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Abstract

Hoyer, Gerald E. Tree form quotients as variables in volume estimation. Res. Pap.
PNW-345. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific
Northwest Forest and Range Experiment Station; 1985. 16 p.

The study reviews Hohenadl’'s procedure for defining form quotients and tree volume
from diameters measured at fixed proportions of total tree height. Modifications of
Hohenadl’s procedure were applied to two sets of data for western hemlock (Tsuga
heterophylla (Raf.) Sarg.) from the Pacific Northwest. The procedure was used to define
volume differences in thinned stands, and selected form quotients were used as
variables to improve accuracy and precision of standard tree volume equations.
Estimating form quotients on standing trees requires less time than complete stem
dendrometry. The technique has application to other tree species.

Keywords: Volume estimation, volume equations, form factors, form quotient,
western hemlock.



Summary

The study briefly reviews Hohenadl's procedure for defining form quotients and
estimating tree volume using stem diameters at fixed proportions of total tree height.
Hohenadl's procedure was modified to improve accuracy and the modified procedure
was used to define volume differences in thinned western hemlock (Tsuga heterophylla
(Raf.) Sarg.) stands. Selected form quotients were used as variables in tree volume
equations.

Young western hemlock stands, 20 feet tall, were thinned to 4-, 9- and 22-foot spacings.
Upper stem diameters were measured on standing trees four times during an 8-year
period following thinning. A standard volume equation using only tree diameter at breast
height and total height overestimated tree volume when compared with that measured
using upper stem diameters.

The form quotients (D.5/D.9), (D.9/DBH), (D.7/D.9), and others were calculated for 638
western hemlock sample trees by interpolating for unknown upper stem diameters when
measurements at D.5, D.7, and D.9 were missing. Form quotients contributed signifi-
cantly to accuracy of equations for estimating known tree volume. The quotients
identified tree form differences and led to more precise estimates of tree volume than
did use of diameter at breast height and tree height alone.

Estimating the form quotients required less time than complete stem dendrometry. The
technique described could be used with other species for which stem measurement data
are available and for which the specific form quotient measurements may not have been
recorded.
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Introduction

Review of Tree
Volume Equations

Standard volume tables (equations) are often used to estimate tree volume as a function
of tree diameter and height for both routine forest measurement and for forest research
purposes. A recognized shortcoming is that a standard volume table (equation) may fail
to estimate the volume of sample trees in a specific stand (Evert 1968, Grosenbaugh
1954, Hazard and Berger 1972). This may happen if the actual taper of the sample trees
of a stand differs from the average taper of the trees used in construction of the volume
equation. Use of these volume equations ignores the variation that occurs because of
taper (that is, form) differences.

One solution is to estimate tree volumes with a standard volume equation, then directly
measure the volume of a sample of the population of interest using intensive
dendrometry. A regression fitted to the data corrects the estimate made by the standard
equation. The final result can be thought of as an adjusted local volume table (equation).
A complex volume estimation procedure such as three-P sampling (Grosenbaugh 1965)
is an efficient specialized parallel to this general procedure. Another parallel uses the
results of intensive dendrometry or felled sample tree measurements as access to the
tarif volume system (Turnbull and others 1963). The average stand tarif so derived
defines the correct local volume equation.

One way to simplify the volume estimating procedure and at the same time improve
accuracy of tree volume estimates is to make the standard volume equation sensitive to
variation of stem form.



Hohenadl’s Technique

Objectives

The German mensurationist Hohenad| developed a technique for estimating tree
volume from diameters measured at proportional distances along the tree bole (Altherr
1960, Assmann 1970, Heger 1965). The measurements lead to form quotients, which
describe tree form and also estimate tree volume with a minimum of effort. The
technique divides the total tree bole into segments of five lengths, each one-fifth of total
height. Diameters measured at midpoints of the five segments are referred to as
D.1,D.3, D.5, D.7, and D.9. D.5 is at half the total tree height and D.9 is at 90 percent
of the height from the tree tip to the ground. From these stem diameters Hohenadl
develops form quotients and tree volume. The rationale of Hohenadl's method is given
in the appendix.

