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TDoA Geolocation Accuracy as a Function of the

Number of Randomly Placed Sensors

Warren H.Debany Jr., Ph.D., P.E.
AFRL/RIG

525 Brooks Rd.
Rome NY 13441-4505

Abstract

This paper addresses the problem of locating a radio frequency
(RF) emitter on the ground using a set of sensors. Time-difference-
of-arrival (TDoA) measurements at pairs of sensors are combined to
obtain an estimate of the emitter location. The sensors may be station-
ary or in motion and may be on the ground or airborne. The sensors
are networked and processing is centralized.

The central question addressed in this paper is to determine the
trend of the relative improvement in Location Distance Error (LDE),
in the presence of sensor position and timing errors, as the number of
sensors (N) increases. The statistical metrics used are the mean, 50th,
95th, and 99th percentile LDE.

Analysis is based on Monte Carlo simulations of randomly gener-
ated geometries based on parameterized configurations of an emitter
and the sensors, where the sensors may be immersed in the same search
area with the emitter or standoff in an adjacent area. It is shown that
configurations consisting of three or four sensors have significant per-
centages of intrinsically bad geometries that may have large LDE values
even in error-free cases; based on these findings, a minimum of five sen-
sors should be used for ground-based or airborne sensor configurations.

Several sensor pairing methods based on combining either all pairs,
disjoint pairs, or linearly independent pairs are compared on the ba-
sis of their mean LDE values. It is found that the all pairs method
consistently provides the smallest LDE.

This paper determines the sensitivity of LDE to sensor altitude and
position and timing error conditions. For a given number of sensors
in an immersed or standoff configuration, it is shown that each of the
LDE statistical metrics is approximately scale-invariant to the ratio of
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the altitude to the search area side length and there is an optimal ratio
for each statistical metric. Various regression models are developed to
relate LDE statistical metrics to the number of sensors and the specific
configurations; the simplest regression models show that the double
logarithm of each of the LDE statistical metrics is closely estimated by
a linear function of the double logarithm of the number of sensors.

The problem of determining the relative improvement in the LDE
statistical metrics, for a given configuration and error conditions, can
be framed as estimating the ratio of an LDE statistical metric for
N sensors to that LDE statistical metric for five sensors. Based on
the main data set used in this paper, this “Improvement Ratio” can be
closely estimated by a simple reciprocal approximation wRA/N forN ≥
6, where wRA varies from 2.50 to 5.96 over the full set of LDE statistical
metrics for the configurations and error conditions considered. Based
on an ensemble data set that used a wider set of error conditions,
compared to the baseline of five sensors, the mean LDE falls off roughly
as the ratios 4.5/N and 4.8/N for N ≥ 6 for immersed and standoff
sensors, respectively.

While the general approach used here assumes that geometries are
completely random within the specifications for the configurations, this
paper also determines the improvement in LDE achieved using the
simple rule of enforcing minimum separation between the sensors.
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1 Introduction

This paper addresses the problem of locating a radio frequency (RF)
emitter on the ground using a set of sensors. 1 The sensors may be stationary
or they may be in motion. They may be on the ground or airborne. 2 The
sensors are networked and processing is done in a centralized manner using
all of the available measurements.

Such problems arise in military applications where it is necessary to
locate an adversarial RF transmitter. This problem also applies to civilian
operations such as search-and-rescue. It is assumed in this paper is that a
variable number of sensors can be deployed over a relatively small area of
interest and the number of sensors can be controlled to provide a desired
degree of geolocation accuracy. The configurations, 3 characteristics, and
parameters used in this paper are not based any actual military or civilian
systems or scenarios.

Commonly used techniques for locating an RF emitter include Time-of-
Arrival (ToA), Time-Difference-of-Arrival (TDoA), Angle-of-Arrival (AoA),
Frequency-Difference-of-Arrival (FDoA), and Received Signal Strength
(RSS), as well as hybrids of these approaches [Montminy (2007)] [Sadaphal
(2005)]. It is known that techniques based on time measurements are far
more accurate than those based on measuring angles or signal strengths
[Sadaphal (2005)] so AoA and RSS techniques were not used in this work.
FDoA requires the emitter to be moving and ToA requires time synchro-
nization with the emitter, and since the scenarios considered in this paper
assume an uncooperative emitter which can be stationary, TDoA is the only
technique considered here.

1 The terms “locate” and “geolocate” are used interchangeably in this paper. The
terms “location” and “position” refer synonymously to the placement of the emitter and
sensors, although “location” will generally be used in connection with the emitter and
“position” in connection with the sensors. The terms “ground” and “surface” are used
interchangeably and refer to zero altitude.

2 The ground-based sensors may be pre-positioned and stationary or may be on vehicles
in motion. Airborne sensors may be on manned aircraft or hosted on drones as part of an
Unmanned Aircraft System (UAS). Sensors that are not on the ground may of course be
mounted on buildings or towers, but for brevity will be referred to as being “airborne.”

3 A “configuration” is a parameterized template for the placement of the emitter and
sensors and a “geometry” is a specific, randomly generated instance of a configuration.
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RF TDoA measures the difference in the time of arrival of a signal prop-
agating at the speed of light from an emitter at pairs of sensors. In two-
dimensional (2D) space, the locus of points that have the same TDoA form a
hyperbola. In three-dimensional space (3D), the points form a hyperboloid.
Since the TDoA solution method used in these investigations operates in 3D
space even when the sensors are at ground level, the term “hyperboloid” is
used throughout this paper. The two sensors are the foci of the hyperboloid.
Ideally, the emitter would be found at the intersection of the hyperboloids on
the surface defined by multiple pairs of sensors. Thus, TDoA-based systems
are referred to as “hyperbolic location” systems [Torrieri (1984)].

