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Preface

As I think of writing about the present work I am pleasantly reminded of a few names
which occupy very special place in my academic and professional career. In 1966, while I
was working at the Post Office Research Station in London (now most probably at Martle-
sham) I got introduced to computers. I cannot forget, with how much patience and perse-
verence, B.E. Surtees had not only helped but had almost taught me Algol programming.
Later I used the computer extensively for solving scientific problems. Further, the Research
Station generously granted me day-release to attend MSc (Comp.Sc.) course at the City
University, London. Although I could not complete the course, I developed a strong liking
for Numerical Analysis. It would be my privilege to mention the name of Professor V.E.
Price who taught the subject with full devotion and dedication. I must admit that I learnt the
basics of Numerical Analysis from there and much of it makes part of Chapters 1 to 7 and
10 of the book. I was greatly impressed by the book Modern Computing Methods by E.T.
Goodwin, and still am. My intense desire for working in Numerical Analysis was fulfilled
when I joined PhD in 1969 at Brunel University under the guidance of Professor J. Crank
who was known internationally in the field. Luckily, a very challenging problem came my
way to work upon from Hammersmith Hospital, London. The problem required knowledge
for solving partial differential equations numerically. The first book on p.d.e., I read was
G.D. Smith’s who was coincidently teaching in the same department. Therefore no wonder,
my treatment for solving p.d.e.’s in Chapter 11 may be biased towards his book. I worked
with Professor Crank for five years – three years for my PhD and two years as a postdoc-
toral research fellow. It was only his constant inspiration that kept me going and galloping.
Those five years, I may call the most precious years of my life. I came to know with deep
sense of sorrow and grief that Professor Crank passed away in October 2006. This book
is a humble tribute to him. Same time when I was doing PhD, Professor J.R. Whiteman
joined the department. He taught splines to the students of MSc (Numerical Analysis) and
gave lectures on variational principle applied to Finite Element Method. I came to know
about these techniques through him which have been provided in Chapters 8 and 12. Nick
Papamichael was another good fellow in the department who taught Integral Equations to
MSc (Numerical Analysis). I learnt initially about this topic from his notes which have
been useful in writing Chapter 13.

After coming to India I joined I.I.T., Delhi as Pool Officer, with Professor M.P. Singh
who was heading a Centre, concerned with problems in bio-mathematics and atmospheric
science. I had a good interaction with the members of his team working on diffusion prob-
lems. Professor Singh was extremely helpful in providing me all facilities – academic and
otherwise. He had been a source of constant encouragement and inspiration during that



i
i

“Prelims” — 2014/12/15 — 15:21 — page xvi — #16 i
i

i
i

i
i

xvi � Preface

period and afterwards also, as I stayed there for less than 11=2 years only. I joined in 1976,
the Department of Mathematics at University of Roorkee (now I.I.T., Roorkee). There I got
an opportunity to hone and extend my knowledge of Numerical Analysis further through
teaching and guiding research. Professor C. Prasad, Head of Department, wanted to see
an all-round expansion in Numerical Analysis and Computer Science in the department. I
was entrusted to carry out various activities in these areas. A postgraduate diploma course
in Computer Science was started in the department in 1978. Same year, I also organised
a short term course on Numerical Solution of Partial Differential Equations under Qual-
ity Improvement Program. Professor M.B. Kanchi (Civil Engineering Department) gave
lectures on Finite Element Method (FEM) in this program. It inspired me to broaden my
knowledge on FEM which has been included in Chapter 12. Further, I thought to provide
the reader an exposure to a very important class of problems known as free and moving
boundary problems. Such problems arise in almost all branches of engineering and applied
sciences. A brief introduction to these problems is given in Chapter 15. I have included a
list of my research papers on moving boundary problems so that the interested readers may
search other papers through cross references. My stay of 21 years at University of Roorkee
(I.I.T., Roorkee) had been extremely fruitful academically as well as in personal relations.
I have always cherished its memories in my heart and will continue to do so all my life. As
would have been clear, the present book is, in a way, direct or indirect contribution from
various people — to whom I feel greatly indebted. Whatever faults are there, they are mine
— criticism and suggestions would be most welcome. I do hope the book will be useful to
students, to teachers and to those who want to use Numerical Analysis as a tool for solving
practical problems.

Preface to Second Edition
It gave me a great sense of satisfaction and happiness to hear some good words about the
book from my old colleagues and acquaintances working in the field of Numerical Analysis.
In this edition I have included a new chapter dealing with Fourier Series, Fourier Transform
and Fast Fourier Transform (FFT). In fact I wanted to include this topic in the first edi-
tion itself but I was not truly prepared then. Now I have also added first order hyperbolic
equation as a new section in the chapter on partial differential equations. I thank Cambridge
University Press for bringing out this revised edition.
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Errors in Computation

1

1.1 Introduction

For solving a mathematical problem by numerical method, an input is provided in the form
of some numerical data or it is generated/created as called for by the problem. The in-
put is processed through arithmetic operations together with logical operations, which are
performed in a systematic manner and the output is produced in the form of some num-
bers. Thus the whole exercise in Numerical Analysis is all about manipulation of numbers.
Whether we are working by hand or on a computing machine, there is always a constraint
in regard to physical size of the numbers, i.e., the number of digits a number can contain.
Inside a computer the size of the number is dependent on its word-length (number of bits)
which also puts a limit on the range of numbers that can be represented in a particular
computer. Further, it may be noted that all numbers are not represented exactly inside the
computer and that the input given in the decimal form is converted to binary in the com-
puter. It should also be remembered that fractions cannot be stored in their natural form;
they are converted to decimals, for example 2/5 is input as 0.4 and 1/3 as 0.333... up to a
finite number of digits acceptable by a computer.

1.2 Floating Point Representation of Number

When a number x is expressed as,

x = p�10q

where 0:1 � jpj < 1:0 and q is an integer (positive (+ve) or negative (�ve)), it is called
‘floating point’ representation of number x. A floating point form consists of two parts; the
fractional part p (alongwith the sign) is known as mantissa and the other part q as exponent,
a power raised to a radix (in the case of decimal system, 10). At some places it is referred to
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as ‘normalised floating point’ and when 1� p < 10, the form is called ‘scientific notation’.
A few examples of floating point representation, f l(x) of number x are given as follows:

x f l(x) Mantissa(p) Exponent(q)

2:0456 0:20456�101 0:20456 1

�32:7652 �0:327652�102 �0:327652 2

0:00234 0:234�10�2 0:234 �2

0:000000034 0:34�10�7 0:34 �7

34000000 0:34�108 0:34 8

1.3 Binary Numbers
The decimal numbers (radix 10) are converted to binary form with digits 0 and 1 (radix
2) in the computer. An integer decimal number, may be converted to binary equivalent by
following procedure:

Divide repeatedly by 2 until last quotient is 1, keeping the remainder against the quotient;
read the binary digits in the direction of arrow. Thus we get,

23 = 10111; 14 = 1110:

The fractional decimal number is converted to binary form in the following manner:
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Multiply by 2 until the decimal part is zero, saving digit 0 or 1 before the decimal point.
Read the digits saved in a top-down manner. Thus the converted numbers are

0:75 = 0:11; 0:4 = 0:0110011 (0011 recurring); 0:1 = 0:0001100 (1100 recurring)

When a decimal number consists of both parts, integral as well as fractional, then both
parts are converted to binary forms separately. For example, 23.75 will convert to 10111.11.
It should be clear from the above examples that the integer numbers in the decimal system
can be converted exactly in the binary system but most of the non-integers may be repre-
sented approximately due to non-terminating character of the converted numbers.

For conversion from binary to decimal, we simply multiply the binary digits by their
respective place-value and add. For example, 10111.11 can be converted to decimal form
as,

24 23 22 21 20 2�1 2�2

1 0 1 1 1 1 1 = 1�24 + 0�23 + 1�22 + 1�21 + 1�20 + 1�2�1 + 1�2�2

= 16 + 0 + 4 + 2 + 1 + :5 + :25

= 23:75

It may also be noted that largest k-digit binary integer will have the value 2k � 1 in
decimal. For example, the largest 2-digit binary number will be 11 = 22� 1 = 3 and a
3-digit largest binary number will be 111 = 23�1 = 7 and so on. Obviously all the k digits
will be binary 1’s. A k-digit binary number can represent 2k decimal numbers from 0 to
2k�1.

1.3.1 Binary number representation in computer

As stated earlier, all the input data is converted to binary inside the computer; while the
decimal integers are represented exactly in the computer memory, the non-integers are rep-
resented in floating point form. We would like to explain very briefly as how the floating
point numbers are stored in the computer memory. Consider the floating point representa-
tion of binary numbers given below:

Binary number Floating point form Mantissa Exponent

0:0111 0:1110�10�01 +0:1110 �01

�1:101 �0:1101�10+01 �0:1101 +01

11:1 0:1110�10+10 +0:1110 +10
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It may be noted that all numbers are in binary so that 10 is equal to 2 in decimal. The
other thing to be noted is that mantissa is expressed in four digits and exponent in two digits,
in each case.

Let us now consider a hypothetical case of a computer having a word length of 8 bits
only. Out of eight bits, the left-most bit is used for storing the sign of mantissa. Let 0
denote positive (+ve) and 1 denote negative (�ve) sign of mantissa. The next four bits are
used for storing the binary digits of mantissa. The right-most 3 bits are used for storing the
exponent part; the first bit for storing its sign and last two bits for its value, digit 0 showing
positive (+ve) and digit 1 showing negative (�ve) exponent (See Fig. 1.1).

Figure 1.1 Floating point representation in 8-bit computer memory.

According to the memory configuration of Fig. 1.1 the binary numbers given above will
be represented in the floating point form as follows:

Binary number with decimal equivalent Representation in 8-bit memory

(a) 0:0111 (0:4375) 01110101

(b) �1:101 (�1:875) 11101001

(c) 11:1 (3:5) 01110010

It may be stated that the positive exponent varies from 000 to 011, i.e., from 0 to 3 in
decimal. The negative exponent should vary from 101 to 111, i.e., from �1 to �3. But 100
may be considered as �4, since 000 is already zero, hence negative exponent varies from
�1 to �4 in decimal.

It may be noted that the largest positive number that can be stored under present con-
figuration would be, 0:1111� 1011 = 111:1 (binary) = 7:5 (decimal). The algebraically
smallest number that can be stored would be �7:5 (in decimal). Thus the range of numbers
that can be represented in the computer memory would be �7:5 � x � 7:5. The small-
est positive non-zero number represented in the above memory configuration would be,
0:1000� 10100 = 0:00001 (binary) = 2�5 = 0:03125 (decimal). However, it may also be
mentioned that even the simplest computer has a memory of 32-bit word and two or more
words can be adjoined to store a number in floating point. Thus the space (number of bits)
occupied by the mantissa and the exponent would be manifolds that of shown in Fig. 1.1
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but the logic remains same. When a fixed number of decimal digits are kept in all numbers,
it is called ‘Fixed Point’ representation.

1.4 Significant Digits

All the digits from 0 to 9 in a number, except the zeros which are used for fixation of decimal
point, are called significant digits (or figures). For example, in the number .003456, the first
two zeros are not significant since we can also express the number as :3456�10�2, while
the other four digits, namely, 3, 4, 5 and 6 are significant. But in the number 20.003456, all
the eight digits are significant. In order to find the number of significant digits in a number,
express it in floating point; the mantissa part gives the number of significant digits.Whether
the last zeros in a number are significant or not may depend on the context. For example, in
measuring the heights of the students, in 168.00 cm, the last zero may not be significant and
we can express the height as 168.0 cm, showing that the height is being measured nearest
to the 1

10 th part of the centimeter, so that zero in 168.0 cm is significant.

1.5 Rounding and Chopping a Number

In scientific computing we are encountered by numbers with too many digits. More often
than not, we have to shorten/reduce them to a size which may not affect the end result within
a desired accuracy. There are two ways of reducing the size of or truncating the number,
viz., (i) rounding (ii) chopping. Let us first discuss the procedure for rounding off a number
x in decimal system.

