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A B S T R A C T

Benthic cyanobacteria in rivers produce cyanotoxins and affect aquatic food webs, but knowledge of their
ecology lags behind planktonic cyanobacteria. The buoyancy of benthic Anabaena spp. mats was studied
to understand implications for Anabaena dispersal in the Eel River, California. Field experiments were
used to investigate the effects of oxygen bubble production and dissolution on the buoyancy of Anabaena
dominated benthic mats in response to light exposure. Samples of Anabaena dominated mats were
harvested from the South Fork Eel River and placed in settling columns to measure floating and sinking
velocities, or deployed into in situ ambient and low light treatments to measure the effect of light on
flotation. Floating and sinking occurred within minutes and were driven by oxygen bubbles produced
during photosynthesis, rather than intracellular changes in carbohydrates or gas vesicles. Light
experiment results showed that in a natural ambient light regime, mats remained floating for at least
4 days, while in low light mats begin to sink in <24 h. Floating Anabaena samples were collected from five
sites in the watershed and found to contain the cyanotoxins anatoxin-a and microcystin, with higher
concentrations of anatoxin-a (median 560, max 30,693 ng/g DW) than microcystin (median 30, max
37 ng/g DW). The ability of Anabaena mats to maintain their buoyancy will markedly increase their
downstream dispersal distances. Increased buoyancy also allows toxin-containing mats to collect along
shorelines, increasing threats to human and animal public health.
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1. Introduction

Cyanobacterial harmful algal blooms (cyanoHABs) have become
increasingly common phenomena in many freshwater systems
(Paerl and Huisman, 2009; Carey et al., 2012; Taranu et al., 2015).
Most of these are nuisance blooms of planktonic species and occur
in lakes, estuaries, or regulated lowland rivers, but benthic
cyanobacteria can also produce cyanotoxins (Quiblier et al.,
2013). Benthic cyanobacterial species are generally different from
planktonic species, forming dense mucilaginous mats on bottom
substrates. Benthic cyanoHABs are caused by species of Anabaena
(Mohamed et al., 2006), Phormidium (McAllister et al., 2016),
Oscillatoria (Edwards et al.,1992), Lyngbya (Cowell and Botts,1994),
and Nodularia (Lyra et al., 2005). Toxic benthic cyanobacteria in
rivers have been documented in many countries including Egypt,
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Spain, France, California, and New Zealand (Mohamed et al., 2006;
Sabater et al., 2003; Cadel-Six et al., 2007; Fetscher et al., 2015;
McAllister et al., 2016; for review Quiblier et al., 2013).

Different hydraulic and physicochemical environments be-
tween benthic and planktonic cyanobacteria have led to different
ecological interactions and strategies for cyanobacteria growing in
each habitat (Scott and Marcarelli, 2012). In benthic cyanobacterial
mats, light attenuates rapidly through the mat (Jorgensen et al.,
1987), strong geochemical gradients develop (Wood et al., 2015),
and nutrients are acquired from within the mat, from overlying
water, and sometimes from substrates (Aristi et al., 2017;
Stevenson et al., 1996). Planktonic cyanobacteria, on the other
hand, often experience a spatial separation between light and
nutrients availability in stratified waters, with high light and low
nutrients near the water surface, and high nutrients and low light
in deeper waters. To access these essential resources, many
planktonic cyanobacteria migrate between surface and bottom
waters by regulating their buoyancy with the formation of gas
vesicles to increase buoyancy (Reynolds, 1972; Walsby, 1975) and
the formation of dense carbohydrate granules to decrease
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buoyancy (Kromkamp and Mur, 1984; Reynolds et al., 1987).
Colonial species, like Microcystis, and filamentous species, like
Dolichospermum, (formerly Anabaena, (Komárek, 2010; Wacklin
et al., 2009)), use these mechanisms to move up and down through
the water column (Bormans et al., 1999; Visser et al., 1997). While
dispersal mechanisms have been well-studied in river phytoplank-
ton (Bormans and Condie, 1997; Maier et al., 2001), much less is
known about dispersal by benthic cyanobacteria (or other benthic
algae) in rivers. Studies on benthic species dispersal have been on
detached and floating green algae (Mendoza-Lera et al., 2016;
Power, 1990) or diatoms (Stevenson and Peterson, 1991, 1989), and
more recently on the cyanobacterium Phormidium, which also
poses a public health risk (McAllister et al., 2016). To better
understand benthic algal dispersal, this paper reports observations
on the buoyancy of Anabaena spp. in the Eel River of northwestern
California, where it grows epiphytically on the green macroalga,
Cladophora glomerata (Power et al., 2015).

