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Abstract. At millimeter wavelengths, attenuation by hydrometeors, such as liquid droplets or large snowflakes, is generally not

negligible. When using multi-frequency ground-based radar measurements, it is common practice to use the Rayleigh targets

at cloud top as a reference in order to derive attenuation-corrected reflectivities and meaningful dual-frequency ratios (DFR).

By capitalizing on this idea, this study describes a new quality-controlled approach aiming at identifying regions of the cloud

where particle growth is negligible. The core of the method is the identification of a “Rayleigh plateau”, i.e. a large enough5

region near cloud top where the vertical gradient of DFR remains small.

By analyzing collocated Ka-W band radar and microwave radiometer (MWR) observations taken at two European sites under

various meteorological conditions, it is shown how the resulting estimates of differential path-integrated attenuation (∆PIA)

can be used to characterize hydrometeor properties. When the ∆PIA is predominantly produced by cloud liquid droplets,

this technique alone can provide accurate estimates of the liquid water path. When combined with MWR observations, this10

methodology paves the way towards profiling the cloud liquid water and/or quality flagging the MWR retrieval for rain/drizzle

contamination and/or estimating the snow differential attenuation.

1 Introduction

Clouds and precipitation play a crucial role not only in weather prediction, but also for climate projections, as they have15

manifold impacts on the radiation and energy budget (IPCC, 2013; Wild et al., 2013; Zelinka et al., 2017), water cycle (Stephens

et al., 2012; L’Ecuyer et al., 2015), and large-scale circulation (Houze, 2014). Accurate retrievals of vertical profiles of cloud

and precipitation properties from space or from the ground are essential pillars for evaluating and further developing their

representation in numerical models (Iguchi and Matsui, 2018). However, a recent study by Duncan and Eriksson (2018) shows

for example that even essential columnar cloud properties, such as ice water path (IWP), show large biases between different20

retrieval products, which hampers their applicability to further improve model parametrisations. As mentioned by Duncan and
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Eriksson (2018) and others, a main reason for the spread between retrieval products but also for differences in models are

uncertainties in the underlying cloud microphysics.

Cloud and precipitation radars are key components of any observing system aimed at a detailed characterization of the

vertical structure of clouds and precipitation. This has been thoroughly demonstrated by the current and past constellation of25

space-borne atmospheric radars (see the review by Battaglia et al. (2020a)) and by the increased amount of ground-based (e.g.,

Löhnert et al. (2015); Kollias et al. (2020); Lubin et al. (2020)) and air-borne (e.g. Kulie et al. (2014); Battaglia et al. (2016);

Mason et al. (2017); Chase et al. (2018)) facilities employing suites of polarimetric, multi-frequency, and/or Doppler radars.

In order to provide insights into microphysical processes, a single frequency radar is often insufficient. In addition to exploit-

ing synergies with other remote sensors, a combination of different radar frequencies has been shown in the past to substantially30

improve the quality of retrievals in ice (Leinonen et al., 2018; Mason et al., 2018) or rain (Tridon et al., 2017a; Battaglia et al.,

2020b). These retrievals typically utilize the frequency dependence of attenuation or backscattering of various hydrometeors.

Under certain conditions, the differential reflectivity signal can be attributed completely to either differential scattering or

attenuation. The differential scattering signal is generally closely related to the characteristic size of a particle size distribution

(PSD). Several studies utilized differential scattering signals partly in combination with Doppler information for retrievals of35

snowfall (Hogan and Illingworth, 1999; Liao and Meneghini, 2011; Matrosov, 2011; Kneifel et al., 2016; Grecu et al., 2018;

Leinonen et al., 2018; Mason et al., 2018, 2019; Barrett et al., 2019; Tridon et al., 2019a) and rain (Firda et al., 1999; Tridon

and Battaglia, 2015; Williams et al., 2016; Tridon et al., 2017a, b; Matrosov, 2017; Mróz et al., 2020; Tridon et al., 2019b). In

other situations, non-Rayleigh scattering effects are negligible and the attenuation signal can be used to retrieve for example

cloud liquid water in pure liquid clouds using Ka-W band (Hogan et al., 2005; Huang et al., 2009; Zhu et al., 2019) or rainfall40

using Ka-band (Matrosov, 2005; Matrosov et al., 2006). Recent development (Roy et al., 2018; Battaglia et al., 2020a) of radars

operating at even higher frequencies, such as G-band (120 to 300 GHz, Battaglia et al. (2014)), will allow to extract even larger

attenuation signals in the near future.

In the majority of cases, differential attenuation contributions are not negligible because at least one of the frequency is

affected by attenuation (L’Ecuyer and Stephens, 2002). As a result, in the implementation of microphysics profiling algorithms,45

attenuation profiles must be derived first, so that non-Rayleigh and attenuation contributions can be disentangled. Hitschfeld

and Bordan (1954) described a methodology for estimating attenuation directly from measured reflectivities via an iterative

process. Such methodology becomes quickly unstable with increasing attenuation (Marzoug and Amayenc, 1994; Iguchi and

Meneghini, 1994; L’Ecuyer and Stephens, 2002). In case of vertically pointing Doppler radars, the Doppler spectrum can be

used to separate differential attenuation from differential scattering (Tridon et al., 2013). The rationale of this method is that,50

even if large particles are present, the small and slow falling particles which scatter in the Rayleigh regime populate a specific

part of the spectrum. Hence, their (spectral) reflectivity should be frequency independent and any difference can be attributed

to attenuation. Tridon et al. (2017a) used this principle to retrieve PSD and turbulence during rainfall and Li and Moisseev

(2019) derived the attenuation characteristics due to the melting layer. However, this technique requires very high quality of

the Doppler spectra including a very high accuracy of the radar beam alignment as well as low turbulence conditions. In more55

2

https://doi.org/10.5194/amt-2020-159
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.



general applications, additional integral constraints such as the path integrated attenuation (PIA) can be used to stabilize the

attenuation correction (Haynes et al., 2009; Liao and Meneghini, 2019).