Let the number x be expressed in floating point form with s digits in mantissa and with
exponent q, as

x = �d1d2 : : :dndn+1 : : : :ds�10q:

If the number x is to be rounded to n significant digits, following procedure would be
adopted:

(i) if dn+1 < 5, then no change in any of the digits from d1 to dn and the rounded number
would be,

x’ :d1d2 : : : : dn�10q:

(ii) if dn+1 > 5, then digit dn is incremented by 1, i:e:dn becomes dn +1; as a cosequence
of this other digits may get affected and even the exponent may have to be adjusted
accordingly.
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(iii) if dn+1 = 5, then there will be two ways for rounding, depending upon dn being an
even digit (0;2;4;6;8) or an odd digit (1, 3, 5, 7, 9). If dn is even, then case (i)

applies and if dn is odd then case (ii) applies. Thus probability of both cases is
1
2

when dn+1 = 5.

Given below are some examples of rounding the numbers to four places of decimal (four
significant digits):

Floating point number Rounded to four decimals

(a) 0:245684�102 0:2457�102

(b) 0:245629�10�2 0:2456�10�2

(c) 0:245659�102 0:2456�102

(d) 0:245750�102 0:2458�102

(e) 0:999951�102 0:1000�103

(f) 0:999858�102 0:9998�102

The difference between examples (e) and ( f ) may be noted. It may also be observed that
in example (e) all zeros in the rounded number are significant.

However, a more conventional way for rounding, is straight in that if dn+1 < 5, then all
the digits from d1 to dn remain unaltered [case (i)] while if dn+1 � 5, then dn is incremented
by 1 and necessary changes are made in the digits d1 to dn and also in the exponent, if
necessary [case (ii)].

When all the digits after dn are ignored, irrespective of whatever value dn+1 has, the pro-
cedure for truncating the number is known as ‘chopping off’ the number or simply ‘chop-
ping’. If there are sufficient number of significant digits in a number, like in a computer,
the process of chopping may not affect the result in normal circumstances.

1.6 Errors due to Rounding/Chopping
Suppose a number x is rounded to x�, then the modulus of the difference between x and x�,
i:e: jx� x�j is known as rounding error or error due to rounding in x�.

Let x be a number which has been rounded to 4 decimals, say x� = 0:4387. Then lower
and upper bounds for the actual number x would be,

0:43865� x < 0:43875

or 0:43865�0:4387� x� x� < 0:43875�0:4387
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or �0:00005� x� x� < 0:00005

or jx� x�j � 0:00005 =
1
2
�10�4

=
1
2
� unit at 4th decimal place.

The above result can be generalised for a number x represented in the floating point form
as,

x = �d1d2 : : : :dndn+1 : : : :ds�10q:

If x is rounded to n decimals, then the maximum rounding error would be,

jx � x�j � 1
2
�10�n�10q

=
1
2
�10q�n. (1.1)

If the number x is chopped off to n decimals, then it is easy to see that the maximum
error due to chopping would be,

jx� x�j � 10q�n. (1.2)

That is, the error in chopping a number is twice that in the rounding.

1.7 Measures of Error in Approximate Numbers

Let x� be an approximation of exact number x, then we can measure the magnitude of error
in three different forms:

(i) absolute error (a.e.) = jx� x�j (1.3a)

(ii) relative error (r.e.) =

����x� x�

x

���� or
����x� x�

x�

���� (1.3b)

(iii) percentage error (p.e.) = r.e. �100 (1.3c)
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1.8 Errors in Arithmetic Operations

Let x1 and x2 be two numbers which are rounded to x�1 and x�2 respectively and let ε1 and
ε2 be the corresponding rounding errors in them, such that x1 = x�1 + ε1 and x2 = x�2 + ε2.
We are going to study below, the effects of rounding errors on arithmetic operations, viz.,
addition, subtraction, multiplication and division.

(i) Addition

x1 + x2 = x�1 + ε1 + x�2 + ε2

= x�1 + x�2 + ε1 + ε2

or j(x1 + x2)� (x�1 + x�2)j= j(x1� x�1)+(x2� x�2)j= jε1 + ε2j � jε1j+ jε2j.

This can be generalised to n numbers as,����� n

∑
i=1

xi�
n

∑
i=1

x�i

�����=

����� n

∑
i=1

(xi� x�i )

�����=

����� n

∑
i=1

εi

������ n

∑
i=1
jεij (1.4)

That is, the total absolute error in the sum of n numbers will be less than or equal to
the sum of the absolute errors in each of them. Although it gives the upper bound for the
absolute error in the sum, the actual error will be much smaller since some of the errors
may be positive and some negative so that cumulative effect would be much reduced.

(ii) Subtraction

x1� x2 = x�1 + ε1� x�2� ε2

or j(x1� x2)� (x�1� x�2)j= j(x1� x�1)� (x2� x�2)j= jε1� ε2j � jε1j+ jε2j. (1.5)

Thus the absolute error in subtraction of two approximate numbers can be as great as the
sum of their individual absolute errors; since the errors can be positive or negative and if ε1
and ε2 are of opposite signs, then under subtraction, they will be added up.

(iii) Multiplication

x1 � x2 = (x�1 + ε1) � (x�2 + ε2)

or x1 � x2� x�1 � x�2 = x�1ε2 + x�2ε1, neglecting ε1ε2

a.e. = jx1x2� x�1 � x�2j � jx�1ε2j+ jx�2ε1j (1.6a)
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r.e. =

����x1x2� x�1x�2
x�1x�2

����� ����ε1

x�1

����+ ����ε2

x�2

����. (1.6b)

Thus the maximum relative error in the product of two approximate numbers will be
less than or equal to the sum their individual relative errors. This can be generalised to n
numbers.

(iv) Division

x1

x2
=

x�1 + ε1

x�2 + ε2
=

x�1

�
1 +

ε1

x�1

�
x�2

�
1 +

ε2

x�2

� =
x�1
x�2

�
1 +

ε1

x�1

��
1 +

ε2

x�2

��1

=
x�1
x�2

�
1 +

ε1

x�1

��
1� ε2

x�2

�
, neglecting ε2

2 and higher powers

=
x�1
x�2

�
1 +

ε1

x�1
� ε2

x�2

�
, neglecting ε1ε2 term.

a.e. =

����x1

x2
� x�1

x�2

����� ����ε1

x�2

����+
�����ε2x�1

x�2
2

�����. (1.7a)

r.e. =

�����x1

x2
� x�1

x�2

�
� x�1

x�2

����� ����ε1

x�1

����+ ����ε2

x�2

����. (1.7b)

Like multiplication, the relative error in the division of a number by another number
cannot exceed the sum of their individual relative errors.

1.9 Computation of Errors Using Differentials

Let z be a function of two variables x and y defined as z = f (x; y). If increments δx and δy
are given to x and y respectively, then the corresponding increment δ z in z is given by,

δ z = f (x + δx; y + δy)� f (x; y):

Expanding the first term by Taylor’s series (see Appendix A),

δ z =

�
f (x; y)+

∂ f
∂x

δx +
∂ f
∂y

δy +
1
2

�
∂ 2 f
∂x2 δx2 + 2

∂ 2 f
∂x∂y

δx �δy +
∂ 2 f
∂y2 δy2

�
+ � � �

�
�

f (x; y):
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Neglecting higher powers of δx and δy and their products, assuming they are small,
above may be written as,

δ z’ ∂ f
∂x

δx +
∂ f
∂y

δy. (1.8)

The error in arithmetic operations can be explained with the help of formula (1.8) con-
sidering δx and δy as errors in x and y respectively:

(i) & (ii) Addition/Subtraction

z = f (x; y) = x� y;
∂ f
∂x

= 1;
∂ f
∂y

=�1.

a.e. = jδ zj � jδxj+ jδyj

(iii) Multiplication

z = f (x; y) = xy;
∂ f
∂x

= y;
∂ f
∂y

= x.

a.e. = jδ zj � jyδxj+ jxδyj and r.e. =

����δ z
z

����� ����δx
x

����+ ����δy
y

����.
(iv) Division

z = f (x; y) =
x
y

;
∂ f
∂ z

=
1
y

;
∂ f
∂y

=� x
y2 .

δ z =
δx
y
� xδy

y2 or
δ z
z

=
δx
x
� δy

y

r.e. =

����δ z
z

����� ����δx
x

����+ ����δy
y

����.
Note: The analysis can be extended for n variables x1; x2; : : : xn.

If z = f (x1; x2; : : : xn) then

δ z =
∂ f
∂x1
�δx1 +

∂ f
∂x2
�δx2 + : : :+

∂ f
∂xn
�δxn:
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1.10 Errors in Evaluation of Some Standard Functions

Let y be a function of x defined by y = f (x). Then for a small change δx in x, the corre-
sponding change δy in y is given by,

δy =
d f
dx
�δx. (1.9)

Let us apply formula (1.9) to compute the errors in some functions of one variable.

(i) Power Function f (x) = xa

Differentiating y = xa, we get using (1.9)

a.e. = jδyj= jaxa�1 �δxj

r.e. =

����δy
y

����=

����a � δx
x

����� jaj ����δx
x

����
� jaj. relative error in x. (1.10)

It means that the relative error in x2 will be twice and in
p

x it will be half that of the
relative error in x. In x�1, the r.e. will be same as in x and twice in x�2.

(ii) Exponential Function f (x) = ax

y = ax;
d f
dx

= ax � lna:

a.e. = jax lna: δxj and r.e. = j lna:δxj= j lnajjδxj. (1.11)

(iii) Logarithmic Function f (x) = lnx

y = lnx;
d f
dx

=
1
x

a.e. = jδyj=
����δx

x

����. (1.12)

It shows that the absolute error in lnx will be same as the relative error in x.

(iv) Trigonometric Function f (x) = sinx(or cosx)

y = sinx;
d f
dx

= cosx

a.e. = jδyj= jcosx �δxj � jcosxj � jδxj � jδxj. (1.13)
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Since the value of cosx (or sinx) does not exceed 1, the absolute error in sinx(or cosx)
does not exceed the absolute error in x.

Example 1.1
Find the sum of the following 10 approximate numbers: 0.248, 1.1524, 31.3, 9.75, 74.2, 8.14,
0.0767, 1.00621, 1.000245, 14.8 and round the sum to one place of decimal. Also add up the
rounding errors in all these numbers up to 4 decimal places only.

Solution These numbers have different rounding errors. The max. error is in numbers rounded to
one decimal place which is in 1

2 �10�1 = 0:05 in each of the numbers 31.3, 74.2 and 14.8. The
min. rounded error is 1

2 �10�6 = 0:0000005 in 1.000245. The final sum should be computed up
to one decimal only. For this it may be sufficient to retain 2 decimal digits (or at the most 3 in a
number since the numbers are only 10.

Number rounded to 3 decimals Rounding error up to 4 decimal

0:248 0:0005

1:152 0:0005

31:3- - 0:05- -

9:75- 0:005

74:2- - 0:05- -

8:14- 0:005-

0:077 0:0005

1:006 0:0005

1:000 0:0000

14:8- - 0:05- -

141:673 0:1620

sum = 141:673’ 141:7

Max. Rounding error in the sum = 0:162’ 0:16 or ’ 0:2.
Actual error in the sum due to rounding is

141:7�141:673 = 0:027 which is much less than 0.2 (or 0.16)

r.e. =
0:027
141:67

’ 0:0002

Show that it will be less than the max. r.e. of any of the given number.
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Example 1.2
Two numbers x1 and x2 are given which are correct up to their last digit: x1 = 12:47; x2 = 10:3.
Estimate the max. absolute error, relative error and percentage error in computing x1� x2.

Solution Max rounding error in 12.47 is � 0:005
Max rounding error in 10.3 is � :05

x1� x2 = 12:47�10:3 = 2:17

a.e. = 0:005 + 0:05 = 0:055

r.e. =
0:055
2:17

’ 0:022

p.e. = 0:022�100 = 2:2%.

Example 1.3
Multiply two numbers x1 = 2:47 and x2 = 1:6 and estimate the relative error in the product. The
numbers are correct to their last digit. Also compute absolute error and percentage error.