Altherr (1960) and Assmann (1970) identify an approximate 4-percent underestimate of
tree volume as calculated by Hohenadl’'s method. Five measurements failed to properly
account for flare near the tree base. The underestimate can be corrected by using
additional diameters measured at other proportions of tree height near the base of the
tree. With nine diameters, tree volume can be estimated within 1 percent of volume
estimates that use measurements every 6.6 feet along the total tree stem (Altherr 1960).
The rationale of Hohenadl’'s method holds when additional proportional diameters are
used to increase volume precision.

The important point is that several of the form quotients defined by Hohenadl’'s method
are highly correlated with volume (Assman 1970, Heger 1965, Pollanshiitz 1966). The
form quotients are simple dimensionless ratios of the diameters at selected proportional
heights.

It follows logically that if diameters are estimated at several of Hohenadl's proportional
heights in an existing body of tree measurements, quotients that characterize tree form
can be defined and might allow the existing data to be more useful.

There were two objectives for this study:

1. To determine if there is a significant change of lower bole form quotient and volume
as the result of initial spacing treatment of young western hemlock (Tsuga heterophylla
[Raf.] Sarg.).

2. To produce and evaluate volume equations that allow lower bole form quotients to be
used along with height and diameter at breast height (DBH) for computing tree volume
of western hemlock.



Data Bases

Study of Form
Quotient Change

Methods

Separate sets of data were used in the two portions of the study. The first set of data
was for a spacing study in which stem measurements were made on standing sample
trees. The measurements were (1) total tree height, in feet; (2) Hohenadl’'s (Heger 1965)
five diameters at fixed proportions of total tree height, plus (3) four additional diameters
as proposed by Altherr (1960). The points of bole diameter measurement, expressed as
fractions of the distance from the tree tip down, were: D.1, D.3, D.5, D.7, D.82, D.86,
D.9,D.94, and D.98 as well as DBH (4.5 feet above ground). Diameters were measured
both outside and inside bark.

The second set of data was for trees collected for volume table construction. Data for
638 sample trees were collected by the Pacific Northwest Forest and Range Experiment
Station, USDA Forest Service; the Weyerhaeuser Company; and the State of
Washington, Department of Natural Resources. The data were pooled to improve the
standard volume equation for western hemlock, and results have been reported
(Chambers and Foltz 1979, Wiley and others 1978). The trees had been measured for
diameter outside and inside bark beginning at the stump and at 8- to 20-foot intervals
thereafter to the tree tip. Tree DBH and total height were also measured.

Sample tree description.—Initial spacing treatments might cause form quotient and
volume differences that would be undetected by tree height and diameter measurements
alone. By using special instruments and climbing standing trees, nine bole measure-
ments were made periodically for 4 years of an 8-year period on each of nine trees on
two plots in three spacings. Height and DBH were measured annually for the 8 years.
The three spacings were 4, 9, and 22 feet. All plots had been spaced to about 4 feet 2
years prior to treatment. Trees averaged 20 feet tall at first treatment and grew to about
45 feet after 8 years.

The use of mean tarif number for volume calculations.—The sample trees are the
basis for assigning volume to all trees in a plot at each remeasurement. The procedure
for assigning plot volume is the tarif system (Turnbull and others 1963), which uses the
recognized linear relationship of tree volume to basal area in even-aged stands
(Hummel 1955). From the assortment of volume lines provided by the tarif system, the
appropriate volume-basal-area line is selected for each sample tree at each remeasure-
ment. (Established mathematical relationships describe the selection process. Either
direct tree measurements or height-diameter-volume equations may be used to
estimate tree volume for use in the process.) Each line so selected has a unique,
representative tarif number. The average tarif number for all the sample trees on a plot
identifies the average volume-basal-area line for each plot.

