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Preface to the Series

On Perspectives. Mathematical logic arose from a concern with the nature and the
limits of rational or mathematical thought, and from a desire to systematise the
modes of its expression. The pioneering investigations were diverse and largely
autonomous. As time passed, and more particularly in the last two decades,
interconnections between different lines of research and links with other branches of
mathematics proliferated. The subject is now both rich and varied. It is the aim of
the series to provide, as it were, maps or guides to this complex terrain. We shall not
aim at encyclopaedic coverage; nor do we wish to prescribe, like Euclid, a
definitive version of the elements of the subject. We are not committed to any
particular philosophical programme. Nevertheless we have tried by critical discus-
sion to ensure that each book represents a coherent line of thought and that, by
developing certain themes, it will be of greater interest than a mere assemblage of
results and techniques.

The books in the series differ in level: some are introductory some highly
specialised. They also differ in scope: some offer a wide view of an area, others
present a single line of thought. Each book is, at its own level, reasonably
self-contained. Although no book depends on another as prerequisite, we have
encouraged authors to fit their book in with other planned volumes, sometimes
deliberately seeking coverage of the same material from different points of view. We
have tried to attain a reasonable degree of uniformity of notation and arrangement.
However, the books in the series are written by individual authors, not by the group.
Plans for books are discussed and argued about at length. Later, encouragement is
given and revisions suggested. But it is the authors who do the work if, as we hope,
the series proves of value, the credit will be theirs.

History of the Ω-Group. During 1968 the idea of an integrated series of
monographs on mathematical logic was first mooted. Various discussions led to a
meeting at Oberwolfach in the spring of 1969. Here the founding members of the
group (R. O. Gandy, A. Levy, G. H. Muller, G. Sacks, D. S. Scott) discussed the
project in earnest and decided to go ahead with it. Professor F. K. Schmidt and
Professor Hans Hermes gave us encouragement and support. Later Hans Hermes
joined the group. To begin with all was fluid. How ambitious should we be ? Should
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we write the books ourselves! How long would it take? Plans for authorless books
were promoted, savaged and scrapped. Gradually there emerged a form and a
method. At the end of an infinite discussion we found our name, and that of the
series. We established our centre in Heidelberg. We agreed to meet twice a year
together with authors, consultants and assistants, generally in Oberwolfach. We
soon found the value of collaboration: on the one hand the permanence of the
founding group gave coherence to the over-all plans; on the other hand the
stimulus of new contributors kept the project alive and flexible. Above all, we found
how intensive discussion could modify the authors' ideas and our own. Often the
battle ended with a detailed plan for a better book which the author was keen to
write and which would indeed contribute a perspective.

Acknowledgements. The confidence and support of Professor Martin Earner of the
Mathematisches Forschungsinstitut at Oberwolfach and of Dr. Klaus Peters of
Springer-Verlag made possible the first meeting and the preparation of a provi-
sional plan. Encouraged by the Deutsche Forschungsgemeinschaft and the
Heidelberger Akademie der Wissenschaften we submitted this plan to the Stiftung
Volkswagenwerk where Dipl. Ing. Penschuck vetted our proposal; after careful
investigation he became our adviser and advocate. We thank the Stiftung
Volkswagenwerk for a generous grant (1970-73) which made our existence and our
meetings possible.

Since 1974 the work of the group has been supported by funds from the
Heidelberg Academy; this was made possible by a special grant from the
Kultusministerium von Baden-Wύrttemberg (where Regierungsdirektor R. Goll
was our counsellor). The success of the negotiations for this was largely due to the
enthusiastic support of the former President of the Academy, Professor Wilhelm
Doerr. We thank all those concerned.

Finally we thank the Oberwolfach Institute, which provides just the right
atmosphere for our meetings, Drs. Ulrich Feigner and Klaus Gloede for all their
help, and our indefatigable secretary Elfriede Ihrig.

Oberwolfach R. O. Gandy H. Hermes
September 1975 A. Levy G. H. Muller

G. Sacks D. S. Scott



Author's Preface

At a recent meeting of logicians, one speaker complained — mainly, but perhaps
not wholly, in jest — that logic is tightly controlled by a small group of people
(the cabal) who exercise careful control over the release of new ideas to the
general public (especially students) and indeed suppress some material com-
pletely. The situation is surely not so grim as this, but any potential reader of this
book must have felt at some time that there is at least a minor conspiracy to keep
new ideas inaccessible until the "insiders" have worked them over thoroughly.
In particular he might well feel this way about the whole subject of Generalized
Recursion Theory, which developed in the second half of the 1960s. The basic
definitions and results on recursion involving functionals of higher type appeared
in the monumental but extremely difficult paper Kleene [1959] and [1963].
Gandy [1967] gave another presentation ab initio, but the planned part II of this
paper, as well as several other major advances in the subject, never appeared in
print. For the theory of recursion on ordinals, the situation was even worse.
Much of the basic material had appeared only in the abstracts Kripke [1964,
1964a], and although certain parts of the theory had been worked out in papers
such as Kreisel-Sacks [1965] and Sacks [1967], there was no reasonably complete
account of the basic facts of the subject in print.

When I first contemplated doing something about this situation in the spring
of 1971, I planned to write a short monograph on recursion relative to type-2
functionals with enough background on ordinary Recursion Theory to show how
the theories fit together. Before I had done much about it, however, the
invitation of the Ω-Group to write a volume for this series stimulated me to think
in more ambitious terms and my plan expanded gradually to include functionals
of types 3 and higher, ordinal recursion, and a more thorough presentation of the
material on definability (Chapters III-V). The constant encouragement of the
Ω-Group, collective and individual, was essential to the completion of the task.

The original plan arose from a course I gave at the University of Michigan in
the Fall Term of 1970. Thanks to Jens-Erik Fenstad and the University of Oslo I
had the opportunity to lecture on much of the material during the academic year
1971-1972. Other occasions to lecture on parts of the material were provided by
the University of Michigan in 1972-73 and the Winter Term of 1975, the Warsaw
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Logic Semester in May, 1973, and the Michigan-Ohio Logic Seminar. The
majority of the actual writing was done in the summers of 1973-75 under grants
from the National Science Foundation.

Of my many teachers, formal and informal, who have personally helped me
to form my conception of this subject, I want especially to mention John
Addison, Jens-Erik Fenstad, Robin Gandy, Yiannis Moschovakis, and Joe
Shoenfield. Andreas Blass read much of the first draft and made many helpful
comments. Mm. Bocuse and Haberlin provided inspiring models of excellence.
The boldness of the section and subsection headings in the first third of the book
is due to the careful work of Monica Scott and her brown crayon. Barbara Perkel
did a superb job of typing. Finally, the person to whom the reader should be
most grateful is Anne Zalc. In reading carefully the entire final draft she caught
hundreds of errors, serious and minor. More importantly, she was an unrelenting
enemy of that peculiar brand of obfuscation which results from an author's
implicit assumption that the reader has perfectly understood and remembered
every detail of what has preceded any given point. Without her the book would
be a denser jungle.

January 30, 1978 Peter G. Hinman
Ann Arbor
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Introduction

The theory set out in this book is the result of the confluence and common
development of two currents of mathematical research, Descriptive Set Theory
and Recursion Theory. Both are concerned with notions of definability and,
more broadly, with the classification of mathematical objects according to
various measures of their complexity. These are the common themes which run
through the topics discussed in this book.

Descriptive Set Theory arose around the turn of the century as a reaction
among some of the mathematical analysts of the day against the free-wheeling
methods of Cantorian set theory. People such as Baire, Borel, and Lebesgue felt
uneasy with constructions which required the Axiom of Choice or the set of all
countable ordinals and began to investigate what part of analysis could be
carried out by more explicit and constructive means. Needless to say, there was
vigorous disagreement over the meaning of these terms. Some of the landmarks
in the early days of Descriptive Set Theory are the construction of the Borel sets,
Suslin's Theorem that a set of real numbers is Borel just in case both it and its
complement are analytic (Σ*), and the discovery that analytic sets have many
pleasant properties — they are Lebesgue measurable, have the Baire property,
and satisfy the Continuum Hypothesis.

A natural concomitant of this interest in the means necessary to effect
mathematical constructions is the notion of hierarchy. Roughly speaking, a
hierarchy is a classification of a collection of mathematical objects into levels,
usually indexed by ordinal numbers. Objects appearing in levels indexed by
larger ordinals are in some way more complex that those at lower levels and the
index of the first level at which an object appears is thus a measure of the
complexity of the object. Such a classification serves both to deepen our
understanding of the objects classified and as a valuable technical tool for
establishing their properties.

A familiar example, and one which was an important model in the develop-
ment of the theory, is the hierarchy of Borel sets of real numbers. This class is
most simply characterized as the smallest class of sets containing all intervals and
closed under the operations of complementation and countable union. In the
p-th level of the hierarchy are put sets which require a sequence of p
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applications of complementation and countable union to families of intervals for
their construction. The open and closed sets make up the first level, the Fσ

(countable union of closed) and G8 (countable intersection of open) sets the
second, etc. This yields an analysis of the class of Borel sets into a strictly
increasing sequence of Mj levels (see § V.3).

Recursion Theory developed in the 1930's as an attempt to give a rigorous
meaning to the notion of a mechanically or algorithmically calculable function.
Such a function is, in an obvious sense, more constructive and less complex than
an arbitrary function. The first great success of Recursion Theory was GόdeΓs
application of it in his incompleteness theorems in 1931. The diverse character-
izations of the class of recursive functions by Church, Kleene, and Turing
suggested strongly that this is a natural class of functions. Other related notions
of (relative) complexity developed in the 1940's and 1950's — the notion of one
function being recursive in another, the arithmetical and analytical hierarchies of
Kleene and Mostowski, various sorts of definability in formal languages, and
inductive definability.

