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FOREWORD

This report was prepared for the Applied
Mathematics Research Laboratory, Aerospace
Research Laboratories, Wright-Patterson
Air Force Base, by Dr. V. K. Murt.y, System
Development Corporation, under Contract
F33-615-67-C-1865. In this report th-:
author develops the method of random .lazard
functions and applies it to estimating the
Weibull shape parameter.

The author wishes to thank Dr. It. Leon Harter
of the Applied Mathematics Labor'atory,
Wright-Patterson Air Force base, for many
helpful suggestions which improved the
organization of this paper.
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ABSTRACT

The iiethod of random hazard functions is applied to
the case of the Weibull distribution and the follow-
ing results are ootained: It is well known that, in
the case of a Weibull distribution with two parameters
a and B, there is no way of estimating and testing for
the shape parameter B witbrut knowledge of the scale
parameter a using the usual methods based on maximum
likelihood. The method of random hazard functions is
now used to obtain a consi3ten% and asymptotically
normal class of estimates for B independent of any
specification whatsoever on a. This result enables
one to tes. for the randomness of the underlying
failure phenomena under the Weibull setup. An illus-
trative example is given.
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1. INTRODUCTION*

The main object in reliability analysis is to estimate for eacb specified time,

t > 0, the probability that the given item (where item denotes a component, or

a subsystem of components, or a system of subsystems) survives time instant t.

This function of t is usually denoted by R(t). The complement of R(t), which

denotes the probability that the item failed by time t, is denoted by F(t) -

l-R(t). If the random variable T denotes the observed time to failure of an

item, F(t) is its distribution function, which is also referred to in the

literature as "the untc-1vi•,- law of failures." Assuming that F(t) is absolute-

ly contiruous,

dE(t) - flt)dt (1)

-*here f(t)dt is the unconditional probability that the item fla's during the

interval (t, t + dt). The function f(t) is ealled the probability density of

the underlying law of failures.

Z(O)dt denotes the conditional probability that the item having survived time

t fails during the next interval (t, t + dt). If one uses this notation, the

definition of conditional probability yields

Z(t)dt• .()

Sclving Eq. (2) for F(t) gives

t
- z(t)dt
0

F(t) - - (3)
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The function Z(t) is called the hazard rate. The quantities R(t), Z(t), and

the expected value of the random variable T (representing the mean time to

failure [m.t.t.f.] of the item) are called the life quality or item effective-

nees parameters. It shoul4 be said at this stage that the ultimate end in

reliability analysis is iro estimate or establish the life quality or iten

effectiveness parameters.

Where the experimenter has sufficient experience vitL the item concerned to

specify the mathematical form of the underlying law of failures, except for

the knovledge of certain parameters involved, the statistical estimation pro-

cedures are called parametric. Where the form of the underlying law of failures

cannot be aussmed with reasonable accuracy, th.i upplicable statistical procedures

ýwe called noaparametric.

However, there are many significant gaps in both the pararetric and th.e non-

parametria are" of reliabili t y eatination. In the prau-netric areeo, exact

methods of statistical inference amre pcssible only under tne exponential law

of failures. With respect to other plAausible specificaticns of the lay of

failures, such as the Weioull distribution, method• based on maxiuum likelihood

and order stotistics provide asymptotic (lsr~e-s~ple) statistical procedures

for ay given sampling plan (for example, random, truncated, and censored).

Theoe method ar's usually complicated fron tim point of viev of evalurttin& the

estiuates and maisance parameters. The nonparametr•c approach in reliability

In relatively nev and largely unexplored.

If in Sq. (2) one regarps V(tO not as a fune.tion of the real variable t

but as a function of the time to faLilure T. then one has what is called a

randoem harurd fnctiou. At this ament v- do not go into detailed properties
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of the random hazard function as such. However, we will use the rendom hazard

function to obtain a consistent and asymptotically normal class of estimators

for the Weibull shape parameter 8 and we discover that the sampling properties

of our estimate for B are asynptotically free from a. This is a significarii

property which the class of estimators for B given by the method of maximum

likelihood does not loss"bss even for large samples.