The underpinning idea for any PIA technique is to use “natural targets” whose intrinsic (differential) backscattering charac-

teristics are well defined. Examples include:

1. the surface reference technique (SRT), which exploits the well-behaved backscattering properties of ocean and, to a lesser60

degree, land surfaces, and is generally applicable to measurements from air-borne and space-borne platforms (Meneghini

et al., 2000; Haynes et al., 2009; Meneghini et al., 2015). When several radar frequencies are available, differential SRT-

PIA (∆PIA) estimates have been proved to be even more robust than single frequency estimates (Battaglia et al., 2016;

Liao and Meneghini, 2019);

2. the mountain reference technique applicable to ground-based scanning precipitation radars for rays that intersect moun-65

tain clutter (Delrieu et al., 1997; Serrar et al., 2000);

3. the Doppler spectral ratio techniques which require radar observations at multiple frequencies and are based on recover-

ing differential attenuation profiles from the spectral power ratios of the Doppler velocities corresponding to the Rayleigh

slow-falling particles (Tridon and Battaglia, 2015; Tridon et al., 2017a; Li and Moisseev, 2019).

This study focuses on the third method, i.e. the exploitation of the small targets that backscatter according to Rayleigh law70

(Bohren and Huffman, 1983) at all radar observing frequencies as tracers of the differential path integrated attenuation ∆PIA.

However, this method can be applied with standard radar moments and does not require to record high-quality Doppler spectra.

Previously, the cloud region with potential Rayleigh particles has been identified using thresholds of reflectivity (Hogan et al.,

2000; Kneifel et al., 2015; Dias Neto et al., 2019). Although there is undoubtedly a general correlation between the strength of

differential scattering and radar reflectivity (Matrosov et al., 2019), this threshold method also has a number of disadvantages.75

First, the threshold depends on frequency (lower frequency radars can accept a larger reflectivity threshold) and if a too strict

threshold is chosen, the region with potential Rayleigh targets might become very small. In other situations, the concentration

of larger particles might be small enough to cause a reflectivity smaller than the threshold, but their differential scattering

signal might be non-negligible. The threshold method also does not apply any quality control on the differential reflectivities

themselves, which are often found to be rather noisy (Battaglia et al., 2020b) due to non perfect backscattering volume matching80

and possible mispointing of the antenna beams.

In this paper, a rigorous new procedure for deriving ∆PIA from ground-based multi-frequency radars is presented (descrip-

tion in Sect. 3) and exemplified in the case of the Ka-W band pair of radar frequencies. It is then applied to a multi-layered

cloud with an ice cloud on top of a low level liquid cloud (Sect. 4) and a mixed-phase cloud with supercooled liquid layers

embedded in an ice cloud (Sect. 5). The impact and the potential benefits/applications of this technique are discussed in Sect. 6.85
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2 Hydrometeor attenuation at millimeter wavelengths

During the past decade, millimeter wavelength (cloud) radars have become essential tools for the observations of clouds and

precipitation. Cloud radars provide particular advantages for cloud and precipitation studies due to their narrow beam width,

inherent high sensitivity, portability, reduced susceptibility to Bragg scattering and ground clutter (Kollias et al., 2007). These

advantages, however, come with the cost of larger signal attenuation caused by atmospheric gases and hydrometeors, which90

in general increases with frequency. While attenuation mainly limits the maximum range of possible radar observations, the

frequency dependent attenuation signal can also be used as source of information. For example, Hogan et al. (2005); Huang

et al. (2009); Zhu et al. (2019) used the differential attenuation between Ka and W band to infer cloud liquid water in pure

liquid clouds. Similarly, the attenuation signal at Ka band was used by Matrosov (2005); Matrosov et al. (2006) to derive

rainfall rate.95

For droplets and ice crystals whose sizes remain much smaller than wavelength of millimeter microwave radiation, the

Rayleigh approximation (Bohren and Huffman, 1983) is applicable for computing scattering and absorption properties. In this

regime, absorption and scattering efficiencies are both related to the size parameter, x≡ πD
λ (D is a characteristic size of

the target, λ the wavelength of the radiation transmitted by the radar), i.e. proportional to x or x4, respectively. But, while

absorption is proportional to the imaginary part of the Clausius-Mossotti factor K = n2−1
n2+2 (where n is the refractive index of100

the scatterer), scattering is proportional to the absolute value of the square of K. The much larger imaginary part of the liquid

water versus the ice refractive index explains the generally larger absorption of microwave radiation by liquid hydrometeors as

compared to ice particles. Attenuation coefficients, defined as the integral of the absorption cross sections (efficiencies times
π
4D

2) over the PSD, are then proportional to the equivalent water mass per unit volume.

On the other hand, large raindrops/ice crystals, graupel, and hailstones must be generally considered as non-Rayleigh targets105

at millimeter wavelengths. In first approximation, by treating particles as spheres, electromagnetic scattering computations

based on Mie theory can be used (Lhermitte, 1990). More complex computations are generally needed for accurately describing

the scattering properties of large raindrops and snowflakes that exhibit non-spherical shapes (an exhaustive review is provided

in Kneifel et al. (2020)).

2.1 Liquid hydrometeors110

The attenuation coefficients per unit mass (hereafter indicated with kem and expressed in dB m2 kg−1) for raindrops is shown

in Fig. 2 of Battaglia et al. (2014). The starting value at small sizes corresponds to the Rayleigh absorption value for cloud

water:

kcwem = 81.863× Im(−K)
λ

. (1)

The resulting one-way attenuation produced by a 1 km thick liquid cloud with a liquid water content of 1 g m−3 (corresponding115

to a liquid water path of 1 kg m−2) is negligible at Ku-band and becomes increasingly significant for larger frequencies, up to

≈ 4 dB km−1 at W-band (Fig. 1). The dielectric properties (i.e., refractive indices) of liquid water also depend on temperature.
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Figure 1. Attenuation coefficient of 1 µm droplets (Rayleigh regime) as function of temperature for the four frequencies indicated in the

legend. The different line types show the discrepancies between three recent models for computing the liquid water refractive index (Turner

et al., 2016; Rosenkranz, 2015; Ellison, 2007).

