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PREFACE TO THE SECOND ENGLISH EDITION

The content and treatment in this edition remain in accordance with what was said in
the preface to the first edition (see below). My chief care in revising and augmenting has
been to comply with this principle.

Despite the lapse of thirty years, the previous edition has, with very slight exceptions,
not gone out of date. Its material has been only fairly slightly supplemented and modified.
About ten new sections have been added.

In recent decades, fluid mechanics has undergone extremely rapid development, and
there has accordingly been a great increase in the literature of the subject. ~The
development has been mainly in applications, however, and in an increasing complexity of
the problems accessible to theoretical calculation (with or without computers). These
include, in particular, various problems of instability and its development, including non
linear regimes. All such topics are beyond the scope of our book; in particular, stability
problems are discussed, as previously, mainly in terms of results.

There is also no treatment of non-linear waves in dispersive media, which is by now a
significant branch of mathematical physics. The purely hydrodynamic subject of this
theory consists in waves with large amplitude on the surface of a liquid. Its principal
physical applications are in plasma physics, non-linear optics, various problems of
electrodynamics, and so on, and in that respect they belong in other volumes of the Course.

There have been important changes in our understanding of the mechanism whereby
turbulence occurs. Although a consistent theory of turbulence is still a thing of the future,
there is reason to suppose that the right path has finally been found. The basic ideas now
available and the results obtained are discussed in three sections (§§3D--32) written jointly
with M. I. Rabinovich, to whom I am deeply grateful for this valuable assistance. A new
area in continuum mechanics over the last few decades is that of liquid crystals. ~his
combines features of the mechanics of liquid and elastic media. Its principles are discussed
in the new edition of'Theory of Elasticity.

This book has a special place among those I had occasion to .write jointly with L. D.
Landau. He gave it a part of his soul. That branch of theoretical physics, new to him at the

\

time, caught his fancy, and in a very typical way he set about thinking through it ab initio
and deriving its basic results. This led to a number of original papers which appeared in
various journals, but several of his conclusions or ideas were not published"elsewhere than
in the book, and in some instances even his priority was not established till later. In the new
edition, I have added an appropriate reference to his authorship in all such cases that are
known to me.

In the revision of this book, as in other volumes of the Course, I have had the help and
advice of many friends and colleagues. I shouldJike to mention in particular numerous
discussions with G. I. Barenblatt, L. P. Pitaevskii, Va. G. Sinai, and Va. B. Zel'dovich.
Several useful comments came from A. A. Andronov, S. I. Anisimov, V. A. Belokon', A. L.
Fabrikant, V. P. Krainov, A. G. KUlikovskil, M. A. Liberman: R. V. Polovin, and A. V.
Timofeev. To all of them I express my sincere gratitude.

Institute of Physical Problems
August 1984

IX

E. M. LIFSHITZ



PREFACE TO THE FIRST ENGLISH EDITION

The present book deals with fluid mechanics, i.e. the theory of the motion of liquids and
gases.

The nature of the book is largely determined by the fact that it describes fluid mechanics
as a branch of theoretical physics, and it is therefore markedly different from other
textbooks on the same subject. We have tried to develop as fully as possible all matters of
physical interest, and to do so in such a way as to give the clearest possible picture of the
phenomena and their interrelation. Accordingly, we discuss neither approximate methods
ofcalculation in fluid mechanics, nor empirical theories devoid ofphysical significance. On
the other hand, accounts are given of some topics not usually found in textbooks on the
subject: the theory of beat transfer and diffusion in fluids; acoustics; the theory of
combustion; the dynamics of superfluids; and relativistic fluid dynamics.

In a field which has been so extensively studied as fluid mechanics it was inevitable that
important new results should have appeared during the several years since the last Russian
edition was published. Unfortunately, our preoccupation with other matters has
prevented us from including these results in the English edition. We have merely added
one further chapter, on the general theory of fluctuations in fluid dynamics.

We should like to express our sincere thanks to Dr Sykes and Dr Reid for their excellent
translation of the book, and to Pergamon Press for their ready agreement to our wishes in
various matters relating to its publication.

Moscow 1958

x

L. D. LANDAU
E. M. LIFSHITZ
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EVGENII MIKHAILOVICH LIFSHITZ (1915-1985)t

Soviet physics suffered a heavy loss on 29 October 1985 with the death of the outstanding
theoretical physicist Academician Evgenir Mikhallovich Lifshitz.

Lifshitz was born on 21 February 1915 in Khar'kov. In 1933 he graduated from the
Khar'kov Polytechnic Institute. He worked at the Khar'kov Physicotechnical Institute
from 1933 to 1938 and at the Institute of Physical Problems of the USSR Academy of
Sciences in Moscow from 1939 until his death. He was elected an associate member of the
USSR Academy of Sciences in 1966 and a full member in 1979.