The two theories developed essentially independently until the middle 1950's
when, largely through the work of Addison, it was realized that to a great extent
they are both special cases of a single general theory of definability. The results
and methods of Recursion Theory are based on a more restrictive notion of
constructivity and in many instances may in hindsight be viewed as refinements
of their counterparts in Descriptive Set Theory. Since this is a book of
mathematics rather than history, I shall develop here the general theory from
which the results of both areas can be derived. As a result, many of the earlier
parts of Descriptive Set Theory appear to depend on recursion-theoretic
techniques. This dependence is explained by the fact that many of these
techniques were known in some form before the advent of Recursion Theory. In
a few cases (e.g. the Borel hierarchy) where the older theory is much simpler and
more elegant than its recursion-theoretic refinement, I adopt a historical
approach and present the classical version first. Roughly half of the material of
the book comes from the period when the theories were separate; the other half
is a product of the marriage.

In accord with the aims of this series, this book is a perspective on Recursion
and Hierarchy Theory and not an encyclopedic treatment. Certain approaches
are stressed heavily and other equally valid ones are omitted entirely. My
definition of recursive function(al) in § II.2 is non-standard and is chosen for the
ease with which it can be adapted to the definition of various classes of
generalized recursive function(al)s in Chapters VI-VIII. Inductive definability is
portrayed (correctly!) as the cornerstone of almost every aspect of the theory.
Many topics closely related to those included are omitted. Some of the most
notable of these are degree theory (in both ordinary and generalized recursion
theory), abstract recursion theory (over other than the "natural" structures),
axiomatic recursion theory, and subrecursive hierarchies. Most of these will be
treated in other books in this series.

The book is intended for a variety of audiences. As a whole, it is aimed at a
student with some general background in abstract mathematics — at least a
smattering of topology, measure theory, and set theory — who has finished a
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course in logic covering the completeness and incompleteness theorems. In
general, those parts which are more recursion-theoretic rely more heavily on a
background in logic, while the more descriptive set-theoretic parts use more
topology. Of course, as always, lack of formal experience in any area is
compensated for by that elusive "mathematical maturity". The book may be
used for a variety of formal courses of study under titles such as (Generalized)
Recursion Theory, Descriptive Set Theory, or Theory of Definability. Students
with sufficient background to skim Chapters I and II quickly can cover most of
the book in a full-year course, but otherwise some judicious pruning will be
required.

In general, the sections of the book depend on each other as indicated in the
following diagram; some individual results may presuppose more or less
background.

VI.6 VI.4 V.2-3,6

IV.3-4

V.4-5

VI.5 VI.7

VIII.5

VII.3 VII.2, 4 VIII.6, 8
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In designing the proofs of results in this book, I have in general made the
assumption that the reader has access to pen and paper and will not mind
working out a few points for him/herself, but in the main I have tried to give
sufficient detail so that anyone who has mastered the prerequisite sections will
find this an easy exercise. The subject is full of proofs which require a rather
intricate construction followed by a tedious but straightforward inductive
verification that the object constructed does the job it was designed for.
Furthermore, one often has need in later parts of the theory for a construction
quite similar to an earlier one but with one or two additional twists. Indeed, I
have often arranged a sequence of lemmas and theorems exactly so that the
constructions become increasingly complex in stages in preference to giving at
once the most general case. In presenting these I have tried to strike a middle
ground between putting the reader to sleep by constant repetition and overly
free use of that attractive term "obviously". In general, the construction, or the
modification of an earlier construction, is given in full detail, but a good part of
the verification is left to the reader. I suspect that the average reader will usually
be content to know that the rest of the proof runs "similarly", while the devoted
reader (if any!) who seeks a firm grasp on the methods of the subject as well as
the results will benefit from the process of working out the details.

The exercises are of two main types. The more routine among them are
designed to give the student some experience in handling the methods and
techniques of the text and usually require few new ideas. These occasionally
include a proof of a lemma from the section. Many of the exercises, however,
present results which might well have been included in a larger or more
specialized book and constitute a do-it-yourself supplement to the book.
(Indeed, one mathematician was somewhat offended that his favorite theorem
achieved only the status of an exercise!) I have provided hints and suggestions
where they seemed necessary, but many of these exercises will be quite
challenging even to the experienced student. The more casual reader should at
least glance over the exercises for statements of results.

With respect to the history of the subject, I have taken a middle course
betwfeen suppressing it altogether and trying to document and credit each minute
advance. The.primary purpose of the Notes at the end of most sections is to give
some idea how, when, and by whom the subject (was) developed, but in the
interest of brevity I have omitted mention of many significant contributors. I
apologize to those slighted and hope that they will recognize that their sacrifice is
for a good cause.

The References similarly contain only a fraction of the articles and books
in which our subject matured. Many older references are in a style so different
from the current one that they are of little practical use to the working
mathematician. I have included a few of these for their historical importance, but
in the main the works cited are ones I feel might be of interest to the serious
student. In some cases they contain material beyond that of the text, in others
they will provide further insight into origins and motivations. In the Epilogue I
discuss the current literature and give some guidance for reading which goes
beyond the confines of this book.
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Basic Notions of Definability





Chapter I

Groundwork

In this introductory chapter we review some of the prerequisites to the theory to
be studied in this book. In the first section we discuss the kinds of objects we
shall study — functions and relations with natural numbers and functions of
natural numbers as arguments. The second section outlines the application of
topological and measure-theoretic notions to these objects. In the third section
we discuss inductive definability, a notion which plays a dual role in our theory.
Most of our fundamental definitions are given inductively, but in addition we
shall study inductive definability as a means of classifying sets and relations.

The reader need not master all of Chapter I before going on to the theory
proper. Subsections 1.1-1.5, 2.1-2.4, and 3.1-3.11 will suffice for a reading of
Chapter II and most of Chapter III, and the other subsections may be used for
reference. A list of all of the global notational conventions is on page 467.

1. Logic and Set Theory

1.1 Functions and Sequences. A function φ is a set of ordered pairs (JC, y). The
domain of φ is the set Dm φ = {x: for some y (JC, y) E φ}, and the image of φ is
the set Im φ = {y: for some x (JC, y) E φ}. We often write φ (x) j or say φ (JC) is
defined to mean that JC E Dm φ. Similarly, φ (JC) \ means JC ^ Dm φ and is read
φ(x) is undefined. If φ and ψ are two functions, we write φ(x)— Ψ(x') to mean
that either both ψ(x) and ψ(x') are undefined or both are defined and have the
same value (φ(x) = ψ(x')). In particular, φ(x)— y means that φ(x) is defined
and has value y — that is, (JC, y) E φ. We write φ (JC ) = y only in contexts where it
is clear that φ(x) is defined. If Dm ψ and Dm ψ are both subsets of a set X, then
the statement (for all JC E X) φ(x) — ψ(x) means simply that φ and ψ denote the
same function. If the set X is clear from context, this may be written simply
<p(jc)— Φ(x). The restriction of ψ to X is the function φ \X = {(JC, y): JC E X and
φ(x)— y}. The image of X under φ is the set ψ" X = Im(<p fX).

We write φ: X —> Y to mean φ is a function, Dmφ C X, and I m ^ C Y . If
Dm <p=Xwe say φ is total; otherwise, φ is partial. The set of all total functions
φ: X-> Y is denoted by XY.
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If yx denotes an element of Y whenever x G Z C X , we use any of the

expressions x »-> yx, λx.yx and (yx: x E Z ) to denote the function {(JC, yx): x E

Z}.

The natural number m is the set {0,1,..., m - 1} of all smaller natural

numbers. The set of all natural numbers is denoted by ω.

For any set X, a finite sequence from X is a function x with domain a natural

number fc called the length of x (lg(x)) and image a subset of X. Hence x E kX.

For i < lg(x), x(i) is called the i-th component of x and is usually denoted by JC,.

To exhibit all the components we write (JC(), Xi,..., xk-ι) for x. Note that the

empty sequence 0 is the unique sequence of length 0. We make no distinction in

general between X and ιX. Note that if x = (x(>,..., xk_i) and y = (y 0 , . . . , y/-i) are

two finite sequences from X, then x C y just in case y extends x; that is, fc ^ / and

for all / < fc, x, = y, . The operation x*y produces the sequence

(xo,..., Xfc-i, y 0 , . . . , y/-i). If φ E ωX, then x * φ is the function φ E ωX such that

for /<lg(x), Ψ(i) = xi9 and for ι^lg(x), </>(0 = <p(i - lg(x)). If Z C X , we

sometimes write x E Z to mean that for all i < lg(x), x, E Z. Similarly, m < n

means that for all i < lg(m), m, < n. If <p: X—> Y and x E kX, then φ(x) denotes

the sequence (φ(x0), .. ,φ(Xk-ι)).

1.2 Functionals and Relations. For fc, / E ω we set M ω = kω x '(ωω). A function

F: k 'ω -> ω is called a functional of rank (fc, /). A functional of rank (fc,0) is also

called a function of rank fc and is identified with the corresponding function

F : kω-+ω. Elements of ωω are thus total functions of rank 1.

Elements of k / ω are ordered pairs of the form (m, a). However, if F is a

functional of rank (fc, /), we write F(m, α ) instead of F((m, a)) and think of m, a

as a list of arguments m0, . . . , m k - i , α0, . . . ,α/- i . Thus, for example, we write

F(m«,..., mk-u a) instead of F((w 0 , . . . , /nk_i), α ) and F(p, m, α, β, γ) instead of

of F((p) * m, a * (β, γ)). If F is a total functional of rank (fc 4-1, /), then F may

also be thought of as a function from kJω into ωω whose values are given by:

F[m, α ] = <F(/?,m, a): p E ω ) = λp. F(p,m, a).