Benthic Anabaena produce no gas vesicles (Komarek, 2013; Li
et al., 2016), and are not able to regulate their density via
intracellular mechanisms used by planktonic cyanobacteria. There
are, however, other potential mechanisms for dispersal of benthic
Anabaena: 1) trichome motility via gliding (Hoiczyk, 2000); 2)
vegetative overgrowth of host algae; 3) detachment of individual
trichomes from the mat (Otten et al., 2015); 4) akinete formation
and dispersal, followed by germination (Cirés et al., 2013); and 5)
detachment of macroscopic floating clumps advected downstream
by the river flow (Cadel-Six et al., 2007; McAllister et al., 2016).

This paper focuses on downstream dispersal of floating
detached clumps (mechanism 5), which likely accounts for long-
range dispersal from the original mat location. Benthic cyanobac-
teria are known to produce oxygen bubbles from photosynthesis
(Bosak et al., 2010; Wilson, 1965). These bubbles become trapped
in the intercellular mucus of the mats, lifting the top of the mat to
form a vertical, spire-like shape, which is a common morphology
Fig. 1. Map of the Eel River watershed showing sites along the South Fork Eel River
where floating Anabaena spp. clumps were collected in 2014. Field experiments
were conducted at the AN site in 2016. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
for benthic cyanobacterial mats (Figs. 2 A,B, 3 C; Bosak et al., 2010;
McGregor and Rasmussen, 2008). In the Eel River, California,
Anabaena mats are delicate, and easily detached by flows of
>5 cm s�1 or by gentle water agitation (Bouma-Gregson, personal
observation). When these mats disintegrate, the bubbles in the
mucus cause the majority of an Anabaena mat to float to the water
surface as many small clumps (1–5 cm diameter). During summer,
floating clumps of Anabaena are frequently observed in the river,
moving hundreds of meters, primarily in a downstream direction
unless wind-driven over slow pools. Floating clumps often
concentrate at channel margins and recreational swimming areas,
and dogs have died in the Eel River due to anatoxin-a poisoning
after ingesting cyanobacterial mats (Puschner et al., 2008), making
toxic benthic cyanobacteria a public health concern each summer.

Given the consequence for water quality and animal and public
health from cyanotoxin exposure, more knowledge is needed
about how filaments, clumps, or mats of benthic cyanobacteria
disperse in rivers during summer low flow periods. Combined with
the river flow velocity, the time scales of floating and sinking will
control the distance scales of dispersal of floating clumps and mats
in the river. To understand these time-scales and the processes
responsible for buoyancy, field experiments were used to 1) study
the effects of light on macroscopic oxygen bubble production, and
2) the effect of bubbles on the buoyancy of benthic Anabaena
dominated mats.

2. Material and methods

2.1. Study system and site description

The Eel River, draining 9546 km2, is located in the coastal
mountains of Northern California (Fig. 1). Forestry has been the
principal land-use since European settlement, with dairy and
small-scale agriculture near the estuary. A history of logging and
dense networks of unpaved roads along with two large floods
(1955 and 1964) have loaded massive amounts of fine sediments
into channels, rendering them wider, shallower, and easier to
warm or de-water at low flow (Lisle, 1990). The Eel is in a
Mediterranean climate with rainy winters and seasonal summer
droughts. Daily average river temperatures in the summer range
from 20 to 25 �C, and daily maximum temperatures can exceed
30 �C along shallow channel margins. Experiments took place at
the Angelo Coast Range Reserve (angelo.berkeley.edu), a 3100 ha
reserve on the South Fork (SF) Eel River where the channel drains
150 km2 (Fig. 1).

Anabaena spp. appear in June-August in sunny, slow-flowing
(<10 cm s�1) river reaches, first as small, blue-green epiphytic tufts
near the top of fresh or senescent, diatom-covered Cladophora
proliferations (Power et al., 2015). Over the following weeks or
months, if flows remain slow (<10 cm s�1) and relatively warm
(20–25 �C at midday), Anabaena mats can spread, turning several
square meters of Cladophora/diatom assemblages a blue-green
color (Fig. 2). There are at least three common species of mat
forming Anabaena in the Eel River: Anabaena oscillarioides, A.
cylindrica, and A. sphaerica (Komarek, 2013). These species are
difficult to differentiate based on macroscopic mat morphology
and all grow in similar habitats.