2. ESTIMATION OF TAE WEIBULL SHAPE PARAMETER B BASED ON RANDOM HAZARD FUNCTION

Consider the Weibull distribution

F(t) - l aet 9 a > OB > O. (4)

The cumulative hazard rate is given by

t

Y(t) Z(x)dx -at . (5)

0

Differentiating (5) with respect to t ve have for the hazard rate Z(t) of the

Weibull distribution

Z(t) - . (6)

Nov lot N items be put to a life testing experiment and let T1, T2 ,..., TN

denote the observed times to failure o. these N items. Let us assume that the

underlying law of failures is Weibull given ty (4). In other vords

( i1i-, 2,...*,N are independently identically distributec random variables

with Comm= distribution given by (I).



Now if T is distributad according to (4)

(TK as tKt-le'atdt
0

-K/B f Zx/BeXdx

0

a ' r(1+K/l) , (7)

where r (x) denotes the gamma function. Consider now the following random

hazard fuction:

g(T) - TZ(T) , (8)

where T is the observed time to failure and Z(T) is the random hazard function

of the Weibull diburibution given by (6).

Let us now mnsider the following random variable and investigate its properties.

Define

NB •• g(Ti1) (9)
i-I

before we go any further let us note that ; is not a statistic as we cannot

compute its value as soon as the ubservations T1 , T2 ,...,TN are available.

We have N

(8) .!•• E(g(T)) - E((T)) • (10)

iul
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where T is distributed according to (4). Now

E(g(T)) = E(TZ(T))

= E(•x8T /1 (li)

= E(T)$ o

Substituting for E(TO) from (7) we obtain

E(g(T)) -=*B a l - • (12)

Thus the random variable B is unbiased for 0.

We will now compute the variance of the random variable 8. From (9) we have

Var(8) mjVar(g (T)) (13)N

Now

E(gC(T)) - E(Q2 a2 T2 ), (14)

E(O 0 282722 r(3)

2k 2 (15)

Combining (.42`, (13) and (15) we obtain

Var(C) - 2 /1N (16)

AM this stage we have discovered that the randon variable B is exactlr unbiased

for 8 and its variance 8 2/N does not depend on the scale parameter a of the

Weibull distribution. We will now construct a statistic 8 with the following

property, viz;

Plim(0- 5) *0 UT(1)



in other words the statistic B converges in probability to the random variable

h. If we prove -17), we have proved that the statistic 0 has the same
S~asymptotic propertiest in fact,, has the same as-Mntotic distribution as the

random variable 0. In fact,, in view of the Lindeberg and Levy version of the

central limit theorem (see Cramdr (1], p. 215)

in other words B is asymptotically normally distributed with mean 0 and variance

2/ independent of a. Thus if we can define a statistic B suit&bly and show

(17) for that B then we hav. produced a statistic B with all the desired

properties (asymptotically or for large samples) for estimating the shape

parameter B of the Weibull distribution.

Now define N

-I1 (19)

where 
fN(Ti)

and

RN(Ti) = 1 [number of observations among T1 , T2 ,...,TN > Ti] , (21)

N
fN(Ti)5 K(N(T j-Ti)) (22)

Jul

and % is a seqtence of nonne ative constants depending on the sample size U

such that E B. as N. - and 0 as N X •, and finally K(x) is a window

function (see MurtkV (2], (3] ) satisfying



K(x; 0

K(x) - K(-x)

liam xK(x) = 0IxlI-~

S I:(x)dx = 1 (23)

Clearly as soon as one chooses the sequence {B} and e window function K(x)

satisfying the above properties one can compute the statistic 8 giveli btr (19)

based on observed values of time to failure Tl,...,TN of N identical items put

to a life testing experiment.