A subset R of k / ω is called a relation of rank (fc, /). We usually write R(m, a)

instead of (m, a) E R. A relation of rank (fc, 0) is called a relation (on numbers) of

rank k and is identified with the corresponding subset R of kω. In accord with

the list notation for functionals, we write, for example, R(m, α ( ) , . . . , α ^ ) for

R(m,(α0, ...,0!/-,)) and R(p, qr,m, r, β, α ) for R((p, ̂ ) * m * ( r ) , ( β ) * α ) . For R C
k 'ω, the complement of R (with respect to k / ω ) is the relation ~R = {(m, a):

(m, a)Eklω and (m, α ) £ R}.

With each relation R of rank (fc, /) is associated its characteristic functional of

rank (fc, /) defined by

KR(m,«)=ί?' «
[1, ootherwise.
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Conversely, to each functional F of rank (k, I) corresponds it graph GrF

(occasionally Gr(F)), a relation of rank (k + 1, /) defined by

GrF(n, m, a) iff F(m, a) — n.

By the identification of functional of rank (1, 0) with functions from ω into ω

and of relations of rank (1, 0) with subsets of ω, if A C ω, then KΛ G ωω. We

write, for example, F(m, A, α, B) instead of F(m, KA, α, KB) and thus extend

functionals to admit subsets of ω as arguments.

Compositions of partial functionals and relations are taken to be defined

whenever possible. For example, F(G(m, α),m, a)— n just in case for some

p G ω, G(m, a) — p and F(p,m, a)— n. Similarly, F(m, α, λp. H(p,m, a))— n

just in case for some β G ωω, H(p,m, a) — β(p) for all p G ω, and F(m, a, β)— n.

Note that F(m, α, λp. H(p, m, «)) is undefined for any m and a for which

λp. H(p, m, α ) is not total. For relations, we have, for example, R(m, G(m, a), a)

is true iff for some p E ω, G(m, a) — p and R(m, p, α ) , and false otherwise (not

undefined).

Natural numbers are said to be objects of type 0. Functions from kω into ω

and subsets of kω are objects of type 1; functionals from kJω into ω and subsets

of klω (/ > 0 ) are objects of type 2. In general a function with natural number

values or a relation is of type n + 1 iff its arguments are objects of types at most n.

In practice, the arguments of types > 0 will almost always be total unary

functions. Thus the objects of type 3 discussed in § VI.7 and Chapter VII are

functions and relations on κ u ι ω = kω x / ( ω ω ) x ι (ωω). Elements of kJJ ω are

written (m, α, I), where I = (\u . . . lΓ_j). Functionals of type 3 are denoted by

letters F, G, H,. . . and relations of type 3 by R, S, T, . . . .

1.3 Logical Notation. We shall use the logical symbols Λ , v, — I , —>, and «-> as

abbreviations for the expressions 'and', Or', 'not', implies', and ςif and only if,

respectively. Although we are not, for the most part, dealing with formalized

languages, these connectives are to be understood in their usual truth-functional

sense. Thus, for example, an expression of the form > is true just in

case is false, or is true (or both).

The symbols 3 and V will be used as abbreviations for 'there exists' and 'for

all', respectively. In most cases the range of the quantifier will be indicated by

the type of variable following it in accord with the conventions listed on page

467. For example, an expression of the form 3m [—m —] is true just in case

— m — is true for some natural number m. Similarly, the condition for equality

of partial functionals is written

F = G o V m V α [F(m, a) - G(m, a)].

Further restrictions on the range of a quantifier may be indicated by use of a
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bounded quantifier. For example, (3 m < p)— m — is true iff — m — is true for

some m among 0,1,...,/? - 1; (Vγ E W) γ is true iff γ is true for

all γ belonging to W. We write 3 ! m [ — m —] to mean that — m — is true for

exactly one m.

Parentheses, (and) , and brackets, [ a n d ] , are used interchangeably in

sufficient quantity to ensure unique readability of expressions. In addition, a

single dot . may be used to set off two parts of an expression — for example,

(Vp<q).R(p,m) or λp.f(p,m) + g(p).

1.4 Sequence Coding. For each fc, kω is a countable set and may thus be put in

one-one correspondence with a subset of ω. Similarly for / > 0, '(ωω) may be put

in one-one correspondence with a subset of ωω. We define here some particularly

simple such correspondences which we call coding functions.

Temporarily we let /?, denote the i-th prime number: p0 = 2,pλ = 3 , . . . . For

each fc we define a total function < )k of rank fc by:

< >° = 1, and for any fc > 0 and any mG kω,

(m) k = ( m o , . . . , mfc-,>k = po

m°+1 pΓ 1 + 1 pT*V+ί.

The unique factorization theorem of arithmetic ensures that if (m)k = (n)', then

fc = Z and m = n. As the superscript is usually clear from the context, we shall

usually omit it.

For any 5, ί, and / E ω, let

(s)i = least m [m < s ApT+2 does not divide s];

lg(s) = least fc [k < s Λpk does not divide s]\

s * t = s -1', where t' arises from t by replacing each

factor pi in the prime decomposion of t by pΓg(s)+..

Then it is an arithmetical exercise to verify that for all fc, all m E kω, all n, and all

i < fc, ((m)), = m, , lg((m)) = fc, and (m) * (n) = (m * n). We denote by Sq the set of

all s such that 5 = (m) for some m. Note that for any fc and 5, s may be regarded

as coding a sequence of length fc, namely ((s) 0,.. .,(s)k-i). We often regard m

and (m) as interchangeable and write, for example, p C (m) instead of p C m. In

particular, 5 C t iff for some m and n, s = (m), t = (n), and m C n . For any

β E ωω, β(k) denotes the code for the sequence β\k — that is, β(k) =

We next define coding functions from '(ωω) into ω ω :

( )° = Am. 1, and for any / > 0 and any a E ' ( ω

(a)1 = ( α 0 , . . . , α/-i)' = λm . (ao(m),..., α/-i(m)).
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Again it is obvious that if (a)1 = (β)k, then / = k and a = β, and that we may
omit the superscript without ambiguity.

For any y and δ G ωω and any j G ω, let

= λm.(γ(m))y;

y * δ = λm. γ(ra)*δ(m).

Then for all /, all a G '(ωω), all 0, and all / < /, ««»,- = at, lg«α»= /, and
(a)*(β) = (a * β). We denote by Sqi the set of all γ such that y = (a) for some
a. For any / and γ, γ may be regarded as coding the sequence ((γ)0, .., (γ)/-i)

It will also be useful occasionally to code ω -sequences of functions. We set

<α(), α ι , . . . , α n , . . . ) = λw. <ximh((m )i), and

(yT(m)=y((nym)).

Then clearly «α0, «i , . . . ,«„,. . . »n (m) = an (m).

1.5 Set Theory. Except where we specify otherwise, the results of this book are
all theorems of ZFC, Zermelo-Fraenkel Set Theory with the Axiom of Choice.
The (Generalized) Continuum Hypothesis is not assumed. We shall occasionally
want to replace the full Axiom of Choice (AC) by the weaker Axiom of
Dependent Choices:

(DC) Vx3y.(x,y)GX^3<pVm.(φ(m),φ(m + 1))GX.

We recall that this implies the principle of choice for countable families of
non-empty sets:

(ACω) Vm. Y w ^0-*3ψVm.ιMm)G Y*.

Most of our set-theoretic conventions are standard and we refer the reader to
(for example) Levy [1978] for further background. A set JC is transitive iff
Vy(y G x -> y C JC). x is an ordinal (number) iff x and all of its elements are
transitive. For ordinals π and p, π < p iff π G p the relation ^ is a well-
ordering on any set of ordinals. For any ordinal π, π + 1 is the set π U {TΓ}, the
ordinal successor of TΓ. p is a successor ordinal iff p = TΓ + 1 for some TΓ p is a
limit ordinal iff Vτr(τr < p—» TΓ + 1< p). Every ordinal is either 0, a limit, or a
successor. The natural numbers are exactly the finite ordinals and ω is the
smallest limit ordinal. Or is the class of all ordinals.

For any set X of ordinals we denote by inf X the ^ -least element of X.
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Although X need not have a ^ -greatest element, there is always an ordinal

greater than or equal to all elements of X and we denote by sup X the least such

ordinal. In fact, supX is exactly the union of the members of X. We set also

sup+X = sup{ττ + 1: π E X}. Then sup+X is the least ordinal strictly greater

than all elements of X and is the same as supX if X has no greatest element;

otherwise, supX is the greatest element and sup+X = supX-I-1. If φ is a

function from ordinals to ordinals and X C Dm φ, then

infπ€ΞXφ(π) = \ni{φ(π): π E X}, and

(vr): π E X}.

An ordinal p is a limit of members of X C Or iff (VTΓ < p)(3cr E X). π < σ <

p. Any limit of members of any set X is a limit ordinal. If also p E. X, then p is

called a limit point of X. We denote by LimX the set of limit points of X. A

subset y ς X i s cofinal in X iff (Vcr E X)(3τ E Y)σ ^ r.

If ?l is a proposition which may be true (?l(<τ)) O Γ ^ a * s e ('"~Ί^(σ")) of each

ordinal σ, then to prove Vcr?l(σ) we may use the method of proof by transfinite

induction: if Vσ([(Vτ < σ)9l(τ)]->9l(σ)), then Vσ9I(σ). We use frequently

also the parallel method of definition by transfinite recursion: for any total

k +2-place function ψ, there exists a k + 1-place function φ such that for all p

and x,

where

ψ\χP ={((π,x),z): π <ρ Λ φ(π,x)= z).

φ is not unique, but any other function φ' which satisfies this equation has

φ\σ,x) = φ(cr,x) for all σ and x.

Since any set X of ordinals is well ordered by the relation ^ , it is uniquely

order-isomorphic to an ordinal which we denote by ||X||, the order-type of X.

