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Editor’s Preface
On 3 September 1983 Lev Semenovich Pontryagin was seventy-five. To 
mark this important event in the life of this outstanding contemporary 
mathematician we are beginning the publication of his scientific works in 
four volumes, according to a decision taken by the Mathematics Division 
of the USSR Academy of Sciences. The first volume contains the most 
important mathematical papers of L. S. Pontryagin and also includes a 
bibliography of his basic scientific works, the second is his well-known 
monograph Topological Groups, the third comprises two monographs. 
Foundations o f Algebraic Topology and Smooth Manifolds and Their Appli
cations in Homotopy Theory, and the fourth is a revised edition of The 
Mathematical Theory o f Optimal Processes by L. S. Pontryagin, 
V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko.

The scientific activity of Lev Semenovich Pontryagin has left a deep 
imprint on many crucial areas of modem mathematics, both pure and 
applied. His work has had a definitive influence on the development of 
topology and topological algebra, and because of him optimal control 
theory is one of the topical trends in present-day applied mathematics. In 
a brief review we can neither delve deeply into his important works nor 
describe the profound, multifaceted impact of these works on the advance
ment of the respective fields. This is, therefore, only a broad outline that 
may be of help in studying his works.

While still a second-year student at Moscow State University, Pontryagin 
began his scientific activity under the guidance of P. S. Aleksandrov. In this 
early period, his interests concentrated mainly on two central topics of 
algebraic (combinatorial) topology, namely, topological duality theorems 
and dimension theory, which Pontryagin looked upon as a local variant of 
duality theory.

The discovery of “Pontryagin duality,” the culmination of his work in 
topological duality theorems, and the constmction of the general theory of 
characters of a locally compact commutative group are Pontryagin’s two 
most notable contributions and are undoubtedly among the finest achieve- ■ 
ments in modem mathematics.

We begin with a survey of his main works in duality theory and topologi
cal algebra. To assess the full value of the advances made by Pontryagin in 
this area, it is apt to recall here that at the time when Pontryagin had just 
begun his activity, homology groups were hardly used in topology; instead, 
Betti numbers with respect to different moduli and torsion coefficients were 
used, and the Alexander duality theorem was formulated as an equality of 
Betti numbers (modulo 2) of dimensions n — r — \ and r of a polyhedron

XI
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K R" and its complement R ‘\K,

p '{R '\K ) = p - '- '{K ) .

In his first published paper,'* Pontryagin improved this theorem by 
extending the duality between the Betti numbers of a polyhedron and its 
complement in/i" to the duality between the r-and (n — r — l)-dimensional 
homology groups (modulo 2) of the polyhedra (R"\K) and K. The full 
statement of this theorem follows. In R"\K  and K, two bases

ZÍ,. . . z; and C"‘ • c;W-f-l

of homology (mod 2) of dimensions r and (n — r — 1), respectively, can 
be chosen, such that the square matrix of linking coefficients (mod 2)

ii(zi.c;-'-')ii(/,7 =
is the identity matrix.

Thus, the duality between the homology groups (mod 2) established here 
by means of the linking coefficients led to a group isomorphism.

The next paper^ deals with the same problem in modulus 2, but the 
polyhedron K is now imbedded in an arbitrary closed n>dimensional mani
fold M". Its solution demanded, probably for the first time in the history 
of topology, a study of homological properties of continuous mappings. 
That is, Pontryagin was led to the study of kernels and images of homo- 
morphisms of homology groups (mod 2) for the inclusions K ^  M" and 
M "\K  c  A/", and the duality theorem was formulated in terms of the 
ranks of the corresponding kernels. Later, the study of the homological 
properties of mappings acquire immense significance in topology and 
greatly infiuenced the creation of homological algebra.

This paper also contained a statement, known subsequently as the 
“Pontryagin cycle removal theorem,” that asserted: If an r-dimensional 
cycle Z ' in M ' intersects every (n — r)-dimensional cycle in K with a zero 
intersection index, then the cycle Z ' can be “homologically removed” from 
K, i.e., there exists in M "\K  an r-dimensional cycle that is homologous to 
Z ' in M". This theorem found successful applications in the topological 
theory of variational problems; Pontryagin himself used it in estimating the 
category of a manifold.

From the foregoing it is clear how far one of the central problems of 
algebraic topology of the late twenties had been advanced in two short 
papers of a 19-year old sophomore.

* Reference numbers refer to the bibliography of Pontryagin’s publications, pp. 
609-618.
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The next work concerning duality theorems, his master's thesis,® was 
stimulated by the course in algebra given by E. Noether. It gives a pro
found analysis of the algebraic nature of topological duality theorems. 
Duality for an arbitrary modulus m > 0 obtained a Anal solution in the 
form of an isomorphism of the corresponding groups, in view of the fact, 
now well understood, that a finite cycUc group is the Pontryagin dual of 
itself (a concept which Pontryagin had not yet arrived at that time).

A particular corollary of the results of the paper is that, for any m > 0, 
the homology groups (mod m), Hl"\R ''\K) and of dimensions
r and n — r — 1, respectively, are isomorphic, and, consequently, all 
homology groups (mod m) of the complement R"\K  are invariant, i.e., they 
depend only on the homology groups of the polyhedron K, but do not 
depend on the inclusion of K in R".

Duality theorems for full homology groups with integral coefficients 
cannot be formulated in terms of isomorphisms and, therefore, could not 
be fitted into the framework of the paper. For instance, the full r-dimen- 
sional integral homology group H,{R“\R )  is neither isomorphic to the 
group nor even determined by it. There exist only isomorphisms
(also noted in the paper) separately between the r- and (n — r — 1)- 
dimensional weak homology groups and between the r- and 
(n — r -  2)-dimensional torsion groups of the sets AT a n d o b v i o u s l y  
implying the invariance of the full integral homology groups of the comple
ment (R''\K).

If, instead of a finite polyhedron K, an arbitrary compact set F is 
considered in R", then the corresponding integral and weak homology 
groups are, in general, no longer finitely generated, and a special investiga
tion is needed to establish the invariance of the homology groups of the 
complement R"\F. Pontryagin also studied the duality for an arbitrary 
compact set F <=. R” and established the invariance of the groups 
Hl"\R"\F), m > 0, as well as the invariance of weak homology groups of 
R”\F, thereby significantly advancing the problem.

But the central question of the independence of the full group of integral 
homology HXR"\F) of the inclusion of the compact set F a  R" still 
remained unsolved. Its solution demanded the introduction of a new 
homological invariant of the set F, namely, a homology group related not 
to a discrete but to a compact coefficient group. This permitted him, while 
rejecting the narrow concept of duality as an isomorphism, to define 
“Pontryagin duality.” In 1931-32, he made this decisive step and completely 
solved all problems relating to duality and also the longstanding problem 
of the proper definition of homology groups of compact metric spaces.