2.2. Light experiment

To investigate the effect of light on flotation and bubble
production, an in situ field experiment was conducted during June
20–24, 2016. Vertically-placed PVC pipes (25 cm diameter and 1 m
length, 10 pipes total) were set into the SF Eel River, with the top 2–
6 cm of the pipe above the river surface (Fig. 3). Mesh windows
(0.3 � 0.3 mm, dia. 9 cm) on the sides of each pipe allowed enough



Fig. 2. A-B: Underwater photographs of Anabaena spp. spires. The dark green patches are Anabaena spp. growing on top of Cladophora glomerata filaments. Note the trapped
bubbles in the Anabaena mucus. C-D: Anabaena cylindrica trichomes at 400�, panel C shows a developing akinete.
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water exchange to keep inside temperatures at ambient levels. Five
replicate pipes each were used for Ambient-Light and Low-light
treatments. Low-light treatment pipes were wrapped in black
polyurethane plastic to decrease light intensity inside the pipe. A
spoon was used to harvest benthic Anabaena from nearby naturally
occurring mats without disturbing bubbles, and three Anabaena
clumps (3–48 � 7–80 mm) were placed in each pipe (Fig. 3). All
clumps were floating when placed in the pipes. Then an aluminum
foil covering was placed over the Low-light treatment pipes.
Clumps were placed on the afternoon of day 0. Beginning on day 1,
every morning (�06:00, before direct sunlight hit any pipes) and
afternoon (14–16:00, at the hottest time of the day) clumps were
observed to see if they were still afloat or had sunk. The number of
bubbles in each clump was also counted and measured to the
nearest millimeter. The experiment concluded after the morning
measurement on day 4. In some pipes, two clumps merged
together to form a single clump, therefore the proportion of clumps
floating at each measurement was used as the response variable.

To determine the light reduction in the Low-light treatment
pipes, Hobo Pendant temperature and light sensors (UA-002-08;
Onset, Bourne, Massachusetts, USA) were deployed on day 4 after
the Anabaena clumps were removed from the pipes. In each of the
five Low-light and Ambient-light pipes, two sensors were deployed
for 24 h at the water’s surface, one with the light sensor pointing
upwards to the sky, and the other with the sensor pointing
downwards into the water. After positioning the sensors, Low-light
pipes were again covered with aluminum foil.

At deployment and on day 4, samples from each clump were
collected and stained with SYTOX green (Sigma-Aldrich, S7020) to
test for cell wall integrity. If flotation was stressful for the
cyanobacteria, an increase in cell wall degradation might be
expected at the end of the experiment. An Anabaena clump sub-
sample was placed in a 2 mL microfuge tube filled with �1 mL of
river water. Then, 20 mL of 5 mM SYTOX green was added and the
total volume brought to 2 mL for a final SYTOX concentration of
0.5 mM. The SYTOX solution was briefly vortexed and incubated for
10 min in the dark at room temperature. Stained cells, indicating
degraded cell walls, were counted at 200� with epi-fluorescent
microscopy (Nikon Optiphot 2, 490/520 nm ex/em l). The species
identification and cell condition for all samples were determined
by microscopy on fresh material using the same Nikon Optiphot 2.

2.3. Buoyancy experiments

To determine floating and sinking velocities of Anabaena clumps
from different algal assemblages, subsamples of algal mats from
different origins were collected: floating Cladophora glomerata mats
detached from bottom substrates, floating Cladophora mats still
attached to bottom substrates, and Anabaena spires attached to
bottom substrates. Sub-samples from the Cladophora mats were
divided into two categories: clumps from Cladophora mats
dominated by Cladophora, and clumps from Cladophora mats
dominated (>50%) by epiphytic Anabaena growing on the Clado-
phora. Experiments were performed on June 22 and July 20–21,
2016. Glass Pyrex graduated cylinders (1000 mL) filled with river
water and exposed to natural sunlight were used as settling
columns to measure velocities. Floating and sinking of clumps was
recorded with avideo camera, using time elapsed and the graduated
scale on the cylinder to quantify upwards and downwards
velocities. The temperature of the river water was also measured.