Because laboratory measurements of the refractive index of supercooled liquid water are challenging, refractive index models

differ more at negative temperatures. This is illustrated for three recent models (Ellison, 2007; Rosenkranz, 2015; Turner et al.,

2016) shown in Fig. 1.120

For rain (larger drop sizes), the attenuation coefficient steadily increases till a maximum close to D/λ≈ 3, and then mono-

tonically decreases to a frequency-independent value corresponding to extinction efficiencies of 2 as expected in the geometri-

cal optics limit. Note that the contribution of scattering to attenuation increases with droplet size.

2.2 Solid hydrometeors

For ice particles, attenuation is dominated by scattering and is a steadily increasing function of size and density (see Fig. A6125

in Battaglia et al. (2020a)). While attenuation by ice crystals is negligible at all frequencies below 200 GHz, snowflakes tend

to produce non negligible attenuation at and above W-band. Recent findings by Protat et al. (2019) show that W-band one-way

attenuation of the order of 0.5-0.8 dB km−1 for reflectivities between 13 and 18 dBZ and up to 2 dB km−1 for reflectivities

exceeding 20 dBZ can be expected in the ice anvils of tropical convective clouds. Snow attenuation considerably increases

when moving from the W to the G-band (Battaglia et al., 2014; Wallace, 1988), reaching one-way values of 0.9, 2.5 and130

8.7 dB m2 kg−1 at 96, 140, 225 GHz (Nemarich et al., 1988). Graupel (hail) particles found in deep convection produce

tangible attenuation already at Ka-band (Ku-band) as demonstrated in Battaglia et al. (2016).
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2.3 Melting hydrometeors

Melting particles are generally very efficient in attenuating microwave radiation because they tend to appear as large water par-

ticles so that the melting layer not only corresponds to a region of enhanced backscattering (bright band) but also of enhanced135

extinction (Battaglia et al., 2003), which can account for several dBs of attenuation. Recent observational findings by Li and

Moisseev (2019) refined parametrisations of melting layer attenuation at Ka and W-band based on theoretical computations

(Matrosov, 2008). As a reference, an equivalent 1 mm h−1 (3 mm h−1) rainfall is expected to produce an average one-way

specific attenuation of 1.2 (1.9) at Ka-band and 3.4 (4.7) dB km−1 at W-band during melting. Once melted completely into

rain, the attenuation reduces to 0.2 (0.68) at Ka-band and 1.43 (3.0) dB km−1.140

3 The DFR Rayleigh plateau method

By definition, the PIA monotonically increases with range, or remains constant if the hydrometeor attenuation is negligible.

Attenuation leads to a reduction of the measured radar reflectivity and cannot be easily estimated when using a single frequency

radar. Since the attenuation coefficient generally increases with frequency, coincident measurements with an additional radar at

a non-attenuating (or less attenuating) frequency provides a reference for determining the ∆PIA between the two frequencies.145

When comparing the reflectivities measured (indicated with Zm) by two radars operating at different frequencies f1 and f2

(f1 < f2), their difference in logarithmic units (expressed in dB and called the dual frequency ratios, DFR(f1,f2, r)) receives

contribution from differential (non-Rayleigh) scattering and differential attenuation (Tridon et al., 2013; Battaglia et al., 2020a):

DFR(f1,f2, r) ≡ Zm,f1(r)−Zm,f2(r) (2)

= Ze,f1(r)−Ze,f2(r)︸ ︷︷ ︸
non-Rayleigh

+2

r∫

0

[kem,f2(s)− kem,f1(s)] EWC(s) ds

︸ ︷︷ ︸
differential attenuation

.150

where Ze is the effective reflectivity and EWC is the equivalent water content. In this work, the contribution of interest is the

differential attenuation (second term of Equation 2): it can be estimated from DFR (where the frequency and range indices

have been removed for simplicity) in cloud parts where the non-Rayleigh scattering (first term) is negligible, i.e. where only

small hydrometeors are present. Note that everywhere hereafter, reflectivities are defined with the convention introduced by

Hogan et al. (2006) so that small ice particles (and not small water droplets) have the same Ze.155

A simple traditional approach to ensure the presence of only small hydrometeors is to restrict the data to regions where

the reflectivity is lower than a certain threshold (for example Ze <−10 dBZ in Dias Neto et al. (2019)). This is based on the

assumption that increasing reflectivity is connected to growth processes and hence the presence of increasingly large particles.

While this is generally true, it is quite obvious that also a high concentration of small and hence perfect Rayleigh scatterers

could produce a Ze which is larger than this threshold. An opposite scenario would be a very low number of snow aggregates160

whose Ze would be below the threshold but the snowflakes would be far from being Rayleigh targets. From those examples,
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the problem with a fixed Ze threshold becomes obvious. The threshold does not only depend on the radar frequency, but also

on the details of the particle size distribution, and hence, in principle, has to be adjusted on a case by case basis.

In this work, a more general approach is proposed for estimating ∆PIA from zenith-pointing multi-frequency radar mea-

surements. The DFR is closely related to the characteristic size of the PSD, which is generally expected to increase due to165

particle growth processes. A DFR threshold would therefore seem to be a more reliable measure for the presence of large

non-Rayleigh targets. However, larger DFRs could be also caused by attenuation due to gases and hydrometeors from layers

below. As discussed before, Doppler spectra principally allow to disentangle attenuation and scattering effects. However, the

spectra at cloud top are in general very narrow, which makes the separation more challenging. Also antenna mispointing effects

(different shift of spectra) can be expected to be maximum at high altitudes due to the general stronger horizontal winds.170

In the new approach, ice particles close to cloud top are assumed to be small enough to produce negligible differential

scattering and attenuation. As a result, any measured DFR should be a result of path integrated attenuation from the cloud

below. When moving downward from cloud top, the DFR remains constant down to the altitude where some ice particles reach

sizes which cause non-Rayleigh scattering at the highest frequency used. The goal of this method is therefore to find a plateau

of DFR close to cloud top and will be denominated the “DFR Rayleigh plateau method”. Its advantage is that the potential175

presence of few large aggregates, which can deteriorate the PIA estimate, will be detected by the DFR plateau approach even

if all reflectivities in the layer were below the Ze threshold.