In constructing the homology group H,(F) of the set F, the coefficients
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are not taken from a discrete group of residues (modulo m) or from the 
group of integers, but are taken from a compact topological group of 
rotations of a circle. The group H ^ F )  is, in itself, a compact commutative 
topological group. The group H,(F) and the (n — r — l)-dimensional 
integral homology group proved to be Pontryagin duals, i.e.,
each is the character group of the other (for a detailed exposition of the 
theory of characters, see reference 110 or the second volume of the Selected 
Works).

Generally, let F, G be a dual group pair, i.e., each is the character group 
of the other, and let F be compact and G discrete. Take F as the coefficient 
group for constructing the homology group (F). Then its dual (i.e., its 
character group) is the homology group of the complement 
which is constructed, using G, the dual of F, as the coefficient group. 
Duality is realized through linking coefficients.

The general duality theorem for a closed set F c  R" was first reported 
as a short communication in the Proceedings of the International Mathe
matics Congress held in Zurich in 1932, while its full exposition is given in 
reference 18.

This paper actually marks the end of Pontryagin’s research into topo
logical duality theorems. These theorems, being a powerful tool for studying 
general homological problems in topology, resolved the crucial question in 
algebraic topology of the thirties. Particularly after Pontryagin’s duality 
theorems, homology groups have gained a firm foothold in topology as the 
basic homological invariants in place of the Betti numbers and torsion 
coefficients, which had fully served the purpose of homology groups until 
the main circle of topological problems led to finitely generated groups.

Topological duality theorems for a (finite) polyhedron in an arbitrary 
closed n-dimensional manifold are given in their final formulation in refer
ence 54.

A logical continuation of the duality theorems is the general theory of 
characters of locally compact conunutative groups created by Pontryagin. 
The main result of this theory is the assertion that every compact com
mutative group is the character group of some discrete group. Its proof 
rests on the construction of the invariant measure introduced by Haar in 
1933, which had played a key role in the development of topological 
algebra.

The general theory of characters had enabled Pontryagin to elucidate the 
structure of compact and locally compact groups, the results obtained for 
compact and locally compact commutative groups being final. A positive 
answer to Hilbert’s fifth problem for a compact and locally compact 
commutative group follows directly from these results. (For a detailed
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exposition of the structure of compact and locally compact commutative 
groups, refer to the third edition of Topological Groups, Volume 2 of the 
Selected Works.) However, the significance of the theory of characters of 
locally compact topological groups does not end here. Its creation has 
indeed laid the foundation of topological algebra as an independent disci
pline, which has been primarily responsible for the development of general 
harmonic analysis on topological groups. Pontryagin’s works in duality 
theory and character theory had a deep impact on algebraic-topological 
reasoning in the thirties and, in particular, made a great contribution to 
“functorial thinking” in mathematics.

His first publications on the general theory of characters of commutative 
topological groups, on the structure of compact groups, and on locally 
compact commutative groups are references 16, 17, and 19, respectively.

His remarkable theorem (see reference 10) that asserts that the field of 
real numbers, the field of complex numbers, and the division ring of 
quaternions are the only locally compact connected division rings should 
also be classified under topological algebra.

The methods developed here were later fully utilized by Pontryagin in 
elucidating the structure of locally compact commutative groups with the 
help of the theory of characters, as we have already pointed out.

The outcome of his studies in topological algebra was the famous mono
graph Topological Groups, first published in 1938, which has had several 
editions both in the USSR and in many other countries, in most of the 
major European languages. It became a classic that influenced many 
generations of mathematicians and that has not lost its value even today, 
forty-five years since its first publication, a rare event in mathematics. Its 
third English edition forms the second volume of the Selected Works of 
L. S. Pontryagin.

The early works of Pontryagin also deal with dimension theory. He 
constructed examples of compact metric spaces that have different dimen
sions in different moduli. He later used these examples (see reference 4) to 
construct the famous “dimensionally deficient” continuums, which dis
proved the longstanding hypothesis that the dimension of compact sets is 
additive under topological multiplication. He found two two-dimensional 
compact sets whose product is of dimension three, instead of four. His 
theorem that any n-dimensional compact set is homeomorphically mapped 
into (see reference 7) also fits into the category of dimension theory.

The homological dimension theory due to P. S. Aleksandrov owes much 
to Pontryagin’s work in dimension theory. For Pontryagin himself, his 
studies in dimension theory had a far-reaching consequence — under their 
influence he began, in the mid-thirties, a systematic investigation of homo
topic problems in topology.
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His studies in homotopic topology likewise reached their climax (at the 
beginning of the forties) in the discovery of methods that basically paved 
the way for a new field in modem mathematics, differential topology. Here 
we have in mind his discovery of characteristic classes and his contributions 
to the theory of fiber bundles.

Prior to taking up the “homotopic period,” mention should be made of 
his outstanding topological paper written in 1935,*' a full exposition of 
which is given in reference 21. It gives the solution to the Cartan problem 
of calculating the homology groups of compact group manifolds for the 
four main series of compact Lie groups. Historically, in this paper, the 
homological invariants were first found for a large and extremely impor
tant class of manifolds defined, not by triangulation, but by analytical (in 
this case, by algebraic) relations. To solve this problem, Pontryagin used, 
instead of Cartan’s method based on the algebra of exterior invariant forms 
on a group (R. Brauer applied this method later), Morse’s method of 
defining a smooth function on a manifold with isolated critical points and 
constructing trajectories orthogonal to level surfaces of the function. He 
refined this method further — the critical points were no longer “isolated,” 
but formed “critical manifolds.”

The methods developed in this paper were fruitfully used by H. Hopf 
and others to advance further the topology of group manifolds and homo
geneous spaces, and later by Pontryagin himself to solve certain auxiliary 
problems in homotopy theory, and, in particular, to calculate the homo
logy groups of Grassmann manifolds.

A direct consequence of this work is an elegant result obtained by 
Pontryagin many years later.*’ The point is that, for all compact simple Lie 
groups, the Betti numbers are equal to the corresponding Betti numbers of 
the direct products of spheres of different dimensions. The question 
therefore naturally arose: is a compact simple Lie group homeomorphic to 
the product of spheres of appropriate dimensions? Through the use of 
homotopic techniques, he found the answer to be negative. The special 
unitary group of third-order matrices has the same Betti numbers as the 
product of a 3-dimensional sphere and a 5-dimensional sphere, but the 
group itself is not homeomorphic to the product of the spheres: this was 
established through the use of the classification of the mappings of S* into 
S \

We shall now outline the homotopic works of L. S. Pontryagin. The 
topical problem in homotopic topology in the early stages of its develop
ment centered around the homotopic classification of the mappings of a 
sphere into a sphere of lesser dimension. Pontryagin encountered this 
problem while making fruitless attempts at giving a local characterization



PREFACE XVll

of the dimension of a compact set in R" in terms of the homological 
characteristics of its complement.