Mean tarif number at each plot remeasurement is a direct index to the volume line. In
this study the tarif procedure was used to compare two sources of the volume line; one
was assigned from a standard volume equation and the other was calculated from stem
measurements. Expressing the volume lines in terms of mean tarif number allows direct
comparison of the sources of volume estimates. Significant differences of mean tarif
number between the two sources imply that there is a difference in the underlying
relationship of volume to basal area for the sources.



The mean treatment tarif number was calculated for each spacing at each remeasure-
ment and trends were smoothed over time. Smoothing required estimation of the likely
trends for years for which upper stem measurements were missing. The missing points
are obvious on figure 1. The smoothed lines were drawn proportional to the smoothed
lines derived from the annual measurements assigned from the standard volume
equation.
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Figure 1.—Mean tarif number for early spacing treatments and
two methods of volume estimation.



Results Differences illustrated in figure 1 resulted from differences in method of volume
estimation. Volumes were lower when using upper stem measurements than when
using the standard volume equation (equation 10 in tables 1 and 2) applied to height
and diameter of the plot sample trees. The general trends of the two sets of tarif numbers
were similar, but the rate of change was more abrupt when using upper stem measure-
ments. The reduction followed by an increase of tarif number shown for the 9- and
22-foot spacings in year 1973 and later (fig. 1) is typical of the trend of tarif number
following thinning. As tree diameter increased in response to thinning, subsequent tarif
numbers became less than that of nonthinned trees of the same height.

Table 1—Equation variables, R%, and standard error of estimate for computing the logarithm of total cubic-foot
volume, western hemlock trees

Equation number

Variable 1 2 3 4 5 6 7 8 9 10 11 12
Intercept X X X X X X X X X X X X
log (DBH? x H) X X X X X
log (D.7/DBH) X X X X
(D.9/DBH)? X X X
(D.5/D.9)? X
DBH X X X X
log (D.9°xH) X X X X
(D.5/D.9)%* X X
D.7/D.9 X X
log DBH X X X
(D.7/DBH) x H X
logH X X X X
log (D.9/DBH) X X
log (D.5/D.9)? X
Adjusted R? 0.9968 0.9994 0.9995 0.9997 0.9996 0.9976 0.9996 0.9997 0.9946 0.9978 0.9987 0.9997
Standard error

of estimate

log form .0514 .0219 .0205 .0157 .0187 .0445 .0175 .0158 .0189 .0427 .0322 .0167
antilog form 1.12 1.05 1.05 1.04 1.04 1.1 1.04 1.04 1.04 1.10 1.08 1.04

log = logarithm to base 10;

H = total tree height above ground, in feet;

DBH = diameter outside bark at 4.5 feet above ground; and

D.5, D.7, D.9 = diameter outside bark at 0.5, 0.7, and 0.9 of total tree height from the tip down.



Table 2—The most useful tree volume equations with coefficients

Equation number Equation coefficient Variable
5 logCVTS = -2.73456265
+1.03313233 log (DBH? x H)
+.10407758 (D.9/DBH)?
+1.32901244 log (D.7/DBH)
-.00221155 DBH
7 logCVTS = -3.37857130
+1.00767318 log (D.92 x H)
+.89111553 (D.5/D.9)°*
8 logCVTS = -3.40978986
+1.00915622 log (D.9?% x H)
+.59387586 (D.5/D.9)°*
+.31320765 (D.7/D.9)
10 logCVTS = -2.71907159
+2.02477817 log DBH
-.00590929 DBH
+1.07716464 logH
12 logCVTS = -2.53283870
+2.03621703 log DBH
-.00140209 DBH
+1.01277022 logH
+1.76284601 log (D.9/DBH)

+.36689238

log (D.5/D.9)?

CVTS = total tree cubic foot volume inside bark;

log = logarithm to base 10;

H = total tree height above ground, in feet;

DBH = diameter outside bark at 4.5 feet above ground; and

D.5,D.7, D.9 = diameter outside bark at 0.5, 0.7, and 0.9 of total tree height from the tip

down.