Several practical issues arise in using TDoA measurements to locate
the emitter. One issue is that measurement errors are inevitable in any
actual system. Causes of such errors are inaccuracies in sensor position
determination and time synchronization between pairs of sensors [Gholami
(2013)] [Qu (2012)] [Wang (2013)]. Another issue, intrinsic to the geometry
of the problem, is that there may be multiple valid solutions where all the
hyperboloids intersect. 4 Even when a single solution may exist in principle,
hyperboloids may intersect at small angles and thus even minor position
or timing errors may cause numerical solutions to converge to incorrect
results [Kaune (2012)].

The figure-of-merit used in this paper to express the accuracy of TDoA
geolocation is the distance between the estimated location of the
emitter and its true location, referred to in this paper as the Location
Distance Error (LDE). 5 The primary statistical metric used is the mean
LDE. Other related statistical metrics used are the 50th percentile (50%ile)
or median LDE, the 95th percentile (95%ile) LDE, and the 99th percentile
(99%ile) LDE. 6

In the 2D case, where the emitter and sensors are lying in a plane, a
minimum of three (that is, N = 3) sensors are needed to uniquely locate an

4 Even when the hyperboloids do not intersect exactly, they may converge closely
enough that the specific TDoA solution method cannot distinguish between the correct
solution and other possible solutions.

5 All distances in this paper are Euclidean or “Manhattan” distances calculated using
the Pythagorean Theorem.

6 The term “percentile” does not have a single mathematical definition. In this paper,
percentiles are calculated using the “nearest rank” method and are not interpolated. The
median of a set of values is given by the 50%ile value. For the large sets of data used in
this paper, the specific algorithm used to calculate percentiles makes almost no difference.
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emitter. However, some intrinsically bad geometries may require additional
sensors. For example, if the sensors are collinear (that is, positioned in a
straight line), then there are valid solutions on either side of the line of
sensors; at least one additional sensor that is not collinear may be required
to resolve the ambiguity of the emitter location. Another problem occurs
when two or more sensors are clustered together: foci that are close to each
other create small baselines for the hyperboloids and effectively reduce the
number of sensors to the number of distinct clusters. 7

Studies have addressed the problem of optimizing sensor positions to
minimize LDE [Hamdollahzadeh (2016)] [Huie (2014)]. However, even when
sensor positions are optimized, small numbers of sensors may be confounded
by poor emitter locations which, of course, are unknown and not control-
lable. Regardless of any optimizations, geolocation accuracy suffers when-
ever an emitter is collinear with two sensors.

Sensors that are in motion are constantly changing their geometries and,
in general, cannot be guaranteed to maintain desirable geometries for ge-
olocation. This paper does not assume that geometries are optimal, but
instead uses Monte Carlo simulation to derive LDE statistical metrics over
large numbers of randomly generated geometries of emitters and sensors.
However, this paper briefly assesses in an appendix the benefits of the sim-
ple optimization rule of enforcing a minimum xy separation between sensors
to avoid small baselines.

TDoA analyses usually involve discussion of error ellipses, Geometric
Dilution of Precision (GDoP), and the Cramér-Rao Lower Bound (CRLB)
[Chen (2013)] [Ho (2007)] [Huie (2014)] [Qu (2012)] [Sadaphal (2005)] [Tor-
rieri (1984)]. However, these concepts do not apply in the Monte Carlo
situation where the figure-of-merit is the LDE obtained over large numbers
of randomly generated geometries.

Some previous work has considered fixed numbers of sensors (such as
six, eight, or ten) or sought to minimize the number of sensors to provide
adequate LDE. Some studies have addressed the improvement of LDE in the

7 For example, if there are four sensors but two are clustered closely together, then the
geometry is little more effective than if it had only three spatially separated sensors. This
paper uses only TDoA as the geolocation technique, but a hybrid approach that includes
other means, such as the use of a high-gain antenna to resolve AoA of an emitter signal,
could resolve location ambiguity [Torrieri (1984)].
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2D case gained by, say, using four sensors rather than the absolute minimum
of three. (See, for example, [Chen (2013)] [Huie (2014)] [Sadaphal (2005)].)
However, there do not appear to have been any systematic studies of the
reduction of LDE specifically as a function of the number of sensors.

Thus, the central question addressed in this paper is to deter-
mine the trend of the relative improvement of the LDE statistical
metrics as the number of sensors increases. The approach is to ob-
serve how the LDE statistical metrics vary with the number of randomly
placed sensors used to geolocate a randomly placed emitter for several sen-
sor/emitter configurations in the presence of sensor position and timing
errors.

The answers to the central question are developed as follows.

To demonstrate the motivation for this work, examples of the geoloca-
tion challenges created by sensor position and timing errors are given in
Section 2. Major aspects of this work are outlined here, and provide a pre-
view for further assumptions and details of the model that are are discussed
in Section 4.

Section 3 summarizes the nomenclature, terms, and abbreviations used
in this paper.

Section 4 expands on the brief overview of the method given in Sec-
tion 2. This section describes how parameterized configurations of emitter
and sensors are converted into randomly generated geometries and simu-
lated. Sensor position and timing error conditions are defined. The 2D grid
search-based TDoA solution method is described as well as the optimization
techniques that were found to improve run times and accuracy. Justification
is given for a “flat earth model” over the distances considered in this work.

Several methods are used in the literature for combining TDoA measure-
ments at pairs of sensors. Section 5 compares three such methods and shows
that the “all pairs” method gives superior geolocation accuracy, albeit at a
high computational cost for configurations with large numbers of sensors.