Lifshitz's scientific activity began very early. He was among L. D. Landau's first
students and at 19 he co-authored with him a paper on the theory of pair production in
collisioos. This paper, which has not lost its significance to this day, outlined many
methodological features of modern relativistically invariant techniques of quantum field
theory. It includes, in particular, a consistt;nt allowance for retardation.

Modern ferromagnetism theory is based on the "Landau-Lifshitz" equation,' which
gescribes the dynamics of the magnetic moment in a ferromagnet. A 1935 articJe on this
subject is one of the best known papers on the physics of magnetic phenomena. Tbe
derivation of the equation is accompanied by development of a theory of ferromagnetic
r~sonance and of the domain structure of ferromagnets.

In a 1937 paper on the Boltzmann kinetic equation for electrons in a magnetic field, E.
,M. Lifshitz developed a drift approximation extensively used much later, in the 50s, in
plasma theory.

A paper published in 1939 on deuteron dissociation in collisions--remains a brilliant
example of the use of quasi-classical methods in quantum mechanics.

A most important step towards the development of a theory of second-order phase
transitions, following the work by L. D. Landau, was a paper by Lifshitz dealing with the
change of the symmetry of a crystal, of its space group, in transitions of this type (1941).
Many years later the results of this paper came into extensive use, and the terms "Lifshitz
'criterion" and "Lifshitz point," coined on its basis have become indispensable com
ponents of modern statistical physics.

A decisive role in the detection ofan important physical phenomenon, second sound in
superftufd helium, was played by a 1944 paper by E. M. Lifshitz. It is shown in it that
seoond sound is effectively excited by a heater having an alternating temperature. This was
precisely the method used to observe second sound in experiment two years later.

A new approach to the theory of molecular-interaction forces between condensed
bodies was developed by Lifshitz in 1954-1959. It is based on the profound physical idea
that these forces are manifestations ofstresses due to quantum and thermal fluctuations of
an electromagnetic field in a medium. This idea was pursued to develop a very elegant and
general theory in which the interaction forces are expressed in terms of electrodynamic
material properties such as the complex dielectric permittivity. This theory of E. M.

t By A. 'F. Andreev, A. S. Borovik-Romanov, V. L. Ginzburg, L. P. Gor'kov, I. E. Dzyaloshinskir, Va. B.
Zel'dovich, M. I. Kaganov, L. P. Pitaevskii, E. L. FeInberg, and I.M. Khalatnikov; published in Russian in
Uspekhifizicheskikh nauk 148, 549-550, 1986. This translation is by J. G. Adashko (first published in Soviet
Physics Uspekhi 29, 294-295, 1986), and is reprinted by kind permission of the American Institute of Physics.

Xl



xii E. M. Lifshitz

Lifshitz stimulated many studies and was confirmed by experiment. It gained him the M.
V. Lomonosov Prize in 1958.

E. M. Lifshitz made a fundamental contribution in one of the most important
branches of modern physics, the theory of gravitation. His research into this field started
with a classical 1946 paper on the stability of cosmological solutions of Einstein's theory
of gravitation. The perturbations were divided into distinctive classes-scalar, with
variation of density, vector, describing vortical motion, and finally tensor, describing
gravitational waves. This classification is still ofdecisive significance in the analysis of the
origin of the universe. From there, E. M. Lifshitz tackled the exceedingly difficult question
of the general.character of the singularities of this theory. Many years oflabor led in 1972
to a complete solution of this problem in papers written jointly with V. A. Belinskir and I.
M. Khalatnikov, which earned their authors the 1974 L. D. Landau Prize. The singularity
was found to have a complicated oscillatory character and could be illustratively
represented as contraction of space in two directions with simultaneous expansion in the
third. The contraction and expansion alternate in time according to a definite law. These
results elicited a tremendous response from specialists, altered radically our ideas
concerning relativistic collapse, and raised a host of physical and mathematical problems
that still await solution.

His life-long occupation was the famous Landau and Lifshitz Course oj Theoretical
Physics, to which he devoted about 50 years. (The first edition of Statistical Physics was
written in 1937. A new edition of Theory ojElasticity went to press shortly before his last
illness.) The greater part of the Course was written by Lifshitz together with his teacher
and friend L. D. Landau. After the automobile accident that made Landau unable to
work, Lifshitz completed the edition jointly with Landau's students. He later continued to
revise the previously written volumes in the light of the latest advances in science. Even in
the hospital, he discussed with visiting friends the topics that should be subsequently
included in the Course.

The Course oJTheoretical Physics became world famous. It was translated in its entirety
into six languages. Individual volumes were published in 10 more languages. In 1972 L. D.
Landau and E. M. Lifshitz were awarded the Lenin Prize for the volumes published by
then.