Conclusions

Measured Form

as a Third Variable
in Diameter-Height
Volume Equations

Background

Change of tarif number with treatment and time.—Estimates of mean tarif number
from stem measurements and the standard volume equation were nearly the same in
1972. Average differences were 0.5, 0.1, and 1.1 tarif units for the three treatments and
were statistically nonsignificant. Mean tarif numbers became statistically significant (at
the 5-percent confidence level) with time and developed different trends (fig. 1). The two
techniques produced significantly different volume relationships for treatments.

Influence of volume estimation method on volume.—The standard volume equation
overestimated volume derived from upper stem measurements by an amount that was
in direct proportion to the difference in tarif number. By 1978 the standard volume
equation overestimated the 9-foot spacing by 7 percent and the 22-foot spacing by 12
percent.

The standard volume equation, by its insensitivity to differences in tree form, significantly
overestimated volume in these young stands.

It is uncertain what the future course of treatment differences will be; therefore, future
measurements should allow evaluation of tree form. Dendrometer measurements along
the full bole of well-crowned western hemlock trees will be difficult. A method is needed
that includes form quotients in the volume estimating process. The next section
describes development of such a method.

Volume equations, which depend just on height and diameter, account for tree form
differences only to the extent that form is predictable from height and diameter. Volume
depends on a combination of diameter, height, and form, yet only rarely is form included
as an additional variable in standard volume equations. In the Pacific Northwest, tree
volume tables often use a fixed point on the upper bole, usually 16 or 32 feet above
ground, as a basis for a form measurement.

Heger (1965) in his application of Hohenadl’'s method reemphasizes that tree shape can
be characterized using form quotients for diameters selected at proportional points of
reference on the tree bole. As shown in the appendix, (D.5/D.9) is a form quotient that
represents shape of the tree and is highly correlated with tree volume. Reukema (1971)
uses D.5 as a basis for form-volume estimation and Roebbelen and Smith (1981) find
that a diameter measurement at half height improves the precision of volume estimation.
To some extent, the lower bole form quotient, (D.9/DBH), represents the influence of
measuring diameters at proportional heights among short and tall trees.

Pollanschultz (1966) examines form functions and volume equations derived from them.
He uses the variables DBH, total height, and stem diameters at “0.1, 0.3, and 0.5 of total
height"—the equivalent of D.9, D.7, and D.5, respectively, as defined here. He finds that
combinations of these primary variables effectively reduce standard deviation of
form-function equations. Schmid-Haas and Winzeler (1981) find that including upper
stem diameter is very important for tree volume estimation. They use either diameter
D.7, as defined here, or the diameter at a fixed height of 23 feet. They find that volume
functions using only diameter at breast height provided volume estimates with standard
deviations 30 to 110 percent higher than volume functions with form included when the
same instruments were used for both. Itis clear that including a form variable increases
the precision of tree volume equations.



Methods

Based on these findings, it was expected that (D.5/D.9), (D.7/DBH), (D.7/D.9), (D.9/
DBH), or their transformations would provide direct estimates of tree form that would
serve as variables together with diameter and height in a tree volume equation. These
quotients are easily measured on standing trees with a Spiegel relaskop, provided the
points are visible, and require less time to estimate than does complete stem den-
drometry.

The most recent effort (Chambers and Foltz 1979) to strengthen the standard volume
tables for western hemlock combined existing tree data with additional data for felled
large trees. In all, 638 trees with detailed stem measurements were available for
analysis.

Computing tree volume and interpolating for missing diameters.—Cubic foot
volume of each section was computed as that of a frustum of a neiloid or of a paraboloid
for sections of the bole between the stump and the tip section. A plotted sample of 19
representative trees showed that the paraboloid was appropriate for tree sections
occurring at distances up to 93 percent of the distance from the tree tip to the ground.
The neiloid was appropriate for tree sections occurring in the remaining 7 percent of the
distance. Exceptions to this were trees less than 45 feet tall, which were treated as
neiloids from stump to DBH. The inflection point at 93 percent of the distance from the
tip is lower than the 75 to 80 percent for all species that Demaerschalk and Kozak (1977)
note.