The geolocation challenges created by bad sensor and emitter geometries,
in the absence of sensor position or timing errors, are addressed in Section 6.
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A major finding is that a minimum of five sensors should be used to avoid
potentially large LDE even in error-free cases.

Section 7 shows how LDE varies with the number of sensors as a function
of the nominal altitude of the sensors and the size of the search area that
contains the emitter.

Section 8 describes the general approach for using linear regression mod-
els to estimate LDE. Section 9 develops linear regression models for fixed
configurations of nominal altitude and search area side lengths, where the
double logarithms of LDE statistical metrics are shown to be linear functions
of the double logarithms of the number of sensors. Section 10 generalizes the
linear regression models given in Section 9 so that LDE can be estimated
for any nominal altitude or search area size within the limits of the Main
Data Set used in this paper.

The central question of determining the trend of the relative
improvement of the LDE statistical metrics as the number of sensors in-
creases is directly addressed in Section 11 by defining the Improvement Ra-
tios for LDE statistical metrics. These ratios are shown to be estimated well
by power-law linear regression models that are far simpler than the double
logarithm models developed for the LDE statistical metrics themselves.

Section 12 uses the envelope of the Improvement Ratios for the entire
Main Data Set and develops power-law bounds for the envelope and its
mean, as a function of the number of sensors. The power-law estimates
are simplified further by expressing them as approximations in terms of the
reciprocal of the number of sensors.

Section 13 determines the sensitivity of the models used in this paper to
variations in the parameters for altitude and error conditions. Additional
data sets are generated using wider ranges of error conditions in Section 14
and expanded power-law estimates and reciprocal approximations are devel-
oped for these data.

Following the Conclusions presented in Section 15, two appendices
present results that are outside the assumptions of the main stream of this
work.
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Appendix A studies the distributions of timing difference that result
from the assumption of Gaussian distributions of sensor timing error and
position error. While the timing difference errors at pairs of sensors are
Gaussian due to the Gaussian timing errors, the same is not true for the
timing difference errors that result from Gaussian position errors.

The main results of this paper are not based on the assumption that
geometries are designed to be optimal, but instead derives LDE statistical
metrics based on randomly generated geometries of emitters and sensors.
However, Appendix B assesses the benefits of the simple optimization rule of
enforcing a minimum xy separation between sensors to avoid small baselines.
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2 Examples of Location Distance Error

This section provides motivation for the TDoA LDE problem. More
properly, this material should have followed Section 4 where details of the
configurations and resulting geometries, error conditions, TDoA solution
method, and graphing technique are provided. It is presented early in the
paper to motivate the basic problem of LDE due to position and timing
errors in TDoA geolocation. In advance of the in-depth explanations given
in Section 4, the situations considered in this section are outlined briefly as
follows. The situations described in this section are a subset of the Main
Data Set described in Section 4.3.

For the examples in this section, the emitter is located at a randomly
selected location on the ground in a square search area that is 1 km on a
side (parameter side = 1,000 m). The sensors are randomly placed, and are
either immersed on or above the square area that contains the emitter or
standoff on or above a square area adjacent to the area that contains the
emitter. The sensors are either all on the ground (parameter alt = 0 m)
or all located at mean altitudes of 100 m with a standard deviation of 5 m
(parameters alt = 100 m and σalt = 5 m). In the error-free case, these
presumed positions and the time-of-arrival measurements are correct.

In the case of errors, the presumed positions of the sensors are not the
true positions. Each sensor has a position error 8 about the presumed po-
sition with a Gaussian distribution with zero mean and a standard deviation
of 10 m; the true position is unknown to the TDoA solution method.

The sensors also have timing errors, where there is a time drift with
a Gaussian distribution with zero mean and standard deviation of 30 ns
with respect to the global clock. The assumptions of zero mean Gaussian
distributions of errors and the independence of position errors and timing
errors are common in the relevant literature; see, for example, [Ho (2007)]
[Qu (2012)] [Wang (2013)].

For the TDoA solution method used in this paper, the location estimate
is the point in the search area that minimizes the sum of squared errors
(SSE) between the measured TDoA values and those obtained for candidate

8 The position error is restricted to the 2D xy plane when the sensors are on the ground
and it extends in 3D when the sensors are at non-zero altitudes.
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points tested using a 2D grid search; in this section, all pairwise TDoA mea-
surements are used to locate the emitter. As shown later, the performance
and quality of any TDoA solution method depends greatly on the specific
algorithm and parameters used to solve for an estimated location of the
emitter based on the TDoA measurements.

Due to graphing limitations, only configurations involving three or four
sensors are considered in this section. Only the xy coordinates of the sensor
positions are shown in the graphs; that is, the points plotted on the graphs
are the 2D projections of their positions on the ground. The sensors are
shown at their presumed positions rather than their true positions.

All of the examples shown in this section were chosen such that they had
zero LDE in the error-free case so as to demonstrate the deleterious effects
of position errors and timing errors. The issue of error-free cases having
non-zero LDE is discussed in Section 6.

The first set of examples used in this section involves three sensors.

Figure 1 shows an error-free case with three sensors on the ground and
immersed with the emitter. The three hyperboloids created by the three
pairwise TDoA measurements intersect at a single point in the search area;
that same point (marked by a green square) provides the minimum SSE and
is the correct location of the emitter.

Figure 2 shows the same geometry in the case of errors. The three
hyperboloids have shifted and the point that provides the minimum SSE
(marked by a red square) has LDE of 283.45 m from the correct location.

Figure 3 shows an error-free case with three sensors at mean altitudes
of 100 m with standard deviation of 5 m and immersed with the emitter. 9

The point in the search area that minimizes the SSE is again the correct
location.