Solution Max. rounding error in x1 = 2:47 is � 0:005
Max. rounding error in x2 = 1:6 is � 0:05

x1x2 = 2:47�1:6 = 3:952’ 3:95

r.e. =
0:005
2:47

+
0:05
1:6

’ 0:002 + 0:031

’ 0:033

a.e. = (r:e:)� x1x2

= 0:033�3:95 = 0:130

p.e. = (r:e:)�100

= 0:033�100 = 3:3%

Example 1.4
Two approximate numbers x1 and x2 are given correct to their last digit, x1 = 5:16 and x2 = 1:2.
Find the r.e., a.e. and p.e. in computing x1=x2.
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Solution Max. error in 5.16 is � 0:005
Max. error in 1.2 is � 0:05

x1

x2
=

5:16
12

= 4:3

r.e. =
0:005
5:16

+
0:05
1:2

= 0:00097 + 0:0417

= 0:0427

p.e. = 0:0427�100 = 4:27%

a.e. = 0:0427�4:3

’ 0:184:

Example 1.5
To what accuracy can we expect the number x to be correct if its logarithm (lnx) is read from a
four-place log table for x < 100.

Solution When y = lnx

δy =
δx
x

or δx = x �δy.

If lnx is correct up to 4 decimals the error in it will be 0.00005 (= δy).

δxmax = δy � x = 0:00005�100 = 0:005

For the error to be less than 0.005 the value of x may be expected to be correct up to 2 decimals.

Example 1.6
What will be the percentage error in the area of a rectangle if there is an error of 1% in the
measurement of its sides?

Solution Let the accurate sides of the rectangle be x and y, then its area A = xy. If there is error
δx in x and δy in y, the corresponding error in A in given by,

δA = xδy + yδx

or
δA
A

=
δx
x

+
δy
y
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Percentage error in A =
δA
A
�100

Thus we get the percentage error in A as

δA
A
�100 =

δx
x
�100 +

δy
y
�100

= 1 + 1 = 2%.

Example 1.7

What will be the percentage error in the time period T of a pendulum where T = 2π

s
l
g

if there

is an error of 1% in l and 2% in g.

Solution T = 2π

s
l
g

Taking log on both sides we get

lnT = ln2π +
1
2

[ln l� lng]

Its differential will give,

1
T

δT = 0 +
1
2

�
δ l
l
� δg

g

�

or
δT
T
�100 =

1
2

�
δ l
l
�100� δg

g
�100

�
Max. Percentage error in T is given by

δT
T
�100 =

1
2

[(�1)� (�2)]

=
1
2

[3] = 1:5%:

1.11 Truncation Error and Taylor’s Theorem
Quite often a function or a formula is expressed in the form of a series which may contain
finite or infinite number of terms. Depending on the accuracy warranted by the problem
or due to practical considerations, this series is truncated consisting of a first few terms of
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the original series, neglecting all the remaining terms. The difference between the original
series and the truncated series is known as ‘truncation error’ or ‘remainder’. Obviously, if
the series is infinite, it should be convergent, otherwise truncation error will be infinite.

Let us consider the exponential function ex which is expressed by an infinite series as,

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ � � � (1.14)

Suppose we want to evaluate ex at x =�0:1 from (1.14), then

e�0:1 = 1�0:1 + 0:005�0:000167 + 0:0000042 : : : . (1.15)

Truncated up to four terms it gives,

e�0:1 = 1�0:1 + 0:005�0:000167 = 0:904843. (1.16)

The infinite series (1.15) is a convergent series with alternating signs. Hence, if it is
truncated up to four terms (1.16), the next neglected term will give the maximum error
(truncation) in the truncated series. That means, the maximum error in the computation,
e�0:1 = 0:904843 can be at the most 0.0000042, implying that our result is correct up to
five places of decimal.

The infinite series (1.14) truncated to four terms may be written as,

ex = 1 + x +
x2

2!
+

x3

3!
: (1.17)

Again, let us evaluate ex at x = 0:1 from the truncated series (1.17).

e0:1 = 1 + 0:1 + 0:005 + 0:000167 = 1:105167. (1.18)

Although series (1.14) converges for all finite values of x, we can not ascertain the degree
of accuracy of the result of (1.18), i.e., the magnitude of truncation error in the computation
of e0:1 from a truncated series (1.17). Secondly we may be interested to know the range of
x, for which the truncated series (1.17) will provide the value of ex which is correct up to
a certain number of decimals, say for example, up to 4 places of decimal which means the
truncation error is not greater than 1

2 �10�4. The answer to these questions may be found
in the Taylor’s Theorem (formula) stated below:

Let f (x) be a function of x, possessing derivatives of all orders up to (n+1) in an interval
I. If x0 is a point in I, then for each x in I,
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f (x) = f (x0)+(x� x0) f 0(x0)+
(x� x0)2

2!
f 00(x0)+ � � �+ (x� x0)n

n!
f n(x0)+ Rn+1(x) (1.19)

where, Rn+1(x) =
(x� x0)n+1

(n + 1)!
f n+1(ξ ); ξ lies between x0 and x. (1.20)

The representation of the function f (x) as power series in powers of (x�x0) as shown by
(1.19) is known is Taylor’s Theorem (formula) with the associated remainder term of order
(n + 1), or error term, Rn+1(x) as given by (1.20).

If a function is approximated by the first (n + 1) terms of (1.19), i.e., a polynomial of
degree n, then the error in the polynomial approximation would be given by (1.20) which
will be of order (n + 1) while the formula will be of order n.

If Rn+1(x) tends to zero as n! ∞ for all x in the interval I, then formula (1.19) may be
represented by an infinite series which converges to f (x), i.e.,

f (x) = f (x0)+(x� x0) f 0(x0)+
(x� x0)2

2!
f 00(x0)+

(x� x0)3

3!
f 000(x0)+ � � � (1.21)

The series given by (1.21) is known as Taylor’s series which is also called Taylor’s ex-
pansion of the function f (x) about the point x0.

Alternatively, if we put x = x0 + h; h > 0, the Taylor’s formula can be written as,

f (x0 + h) = f (x0)+ h f 0(x0)+
h2

2!
f 00(x0)+

h3

3!
f 000(x0)+ � � � h

n

n!
f n(x0)+ Rn+1 (1.22)

where the remainder term,

Rn+1(h) =
hn+1

(n + 1)!
f n+1(ξ ); x0 � ξ � x0 + h. (1.23)

Similarly, expansion for f (x0�h) can be written as,

f (x0�h) = f (x0)�h f 0(x0)+
h2

2!
f 00(x0)� h3

3!
f 000(x0)+� � �(�1)n hn

n!
f n(x0)+Rn+1, (1.24)

with associated remainder term,

Rn+1(h) = (�1)n+1 hn+1

(n + 1)!
f n+1(ξ ), x0�h� ξ � x0. (1.25)

If point x0 is taken at the origin in formula (1.19), it is called Maclaurin’s formula which
can be written as,
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f (x) = f0 + x f 00 +
x2

2!
f 000 +

x3

3!
f 0000 + � � �+ xn

n!
f n
0 + Rn+1(x), (1.26)

where Rn+1(x) =
xn+1

(n + 1)!
f n+1(ξ ); 0� ξ � x, (1.27)

and f k
0 ; k = 1(1)n, denotes the kth derivative of f (x) at x = 0.

When a function f (x) is approximated by a polynomial Pn(x) of degree n by Taylor’s
formula, the truncation error is given by the remainder term Rn+1(x), i.e.,

f (x) = Pn(x) + Rn+1(x)

or Rn+1(x) = f (x)�Pn(x). (1.28)

But we can not compute Rn+1(x) as its value is dependent on ξ which is a point we have
no knowledge of. Therefore, we compute the upper bound of Rn+1(x) to give the magnitude
of truncation error, denoted by R(x), i.e.,

R(x) = max jRn+1(x)j, over domain of x. (1.29)

Now, we revert back to our problem of computing the truncation error in the computation
of ex, at x = 0:1, by the truncated series (1.17).

We see that the expansion (1.16) of ex is a Taylor’s (Maclaurin’s) series for f (x) = ex.
The truncation error in (1.17) will be given by,

R(x) =

����x4

4!
f iv(ξ )

���� ; 0� ξ � 0:1:

f iv(x) = ex, has maximum value at x = 0:1, for 0 � ξ � 0:1 giving f iv(0:1) = e0:1 =
1:1052. Thus the truncation error is given by

R =
(0:1)4

24
�1:1052 = 0:000004605 = 0:46�10�5:

As the truncation error is less than 1
2 � 10�5, the value of e0:1 computed from (1.17) is

correct up to five decimal places, i.e., e0:1 = 1:10517.
Suppose we want range of x for which the truncated formula provides values of ex correct

up to 4 places of decimal, then we solve,

jR(x)j � 1
2
�10�4 or

���� x4

24
� f iv(x)

����� 1
2
�10�4 giving
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x4 � 0:0012� e�x or x� 0:1861� e�x=4: ∵ eξ will be maximum at x.

To get an approximate value of x we can solve,

x = 0:1861
�

1� x
4

�
giving x’ 0:1778.

Thus for values approximately 0� x� 0:18, the truncation error will be less than 0.00005.

Example 1.8

Compute (1:1)�1 from Taylor’s expansion of the function f (x) =
1
x

about x0 = 1, truncated up to
four terms. Also compute the truncation error and compare your result with the exact value.

Solution

f (x) =
1
x

; f 0(x) =� 1
x2 ; f 00(x) = +

2
x3 ; f 000(x) =� 6

x4 ; f iv(x) =
24
x5 :

f (1) = 1; f 0(x) =�1; f 00 (1) = 2; f 000(1) =�6.

The truncated series about x0 = 1, up to four terms is,

f (x) = f (1)+(x �1) f 0(1)+
(x�1)2

2
f 00(1)+

(x�1)3

6
f 000(1)

f (1:1) = 1 + 0:1� (�1)+
0:01

2
�2 +

0:001
6
� (�6) = 0:909

The truncation error is given by,

R = max
���� (x�1)4

24
� f iv(ξ )

���� ; 1� ξ � 1:1

=
(1:1�1)4

24
�24 = 0:0001; ∵ f iv(x) is maximum at x = 1.

Exact value = 1=1:1 = 0:909090 (90 recurring)
Computed value = 0:909

Actual error = 0:909090�0:909 = 0:00009.
The actual error is less than the truncation error 0.0001.

Example 1.9

Using Taylor’s expansion for f (x) =
1
x

about x0 = 1, truncated up to four terms, compute inverse
of 2. Discuss the result.

Solution Taylor’s series up to four terms is,
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f (x) = f (x0)+(x� x0) f 0(x0)+
(x� x0)2

2!
f 00(x0)+

(x� x0)3

3!
f 000(x0)

x0 = 1; f (x0) = 1; f 0(x0) =�1; f 00(x0) = 2; f 000(x0)�6:

f (2) = 1 + 1(�1)+
1
2
�2� 1

6
�6

= 0

Truncation error is given by,

R(x) =

���� (x�1)4

4!
�24

����
For x = 2; jRj= 1.

Exact value =
1
2

= 0:5

Computed value = 0

Truncation error = 1

Thus we see that the truncation error is very large; the difference between the exact value and
computed value could be as large as 1.0. Further, even if we take infinite number of terms, the
sum will oscillate between 0 and 1 since f (2) = 1�1 + 1�1 + : : :. The point x should be close
to x0; i:e: (x � x0) should not be too large.

Exercise 1
1.1 Find the range of number x, if it has been (i) rounded off to 3.14 (ii) chopped off to

3.14.

1.2 Express the number 0.007856 in floating point form; round the number to two signif-
icant digits and find the absolute error.

1.3 Let x = 9:5 be an approximate number which has an error of at most 5%. Find the
range of the exact number.

1.4 Find the maximum value of the expression given below when all the numbers have
been rounded,

x =
1:25(4:0�2:25)

10
(Hint: For computing maximum value of x, take largest numerator and smallest de-
nominator)
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1.5 The diameter and height of a right circular cylinder are measured as 4 cm and 10 cm.
respectively. If the possible error in each measurement is 0.1 cm, find the maximum
absolute error in its volume. (π = 3:14).

1.6 Obtain a quadratic approximation for ex near x = 0 by truncating the Taylor’s series.
Use the approximation to find the range of x so that the error does not exceed 0.005
(or approximation computes values correct up to 2 decimal places).
Compute your answer correct up to one place of decimal only.

1.7 If y = x1=3, show that the relative error in y will be
1
3

rd of the relative error in x.

Hence compute (1003)1=3.
[Hint: Take x = 1000; δx = 3].

References and Some Useful Related Books/Papers
1. Hartree, D.R., Numerical Analysis, Oxford University Press.