Now N

8-0= ~ Ti IZ(Ti) -Z,(T±)I * 2's)
i=l

It is evident that if we can show

Plim (Z(Ti) - Z(Ti)) - 0 , (25)

it follows from (24) that

Plim (8-a*) * 0 (26)

Now fN(Ti)
ZN(Ti) - = (27)
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where fN(Ti) and RN(Ti) are respectively given by (22) and (21) and

f f(T iI ~Z(Ti), (28)

where f(t) and R(t) are respectively the density and reliability functions.

We will establish that ZN(Ti) converges in probability to Z(Ti) as the sample

size N . - by establishing that the denominator PN(Ti) of ZN(Ti) converges in

probability to R(Ti) and the numerator fC(Ti) converges in probability to f(Ti).

We will prove that

Plim IFN(Ti) -F(Ti) 0 . (29)

Now N

FN(Ti) = -N I U(Ti'-TQ (30)

where U(x) is the Heaviside unit function

U(x) 1 x t 0

.0 otherwise . (31)

We have

FN(Ti) , 1 + U(Ti-TI) +...+ U(Ti-TiI) + U(T!-Ti÷I)

+...+ U(Ti-TN) -NF(Ti) . (32)

Since F(Ti) iis uniformly distributed in (0,1)

E(F(Ti)) - (33)

8
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Also since Ti and, say, T are independently identically distributed

ECU(Ti-Ti)) - P(Ti Z TI) (34)
1

Using (33) and (34) and taking expectation on both sides of (32) we discover
that

1+ -(N-l-N)

El Fl,(Ti)'F(Ti)I 2 N

1
= "" (35)

and hence

lim E IF A.)'F(Til = 0 (36)
N "-

Now

fN(Ti) - F() * -. TIUTi T)-F(T +1 1....* 1ui•i-)-F-i I

+ 1 - F(Ti) O( )

937



Write

Z2.U(Ti-T 2 )-F(T)

z 2U(T CTN2)-F(T ±)

Va iF(T) -1T) -[a~zz +... +- 1- (TF()}J (39)

z a U( i- [.i+l Vs-r(T1 i.

Var FI(i)-(Ti] Vr(Z+Z Co +(iF,.+ ZN 1 + 1 .... (39

N2 1

1 111

Nov 
+ Cov ~~~~( I6F(T de) +9+Z

dFT1 )dF(T2 )dF(T1 ) *

10



since ECZ 1) 0, i 1, 2,..,ON-1.

Expanding (141) we obtain

Cov(Z 1 , 2) 1 5 J U(T i-T 1)U(T i-T 2dF(T 1)dF(T2 )dF(Ti) (142)

4f f f F(T i)U(T i-T2 )dF(Ti)dF(T 2)dF(Ti)
Go0000

+5 F2(T )dF(T )dF(T )dF(T,)

l -E(F(Max(T 1 ,T ))) - +1 - -1 + E(F(rmax(TJ IT))

Nov

E(F(max(T 1,T 2 M) F(x)2F(x)f(x)dx a2 jF 2 (x)±i(x)dx

0 0 (143)



Combining (142) and (43) we discover that

Cov(ZZ) 0 (1414)
1OZ2

Similarly

Va~r(z) 1 ,,

cov(zijz) 0 1 (145)

Finally

Cov(Zls(1-F(Ti)) - E(Z 1 (-F( Ti)) [since E(Z 1) 0

a EC I 1-F(T i )I [U(Ti-Ti)-F(Ti)I )

- E(U(Ti-Tl)-Y(T i)U(T i -Ti1)-r.(T i)+p2(T i))

2323

Similarl~y

coy I Za.(l-F(Ti))I 0 * a12.,N .(14T)

Combining (09), (145) and (147) we discover that

1212
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Hence

lrn Var IFN(Ti)-F(TPI)] 0 .(~49)

N. W

Combining (36) and (49) we finally discover

Pl.im (F (T .- F(T 0)),= 0

which implies

Plim (RN(Ti )-R(T ) 0 (50N. (50 )

To complete the proof of (25) we now have only to show that fN(Ti) convernes

in probability to f(Ti).