Figure 4 shows the same geometry in the case of errors. The point that
minimizes the SSE has LDE of 168.14 m from the correct location.

9 The three specific altitudes generated by the simulator in this case with these pa-
rameters were 92.65 m, 96.99 m, and 103.25 m.
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Figure 5 shows an error-free case with three sensors on the ground, but
the sensors are now standoff from the emitter in a 1 km × 1 km area adjacent
to the search area. The point in the search area that minimizes the SSE is
again the correct location.

Figure 6 shows the same geometry in the case of errors. The point that
minimizes the SSE has LDE of 483.34 m from the correct location.

Figure 7 shows the same error-free standoff geometry of three sensors
as in Figure 5 but at mean altitudes of 100 m with standard deviation of
5 m. 10 The point in the search area that minimizes the SSE is the correct
location.

Figure 8 shows the same geometry in the case of errors. The point that
minimizes the SSE has LDE of 517.49 m from the correct location.

The next set of examples used in this section involves four sensors.

Figure 9 shows an error-free case with four sensors on the ground and
immersed with the emitter. Note that the six hyperboloids created by the
six pairwise TDoA measurements intersect at a single point in the search
area. That point provides the minimum SSE and is the correct location of
the emitter.

Figure 10 shows the same geometry in the case of errors. The six hyper-
boloids have shifted and no longer intersect at a single point. The point that
provides the minimum SSE has LDE of 101.90 m from the correct location.

Figure 11 shows the same error-free standoff geometry of four sensors as
in Figure 9 but at mean altitudes of 100 m with standard deviation of 5 m.
The point in the search area that minimizes the SSE is the correct location.

Figure 12 shows the same geometry in the case of errors. The point that
minimizes the SSE has LDE of 80.25 m from the correct location.

These examples have demonstrated how position and timing errors can
cause erroneous TDoA location estimates. The examples used in this sec-

10 That is to say, the xy coordinates were the same as in Figure 5 but the specific
altitudes generated by the simulator in this case were 110.67 m, 103.43 m, and 93.14 m.
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tion had LDE values of zero in the error-free cases, but it should be noted
that poor geometries may still result in non-zero LDE values for location
estimates. Later sections will quantify LDE, as a function of the number of
sensors, to mitigate position and timing errors as well as poor geometries.
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Figure 1: The hyperboloids intersect at a single point that has the smallest SSE

and is the correct position of the emitter. Parameters: N = 3 immersed sensors,

side = 1,000 m, alt = 0 m, error-free.

Figure 2: In the same geometry as shown in Figure 1 but with position and timing

errors, the hyperboloids have shifted so that the point that has the minimum SSE

is 283 m from the true position of the emitter. Parameters: N = 3 immersed

sensors, side = 1,000 m, alt = 0 m, with errors.
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Figure 3: The hyperboloids intersect at a single point that has the smallest SSE

and is the correct position of the emitter. Parameters: N = 3 immersed sensors,

side = 1,000 m, alt = 100 m, error-free.

Figure 4: In the same geometry as shown in Figure 3 but with position and timing

errors, the hyperboloids have shifted so that the point that has the minimum SSE

is 168 m from the true position of the emitter. Parameters: N = 3 immersed

sensors, side = 1,000 m, alt = 100 m, with errors.
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Figure 5: The hyperboloids intersect at a single point that has the smallest SSE

and is the correct position of the emitter. Parameters: N = 3 standoff sensors,

side = 1,000 m, alt = 0 m, error-free.

Figure 6: In the same geometry as shown in Figure 5 but with position and timing

errors, the hyperboloids have shifted so that the point that has the minimum SSE is

483 m from the true position of the emitter. Parameters: N = 3 standoff sensors,

side = 1,000 m, alt = 0 m, with errors.
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Figure 7: The hyperboloids intersect at a single point that has the smallest SSE

and is the correct position of the emitter. Parameters: N = 3 standoff sensors,

side = 1,000 m, alt = 100 m, error-free.

Figure 8: In the same geometry as shown in Figure 7 but with position and timing

errors, the hyperboloids have shifted so that the point that has the minimum SSE is

517 m from the true position of the emitter. Parameters: N = 3 standoff sensors,

side = 1,000 m, alt = 100 m, with errors.
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Figure 9: The hyperboloids intersect at a single point that has the smallest SSE

and is the correct position of the emitter. Parameters: N = 4 immersed sensors,

side = 1,000 m, alt = 0 m, error-free.

Figure 10: In the same geometry as shown in Figure 9 but with position and timing

errors, the hyperboloids have shifted so that the point that has the minimum SSE

is 102 m from the true position of the emitter. Parameters: N = 4 immersed

sensors, side = 1,000 m, alt = 0 m, with errors.
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Figure 11: The hyperboloids intersect at a single point that has the smallest SSE

and is the correct position of the emitter. Parameters: N = 4 immersed sensors,

side = 1,000 m, alt = 100 m, error-free.

Figure 12: In the same geometry as shown in Figure 11 but with position and

timing errors, the hyperboloids have shifted so that the point that has the minimum

SSE is 80 m from the true position of the emitter. Parameters: N = 4 immersed

sensors, side = 1,000 m, alt = 100 m, with errors.
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3 Nomenclature

The following terms, abbreviations, and symbols are used in this paper.
They are listed roughly in the order in which they are introduced.

Long phrases used for the figures-of-merit are defined in the list below
and again at the end of the list for additional clarification.

Terms and other critical concepts are bolded in the text at the point
where they are defined.

Acronyms represent both the singular or plural forms; for example,
“LDE” stands for both “Location Distance Error” and “Location Distance
Errors.”

Distances are given in meters unless otherwise specified. Time is specified
in seconds or nanoseconds. A distance or time that is stated as “zero” or
“0” is understood to be 0 m or 0 ns, respectively.