In the beginning, he tried to solve the homotopic classification problem 
of the mappings of the sphere into S" using homological methods. But, 
shortly after learning about Hopf’s work on the classes of mappings of S’ 
onto S’, he came to fully appreciate the situation; that was the beginning 
of a fifteen-year period during which Pontryagin was completely engaged 
in homotopic topology.

First, he demonstrated that the Hopf invariant is unique and, conse
quently, that Hopf’s construction gives all the classes of the mappings of 
S’ into S’; thus, he obtained the full classification of the mappings of S’ 
into S’. Soon after, in 1936, he discovered an amazing result: the number 
of classes of mappings of S"*' into S", for n ^  3, is two (see reference 28). 
A mistake was made, however, in classifying the mappings of S*’"’ into S", 
which led to an erroneous result. It was noticed and corrected by Pontry
agin in 1950 (see reference 63). For these mappings, too, the number of 
classes was found to be two.

The initial proofs of these theorems were incredibly cumbersome. Only 
later, after the discovery of the method of framed manifolds (see below), 
could they be greatly simplified.

Then followed the solution to a series of problems in the homotopic 
classification of mappings of polyhedra into spheres and vice versa. Of 
these papers we mention here only two, reference 40 and 43. These papers 
introduced such basic concepts in homotopy theory as “obstructions” and 
“difference cochains” and a new cohomological operation — the Pontry
agin square, the predecessor of Steenrod’s cohomological operations.

But the major problem, the classification of the mappings of into S"
for k >  3, still defied solution. This is exactly the problem that led Pontry
agin to discover the so-called “framed manifold method,” to define new 
invariants of smooth manifolds — characteristic classes known as “Pontry
agin classes,” and to create the theory of fiber bundles, i.e., to create a new 
and very important field in modem mathematics, differential topology.

Among the pioneers in this field, besides L. S. Pontryagin, we should 
name H. Hopf, E. Stiefel, H. Whitney, and C. S. Chera.

The framed manifold technique was designed to study the homotopic 
properties of mappings with the help of the information available about the 
differential-topological structure of a manifold. It was only fruitful in 
classifying the mappings of into S" for k < 3 (as had already been 
noted at the beginning of the fifties by Pontryagin for k = 1, 2, and by 
Rokhlin for k = 3), because, for k > 3, information was needed about 
smooth manifolds of dimensions > 3, which could not be obtained by the
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methods available in the early fifties. However, the framed manifold tech
nique is equally effective for the opposite purpose, studying smooth mani
folds when we have homotopic information at our disposal, which can be 
more successfully derived with the help of Leray’s algebraic (spectral 
sequence) method. This reversal of the method, known as bordism theory, 
is due to R. Thom. Most of the far-reaching results in the modem theory 
of smooth manifolds have been obtained precisely through a combination 
of the Pontryagin-Thom differential-topological method and Leray’s alge
braic method.

Today, characteristic classes constitute the central topic not only in 
differential topology, but also in modem differential geometry as a whole; 
fiber bundle theory has long since become a common research tool in 
topology, geometry, and analysis.

The theory of characteristic classes and the closely related theory of 
singularities of vector fields are presented in three large papers.**-” *' The 
results of these papers were reported in earlier preliminary works.****"*® 
Reference 49 also reports briefly on the theory of classifying spaces, which 
subsequently played an important role in the development of fiber bundle 
theory.

The framed manifold method and a full classification of the mappings of 
S**"* into S" for A: = 0, 1, and 2 are presented in reference 69 (see also 
Volume 3 of the Selected Works), which was the original exposition in the 
literature of the fundamentals of differential topology.

The “topological period” in the activity of L. S. Pontryagin ends with 
reference 69; from the early fifties on, he switched over exclusively to 
applied fields. Up until this time he had turned his attention to applied and 
nontopological topics only occasionally, but with great success.

We begin the survey of his earlier nontopological works with the famous 
paper written in collaboration with A. A. Andronov,”  in which the con
cept of the structural stability of a dynamical system in a plane was first 
introduced, using the term “rough system,” and the roughness condition 
was formulated.

In a broad context there are two motives behind the idea of roughness: 
physical and mathematical. The physical motive arose in connection with 
Andronov’s investigations into auto-oscillations and consists of the follow
ing: if a dynamic system describing a physical phenomenon is known only 
approximately, then the qualitative portrait of the system’s phase plane can 
reflect the phenomenon only if this portrait does not change under small 
perturbations of the dynamic system. The mathematical motive is related 
to the idea of “typicality,” or “general position,” which is not at all specific 
to differential equations and which is widely used in different fields of
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mathematics, including some topological works of L. S. Pontryagin. For 
the “general position” case, the phase portrait should be expected to be 
simpler than in exceptional cases; thus, the “general position” case deserves 
the utmost attention.

In this paper, smooth flow (of class C* ) in a domain O bounded 
by a smooth closed curve everywhere transversal to the trajectories is called 
rough, if, for any flow sufficiently C'-close to the initial flow, there exists 
a homeomorphism of the domain O onto itself, C® close to the identity, that 
sends the trajectories of one flow into the trajectories of another, preserving 
the direction of motion along these trajectories.

After giving this deflnition, the authors show that the rough systems on 
a plane are typical (they form an everywhere dense open set) and that their 
qualitative portrait is quite simple. Here the three ideas, “simplicity”, 
“roughness”, and “typicality”, merge together (the corresponding classes 
of the systems coincide). This merger is specific to the small dimension of 
the phase space and fails for higher dimensions. But these three ideas are 
themselves of great interest for higher-dimensional systems also, and the 
questions of the behavior of trajectories for the corresponding class of 
systems and of the mutual relations between these classes have dominated 
the study of dynamic systems through the past twenty or twenty-five years, 
and go back, in the final analysis, to reference 29.

Still earlier, reference 29 had influenced the development of the two
dimensional qualitative theory of differential equations. First, it outlines 
the role of “singular” (orbitally unstable) trajectories, subdividing the 
phase plane into “cells” filled with trajectories of identical behavior. 
Second, the solution of the problem concerning rough systems on a plane 
paved the way for studies of “typical” bifurcations of a parameter-depen
dent dynamic system in the two-dimensional case.

