Continuity

Intuition: The function $f(x)$ is continuous if the graph $y=f(x)$ is an unbroken (i.e., continuous) curve.

The graph of a continuous function:

The graph of a function that is not continuous (at some points):

Observation: The intuition about continuity (unbroken graph) is useful for the visual guidance it provides, but it is not useful in determining which functions are in fact continuous, or where a given function might fail to be continuous.

For that, we need a more precise definition...

Definitions:

A. The function $f(x)$ is continuous at the point $\boldsymbol{x}=x_{0}$ if
(i) $f(x)$ is defined at $x=x_{0}$, and
(ii) $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
B. The function $f(x)$ is continuous in the interval $\boldsymbol{I}=(\boldsymbol{a}, \boldsymbol{b})$ if $f(x)$ is continuous at every point x_{0} in I.

Basic continuous functions:

1. Constant functions are continuous for all real x

Because if $f(x)=C$ for all x and x_{0} is any real number, then

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} C=C=f\left(x_{0}\right)
$$

2. If k is a positive integer, then $f(x)=x^{k}$ is continuous for all real x Because if x_{0} is any real number, then

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} x^{k}=x_{0}^{k}=f\left(x_{0}\right)
$$

3. If α is any real number, then $f(x)=x^{\alpha}$ is continuous for all $x>0$ Because if x_{0} is any real number, then

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} x^{\alpha}=x_{0}^{\alpha}=f\left(x_{0}\right)
$$

4. The function $f(x)=e^{x}$ is continuous for all x.
I.e., if x_{0} is any real number, then

$$
\lim _{x \rightarrow x_{0}} e^{x}=e^{x_{0}}
$$

5. The function $f(x)=\ln x$ is continuous for all $x>0$.
I.e., if x_{0} is any positive real number, then

$$
\lim _{x \rightarrow x_{0}} \ln x=\ln x_{0}
$$

Combinations:
If $f(x)$ and $g(x)$ are both continuous, then
6. $f(x)+g(x)$ and $f(x)-g(x)$ are both continuous,
7. $f(x) g(x)$ is continuous and
8. $f(x) / g(x)$ is continuous at every point where $g(x) \neq 0$.

Composite functions:

9. If $g(x)$ is continuous in the interval I and $f(x)$ is continuous in

$$
g(I)=\{g(x): x \in I\}
$$

then $f(g(x))$ is continuous in I.

Examples:

(a) If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ is a polynomial, then $f(x)$ is continuous for all x because
(i) x^{k} is continuous for all x if k is a positive integer;
(ii) a_{k} is continuous for each k, since it is constant;
(iii) $a_{k} x^{k}$ is continuous, as a product of continuous functions;
(iv) so $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ is continuous as a sum of continuous functions.
(b) If $Q(x)=\frac{f(x)}{g(x)}$ is a rational function (i.e., $f(x)$ and $g(x)$ are both polynomials), then $Q(x)$ is continuous at all points where $g(x) \neq 0$.
(c) The function $f(x)=\sqrt{x}$ is continuous for all $x>0$ and $g(x)=x^{2}+2$ is continuous for all x. Furthermore, $g(x) \geq 2>0$ for all x, so $f(g(x))=\sqrt{x^{2}+2}$ is continuous for all x.
(d) The function $|x|$ is continuous for all x. Because...

$$
|x|=\left\{\begin{aligned}
x & : \quad x \geq 0 \\
-x & : \quad x<0
\end{aligned}\right.
$$

so $|x|$ is continuous for $x>0$ and for $x<0$ and it just remains to show that $|x|$ is continuous at $x=0$. Furthermore,

$$
\lim _{x \rightarrow 0^{+}}|x|=\lim _{x \rightarrow 0^{+}} x=0 \text { and } \lim _{x \rightarrow 0^{-}}|x|=\lim _{x \rightarrow 0^{-}}-x=0
$$

so $\lim _{x \rightarrow 0}|x|=0=|0|$ (since both one-sided limits exist and are equal), hence $|x|$ is also continuous at $x=0$.
(e) The function $\ln x$ is continuous for all $x>0,|x|$ is continuous for all x and $|x|>0$ for all $x \neq 0$, so the function $\ln |x|$ is continuous for all $x \neq 0$.
(f) Question: on what interval(s) is the function

$$
h(x)=\sqrt{x^{2}-x-2}
$$

continuous?
Answer: The function $f(x)=\sqrt{x}$ is continuous for all $x>0$, and the function $g(x)=x^{2}-x-2$ is continuous for all x, so $h(x)=f(g(x))$ will be continuous at all points where $g(x)>0$.
Now $g(x)=x^{2}-x-2=(x+1)(x-2)$, so $g(x)>0$ if both factors are positive or if both factors are negative. Both factors are positive when $x>2$ and both factors are negative when $x<-1$, so $h(x)$ is continuous on the intervals $(-\infty,-1)$ and $(2, \infty)$.