Volume of the tip section was computed as that of a cone, and volume of the stump as
that of a cylinder using stump diameter. The volume computed from each section was
summed to total wood volume, inside bark.

Only a small part of the data base had direct measurements for D.5, D.7, and D.9. These
missing measurements were estimated by interpolating for diameters using both
paraboloidal and neiloidal equations for appropriate cross section areas of each tree.
Diameters that resulted from using these formulas were the same as those produced
using a direct linear interpolation of section diameters because the tree sections were
relatively short.

Grosenbaugh (1966) states that it matters little which formula is used for interpolation
provided the distance between measured points is short. He recommends distances
such that the one measured diameter is within 20 percent of the diameter of the other.
A random sample of 25 trees in this study showed that only 7 percent of the three lower
bole interpolations exceeded Grosenbaugh’s recommendation; 5 of that 7 percent were
measurements on short trees where the interpolation was between measurements only
4 feet apart.

The following form quotients were computed using outside bark measurements:
(D.5/D.9), (D.7/D.9), (D.9/DBH), and (D.7/DBH). In addition, the logarithm, the square,
and the square root of each form quotient were computed and each multiplied by tree
height and included as variables in regression analysis. The variables and transforma-
tions selected by step-wise multiple regression appear in table 1.



Testing results using the measured range of form quotient values.—Original tree
data were arrayed in order by values of height and diameter, listing log (D.9/DBH), log
(D.7/DBH), and log (D.5/D.9)2.From this array, maximum and minimum values of the
three form quotients were plotted over height for similar sample trees having diameters
within 0.8 inch and heights within 0.5 foot of each other.

The data had distinct trends, but because there were never more than two to four trees
with similar diameter and height, the plotted points of maximum and minimum values for
the form quotients were erratic. Trends of the average high and average low values for
the appropriate form quotients were smoothed by hand and used to estimate volume in
equation 12. (Equation 12 is directly comparable to equation 10, the form most
commonly used in the Pacific Northwest.) These volumes are practical estimates of the
influence of the form quotients on volume accuracy when diameter and height are held
constant. The smoothed values are summarized in table 3.

Table 3—Smoothed high and low values of 3 form quotients; sample tree diameter
at breast height and total tree height are held constant

Form quotients

DBH Height D.9/DBH D.7/DBH D.5/D.9
Inches Feet

2.2 20 1.05 1.29 0.87 0.94 0.39 0.60

4.6 30 1.02 1.11 .83 .88 .52 .69

5.0 50 .99 1.00 .83 .88 71 .79
10.0 70 .97 .99 .83 .88 72 77
10.3 100 .94 .97 .82 .88 71 .76
15.0 110 .94 .97 .82 .88 71 .76
17.0 120 .93 .96 .81 .88 .70 75
18.0 130 .93 .96 .80 .87 .69 74
18.0 140 .92 .96 77 .86 .69 .73
33.0 160 .91 .96 .73 .85 .67 71
25.0 180 .90 .96 .70 .83 .62 .65
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The trees used earlier in the study were also examined to determine the range of form
quotients as they occur in comparable stands subjected to early spacing treatment. The
results are in table 4.

Table 4—Range of values of individual tree form quotients, paired stands,’
thinned to different early spacings

Stand Number Form quotients

and of

treatment trees DBH Height D.9/DBH D.7/DBH D.5/D.9
Inches Feet

1979:

4-foot

spacing 10 3.6-5.8 35-46 1.00-1.08  0.85-0.98 0.70-0.83

22-foot

spacing 10 6.9-10.1  36-45 1.00-1.03 .75-.84 .49-.59

1975:

4-foot

spacing 14 2.9-48 28-39 1.00-1.03 .79-.97 .51-.73

22-foot

spacing 11 4.4-6.0 25-36 1.00-1.11 .60-.94 .45-.53

'Data from two ages of stands described in the first part of the study.