A gradient in DFR can also be caused by, for example, attenuation due to a layer of liquid water. However, in this case, the

DFR increases with height, which is in general opposite to the growth of ice particles towards the ground. Hogan et al. (2005)

used the DFR gradient in liquid stratocumulus clouds to derive liquid water content profiles. They mention that the DFR profiles180

must be substantially averaged (they use 1 min and 150 m resolution) before one can exploit the few dBs variation produced

by liquid attenuation. Indeed, the DFR profiles can become very noisy due to the random error of reflectivity measurements,

especially in case of low signal-to-noise-ratios which can be encountered at cloud tops. Additional noisiness of the DFR signal

can be caused by the potential mismatch between multi-frequency antenna beams in regions of strong spatial inhomogeneities.

Specifically, another advantage of this technique is that the presence of a DFR Rayleigh plateau is an indication of the good185

quality of the radar beam alignment. For example, even in a horizontally homogeneous cloud, mispointing could lead to a

perceptible DFR gradient. Therefore a rigorous procedure, hinged upon the identification of the DFR plateau at cloud top, is

required to derive ∆PIA and assess its quality.

3.1 Description of the ∆PIA derivation

The major steps of the DFR Rayleigh plateau method are synthesized in the flow chart of Fig. 2. The approach can be applied190

to any hydrometeor type, as long as it produces enough differential attenuation for the considered radar frequency pair. In the

following, it is exemplified for the Ka-W band pair.

The procedure for DFR profiles processing can be divided in two streams. The main stream (left part of Fig. 2) excludes

the parts of the profile, which do not fulfill certain quality criteria for deriving ∆PIA. The second stream (right part of Fig. 2)
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Figure 2. Flow chart of the DFR Rayleigh plateau method for estimating the ∆PIA from DFR profiles (see detailed explanations in the text).

Parallelogram, diamond and rectangle represent input/output, task and decision, respectively.

determines the Rayleigh plateau region within the profile. The final ∆PIA is then derived from the filtered DFR which falls195

into the plateau region.

In the main stream, ∆PIA is derived by taking the median of the DFR profile after it has been successively filtered using the

following criteria:

– similarly to Dias Neto et al. (2019), the DFR variance within 20 s by 150 m moving windows must be lower than 4 dB2

in order to remove the cloud regions potentially affected by a mismatch of the two radar beams;200

– Zm,f1 and its variance (within the same 20 s by 150 m moving windows) must be lower than Zthreshold1 (5 dBZ at

Ka-band) and 2.5 dB2, respectively, in order to exclude the regions where non-Rayleigh scattering is very likely, and

where the cloud is highly turbulent;

– only the part of the profile, which has been identified as a Rayleigh plateau, is retained.
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Figure 3. Examples of application of the DFR Rayleigh plateau method on two profiles measured at the Hyytiälä Forestry Field site on 21

February 2014 at 21:55:07 UTC (a,b) and at 00:34:47 UTC (c,d). (a,c) Raw (circles) and smoothed (yellow line) DFR profiles and (b,d)

corresponding DFR gradients (yellow line). Red and blue shadings represent heights where the gradient exceeds ±1 dB km−1 while green

shading shows the part of the profile which has been identified as a Rayleigh plateau.

The Rayleigh plateau boundaries are determined from the vertical variations of the DFR via the secondary stream. The DFR205

is first averaged over 20 s by 500 m moving windows; this provides a similar number of averages as in Hogan et al. (2005),

except that a finer time resolution is achieved. In order to limit spurious local variations, a fit of the DFR profile is obtained

via a Savitzky-Golay filter (Orfanidis, 1996); DFR plateau regions are then defined as portions of the profile for which the

absolute value of the DFR gradient is lower than 1 dB km−1. Finally, a plateau is confirmed as a Rayleigh plateau only if it

has a minimum thickness of 200 m and if it is located less than 500 m from cloud top.210

3.2 Application to example profiles

The methodology is illustrated in Figs. 3 with two profiles taken from the case study presented in Section 5 for which sub-

freezing temperatures were recorded at the ground.

The profile in panels (a,b) of Fig. 3 depicts two separated cloud layers. The DFR continuously increases in the lower layer

(0 to 3 km), while being nearly constant at around 6 dB in the upper cirrus cloud (6 to 8 km). The very low reflectivities (lower215

than -10 dBZ) (see Fig. 9a) indicate that the cirrus is most likely composed of small ice crystals which do not produce any

differential scattering signal. This is confirmed by the clear Rayleigh plateau (green shading) in this layer and therefore the

DFR in this region can be used for estimating ∆PIA. The fact that the DFR is constant through the whole cirrus cloud indicates

that the attenuation must be produced by the lower cloud layer. As will be shown in section 5, the attenuation is caused by a

mixed-phase cloud with a total of 6 dB ∆PIA produced by a considerable amount of supercooled liquid water.220
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Panels (c,d) of Fig. 3 shows a profile measured a couple of hours later with the DFR reaching values up to 9 dB before

decreasing to about 5 dB. Since the differential attenuation must increase with range, such a decrease can only be explained by

a reduction of the differential scattering, indicating that the cloud layer between 2 and 4 km is composed of large snowflakes.

Nevertheless, the upper cirrus cloud appears to be still composed of small ice crystals and the Rayleigh plateau identified

between 6 and 8 km suggests that a total attenuation of 5 dB is produced by the lower cloud.225

In the following case studies, this procedure is applied to consecutive DFR profiles, thus providing the time evolution of

∆PIA.