Units are bound to the names of the quantities. For example, if a value
for an altitude is assigned as “alt = 100 m,” then that value is later stated as
“alt” and not “alt meters” or “alt m.” Distances are always used in units of
meters even when specified in kilometers or centimeters and time is always
used in units of seconds even when specified in nanoseconds.

lnx, ln(x) – Natural logarithm of x; the logarithm base e, where
e = 2.71828182845. . . . All logarithms used in this
paper are natural logs.

ln lnx, ln(ln(x)) – Double logarithm of x.
exp(x), ex – Exponential function of x.
exp(exp(x)), ee

x
– Double exponential function of x.

m, km, cm – Meters, kilometers, centimeters.
sec, ns – Seconds, nanoseconds.
rad, ◦ – Radians, degrees.
c – Speed of light. The rounded value of 3× 108 m/sec is used

in this paper as it is close enough for practical purposes
to the actual speed of propagation of electromagnetic
radiation in air or vacuum.

Approved for Public Release; distribution unlimited; AFRL-2021-0842

22



%ile – Percentile of a set of values. For example, “95th percentile”
is written as “95%ile.” Percentiles are calculated using
the “nearest rank” method and the median is given by
the 50%ile value.

“Unknown” – Information is designated as “unknown” when the
simulation does not provide it to the TDoA solution
method.

ToA – Time-of-Arrival.
TDoA – Time-Difference-of-Arrival.
AoA – Angle-of-Arrival.
FDoA – Frequency-Difference-of-Arrival.
RSS – Received Signal Strength.
2D – Two-dimensional, with coordinates (x, y).
3D – Three-dimensional, with coordinates (x, y, z).
LDE – Location Distance Error. This is the fundamental

figure-of-merit for geolocation accuracy used
in this paper. All other figures-of-merit are
based on the LDE.

LDE statistical – The mean, 50%ile (median), 95%ile, or 99%ile LDE,
metrics for a given configuration and set of error conditions,

based on a set of simulations.
CRLB – Cramér-Rao Lower Bound.
GDoP – Geometric Dilution of Precision.
N – Number of sensors.
alt – Mean altitude of all sensors in a configuration.
σalt – Standard deviation about the mean altitude.

The value σalt = alt/20 (or 5% of alt) is used in all
simulations unless otherwise specified.
Thus, the coefficient of variation σalt/alt was 0.05.

Nominal – “Nominal altitude of alt” is shorthand for “mean altitude
altitude of alt with the specified standard deviation σalt.”

The variation in nominal altitude is not an error
condition but rather an aspect of the randomly
generated geometry for a configuration.

side – Search area side length.
σpos – Standard deviation of sensors’ position errors.
σtime – Standard deviation of sensors’ timing errors.
Standard error – The standard values for position and timing error

conditions conditions used for all simulations are σpos = 10 m
and σtime = 30 ns unless otherwise specified.
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Main Data Set – The set of configurations that is the basis for most
of the analyses in this paper. It consists of 4,840
configurations that use the “Standard Error Conditions.”
Results are based on 10,000 simulations (of randomly
generated geometries) per configuration. It is
described in detail in Section 4.3.

LIP – Linearly Independent Pairs sensor pairing method.
LIP n – LIP that uses sensor n (out of N sensors) as the

reference sensor.
RF – Radio Frequency.
SEM – Spherical Earth Model.
FEM – Flat Earth Model.
θ – Earth central angle between the sensor and emitter.
φ – Angle of the sensor above earth horizon from the

location of the emitter.
r – Slant range from sensor to emitter for SEM.
r′ – Slant range from sensor to emitter for FEM.
s – Surface distance from the point directly below the sensor

(for both SEM and FEM) to the emitter.
shor – Surface distance of the horizon from the point directly

below the sensor.
R – Earth radius (mean equatorial): 6,378,137 m.
i – Sensor index in the range 1 to N . “Sensor i” means

“sensor with index i.”
t′i – Timing error (or time drift or time skew), with

respect to the global clock, for sensor i.
(xi, yi, zi) – Presumed or intended position of sensor i, which is

correct in an error-free case but erroneous in the case
of position error.

(x′i, y
′
i, z
′
i) – The true (but unknown) position of sensor i.

(x′e, y
′
e, z
′
e) – The true (but unknown) location of the emitter.

Coordinate z′e is 0 because the emitter is on the ground.
(xe, ye, ze) – A candidate emitter location: a grid point to be tested

by the TDoA solution method. Coordinate ze is
assigned the value 0 because the emitter is assumed to be
on the ground.

di – Distance from a candidate emitter location to the
presumed position of sensor i.

d′i – Distance from the true location of the emitter to the
true position of sensor i.
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∆ti,j – Presumed TDoA between sensors with indices i and j
from a candidate emitter location based on
presumed positions with no timing errors.

∆t′i,j – Measured (true TDoA) between sensors with indices

i and j based on true positions and timing errors.
(x̂e, ŷe, ẑe) – Estimated location of emitter obtained by the TDoA

solution method. LDE is the Euclidean distance
between the estimated location of the emitter
(x̂e, ŷe, ẑe) and its true location (x′e, y

′
e, z
′
e).

SSE – Sum of the squared errors.
Longfellow – The event where local minima for SSE created by a bad

Event geometry of emitter and sensors cause estimated
emitter locations to be either very close or very far
from the correct emitter location (see Section 6.1).

K – Initial grid step divisor for the grid search-based TDoA
solution method.

ssp – Step size in the x and y directions in pass p for the grid
search-based TDoA solution method.