Of his early works on dynamic systems, mention should be made of one 
more paper,” which gives simple conditions, conveniently applied, for the 
birth of a cycle from a closed trajectory of a plane nonlinear Hamiltonian 
system under small autonomous (nonconservative) perturbations.

Among the early nontopological works of Pontryagin, reference 47 also 
deserves special mention, and had a considerable impact on the develop
ment of functional analysis on spaces with an indefinite metric. It was 
written during World War II at Kazan in connection with a purely applied 
problem of stability in ballistics. Its main result is that any Hermitian 
operator in a Hilbert space with an indefinite metric of index k  has a 
A:-dimensional invariant subspace on which all eigenvalues of the operator 
have nonnegative imaginary parts, and the main (indefinite) form of the 
space is nonnegative.
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One more work completed during wartime at Kazan concerns stability 
theory. It formulates the conditions that must be fulfilled for a quasipoly
nomial to have roots with negative real parts (see reference 42). These 
conditions were later extended to functions of the type//g having no poles, 
where /  is a quasi-polynomial and g a polynomial (see reference 66).

We shall now take up the period that dates approximately from the 
beginning of the fifties, when Pontryagin was basically devoting himself to 
problems in applied mathematics.

Here, too, he displays with great strength his exceptional talent to 
perceive amidst the primal chaos in each new problem the main path, which 
leads to the goal via the shortest route. He forges ahead on this pathway, 
overcoming technical difficulties that seem, at times, to be insurmountable.

To study new topics, Pontryagin founded a special seminar in oscillation 
and control theory in 1952 at the Steklov Mathematics Institute. He 
believed that, to gain success in any applied field of mathematics, one 
should not confine oneself to the existing mathematical models, but start 
the study with technical problems, not only to gain a deeper insight into the 
existing models, but also to formulate new mathematical problems that 
have a pure mathematical interest as well as a technical interest.

Soon, as a result of this seminar, two basic advances emerged: the theory 
of relaxation (discontinuous) oscillations and the optimal control theory, 
which later Pontryagin began to elaborate on with great success jointly with 
his younger collaborators V. G. Boltyanskii, R. V. Gamkrelidze, and 
E. F. Mishchenko.

Relaxation oscillations are encounter^ in physical, and, in particular, in 
radio engineering systems described by differential equations with a small 
parameter £ attached to higher derivatives. Mathematically, relaxation 
oscillations can be defined as the periodic solutions of differential equations 
(or a system of differential equations) with a small parameter attached to 
higher derivatives that contain “slow motion” sections traversed by a phase 
point in a finite time, as well as “junction points” where the “fast motion” 
sections start and which are traversed in infinitely small time as e -» 0. A 
classical example of these oscillations is the Van der Pohl equation. The 
study of the asymptotic behavior of these oscillations in relation to e is a 
very difficult mathematical problem and was only partially solved in some 
simplest cases. Pontryagin’s studies have made much headway with this 
problem for general systems and are of fundamental value.

Of great help to Pontryagin in these investigations was his phenomenal 
ability to do long mental calculations and to memorize complicated 
expressions.

Pontryagin’s works on relaxation oscillations are listed in that part of the 
bibliography which comprises papers published in 1955-1963.
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In the mid-fifties, he discovered the famous “Pontryagin maximum 
principle,” which, though universal, is easily formulated and is an effective 
tool in solving a broad range of optimization problems from purely applied 
questions in diverse engineering fields to complicated theoretical questions. 
The maximum principle includes the first-order theory of the classical 
calculus of variations, which had proved futile in tackling many new 
technical problems, the analysis of which has led to the discovery of the 
maximum principle.

The maximum principle is simple to formulate and we state it for the 
important time-optimal case.

A process is called controlled if it can be described by an n-dimensional 
vector differential equation

X = f{ x , Ü),

where x  e R" is the phase point and u is an r-dimensional vector control 
parameter that takes values from some given subset U c  R', which is, as 
a rule, a closed domain. The problem then is to choose a control u(t) e U, 
as a function of time t, such that the corresponding trajectory x(/) of the 
equation

X = f(x ,u{t))

is shifted from a given point x^ to some other given point x, in minimum 
time. This control and its corresponding trajectory are called optimal. Let 
us introduce the following scalar function

H(x, ill, u) = ij/fix, u),

where \¡ifix, u) is the scalar product of an n-dimensional vector i/i and / ,  
and write the canonical system of equations

= / =  -dij,’
^ = J J Í .
^  ^  d x  d x

The Pontryagin maximum principle asserts that, for a control u(t), 
<0 ^  <  <i> nnd the corresponding trajectory x(r) to be optimal, it is
necessary that there exist a nonzero variable vector \li(t) such that u(0, x(t), 
and ^(0  satisfy the above canonical system of equations and “Pontryagin’s 
maximum condition”:

H(x{t), tli{t), u(0) = max ff(x(/), u), Vi e [to, /,].

The discovery of the maximum principle proved a startling event that 
soon gave birth to a new advance, the optimal control theory, which, at
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present, is a vital and flourishing area in applied mathematics — and the 
stream of papers brought forth by this theory is truly immense.

Among the works of Pontryagin that have greatly influenced the 
development of optimal control theory, we may mention his Plenary 
Address to the International Congress of Mathematicians held in Edin
burgh in 1958”  and his monograph “The Mathematical Theory of Optimal 
Processes” written jointly with V. G. Boltyanskii, R. V. Gamkrelidze, and 
E. F. Mishchenko (see Volume 4 of the Selected Works).

A natural development of optimal control theory proposed by Pontry
agin himself is differential game theory, which he is presently pursuing. A 
review of this theory is outlined in his Plenary Address to the International 
Congress of Mathematicians held at Nice in 1970.'“  A full exposition of his 
theory of linear differential games is given in references 127 and 143, which 
are also included in this volume.

Since 1934, L. S. Pontryagin has been working at the Steklov Mathe
matics Institute of the USSR Academy of Sciences; he was made a full-time 
member of the Institute and given the position of Head of the Topology 
Division in 1939. From 1961 to the present, he has held the position of 
Head of the Division of the Theory of Ordinary Differential Equations and 
Control Theory. At the same time, he has always attached great importance 
to the teaching of mathematics and has devoted much time to giving 
lectures at Moscow State University. Being an excellent teacher, he always 
prepared his lectures with utmost care, even designing notation to the 
minutest detail. Four of his books. Topological Groups (Volume 2 of the 
Selected Works), Combinatorial Topology, Algebraic and Differential Topol
ogy (Volume 3 of the Selected Works), and Ordinary Differential Equations 
(English edition"”’), which have been translated into many languages, were 
based on his lecture courses at Moscow State University; they have greatly 
influenced the education of many generations of mathematicians all over 
the world.