The function φx which realizes this isomorphism is recursively defined by:

ψx{ρ) = sup+{<px(ττ): π < p Λ π E X}.

We list here some elementary properties of φx which will be needed in Chapter

VIII:

(1) π,pEXΛπ < p -+φx(π) < φx{p)\

(2) p E X Λσ < φx(p)->3π[π E X Λ π < p /\ σ = φx(π)]\

(3) p e X
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(4) p C X ^ φ x ( p ) = p;

(5) X is an ordinal <-» (Vp G X).φx(p) = p.

An ordinal K is an initial ordinal or cardinal (number) iff there is no one-one
correspondence between K and any τ < K. From the axiom of choice it follows
that for every set X there is a unique cardinal K such that there exists a one-one
correspondence between X and K. We denote this K by Card(X), the cardinal of
X. Then there is a one-one correspondence between two sets X and Y just in
case Card(X) = Card(Y). The natural numbers are exactly the finite cardinals,
and ω is the least infinite cardinal. A set X is countable iff Card(X) ^ ω and
denumerable or countably infinite iff Card(X) = ω. The infinite cardinals are
enumerated by the function H defined by:

Mo = ω

Hσ = U {Hn: π < σ}, for limit σ.

In particular, Hi is the set of countable ordinals.
For any X, P(X) denotes the power set of X, the set of all subsets of X. If

Card(X) = K, then CardP(X) is denoted by 2\ If X is infinite, then Card(x2) =
Card(xω) = 2\ In particular, Card(ωω) = Card(k/ω) = 2M° for all k and all / > 0.
By Cantor's Theorem, K <2K for all cardinals K. The Continuum Hypothesis is
the statement that 2M° = M!.

1.6 Ordering Relations. For any set X and any Z C 2X, the field of Z is the set

Fld(Z) = {x:3y [(x, y)G Z v(y, JC)G Z]}.

Z is a pre-partial-ordering iff

(1) (VJC G Fld(Z))[(x, JC) e Z], (Z is reflexive),

and

(2) VxVyVz [(JC, y ) 6 Z Λ ( y , z ) G Z ^ ( x , z ) G Z ] (Z is transitive).

Z is a pre-linear-ordering iff (1), (2), and

(3) VjcVy[jc,y G Fld(Z)Λ x ^ y -»(*, y)G Z v(y, JC)G Z] (Z is connected).

Z is a pre-wellordering iff (1), (2), (3), and
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(4) V Y ( Y C F l d ( Z ) Λ Y/0^>(3x<Ξ Y)(Vy G Y ) [ ( y , x ) G Z - H > ( J C , y ) G Z ] )

(Z is we// founded).

Z is a partial- (linear-, well-) ordering iff Z is a pre-partial- (linear-, well-)

ordering and

(5) Vx Vy [(*, y) G Z Λ (y, JC) G Z -* JC = y] (Z is antisymmetric).

From the Axiom of Dependent Choice (DC) it follows that (4) is equivalent to

(4') Vφ[Vm.(φ(m + 1), φ(m)) G Z ^ 3m. (φ(m

If Z is a pre-wellordering, then there is a unique function | | z , the norm

associated with Z, from Fld(Z) onto an ordinal such that for all JC, y G Fld(Z),

(6) ( x , y ) G Z H * | z ^ | y | z .

In fact, for any y G Fld(Z),

|y | z = sup+{|x|z:(x,y)GZΛ(y,λ)£Z}.

Conversely, if | | is any function from a set Y into the ordinals, the relation Z( |

defined by

(7) (x,y)<ΞZι , H * M y |

is a pre-wellordering. If the image of | | is an ordinal, then | | is the norm

associated with Z\ \.

Z is a well-ordering just in case | | 2 is injective (one-one). The image of

I \z is called the (pre-)order-type of Z and is denoted by | | Z | | . Clearly | | Z | | < K,

where K is the least cardinal greater than Card(X). In the context of of set theory

without the Axiom of Choice, a useful measure of the size of a set X in terms of

ordinals is o(X) = sup+{||Z||: Z is a pre-wellordering and Fld(Z)CX}.

Orderings will generally be denoted by symbols ^ or < with various sub-

and superscripts. In any such context, the symbols < or < always denote the

associated strict ordering defined by:

With any γ G ωω we associate a binary relation = r̂ by

γn *+ γ«m, n)) = 0.
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We shall mainly be interested in γ such that ^ y is a partial ordering. We then set

W = {γ: ^ Y is a well-ordering};

M . = ίlKII. if r^w;
7 1 1 I*,, otherwise;

w fθ, if m^yiτ /\n<Ύp',

The following facts are easily verified: for any γ E W and any p,

(8) r Γ p ε w 9 and if | | r l l>0, then ||yΓp|| < | |y||;

(9) for any σ < | | γ | | , there is a unique p E Fld(γ) such

that | | γΓp | | = σ\

(10)

(11)

1.7 Notes. The idea of coding finite sequences of natural numbers by prime

powers goes back (at least) to Godel [1931]. For readers less familiar with set

theory we recommend Levy [1978], Zuckerman [1974], or the handiest recent

text.

2. Topology and Measure

We begin our study of the spaces kJω by defining a natural topology and measure

theory for them. We define first a topology based on viewing kιω as a product of

copies of ω, show that with this topology ωω is homeomorphic to the set of binary

irrational numbers between 0 and 1 with the topology induced from the reals,

and using this homeomorphism, carry Lebesgue measure over to ωω.

The set ωω may be viewed as a product ω X ω X XωX of denumer-

ably many copies of ω. To ω we assign the discrete topology: all sets are open

(and hence all are also closed). Then to ωω we assign the induced product

topology: a set A C ωω is a basic open set iff for some n and some (open) subsets

Bo,.. . , £ „ - ! of ω,

A = Bo X B, X X Bπ_, XωX XωX .

In other words, for all α,
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a 6 A o ( α ( 0 ) E B « ) Λ ( α ( l ) E £,) Λ Λ (a(n - 1)E £„_,).

The open subsets of ωω are then, of course, arbitrary unions of basic open sets.

Finally to klω we again assign the product topology: R C k ' ω is a basic open

relation iff for some A ( ) , . . . , A k - i C ω and some open sets A o,..., A/_i C ωω,

R = (Λ« x x Λk-X) x (Ao x x A,-,).

For any finite sequence m = (mih..., mn_i), the interval [m] is defined by:

a E [m] <->(a(0) = m()) Λ Λ (a(n - 1)= mn-x).

If m C n , then [n] C [m] is a subinterval of [m]. Clearly each interval is a basic

open subset of ωω. Conversely, if A is the basic open set determined by

Bo,...,Bπ-i, then

A = U {[m]: m ( )E β«Λ Λ mn_iE Bn_,}.

Thus the set of intervals is also a base for the topology on ωω.

A partial functional is partial continuous iff for all n,

F-I({n}) = {(m,α): F(m, α ) - n }

is open. This is equivalent to the more usual condition that F" !(B) be open for

any open set B C ω. F is continuous iff it is partial continuous and total.

2.1 Lemma. For any R C M ω ,

(i) R is open iff R is the domain of some partial continuous functional',

(ii) R is closed-open iff KR is continuous.

Proof If F is partial continuous, then Dm F = U {f'ι({n}): n E ω) is a union of

open sets and hence is open. Conversely, if R is open, let

i-/ v ίθ, if R(m, α ) ;
F(m, a) - \ ' Λ , . .

(undefined, otherwise.

Clearly F is partial continuous and R = Dm F. (ii) follows immediately from the

definitions. D

A set A C ωω is dense in an interval [m] iff for every subinterval [m * n] C [m],

A Π [m* n] / 0 . A is dense iff it is dense in the interval [0] = ωω. A is nowhere

dense iff it is dense in no interval. A is meager (first category) iff it is a countable

union of nowhere dense sets. A is non-meager (second category) iff it is not
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meager. A is comeager (residual) iff ~ A is meager. An element a of A is isolated

in A iff there exists a neighborhood [a \ k] of a such that [a \ k] Π A = {a}. A is

called perfect iff it is closed, non-empty, and has no isolated elements.

We mention first some simple direct consequences of these definitions. A

singleton is nowhere dense so any countable set is meager. A countable union of

meager sets is meager. A subset of a meager set is meager. A set is nowhere

dense iff its closure includes no interval. The complement of an open dense set is

nowhere dense. A perfect set has power 2M°.

2.2 Baire Category Theorem. No non-empty open set is meager; no comeager set

is meager.

Proof. Both statements follow from the assertion that no interval is meager.

Suppose to the contrary that for some p and some nowhere dense sets

An, [p]= U{An: n E ω}. Ao is not dense in [p], so for some sequence m°,

Ao Π [p * m°] = 0 . Ai is not dense in [p * m°], so for some m1, Ai Π [p * m° * m1] =

0 . In this way we construct mn such that for all n,

(Ao U U An) Π [p* m°* * m"] = 0 .

There is a function a E Π {[p*m°* *πΓ]: n E ω} and a E [p] but α £ An

for all n, a contradiction. D

We shall have occasion to consider the subspace ω2 consisting of all a which

assume only the values 0 and 1. ω2 is just the set of characteristic functions of

subsets of ω and thus in a natural one-one correspondence with P(ω). The

interval [m] has a non-empty intersection with ω 2 iff m is a binary sequence — all

m, are either 0 or 1. If X is a set of finite sequences we say X is closed downward

iff whenever n C r a G X , also n E X.

2.3 Infinity Lemma. For any set X of binary sequences which is closed downward,

if X is infinite, then X contains an infinite branch — that is, for some a E ω 2,

α f l c G X for all k.

Proof. Let X satisfy the hypotheses and consider the set

Y = {m: m E X and {n: m C n Λ n E X} is infinite}.