C – Coverage factor for the grid search-based TDoA solution
method: on step p, a square with sides ±Cssp−1

around the center point has a coverage factor of C.
R2 – Coefficient of determination: a commonly used measure

of goodness-of-fit of a linear regression. It describes
how much of the variation in the output variable is
explained by the linear regression model. R2 values
range from 0 to 1, where closer to 1 is a better fit
[MathWorks (2020)]. (“R2 ” used in linear regression
is not to be confused with “R2” to denote the square
of the earth’s radius.)

MAPE – Mean Absolute Percentage Error: a measure of the
predictive or forecasting power of a statistical model.
MAPE is the average of the absolute values of the
percentage errors of the model’s predicted values for
the output variable with respect to the true or
measured values of the output variable [Kim (2016)].

Raw variables – Configuration parameters such as N , side, or alt.
Transformed – Functions of raw variables such as lnN , ln lnN , side2,

variables 1/alt, or replacing alt by alt+ 0.001 m (to avoid
division by zero).
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Combined – Functions that combine raw or transformed variables
variables such as alt/side or alt/side2.

y – Output variable for linear regression models. Can
represent values such as an LDE statistical metric or
an Improvement Ratio for an LDE statistical metric.

v – Number of input variables to a linear regression model.
The number of input variables includes the raw,
transformed, or combined variables.

xi – The v input variables to a linear regression model are
x1, x2, x3, . . .xv.
The variables are raw, transformed, or combined.

wi – Weights for weighted sum representing a linear regression
model. The v + 1 weights are w0, w1, w2, . . .wv,
where wi is the weight for input variable xi.

w′i – Weights used in the first stage of the two-stage process
described in Section 10.1.

Improvement – For a given configuration and set of error conditions,
Ratio the Improvement Ratio for an LDE statistical metric

is the ratio of the LDE statistical metric for that
configuration with N ≥ 5 sensors relative to the LDE
statistical metric for the same configuration with
five sensors. It is defined to be 1.0 for five sensors.

Ballpark – Estimates of the Improvement Ratio for an LDE statistical
Estimate metric based on the envelope of all of the values of

that ratio.
Reciprocal – An approximation for an Improvement Ratio for an LDE

Approximation statistical metric expressed as wRA/N .
wRA – Weight for Reciprocal Approximation for the

Improvement Ratio of an LDE statistical metric.
Nequiv – Equivalent number of sensors for minimum xy separation,

defined as the number of sensors that yield the same
mean LDE without enforcing a minimum xy
separation as is achieved with a minimum xy
separation.

The LDE is the figure-of-merit for geolocation accuracy in this paper.
The LDE, its statistical metrics, and other metrics based on it are summa-
rized again below.
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Location Distance Error (LDE): The Euclidean distance of the esti-
mated location of the emitter to the true location of the emitter.

LDE statistical metric: The mean, 50%ile (median), 95%ile, or 99%ile
LDE, for a given configuration and set of error conditions, based on a
set of simulations.

Improvement Ratio for an LDE statistical metric: For a given con-
figuration, this is the ratio of the LDE statistical metric for that con-
figuration with N ≥ 5 sensors relative to the LDE statistical metric
for the same configuration with five sensors. It is defined to be 1.0 for
configurations with five sensors.

Ballpark Estimate of the Envelope of Improvement Ratio for an
LDE statistical metric: This is a descriptive statistic for the envelope
of the Improvement Ratios, for a complete data set (such as the Main
Data Set) and a given LDE statistical metric. The Ballpark Estimates
are the Minimum, Mean, or Maximum of the Improvement Ratio for that
LDE statistical metric for N sensors.

Reciprocal Approximation: A simple reciprocal relationship with re-
spect to N that approximates the power-law linear regression model fit
for an Improvement Ratio.
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4 Model

The underlying model used in this paper is described. Parameterized
configurations of emitter and sensors are converted into randomly generated
geometries and simulated. Sensor position and timing error conditions are
defined. The 2D grid search-based TDoA solution method is presented as
well as the optimization techniques necessary to obtain results with reason-
able run times as well as improve the geolocation accuracy. The validity of
a “flat earth model” is shown for the configurations used in this paper. The
generation of random variates is discussed.
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4.1 Simulations

Three factors are specified in the simulations: the configuration, the
error conditions, and the TDoA solution method. Each instance of a
simulation consists of a geometry based on the specified configuration which
is then perturbed by a set of error conditions, subject to the simulation
parameters as described below. The geometries and error conditions are
generated randomly for each simulation. The simulation results are then
processed according to the specific TDoA solution method. LDE statistical
metrics are derived for a large number of simulations for each geometry, set
of error conditions, and TDoA solution method.

If not otherwise specified, the number of simulations performed for each
configuration was 10,000.
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4.1.1 Configurations

The configuration is a parameterized template that describes the place-
ment of the emitter and sensors. The parameters are the number of sen-
sors (N), the size of the square search area that contains the emitter
(side × side), whether the sensors are immersed with the emitter or standoff
from the emitter, and a mean value (alt) and standard deviation (σalt) for
the altitude of the sensors. For the specified configuration, each simulation
creates a randomly generated instance referred to as a geometry.

An approximation based on a flat earth model (FEM) is used. 11 The
“xy-plane” represents coordinates on the surface or a plane parallel with the
surface, and the “z-axis” represents the altitude above the ground.

Each simulation starts with an emitter on the ground that is randomly
placed in the xy-plane of an area comprised of a square with sides of length
side where side varies from 1,000 m (1 km) to 10,000 m (10 km).