4 Distinct layers of liquid and ice clouds

4.1 Case Overview

The first case study was recorded on 20th November 2015 at the Jülich Observatory of Cloud Evolution Core Facility (Löh-230

nert et al., 2015, JOYCE) during the TRIple-frequency and Polarimetric radar Experiment for improving process observation

of winter precipitation (Dias Neto et al., 2019, TRIPEx). TRIPEx level 2 data are used in this work: the radar data (verti-

cally pointing Ka and W-band) are re-gridded on a common time-height grid and all data have been re-processed and quality

controlled as described in detail in Dias Neto et al. (2019). However, in this latter dataset, the DFR was calibrated using the

traditional Ze-threshold approach i.e., by determining a relative offset between Ka and W-band reflectivity within 15 min235

time windows for ZKa
<−10 dBZ. Since the current study aims at refining such a procedure, the uncalibrated DFR is first

recovered by subtracting this offset from the W-band reflectivity.

A thick ice cloud connected to a cold front was slowly moving over JOYCE on this day with only very weak precipitation

(less than 1 mm total accumulation) starting around 11 UTC (Fig. 4a). The DFR reveals growth of larger snow particles starting

at temperatures warmer than -15°C (Fig. 4b). In addition to the spatially inhomogeneous DFR structures related to differential240

scattering, vertical lines of enhanced DFR up to cloud top indicating significant differential attenuation during the precipitating

period (e.g. around noon) are visible as well.

4.2 Attenuation due to pure liquid cloud

In order to test the DFR Rayleigh plateau method for deriving ∆PIA, it is desirable to find a scenario where the PIA can be

clearly attributed to one specific contributor (such as a distinct liquid cloud layer). Such a situation seems to be present during245

the morning hours (4-5 UTC), when some low level, non-precipitating clouds are visible in the radar reflectivity time-height

plot (indicated by the first square in Fig. 4a).

When zooming into this period (Fig. 5a), two main layers of cumuliform clouds clearly appear to be distinct from the

upper ice cloud. The banded DFR signature visible in the upper ice cloud seems to be related to the presence of these shallow

clouds. Excluding the parts of the cloud which clearly contain non-Rayleigh scattering particles, there isn’t any perceptible250

DFR increase in the ice cloud, which indicates that the majority of the attenuation signal is caused by the lower level clouds.
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Figure 4. Time-height [UTC-km] plots of the (a) Ka reflectivity and (b) Ka-W DFR observed at the Jülich Observatory on 20 May 2014.

The black lines show the -45, -30, -15 and 0°C isotherms.

The co-located ceilometer shows typical strong backscattering signals at cloud bottom combined with full extinction of the

lidar signal above, which is a typical signature of liquid clouds (not shown). Even though the top of some of the cumuliform

clouds reaches temperature slightly below 0°C, the clouds are assumed to be purely liquid. This is also confirmed by the

slight increase of reflectivity with height, which is expected for an adiabatically increasing liquid water content. An opposite255

reflectivity gradient would be expected for ice containing or mixed-phase clouds.

If these assumptions are correct and the attenuation signal is mainly caused by the lower level clouds, there should be a

high correlation between the derived ∆PIA and the liquid water path (LWP) derived from a co-located microwave radiometer.

According to the processing steps described in Section 3, the filtered DFR depicted in Fig. 2 is obtained by screening out areas

which indicate problematic radar volume matching (for example, close to cloud edges) or non-Rayleigh scattering particles260

(highlighted by gray shading in Fig. 5b). As indicated by the black contour line in Fig. 5b, the Rayleigh plateau method is able

to make use of a much thicker part of the ice cloud (up to 5 km) for estimating ∆PIA as compared to the Ze threshold method

(ZKa
<−10 dBZ). The threshold method would only use the uppermost 1 km of the ice cloud, which includes cloud areas

that are prone to volume matching issues and increasingly affected by the different sensitivity limits of the radars.

The derived ∆PIA is shown in Fig. 5c together with the LWP obtained from the co-located Humidity and Temperature265

PROfiler (HATPRO, Rose et al. (2005)). The LWP is derived from the seven channels along the 22 GHz water vapor absorption
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Figure 5. Zoom into the period of low level liquid clouds from the case study shown in Fig. 4 (earliest square). Time-height [UTC-km]

plots of the (a) Ka reflectivity and (b) Ka-W DFR. Parts which have been detected by the filtering criteria to contain non-Rayleigh scattering

particles are highlighted by the gray shading. (c) Time series of the Ka-W DFR at cloud top, i.e. the two-way ∆PIA (scale on the right

y-axis) overlaid by the LWP measured by the MWR (scale on the left y-axis). Note that the scaling of the ∆PIA axis was adjusted to match

LWP assuming a two-way liquid water attenuation of 7 dB g−1 m2. The black lines show the -45, -30, -15 and 0°C isotherms in (a) and the

ZKa =−10 dBZ contour in (b).
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Figure 6. Scatterplot of two-way ∆PIA as function of the LWP measured by the MWR for the entire case study. Color of the circles denotes

the time in UTC.

band using a statistical retrieval similar to Löhnert and Crewell (2003). Data gaps in LWP retrievals are due to regular MWR

calibration procedures and intermediate azimuth/elevation scans. Strong and sharp LWP variations are found at the scale of

less than a minute. They are clearly correlated with the presence of high reflectivity low-level cumulus clouds (auxilliary

measurements from a ceilometer before and after the low cumulus clouds confirm that the upper cloud is composed of ice270

only) and with the ∆PIA variations. In order to avoid discrepancies due to too long time averaging, a relatively high time

resolution of 20 s is chosen for the retrieval of ∆PIA (Section 3) in order to account for the fast LWP variations in the observed

cumuliform clouds.