2. Hildebrand, F.B., Introduction to Numerical Analysis, Tata McGraw-Hill.

3. Scarborough, J.B., Numerical Mathematical Analysis, Oxford Book Company.
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Linear Equations and 

Eigenvalue Problem

2.1 Introduction
Let us consider the following system of equations,

a11x1 + a12x2 + a13x3 + : : : :+ a1nxn = b1

a21x1 + a22x2 + a23x3 + : : : :+ a2nxn = b2

a31x1 + a32x2 + a33x3 + : : : :+ a3nxn = b3
...

...
...

...
...

an1x1 + an2x2 + an3x3 + : : : :+ annxn = bn

9>>>>>>>>=>>>>>>>>;
(2.1)

The system of equations given by (2.1) is a set of n algebraic equations which are linear
in x1; x2 : : : : xn; while the values of ai j and bi; i = 1(1)n; j = 1(1)n are prescribed, the
values of the unknowns x1; x2; : : : : xn are to be determined such that all the n equations are
satisfied simultaneously.

The system of equations (2.1) can be expressed in matrix form as,

Ax = b, (2.2)

where A =

2666666664

a11 a12 a13 � � � a1n

a21 a22 a23 � � � a2n

a31 a32 a33 � � � a3n
...

an1 an2 an3 � � � ann

3777777775
(2.3)
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xT = (x1 x2 x3 :::: xn), (2.3a)

bT = (b1 b2 b3 :::: bn), (2.3b)

the superscript T denotes transpose of a matrix. We assume that not all the elements of b
are zero; that is, b is not a ‘null’ vector (b 6= 0).

The matrix A is called coefficient matrix; the column vector (matrix) x which is to be
determined, is the solution vector and b is the given right side.

2.2 Ill-conditioned Equations
When a minor change in the given value (s) results in a drastic change in the true solution of
a system, it is called ‘ill-conditioned’. Such a set of simultaneous equations is very sensitive
to small errors.

2.3 Inconsistency of Equations
When a system of equations provide contradicting solutions or the equations themselves are
self-contradictory we say that the equations are inconsistent.

The problem of inconsistency may arise when the system is over-determined, i.e., when
there are more equations than the number of unknowns. For example let us consider fol-
lowing three equations in two unknowns;

2x1 + x2 = 4; 3x1� x2 = 1; x1 + x2 = 7:

From the first two equations we get x1 = 1; x2 = 2 but they do not satisfy the third.
Similarly, the second and third equations give x1 = 2; x2 = 5 which do not satisfy the first.
Thus, there is no solution which can satisfy all the three equations simultaneously; hence the
equations are ‘inconsistent’. If however, there exists a solution which satisfies all the given
equations, then the system would be called ‘consistent’. The two equations x1 +x2 = 1 and
x1 + x2 = 2 are inconsistent.

2.4 Linear Dependence
If some of the equations in a system are linearly related, the equations of such a system
are said to be ‘linearly dependent’; otherwise linearly independent. That means, in a lin-
early dependent system, at least one equation can be expressed as linear sum of some other
equations. For example, consider the following equations,

2x1 + 3x2 + x3 = 4; 5x1 + 2x2 + 2x3 = 5; 3x1 + 10x2 + 2x3 = 11:



i
i

“NAL02” — 2014/12/11 — 21:27 — page 24 — #3 i
i

i
i

i
i

24 � Elements of Numerical Analysis

We see that the third equation can be expressed as, four times the first minus the sec-
ond. Or, first equation can be obtained by adding second and third equations and then
dividing by four. As there exists a linear relation between the equations, they are not
linearly independent. Effectively, there are only two linearly independent equations as third
can be expressed in terms of the other two. In such cases an arbitrary value can be assigned
to one of the variables, say, x3 = k; then values of x1 and x2 can be computed in terms of k.
Thus, the system will have infinite number of solutions depending on k.

It is easy to visualise that since the rows of the coefficient matrix of linearly dependent
system are linearly related, its determinant will vanish. In order to know as how many of
rows are linearly independent, we are lead to the notion of ‘rank’ of a matrix. A square ma-
trix whose determinant vanishes is called ‘singular’; otherwise ‘non-singular’ or ‘regular’.

2.5 Rank of a Matrix
Let A be a m�n matrix. From matrix A we can form square submatrices by removing some
of its rows and=or some columns including the matrix A itself (when m = n). The matrix A
is said to have rank k if it has at least one submatrix of order k which is non-singular while
all submatrices of order greater than k are singular. It is denoted as,

rank (A) or r(A) = k.

It may be noted that the number linearly independent equations in a system of equations
is equal to the rank of its coefficient matrix.

2.6 Augmented Matrix
Referring (2.3) and (2:3b), when the matrix A is augmented by adjoining vector b as
(n + 1)th column, we call matrix A as augmented matrix and is denoted as,

aug (A=b) =

2666666664

a11 a12 a13 : : : a1n b1

a21 a22 a23 : : : a3n b2

a31 a32 a33 : : : a3n b3
...

...
...

...

an1 an2 an3 : : : ann bn

3777777775
. (2.4)

As regards existence/uniqueness of the solution of the system of equations (2.2), following
three cases arise; for brevity/clarity we have used aug A for aug (A=b):
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(i) r(A) = r (aug A) = number of unknowns
The solution is unique. The number of linearly independent equations is same as the
number of unknowns.

(ii) r(A) = r (aug A) < number of unknowns
There are infinite number of solutions. The number of linearly independent equations
is less than the number of unknowns.

(iii) r(A) < r (aug A)
There exists no solution. There are more linearly independent equations than there
are unknowns.

Note: In the ensuing discussions we will assume that a unique solution exists of the
system (2.2) which means A is regular and its inverse exists.

2.7 Methodology for Computing A–1 by Solving Ax = b

Let A be a regular (non-singular) matrix of order n and its inverse denoted as

A�1 =

2666666664

α11 α12 α13 � � � α1n

α21 α22 α23 � � � α2n

α31 α32 α33 � � � α3n
...

...
...

...

αn1 αn2 αn3 � � � αnn

3777777775
:

Then from Ax = b, i.e., from (2.2) we can write,

x = A�1b =

2666666664

α11 α12 α13 � � � α1n

α21 α22 α23 � � � α2n

α31 α32 α33 � � � α3n
...

...
...

...

αn1 αn2 αn3 � � � αnn

3777777775

2666666664

b1

b2

b3
...

bn

3777777775
:

We observe that if b is chosen to be such that b1 = 1 and b2 = b3 = : : : : = bn = 0, then x is
simply the first column of A�1. Thus if we solve (2.2) by taking b as the first column of a
unit/Identity matrix, the solution vector will give the first column of A�1. Similarly, if we
solve Ax = b by choosing vector b as , i:e:; b2 = 1 and b1 = b3 = b4 = : : : = bn = 0, then,
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the solution vector x will provide the second column of A�1; and so on. Thus solving the
system of equations Ax = b; n times, by taking b to be the various columns of a unit matrix
will provide respective columns of A�1.

2.8 Cramer’s Rule
Denoting the determinant of a square matrix A by jAj or detA, the solution to the system
of equations (2.2) by Cramer’s rule, is given as,

x j =
jA jj
jAj

; j = 1(1)n (2.5)

where jA jj denotes the determinant of the matrix A with its jth column replaced by the
right side b. Since (2.5) involves evaluation of determinants, the method is not suitable for
larger systems.

2.9 Inverse of Matrix by Cofactors
The adjoint of a matrix A is defined as,

adj A =

2666666664

A11 A21 A31 � � � An1

A12 A22 A32 � � � An2

A13 A23 A33 � � � An3
...

...
...

...

A1n A2n A3n � � � Ann

3777777775
(2.6)

where Ai j is the cofactor of ai j. We know that if Mi j is the minor of ai j, then Ai j =
(�1)i+ jMi j. The inverse of matrix A is given by,

A�1 =
1
jAj

. adj A. (2.7)

After computing A�1 the solution of Ax = b may be obtained from x = A�1b. But again,
the evaluation minors is a very time-consuming process. Therefore this method is also of
limited use and is not suitable for larger systems.

The method described in Sec 2.7 will be taken up in detail in Sec 2.17 along with other
computer-oriented methods. Now, let us present a brief review of some special square
matrices and properties associated with them.
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2.10 Definitions of Some Matrices
(i) Symmetric Matrix

A matrix A is called ‘symmetric’ if

A = AT or [ai j] = [a ji]

Also if A =�AT, then it is called skew-symmetric.

(ii) Diagonal Matrix
A matrix A is called ‘diagonal’ if all its off-diagonal elements are zero, i:e.,

ai j = 0; i 6= j:

When all the diagonal elements are unity, it is called unit or Identity matrix and when
the diagonal elements are also zero it is known as Null matrix. The diagonal matrix
is generally denoted by symbol D, a unit/Identity matrix by I while a Null matrix by
letter O and a null vector by 0.

(iii) Lower Triangular/Upper Triangular Matrices
When all the elements in a matrix above its main diagonal are zero, it is called Lower
Triangular; on the other hand if all the elements below the main diagonal are zero,
the matrix is called Upper Triangular. The forms of 4� 4 Lower Triangular matrix
(L) and Upper Triangular matrix (U) are shown below:

L =

2666664
l11 0 0 0

l21 l22 0 0

l31 l32 l33 0

l41 l42 l43 l44

3777775 ; U =

2666664
u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44

3777775 :

If the diagonal elements are 1’s, the matrices are called unit lower triangular and unit
upper triangular. When diagonal elements are zero, they are called ‘strictly’ lower
and upper triangular.

(iv) Tri-diagonal Matrix=Band matrices
A matrix a is called tri-diagonal if, for any i,

ai j = 0; j < i�1 and j > i + 1.

Thus, there are at the most three non-zero terms in each row�diagonal term, one
before the diagonal term and one after. The first and last rows have two terms only.
A (5�5) tri-diagonal matrix will look like the following
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A =

2666666664

a11 a12 0 0 0

a21 a22 a23 0 0

0 a32 a33 a34 0

0 0 a43 a44 a45

0 0 0 a54 a55

3777777775
.

Symbolically, it is also represented as,

A =

The big zeros show the zero elements and the straight lines along the main diagonal
and paralled to it (sub-diagonal and super-diagonal) show the elements which may
or may not be zero. We may also have matrices when there are at the most five
non-zero terms in any row in the above fashion. Such matrices are called ‘Penta-
diagonal’. In general, when there are non-zero terms along the main diagonal, sub-
diagonal and super-diagonal while all the remaining terms are zero in a matrix it is
called ‘Band-matrix’. These type of matrices arise in solving ordinary and partial
differential equations.

(v) Sparse Matrix
A matrix is called ‘sparse’ if most of its elements are zero.

(vi) Orthogonal Matrix
Matrix A is said to be orthogonal, if

AT = A�1, implying AAT = ATA = I.

For example, following matrix is orthogonal

A =

"
cosθ sinθ

�sinθ cosθ

#
.

(vii) Hermitian Matrix
If elements of a matrix A are complex numbers and A represents complex conjugate
of A, i.e., when all the elements of A are replaced by their complex conjugates, then
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A is Hermitian matrix, if
(A)T = A� = A, where * denotes conjugation and transposition (tranjugation) of

matrix A.
It is equivalent to symmetric matrix if A is real.

(viii) Unitary Matrix
Matrix A is called Unitary, if

A� = A�1

It is equivalent to orthogonal if A is real.

(ix) Involutary Matrix

If A = A�1, implying A2 = I.

(x) Positive Definite Matrix
Matrix A is said to be positive definite if for any non-zero column vector x,

xTAx > 0:

Sometimes we use condition xTAx� 0 for positive definite and xTAx > 0 for strictly
positive definite matrix. If all the leading principal minors of a matrix are positive
(+ve), the matrix will be positive definite.

2.11 Properties of Matrices
We discuss below some of the properties of (n�n) square matrices. Let it be reminded that
the determinant of a matrix, say, A is denoted by jAj.

(i) jAj= jATj
(ii) jA �Bj= jAj � jBj= jB �Aj:

This can be generalised to any number of matrices.