By hypothesis 0 6 7. For any m and any n ^ m,

m C n o ( m * ( 0 ) C n ) ) v ( m * (1) C n).

Hence if m E Y, then at least one of m * (0) and m * (1) also belongs to Y. Thus

there exists a unique function a such that for all fc,
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a(k) = least p. (a \k)*(p)E Y.

Since Y C X, this a satisfies the conclusion of the lemma. D

2.4 Theorem, (i) ω2 is a compact subspace of ωω;

(ii) for any k and /, (k2)x ι(ω2) is a compact subspace of klω.

Proof We prove (i) by showing that any open cover & of ω2 has a finite
subcover. Let X be the set of all finite binary sequences m such that [m] is
included in no member of $\ Clearly X is closed downward; suppose X is
infinite. Then by the Infinity Lemma, X contains an infinite branch a. Since & is
a cover, αGA for some A G f. As A is open, for some fc, [αffc]CA, a
contradiction. Hence X is finite, so for some fc all members of X have length less
than fc. Let m°,... , m 2" 1 be a list of all binary sequences of length fc. For each
i < 2k we may choose an A, E 3F such that [m1] C A,. Then 2F0 = {A,: i < 2k} is
the required finite subcover. The proof of (ii) is similar. D

Note that the proof of Theorem 2.4 depends only on the fact that for any
mE X, {p: m*(p)E X} is finite. Hence, for example, "q is a compact subspace
of ωω for any q E ω.

The original aim of Descriptive Set Theory was the study and classification of
sets of real numbers and their properties which are of interest for mathematical
analysis. It was early discovered that little is lost and much is gained in simplicity
and elegance if one studies sets of irrational numbers. Indeed, for most
properties of interest to analysis — measurability, having the power of the
continuum, being meager, etc. — the exclusion of a countable set of points (the
rationals) has no effect. On the other hand, there are important topological
differences between the reals and the irrationals which simplify the theory of sets
of irrationals: the irrationals are of topological dimension 0, there is a base for
the topology on the irrationals which consists of closed-open sets, and the
irrationals are homeomorphic to their own Cartesian powers. Further simplifica-
tion was obtained by the discovery that the space of irrationals is homeomorphic
to ωω with the topology described above. Thus many results concerning ωω and
the product spaces k /ω have immediate consequences for the spaces of irrational
and real numbers (cf. end of § IV.3).

Temporarily, let ωω denote (ambiguously) the topological space described
above (as well as its underlying set). Let Ir denote similarly the set of irrational
numbers x such that 0 < JC < 1 together with the topology induced by the
standard topology on the set of real numbers: Y C Ir is open iff Y = Ir Π Z for
some open subset Z of the real interval (0,1). Then the fact we mentioned is: ωω
and Ir are homeomorphic. We leave the proof of this to Exercise 2.8 and
construct here instead a homeomorphism of ωω with another subspace of (0, 1),
the space BIr of binary irrationals. This correspondence will serve just as well in
transferring results from ωω to (0, 1) and is somewhat more natural.
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A finite binary decimal is a representation of a real number in the form:

where each rt = 0 or 1. The real numbers which have finite binary representa-

tions are exactly those which can be written as a quotient p/q of natural numbers

such that q is a power of 2. Clearly such numbers are dense in (0, 1). An infinite

binary decimal is a representation

where each r = 0 or 1. Any such series converges to a real number between 0

and 1 and every such real number has an infinite binary representation. Two

infinite binary decimals represent the same real number iff they are of the forms

.nrz...* 1 0 0 . . . 0 . . . ,

and

. r , r 2 . . . r /01 1 . . . 1 . . . .

A binary irrational is a real number between 0 and 1 that does not have a

finite binary representation. BIr is the topological space consisting of the binary

irrationals with the topology induced from (0, 1).

2.5 Theorem. ωω and BIr are homeomorphic.

Proof. For any a E ωω, let θ(a) be the infinite binary decimal:

θ(a) = A 1...10 0 0 . . . 0 1 1 1 . . . 1 0 0 0 . . . 0 1 . . . .

From the preceding remarks it is obvious that θ maps ωω one-one onto BIr. θ is

continuous because if a \ k = β \ k, then | θ(a) - θ(β)\ < 2~\ For the continuity

of θ~\ suppose that x E BIr and k are given. To insure that ^~1(jc)ffc = θ'ι(y)\k

it suffices to take | j c - y | < 2 " , where n = θ-ι(x)(0) +

- - + θ~ι(x)(k - 1)+ k. Hence θ is a homeomorphism. D

To compute the image of a given interval [m] in ωω, note that θ(a) has the

following representation:
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θ(a)= A 1...1 1

- ( . 0 0 . . . 0 0 1 1 . . . 1 1)

+ ( . 0 0 . . . 0 0 0 0 . . . 0 0 1 1 . . . 1 1)

α ( 0 ) + l α ( l ) + l α ( 2 ) + 1

Thus θ induces the following correspondence between intervals of ωω and of
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To extend these results to the spaces k 'ω, it suffices to show that for each k

and /, klω is homeomorphic to ωω. For this we need sequence coding functions

which are onto ω. Set

«m, n))2 = \(m2 +

and, recursively, for / > 1,

We leave it as an exercise (2.9) to check that the map 0 k / defined by:

0 k / (m, α ) = (m)* λp .«α ( ) (p) , . . . , α,

is the desired homeomorphism.

The homeomorphism θ induces a natural measure on ωω. Let mesLb denote

Lebesgue measure restricted to BIr. For A C ωω, we set

mes(A) = mesLb{0(α): a G A}

and say A is measurable just in case its 0-image is Lebesgue measurable.

Because θ is a homeomorphism, all open and closed sets are measurable. The

measure is clearly countably additive and has the property that all subsets of a
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set of measure 0 are measurable (completeness). This measure may also be

described as the product measure on ω ω generated by the measure on ω which

assigns {n} the measure 2~(π+1). Thus for any sequence m = (ra ( ) , . . . , rak_i),

mes([m]) = 2-(m<«+1) 2 " ( m - + 1 ) = 2- ( mπ+-+^-.+ k>.

Similarly, we may define a measure on kJω either via the homeomorphism θkl

or directly by setting

mes({m0} x x {mk-,} x [p°] x x [p'~1])

= 2-(m"+1) 2 " ( m - + 1 ) mes([p0]) m e s ^ 1 " 1 ] ) .

2.6-2.13 Exercises

2.6. Let a * range over ω2. Show that for any set X of finite sequences of O's and

Γs,

2.7. For any A C ωω, let 5 * A = {5 * α: α E A } and A(s) = {a: 5 * α E A}. The class

Ka of Kalmar sets is the smallest class X of subsets of ωω such that 0 , ωω E X

and if for all n,An E X, then U {<n)*An: nEω}EX. Show for all A and 5,

(i) AEKa-*A ( s ) EKa;

(ii) A G K a ^ 5 * A 6 K a ;

(iii) Vn.A ( < n ) ) EKa^AEKa;

(iv) Vβ 3 n. A(β(n)) E Ka-^ A E Ka;

(v) AEKa<->A is closed-open.

2.8. Prove that the topological spaces ωω and Ir are homeomorphic. (Since the

sets of rationals and binary rationals are each countable and dense in (0, 1), there

is a one-one order-preserving correspondence between them. This may be

extended in a unique way to a homeomorphism of (0, 1) with itself. The

restriction of this homeomorphism to Ir is a homeomorphism of Ir with BIr.)

2.9. Show that θkJ is a homeomorphism of klω onto ωω.

2.10. (The Zero-One Law). Show that for any measurable set A C ωω, if for all 5,

mes(A Π [5]) = mes(A) mes([s]),

then mes(A) is either 0 or 1. (Show that this equation holds with [5] replaced by

any measurable set.)
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2.11. Show that in the usual topology on the real interval (0, 1), Ir and BIr are Gδ

sets (countable intersection of open sets) but not Fσ sets (countable union of

closed sets).

2.12. Show that a relation R C k / ω is open iff for some 5 C k + 1 ω ,

R(m, α )

2.13. Show that a homeomorphism between ωω and Ir may be constructed

directly. (To each finite sequence m assign a rational number 0(m) recursively by

the rules:

0(0) = 0 and

For all α, θ(a \ k) converges to a limit 0*(α).)

3. Inductive Definitions

Let X be any fixed set. A function Γ from the power set of X into itself is called

an operator over X. Γ is said to be inclusive iff for all YCX, Y Q Γ(Y),

monotone iff for all Y C Z C X, Γ(Y)CΓ(Z), and inductive iff Γ is either

inclusive or monotone. An operator Γ defines inductively a subset Γ of X as

follows. We define by transfinite recursion the sequence Γσ by Γσ =

Γ( U {Γ: r < σ}) and set Γ = U { Γ : σ E Or}. We write Γ ( σ ) for U {Γ: r <

σ} so that Γ σ = Γ(Γσ))._

We think of the set Γ as being "built up" in stages. Starting from the empty

set we get successively Γ(0) , Γ(Γ(0)),.... Γ^ is called the σ-th stage or level.

3.1. Lemma. For any inductive operator Γ and any ordinal σ,

(i) Γ ( σ ) C Γ ;

(ϋ) rσ+1 = Γ(Γσ);
(iii) Γ(σ) = Γσ^Γ = Γσ = Γ for all τ^σ\

(iv) Γ ( σ ) = Γσ for some σ such that Card(σ) ̂  Card(X).