The agreement between the time series of MWR derived LWP and ∆PIA (Fig. 5c) is remarkable. In the scatter plot of LWP

and ∆PIA (Fig. 6), the points from cumuliform clouds during the morning hours follow closely the relation predicted by liquid275

water refractive index models for a temperature of 0 °C, i.e. about 7 dB two-way Ka-W differential attenuation per kg m−2

of LWP. These results suggest that LWP larger than roughly 100 g m−2 can be retrieved with ∆PIA method provided that the

PIA is due to liquid cloud water only. As seen in Fig. 6, no LWP is derived during rainy periods (before 01:00, between 07:00

and 08:00, 9:00 and 13:00 and after 16:00 UTC) because the presence of rain drops violates the MWR retrieval assumptions

(scattering effects are assumed to be negligible). Nevertheless, the retrieved ∆PIA during these periods might be useful because280

it can provide information on the integrated amount of rain and help to constrain radar retrievals.
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Figure 7. Same as Figure 5 but for the period between 15:25 and 16:00 UTC.

4.3 Observed temperature dependence of differential attenuation due to liquid water

The close relation between ∆PIA and LWP shown in Fig. 6 seems to significantly change for the later period between 15:30

and 16:00 UTC (red points). The case overview (Fig. 4) shows that the low-level liquid clouds have mostly disappeared but the

thick ice cloud has separated into two distinct layers with the upper one between 7 and 10 km and the lower one between 4 and285

6 km. Interestingly, while the DFR structure of the upper layer appears to be similar to the earlier periods, the DFR in the lower

ice cloud is extremely noisy. By experience with other instances, it is suspected that the radar beam mismatch is amplified in

this cloud layer due to high spatio-temporal variability inside this cloud (for example caused by wind shear, convection, or

turbulence).
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Figure 8. Same as Fig. 6 but for the period between 15:25 and 16:00 UTC.

A zoomed view of this time period (Fig. 7) reveals indeed a very high variability of reflectivity and DFR in time and space in290

the ice cloud between 4 and 6 km. The signatures appear to be similar to generating cells (Kumjian et al., 2014) which are often

observed as a result of instabilities at the top of ice clouds. When looking more carefully, a high correlation is revealed between

the columns of enhanced reflectivity and both ∆PIA and LWP. It appears to be quite likely that supercooled liquid is generated

by updraughts in this columns even though the temperature level is ≈-25°C. This lower temperature also explains well the

different curve of the ∆PIA and LWP for this period in Fig. 6. The colder temperature causes the Ka-W differential attenuation295

produced by liquid droplets to be much smaller for the same LWP (see Section 2). When plotting the model prediction for

∆PIA and LWP for the lower temperature range (Fig. 8), the retrieved LWP and ∆PIA are fairly consistent with the liquid

water refractive index models. In fact, such co-located MWR and Ka-W radar observations would allow under ideal conditions

a determination of the mean liquid water temperature. A similar rationale has been used by Matrosov and Turner (2018) with

only a MWR with channels in the Ka and W-bands. The radar approach provides of course more profile information which a300

pure MWR method is unable to capture.

With this case study example, the objective was mainly to test how reliably and consistently the ∆PIA can be retrieved

by the Rayleigh plateau method. Although situations with ice cloud above shallow liquid layers might not be uncommon at

many sites, the origin of the ∆PIA signal is in general more complex and due to various sources, which will be investigated

in the following section. Regarding a potential profiling of liquid water inside for example mixed-phase clouds, note that the305
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temperature sensitivity of ∆PIA is expected to be much stronger when using radar channels in the G-band (note the steep

decrease of the purple lines at sub-freezing temperatures in Fig. 1). The recent realisation of G-Band radars (Cooper et al.,

2018) bears therefore a high potential for profiling liquid water when combined with low-frequency MWR.

5 Mixed-phase clouds and intense snowfall

The Rayleigh plateau method is now tested on a more complex case which comprises mixed ice and supercooled liquid as310

well as snowfall on the ground. This case is characterized by a frontal passage that occurred on 21st February 2014 at the

Hyytiälä field site, Finland (Fig. 9). The multi-frequency radar and auxiliary dataset have been recorded in the framework of

the Biogenic Aerosols Effects on Clouds and Climate (BAECC) field experiment (Petäjä et al., 2016), during which the U.S.

Department of Energy Atmospheric Radiation Measurement (ARM) deployed the second ARM mobile facility (AMF2). This

particular case and its multi-frequency radar observations have been extensively studied and described in Kneifel et al. (2015);315

Kalesse et al. (2016); Moisseev et al. (2017); Mason et al. (2018); Kneifel et al. (2020).

In this work, reflectivity data from the Ka-band ARM zenith radar (KAZR; Isom et al. (2014b), Fig. 9a) and the marine

W-band ARM cloud radar (MWACR; Isom et al. (2014a)) have been corrected for gas attenuation and re-gridded on a common

time-height grid after compensation of mismatches in time and range. Indeed, using the cross-correlation of the reflectivity

fields, it was found that best matching was obtained using offsets in range (30 m, i.e., one range gate) and time (0 to 4 s320

between 0 and 5 km and 4 s above). The KAZR highest sensitivity (KAZRMD) and the general (KAZRGE) modes are

properly inter-calibrated and then merged in order to maximise the signal to noise ratio (SNR) and avoid receiver saturation

close to the ground (below approximately 1 km). In Fig. 9b, the DFR with SNR larger than -16 and -17.5 dB is depicted for

KAZR and MWACR, respectively.

This case represents a typical mixed-phase cloud, with persistent supercooled liquid layers (between the surface and 5 km)325

leading to significantly rimed snow and graupel at the ground, as confirmed by the large bulk particle density (comprised

between 200 and 500 kg m−3) retrieved from in-situ (Moisseev et al., 2017) and multi-frequency radar retrieval (Mason et al.,

2018). Conversely, the period with stark reflectivities of more than 10 dBZ up to 6 km altitude just before midnight (Fig. 10a)

was found to be dominated by large aggregates and snow rate up to 4 mm h−1. A detailed analysis of this time period in

Kalesse et al. (2016) shows that the liquid topped mixed-phase cloud starts being seeded around 23:00 UTC by ice falling from330

the upper cirrus cloud. During this time period, the lower lidar backscatter (see Fig. 4c in Moisseev et al. (2017)) reveals that

intense seeder-feeder process depletes supercooled water, which leads to a reduction of riming.