Twenty-three pairs of trees representing the total range of diameters and heights in the
data base had nearly identical height and diameter. Volume differences of the paired
trees ranged from 4 to 30 percent and averaged 11 percent. They were examined to see
if the form of the lower bole (D.9/DBH) had greater influence on volume than did upper
tree form (D.5/D.9). Of the 23 cases, (D.9/DBH) alone had greater influence on volume

in 8 cases; (D.5/D.9) predominated in 3 cases and the two ratios shared influence in 10
cases. In 2 cases it was unclear which had more influence.

Useful equations were desired to supplement the main purposes of the study. The tarif
volume-estimating procedure (Turnbull and others 1963) allows direct estimation of tree
volume in a stand by averaging sample-tree tarif numbers. This avoids the need for
fitting tree height-diameter curves. Estimates of tree height are often desired, however,
for each tree on a plot. The data in this study allow derivation of equations for estimating
tree height when volume and average tarif number are known.



Results and Discussion

Trees in the data base were assigned a tarif number based on actual tree volume
according to the equations given by Brackett (1977). The data were then arrayed in
ascending order of tarif number, and sequential groups of 20 trees were selected
beginning with the tree of lowest tarif number. The two groups with the highest mean
tarif number and the two with the lowest all had ranges of four to seven tarif number units
within their respective group. The remaining groups had a range of about two tarif units.
These ranges are not unusual for natural even-aged stands. Mean tarif was computed
for each group of 20 trees and tree vctume was estimated from mean tarif number. This
estimated volume was used in equations for estimating tree height.

Tree volume equations.—The 12 equations for predicting total cubic foot volume, ana
appropriate statistics, are in table 1. Selected equations complete with coefficients are
in table 2. All variables included in each equation were significant at the 5 percent level
of probability or higher.

Form quotients contributed significantly to increased precision of the cubic-foot volume
estimate. Equations 2, 3, 4, and 5 added form quotients to the variable log (DBH? x H)
used alone in equation 1. In a similar way, equations 7 and 8 added form quotients to
log (D.9% x H) used in equation 6. Equations 11 and 12 added to log (DBH) and log (H)
used in equation 10. The contribution of each variable is visible in terms of increased
value of R? and in decreased value of the standard error of estimate in both logarithmic
and antilog form, as shown in table 1.

Several form quotients including the variable D.5 were required to minimize the standard
error of estimate (equation 4). Equations 5, 9, and 11 in table 1 exclude the variable D.5
and can be used on standing trees with relatively long crowns where D.5 is not visible.
Equations 5 and 9 have lower standard errors of estimate than does equation 11.
Equation 5 uses all the form variables as quotients, which makes it more convenient for
field use than the variables in equation 9. For these reasons, equation 5 was considered
as the most useful and was examined more thoroughly.

The residuals of equation 5 (in logarithmic form), when plotted with respect to its
variables, had neither trends nor imbalanced variance. The residuals also had no bias
when converted from the logarithmic form to actual values of each variable. Variance
was not homogeneous, however. When trees were less than 45 feet tall, and D.9 was
at or below the tree DBH, and the quotient (D.9/DBH) was 1.00 or larger, there was
less variance than when the quotient was less than 1.00. Also, most of the volume
variance with respect to form quotient (D.5/D.9) occurred between quotient values of
0.6 to 0.8. For values above and below this range, there was less variance. Using the
logarithmic form of the variables balanced the variance and maintained the requirements
of regression analysis.

The value of the form variable related slightly to values of other independent variables;
however, not to an extent that multicollinearity was considered to be a problem. Even
with some multicollinearity, the equation parameters would provide unbiased estimates
of volume.

11
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The single form variable in equation 2 was stable with respect to tree diameter and
height. Logarithm of volume was plotted over log (DBH? x H) for four equal divisions of
the total range of value of the form variable log (D.7/DBH). Generally, for each given
level of log (DBH? x H), log (D.7/DBH) related clearly and consistently with volume. This
illustrated the reliable behavior of the form variable within the range of the highly
correlated relationship of tree volume to diameter and height.