Next, N sensors are randomly placed in an xy-plane that is either im-
mersed with the emitter (meaning on or above the same square area where
the emitter is located) or standoff from the emitter (meaning on or above
an adjacent square area of the same size). The simulations vary N from
3 to 24 sensors. Unlike the emitters that are always on the ground in this
model, sensors can have a z-axis displacement. Each simulation is given a
single mean altitude alt for all of the N sensors. If the specified altitude is
0 m, then all the sensors are on the ground; if the specified mean altitude
is greater than 0 m, then the z value of each sensor is given by a Gaussian
distribution with the given mean value and standard deviation σalt.

12

In most of the configurations used in this paper, the sensors’ mean
altitude alt varies from 100 m to 1,000 m and σalt is assigned the value
alt/20 or 5% of alt. Sensitivity to the value of σalt is explored in Sec-
tion 13.1 and it is found that LDE does not depend greatly on the value of
this parameter.

11 See Section 4.2 for justification of the flat earth approximation in this situation.
12 If the calculated value of z is less than zero, then it is set to 0 m. How this condition

is handled makes no practical difference because there is essentially no chance that a
negative z value could occur for the values of alt and σalt used in this paper.
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The phrase “nominal altitude of alt” for a configuration is understood
to be shorthand for a “mean altitude of alt with the specified standard
deviation σalt.”

Note that the variation of the nominal altitude about the mean altitude
due to σalt is not an error condition but rather part of the randomly gener-
ated geometry for a specified configuration.

For sensor i, the sensor coordinates (xi, yi, zi) are used by the TDoA
solution method to geolocate the emitter. These presumed or intended
positions of the sensors are the only positions known to the TDoA solution
method. Furthermore, the TDoA solution method assumes the sensors have
no time synchronization error with respect to the global clock. When true,
these conditions are referred to as the error-free case.
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4.1.2 Error Conditions for Sensor Position and Timing

The next factor, the error conditions, specify how the true simulated
conditions differ from the presumed conditions. This is referred to as the
case of errors. The error conditions involve position errors and timing
errors.

There are many factors that contribute to TDoA measurement errors;
notably, these factors include low signal-to-noise ratios (SNR) [Huie (2014)]
[Montminy (2007)] as well as non-line-of-sight propagation, multipath prop-
agation, and synchronization errors [El Gemayel (2014)]. It is assumed in
this work that all of the TDoA measurement issues can be lumped together
and accounted for in terms of the standard deviations of the position and
timing errors as outlined below.

The true sensor positions in the case of errors are derived from the pre-
sumed sensor positions by introducing offsets to the presumed coordinates
generated as described in Section 4.1.1. Position errors have a magnitude
given by the absolute value of a Gaussian distribution with zero mean and
a given standard deviation σpos. For sensors on the ground, the angle of
the position error is uniformly distributed from 0◦ to 360◦ in the xy-plane.
For sensors with non-zero nominal altitudes, the angle of the position er-
ror is uniformly distributed with respect to the three axes. The true (but
unknown) position for sensor i is denoted by (x′i, y

′
i, z
′
i).

In addition to position errors, the error conditions include timing er-
rors. Instead of assuming that each sensor is perfectly time-synchronized to
a global clock, this model simulates a Gaussian distribution with zero mean
time drift or time skew and a specified standard deviation σpos, expressed
in seconds or nanoseconds. For sensor i, the time drift with respect to the
global clock is denoted by t′i. Timing errors are added to the measured or
true times-of-arrival at the sensors, so a negative value of t′i means that sen-
sor i reports an arrival time that is earlier than the actual time (implying
the distance from the emitter is less than the true distance), while a positive
value of t′i means that sensor i reports an arrival time that is later than the
actual time (implying the distance from the emitter is greater than the true
distance).

As stated in Section 4.1.1, the TDoA solution method uses only the pre-
sumed sensor positions and assumes zero time drift, but the simulated time
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measurements provided to the TDoA solution method are based on the true
(but unknown) sensor positions and measurements that include timing er-
rors. 13 In the case of errors, each simulation of a geometry assigns a set of
position and timing errors that holds for all of the pairwise TDoA measure-
ments for the duration of that simulation. For example, suppose sensor i
has a presumed position of (xi, yi, zi) = (700 m, 300 m, 100 m) but actually
has a true (but unknown) position of (x′i, y

′
i, z
′
i) = (705 m, 315 m, 97 m)

and a time drift of t′i = -5 ns. That true position and the perturbed time
measurement apply for all of the TDoA measurements involving sensor i
during that simulation, but the TDoA solution method obtains its geoloca-
tion estimate based on the erroneous presumed position and no knowledge
of the time drift.

Most results obtained in this paper in the case of errors are based on
simulations with error conditions where independent position error standard
deviation σpos = 10 m and timing error standard deviation σtime = 30 ns
together are introduced. The data resulting from these simulations are re-
ferred to as the “Main Data Set” and these values of σpos and σtime are
referred to as the “Standard Error Conditions”; they are discussed in Sec-
tion 4.3. These values were chosen to be reasonable but independent of
any actual military or civilian systems or scenarios. They were also chosen
to be somewhat commensurate in impact, as 10 m of distance is roughly
equivalent to 30 ns at the speed of light c.

In Section 13.2, the model is tested for sensitivity to ranges of values of
σpos and σtime as well as introduction of position and timing errors sepa-
rately.

The relationships between position error, distance error, distance differ-
ence error, timing error, and timing difference error are discussed in Ap-
pendix A.