(iii) The determinant of a Lower Triangular/Upper Triangular matrix is equal to product
of its diagonal elements. That is, if L is a Lower Triangular matrix with its diagonal
elements as l11; l22 : : : lnn, then

jLj= l11l22 : : : lnn:

Similarly if U is an Upper Triangular matrix with its diagonal elements as,
u11; u22; : : :unn, then

jUj= u11u22 : : :unn:
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(iv) Transpose of product of matrices is equal to the product of their transposes taken in
reverse order, i.e.,

(A �B)T = BT �AT

(A �B �C)T = CTBTAT etc.

(v) Inverse of product of matrices is equal to the product of their inverses taken in reverse
order, i.e.,

(A �B)�1 = B�1A�1

(A �B �C)�1 = C�1B�1A�1 etc.

(vi) Inverse of a transpose of a matrix is the same as transpose of its inverse, i.e.,

(AT)�1 = (A�1)T:

This can be verified by multiplying both sides by AT and using property (iv) which
gives I = I.

(vii) If A is symmetric then A�1 is also symmetric, for if A = AT, then

A�1 = (AT)�1 = (A�1)T from property (vi).

(viii) If A is an orthogonal matrix, then

(AT)�1 = A, since AT = A�1 and (A�1)�1 = A.

(ix) Product of Lower Triangular matrices is also a Lower Triangular matrix. Similarly
product of upper triangular matrices is an Upper Triangular matrix.

(x) Inverse of a lower triangular matrix is also a lower triangular and similarly the inverse
of an upper triangular matrix is also an upper triangular matrix.

2.12 Elementary Transformations
The elementary operations on a matrix like, interchanging its rows (or columns) or adding
a multiple of a row (or column) to another are known as elementary transformation on
the matrix. The desired elementary row transformations can be performed on a matrix by
premultiplying it by a unit matrix which has undergone the same transformation. Similarly
elementary column operations can be performed by postmultiplying the matrix by a unit
matrix with same operations.



i
i

“NAL02” — 2014/12/11 — 21:27 — page 31 — #10 i
i

i
i

i
i

Linear Equations and Eigenvalue Problem � 31

Suppose we want to interchange the first row of a 4�4 matrix A by its third row, we can
choose a 4�4 unit matrix with its first and third rows interchanged, say, I13, where

I13 =

266664
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

377775 :

The matrix obtained after pre-multiplication of A by I13, i.e., I13A will be matrix A with
its first and third rows interchanged. Similarly the matrix obtained after postmultiplication
of A by I13, i.e., AI13 will be matrix A with its first and third columns interchanged. The
matrix which is used for interchanging rows (or columns) is known as permutation matrix.

Now suppose we want to add p times of the second row of A to its third row and q times
of the second row to its fourth row. This can be achieved by elementary transformation by
choosing a matrix I2R (say) obtained by doing the same operations on a unit matrix, i.e.,

I2R =

266664
1 0 0 0
0 1 0 0
0 p 1 0
0 q 0 1

377775 :

Then we will have,

I2RA =

2666664
a11 a12 a13 a14

a21 a22 a23 a24

a31 + pa21 a32 + pa22 a33 + pa23 a34 + pa24

a41 + qa21 a42 + qa22 a43 + qa23 a44 + qa24

3777775 :

Similarly if we want to add p times of the second column of A to its third column and
q times of its second column to the fourth column, then the desired transformation matrix
will be,

I2C =

266664
1 0 0 0
0 1 p q
0 0 1 0
0 0 0 1

377775 :
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The matrix AI2C will be the matrix with desired result, i.e.,

AI2C =

266664
a11 a12 a13 + pa12 a14 + qa12

a21 a22 a23 + pa22 a24 + qa22

a31 a32 a33 + pa32 a34 + qa32

a41 a42 a43 + pa42 a44 + qa42

377775 :

2.13 Methods for Solving Equations (Direct Methods)
There are two approaches for solving the system of equations Ax = b, known as (1) Direct
Methods and (2) Iterative Methods. In the ‘Direct methods’ the solution is obtained in some
definite number of steps while in the ‘iterative methods’ the process is started from an initial
guess (usually taking x = 0) which is improved in an interative manner until the solution
agrees in two successive iterations within the desired accuracy. Thus the number of steps
(iterations) in an iterative method can not be predicted beforehand.

Let us first discuss the Direct Methods.

2.13.1 Gaussian elimination method (Basic)
We describe the Gaussian Elimination method, in its basic form by taking a 4�4 system of
equations, i.e.,2666664

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

3777775

2666664
x1

x2

x3

x4

3777775=

2666664
b1

b2

b3

b4

3777775. (2.8)

Stage 1. It consists of three steps:

(i) Take a multiplier m21 =�a21

a11
.

Multiply 1st row of (2.8) by m21 and add to the 2nd.

i.e., R2 R2 + m21R1.

(ii) Take a multiplier m31 =�a31

a11
.

Multiply 1st row by m31 and add to 3rd.

i.e., R3 R3 + m31 �R1.
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(iii) Take a multiplier m41 =�a41

a11
.

Multiply 1st row by m41 and add to 4th

i.e., R4 R4 + m41 �R1.

It may be noted that each time, first row is being multiplied by appropriate multiplier
and added to different rows. The row which is being multiplied (first in this case) is known
as ‘pivotal’ row and the element a11, the divisor, is called the ‘pivotal element’ or simply
‘pivot’. Next, we need to do operations of multiplications and additions from second col-
umn onwards since elements in the first column are made zero.

After execution of the first stage, the system will have the following form,26666664
a11 a12 a13 a14

0 a(1)
22 a(1)

23 a(1)
24

0 a(1)
32 a(1)

33 a(1)
34

0 a(1)
42 a(1)

43 a(1)
44

37777775

26666664
x1

x2

x3

x4

37777775=

26666664
b1

b(1)
2

b(1)
3

b(1)
4

37777775. (2.9)

The elements with superscript 1 indicate that they have changed after stage 1.

Stage 2. We omit the first row and first column of the coefficient matrix in (2.9), thereby
dealing with a 3�3 system of equations. Thus stage 2 has two steps.

(i) Take multiplier m32 =�
a(1)

32

a(1)
22

.

Multiply 2nd row of (2.9) by m32 and add to the 3rd.

i.e., R3 R3 + m32 �R2.

(ii) Take multiplier m42 =�
a(1)

42

a(1)
22

.

Multiply 2nd row by m42 and add to 4th.

i.e., R4 R4 + m42 �R2

Here second row is the pivotal row and a(1)
22 , the pivot.

Note that we have to do the operations of multiplications and additions from the third
column onwards, since the elements in the first columns are zero which are not affected
by these operations and elements of second column are reduced to zero due to choice of
multipliers.
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After Stage 2, the system (2.9) will assume the following form,26666664
a11 a12 a13 a14

0 a(1)
22 a(1)

23 a(1)
24

0 0 a(2)
33 a(2)

34

0 0 a(2)
43 a(2)

44

37777775

26666664
x1

x2

x3

x4

37777775=

26666664
b1

b(1)
2

b(2)
3

b(2)
4

37777775. (2.10)

Here, the elements which have changed during Stage 2 are shown with superscript 2.

Stage 3. We ignore first two rows and first two columns in (2.10) and deal with a 2� 2
system having superscript 2. This stage has only one step.

Take the multiplier m43 =�
a(2)

43

a(2)
33

.

Multiply the 3rd row of (2.10) by m43 and add to 4th

i.e., R4 R4 + m43 �R3.

This operation has to be made only on the fourth column and on the right side, of course.
Third row is pivotal row and a(2)

33 is the pivot. After stage 3, the system (2.10) finally reduces
to the following form,26666664

a11 a12 a13 a14

0 a(1)
22 a(1)

23 a(1)
24

0 0 a(2)
33 a(2)

34

0 0 0 a(3)
44

37777775

26666664
x1

x2

x3

x4

37777775=

26666664
b1

b(1)
2

b(2)
3

b(3)
4

37777775 (2.11)

We see that the coefficient matrix in (2.11) has been reduced to an Upper Triangular
matrix. This process of reduction of the coefficient matrix to an Upper Triangular form is
known as ‘Gaussian Elimination’ or ‘pivotal condensation’.

Having got the final reduced form (2.11), the solution is obtained by the process of ‘back-
substitution’. That is, we compute the value of x4 from the last equation as,

x4 = b(3)
4 =a(3)

44 :

Substituting the value of x4 in the third equation, gives the value of x3. After putting the
values of x3 and x4 in the second equation we get x2. And finally the value of x1 is obtained
from first equation, using the values of x2; x3 and x4.
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Caution: Some caution has to be exercised while using the basic Gaussian Elimination
method in that the pivotal element should not be zero (or very small) since it will result in
infinitely large multipliers. In order to avoid it, the pivotal row should be exchanged with
the next row such that the pivotal element does not remain too small.

Note for Computer Algorithm: We see that the zeros once produced do not play any role
in the future computations. Therefore, in order to save computer space, the multipliers may
be stored in their place. For example, the multipliers m21; m31 and m41 may be stored in the
space previously occupied by a21; a31 and a41 respectively. Similarly, m32 and m42 may be
stored in the space previously occupied by a(1)

32 and a(1)
42 respectively. Finally, m43 may be

stored in the space earlier occupied by a(2)
43 .

Thus in a compact form, we can store the coefficient matrix and the multipliers inside
the computer in a 4�4 array in the following manner,26666664

a11 a12 a13 a14

m21 a(1)
22 a(1)

23 a(1)
24

m31 m32 a(2)
33 a(2)

34

m41 m42 m43 a(3)
44

37777775. (2.12)

The method described above for (4� 4) system can be easily generalised for (n� n)
system. There will be (n� 1) stages to reduce the original coefficient matrix to upper
triangular form. At the kth stage, k = 1(1)n�1, we compute in the following manner:

For the rows, i = k + 1(1)n,

mik =�aik
(k�1)=akk

(k�1)

ai j
(k) = ai j

(k�1) + mikak j
(k�1); j = k + 1(1)n;

bi
(k) = bi

(k�1) + mikbk
(k�1);

aik
(k) = mik(optional).

The superscript zero corresponds to original values of A and b. The basic concept in
the method is that the elements once made zero, remain zero throughout the subsequent
operations.

2.13.2 Gaussian elimination (with row interchanges)
Gaussian Elimination with row interchanges, called ‘partial pivoting’ ensures that all the
multipliers are less than 1 in absolute value. This is achieved as described below:
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At the kth stage, all the elements in the kth column, i:e:; aik; i = k(1)n are scanned and
the numerically largest element is selected; suppose it is apk, i.e., element in the pth row.
Then kth row is interchanged with the pth row so that the pivotal element is numerically
largest, rendering the multipliers less than 1 in absolute value. The objective of affecting
the interchanges is to reduce the rounding errors in the subsequent computations. When a
number is rounded it has certain rounding error and when this number is multiplied by a
multiplier greater than 1, the rounding error also increases but if the number is multiplied
by a multiplier smaller than 1, the rounding error does not increase. Moreover, the partial
pivoting automatically excludes the possibility of the pivotal element being zero.

A further modification to the method is ‘complete pivoting’ in that all the elements
a(k�1)

i; j ; i = k(1)n; j = k(1)n are scanned and numerically largest element a(k�1)
pq , is selected;

then kth row is interchanged with the pth row and kth column with the qth column. In this
manner element a(k�1)

pq is brought at the (k; k) position. Obviously, it requires recording
of interchanges of rows and particularly of columns at each stage; however, it may not be
worth except in some rare cases.

Example 2.1
Solve the following system of simultaneous equations by Gaussian elimination method,

3x1 + 2x2 + x3�4x4 = 5

x1�5x2 + 2x3 + x4 = 18

5x1 + x2�3x3 + 2x4 =�4

2x1 + 3x2 + x3 + 5x4 = 11

Compute up to 3 places of decimal without using fractions. Round the final answer to two
decimals.