The Course oJ Theoretical Physics remains a monument to E. M. Lifshitz as a scientist
and a pedagogue. It has educated many generations ofphysicists, is being studied, and will
continue to teach students in future generations.

A versatile physicist, E. M. Lifshitz dealt also with applications. He was awarded the
USSR State Prize in 1954.

A tremendous amount of E.M. Lifshitz's labor and energy was devoted to Soviet
scientific periodicals. From 1946 to 1949 and from 1955 to his death he was deputy editor
in-ehief of the Journal ojExperimental and Theoretical Physics. His extreme devotion to
science, adherence to principles, and meticulousness greatly helped to make this journal
one of the best scientific periodicals in the world.

E. M. Lifshitz accomplished much in his life. He will remain in our memory as a
remarkable physicist and human being. His name will live forever in the history of Soviet
physics.



NOTATION

p density
p pressure
T tenaperature
s entropy per unit naass
f; internal energy per unit naass
W = f; +pip heat function (enthalpy)
}' = cplcv ratio of specific heats at constant pressure and constant volunae
fJ dynanaic viscosity
v = fJIp kinenaatic viscosity
K thernaal conductivity
X = KIpCp thernaonaetric conductivity
R Reynolds nunaber
c velocity of sound
M ratio of fluid velocity to velocity of sound (Mach nunaber)

Vector and tensor (three-dinaensional) suffixes are denoted by Latin letters i, k, 1, ....
Sunanaation over repeated ("dunanay") suffixes is everywhere inaplied. The unit tensor is bik :

References to other volunaes in the Course of Theoretical Physics:

Fields = Vol. 2 (The Classical Theory of Fields, fourth En~lish edition, 1975).
QM = Vol. 3 (Quantum Mechanics, third English edition, 1977).
SP 1 = Vol. 5 (Statistical Physics, Part 1, third English edition, 1980).
ECM = Vol. 8 (Electrodynamics of Continuous Media, second English edition, 1984).
SP 2 = Vol. 9 (Statistical Physics, Part 2, English edition, 1980).
PK = Vol. 10 (Physical Kinetics, English edition, 1981).

All are published by Pergamon Press.
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CHAPTER I

IDEAL FLUIDS

§1. The equation of continuity

Fluid dynamics concerns itself with the study of the motion of fluids (liquids and gases).
Since the phenomena considered in fluid dynamics are macroscopic, a fluid is regarded as a'
continuous medium. This means that any small volume element in the fluid is always
supposed so large thatitstill contains a very great number ofmolecules. Accordingly, when
we speak of infinitely small elements of volume, we shall always mean those which are
"physically" infinitely small, i.e. very small compared with the volume of the body under
consideration, but large compared with the distances between the molecules. The
expressionsjluid particle and point in ajluid are to be understood in a similar sense. If, for
example, we speak of the displacement' 'of some fluid particle, we mean not the
displacement of an individual molecule, but that of a volume element containing many
molecules, though still regarded as a point.

The mathematical description of the state of a moving fluid is effected by means of
functions which give the distribution of the fluid velocity v = v(x, y, Z, t) and of any two
thermodynamic quantities pertaining to the fluid, for instance the pressure p(x, y, Z, t) and
the density p(x, y, Z, t). All the thermodynamic quantities are determined by the values of
any two of them, together with the equation of state; hence, if we are given five quantities,
namely the three components of the velocity v, the ptessure p and the density p, the state of
the moving fluid, is completely determined.

All these quantities are, in general, functions of the coordinates x, y, Z and of the time t.
We emphasize that v(x, Y, z, t) is the velocity of the fluid at a given point (x, Y, z) in space
and at a given time t, Le. it refers to fixed points in space and not to specific particles of the
'fluid; in the course of time, the latter move about in space. The same remarks apply to
p and p.

We shall now derive the fundamental equations of fluid dynamics. Let us begin with the
equation which expresses the conservation of matter. We consider some volume ~·o of
space. The mass of fluid in this volume is Jp d V, where p is the fluid density, and the
integration is taken over the volume Vo. The mass of fluid fl'owing in unit time through an
element df of the surface bounding this volume is pv •df; the magnitude of the vector df is
equal to the area of the surface element, and its direction is along the normal. By
convention, we take df along the outward normal. Then pv · df is positive ifthe fluid is
flowing out of the volume, and negative if the flow is into the volume. The total mass of
fluid flowing out of the volume Vo in unit timeis therefore

fPvodf,

where the integration is taken over the whole of the closed surface surrounding the volume
in question.



2 Ideal Fluids §2

(1.1)

Next, the decrease per unit time in the mass of fluid in the volume Vo can be written

-:t fPdV

E,quating the two expressions, we have

:t fP d V = - f P v 0 df.