Fig. 3. A) Two of the replicate Low-light and Ambient-light treatment pipes. B) Floating Anabaena spp. clumps in a flow through pipe. C-D) Floating Anabaena spp. clumps
showing the accumulation of bubbles within extracellular mucus. E) Accumulation of floating Anabaena spp. clumps along the river margin in July 2016.
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Bubbles were removed from floating clumps by either manual
pinching or by shaking the cylinders. Subsamples of mats collected
in situ were either directly exposed to natural sunlight or first placed
in the dark for 12 h to remove bubbles and ensure that clumps sank.
Once clumps had sunk, the graduated cylinder was placed in the
light until bubbles formed and the clumps floated to the surface.

2.4. Cyanotoxin analyses

To determine if floating Anabaena clumps contained cyanotox-
ins, twenty samples of floating Anabaena spp. were collected in late
June through mid-September 2014 from five different locations on
the SF Eel River (Fig. 1) and analyzed for anatoxin-a (ANTX) and
microcystins (MC) using liquid chromatography and mass spec-
trometry (LC–MS). Fifteen of these samples came from weekly
sampling events at the monitoring site PV. The remaining five
samples, were collected on different days in July 2014 at four
additional sites MF, PR, DR, and AN. Floating samples were
collected with a bulb syringe or skimmed off the surface with an
80 mm plankton net, transferred into glass sample jars, placed in a
cooler, and within 6 h returned to the laboratory for overnight
storage in the dark at 4 �C. The next day samples were
homogenized and sub-samples frozen at �20 �C for dry weight
and cyanotoxin analysis. To measure the dry weight, samples were
dried at 55 �C for 24 h and then weighed to the nearest 0.1 mg. A
subsample was also collected for microscopic analysis to identify
the dominant species of cyanobacteria in the sample.

For cyanotoxin analysis, samples were thawed, then sonicated
for 30 s (Fisher Sonic Dismembrator 100) in 6 mL of 50% methanol
(Fisher A452), then centrifuged (Model IEC Centra CL2; Thermo
Fisher Scientific, Massachusetts, USA) for 5 min at 1083 rcf, and the
supernatant sampled. For ANTX analysis, a 1 mL subsample was
filtered (0.2 mm) into a LC–MS vial. Samples for MC analysis were
cleaned using a Baker C18 solid phase extraction column, and 1 mL
of cleaned sample was transferred to an LC–MS vial.

MC and ANTX were analyzed separately by liquid chromatog-
raphy coupled with a mass spectrometer on a Single Quadrupole
Agilent 6130 LC–MS (Agilent Technologies). ANTX analysis
followed Cogent method 141 (MicroSolv Technology Corporation,
Leland, NC, USA; http://kb.mtc-usa.com/getAttach/1114/AA-
00807/No+141+Anatoxin-a+ANTX-A.pdf). Briefly, a Cogent dia-
mond hydride column (100A, 4um, 100 � 2.1 mm) was used with a
gradient elution of 50% MeOH with 0.1% formic acid, and 100%
acetonitrile with 0.1% formic acid with the MS in Select Ion Mode
(SIM) for MW 166.1 and 149.1. Quantification was based on
standard curves (run daily) with a CRM-ATX standard from
National Resource Council Canada (http://www.nrc-cnrc.gc.ca/
eng/solutions/advisory/crm/list_product.html#B-CT). MC analyses
followed the method in Gibble and Kudela (2014), which was
adapted from Mekebri et al. (2009). Briefly, a gradient-elution
method was used as the mobile phase, with HPLC water (solvent A)
and LC–MS acetonitrile (solvent B), both acidified with 0.1% formic
acid. The gradient starts with 95:5 of solvent A:B and ends with
25:75 at 19 min, is held for 1 min, then followed by a 5 min
equilibration at initial conditions prior to injection of the next
sample. Standard curves (for each batch of samples) using pure
standards (Fluka 33578 and Sigma–Aldrich M4194) were used to
calibrate samples. For sample runs lasting more than 8 h, standards
were run again at the end of the run. The LC–MS measured four
microcystin congeners (�LR, �YR, �RR, and �LA), and their values
were summed to give total microcystin (MC). The limit of detection
for ANTX and MC are 0.25 and 0.01 ppb, respectively.
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Fig. 4. Proportion of floating Anabaena spp. clumps in each of the five replicates of
the Low-light and Ambient-light treatments at each morning (AM) and afternoon
(PM) measurement over the 4 days of the experiment.
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2.5. Statistics