R. V. GAMKRELIDZE



Preface to the English Translation
This monograph makes available the powerful results in optimal 
control theory obtained by the group of mathematicians led by 
Academician Pontryagin at the Steklov Mathematical Institute in 
Moscow. Until now, the material described in this book has been 
available only in Russian mathematical periodicals and in scattered 
English translations.

It is hoped that the publication of this English edition will stimulate 
research in this budding field of applied mathematics.

The translation has been as faithful as is possible within the con
straints of good English usage and in keeping with the differences in the 
technical terminologies in English and Russian. Further, the redun
dancy so common in Russian mathematical writing was oftentimes 
reduced so as to confirm with the more succinct style of western 
mathematics. The references to works in Russian were changed to 
corresponding ones in English whenever possible. As noted, some 
references were added in the present edition; there is no pretence of 
completeness in this list.

Typographical errors (where found) were corrected. Less obvious 
corrections made by the editor were always described in translators’ 
footnotes. Most of these were discussed with Professors Gamkrelidze 
and Mishchenko during their visit to the United States in the spring of 
1962 and met with their approval.

The following individuals contributed to the English edition; Profes
sor A. V. Balakrishnan of UCLA who made constructive criticisms of 
the translation of Chapter VII; Professor G. Leitman of the University 
of California (Berkeley) and L. Berkovitz of the Rand Corporation, 
who called attention to the material described in the footnote on page 
240. Further acknowledgements are due to the following: Misses Stella 
Allabashi and Geraldine Matlick for expertly typing the manuscript; 
the Aerospace Corporation for its aid and cooperation in the prepara
tion of the manuscript; and finally, the Interscience Division of John 
Wiley & Sons, Inc., for the rapidity with which they executed the 
publication. In fact, the English translation will have appeared within 
18 months of the time that the preparation of the Russian manuscript 
was begun.

L. W. NEUSTADT 
K. N. TRIROGOFF 

Los Angeles, California 
June, 1962
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INTRODUCTION
The physical processes which take place in technology are, as a 

rule, controllable, i.e., they can be realized by various means depend
ing on the will of man. In this connection, there arises the question 
of finding the very best (in one sense or another) or, as is said, the 
optimal control of the process. For example, one can speak about 
optimality in the sense of rapidity of action, i.e., about achieving the 
aim of the process in the shortest time; about achieving this aim with 
a minimum expenditure of energy, etc. Mathematically formulated, 
these are problems in the calculus of variations, which in fact owes its 
origin to these problems. However, the solution of a whole range of 
variational problems, which are important in contemporary tech
nology, is outside the classical calculus of variations. The solution 
presented here of a considerable number of such non-classical varia
tional problems is due to the collective authors of this book. In its 
essential features, this solution is unified in one general mathematical 
method, which we call the maximum principle. I t  should be noted 
that all the fundamental necessary conditions in the classical calculus 
of variations (with ordinary derivatives) follow from the maximum 
principle (see Chapter V).

Here we shall consider control processes which can be described by 
a system of ordinary differential equations:

u , •,u'), t = l,2. n; ( 1)

where i*, • • • , i"  are the variables which characterize the process, 
i.e., the phase coordinates of the controlled object which define its 
state a t each instant of time i; « ' , • • •  , are the control parameters 
which determine the course of the process; and t is time. In order 
to determine the course of the control process (1) in a certain time 
interval <o <  < <  i i , it is sufficient to give the control parameters

u  :

■ u’ =  u \ t ) ,  i  =  1, •

as functions of time on this time interval.

(2)
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Then, for the given initial values

^*(fo) — ^o', t  — 1, * * * , ii, (3 )
the solution of system (1) is uniquely determined. The variational 
problem to be solved, which is related to the control process (1), 
consists of the following. We consider the integral functional

•fi». (4)

where f ‘(x^, • • • , x", u‘, • • • , u') is a given function. For each con
trol (2), given on a certain interval k  < t < h , the course of the 
control process is uniquely determined, and the integral (3) takes on a 
definite value. Let us assume that there exists a control (2) which 
transfers the controlled object from a given initial phase state (3) 
to a prescribed terminal phase state

a:’(ii) =  x i ,  t =  1, ••• , n. (5)

I t  is required to find a control

«'(<), i  =  1, ( 6)

which realizes the transfer of the controlled object from state (3) to 
state (5) in such a manner that the functional (4) has a minimum 
value. The times U, and i j , in this statement of the problem, are not 
fixed. We only require that the object should be in state (3) a t the 
initial time, and in state (5) a t the final time, and that the functional 
(4) should achieve a minimum. (The case where the times to and 
fi are fixed is also of interest; this case easily reduces to problems re
ferred to in this introduction. See §8.) In the special case where 
the function/®(x‘, • • • ,  x", «*, ••• , u '), which defines the functional 
(4), is identically equal to imity, the functional (4) has the value 
ii — to, and our variational problem becomes the time-optimal prob
lem.

In technical problems where the control parameters • • • , u', 
for example, determine the position of a machine’s controllers, the u ' 
cannot assume arbitrary values, but are subject to certain restric
tions. Because of the arrangement of the mechanism described by 
system (1), the parameter u' can, let us say, only assume values 
which satisfy the condition
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I « ' I <  1. (7 )
Or, for example, if the parameters u* and u’ characterize a vector in a 
plane, where the length of the vector does not exceed unity but its 
direction is arbitrary, these parameters are subject to the condition

(«‘)* +  («*)* <  1. (8)

Generally, it is necessary to assume that the point (u‘, • • • , u') 
must belong to a certain set U of the space with coordinates 
«* , • • • ,  u'. Moreover, the choice of this set U reflects specific fea
tures of the object (1). In the mathematical statement of the prob
lem the set U (the “control region” ) is considered as arbitrary; but 
in technical problems the case where t /  is a closed set [compare with 
inequalities (7) and (8)] is particularly important and characteristic. 
This condition signifies that the extreme positions of the controller 
[the values m* =  ± 1  in inequality (7), or boundary pioints of the 
circle (8)1, which may, in particular, yield an optimal control, are 
also admissible. In fact, this circumstance makes the variational 
problem under consideration non-classical, since, in the classical calcu
lus of variations, the variable parameters cannot satisfy inequalities 
of the type (7) or (8), when these also include equalities.