Equation 10 was the equivalent of the equation given by Chambers and Foltz (1979);
however, the coefficients were not identical. The coefficients differed because for this
study the shape of the tree bole was treated as a neiloid up to one-tenth of tree height
from the ground; Chambers and Foltz use the neiloid only as far as DBH. The difference
between the two equations is trivial.

The range of form quotient values and their effect on volume accuracy.—Volume
computed from tests of equation 12 shows that the influence of form has practical
significance. The equation was solved using smoothed values for the average high and
average low of the two form quotients while holding height and diameter constant.

Tree volume computed from the average high form quotients differed by about 9 percent
from volume computed from the average lows for trees over 45 feet tall. Differences in
volume in percent were 24, 40, 30, and 20 for trees 25, 30, 35, and 40 feet tall,
respectively. Half the sample trees in the study had form quotient values outside the
average highs and lows used in this test. If extreme values of form quotient are used,
two trees over 45 feet tall with the same diameter and height could differ in cubic volume
by as much as 18 percent. This difference, definable by using form quotients, would be
unidentified when only tree diameter and height are known.

The smoothed high and low values of three form quotients (table 3) conservatively
estimate form quotient variation when tree diameter and height are held constant. There
was limited data to test the range of form quotient values on the treated stands described
in the first part of this study. These ranges (table 4) are greater than those listed in table
3. The form values define differences among trees in widely and closely spaced stands.
The values in table 4 in their respective equations translate into volume differences
similar to those discussed in the first part of this study. In short, tree volume estimated
by the equation was similar to volume that had been calculated originally from carefully
measured tree stem diameters on trees not included among those used to generate the
volume equations.

The examination of effects of (D.9/DBH) and (D.5/D.9) on the volume of matched trees
with identical DBH and height confirms a fact that can be deduced by considering the
significant variables of the equations in table 1: That is, differences in form on the portion
of a tree between DBH and D.9 and differences in form between D.9 and D.5 are both
important in accounting for volume difference of trees with the same DBH and height.



Conclusions

Useful supplemental equations—Two equations given below estimate tree height
when tree volume and average tarif are known. All variables in each equation had
significant F-values at the 95-percent confidence level or higher. Plotted residuals for
each variable showed neither bias nor imbalanced variance. Lowest standard error of
estimate per given number of values was obtained when form quotients were included
in the regression. An equation was derived for use when form quotients are unknown.

log H = 1.10955627 + 0.25628328 log (volume)
+ 0.57283175 log (mean tarif) -0.78736802
log (D.9/DBH) - 0.29643368 (D.7/DBH)?
- 0.07043974 (DBH)®;

where: R? = 0.994 and standard error of estimate, log form = 0.0208.

log H = 0.70413539 + 0.24535889 log (volume)
- 0.01412038 (volume)® + 0.59564993 log (mean tarif)
+0.00010283 DBH?

I

where: R? = 0.982 and standard error of estimate = 0.0372.

Mean tarif is the average of 20 trees. Volume in cubic feet for the total tree bole is
estimated from mean tarif. Log is logarithm to base 10 and form quotients are as defined
previously.

As expected, using one or more form quotients increased the precision of volume
computation beyond that given by standard volume equations that exclude a form
variable. With height and diameter held constant, differences in stem form can lead to
tree volume differences between 9 and 18 percent in trees over 45 feet tall. This is
important, especially in cases where stand treatment can cause extreme differences in
tree form.

Equation 8 is one of the two most precise of those given in table 2, but it requires
estimates of D.9, D.7, and D.5 as well as height. Equation 5 is less precise than equation
8 but eliminates stem measurement at D.5, a point that is frequently not visible on
standing trees. All form quotients are easily measured on standing trees with a Spiegel
relaskop if the measurement points are visible from the ground.

Both equations 5 and 8 allow direct use of a form quotient when estimating tree volume.
The added field measurement effort required is relatively small compared with taking
multiple relaskop bole measurements up the whole tree stem length or felling trees for
stem measurements. The equations adequately estimate the influence of stem form in
treated western hemlock stands at a reasonable cost in time and effort. One needs to
understand the influence of upper stem form to properly interpret results of spacing
treatments. Such information is frequently lacking.