For the light experiment, generalized linear mixed models
(glmms), with replicate pipe as a random effect, were used to
model the effect of light treatment, day, and time of measurement
(AM/PM) on the flotation of clumps (binomial distribution) and the
number of bubbles (Poisson distribution). For the buoyancy
experiment, one-way ANOVA was used to test the effect of algal
assemblage on sinking and floating velocities. Likelihood ratio or F
ratio tests between full and reduced models were used to estimate
the statistical significance of model parameters (alpha = 0.05). All
statistics were performed in the R environment, version 3.3.2
(R Core Team, 2016), with the lme4 package (Bates et al., 2015)
used for glmms.

3. Results

3.1. Anabaena cell condition

Samples for light and buoyancy experiments were dominated
by Anabaena cylindrica, with <1% of trichomes being A. oscillar-
ioides (Fig. 2). At the time of collection, all Anabaena trichomes
were fully pigmented, had heterocytes, and <1 akinete per
trichome, as well as containing many dividing cells, indicating a
relatively healthy physiological status. SYTOX green staining from
light experiment samples indicated <<1 cell per trichome had a
cell wall permeable to SYTOX green on samples from Day 0 and Day
4, a further indication of healthy cells.

3.2. Light experiment

Light intensity data showed that Low-light treatment had
values <0.01% of the Ambient-light treatment with the mean
maximum intensity from the upward facing sensor for the
Ambient-light and Low-light treatments being 235,877 � 12,567
and 58 � 31 lumens/m2, respectively. The diel range in river surface
temperatures was 16.5-23.5 �C, with Low-light treatments being
0.5–1 �C warmer than Ambient-light treatments in the afternoon
and having the same temperatures in the morning.

All clumps were floating at the onset of the light experiment.
Clumps began sinking within 24 h in the Low-light treatments
(Fig. 4). By day four, all the clumps in four of the five Low-light
treatment replicates had sunk. In the Ambient-light treatment, by
day 4 only one individual clump had sunk. Any clump that sunk in
the Low-light treatment never re-floated, whereas the clump in the
Ambient-light treatment that sunk after the Day 1: PM measure-
ment, refloated on day two due to bubble production (Fig. 4). This
clump then remained floating for two more days until sinking on
day four. The binomial glmm found a significant positive effect of
light treatment (p < 0.005), a significant negative effect of day
(p < 0.001), and a positive, but non-significant, treatment*day
interaction effect (p = 0.092) on flotation.

The number of bubbles in the clumps were similar at
deployment on Day 0 (Fig. 5). Bubble numbers subsequently
decreased in the Low-light treatments, but remained relatively
constant in Ambient-light treatments. The glmm model showed a
significant treatment effect (p < 0.005) and day*treatment inter-
action effect (p < 0.005) on the sum of bubbles in each replicate
pipe during the experiment, with the Ambient-light treatment
having more bubbles than the Low-light treatment. There was also
a significant positive interaction effect between the time of day
(AM/PM) and light treatment (p < 0.005) indicating more bubbles
at each of the afternoon (PM) measurements in the light treatment
compared to the previous morning’s (AM) measurement (Fig. 5),
while in the Low-light treatment there was no difference in
bubbles between morning and afternoon.
3.3. Buoyancy experiment

All small Anabaena clumps (1–3 cm3) collected from bottom
Anabaena spires in situ in mid-afternoon on June 22, 2016 floated at
the surface of the glass cylinder placed in sunlight (water temp.
18.5 �C). Oxygen bubbles were observed in all clumps, some on the
outside of the clumps, but mostly within the mucus of the mat. The
bubbles were manually removed by pinching to assess the role of
oxygen on the buoyancy of the clumps. Following the removal of
oxygen bubbles, all clumps began to sink within 60 s, with mean
velocities of 0.7 cm s�1 (Fig. 6). After around 30 min in full sun, they
began to rise again with mean velocities of 0.9 cm s�1(Fig. 6).
Slightly different floating velocities were observed depending on
the morphology, smaller clumps (�1 cm3) floating faster than
larger ones (�3 cm3).