The surface integral can be transformed by Green's formula to a volume integral:

fpvodf= fdiV(PV)dV

Thus

f[~ +diV(PV)]dV=O.

Since this equation must hold for any volume, the integrand must vanish, i.e.

opjot + div (pv) = O. (1.2)

This is the equation ofcontinuity. Expanding the expression div (pv), we can also write (1.2)
as

The vectol
opjot+pdivv+v·gradp = o.

j = pv

(1.3)

(1.4)

is called the mass flux density. Its direction is that of the motion of the fluid, while jt~

magnitude equals the mass of fluid flowing in unit time through unit area perpendicular to
the velocity.

§2. Euler"s equation

Let us consider some volume in the fluid. The total force acting on this volume is equal to
the integral

-fPdf

of the pressure, taken over the surface bounding the volume. Transforming it to a volume
integral, we have

-f Pdf = - fgradPdV

Hence we see that the fluid surrounding any volume element d V exerts on that element a
force - d Jl grad p. In other words, we can say that a force - grad p acts on unit volume of
the fluid.

We can now write down the equation of motion of a volume element in the fluid by
equating the force - grad p to the product of the mass per unit volume (p) and the
acceleration d v jdt:

pdvjdt = - gradp. (2.1)



§2 Euler's equation 3

The derivative dvjdt which appears here denotes not the rate of change of the fluid
velocity at a fixed point in space, but the rate of change of the· velocity of a given fluid
particle as it moves about in space. This derivative has to be expressed in terms· of
quantities referring to points fixed in space. To do so, we notice that the change dv in the
velocity of the given fluid particle during the time d t is composed of two parts, namely the
change during dt in the velocity at a point fixed in space, and the difference between
the velocities (at the same instant) at two points drapart, where dr is the distance moved
by the given fluid particle during the time dt. The first part is (ovjot)dt, where the derivative
ovjot is taken for constant x, y, z, i.e. at the given point in space. The second part is

ov ov ov
dxox +dy oy +dzoz = (drograd)v.

Thus
dv = (ovjot)dt + (dr -grad)v,

or, dividing both sides by dt,t

dv ov
-=-+(v-grad)v.
dt ot

(2.2)

(2.3)

Substituting this in (2.1), we find

ov 1
-+(v-grad)v = --gradp.
ot p

This is the required equation of motion of the fluid; it was first obtained by L. Euler in 1755.
It is called Euler's equation and is one of the fundamental equations of fluid dynamics.

If the fluid is in a gravitational field, an additional force pg, where g is the acceleration
due to gravity, acts on any unit volume. This force-must be added to the right-hand side of
equation (2.1), so that equation (2.3) takes the farm

ov gradp
- + (v -grad)v = - --+ g. (2.4)at p

In deriving the equations of motion we have taken no account of processes of energy
dissipation, which may occur in a moving fluid in consequence of internal friction
(viscosity) in the fluid and heat exchange between different parts of it. The whole of the
discussion in this and subsequent sections of this chapter therefore holds good only for
motions of fluids in which thermal conductivity and viscosity are unimportant; such fluids
are said to be ideal.

The absence of heat exchange between different parts of the fluid (and also, of course,
between the fluid and bodies adjoining it) means that the motion is adiabatic throughout
the fluid. Thus the motion of an ideal fluid must necessarily be supposed adiabatic.

In adiabatic motion the entropy of any particle of fluid remains constant as that particle
moves about in space. Denoting by s the entropy per unit mass, we can express the
condition for adiabatic motion· as

dsjdt = 0, (2.5)

t The derivative d/dt thus defined is called the substantial time derivative, to emphasize its connection with the
moving substance.



4 Ideal Fluids §2

wher,e the total derivative with respect to time denotes, as in (2.1), the rate of change of
entt:opy for a given fluid particle as it moves about. This condition can also be written

oslot+v·grads = O. (2.6)
This is the general equation describing adiabatic motion of an ideal fluid. Using (1.2), we
can write it as an "equation of continuity" for entropy:

o(ps)/ot +div (psv) = O. (2.7)

The product psv is the entropy flux density.
The adiabatic equation usually takes a much simpler form. If, as usually happens, the

entropy is constant throughout the volume of the fluid at some initial instant, it retains
everywhere the same constant value at all times and for any subsequent motion ofthe fluid.
In this case we can write the adiabatic equation simply as

s = constant, (2.8)

and we shall usually do so in what follows. Such a motion is said to be isentropic.
We may use the fact that the motion is isentropic to put the equation of motion (2.3) in a

somewhat different form. To do so, we employ the familiar thermodynamic relation

dw = Tds+ Vdp,

where w is the heat function per unit mass of fluid (enthalpy), J/ = lip is the specific
volume, and T is the temperature. Since s = constant, we have simply

dw = Vdp = dplp,

an~ so (grad p)1p = grad w. Equation (2.3) can therefore be written in the form

ov/at+(v-grad)v= -gradw. (2.9)

(2.10)

(2.11 )

It is useful to notice one further form of Euler's equation, in which it involves only the
velocity. Using a formula well known in vector analysis,

t grad v2 = vxeurl v + (v· grad)v,

we can write (2.9) in the form

av/at-vxeurlv = -grad(w+iv2
).