Proof. For inclusive Γ, (i) is immediate from the definitions; for monotone Γ it

follows from the obvious fact that for r ^ σ, Γ ( τ ) C Γ(σ\ (ii) is immediate from the

observation that by (i), Γ(σ+l) = Γσ. (iii) is proved by induction on r: for r = σ,

clearly Γ τ = Γ σ ; for τ > σ, the induction hypothesis yields f(τ) = Γσ and we

have Γ = Γ(Γiτ)) = Γ(Γσ) = Γ(Γiσ)) = Γσ. For (iv), suppose that for each σ with

Card(σ) ^ Card X, Γ(σ)^Γσ, and let xσ be an element of Γσ - Γiσ). lίτ^σ, also
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xT7^ xσ, and this defines an injection of {σ: Card(er) ̂  Card(X)} into X. But this
set is exactly the least cardinal larger than CardX, so this is impossible. D

We denote by \Γ\ the least σ such that Γ ( c r )= Γσ, the closure ordinal of Γ.
Then

3.2 Corollary. For any inductive operator Γ over X, Card(|Γ|)=s= Card(X) and
Γ = Γ( |Γ|). D

Thus we need not think of the sequence Γσ as extended over all ordinals but
only over those less than \Γ\. In particular, if X = ω we need only consider
countable ordinals.

Note that for any inductive Γ, Γ(Γ) = f; but for σ < | Γ | , Γ(Γ ( σ ) )^ Γ(<τ). In
other words, Γ is the first fixed point of Γ in the sequence Γσ.

3.3 Theorem. For any monotone operator Γ over a set X, Γ is the smallest fixed
point of Γ — that is,

Γ= Π{Z:ZCX ΛΓ(Z)=Z}.

Proof. By the preceding remark, ΓE{Z: Z C X Λ Γ ( Z ) = Z } SO that the in-
tersection of this set is included in Γ. Conversely, let Z be any subset of X such
that Γ(Z) = Z; we prove by induction on σ that for all σ, Γσ C Z. Assume as
induction hypothesis that this holds for all r < σ so Γ(or) C Z. Then by
monotonicity, Γσ = Γ(Γ(σ)) C Γ(Z) = Z. D

Note that the proof yields also that for monotone Γ,

Γ= Π { Z : Z C X Λ Γ(Z) C Z}.

These results have two distinct aspects. First, they give a characterization of Γ
which does not involve ordinals. Second, they provide a very convenient way of
proving that all x E Γ have some property: one shows that the set Z of all x E X
which have the property satisfies Γ(Z) C Z. In applying this method we say that
the proof is by Γ-induction or by induction over Γ.

In many contexts where we are defining inductively a particular set Y it will
be convenient to avoid direct reference to the inductive operator involved. Thus
if Y is defined as f, we may write Yσ and Y{σ) instead of Γσ and Γ(or) and
describe proofs by Γ-induction as proofs by induction over Y.

In the remainder of this section we consider the properties of two special
classes of inductive definitions. Let Y be a subset of X and 9 a family of finitary
functions on X — that is, for each <p6f, there is a natural number k(φ) such
that Dm<ρ =k(φ)X and Imφ C X. For each such pair (Y, ^ ) , we define an
inductive operator Γγ,& by:
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ΓY.*(Z) =YU {φ(z): φ G 9 Λ Z G M * > Z } .

The resulting set Γ v ̂  is called the closure of Y under 9. Since Γγ& is clearly

monotone, ΓY3P is also the smallest set including Y and closed under 9.

3.4 Lemma. For any Y and 9 as above, \ΓYtS\ ̂  ω.

Proof. Let Y and ^ be fixed and write Γ for Γγ,«* By 3.1 (i) it suffices to show

Γ ω C Γ ( ω ). Let JC be any element of Γ ω = Γ(Γ(to)). If x G Y, then JC G Γ°C Γ ( ω ).

Otherwise, for some ^ E f and some z G k(*>(Γ(ω)), x = <p(z). For each

i<k(φ), let r̂  be the least natural number such that zt E Γr\ and set r =

max{r,: i<k(φ)}. Then z G k ( φ ) Γ Γ so JC G Γ(Γ r ) = Γ r + 1 C Γ ( ω ). D

The method of inductive definition is a generalization of the definition of the

set ω of natural numbers in set theory: ω is the smallest set including {0} and

closed under the successor function, SC(JC) = X U{JC}. Many of the fundamental

notions of elementary logic are most naturally defined inductively, often by

operators of the form ΓY3F. For example, the set of formulas of a (finitary)

first-order formal language is the closure of the set of atomic formulas under

functions corresponding to the propositional connectives and quantifiers (cf.

§ III.5). The set of formal theorems of an axiomatic theory is the closure of the

set of axioms under functions corresponding to the rules of inference. An

example which is not a closure under finitary functions is the class of formulas of

the infinitary language Lωω (cf. Keisler [1971]).

We shall also need a generalization of the method of definition by recursion.

Roughly speaking, for any set X* we may define a function 0: ω—»X* by

specifying a value 0(0) and a method for calculating θ(m + 1) from θ(m). The

corresponding generalization will allow us to define a function θ: ΓY,<F—> X* by

specifying the values 0(y) for y G Y and methods for calculating θ(φ(x)) from

0(xo),. , θ(xk(φ)-ι) for all φ G 9 (the JC* should be thought of as the immediate

predecessors of φ(\)). In the case of ω, m is uniquely determined by m + 1, but

for arbitrary Y and 9 it may happen that φ(x) = φ'(x') or <p(x)G Y so that the

rules would not determine a unique value for θ(φ(x)).

We call the pair (Y, 9) monomorphic iff all φ G 9 are one-one and the sets Y

and {Im φ: φ E. 9} are pairwise disjoint. The inductive definitions of ω and the

class of formulas of a first-order language are monomorphic whereas that of the

class of formal theorems is not.

3.5 Theorem (Definition by Recursion). For any monomorphic pair (Y, 9) and

any set X*, suppose that ψ: X*^X* and for each ψ G 9, <p*: k(φ)X*^>X*.

Then there exists a unique function 0: ΓY>3F—>X* such that

(i) forallyGY, β(y)=ψ(y);

(ii) for all φ <Ξ 9 and all x G kiφ)Γγ,*,
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Proof. Let Γ = Γγ^X*,φ, and <p* be given as in the hypothesis. We define

functions 0r: Γ
r - » X * by ordinary recursion as follows. θo= ψ. Suppose θr is

defined and x G Γr+\ lϊ x E Γ we set 0Γ+1(x) = θr(x). If JC G Γ r + 1 ~ Γr, then by

the assumption that (Y, ̂ ) is monomorphic there exist unique < p G ^ and

z G k ( φ ) Γ such that x = φ(z). We then set 0Γ+1(x) = φ*(0 r (z o ), . . . , 0r(zM*>-i)).

Finally, 0 = U{f t : r E ω}. We leave to the reader the easy verification that θ

satisfies conditions (i) and (ii) (Exercise 3.11). D

Our second special class consists of operators over a product space X x Y.

Operators of this type will be used in defining subsets of M ω .

3.6 Definition. An operator Γ over X x Y is decomposable iff there exists a

family of operators Γy over X, indexed by y E Y, such that for any Z C X x Y,

Γ(Z) = {(x, y ) : ^ E Γy({z :(z,y)G Z})}.

3.7 Lemma. For any decomposable operator Γ over X x Y,

(i) f = {(x,y):yE Y Λ X G Γ , } ;

(ii) | Γ | = sup{|Γy | : y G Y } .

Proo/. Both parts follows easily from the assertion that for all σ

Γ-={(x,y) : y G Y Λ X G Γ - } .

To establish this by induction, suppose that it holds for all τ < σ. Then

Γ(σ) = U τ < σ{(x, y): y E Y Λ X G Γ;} = {(x, y): y G Y A x G Γ(

y

σ)},

and

Γ = Γ(Γ'>) = {(x, y ) : y G y A x G Γ y (/T)} = {(x, y): y E Y A x G Π). D

Decomposable inductive operators over klω are given by families of

operators Γa over kω. By Corollary 3.2 each |Γ«| is countable and thus \Γ\ ̂  Mi,

whereas the closure ordinal of an arbitrary operator over κιω is bounded only by

the least cardinal greater than 2K°. This fact will play an important role in § III.3.

3.8-3.13 Exercises

3.8. Show that any monotone operator over a set X has a largest fixed point Γ.
In fact, Γ = ~Γ°, where Γ° is a monotone operator defined by Γ°(Y) =
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3.9. Construct an example of a non-monotone inductive operator which has no

smallest fixed point.

3.10. An operator Γ is called K-compact (for any cardinal K) iff whenever

x E Γ(Y), also x E Γ(Z) for some ZQY with Card(Z) < K. Note that any Γy, <*

is ω-compact. What can be said in general about the closure ordinal of a

K -compact inductive operator?

3.11. Complete the proof of Theorem 3.5. Sketch an alternative proof in which θ

is defined inductively as the smallest set of pairs (JC, x*) such that . . . .

3.12. Suppose Y C X and $F is a family of finitary functions on X such that

(Y,2F) is monomorphic. For each x E ΓYt9, define Sρ(jc), the support of JC,

recursively by:

Sp(y) = 0 , for y<ΞY\

Sp(φ(x))= U {Sp(x,): i < fc(<p)}U{jc,: i < k{ψ)}.

Establish the following principle of proof by course -of -values induction over Γγ9\

for any ZC/V,*, if (VJCEΓY,<?)[Sp(x) C Z - > x E Z], then Z = ΓY^.

3.13. There is also a natural notion of definition by course-of-values recursion

that says roughly that we may define a function 0: Γγ,<?-*X* by specifying the

values θ(y) for y E Y and methods for calculating θ(x) from values 0(z) for

z E Sp(jt). Formulate precisely a principle of this kind as general as possible and

prove that it is valid.

3.14 Notes. Inductive definitions have long played a fundamental role in many

areas of mathematics but have been studied as objects only much more recently.