The non-classical character of our variational problem is brought 
out particularly clearly by the time-optimal problem for system (1), 
where the right-hand sides are linear functions of the variables 
X*, • • • , x", M*, • • • , « '  with constant coefficients, and where the set 
(7 is a closed convex polyhedron. For example, U may be the ctihe 
defined by the inequalities:

l«’ l < 1, i  = 1,
In this case it turns out that the optimal control (6) is reaUzed by 
the point , u '(l))  which is located, in turns, a t various
vertices of U. The rules according to which the control point jumps 
from one vertex to another also give the optimal control law. This 
linear variational problem, which has important practical applica
tions, is solved in Chapter III on the basis of general methods. Clas
sical methods are completely inapplicable to the solution of such a 
problem.

From what has been said about the jumps of the optimal control
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point from vertex to vertex of U, it follows that the class of admissible 
controls (2) cannot be considered to consist of continuous functions. 
We usually suppose that it consists of piecewise continuous functions. 
The phase coordinates x*, • • • , x" are assumed to be continuous and 
piecewise differentiable functions of time. Under these assumptions 
the necessary conditions for optimality are formulated in the form of a 
maximum principle (see Chapter I), which is proved in Chapter II.

If the object under consideration is a mechanical system, the part 
X*, • • • , X* of the phase coordinates describes the geometrical state 
of the system, and the part x*'*'*, • • • , x**(2fc = n) describes its veloc
ity. In certain problems the goal of the control process may not be 
to have the object get to a definite point (X j‘, • • • , Xi") in phase 
space, but to have the mechanical system attain a definite spatial 
position (xi‘, • • • , xi*), with arbitrary velocities. Thus, we have 
here the variational problem of an optimal transition of the object 
from a definite initial point lo*, • • • , xo" in phase space, to an arbi
trary point on the fc-dimensional plane defined by the equations

X  — 2?i , , X* =  Xi*.

We can see that the optimal problem formulated earlier does not in
clude a number of important problems. Because of this fact, the 
problem of optimally transferring an object from an initial manifold 
Ma of points in phase space, to a terminal manifold M i , where the 
dimensions of 3/o and Mi are arbitrary (in particular, when they are 
both zero we obtain the first described problem), is examined in §6 
of Chapter I.

I t  is quite clear that because of the very character of the technical 
problem, not only the object’s control parameters, but also its phase 
coordinates must sometimes be subject to certain restrictions. For 
example, if we discuss the motion of an aircraft, and if x‘ denotes its 
altitude above the ground, the inequality x* >  A >  0, where h is the 
minimum allowed flight altitude, must be satisfied. The inequality 

> h follows neither from the properties of the system of eqs. (1), 
nor from the inequalities imposed on the control parameters; but is 
completely independent. The problem of optimally controlling an 
object, when the point in phase space which represents it must remain 
in a certain closed region G of the space a t all times, is solved in Chap
ter VI. I t  is therein assumed that G has a piecewise smooth boundary.
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Under these conditions, the object's motion takes place partially in 
the interior of G, where it is subject to the usual maximum principle, 
and partially along the boundary of G, where it is subject to a compli
cated form of the maximum principle. The transitions from trajectory 
segments which lie in the interior of G to segments which lie on the 
boundary of G are subject to peculiar rules which recall the laws of 
the refraction of light and which, in a certain sense, generalize them.

Up to now we have spoken about an optimal control which brought 
the object to a given point or onto a given sub-manifold of the phase 
space. However, the optimal control problem may consist of op
timally getting to a moving point in phase space. Let us assume that 
there exists a moving point

X’ = m ,  i  =  1, n. (9)

in phase space. Then, there arises the problem of optimally bringing 
the object (1) in coincidence with the moving point (9). This 
problem is easily reduced to the one considered above. I t is suffi
cient to introduce new variables by setting

y ' = X* -  e \ t ) ,  i  = 1, ••• ,n .

As a result of this transformation, the control system (l)  becomes a 
new system, which, it is true, is no longer autonomous; and the goal 
of the control process becomes that of bringing the new object 
(l/S • • • I i/") to the stationary point (0, • • • , 0) in phase space. 
Since our basic results are easily extended to non-autonomous con
trol processes (see §7) the problem may be considered solved.

We assumed here that the motion of the pursued point (9) is pre
determined on the entire time interval under consideration. A com
pletely new problem, which is important in practice, arises when the 
motion of the pursued object is not known beforehand, and informa
tion on its motion is received in the course of time. In order to solve 
such a problem about a pursued object it is necessary to have some 
data on its behavior. Extremely important is the case when the 
pursued object is itself controlled, so that its motion is described by a 
system of equations

_»v_i
■a i  =  1, , n . • (10)
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and when the motion takes place in the same phase space as the motion 
of the pursuing object (1). The problem consists of the following: 
knowing the technical capabilities of the pursued object [i.e., the sys
tem of eqs. (10)] and its position at a given instant of time, determine 
the control for the pursuing object a t the same instant of time in such 
a way that the pursuit is carried out in an optimal fashion. In this 
formulation the problem is still unsolved. In Chapter VII another 
pursuit problem is solved. I t is assumed that the position of the 
pursued object is known at the initial time, and that its subsequent 
behavior is described in a probabilistic manner; namely, the process of 
its motion is assumed to be Markovian. Under these assumptions we 
seek a control for the pursuing object (1) for which an encounter of a 
small neighborhood of the object (1) with the pursued object is the 
most probable.

Initially we tried to find the optimal control (6) for fixed initial 
(3) and terminal (5) positions of the object. However, it is often 
necessary to find not only the optimal control (6), but the general 
solution of the problem with arbitrary positions (3) and (5). We 
shall assume, for the sake of definiteness, that the object’s terminal 
position (5) is fixed, but that its initial position (3) is an arbitrary 
point in the space. Then, the desired optimal control (6) becomes a 
function not only of time, but also of the initial point

Xq =  (Xq , * * ' , Xo ),

so that we have the optimal control 

«’(f,Xo), ••• ( 11)

Let us set

u ' ( i o  , xo)  =  « ' ( * 0 ) .

If x(i) is the position of the controlled object a t the time t with the 
control (11), the obvious identity

u ’(t, xo) = u \x ( t ) ) ,  j  =  1, • • • , r,

holds, expressing the fact that a t each time t one must control the 
object in an optimal manner. Therefore, instead of the functions 
( l l ) o f n - l - l  variables we may consider the functions

u \ ^ ) , , u'(x) ( 12 )
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of n variables. These functions yield the so-called synthesis of the 
optimal control. The question of the very existence of a synthesizing 
control (12) is rather complicated, but has a positive answer for 
linear systems under certain additional assumptions of an extremely 
general character (see Chapter III). The S3mthesizing control (12) 
is also constructed for some specific linear systems (see §5 and §20).