If we take the curl of both sides of this equation, we obtain

aat (curl v) = curl (vxeurl v),

which involves only the velocity.
The equations of motion have to be supplemented by the boundary conditions that

must be satisfied at the surfaces bounding the fluid. For an ideal fluid, the boundary
condition is simply that the fluid cannot penetrate a solid surface. This means that the.
component of the fluid velocity normal to the bounding surface must vanish if that surface
is at rest:

Vn = o. (2.12)

In the general case of a moving surface, Vn must he equal to the corresponding component
of the velocity of the surface.
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At a boundary between two immiscible fluids, the condition is that the pressure and the
velocity component normal to the surface of separation must be the same for the two
fluids, and each of these velocity components must be equal to the corresponding
component of the velocity of the'surface.

As has been said at the beginning of §1, the state of a moving fluid is determined by five
quantities: the three components of the velocity v and, for example, the pressure Pand the
density p. Accordingly, a complete system of equations of fluid dynamics should be five in
number. For an ideal fluid these are Euler's equations, the equation of continuity, and the
adiabatic equation.

PROBLEM

Write down the equations for one-dimensional motion of an ideal fluid in terms of the variables a, c, where a
(called a Lagrangian variablet) is the x coordinate of a fluid particle at some instant c = co'

SoLUTION. In these variables the coordinate x of any fluid particle at any instant is regarded as a function of c
and its coordinate a at the initial instant: x = x(a, c). The condition ofconservation of mass during the motion ofa
fluid element (the equation of continuity) is accordingly written P dx = Po da, or

p(::} = Po,

where Po (a) is a given initial density distribution. The velocity of a fluid particle is, by definition, v = (ax/ac)., and
the derivative (av/ac). gives the rate of change of the velocity of the particle during its motion. Euler's equation
becomes

and the adiabatic equation is

(as/ac). = o.

§3. Hydrostatics

For a fluid at rest in a uniform gravitational field, Euler's equation (2.4) takes the form

gradp = pg. (3.1)

This equation describes the mechanical equilibrium of the fluid. (If there is no external
force, the equation orequilibrium is simply grad p = 0, i.e. p = constant; the pressure is the
same at every point in the fluid.)

Equation (3.1) can be integrated immediately if the density of the fluid may be supposed
constant throughout its volume, i.e. if there is no significant compression of the fluid under
the action of the external force. Taking the z-axis vertically upward, we have

Hence
op/ox = op/oy = 0, op/oz = - pg.

p = - pgz + constant.

If the fluid at rest has a free surface at height h, to which an external pressure Po, the same at
every point, is applied, this surface must be the horizontal plane z = h. From the condition
p = Po for z = h, we find that the constant is Po + pgh, so that

p = Po + pg(h - z). (3.2)

t Al1hough such variables are usually called Lagrangian, the equations of motion in these coordinates were
first obtained by Euler, at the same time as equations (2.3).
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For large masses of liquid, and for a gas, the density p cannot in general be supposed
constant; this applies especially to gases (for example, the atmosphere). Let us suppose that
the fluid is not only in mechanical equilibrium but also in thermal equilibrium. Then the
temperature is the same at every point, and equation (3.1) may be integrated as follows. We
use the familiar thermodynamic relation

d<1> = - sdT+ Vdp,

where <1> is the thermodynamic potential (Gibbs free energy) per unit mass. For constant
temperature

d<1> = Vdp = dpjp.

Hence we see that the expression (grad p)jp can be written in this case as grad <1>, so that the
equation of equilibrium (3.1) takes the form

grad <1> = g.

For a constant vector g directed along the negative z-axis we have

g == - grad (gz).
Thus

grad (<1> + gz) = 0,

whence we find that throughout the fluid

<1> + gz = constant; (3.3)

gz is the potential energy of unit mass of fluid in the gravitational field. The condition (3.3)
is known from statistical physics to be the condition for thermodynamic equilibrium of a
system in an external field.

We may mention here another simple consequence of equation (3.1). If a fluid (such as
the atmosphere) is in mechanical equilibrium in a gravitational field, the pressure in it can
be a function only of the altitude z (since, if the pressure were different at different points
with the same altitude, motion would result). It then follows from (3.1) that the density

1dp
p= --

gdz
(3.4)

is also a function of z only. The pressure and density together determine the temperature,
which is therefore again a function of z only. Thus, in mechanical equilibrium in a
gravitational field, the pressure, density and temperature distributions depend only on the
altitude. If, for example, the temperature is different at different points with the same
altitude, then mechanical equilibrium is impossible.