The procedure used here has other potential applications. Numerous collections of data
on tree volume exist for various species but few, if any, have direct measurements of

diameter at desired proportions of height. Because the interpolated estimates of these
diameters proved to be effective in this study, similar success is likely if the method were
applied to other tree species.
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A.

GIVEN: TREE DIMENSIONS WITH STEM MEASUREMENT AT 5 PROPORTIONAL POINTS:

%4 H al

tip

.9 .7 .5 .3 od

w~ ground. DBH is tree diameter at 4.5 feet above ground.

IT FOLLOWS THAT:

1.

LOG VOLUME FOR EACH OF THE FIVE SECTIONS USING SECTION MID-POINTS AND WITH DIAMETER
AND LENGTH IN THE SAME UNITS OF MEASURE IS:

v =7z (o.zn)ni

TOTAL TREE VOLUME, CVTS, IS THE SUM OF THE VOLUME OF THE FIVE SECTIONS:

L 2 2 2 2 2
I(O.ZH) [ D’9 + 0.7 + D.5 + D.3 + D.l ]

(YN

D.\? D _\2 D\ D
%—(D 92) 0.2H 1.00 + ( -7 + ( =5 + ( o3 +( o1
° .9 .9 .9 .9

2

"

THE RATIO OF TREE VOLUME TO VOLUME OF A CYLINDER OF DIAMETER D g AND LENGTH H IS
CALLED LAMBDA g AND IS A REDUCTION FACTOR THAT ADJUSTS CYLINDER VOLUME TO VOLUME
OF THE TREE SHAPE AND HENCE IS A "NATURAL" OR "TRUE" FACTOR.

.\ [D,.\ D ,\2 D, \2
LAMBDA , = —5 __ = o2 1,00 +(b—7) + ( 51 4 ( 31 ( .1
” %'(D 9)2 H -9 .9 .9 .9

2
LAMBDA _ IS HIGHLY CORRELATED WITH D.S
.9 v
.9

D 2
LAMBDA.; - b(n'—s— + a

9

Fbh CVTS/(DBH)Q(H) = BREAST HEIGHT FORM FACTOR.

Fbh = LAMBDA /@BH/D .)° = (D ,/DBH)? (LAMBDA o) == PRODAN, 1965, PAGE 50

THEREFORE :

1.

2.

3.

THE SQUARE ROOT OF (1) IS IDENTIFIED AS A "TRUE" FORM FACTOR (HEGER
ROOT OF (2), INVERTED, AS HOHENADL'S FORM QUOTIENT. (ASSMANN, 19703.

(D /D 9)2 REPRESENTS SHAPE OF STEM, THAT IS, THE "TRUE" FORM FACTOR.

(D g/DBH)2 REPRESENTS, AT LEAST IN PART, THE EFFECT OF DIFFERING PROPORTIONAL HEIGHTS
- OF MEASUREMENTS ON TREES OF DIFFERENT HEIGHT.

Fbh THE BREAST HEIGHT FORM FACTOR, IS A COMBINATION OF (1) AND (2).
1965) AND THE SQUARE



Hoyer, Gerald E. Tree form quotients as variables in volume estimation. Res. Pap.
PNW-345. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific
Northwest Forest and Range Experiment Station; 1985. 16 p.

The study reviews Hohenadl’s procedure for defining form quotients and tree volume
from diameters measured at fixed proportions of total tree height. Modifications of
Hohenadl’'s procedure were applied to two sets of data for western hemlock (Tsuga
heterophylla (Raf.) Sarg.) from the Pacific Northwest. The procedure was used to define
volume differences in thinned stands, and selected form quotients were used as
variables to improve accuracy and precision of standard tree volume equations.
Estimating form quotients on standing trees requires less time than complete stem
dendrometry. The technique has application to other tree species.

Keywords: Volume estimation, volume equations, form factors, form quotient,
western hemlock.
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