Starting from the assumption that the synthesizing control (12) 
does exist, and that the corresponding functional (4), which is now a 
function of the point x:

J  =  J{x)  =  J (x ‘, - ,x") (13)
is a continuously differentiable function of the variables x*, • • • , x", 
the American mathematician R. Bellman constructed a partial differ
ential equation for the functional (13). This equation of Bellman’s 
gives rise to another approach to the solution of the optimal control 
problem (see §9). I t  is different from the one given in this book, 
but is closely related to it. I t  must be noted that the assumption on 
the continuous differentiability of the functional (13) does not hold in 
the simplest cases. Thus, Bellman’s considerations yield a good 
heuristic method, rather than a mathematical solution of the prob
lem. The maximum principle, in addition to its complete mathemati
cal validity, also has the advantage that it results in a system of ordi
nary differential equations, whereas Bellman’s approach requires the 
solution of a partial differential equation.

Finally, a few words should be said about the heretofore unmen
tioned Chapter IV. Here, some generahzations of the considered 
fundamental problems, as well as some applications, are compiled. 
In particular, we consider the case where some additional numerical 
parameters (which may be chosen prior to beginning the process, but 
cannot be changed once the process is under way) enter into eq. (1), 
as well as the case where the object’s equation of motion is complicated 
by the presence of the effect of delay. In addition, the application 
of the maximum principle to one problem in the theory of the ap
proximation of functions is presented. The solution of one (rather 
special) pursuit problem is given in the last paragraph of Chapter IV.
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CHAPTER I

THE MAXIMUM PRINCIPLE
§1. ADMISSIBLE CONTROLS

We shall consider the behavior of an object whose state a t any 
instant of time is characterized by n  real numbers at*, x*, , x"
(for example, these may be coordinates and velocities). The vector 
space X  of the vector variable x  =  (x‘, • • • , x") is the phase space 
of the object under consideration. The behavior (motion) of the 
object (from a mathematical viewpoint) consists of the fact that the 
variables • • • , x" change with time. I t  is assumed that the ob
ject’s motion can be controlled; i.e., that the object is equipped with 
certain “controllers” on whose position the motion of the object de
pends. The positions of the “controllers” are characterized by points 
u, of a certain control region U, which may be any set in some r-di- 
mensionai Euclidean space E r. Giving a point

u = (m‘, u*, ■ ■ ■ , u') ^ U

is equivalent to giving a numerical system of parameters m*, m*, 
, u'. In applications, the case where i /  is a closed region in Er 

is important. In particular, the control region U may be a cube 
in the r-dimensional space of the variables u*, .

<  1, i = l , 2. , r, ( 1)

or any other closed and bounded set in this r-dimensional space. 
The physical meaning of considering a closed and bounded control 
region U (in the space of the variables u‘, « ') is clear. The
quantity of fuel being supplied to a motor, temperature, current, volt
age, etc., which cannot take on arbitrarily large values, may serve as 
the control parameters u‘, « * , - • • ,  u'. In addition, because of the 
physical construction of the object’s control portion, relations given 
by one, or several equations of the form ^(u*, u*, • • • , m”) =  0, may 
exist among the control parameters. In this case, U may have a more
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or less complicated geometric character. If, for example, there are 
two control parameters w‘ and w*, which, because of the object’s con
struction, have the form w* =  cos ^  and u* =  sin 0 , where <j> is an 
(arbitrarily given) angle, the control region is a circle

(«*)* +  («*)* =  1. (2)

Henceforth, we shall simply speak of the control region U, and of its 
points u ^  U. We shall think of 1/ as a certain set in the space of 
the variables «*, «* , • • • ,  u', considering the ssmtem of control parame
ters u =  («*, «*, • • • , located arbitrarily in as its “point” u 
[see, for example, ( 1) or (2)].

We shall call every function u = u(t),  defined on some time in
terval to < t < t i , with range in U, a control. Since i/  is a set in 
the space of the control parameters u‘, « * , • • • ,  each control

«(<) =  ( u \ t ) , u \ t ) ,  , u \ t ) )

is a vector function (given for io <  < <  h) whose range is in U. 
Henceforth, depending on the character of the stated problem, we 
shall impose various conditions (piecewise continuity, piecewise dif
ferentiability, etc.) on u{t). The controls which satisfy these condi
tions will be called admissible controls. In  this chapter we shall con
sider the admissible controls to be arbitrary piecewise continuous controls 
(with range in U) ; i.e., controls u =  u{t) which are continuous for all 
t under consideration, with the exception of only a finite number of t, 
a t which w(i) may have discontinuities of the first kind. To avoid 
any misunderstanding, let us note that, from the definition of discon
tinuities of the first kind, we assume the existence of the finite limits

u(t — 0) =  lim u{t), u ( t  -|- 0) =  lim u(t),
l-*TK t

l-»T

at a point of discontinuity, r. In particular, it therefore follows that 
every control «(<) is bounded (even if i /  is not).

The value of a piecewise continuous control u{t) a t a point of 
discontinuity does not play an essential role in what follows; how
ever, for the sake of definiteness, it is convenient to assume that a t 
each point of discontinuity, t, the value of w(i) is equal to its left- 
hand limit:

« (t) =  u ( r  -  0), (3)
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and that each control u(i) under consideration is continuous a t the 
endpoints of the interval <o <  i <  , on which it is given.

Thus, in this chapter, we shall agree to call any piecewise con
tinuous function u(t), to <  t <  t i , whose range is in U, which satis
fies condition (3) a t its points of discontinuity, and which is continu
ous a t the endpoints of the interval to < t < h on which it is given, 
an admissible control. Piecewise continuous controls correspond to 
the assumption of “inertialess” controllers, since the values of the 
function u(i) may jump (at an instant of discontinuity) instantane
ously from one point of the control region to another. This class of 
admissible controls seems to be the most interesting for the practical 
applications of the theory developed here.

§2, STATEMENT OF THE FUNDAMENTAL PROBLEM

We shall assume that the object’s law of motion (also the law for 
the effect of the “controllers” on this motion) can be written in the 
form of a system of differential equations
lir'
^  = = f { x , u ) ,  x = l , 2 , - - - , n ,  (4)

or in vector form.

dx
dt = /(* , w), (5)

where f (x ,  u) is the vector with coordinates

f \ x ,  u ) , f \ x , u ) ,  , r ( x ,  u).