Definitions in Algebra of the subgroup, subring, etc. generated by certain

elements are all inductive. The class of Borel sets of a topological space is

inductively defined as is (the complement of) the perfect kernel of a set of reals

(cf. Exercise 3.8). The principal objects of study of Logic and Recursion Theory

are all inductively defined. The general study of inductive definability begins

explicitly with Spector [1961] but it is close to the surface in many earlier papers

of Kleene, especially [1955] and [1955a]. Moschovakis [1974, pp. 3-4] gives a

more extended history of the subject.



Chapter II

Ordinary Recursion Theory

The notion of a recursive function resulted from an attempt in the 1930's to
provide a precise mathematical characterization of the concept of a mechanically
or algorithmically calculable function from kω into ω. One way to understand
this concept is to imagine an idealized digital computer not subject to error or
limitations of memory or storage space. Then a partial function F is mechani-
cally calculable just in case there is a finite program (or algorithm) for this
computer which directs it to accept inputs of the form m and carry out a
computation with two possible results: if m E Dm F, the computation terminates
after finitely many steps with the correct value F(m) as output; if m £ Dm F, the
computation does not terminate.

As this is an intuitive concept, however, it cannot be described completely
except by convention. Not only is any attempt subject to legitimate disagreement
on the basis of current knowledge, but also the possibility remains open that in
the future a new means of calculation will be discovered which will be agreed by
mathematicians to be mechanical but will not fall under the proposed descrip-
tion. Still, from a practical point of view, the notion seems to be a viable one:
most people with a thorough understanding of the concepts involved will agree
on the question of whether or not a given method of calculation is mechanical.

In particular, although we cannot give a rigorous proof that every recursive
function is mechanically calculable, our justification of this assertion in § 2 below
should be convincing to almost everyone. The converse proposition, known as
Church's Thesis, that all mechanically calculable functions are recursive, is
somewhat more problematic. Without a precise ^delineation of the class of
mechanically calculable functions, we are in no position to prove that all of its
members are recursive. We are forced, therefore, to rely on what might be called
circumstantial evidence. Most importantly, no one has exhibited a function
which is agreed to be mechanically calculable but is not recursive. In a similar
vein, every known procedure which produces from calculable functions another
calculable function also produces a recursive function from recursive functions.

Another kind of evidence is given by the variety of ways that the class of
recursive functions can be characterized. Although these characterizations have
quite different intuitive content (based on different conceptions of mechanical
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calculability) they all describe exactly the class of recursive functions. This shows
that this is a very natural class and is at least intimately connected with the
notion of mechanical calculability.

A discussion of these diverse characterizations and a more detailed examina-
tion of the evidence for Church's Thesis may be found in Kleene [1952].

As we shall be discussing functionals as well as functions, we shall want, for
comparison, also a notion of mechanical calculability for partial functions from
M ω into ω. At first glance there seems to be no way for our idealized computer
to accept inputs of the form (m, a). Even if we allow the computer to have
infinite memory facilities sufficient to store all the values of an argument α, it
would seemingly take infinitely long just to "read in" these values. Hence to
preserve the finiteness of computations we say that the computer receives an
input (m, a) when it is connected to an infinite memory device in which have
previously been stored ra0,..., mk_i and the complete graphs of α 0 , . . . , «/i. The
computer may then refer to this device at any point in the computation to
transfer to its working "registers" either an m, or a value a}(p). Since the
computation of a value F(m, a) must be finite, only finitely many values of each
argument are actually used. Thus mechanically calculable functionals are
continuous.

1. Primitive Recursion

We examine first the class of primitive recursive functionals. We shall show that
this class includes many familiar functionals but fails to exhaust the class of
mechanically calculable functionals. Although in this section we are concerned
only with total functionals, we state some of the definitions with ' — ' rather than
4 = ' for future application to partial functionals.

1.1 Definition. For any fc, /, and n, any i < fc and / < /, and any (m, a) E k/ω,
(i) (the initial functionals)

Csί 'ίm, a)=n, Pit'(m, a)=mi,

ScfJ(m, α) = m, + 1, and Ap£'/(m, a) = α; (m, );

(ii) (functional composition) for any fc' and any functionals G, H o , . . . , H k - l 5

FCmpϊ '(G, Ho,.. ., Hk -,) is the functional F of rank (fc, /) such that

(a) if G is of rank (fc', /) and H o , . . . , Hk_, are all of rank (fc, /), then

F(m, a) =* G(H0(m, α ) , . . . , Hk ^(m, α ) , α ) ;

(b) otherwise, F(m, a) — 0;
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(iii) (primitive recursion) for any functionals G and H, Reck + 1 /(G, H) is the
functional F of rank (fc 4-1, Z) such that
(a) if G is of rank (fc, Z) and H is of rank (fc + 2, Z), then F(0, m, α) =* G(m, α), and

for all p,

F(p + 1, m, α) - H(F(p, m, α), p, m, α);

(b) otherwise, F(p, m, a) — 0.

1.2 Definition. The class Prf of primitive recursive functionals is the smallest
class of total functionals which contains the initial functionals and is closed under
functional composition and primitive recursion.

Note that Prf is inductively defined by closure under finitary functions. By
induction over Prf it follows that every primitive recursive functional is total and
mechanically calculable: clearly this is true for the initial functionals and these
properties are preserved by functional composition and primitive recursion.

1.3 Examples. The addition function ( + ) is defined by the equations 0 4- m = n
and (p + 1)4- m = (p + m)+ 1. A simple calculation shows that

4- =Rec2'°(Prr,Scr)

and is thus primitive recursive. Multiplication satisfies 0 m = 0 and (p 4-1) m =
p m 4- m, so that

• = Rec2'°(Cs(V°, FCmpi °( + , PrΓ, Pit0))

and is thus primitive recursive. The exponential function exp(p, m)= mp satisfies
exp(0, m) = 1 and exp(p + 1, m) = exp(p, m) m and is similarly shown to be
primitive recursive. The factorial function (!) satisfies 0! = 1 and (p + 1)! =
p!(p 4-1) and is primitive recursive. Let

if p = 0 ; , _, v ίl, if p = 0 ;
{ if p>0; a n d S g ( P ) = ( θ , if p>0.

Then

sg+ = Rec^CsΓ, Csf) and sg" = Rec1 W , Csg-0),

so both are primitive recursive. Let / be the primitive recursive function
Reclo(CSo°,Pr20) so that /(0) = 0 and /(p + l) = p (the predecessor function).
Then if we set
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g = Rec20(Pr!°,FCmp30(/, Pr?,0)),

it is straightforward to check that

m - p, if m ^ p
, otherwise.

g(p,tn) is usually written m - p.
We call a relation R primitive recursive just in case its characteristic

functional KR is primitive recursive. Then lC(m,p) = sg+(m-p), K^(m,p) =
sg+(p-m), K<(m,p) = sg~(p-m), K>(m,p) = sg~(m ^-p), and K=(m,p) =
sg+(K«(m,p) + K^(m,p)) so these relations are all primitive recursive. Further-
more, if R and S are primitive recursive relations of the same rank, then

KRUS(m, a) = KR(m, a) Ks(m, α),

KRns(m, α) = sg+(KR(m, a) + Ks(m, a)), and

K^R(m, a) = 1 - KR(m, a)

so that the class of primitive recursive relations of a given rank forms a Boolean
algebra.

Our next aim is to show that the sequence coding and decoding functions of
§1.1.4 are primitive recursive. To this end we establish some further closure
properties of the classes of primitive recursive functionals and relations.

1.4 Definition. For any k,l,k', and /', any functionals G,G 0,... ,G k , and any
relations R(),..., Rk _,, and S,

(i) {expansion) if G has rank (k, /), then Exk,, (G) is the functional F of rank
(fc + fc',/+ /') such that

F(m,n,tt,β)-G(m,α);

(ii) (bounded search) if G has rank (k + 2, /), then Bs(G) is the functional F
of rank (k + 1, /) such that

F(p,m, a)

q, if q < p, G(q, m, a) — 0, and

r , m , α ) - n;

p, .if (Vq<p)(3n>0).G(<7,m, α ) - n;

we write

F(p,m, a)^ "least" q <p.G(g,m, α ) ^ 0 ;



1. Primitive Recursion 31

(iii) (definition by cases) if Go,...,Gk , Ro,..., Rk-i all have rank (fc, /) and

for any (m, a)E.klω there is at most one i<k' such that R,(in, a), then

Cases k(G 0,...,G k, Ro,..., Rk-i) is the functional F of rank (fc, /) such that

Go(m, α), if R0(m, α);

F(m,α)
Gfc'-i(m,α), if Rfc-i(m, α);

Gk (m, a), otherwise (V/ < fc'~ R,(m, a));

(iv) (relational composition) if Go,... ,Gk _i have rank (fc, I) and S has rank

(fc',/), then RCmpk'(S,Go,...,Gk'_i) is the relation R of rank (fc, Z) such that

R(m, a)+*S(Go(m, α) , . . . ,G k -i(m, a),a);

(v) (bounded quantification) if S is of rank (fc + 2, I), then 3<(S) and V<(S)

are the relations P and Q of rank (fc + 1, Z) such that

P(p,m, a)«*(3q <p)S(q,m, a), and

Q(p, m, α ) <-• (Vq < p) S(q, m, α).

1.5 Theorem. The class of primitive recursive functionals and relations is closed

under expansion, bounded search, definition by cases, relational composition, and

bounded quantification.

Proof, (i) Clearly any expansion of an initial functional is still an initial

functional. Any expansion of FCmp(G, Ho,..., Hk _i) is FCmp(G', Hό,..., Hί-i)

for suitable expansions G' and H! of G and Hi. Similarly, any expansion of

Rec(G, H) is Rec(G', KΓ) for suitable G' and H;. Hence by induction the expansion

of any primitive recursive functional is primitive recursive,

(ii) If G is primitive recursive, then so is F defined by:

F(0,m,α) = 0;

F(p + 1, m, a) = F(p, m, a) + sg+(G(F(p, m, α), m, a)).