Similarly to the TRIPEX case, differential scattering due to large snowflakes is obvious in the spatially inhomogeneous DFR

structures in the lower cloud layer (below 4 km in Fig. 9b). Furthermore, periods of significant differential attenuation can be

identified as vertical lines of enhanced DFR in the cirrus cloud (e.g. around 22:00, 23:30 and 2:30 UTC), which is expected335

to be composed of small ice crystals only. Again, the ∆PIA has been derived from the DFR Rayleigh plateau method and the

following analysis will focus on this specific time period (dashed-line square in Fig. 9). Data after 3:00 UTC show high DFR

(larger than 12 dB) due to the considerable non-Rayleigh scattering and attenuation produced by rain and melting ice (and,
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Figure 9. Time-height [UTC-km] plots of the (a) Ka reflectivity and (b) Ka-W DFR observed at the Hyytiälä Forestry Field site on 21

February 2014. The black line shows the -45, -30, -15 and 0°C isotherms.

possibly, by radome attenuation). Though this information could be very useful in a full-column precipitation retrieval, profiles

after 3:00 UTC are not further considered in this analysis because of the complexity of attenuation sources.340

5.1 Path-integrated attenuation due to liquid cloud and snow

In the previous case, the lower level liquid cloud could be identified to be the major contributor to the attenuation signal. In this

case, however, the possibility of attenuation due to ice and snow must also be considered as discussed in Section 2. A potential

snow and ice attenuation signal should be detectable by comparing ∆PIA to the LWP measured by collocated MWR, which is

insensitive to snow scattering at the low frequency bands used.345

Similarly to the TRIPEX case, areas with high inhomogeneity and non-Rayleigh scattering are successfully filtered out by

the DFR Rayleigh plateau method (gray shading in Fig. 10b). In this case, using the ZKa <−10 dBZ threshold would retain

approximately the same extent of data for deriving ∆PIA. However, ZKa at the top of the lower cloud layer often satisfies the

-10 dBZ threshold while the corresponding large DFR has clearly a non negligible contribution from non-Rayleigh scattering

(e.g., around 22:05 and 2:30 UTC). This illustrates again the benefit of using the Rayleigh plateau method instead of a fixed350

Ze threshold.
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Figure 10. Zoomed time-height [UTC-km] plots of the (a) Ka reflectivity and (b) Ka-W DFR filtered for non-Rayleigh targets, for the

periods of high LWP or intense snowfall. (c) Time series of the Ka-W DFR at cloud top, i.e. the two-way ∆PIA (scale on the right y-axis),

are overlaid by the LWP measured by the MWRs (scale on the left y-axis). The black lines show the -45, -30 and -15°C isotherms in (a) and

the ZKa =−10 dBZ contour in (b).
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Figure 11. Scatterplot of the two-way ∆PIA as function of the LWP measured by the two-channel MWR. Color of the points denotes time

in UTC.

In Fig. 10c, ∆PIA obtained from the filtered DFR is compared to the LWP measured by the collocated ARM microwave

two-channel (MWR, 23.8 and 31.4 GHz, Cadeddu and Ghate (2014b)) and three-channel (MWR3C, 23.8 and 30 and 89 GHz,

Cadeddu and Ghate (2014a)) radiometers. Except for the high reflectivity period between 23:00 and 0:00 UTC, a fairly good

agreement is found between the timeseries of ∆PIA and LWP suggesting that most of the differential attenuation is produced355

by cloud liquid water. Similarly to the TRIPEX case, strong variations on timescales of less than a minute can be found in the

LWP and, consequently, on the DFR timeseries (e.g. around 1:00 UTC).

In comparison with the relations predicted by liquid water refractive index models between -15 and -5°C (i.e., for tempera-

tures corresponding to the heights where the supercooled liquid water clouds are expected), the retrieved ∆PIA is slightly too

large in reference to the two-channel LWP (Fig. 11). This small overestimation is particularly visible when reflectivity is high360

(e.g. around 21:30, 0:20 and 2:30 UTC) and may be due to snow attenuation, as shown in the next section. Note that for this

temperature range, the liquid water refractive index models slightly disagree: at -10°C, the Ellison (2007) model predicts 7 dB

two-way Ka-W differential attenuation per kg m−2 of liquid water while both Rosenkranz (2015) and Turner et al. (2016)

models only predict 6 dB. Although the Turner et al. (2016) model was specifically developed for temperatures as low as

-32°C, the radar data seem to agree better with the Ellison (2007) model, which predicts larger ∆PIAs for the same LWP.365
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Figure 12. Two-way snow attenuation (scale on the left y-axis) against IWP (scale on the right y-axis) as function of time in UTC. Snow

attenuation was derived from the difference between observed ∆PIA and calculated liquid water attenuation based on LWP retrieved by the

MWR. IWP was derived with the IWC-ZKa relation proposed by Protat et al. (2007).

However, no definitive conclusions can be drawn about refractive index models at sub-freezing temperatures because of the

presence of not well-quantified additional sources of attenuation (e.g. from snow).

5.2 Path-integrated differential attenuation due to snow

Attenuation due to snow and ice depends mainly on the total ice mass in the column but larger sizes and higher degree of

riming are expected to further enhance the attenuation signal for a given snow mass (Battaglia et al., 2020a). This effect can be370

seen during the high reflectivity period (between 23:00 and 0:00 UTC), where ∆PIA is found to reach up to 6 dB, while LWP

remains low (Fig. 10c). ∆PIA variations during this time period seem correlated with the radar reflectivity field, suggesting

that the differential attenuation is produced by the intense snow composed of large aggregates (snow rate of 4 mm h−1 and

median mass diameters up to 5 mm, as retrieved from co-located ground-based in-situ instruments by Moisseev et al. (2017)).