The functions / '  are defined for x ^ X  and for u ^  U. They are 
assumed to be continuous in the variables z*, • • • , i" , u, and con
tinuously differentiable with respect to x‘, x*, • • • , z". In other 
words, the functions

f ( x \  z*, • • •, z", u)  and ^ ^ ^ =  1. 2, • • •,« ,

are defined and continuous on the direct product X  Y. U.
Let us note that system (4) is autonomous, i.e., its right-hand 

sides do not depend explicitly on the time, t. We shall consider the 
case wherein the right-hand sides do depend on t below (see §7).
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If the control law is given, i.e., if a certain admissible control 
u =  w(i) is chosen, eq. (5) takes the form

g = / ( x , M ( 0 ), ( 6 )

from which [for any initial conditions x(to) =  Xol the motion of the 
object X =  x(t)  is uniquely determined; i.e., the solution of eq.(6) 
is defined for a certain time interval. Namely, if u{t) is given for 
to < t < h ,  and 6 i , 6 2 , • • • , At are its points of discontinuity (of the 
first kind), where to < 61 < 62 <  <1 , we shall first consider
eq. (6) on the interval k < t < $i where its right-hand side is con
tinuous. We shall denote the solution of this equation, with initial 
condition x(to) = Xo, by x(i). If this solution is defined on the en
tire interval fo <  < <  , and has the value x ( 6 i) a t the point 6 1 ,
we can consider eq. (6) on the interval 6 \ < t < O2 , using x(ffi) as 
the initial value. This solution will also be denoted by x(i). Thus, 
the constructed solution x{t) is continuous a t all points a t which it is 
defined, and, in particular, a t the “junction point” . Now, if x(<) 
is defined on the entire interval to < t < O2 , and has the value x(flj) 
a t 6 2 , we can consider eq. (6) on the interval 62 < t < 6 3 , using x (0*) 
as the initial value; etc. The thus obtained solution x(i) of eq. (6) 
is continuous and piecewise differentiable; namely, a t all points, ex
cept 6 1 , 6 2 , ■ , 6 i , ,x{t)  (where it is defined) is continuously differen
tiable. The solution x(t)  will be called the solution of system (4) 
[or of eq. (5)], corresponding to the control u{t) for the initial condi
tion x(to) = Xo. This solution ma5 not be defined on the entire 
interval to < t < hon  which u(t) is given (it may run off to infinity).

We shall say that the admissible control u(t), to < t < t i , trans
fers the phase point from the position Xo to the position Xi if the cor
responding solution x(i) of eq. (5) [or, what is the same, (6)], satisfy
ing the initial condition x(<o) = Xo, is defined for all <, <0 <  f , 
and passes through the point Xi a t the time <1 ; i.e., it also satisfies 
the boundary condition x(ti) =  Xi.

Let us now suppose that we are given an additional function 
/®(x‘, X*, • • • , x", u) =  f { x ,  u) which is defined and is continuous 
together with its partial derivatives d f  fdx*, i  = 1, 2, • • • , n, on all 
oi X  X  U. Then, the fundamental problem (finding the optimal 
controls) can be formulated as follows.
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In  the phase space X , two points Xo and Xi are given. Among all 
the admissible controls u = u(t) which transfer the phase point from the 
position Xo to the position Xi {if such controls exist), find one for which 
the functional

J  = f  f i x i t ) , u { t ) )  dt (7)

takes on the least possible value. Here, x(t)  is the solution of eq. (5) 
with initial condition x(<o) =  Xo corresponding to the control u{t), 
and <1 is the time at which this solution passes through Xi.

Let us note that (for fixed Xo and Xi) the upper and lower limits, 
<0 and <1 , in the integral (7) are not fixed numbers, but depend on 
the choice of the control u{t) which transfers the phase point from 
Xo to Xi (these limits are determined by the relations x(<o) =  Xo and 
x(ti) = X i) . We shall discuss the solution of the problem for the 
case of fixed limits below (see §8).

The control u(t)  which yields the solution of the problem cited 
above is called an optimal control corresponding to a transition from  
Xo to X i. The corresponding trajectory x(<) is called an optimal 
trajectory. Thus, the fundamental problem consists of finding the 
optimal controls (and the corresponding optimal trajectories).

An important special case of the above cited optimal problem is 
the one where/*(x, u) =  1. In this case, the functional (7) takes 
the form

J  — h — to, (8)

and the optimality of the control u{t) signifies minimality of the transi
tion time from  Xo to Xi. The problem of finding the optimal controls 
(and trajectories) in this case will be called the time-optimal problem.

In order to formulate and prove the necessary optimality condi
tion it will be convenient to reformulate our problem. Namely, let 
us adjoin a new coordinate x“ to the phase coordinates x‘, x*, • • • , i" , 
which vary according to (4). Letx® vary according to the law

w),

where/® is the function which appears in the definition of J  [see (7)j. 
In other words, we shall consider the system of differential equations
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^  = /(a:*,I*, ••• , x " , I  =  0,1,2, (9)
at

whose right-hand sides do not depend on x®. Introducing the vector 

X = (x®,x*,x*, ••• ,x -)  = (x*,x)

in the (n -f- 1)-dimensional vector space X, we may rewrite system 
(9) in vector form

( 10)

where f(x, m) is the vector in X with coordinates /®(x, u ), • • • , 
/*(x, u). Note that f(x, u) does not depend on the coordinate x® 
of the vector x.

Now let u{t) be an admissible control transferring Xo to X i, and 
let X = x(<) be the corresponding solution of eq. (5) with initial con
dition x(io) =  Xo. Let us denote the point (0, Xo) by xo ; i.e., xo is 
the point of X whose coordinates are 0, Xo‘, • • • , Xo", where Xo’, • • • , Xo" 
are the coordinates of Xo in X.  Then, it is clear that the solution of 
eq. ( 10) with initial condition x(io) =  *o, corresponding to the control 
u(i), is defined on the entire interval <o <  i <  , and has the form

i® = f  f ( x ( t ' ) , u ( t ' ) ) d t ' ,
•'»0

X = x(f).
In particular, when t = h

I® = /  f \ x ( t ) ,  u ( 0 )  dt = J ,  X =  xi,

i.e., the solution x(t)  of eq. ( 10) with initial condition x(fo) =  xo 
passes through the point x =  (J,  Xi) a t i =  i i . In other words, if we 
let n  be the line in X passing through the point x =  (0, Xi) and paral
lel to the X® axis (this line is made up of all the points (f, Xi) where 
the number ( is arbitrary; Fig. 1), we can say that x(<) passes through 
a point on n, with coordinate x® =  J,  a t the time t = h .  Conversely, 
suppose that u(t)  is an admissible control such that the corresponding 
solution x(<) of eq. (10) with initial condition x(fo) =  xo =  (0, Xo), 
a t some time h passes through a point xi 6 n, with coordinate x® = J.