We leave to the reader the amusing verification that F is Bs(G).

(iii) Suppose that Go,..., Gk and Ro,..., Rk -i satisfy the hypothesis for

definition by cases. Then the F defined there is also given by

F(m, a) = [Go(m, a) sg-(KRo(m, a))] + + [Gk.-,(in, a) sg-iKR .̂Xin, a))]

+ [Gk(m, a) KRo(m, a) KRfc..1(m, a)],
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and is thus seen to be primitive recursive.
(iv) If R = RCmp(S, G o , . . . , Gk _i), then KR = FCmp(Ks, G o , . . . , Gk -i); so if

S,G0,..., and Gk_i are all primitive recursive, so is R.
(v) Let P, Q, and S be as in the definition. Then

P(p,m, a)+*["least" q <p.S(q, m, a)] < p,

and Q = ~3°<(~S). D

These results will be used, usually without reference, to justify the claim that
some explicitly defined functional or relation is primitive recursive. For example,
if G, H, I, R, S, and T are primitive recursive, and F is defined by:

F(m,α) =

then a succession of applications of the clauses of Theorem 1.5 together with the
remarks preceding it shows that F is primitive recursive.

As a first application, we obtain the primitve recursiveness of the relation "m
divides p " and the function (pm: m E ω) which enumerates the prime numbers:

mo+α2(mi),

α,("least" q <

[qn

- 0, otherwise

if (

:H(m

ύq < s)H(q, G(q,m, α), α4);

m2,α,)]), if S(m, α)/\—ιT(mo,α);

m divides p <-»(3q < p + \){q m - p ) ;

Po = 2, and

Pm+i = (" least" q < pm! + 2)[p m < 4 Λ ( - Ί 3 Γ < q)(l <r*r divides 4)] .

1.6 Corollary. The sequence coding and decoding functions and the set Sq of

§1.1.4 are all primitive recursive.

Proof For the functions, this is immediate from their definitions. Also 5 E
Sq«*(Vi < s)[pi divides s —• i < lg(s)]. D

For any functional F of rank (fc + 1, /) we set

F(0,m,α) = < > and

F(p 4-1, m, a) = F(p, m, a) * (F(p, m, a)).

Thus F(p, m, α) == (F(0, m, α ) , . . . , F(p - 1, m, a)). From the definition and the
preceding Corollary it is clear that if F is primitive recursive, so is F. Further-
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more, for any q > p, F(p, m, a) — (F(q, m, a))p so the primitive recursiveness of F
implies that of F. The same argument shows that the functional H(p, a) = ά(p) is
primitive recursive.

1.7 Definition (course-of-values recursion). For any fc and /, and any functional
G of rank (fc + 2, /), CvRec(G) is the functional F of rank (fc + 1, /) such that

F(p, m, α) =* G(F(p, m, α), p, m, α).

1.8 Theorem. The class of primitive recursive functionals is closed under course -
of-values recursion.

Proof. If G is of rank (fc + 2, /) and F = CvRec(G), then

F(p + 1, m, a) = F(p, m, a) * (G(F(/?, m, α), /?, m, a)).

Hence, if G is primitive recursive, so is F. But then by the preceding remarks,
also F is primitive recursive. D

In applying these theorems to show that a particular relation R is primitive
recursive, we must formally work with KR and show this to be a primitive
recursive functional. Usually, however, it is more perspicuous to describe
directly recursive conditions on R. For example, the condition

is equivalent to

lF(p,KR(p)), if

where

F /_ ,Λ _ ί0 ' i f (3<? </>)[<?+ 7 = P A ( S ) * = O];
n p ' ' [l, otherwise.

In such cases we shall leave to the reader the translation of the conditions on R
to conditions on KR.

Another technique we shall use frequently is to give definitions of the form

This should be taken as an abbreviation for
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so that F is defined for all arguments, not only those of the form (m) and (a).

Since the decoding functions are primitive recursive, if G is primitive recursive,

so is F.

We turn now to the assertion that not all mechanically calculable functionals

are primitive recursive. Our method derives from the description of mechanical

computability in terms of an idealized computer. We shall in effect specify a

particular computer and a "programming language" which suffices to write

programs for computing all primitive recursive functionals. We can then exhibit

a functional which is mechanically calculable but cannot be "programmed" in

this language and hence is not primitive recursive.

The "language" is simply a set Pri C ω, members of which we call primitive

recursive indices. To each a G Pri is assigned a primitive recursive functional [a]

by interpreting a as a program for an idealized computer whose basic operations

correspond to the clauses of Definition 1.1.

1.9 Definition. Pri is the smallest subset of ω such that for all fc, Z, and n, all

i < fc, and all / < /,

(0) (0, k, /, 0, n>, (0, k, /, 1, i), <0, fc, Z, 2, /), and (0, fc, Z, 3, i, /> all belong to Pri;

(1) for any fc' and any fc, c 0 , . . . , ck_, G Pri, <1, fc, Z, fc, c 0 , . . . , ck -λ)G Pri;

(2) for any b,cE Pri, (2, fc + 1, Z, fc, c)E Pri.

This is clearly a monomorphic inductive definition, so by Theorem 1.3.5 there

exists a unique map [ ] from Pri into the class of functionals such that

(0) [<0,fc,Z,0,n>] = Csk

n';

[<0,fc,Z,2,O] = Sc? ';

[<0,fc,Z,3,ι,/>] = Apk';

(1) [<1, fc, Z, fc, Co,..., <v_,>] = FCmpkV([fc], [ c 0 ] , . . . , [cv-J);

(2) [<2,fc + l,Z,fc,c>] = Reck'([fc],[c]).

1.10 Theorem. Prf = {[a]: a G Pri}.

Proof. For the inclusion ( C ) we observe that {[a]: a G Pri} clearly contains the

initial functions and is closed under composition and primitive recursion. For

( D ) consider {a: a G Pri Λ [a] is primitive recursive}. This set satisfies clauses

(0)-(2) of Definition 1.9 and thus includes Pri. D

For each fc and Z, set
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FMkl(n m ΛΛ = Π α ] ( m ' α ) ' i f Λ G P r i Λ ( α ) , = k Λ ( α ) 2 = Z;tv ^ m , α ; j ^ o t h e r w i s e

Evk/ is called an evaluation function.

1.11 Theorem, for all fc > 0 and a// /, Evk' is mechanically calculable but not
primitive recursive.

Proof. Suppose first that Evk+1/ were primitive recursive. Th&n if

F(α, m, a) = Evk+1 '(α, α,m,α)+l

also F is primitive recursive. Hence by Theorem 1.10, F = [b] for some b E Pri.
But then

F(f>,m, a) = Evfc+1 '(fr, b, m, α) + 1 = [6](6, m, α ) + 1 = F(ί>, m, α ) + 1,

a contradiction.
To see that Evk>/ is mechanically calculable we examine the notion of a

computation tree. Such a tree may be thought of as a schematic representation of
the action of the idealized computer in calculating a value of a given functional.
Each computation tree has a top node x0. Each node x has 0 or more immediate
predecessors which lie just below x. Each node x is labeled with a triple (α, m, a).
x is said to be evaluated when [a] (m, a) is computed. If a is an index for one of
the initial functions, then x has no immediate predecessors. If a =
(1, fc, Z, ft, Co,... ,Ck -i), then JC has fc'+l immediate predecessors labeled as
follows:

(α,m, α)

where q = (q0,..., qk -i) and for all i < fc', [c,](m, α) = q,. If a = (2, fc + 1, /, b, c),
then x has either 1 or 2 immediate predecessors:

(α,0,m, α) • (α,p + l,m, α)or A
(b,m, α) (α,p,m, α) (c,̂ ,p,m, α)
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where [a](p,m, α) = q. Thus the labels on the immediate predecessors of x
correspond to the subcomputations necessary to evaluate the label at JC.

For any triple (α, m, a) with a E Pri, (a)λ = fc, and (α)2 = /, we generate and
label a computation tree as follows. The top node is labeled (α, m, a). Depend-
ing on α, the appropriate number of immediate predecessors of x0 are con-
structed and all but possibly the right-most one labeled. The number of
immediate predecessors of these may then be determined and so on. If node x
lies below node y, then the index at x is not greater than the index at y, and if
they are equal, then the first argument at x is strictly less than the first argument
at y. Hence each branch terminates with a node labeled with an index for one of
the initial functions. This is immediately evaluable. If at some stage all nodes at a
given level except the right-most one have been evaluated, then this one may be
labeled. When all immediate predecessors of a given node x have been
evaluated, then x may be evaluated and has the value of the right-most
immediate predecessor as its value. In any application of composition, fc'< a.
Hence by the Infinity Lemma (1.2.3) the tree is finite and this process terminates
after a finite number of steps with an evaluation of the top node x0 and hence
with the value EvM(α, m, a).

A mechanical procedure for calculating EvM(α, m, α) now goes as follows.
Determine first whether or not a E Pri, (a)ι = fc, and (α)2 = /. This is possible by
Corollary 1.6 and Exercise 1.16. If not, the value is 0. If so, construct the
computation tree as described above and read off the value of the top node. D

1.12-1.18 Exercises

1.12. Find explicitly primitive recursive indices for addition and multiplication.

1.13. Show that any primitive recursive function has infinitely many indices.

1.14. Show that if G is primitive recursive and

p, m, a) = G(p, m, α, λq. Fp(q, m, a))

where
F ^ ' m ' α ) ' i f

^ o t h e r w i s e ;

then also F is primitive recursive.

1.15. Show that if G and H are both primitive recursive and

F(m, a) = G(m, α, λp. H(p, m, α)),

then F is primitive recursive.