Subsamples collected in situ in late afternoon on July 20, 2016
from detached floating Cladophora mats epiphytized by Anabaena
stayed at the surface of the glass cylinders placed in sunlight (water
temp 19.5 �C). All of them displayed visible oxygen bubbles. The
water was gently mixed in the cylinder by manual shaking for a few
seconds and this disrupted the mat, which disintegrated into small
sinking clumps. Within minutes after sinking to the bottom of the
cylinder, these Cladophora-Anabaena clumps started to float and to
re-aggregate. Cladophora clumps heavily overgrown by Anabaena
floated more rapidly than Cladophora clumps with sparser (<50%)
epiphytic Anabaena cover (ANOVA F(2,33) = 49.67, p < 0.01; Tukey-
Kramer post hoc test p < 0.05) (Fig. 6). Oxygen bubbles were
observed during the rise of the mats, with larger bubbles
associated with the Anabaena and smaller bubbles with Clado-
phora.

After being in the dark for 12 h at 19 �C, all samples from the
three different source mats sank to the bottom of cylinders, and no
obvious oxygen bubbles were observed initially. Once placed in the
sunlight, bubbles formed after 30–40 min, and the mats began to
float. Again, clumps dominated by Anabaena rose faster than
clumps dominated by Cladophora (ANOVA F(2,7) = 13.23, p < 0.01;
Tukey-Kramer post hoc test p < 0.05) (Fig. 6). After gentle mixing of
the cylinders by shaking them manually for a few seconds, the



Fig. 5. Boxplots of number of bubbles in Anabaena spp. clumps in the Low-light and Ambient-light treatments at each measurement time. Bubble diameter was measured to
the nearest millimeter.

Fig. 6. Combined results from the buoyancy experiments showing the mean � SD
floating and sinking velocities of clumps from different algal assemblages. Spire-
Ana: clumps sampled directly from Anabaena spp.spires that were almost
exclusively Anabaena spp.; Mat-Ana: clumps from Cladophora glomerata mats
overgrown by epiphytic Anabaena spp. overgrowth; and Mat-Clad: clumps from
Cladophora mats dominated by Cladophora, with less than 50% Anabaena. Number
of replicates (n) indicated at the bottom of each bar. Different letter superscripts
indicate statistically significant differences in mean floating velocities and different
symbol superscripts indicate statistically significant differences in mean sinking
velocities between algal assemblages based on one-way ANOVA and Tukey-Kramer
post hoc tests (alpha = 0.05).

Table 1
Concentration of cyanotoxins anatoxin-a (ANTX) and microcystin (MC) in floating
Anabaena spp. clumps collected from the South Fork Eel River. Microcystin
congeners �LR, �YR, �RR, and �LA were summed together to calculate the MC
value.

Date Collected Site Collection Method ANTX (ng/g DW) MC
(ng/g DW)

07-Jul-14 AN bulb syringe NAa NAa

18-Jul-14 DR bulb syringe 2744 0
12-Jul-14 MF bulb syringe 172 0
18-Jul-14 PR bulb syringe 30,693 0
24-Jul-14 PR bulb syringe 0 0
29-Jun-14 PV plankton net 0 0
12-Jul-14 PV plankton net 647 0
18-Jul-14 PV plankton net 3184 0
18-Jul-14 PV bulb syringe 3703 0
24-Jul-14 PV plankton net 0 0
02-Aug-14 PV bulb syringe 15 0
02-Aug-14 PV plankton net 4985 0
07-Aug-14 PV bulb syringe 0 0
07-Aug-14 PV plankton net 0 0
16-Aug-14 PV bulb syringe 560 0
16-Aug-14 PV plankton net 416 30
24-Aug-14 PV bulb syringe 11,203 9
24-Aug-14 PV plankton net 780 37
31-Aug-14 PV bulb syringe 6465 0
19-Sep-14 PV bulb syringe 3108 0

a Dry weight was not measured for this sample. However, the LC–MS detected
MC, but no ANTX, in the sample.
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mats disintegratedintosmallclumps thatsettledtothebottomof the
cylinder. The Anabaena broke apart more easily than the Cladophora,
formed much smaller clumps and sank faster. The Cladophora did
not disintegrate and sank more slowly than Anabaena (Fig. 6).
Regardless of the habitat and algal taxa within the mat assemblages,
floating velocities were consistently higher than sinking velocities.
However, the observed range between 0.25 and 1 cm s�1 suggested
that clumps would rise and fall in a 50 cm deep still river pool,
representative of much of the South Fork Eel habitat during the low
flow summer season, within less than five minutes.

