Continuity

Intuition: The function f(x) is continuous if the graph y = f(x) is an unbroken (i.e., continuous) curve.

The graph of a continuous function:

Observation: The intuition about continuity (unbroken graph) is useful for the visual guidance it provides, but it is not useful in determining which functions are in fact continuous, or where a given function might fail to be continuous.

For that, we need a more precise definition...

Definitions:

A. The function f(x) is continuous at the point $x = x_0$ if

(i)
$$f(x)$$
 is defined at $x = x_0$, and

(ii)
$$\lim_{x \to x_0} f(x) = f(x_0).$$

B. The function f(x) is continuous in the interval I=(a,b) if f(x) is continuous at every point x_0 in I.

Basic continuous functions:

1. Constant functions are continuous for all real x

Because if f(x) = C for all x and x_0 is any real number, then

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} C = C = f(x_0).$$

2. If k is a positive integer, then $f(x) = x^k$ is continuous for all real x Because if x_0 is any real number, then

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x^k = x_0^k = f(x_0).$$

3. If α is any real number, then $f(x) = x^{\alpha}$ is continuous for all x > 0Because if x_0 is any real number, then

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x^{\alpha} = x_0^{\alpha} = f(x_0).$$

4. The function $f(x) = e^x$ is continuous for all x.

I.e., if x_0 is any real number, then

$$\lim_{x \to x_0} e^x = e^{x_0}$$

5. The function $f(x) = \ln x$ is continuous for all x > 0.

I.e., if x_0 is any *positive* real number, then

$$\lim_{x \to x_0} \ln x = \ln x_0.$$

Combinations:

- If f(x) and g(x) are both continuous, then
- 6. f(x) + g(x) and f(x) g(x) are both continuous,
- 7. f(x)g(x) is continuous and
- 8. f(x)/g(x) is continuous at every point where $g(x) \neq 0$.

Composite functions:

9. If g(x) is continuous in the interval I and f(x) is continuous in

$$g(I) = \{g(x) : x \in I\}$$

then f(g(x)) is continuous in I.

Examples:

- (a) If $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ is a polynomial, then f(x) is continuous for all x because
 - (i) x^k is continuous for all x if k is a positive integer;
 - (ii) a_k is continuous for each k, since it is constant;
 - (iii) $a_k x^k$ is continuous, as a product of continuous functions;
 - (iv) so $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ is continuous as a sum of continuous functions.

- (b) If $Q(x) = \frac{f(x)}{g(x)}$ is a rational function (i.e., f(x) and g(x) are both polynomials), then Q(x) is continuous at all points where $g(x) \neq 0$.
- (c) The function $f(x) = \sqrt{x}$ is continuous for all x > 0 and $g(x) = x^2 + 2$ is continuous for all x. Furthermore, $g(x) \ge 2 > 0$ for all x, so $f(g(x)) = \sqrt{x^2 + 2}$ is continuous for all x.
- (d) The function |x| is continuous for all x. Because...

$$|x| = \begin{cases} x : x \ge 0\\ -x : x < 0 \end{cases}$$

so |x| is continuous for x > 0 and for x < 0 and it just remains to show that |x| is continuous at x = 0. Furthermore,

$$\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0 \text{ and } \lim_{x \to 0^-} |x| = \lim_{x \to 0^-} -x = 0,$$

so
$$\lim_{x \to 0} |x| = 0 = |0| \text{ (since both one-sided limits exist and are equal),}$$

hence $|x|$ is also continuous at $x = 0$.

- (e) The function ln x is continuous for all x > 0, |x| is continuous for all x and |x| > 0 for all x ≠ 0, so the function ln |x| is continuous for all x ≠ 0.
- (f) Question: on what interval(s) is the function

$$h(x) = \sqrt{x^2 - x - 2}$$

continuous?

Answer: The function $f(x) = \sqrt{x}$ is continuous for all x > 0, and the function $g(x) = x^2 - x - 2$ is continuous for all x, so h(x) = f(g(x)) will be continuous at all points where g(x) > 0. Now $g(x) = x^2 - x - 2 = (x + 1)(x - 2)$, so g(x) > 0 if both factors are positive or if both factors are negative. Both factors are positive when x > 2 and both factors are negative when x < -1, so h(x) is continuous on the intervals $(-\infty, -1)$ and $(2, \infty)$.