Finally, let us derive the equation of equilibrium for a very large mass of fluid, whose
separate parts are held together by gravitational attraction-a star. Let 4> be the
Newtonian gravitational potential of the field due to the fluid. It satisfies the differential
equation

64> = 4nGp, (3.5)

where G is the Newtonian constant of gravitation. The gravitational acceleration is
- grad 4>, and the force on a mass p is - p grad 4>. The condition of equilibrium is
therefore

gradp = - p grad 4>.
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(3.6)

Dividing both sides by p, taking the divergence of both sides, and using equation (3.5), we
obtain

div(~gradP) = -4nGp.

It must be emphasized that the present discussion concerns only mechanical equilibrium;
equation (3.6) does not presuppose the existence of complete thermal equilibrium.

If the body is not rotating, it will be spherical when in equilibrium, and the density and
pressure distributions will be spherically symmetrical. Equation (3.6) in spherical polar
coordinates then takes the form

~~(r2dP) = -4nGp.
r2 dr p dr

(3.7)

§4. The condition that convection be absent

A fluid can be in mechanical equilibrium (i.e. exhibit no macroscopic motion) without
being in thermal equilibrium. Equation (3.1), the condition for mechanical equilibrium,
can be satisfied even if the temperature is not constant throughout the fluid. However, the
question then arises of the stability of such an equilibrium. It is found that the equilibrium
is stable only when a certain condition is fulfilled. Otherwise, the equilibrium is unstable,
and this leads to the appearance in the fluid ofcurrents which tend to mix the fluid in such a
way as to equalize the temperature. This motion is called convection. Thus the condition
for a mechanical equilibrium to be stable is the condition that convection be absent. It can
be derived as follows.

Let us consider a fluid element at height z, having a specific volume V(p, s), where p and s
are the equilibrium pressure and entropy at height z. Suppose that this fluid element
undergoes an adiabatic upward displacement through a small interval ~; its specific volume
then becomes J/(p', s), where p' is the pressure at height z +~. For the equilibrium to be
stable, it is necessary (though not in general sufficient) that the resulting force on the
element should tend to return it to its original position. This means that the element must
be heavier than the fluid which it "displaces" in its new position. The specific volume of the
latter is V(p', s'), where s' is the equilibrium entropy at height z +~. Thus we have the
stability condition

V(p', s') - I/(p', s) > O.

Expanding this difference in powers of s' - s = ~ds/dz, we obtain

(av) ds > 0as p dz .

The formulae of thermodynamics give

(4.1)

(OV) T(OV)
a; p = cp aT /

where cp is the specific heat at constant pressure. Both cp and Tare positive, so that we can
write (4.1) as

(av) ds
aT pdz > O. (4.2)
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The majority of substances expand on heating, i.e. (a V/oT)p > O. The condition that
convection ,be absent then becomes

ds/dz > 0, (4.3)

(4.4)

i.e. the entropy must increase with height.
From this we easily find the condition that must be satisfied by the temperature gradient

dT/dz. Expanding the derivative ds/dz, we have

ds (as) dT (as) dp cpdT (a V) dp 0
dz = aT pdz + op Tdz = Tdz - aT pdz > .

Finally, substituting from (3.4) dp/dz = - g/ V, we obtain

-dT/dz < gflT/cp,

where fl = (I/V)(oV/oT)p is the thermal expansion coefficient. For a column of gas in
equilibrium which can be taken as a thermodynamically perfect gas, flT = 1 and (4.4)
becomes

-dT/dz < g/cp. (4.5)

Convection occurs if these conditions are not satisfied, i.e. if the temperature decreases
upwards with a gradient whose magnitude exceeds the value given by (4.4) and (4.5).t

§5. Bernoulli's equation

The equations of fluid dynamics are much simplified in the case of steady flow. By steady
flow we mean one in which the velocity is constant in time at any point occup;ed by fluid. In
other words, v is a function of the coordinates only, so that ov/ot = O. Equation (2.10) then
reduces to

! grad v2
- vxcurl v = - grad w. (5.1)

(5.2)

We now introduce the concept of streamlines. These are lines such that the tangent to a
streamline at any point givl<S the direction of the velocity at that point; they are determined
by the following system of differential equations:

dx dy dz

In steady flow the streamlines do not vary with time, and coincide with the paths of the
fluid particles. In non-steady flow. this coincidence no longer occurs: the tangents to the
streamlines give the directions of the velocities of fluid particles at various points in space
at a given instant, whereas the tangents to the paths give the directions of the velocities of
given fluid particles at various times.