Solution Since vector x plays no part in computations we may work out with numbers only.

x1 x2 x3 x4 b266664
3 2 1 �4 5
1 �5 2 1 18
5 1 �3 2 �4
2 3 1 5 11

377775
Forward Elimination:

m21 =�1
3

=�0:333; R2 R2�0:333R1
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m31 =�5
3

=�1:667; R3 R3�1:667R1

m41 =�2
3

=�0:667; R4 R4�0:667R1

x1 x2 x3 x4 b2666664
3 2 1 �4 5

0 �5:666 1:667 2:332 16:335

0 �2:334 �4:667 8:668 �12:335

0 1:666 0:333 7:668 7:665

3777775
m32 =�2:334

5:666
=�0:412; R3 R3�0:412R2

m42 =
1:666
5:666

= 0:294; R4 R4 + 0:294R2

x1 x2 x3 x4 b2666664
3 2 1 �4 5

0 �5:666 1:667 2:332 16:335

0 0 �5:354 7:707 �19:065

0 0 0:823 8:354 12:467

3777775
m43 =

0:823
5:354

= 0:154; R4 R4 + 0:154R3

x1 x2 x3 x4 b2666664
3 2 1 �4 5

0 �5:666 1:667 2:335 16:335

0 0 �5:354 7:707 �19:065

0 0 0 9:541 9:531

3777775
Back Substitution:

x4 =
9:531
9:541

= 0:999

x3 = (�19:065�7:707�0:999)=(�5:354) = 4:999

x2 = (16:335�2:332�0:999�1:667�4:999)=(�5:666) =�1:001

x1 = (5 + 4�0:999�1�4:999�2� (�1:001)=3 = 2:000
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Final answer rounded to two places of decimal is:

x1 = 2:00; x2 =�1:00; x3 = 5:00 and x4 = 1:00.

(exact answer is: x1 = 2; x2 =�1; x3 = 5; x4 = 1)

Note: If we compute a21 a21 +m21�a11, we get a21 = 1�0:333�3 = 0:0001, which is not
zero although we have assumed it to be so. Similar argument holds for the other zeros produced.
Thus the equations are satisfied approximately. If higher accuracy is required, we may work with
more decimal places and in double precision on a computer, if needed.

Example 2.2

Solve the following system of simultaneous equations by Gaussian elimination method,

4:3x1�3:5x1�1:2x3 = 10:90

18:4x1 + 2:1x2� x3 = 7:80

7:2x1 + 1:8x2 + 3:4x3 = 23:22

Perform computations up to 2 decimal places. Round the final answer to one decimal.

Solution
x1 x2 x3 b2664
4:3 �3:5 �1:2 10:9

18:4 2:1 �1:0 7:8

7:2 1:8 3:4 23:22

3775
m21 =�18:4

4:3
=�4:28; R2 R2�4:28R1:

m31 =�7:2
4:3

=�1:67; R3 R3�1:67R1:

x1 x2 x3 b2664
4:3 �3:5 �1:2 10:90

0 17:08 4:14 �38:85

0 7:64 5:40 5:02

3775
m32 =� 7:64

17:08
=�0:45; R3 R3�0:45R2:
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x1 x2 x3 b2664
4:3 �3:5 �1:2 10:90

0 17:08 4:14 �38:85

0 0 3:54 22:50

3775
x3 = 6:36; x2 =�3:82; x1 = 1:20.

Rounding to one decimal,

x1 = 1:2; x2 =�3:8; x3 = 6:4

(exact answer is x1 = 1:2; x2 =�3:8; x3 = 6:3)

Example 2.3
Solve the following system of simultaneous equations by Gaussian elimination method:

0:12x2 + 0:15x3 = 0:33

0:56x1 + 0:40x2�0:18x3 = 2:34

0:20x1 + 0:71x2 + x3 = 2:04

Compute up to 3 places of decimal and round the final answer to two decimal places.

Solution
x1 x2 x3 b2664 0 0:12 0:15 0:33

0:56 0:40 �0:18 2:34

0:20 0:71 1:0 2:04

3775
Here first equation can not be treated as pivotal equation as m21 ! ∞. Therefore, we inter-

change it with the next row which has non-zero as its first element. Thus we write,

x1 x2 x3 b2664 0:56 0:40 �0:18 2:34

0 0:12 �0:15 0:33

0:20 0:71 1:0 2:04

3775
m21 = 0, R2 R2 (remains unchanged)

m31 =�0:20
0:56

=�0:357; R3 R3�0:357R1
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x1 x2 x3 b2664 0:56 0:40 �0:18 2:34

0 0:12 0:15 0:33

0 0:567 1:064 1:205

3775
m32 =�0:567

0:12
=�4:725; R3 R3�4:725R2

x1 x2 x3 b2664 0:56 0:40 �0:18 2:34

0 0:12 �0:15 0:33

0 0 0:355 �0:354

3775
x3 =�0:997; x2 = 3:996; x1 = 1:004

After rounding to two decimals

x1 = 1:00; x2 = 4:00; x3 =�1:00

(exact values are x1 = 1; x2 = 4; x3 =�1)

Example 2.4
Solve the following system of simultaneous equations using Gaussian elimination with row inter-
changes:

0:3x1 + 2:6x2 + 1:3x3 = 7.65

8:3x1 + 8:2x2 + 5:6x3 = 43:17

12:7x2 + 3:5x2 + 7:4x3 = 49:68

Compute up to two significant figures after decimal. Also solve the system without interchang-
ing the rows.

Solution (by row interchanges)

x1 x2 x3 b2664 0:3 2:6 1:3 7:65

8:3 8:2 5:6 43:17

12:7 3:5 7:4 49:68

3775
Since j12:7j is largest in absolute value in the first column, we interchange first row with third.
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x1 x2 x3 b2664 12:7 3:5 7:4 49:68
8:3 8:2 5:6 43:17
0:3 2:6 1:3 7:65

3775
m21 =� 8:3

12:7
=�0:65; R2 R2�0:65R1

m31 =� 0:3
12:7

=�0:024, (two significant figures after decimal)

R3 R3�0:024R1

x1 x2 x3 b2664 12:7 3:5 7:4 49:68
0 5:92 0:79 10:88
0 2:52 1:12 6:46

3775
Since j5:92j is larger than j2:52j, there is no need to interchange rows.

m32 =�2:52
5:92

=�0:42; R3 R3�0:42R2

x1 x2 x3 b2664 12:7 3:5 7:4 49:68
0 5:92 0:79 10:88
0 0 0:79 1:89

3775
By back substitution,

x3 = 2:39; x2 = 1:52; x1 = 2:10

(exact solution is x1 = 2:1; x2 = 1:5; x3 = 2:4)

Solution (without row interchanges)

x1 x2 x3 b2664 0:3 2:6 1:3 7:65
8:3 8:2 5:6 43:17

12:7 3:5 7:4 49:68

3775
m21 =�8:3

0:3
=�27:67; R2 R2�27:67R1
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m31 =�12:7
0:3

=�42:33; R3 R3�42:33R1

x1 x2 x3 b2664 0:3 2:6 1:3 7:65
0 �63:74 �30:37 �168:50
0 �106:56 �47:63 �274:14

3775
m32 =�106:56

63:74
=�1:67; R3 R3�1:67R2

x1 x2 x3 b2664 0:3 2:6 1:3 7:65
0 �63:74 �30:37 �168:50
0 0 3:09 7:26

3775
x3 = 2:35; x2 = 1:52; x1 = 2:14

(exact solution is, x1 = 2:1; x2 = 1:5; x3 = 2:4)

2.14 LU Decomposition/Factorisation

A square matrix A can be decomposed/factorised (with conditions) into a product of two
matrices L and U, i:e:; A = LU, where L and U are lower triangular and upper triangu-
lar matrices respectively. We will discuss three methods in this regard (i) By Gaussian
Elimination method (ii) Crout’s method and (iii) Cholesky’s method.

2.14.1 By Gaussian elimination method

We assume that no interchange of rows has taken place at any stage. Let us recall that in
Gaussian Elimination method, matrix A is reduced to an upper triangular matrix U by a se-
ries of elementary row operations/transformations. For a 4�4 matrix, these transformations
may be expressed in following way,

L3L2L1A = U (2.13)

where L1; L2 and L3 are lower triangular matrices as,
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L1 =

266664
1 0 0 0
m21 1 0 0
m31 0 1 0
m41 0 0 1

377775 ; L2 =

266664
1 0 0 0
0 1 0 0
0 m32 1 0
0 m42 0 1

377775 ; L3 =

266664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 m43 1

377775 :

The matrix A is original matrix and U the final upper triangular, i:e.,

A =

26666664
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

37777775 ;U =

26666664
a11 a12 a13 a14

0 a(1)
22 a(1)

23 a(1)
24

0 0 a(2)
33 a(2)

34

0 0 0 a(3)
44

37777775.

From (2.13) we have,

A = (L3L2L1)�1U = L�1
1 L�1

2 L�1
3 U.

It is easy to see that the inverses of L1; L2 and L3 can be obtained simply by changing
the signs of multipliers. It can also be shown by the logic of elementary transformations
that,

L = L�1
1 L�1

2 L�1
3 =

2666664
1 0 0 0

�m21 1 0 0

�m31 0 1 0

�m41 0 0 1

3777775

2666664
1 0 0 0

0 1 0 0

0 �m32 1 0

0 �m42 0 1

3777775

2666664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 �m43 1

3777775

=

2666664
1 0 0 0

�m21 1 0 0

�m31 �m32 1 0

�m41 �m42 �m43 1

3777775. (2.14)

Thus we have the desired decomposition A = LU where L is given by (2.14).
The above may be generalised for n�n matrix straight away.
After reducing the matrix to LU form we can solve the system of equations Ax = b in

the following manner:

Ax = LUx = b (2.15)
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Put Ux = y, in (2.15); (2.16)

then, Ly = b, from (2.15). (2.17)

Solve (2.17) for y, then solve (2.16) to obtain the required solution x. The system (2.17)
will be solved in a top-down manner while (2.16) in a bottom-up manner. Evidently the
pivotal element should not be zero or very small since it will give rise to infinitely large
multiplier, an element of L.

2.14.2 Crout’s method
Let us consider each of L; U and A as 4�4 matrices, i.e.,2666664

1 0 0 0

l21 1 0 0

l31 l32 1 0

l41 l42 l43 1

3777775

2666664
u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44

3777775=

2666664
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

3777775 (2.18)

On the L.H.S. there are 16 unknowns, 6 elements of L and 10 of U. In order to evaluate
them, we perform the product LU and equate, term by term, with the 16 elements of A.
This is done in a systematic manner given as under:

Compute row-wise in the following order by equating the corresponding terms of LU
and A:

(i) l11 = 1; u11; u12; u13; u14

(ii) l21; l22 = 1; u22; u23; u24

(iii) l31; l32; l33 = 1; u33; u34

(iv) l41; l42; l43; l44 = 1; u44.

Note: In practical computations we put l11 = l22 = l33 = l44 = 1 to start with. Thus we get,

(i) u11 = a11; u12 = a12; u13 = a13; u14 = a14

(ii) l21 �u11 = a21 giving l21 = a21=u11; u11(= a11) should not be zero.

l21a12 + u22 = a22, giving u22 = a22� l21a12; u22 should not be zero.

l21a13 + u23 = a23, giving u23 = a23� l21 �a13

l21a14 + u24 = a24, giving u24 = a24� l21a14
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(iii) l31u11 = a31, giving l31 = a31=u11

l31u12 + l32u22 = a32, giving l32 = (a32� l31u12)=u22; u22 6= 0.

l31u13 + l32u23 + u33 = a33, giving u33 = a33� (l31u13 + l32u23); u33 should
not be zero.

l31u14 + l32u24 + u34 = a34, giving u34 = a34� (l31u14 + l32u24)

(iv) l41u11 = a41, giving l41 = a41=u11

l41u12 + l42u22 = a42, giving l42 = (a42� l41u12)=u22

l41u13 + l42u23 + l43u33 = a43, giving l43 = (a43� l41u13� l42u23)=u33; u33 6= 0.

l41u14 + l42u24 + l43u34 + u44 = a44, giving u44 = a44� (l41u14 + l42u24 + l43u34).

It may be noted that each element is computed before it is used.
The above can be generalised when A is an (n�n) matrix:

lii = 1, i = 1(1)n:

u1 j = a1 j, j = 1(1)n:

For the ith row, i = 2(1)n,

li j = [ai j�fli1u1 j + li2u2 j + : : :+ li;i�1ui�1; jg]=u j j

=

"
ai j�

j�1

∑
k=1

likuk j

#,
u j j; j = 1(1)i�1: (2.19)

ui j = ai j�
i�1

∑
k=1

likuk j; j = i(1)n. (2.20)

Note: (i) If it is required that A = LU where L is a Lower triangular and U a Unit upper
triangular matrix, then we can proceed as follows:

Put uii = 1; i = 1(1)n.