In order to separate ∆PIA due to liquid and snow, the contribution of the MWR-retrieved LWP to ∆PIA is calculated using375

the refractive index model from Turner et al. (2016). The difference to the total measured ∆PIA can then be assigned to snow

attenuation. As a consistency check, the ice water content (IWC) is derived from ZKa
in dBZ using the relation proposed by

Protat et al. (2007) for mid-latitudes (log10(IWC) = 0.000372ZKaT + 0.0782ZKa − 0.0153T − 1.54 with T the temperature

in °C, and integrated over the altitude in order to obtain the ice water path (IWP). The resulting timeseries of snow attenuation

and IWP are generally well correlated (Fig. 12). In particular, the peak of large snow attenuation deduced from the mismatch380

between LWP and ∆PIA can be well explained by the corresponding large IWP. The presence of large snowflakes at 23:30 UTC

is also supported by the disagreement between the MWR and MWR3C retrievals in Fig. 10c: while brightness temperatures at

30 GHz and below are relatively flat around this time, a slight enhancement of 6 K is observed at 89 GHz (not shown). Such

a behaviour is consistent with an enhanced scattering produced by large snowflakes (Kneifel et al., 2010). The snow and ice
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present in this case produced roughly 1.2 dB two-way attenuation per kg m−2. These values are in agreement with self-similar385

Rayleigh-Gans attenuation computations for low-density aggregates of characteristic size equal to 5 mm (Fig. A6 in Battaglia

et al. (2020a)). While this seems lower than the attenuation measured by Nemarich et al. (1988) using a horizontal link, this is

larger than what is obtained when using the more recent relations found by Matrosov (2007) (ke,W = 0.12S1.1 where S is the

snow rate in mm h−1) and Protat et al. (2019) (2ke,W = 0.0413ZW ).

Finally, for short time periods in Fig. 12, the disagreement between the total ∆PIA and liquid attenuation suggests significant390

snow attenuation estimate while the IWP remains very low (e.g. around 22:00 and after 0:30 UTC). Interestingly, this corre-

sponds to periods where very high LWPs were measured by MWRs (LWP> 0.6 kg m−2 in Fig. 10c). Such high LWPs are at

the edge of the range of applicability of MWR retrievals. In fact, these conditions are likely favorable for the formation of driz-

zle drops which lead to larger differential attenuation per unit mass (section 2), thus violating the MWR retrieval assumptions.

High LWPs are also conducive for riming and heavily rimed snowflakes, which are very efficient in producing attenuation at395

W-band (Battaglia et al., 2020a). Both circumstances can explain the disagreement observed between the retrieved ∆PIA and

LWP.

6 Conclusions

Multi-frequency radar retrievals often require as important integral constraint a reliable estimate of the differential path inte-

grated attenuation (∆PIA) caused by gases, rain, melting hydrometeors, cloud liquid water, and snow. While ∆PIA can be400

relatively easy derived from nadir pointing radars, it is common practice for ground-based radars to derive ∆PIA by matching

reflectivities at cloud top, where only Rayleigh targets with identical effective reflectivities (Ze) are expected.

While this method works in many situations, it also has inherent problems: low concentrations of medium sized (non-

Rayleigh) particles might produce Ze below the threshold, but they would be inappropriate for the Ze matching. Conversely, a

high concentration of small particles could exceed the threshold, while still being valid Rayleigh-scattering particles. Finally,405

the transition from Rayleigh to non-Rayleigh scatterers does not only depend on particle size but also on radar frequency which

makes definition of Ze thresholds even more ambiguous. In the new approach presented in this work, the aim was instead to

identify signatures of negligible particle growth in the vicinity of cloud top. For this, the key approach is searching for a

Rayleigh plateau, i.e. a large enough region where the vertical gradient of DFR remains below a certain threshold. With this

method, the region from which the ∆PIA can be derived is usually substantially enlarged compared to the Ze threshold method.410

It also provides an indication of the quality of the DFR (e.g., appropriate beam alignment), which is usually not addressed by

the Ze threshold method.

The new methodology is applied to two mid-latitude case studies representing different complexity of clouds. With a distinct

low-level liquid cloud and a thick ice cloud aloft, the first case represents an ideal scenario to test the method, because the

attenuation can be solely attributed to the lower liquid cloud. The comparison of the derived ∆PIA with time series of LWP415

from co-located MWR shows a remarkable agreement, sometimes even for LWP values lower than 100 g m−2. The second case

represents a more commonly observed complex cloud occurrence including mixed-phase clouds and intense snowfall. Also in
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this case, from the comparison with the MWR, the ∆PIA is predominantly produced by cloud liquid. In the absence of a MWR,

the ∆PIA method appears to be an alternative approach to retrieve LWP in situations where other sources of attenuation can be

assumed to be negligible. If a co-located low frequency (f <90 GHz) MWR is available, the ∆PIA technique can also be used420

to infer the approximate height of the liquid layer due to dependence of the liquid attenuation on temperature. During snowfall

events or thick ice clouds without a melting layer or rain, the comparison of ∆PIA and LWP can be used to infer the attenuation

signal caused by the frozen hydrometeors in the column. In the case study analyzed, the ∆PIA is generally very consistent

with a radar derived ice water path. Noticeably, a deep snow system produces as much as 5 dB Ka-W differential attenuation,

which corresponds to an approximately snow attenuation coefficient of 1.2 dB attenuation per kg m−2 for this specific event.425

Such values are within the range of the few available relations in the literature. However, the differences between the previously

published relations might indicate a large dependence on the properties of snow particles (e.g. size, rimed mass fraction), which

needs to be investigated on a larger data set.

In future work, this procedure will be systematically applied to a growing data set of Ka-W band radar and MWR obser-

vations in order to thoroughly characterize snow attenuation at W-band, a key parameter for the retrieval of snow properties430

from space-borne radars and MWRs. Quality-controlled smooth DFR profiles, a by-product of the technique, could also help

to improve microphysical process studies.

In order to further disentangle the differential attenuation and scattering signal, the analysis of the multi-frequency Doppler

spectra will be necessary. While several studies looking at rain and melting layer made significant progress in this direction,

they also found that the quality and in particularly, the requirement on radar volume matching, are very high. The incorporation435

of Doppler spectra in combination with newly developed G-Band radars is expected to bear great potential for profiling liquid

water and snow even within thick mixed-phase clouds.
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