We form the scalar product of equation (5.1) with the unit vector tangent to the
streamline at each point; this unit vector is denoted by 1. The projection of the gradient on
any direction is, as we know, the derivative in that direction. Hence the projection of grad w

is ow/vi. The vector vxcurl v is perpendicular to v, and its projection on the direction of 1 is
therefore zero.

t For water at 20 C, the right-hand side of (4.4) is about one degree per 6.7 km; for air. the right-hand side of
(45) is about one degree per 100 m.
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Thus we obtain from equatiqn (5.1)

o
01 (t1'2 + w) = o.

It follows from this that t1' 2 + w is constant along a streamline:

t1' 2 + w = constant. (5.3)

In general the constant takes different values for different streamlines. Equation (5.3) is
called Bernoulli's equation.t

If the flow takes place in a gravitational field, the acceleration g due to gravity must be
added to the right-hand side of equation (5.1). Let us take the direction of gravity as the z..
axis, with z increasing upwards. Then the cosine of the angle between the directions of g
and 1 is equal to the derivative - dz/dl, so that the projection of g on 1 is

- g dz/dl.
Accordingly, we now have

Thus Bernoulli's equation states that along_a streamline

t1' 2 + w+ gz = constant. (5.4)

§6. The energy flux

Let us choose some volume element fixed in space, and find how. the energy of the fluid
contained in this volume element varies with time. The energy of unit volume of fluid is

tpv2 + pe,

where the first term is the kinetic energy and the second the internal energy, e being the
internal energy per unit mass. The change in this energy is given by the partial derivative

0 12ot (1:PV + pel·

To calculate this quantity, we write

o 1 2 1 2 0P OV
ot (1:P1' ) = 1:1' at + pv· ot'

or, using the equation of continuity (1.2) and the equation of motion (2.3),

o .ot (tpv2
) = - tv2 dlV(pV) - v· grad p - pv· (v· grad)v.

In the last term we replace v · (v · grad)v by tv· grad 1'2, and grad p by Pgrad w- PT grad s
(using the thermodynamic rel~tion dw = Tds + (l/p)dp), obtaining

o ," , .
ot(tp1'

2
) = -t1'2

dlV (pv) - pv· grad (t1'2 + w) + pTv· grads.

t It was derived for an incompressible fluid (§10) by D. Bernoulli in 1738.
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In order to transform the derivative o(pe)/ot, we use the thermodynamic relation

de = Tds - pd V = Tds + (plp2)dp.

§6

Since e + pip = e + pV is simply the heat function w per unit mass, we find

d(pe) = edp + pde = wdp + pTds,

and so
o(pe) op as----at = wai+ pT at = -wdiv(pv)-pTv·grads.

Here we have also used the general adiabatic equation (2.6).
Combining the above results, we find the change in the energy to be

:t (tpv2+ pe) = - Hl,2 + w) div (pv) - pv· grad (tv2+ w),

or, finally,

(6.1)

In order to see the meaning of this equation, let us integrate it over some volume:

or, converting the volume integral on the right into a surface integral,

(6.2)

The left-hand side is the rate of change of the energy of the fluid in some given volume.
The right-hand side is therefore the amount of energy flowing out of this volume in unit
time. Hence we see that the expression

(6.3)

may be called the energyflux density vector. Its magnitude is the amount ofenergy passing
in unit time through unit area perpendicular to the direction of the velocity.

The expression (6.3) shows that any unit mass of fluid carries with it during its motion an
amount of energy w+ tv2

. The fact that the heat function w appears here, and not the
internal energy e, has a simple physical significance. Putting w = e + pip, we can write the
flux of energy through a closed surface in the form-tPV(tv2 + e)· df - tpv . df.

The first term is the energy (kinetic and internal) transported through the surface in unit
time by the mass of fluid. The second term is the work done by pressu~e forces on the fluid
within the surface.
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§7. Tbe momentum flux

We shall now give a similar series of arguments for the momentum of the fluid. The
momentum of unit volume is pv. Let us determine its rate ofchange, a(pv)/at. We shall use
tensor notation. We have

a aVj ap
at (pVj) = Pat +at Vj'

Using the equation of continuity (1.2) in the form

ap a(pVk)
at -a;;'

and Euler's equation (2.3) in the form

aVj aVj I ap
-= -Vk ---
at aXk paxj'

we obtain
a aVi ap a(pvd
-(pvJ = - pvk- ----. - Vi--
at aXk a:<.L aXk

ap a= ----,-(PVjVk)·
aXi oXk

We write the first term on the right in the form

and finally obtain
a an ik
at

(pvJ = --
aXk '

(7.1)

where the tensor n ik is defined as

(7.2)