Compute the elements column-wise, i.e., elements of kth column of U and elements of
kth column of L in that order for k = 1(1)n.

(ii) Matrix A can also be reduced to the form

A = LDU
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where L and U are unit lower and unit upper triangular matrices and D, a diagonal matrix.
Let A be a matrix of order n. It is easy to see that there will be (n�1)n

2 elements in the
matrices L and U each and n elements in D. Thus there are total n2 unknowns in the
product LDU which can be matched with the n2 elements of A. In practice however, we
can reduce the matrix A to LU form where L is a unit lower triangular matrix and U,
an upper triangular. We choose the elements of the diagonal matrix D to be the diagonal
elements of U; i:e:; dii = uii and divide each element of U in the ith row by uii. It may again
be emphasised that value of none of the dividing element uii should be zero; otherwise the
process will break down.

This method is also attributed to Doolittle.

2.14.3 Cholesky’s method
The Cholesky’s method deals with a special case when the given matrix is symmetric and
positive definite. If A is a symmetric matrix, A = AT then it can be expressed as product of
two matrices L and LT where L is a lower triangular matrix, i:e.,

A = LLT or (UTU). (2.21)

For example, for a 4�4 matrix,2666664
l11 0 0 0

l21 l22 0 0

l31 l32 l33 0

l41 l42 l43 l44

3777775

2666664
l11 l21 l31 l41

0 l22 l32 l42

0 0 l33 l43

0 0 0 l44

3777775=

2666664
a11 a21 a31 a41

a21 a22 a32 a42

a31 a32 a33 a43

a41 a42 a43 a44

3777775 (2.22)

L or UT LT or U A

In (2.22), there are 10 elements in matrix L and 16 in A. But due to symmetry six el-
ements above the diagonal are same as below the diagonal, i:e:; ai j = a ji; i 6= j. Thus
equating the corresponding terms of LLT and A gives the elements of L. When A is an
(n�n) matrix, the number of elements to be evaluated are n(n + 1)=2.

We evaluate the elements of L by equating the corresponding elements column-wise (or
row-wise since LLT is a symmetric matrix). Let us say, we are equating column-wise.

For each value of j = 1(1)n, compute for i = j(1)n, the values of li j by the following
formulae:

for i = j; l j j =

"
a j j�

j�1

∑
k=1

l2
jk

#1=2

, (2.23)
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for i > j; li j =

"
ai j�

j�1

∑
k=1

lik � l jk

#,
l j j (2.24)

In case of 4�4 matrix, i.e., (2.22) we compute the elements of L using formulae (2.23)
and (2.24) in the following manner:

For j = 1:

i = j = 1) l11 =
p

a11;

i = 2( j = 1)) l21 = a21=l11;

i = 3( j = 1)) l31 = a31=l11;

i = 4( j = 1)) l41 = a41=l11:

For j = 2:

i = j = 2) l22 = [(a22� l21)2]1=2;

i = 3( j = 2)) l32 = (a23� l31 � l21)=l22;

i = 4( j = 2)) l42 = (a24� l41 � l21)=l22:

For j = 3:

i = j = 3) l33 = [a33� (l2
31 + l2

32)]1=2;

i = 4( j = 3)) l43 = [a43� (l41l31 + l42 � l32)]=l33:

For j = 4:

i = j = 4) l44 = [a44� (l2
41 + l2

42 + l2
43)]1=2:

Example 2.5
Reduce the following matrix A to LU form by Gaussian elimination where L is a Unit Lower
Triangular matrix and U is an upper triangular; also solve the system Ax = b where,

A =

266664
3 2 1 �4
1 �5 2 1
5 1 �3 2
2 3 1 5

377775,
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xT = (x1 x2 x3 x4) and bT = (5 18 �4 11):

Solution It is same coefficient matrix as in Example 2.1.

From (2.14) and (2.13),

L =

266664
1 0 0 0
0:333 1 0 0
1:667 0:412 1 0
0:667 �0:294 �0:0154 1

377775 and U =

266664
3 2 1 �4
0 �5:666 1:667 2:332
0 0 �5:354 7:707
0 0 0 9:541

377775
In LUx = b, putting Ux = y, the system becomes Ly = b, where yT = (y1 y2 y3 y4). Solving

Ly = b by forward substitution gives,

y1 = 5; y2 = 16:335; y3 =�19:065; y4 = 9:531

Finally on solving Ux = y, by backward substitution, we get,

x4 = 0:999; x3 = 4:999; x2 =�1:001; x1 = 2:000

Example 2.6
Decompose the following matrix A to LU form by Crout’s method where L is a unit lower trian-
gular and U an upper triangular matrix,

A =

266664
3 2 1 �4
1 �5 2 1
5 1 �3 2
2 3 1 5

377775.

Solution Let us assume,266664
1 0 0 0

l21 1 0 0
l31 l32 1 0
l41 l42 l43 1

377775
266664

u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44

377775=

266664
3 2 1 �4
1 �5 2 1
5 1 �3 2
2 3 1 5

377775 :

1st row:

u11 = 3; u12 = 2; u13 = 1; u14 =�4

2nd row:

l21 = a21=u11 = 1=3 = 0:333
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u22 = a22� l21 �u12 =�5�0:333�2 =�5:666

u23 = a23� l21 �u13 = 2�0:333�1 = 1:667

u24 = a24� l21 �u14 = 1�0:333� (�4) = 2:332

3rd row:

l31 = a31=u11 = 5=3 = 1:667

l32 = (a32� l31 �u12)=u22 = (1�1:667�2)=(�5:667) = 0:412

u33 = a33� (l31u13 + l32u23) =�3� (1:667�1 + 0:412�1:667) =�5:354

u34 = a34� (l31u14 + l32u24) = 2� (1:667� (�4)+ 0:412�2:332) = 7:707

4th row:

l41 = a41=u11 = 2=3 = 0:667

l42 = (a42� l41 �u12)=u22 = (3�0:667�2)=(�5:667) =�0:294

l43 = [a43� (l41 �u13 + l42 �u23)]=u33

= [1� (0:667�1�0:294�1:667)]=(�5:354) =�0:154

u44 = a44� (l41 �u14 + l42 �u24 + l43 �u34)

= 5� (�0:667�4�0:294�2:332�0:154�7:707)

= 9:540

L =

2666664
1 0 0 0

0:333 1 0 0

1:667 0:412 1 0

0:667 �0:294 �0:154 1

3777775 ;U =

2666664
3 2 1 �4

0 �5:666 1:667 2:332

0 0 �5:354 7:707

0 0 0 9:540

3777775
Note: This example is same as 2.5. There is a difference of .001 in u44 due to rounding, which

may be expected.

Example 2.7
Using the lower and upper triangular matrices obtained in Example 2.6, reduce the matrix A to
LDU form where L and U are unit lower and unit upper triangular matrices respectively.

Further, using LDU, express A = LU where L is a lower triangular and U a unit upper trian-
gular matrix.
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Solution In order to express A = LDU, we divide each row of U by its diagonal element, i:e., we
divide the ith row by uii. The elements of D are given by dii = uii. Thus we have,

LDU =

266664
1 0 0 0
0:333 1 0 0
1:667 0:412 1 0
0:667 �0:294 �0:154 1

377775
266664

3 0 0 0
0 �5:666 0 0
0 0 �5:354 0
0 0 0 9:540

377775
L D266664

1 0:667 0:333 �1:333
0 1 �0:294 �0:412
0 0 1 �1:439
0 0 0 1

377775
U

To further reduce it to A = LU form, we have to multiply the elements of the jth column of
unit lower triangular matrix by d j j; j = 1(1)4. Thus we get

LU =

266664
3 0 0 0
0:999 �5:666 0 0
5:001 �2:334 �5:354 0
2:001 1:666 0:824 9:540

377775
266664

1 0:667 0:333 �1:333
0 1 �0:294 �0:412
0 0 1 �1:439
0 0 0 1

377775

2.14.4 Reduction to PA = LU
In Sec. 2.14.1, we had reduced matrix A to LU form by Gaussian Elimination assuming
there were no interchanges of rows at any stage. But if interchanges are employed, then
the matrix A can be reduced to the form PA = LU where P is a permutation matrix, i.e., a
matrix obtained from a unit matrix with its rows interchanged (permuted). We illustrate the
reduction by considering a 4�4 matrix A.

Let Ipq denote a unit matrix with its pth and qth rows interchanged and that matrix A has
been reduced to an upper triangular matrix U under following transformations,

L3I34L2I24L1I13A = U, (2.25)

where L1; L2 and L3 are unit lower triangular matrices as given in (2.14).
First we should note that I�1

pq = Ipq; i:e:; Ipq is an involutary matrix.
From (2.25) we can write,

I34I24I13A = I34 � I24L�1
1 I�1

24 L�1
2 I�1

34 L�1
3 U
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= I34I24L�1
1 I24L�1

2 I34L�1
3 U

= [I34f(I24L�1
1 I24)L�1

2 gI34]L�1
3 U. (2.26)

We see that,

I24L�1
1 =

266664
1 0 0 0
�m41 0 0 1
�m31 0 1 0
�m21 1 0 0

377775 ; I24L�1
1 I24 =

266664
1 0 0 0
�m41 1 0 0
�m31 0 1 0
�m21 0 0 1

377775
Now, the bracketed term,

(I24L�1
1 I24)�1

L2
=

266664
1 0 0 0
�m41 1 0 0
�m31 0 1 0
�m21 0 0 1

377775
266664

1 0 0 0
0 1 0 0
0 �m32 1 0
0 �m42 0 1

377775

=

266664
1 0 0 0
�m41 1 0 0
�m31 �m32 1 0
�m21 �m42 0 1

377775 :

The term within square bracket in (2.26) becomes,

I34f(I24L�1
1 I24)L2

�1gI34 =

266664
1 0 0 0
�m41 1 0 0
�m21 �m42 1 0
�m31 �m32 0 1

377775
Finally the right side of (2.26) will be,

�
I34
��

I24L�1
1 I24

�
L2
�1	 I34

�
L�1

3 U =

266664
1 0 0 0
�m41 1 0 0
�m21 �m42 1 0
�m31 �m32 �m43 1

377775 U.
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The left side of (2.26) will be,

I34I24I13A =

266664
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

377775
266664

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

377775
266664

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

377775 A

=

266664
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

377775 A

Thus we have the reduction,

PA = LU (2.27)

where P is the permutation matrix and L is a unit lower triangular matrix given as

P =

266664
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

377775 ; L =

266664
1 0 0 0
�m41 1 0 0
�m21 �m42 1 0
�m31 �m32 �m43 1

377775. (2.28)

The reduction PA = LU can also be expressed as A = P�1LU where P�1 = I13I24I34.
In practice, to compute the permutation matrix P, we maintain the record of the inter-

changes of rows of the unit matrix by a one-dimensional array (vector) storing the row
number in it. In the above case of 4� 4 matrix we may have an array row number (1 : 4)
having values 1, 2, 3, 4 initially. We change these numbers according to change of rows.
In the present case I13 will change the order to 3, 2, 1, 4. Then I24 will change it to 3, 4,
1, 2 and finally I34 will change it to 3, 4, 2, 1. Then the four rows of matrix P can be writ-
ten as row number 3, 4, 2 and 1 of the unit matrix. For complete details of computational
procedure see Example 2.8.

Example 2.8
Reduce the following matrix A in the form PA = LU, by Gaussian Elimination method with
partial pivoting, where L is a unit lower triangular and U an upper triangular matrix; P is a
permutation matrix.
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A =

266664
2 5 1 8
1 6 3 5
7 2 6 3
4 8 1 2

377775
Also solve the system of equations Ax = b where bT = (5 11 14 19). Compute up to two

decimals only.