In other words we have to show that

Plim (fl(Ti)-f(Ti)) - 0 (51)
N-, -

where
N

fj(T1 )n BN K(BN(T -T) (52)

Lot

S- K(B,(T•,•T,)) ,

X:.1" o •53)

x, - K(BN(Tii.,Ti)) ,

xx.a - K(E(Tx..?1 ))

13



Then t (Ti cur, be vritten as

BNK(O) B, N-i
fffT + ~' I 2 x (54)

eConsider no-j

ErB.K(O-(T )) 1T)_B1

+ N f(x
J-1

B E(f(T )) B N-1

N N~.
K (Oi *- + '*f (

B, E(? (T~) N-
-N KID)- N + I' N. (X-(L (55)

Sincte by assumption

0ax N -~-and K(O) is a const'inte

K( o)%
lim- -- u 0 (56)

Nov

E( f(T,) f (t)r(t)dt

r2(t)dt

0

14



A~seating that do

f 2(..)dt < (57)

0

which is certainly. tru.e in the case of the Weibull distribution, we obtain

Urn E(f(T) -0 *(58)

N.

Now

E(BN(Xl.of(Ti))) * JB[K(BN(Tl-T±))-f(T,)]dF(T.IdF(Ti)
0 0

G 0 (59)

0

Combining (59) ard (60) we obtsi~i

lim E(BR('(If('i)) a0 .(1



Finally combining (55), (56), (58) and (61) we discover that

lim E(fN(Ti)-f(Ti)) = 0 . (62)

Appealing to the lemna (see Martby [3]) p. 1028) repeatedly and carrying out

a straightforward but laborious computation, one discovers that

lim Var(fN(Ti)-f(Ti)) - 0 . (63)
N•

Combining (60) and (63) we obtain

Plim (fN(Ti)-f(T)) 0 . (64)

NNi

In view of (50), (64) and (25) we finally prove that

Plim (0--8) 0 . (65)

Hence

THEOREM
The sequence of statistics r • converges in distribution to a normal

distribution with zero mean and unit variance as the asample size N tends to

infinity.

16.
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3, TFST FOR EXPONE-TIALITY IN THE WEIBULL SETJP

The Weibull distribution given by (4) reduces to the exponential

distribution if the shape parameter 0 - 1.

To teat

Flo:8=l , (66)

we use the theorem just established as follows. Suppose that the

sample size N is large ex.ough for the normal awproximation proved in

the theorem to be valid. Choose a sequence {B,) and a windov K(x).

Compute 8 and (8-1) Y9. If the latter value exceeds the Gr value of

a normal distribution with zero mean and unit variance reject tV.r

bypotheses R1O.

4. AN ExAMPLE

Consider the estimate 8 of 8 given by (19), namely:

N
8 l TiZN(Ti) , (67)

i=1

where TI, T2 ,...,TN are the observed times to failure and

•'. (rj)

ZN(Ti) NT i) (68)

RN(Ti) = IN [number of observations among TI, T2 ,...,TN > Ti] *
(69)

B N
fN(TLi) 7 -1 K(%(T J-T 1)) ,(70)

J=l

17



and is a sequence of nonnegative constants depending on the sample size

N such that

rim 0 (71)
N No

and finally the window K(x) satisfies (23).

To illustrate the use of the statistic to test the hypothesis HO given by

(66), let us consider

BN log N (72)

K (x) - -1 Ixl: 12 9

a 0 otherwise;

clearly B given by (72) satisfied (71) and K(x) defined by (73) satisfies

the window condition (23).

If we substitute (72) and (73) in (67) the statistic B in this illustration

reduces to

1+ number of observations T (J + 1), such that

NIT -T, I 1

-log N ,oTi

2 'N I
i-i

number of observations T
such that T > TJi

18



As soon as the observations TI, T2 ,...,TN are available the statistic (74)

can at once be computed and the procedure for rejection or acceptance of the

hypothesis H. can be carried out.

19
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