This tensor is clearly symmetrical.
To see the meaning of the tensor n ik , we integrate equation (7.1) over some volume:

a f . fanjk- pvidJ; = - --dV.
at aXk

The integral on the right is transformed into a surface integral by Green's formula:t

:t f pvidV = -f njkdk (7.3)

The left-hand side is the rate of change of the ith component of the momentum
contained in the volume considered. The surface integral on the right is therefore the

t The rule for transforming an integral over a closed surface into one over the volume bounded by that surface
can be formulated as follows: the surface element dj, must be replaced by the operator d V .a/ax,. which is to be
applied to the whole of the integrand.
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amount of momentum flowing out through the bounding surface in unit time.
Consequently,TIikdik is the ith component of the momentum flowing through the surface
element df. Ifwe write dik in the form nk df, where dfis the area of the surface element, and
n is a unit vector along the outward normal, we find that II iknk is the flux of theith
component of momentum through unit surface area. We may notice that, according to
(7.2), TI iknk = pni + pVivknk. This expression can be written in vector form

pn +pv(v · n). (7.4)

Thusll ik is the ith component of the amount of momentum flowing in unit timethrougJI
unit area perpendicular to the xk-axis. The tensor II ik is called the momentumjiux density
tensor. The energy flux is determined by a vector, energy being a scalar; the momentum
flux, however, is determined by a tensor of rank t\\l-O, the momentum itself being a vector.

The vector (7.4) gives the momentum flux in the direction of n, i.e. through a surface
perpendicular to n. In particular, taking the unit vector n to be directed parallel to the fluid
velocity, we find that only the longitudinal component of momentum is transported in this
direction, and its flux density is p +pv2 . In a direction perpendicular to the velocity, only
the transverse-eomponent (relative to v) of momentum is transported, its flux density being
just p.

§8. The conservation of circulation

The integral

r = fvod"
taken along some closed contour, is called the velocity circulation round that contour.

Let us consider a closed contour drawn in the fluid at some instant. We suppose it to be a
"fluid contour", i.e. composed of the fluid particles that lie on it. In the course of time these
particles move about, and the contour moves with them. Let us investigate what happens
to the velocity circulation. In other words, let us calculate the time derivative

:t fv odl.
We have written here the total derivative with respect to time, since we are seeking the
change in the circulation round a "fluid contour" as it moves about, and not round a
contour fixed in space.

To avoid confusion, we shall temporarily denote differentiation with respect to the
coordinates by the symbol b, retaining the symbol d for differentiation with respect to time.
Next, we notice that an element dl of the length of the contour can· be written as the
difference br between the position vectors r of the points at the ends of the element. Thus
we write the velocity circulation as fv · br. In differentiating this integral with respect to
time, it must be borne in mind that not only the velocity but also the contour itself (i.e. its
shape) changes. Hence, on taking the time differentiation under the integral sign, we must
differentiate not only v but also br:
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Since the velocity v is just the time derivative of the position vector r, we have

dbr dr ~ ~ 1 2
V • - = v •b- = v •uV = ~ (1"l' ).

dt dt

The integral of a total differential along a closed contour, however, is zero. The second
Integral therefore vanishes, leaving

d l ' !dv ~
dt :(o()r = jdt0()r.

It now remains to substitute for the acceleration dv/dt its expression from (2.9):

dv/dt = - grad w.

Using Stokes' formula, we then have

~ v ~ f (dV) ~· ~r = curl - ,~f = 0
dt dt'

since curl grad w == O. Thus, going back to our previous notation, we findt

~lvodl = 0dt-y ,
or

fv odl = constant. (8.1)

We have therefore reached the conclusion that, in an ideal fluid, the velocity circulation
round a closed "fluid" contour is constant in time (Kelvin's theorem (1869) or the law of
conservation of circulation).

It should be emphasized that this result has been obtained by using Euler's equation in
the form· (2.9), and therefore involves the assumption that the flow is isentropic. The
theorem does not hold for flows which are not isentropic.!

By applying Kelvin's th~orem to an infinitesimal closed contour bC and transforming
the integral according to Stokes' theorem, we get

fv ° dl = fcurl v ° df ~ M ° curl v = constant, (8.2)

where df is a fluid surface element spanning the contour bC. The vector curl vis often called
the vorticity of the fluid flow at a given point. The constancy of the product (8.2) can be
intuitively interpreted as meaning that the vorticity moves with the fluid.

PROBLEM

Show that, in flow which is not isentropic, any moving particle carries with it a constant value of the product
(lip) grads·curlv (H. Ertel 1942).

t This result remains valid in a uniform gravitational field, since in that case curl g == O.
~ Mathematically, it is necessary that there should be a one-to-one relation between p and p (which for

isentropic flow is s(p, p) = constant); then - (lip) gradp can be written as the gradient of some function, a result
which is needed in deriving Kelvin's theorem.