Solution
Row number of unit matrix Cols of multipliers Transformed matrix b2666664

1

2

3

4

3777775 —

2666664
2 5 1 8

1 6 3 5

7 2 6 3

4 8 1 2

3777775

2666664
5

11

14

19

3777775
Interchanging 1st row by 3rd,2666664

3

2

1

4

3777775 —

2666664
7 2 6 3

1 6 3 5

2 5 1 8

4 8 1 2

3777775

2666664
14

11

5

19

3777775
Elimination of coeff. of x1;2666664

3

2

1

4

3777775
1

�0:14

�0:28

�0:57

2666664
7 2 6 3

0 5:72 2:16 4:58

0 4:44 �0:68 7:16

0 6:86 �2:42 0:29

3777775

2666664
14

9:04

1:08

11:02

3777775
Interchanging 2nd by 4th row,2666664

3

4

1

2

3777775
1

�0:57

�0:14

�0:14

2666664
7 2 6 3

0 6:86 �2:42 0:29

0 4:44 �0:68 7:16

0 5:72 2:16 4:58

3777775

2666664
14

11:02

1:08

9:04

3777775
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Elimination of coeff. of x2;2666664
3

4

1

2

3777775
1 0

�0:57 1

�0:28 �0:65

�0:14 �0:83

2666664
7 2 6 3

0 6:86 �2:42 0:29

0 0 0:89 6:97

0 0 4:17 4:34

3777775

2666664
14

11:02

�6:08

�0:11

3777775
Interchanging 3rd by 4th row,2666664

3

4

2

1

3777775
1 0

�0:57 1

�0:14 �0:83

�0:28 �0:65

2666664
7 2 6 3

0 6:86 �2:42 0:29

0 0 4:17 4:34

0 0 0:89 6:97

3777775

2666664
14

11:02

�0:11

�6:08

3777775
Eliminating coeff. of x3,2666664

3

4

2

1

3777775
1 0 0

�0:57 1 0

�0:14 �0:83 1

�0:28 �0:65 �0:21

2666664
7 2 6 3

0 6:86 �2:42 0:29

0 0 4:17 4:34

0 0 0 6:06

3777775

2666664
14

11:02

0:11

�6:06

3777775
Solving by back-substitution gives

x4 =�1:00; x3 = 1:01; x2 = 2:00; x1 = 0:99

(exact solution is x1 = 1; x2 = 2; x3 = 2; x3 = 1; x4 =�1)

P =

266664
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

377775
 3rd row of I
 4th row of I
 2nd row of I
 1st row of I

; PA =

266664
7 2 6 3
4 8 1 2
1 6 3 5
2 5 1 8

377775 ;

L =

266664
1 0 0 0
0:57 1 0 0
0:14 0:83 1 0
0:28 0:65 0:21 1

377775 ;U =

266664
7 2 6 3
0 6:86 �2:42 0:29
0 0 4:17 4:34
0 0 0 6:06

377775 :

Note: Multipliers can be stored in space occupied by zeros in the appropriate column.
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2.15 Gauss–Jordan (or Jordan’s) Method

Let us again consider solving the system of equations (2.2), i.e., Ax = b. In the Gaussian
elimination method we reduce the system to an upper triangular form by making elementary
operations on the rows below the pivotal row and then obtain the solution by the process
of back-substitution. In the Jordan’s method operations are made on all the rows below
the pivotal row as well as on the rows above it such that the system reduces to an Identity
matrix form, Ix = b0 and the solution is straight away given by the transformed right side
b0. In order to achieve this, the pivotal row is divided by the pivotal element throughout,
thus making the pivot as unity. Then operations are made, choosing suitable multipliers so
that all the elements below the pivot as well as above it are reduced to zero. Of course same
operations are to be made simultaneously on the right side. For solving an n� n system,
there will be (n� 1) stages and in each stage there will be (n� 1) steps to be performed
to make (n� 1) elements zero. The computations are made on the augmented matrix aug
(A=b) as shown in the following example.

Example 2.9

Solve by Jordan’s method Ax = b where

A =

266664
2 5 1 8
1 6 3 5
7 2 6 3
4 8 1 2

377775 ; bT = (5 11 14 19)

Solution2666664
2 5 1 8 5

1 6 3 5 11

7 2 6 3 14

4 8 1 2 19

3777775
R1 R1=2�����!

2666664
1 2:5 0:5 4 2:5

1 6 3 5 11

7 2 6 3 14

4 8 1 2 19

3777775
R2 R2�R1; R3 R3�7R1; R4 R4�4R12666664

1 2:5 0:5 4 2:5

0 3:5 2:5 1 8:5

0 �15:5 2:5 �25 �3:5

0 �2 �1 �14 9

3777775
R2 R2=3:5������!

2666664
1 2:5 0:5 4 2:5

0 1 0:71 0:28 2:43

0 �15:5 2:5 �25 �3:5

0 �2 �1 �14 9

3777775
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R1 R1�2:5R2; R3 R3 + 15:5R2; R4 R4 + 2R2266664
1 0 �1:28 3:3 �3:58
0 1 0:71 0:28 2:43
0 0 13:50 �20:66 34:16
0 0 0:42 �13:44 13:86

377775 R3 R3=13:50��������!

266664
1 0 �1:28 3:3 �3:58
0 1 0:71 0:28 2:43
0 0 1 �1:53 2:53
0 0 0:42 �13:44 13:86

377775
R1 R1 + 1:28R1; R2 R2�0:71R3; R4 R4�0:42R3266664

1 0 0 1:34 �0:34
0 1 0 1:37 0:63
0 0 1 �1:53 12:53
0 0 0 �12:80 12:80

377775 R4 R4=(�12:8)���������!

266664
1 0 0 1:34 �0:34
0 1 0 1:37 0:63
0 0 1 �1:53 2:53
0 0 0 1 �1:00

377775
R1 R1�1:34R4; R2 R2�1:37R4; R3 R3�1:53R4266664

1 0 0 0 1:00
0 1 0 0 2:00
0 0 1 0 1:00
0 0 0 1 �1:00

377775 :

x1 = 1; x2 = 2; x3 = 1; x4 =�1

(correct answer is x1 = 1; x2 = 2; x3 = 1; x4 =�1)

Note: Change of rows may be performed if required.

2.16 Tridiagonal System
The solution of second order boundary value problems by numerical method reduces to
solving a system of linear equations which is tridiagonal in nature. A (4� 4) tri-diagonal
system of equations may be written as,266664

a11 a12 0 0
a21 a22 a23 0
0 a32 a33 a34

0 0 a43 a44

377775
266664

x1

x2

x3

x4

377775=

266664
b1

b2

b3

b4

377775. (2.29)

From Gaussian elimination or Crout’s method, it is easy to see that the coefficient matrix
in (2.29) can be reduced to LU where L and U have following forms,
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2666664
a11 a12 0 0

a21 a22 a23 0

0 a32 a33 a34

0 0 a43 a44

3777775=

2666664
1 0 0 0

l21 1 0 0

0 l32 1 0

0 0 l43 1

3777775

2666664
u11 u12 0 0

0 u22 u23 0

0 0 u33 u34

0 0 0 u44

3777775 :

We can easily find the elements of L and U as given below:

u11 = a11; u12 = a12; a11 6= 0.

l21 = a21=a11; u22 = a22�
a12 �a21

u11
; u23 = a23:

l32 =
a32

a22
; u33 = a33�

a23 �a32

u22
; u34 = a34:

l43 =
a43

a33
; u44 = a44�

a34 �a43

u33
:

We solve Ax = b or LUx = b by putting Ux = y so that Ly = b has to be solved first for
y giving,

y1 = b1; y2 = b2�
a21

u11
y1; y3 = b3�

a32

u22
y2; y4 = b4�

a43

u33
y3:

Further, on solving Ux = y, we get,

x4 = y4=u44; x3 = (y3�a34x4)=u33

x2 = (y2�a23 � x3)=u22; x1 = (y1�a12 � x2)=u11:

Thus we are required to compute the following in that order:

(1) u11 u22 u33 u44

(2) y1 y2 y3 y4

(3) x4 x3 x2 x1

However in order to save memory space in the computer, we may store the elements of
A by three one-dimensional arrays for storing the diagonal, subdiagonal and super diagonal
elements. Let us now consider an n�n tridiagonal system which is stored as follows:
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b1 c1 0 � � � 0
a2 b2 c2 � � � 0
0 a3 b3 c3 � � � 0
...

0 0 an bn

377777777775

266666666664

x1

x2

x3

...

xn

377777777775

266666666664

r1

r2

r3

...

rn

377777777775

266666666664
(2.30)

Compute the following in that order:

(1) u1 = b1; ui = bi�
ai � ci�1

ui�1
; i = 2(1)n. (2.30a)

(2) y1 = r1; yi = ri�
aiyi�1

ui�1
; i = 2(1)n. (2.30b)

(3) xn = yn=un; xi = (yi� cixi+1)=ui; i = n�1(�1)1. (2.30c)

It may be noted that instead of n� n, only 3n� 2 computer locations are required for
storing the elements of the coefficient matrix.

Example 2.10
Solve the following tridiagonal system of equations,

1:98x1 � 1:01x2 = 0:985

0:98x1 � 1:98x2 + 1:02x3 = 0:01

0:97x2 � 1:98x3 + 1:03x4 = 0:015

0:96x3 � 1:98x4 = �1:540

Compute up to four places of decimal.

Solution

u1 = 1:98

u2 =�1:98� 0:98� (�1:01)

1:98
=�1:4801

u3 =�1:98� 0:97� (1:02)

�1:4801
=�1:3115

u4 =�1:98� 0:96� (1:03)

�1:3115
=�1:2260
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y1 = 0:985

y2 = 0:01� 0:98
1:98

�0:985 =�0:4775

y3 = 0:015� 0:97� (�0:4775)

�1:4801
=�0:2979

y4 =�1:540� 0:96� (�0:2979)

�1:3115
=�1:7580

x4 =
�1:7580
�1:2260

= 1:4339

x3 = (�0:2979�1:03�1:4339)=(�1:3115) = 1:3533

x2 = (�0:4775�1:02�1:3533)=(�1:4801) = 1:2552

x1 = f0:985� (�1:01)�1:2552g=1:98 = 1:1378

Note: The above equations have arrived at in solving a differential equation described in
Chapter 7.

2.17 Inversion of Matrix
We can find the solution of Ax = b using A�1 as x = A�1b, although it will not be wise
to first compute A�1 and then form A�1b. However, if we have got a software/subroutine/
procedure for A�1, we can use it easily on any number of different b vectors. We had also
said in Sec 2.9 that to compute A�1 by adj A=jAj is most uneconomical computation-wise.
We had also mentioned in Sec 2.7 that A�1 can be found by solving Ax = b, taking b as
different columns of a unit matrix. That is, solution x of Ax = Ik, where Ik is the kth column
of the unit/identity matrix I, renders the kth column of A�1. Thus we have to work with the
augmented matrix aug (A=I). When matrix A is of order 4, we have,

x1 x2 x3 x4 I1 I2 I3 I4

aug (A=I) =

266664
a11 a12 a13 a14 1 0 0 0
a21 a22 a23 a24 0 1 0 0
a31 a32 a33 a34 0 0 1 0
a41 a42 a43 a44 0 0 0 1

377775 :

All the methods discussed before can be employed to solve the 4� 4 system with four
right hand sides, namely (i) Gauss Elimination (ii) LU decomposition and (iii) Jordan’s.
See Examples 2.11 and 2.12.
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Example 2.11
Find the inverse of the following matrix A by Gaussian elimination method, where

A =

2664 4:3 �3:5 �1:2
18:4 2:1 �1:0
7:2 1:8 3:4

3775.

Using A�1, compute x form Ax = b, when bT = (10.90 7.80 23.22). Compute up to 2
decimals only.

Solution We apply Gaussian elimination method taking b as columns of unit matrix I, i.e., con-
sidering augmented matrix:2664 4:3 �3:5 �1:2 1 0 0

18:4 2:1 �1:0 0 1 0
7:2 1:8 3:4 0 0 1

3775
R2 R2�4:28R1; R3 R3�1:67R12664 4:3 �3:5 �1:2 1 0 0

0 17:08 4:14 �4:28 1 0
0 7:64 5:40 �1:67 0 1

3775
R3 R3�0:45R22664 4:3 �3:5 �1:2 1 0 0

0 17:08 4:14 �4:28 1 0
0 0 3:54 0:26 �0:45 1

3775
Solving by back-substitution, for 3 right sides, we get the respective 3 columns of A�1, i.e.,

A�1 =

2664 0:03 0:04 0:02
�0:27 0:09 �0:07

0:07 �0:13 0:28

3775 :

For given bT,

x =

2664 0:03 0:04 0:02
�0:27 0:09 �0:07

0:07 �0:13 0:28

3775
2664 10:90

7:80
23:22

3775=

2664 1:10
�3:87

6:25

3775 :