3.4. Cyanotoxins

Both ANTX and MC were detected in the floating Anabaena
samples collected in the SF Eel watershed (Table 1). Fourteen of the
20 samples contained ANTX (median and mean concentrations of
560 and 3184 ng ANTX/g DW, respectively). In contrast, only 3
samples tested positive for MC and all had much lower MC
concentrations (<50 ng MC/g DW). All three positive MC samples
also contained ANTX. Toxin concentrations varied weekly at the
Phillipsville (PV) site, though due to the movement of floating
clumps the same mat was not sampled each week. ANTX
concentrations also varied spatially, the difference in ANTX
concentrations between duplicate samples collected on the same
date from the PV site ranged from 0 to 10,424 ng ANTX/g DW.

4. Discussion

4.1. Processes responsible for regulating buoyancy

Unlike planktonic cyanobacteria, in which buoyancy is regulat-
ed via intracellular processes including formation of gas vesicles
(Walsby et al., 1991) and carbohydrates (Visser et al., 1997), in
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benthic Anabaena mats, the results of this study indicate that
buoyancy is regulated by photosynthetic oxygen production and
respiration. Oxygen bubble production by photosynthesis has been
suggested as responsible for algal lift in rivers (Mendoza-Lera et al.,
2016), for laboratory-generated bloom formation in planktonic
cyanobacteria Microcystis after gas vesicle collapse (Dervaux et al.,
2015), and for persistent buoyancy of Microcystis colonies leading
to cyanobacterial scums on lakes (Medrano et al., 2016). For
benthic Anabaena bubbles cause floating and sinking to occur
within minutes and flotation to be maintained for days.

Light experiment results show that in low light, the number of
macroscopic bubbles decreased, but under ambient diel summer
light regimes, bubble numbers initially increased on day 1, and
then numbers remained relatively constant for the duration of the
experiment. Indeed, Bosak et al. (2010) showed bubbles could be
stable for weeks in cyanobacterial mats. The buoyancy experi-
ments demonstrated the direct flotation of clumps collected in
mid-afternoon on a sunny summer day, as well as the flotation
within minutes upon exposure to natural sunlight of negatively
buoyant clumps held for 12 h in darkness. Intracellular buoyancy
mechanisms cannot explain the Anabaena flotation observed in
these experiments, which were dominated by Anabaena cylindrica.
Indeed, benthic Anabaena cylindrica and Anabaena oscillarioides do
not form gas vesicles (Komarek, 2013; Li et al., 2016), and no
intracellular gas vesicles in Anabaena trichomes were observed
under microscopic examination. Over the short time scale of
minutes when flotation was observed to occur, there would not be
time for either lipids nor carbohydrates to be produced, as both
types of molecules fluctuate at longer, daily, time scales (Chu et al.,
2007; Ibelings et al., 1991).

In the graduated cylinders, the artificial manual removal of
bubbles led to a sinking rate of clumps between 0.3–0.9 cm s�1

(Fig. 6). This suggests that without the macroscopic oxygen
bubbles, Anabaena clumps will sink at speeds of the order of
1 cm s�1. As with flotation, intracellular processes cannot account
for the rapid shift from floating to sinking. As Anabaena clumps
float downstream, bubbles are most likely removed through
physical disturbance, rather than cellular respiration or gas
diffusion through the extracellular mucus. It is therefore likely
that bubble removal primarily occurs through hydraulic turbu-
lence, such as when clumps flow through a riffle. Though
respiration consumes oxygen in the bubbles and decreases
buoyancy, the light experiment results show that under a natural
summer light regime, oxygen consumption from respiration is not
sufficient to induce sinking. Only under several days of low light,
when photosynthesis is suppressed, do respiration and diffusion
affect buoyancy enough to cause sinking (Fig. 4). However, the
positive day by treatment interaction effect from the glmm model
was not statistically significant (p = 0.092), suggesting no differ-
ence in flotation between light treatments. This statistical result
was likely due to low replication and less power inherent to
binomial models. Considering that the direction of all parameter
estimates matched our hypotheses and that there was minimal
variation in the floating or sinking response of clumps in the
treatments, with more replicates or a longer experiment it is
expected that the interaction would be statistically significant.

