 

Yes No 

Radial Output:  Zh, Zdr, Φdp, ρhv, Kdp, HCLASS (Rain/Wet 
Snow/Dry Snow/Graupel/Hail) 

Ray Input (Zh, Zdr, ρhv, TX(Zh), TX(Фdp))

Pre-classifier MBFs and RS 

GC/AP BIO 

METEONon -MET 

JPOLE Pre-Classifier

CSU Classifier 
Bins Flagged: 

No 

Yes Threshold Inputs 
Thresholded

No 

Yes ThresholdInputs 
Thresholded



 

 
 

 
 

Figure 2.   Hydrometeor classification of 0.6 (a) and 2.7 (b) degree elevation PPI scans.   

(a) 

(b) 



 
 
Figure 3.  0.3 degree elevation PPI scans of Zh (a), Zdr (b), ρHV (c), and Фdp (d) from University of Helsinki 

weather radar illustrating data artifacts. 
 

 
 
Figure 4.  0.3 degree elevation PPI scans showing results of JPLE pre-classifier using data from figure 3. 



 
 
Figure 5.   1.3 degree elevation PPI scans of Zh (a), Zdr (b), ρHV (c), and Kdp (d) from ARMOR volume scan on 

21 February 2005. 
 

 
 
Figure 6.   1.3 degree elevation PPI scans of hydrometeor classification data from ARMOR volume scan on 

21 February 2005.  Location of cross-section in figure 7 shown. 



 
 
Figure 7.   Cross-section of Zh (a), Zdr (b), ρHV (c), Kdp (d), and hydrometeor classification (e) from ARMOR 

volume scan on 21 February 2005. 



 
 

 
 

Figure 8.   Zh (a) and hydrometeor classification (b) bin data from UND Radar at 0030Z 12 May 2004.  Time 
and locations of severe hail reports within 15 minutes of volume time are plotted with the ‘x’ 
symbol.  Hail locations taken from NCDC Storm archives. 
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Figure 9.  Hydrometeor classification bin data from University of Helsinki research radar at 0935Z (a) and 

1125Z (b) 15 May 2006.  Location of ‘+’ symbol 13 km northwest of radar site is location of photos 
in Figure 10. 
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Figure 10.   Photos courtesy of Petri Nurkka-Tuorila 
 
 
 