Although these data were not sufficiently precise to test the size
dependence of the clumps on the floating and sinking rates,
qualitative observations indicated that smaller clumps of equiva-
lent algal composition sank faster than larger ones. If they are
spherical, larger clumps of similar density sink faster than smaller
ones, therefore this result suggests that the elongated shape of the
clumps, which acts as resistance to floating and sinking, is more
important than the actual size of the clumps in accordance with
the modified Stoke’s law (Fraisse et al., 2015; Jaworski et al., 1988;
Padisak et al., 2003; Walsby and Holland, 2006).
Attached Anabaena mats in situ consistently have a spire-like
morphology with visible bubbles in the spires (Fig. 2). The
processes that initiate flotation remain unknown. One likely
explanation is that as growth rates increase, photosynthetic
oxygen production creates enough bubbles that the buoyancy
force exceeds the tensile strength of part of the Anabaena clump or
entangled attachments of host Cladophora, detaching it from the
substrate. Anabaena spires are fragile and easily detached by
hydraulic turbulence or other physical disturbance. For example,
walking slowly through a large proliferation will generate pressure
waves that detach many spires, even meters away.

4.2. Cyanotoxin productions

Results from this study provide further evidence for the
presence of microcystin and anatoxin-a in the Eel River watershed.
Freshwater benthic Anabaena have been documented to produced
microcystins (Mohamed et al., 2006), but the authors are not aware
of published studies of benthic freshwater Anabaena producing
anatoxin-a. The floating samples analyzed for cyanotoxins were
not pure cultures of Anabaena, and so it is possible that other taxa
could be producing anatoxin-a. Though the occasional Oscillatoria,
Cylindrospermum, or Nodularia may occur, based on microscopic
observations Anabaena was >100x more abundant than other
cyanobacterial taxa in the samples. Given the high concentrations
of anatoxin-a in the samples, it is unlikely that they would
originate from other cyanobacterial taxa than Anabaena. Creating
pure cultures of Anabaena spp. from the Eel River and testing them
for cyanotoxins will be necessary to definitively conclude that
Anabaena are producing anatoxin-a. Additionally, with the
presence of anatoxin-a in the watershed confirmed, future
sampling could investigate the presence of the homologue
homoanatoxin-a and the anatoxin-a degradation product dihy-
droanatoxin-a in the watershed (Osswald et al., 2007). The results
from these samples supports previous data, which identified
anatoxin-a poisoning as the cause of dog deaths in the Eel River
watershed (Puschner et al., 2008), though the cyanobacterial
species producing anatoxin-a were not identified in that study.

4.3. Consequence for dispersal

Since entrapped oxygen bubbles prevent Anabaena from
sinking, Anabaena will likely travel further downstream than less
buoyant algae. The light experiment showed that after four days of
floating, Anabaena trichomes appeared healthy. If growth rates in
floating Anabaena mats remain high, then instead of Anabaena
being isolated in discrete benthic mats throughout the watershed,
the release of floating clumps from mats results in a semi-
continuous presence at the water’s surface at the kilometer scale.
Therefore, when floating clumps do eventually sink after travelling
through riffles which have been observed to dislodge bubbles, they
could grow and form a new benthic Anabaena mat at that location.
This phenomenon of new colonization could contribute to the
widespread distribution of Anabaena mats in the SF Eel watershed
in summer. Additionally, the downstream fate of floating Anabaena
clumps will likely be controlled by hydraulics and winds. Clumps
advected by currents and blown by winds will tend to accumulate
along channel margins and in backwater eddies. Once trapped,
cells could become stressed although accumulations of floating
Anabaena have been observed to last several weeks. Considering
that floating Anabaena clumps contain anatoxin-a (Table 1),
flotation also poses public health concerns, since clumps
accumulate in slow flowing pools, including popular recreational
swimming locations, and channel margins. Freshwater cyanotox-
ins can also affect nearshore marine ecosystems (Gibble and
Kudela, 2014; Miller et al., 2010) and flotation increases the
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probability of cyanobacteria being transported from rivers to
oceans. Future research on downstream dispersal could use 2-
dimensional hydraulic models of river profiles to estimate the
number of riffles/km or backwater pools, and produce flow-
specific estimates of the effect of riffles on removing bubbles and
effects of backwater pools on entraining floating mats over specific
mapped reaches. Understanding how buoyancy and dispersal
mechanisms differ between benthic and planktonic cyanobacteria
is needed to manage for public health and water quality in
freshwater environments where toxic benthic cyanobacteria occur.
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