13 The decision to select the presumed position and perturb the true position according
to the random distribution was somewhat arbitrary, and was decided in favor of this
approach so that the presumed position was always within the specified immersed or
standoff area; otherwise, the presumed position could fall outside that area. In retrospect,
it might have been better to have designed the simulation to select the true position and
vary the presumed position as that would have presented an opportunity to construct a
set of experiments to measure the sensitivity of LDE to position and timing errors for a
fixed position.
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4.1.3 TDoA Solution Method: Sensor Pairing and 2D Emitter
Location Estimation by Grid Search

The third factor, the TDoA solution method, specifies how the TDoA
measurements from sensor pairs are processed. The TDoA solution method
consists of two components: the sensor pairing that determines how the
sensors pairs are handled and emitter location estimation.

It is shown in this section that the performance and quality of any TDoA
solution method depends greatly on the specific algorithm and parameters
used to solve for an estimated location of the emitter based on the TDoA
measurements.
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Sensor Pairing Method

Ideally, N sensors would yield N−1 linearly independent pairs that could
be solved algebraically for a unique solution, if one existed [Hamdollahzadeh
(2016)] [Smith (1987)]. In that case it would be sufficient to select one sensor
arbitrarily as the reference sensor and use the pairwise TDoAs between that
sensor and the other N − 1 sensors. In this paper, the “linearly indepen-
dent pairs” sensor pairing method is referred to as LIP. More specifically,
with sensors numbered arbitrarily as n = 1, 2, 3, . . .N , the method that
uses sensor n [Wang (2013)] as the reference is referred to here as LIP n.
Under ideal conditions (meaning the error-free case), the choice of reference
sensor should matter little if at all. Under non-ideal conditions (the case of
errors) however, the choice of reference sensor can greatly affect the quality
of the location estimate as the sensor chosen as the reference might have
the greatest position error or timing error. This paper explores how the LIP
geolocation estimates vary with the choice of reference sensor under position
and timing error conditions. The computational effort to obtain an estimate
of the emitter location using LIP sensor pairing increases linearly with the
number of sensors.

To improve noise immunity [Smith (1987)], sensor pairing involving more
than N − 1 pairs have been proposed. The upper bound is that of all
pairs sensor pairing, where all N(N − 1)/2 pairwise combinations of TDoA
measurements are used. The computational effort to obtain an estimate of
the emitter location using all pairs sensor pairing increases quadratically
with the number of sensors.

Finally, N sensors (where N is even) can be paired as N/2 disjoint
pairs [Hu (2006)] [Huie (2014)]. This may provide some noise immunity
advantage due to the fact that a single sensor with large position error
or timing error may not contaminate many TDoA measurements. In this
paper, without loss of generality, the disjoint sensor pairs are assumed to
be assigned consecutively according to the arbitrary sensor indices. That is,
the pairs are sensors 1 and 2, 3 and 4, 5 and 6, and so on. Having fewer pairs
of data to process (relative even to LIP) reduces the amount of computation
to obtain a location estimate; the computational effort to obtain an estimate
of the emitter location using disjoint pairs sensor pairing increases linearly
with the number of sensors. Also, time synchronization is simplified in that
a global clock is not needed since only pairs of sensors rather than all N of
the sensors must be synchronized.
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This paper compares the geolocation performance of the LIP and disjoint
sensors pairing methods to the all pairs method in Section 5.
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Grid Search for 2D Emitter Location Estimation

Closed-form algebraic solutions and gradient descent solutions have been
proposed for TDoA geolocation [Chan (1994)] [Smith (1987)]. However,
none were suitable for the situations pursued in this investigation. A pri-
mary reason was that these techniques cannot deal readily with the over-
specified case where all pairs of sensors are used. Furthermore, the situation
is complicated by the need to optimize solutions involving sensors located in
3D space rather than the simpler case of 2D. The only emitter location esti-
mation method applicable to the configurations and error conditions studied
here was also the one that seems to be the most commonly used in the lit-
erature: a grid search [Chen (2013)] [Huie (2014)] [Zhang (2019)].

In general, grid search-based methods involve stepping through points in
a search area of interest and choosing the estimated location of the emitter
to be a point that minimizes a selected cost function. A common cost
function is the sum of squared errors (SSE) 14 between the measured TDoA
values and those obtained for candidate points in the search area [Chen
(2013)] [Huie (2014)] [Ho (2007)] [Kaune (2012)] [Montminy (2007)] [Zhang
(2019)]. 15

The true (but unknown) location of the emitter is denoted by (x′e, y
′
e, z
′
e).

Because the emitter is assumed to be on the ground, z′e is taken to be 0. 16

The goal is to find an estimated location (x̂e, ŷe, ẑe) (where ẑe = 0) that
has the smallest possible LDE from the true emitter location.

When calculating the TDoA between two sensors, it is irrelevant as to
the order of subtraction as long as that order is used consistently throughout
the solution process. For simplicity, the implementations used in this paper
used the values for the sensor with the smaller index as the minuend and
the values for the sensor with the larger index as the subtrahend.

14 Equivalently, the optimized cost function can be mean squared errors (MSE) and
root mean squared errors (RMSE). This cost function is known to be able to achieve the
CRLB in the error-free case [Ho (2007)].

15 Even the closed-form and gradient descent TDoA solutions require a good guess for
their initial condition to avoid local minima for their cost functions. Thus, implicitly, their
implementations usually begin with a grid search.

16 The z coordinates of the emitter are always on the ground in the configurations
considered in this paper, but they are retained in the discussion for consistency with the
sensor coordinates which can be at any altitude.
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The distance from the true location of the emitter to the true position
of sensor i is

d′i =
√

(x′i − x′e)2 + (y′i − y′e)2 + (z′i − z′e)2 (1)

and, for a candidate emitter location (xe, ye, ze), the distance to the pre-
sumed position of sensor i is

di =
√

(xi − xe)2 + (yi − ye)2 + (zi − ze)2 . (2)

Using (1) and (2), the distance error for sensor i is given by

di − d′i . (3)

For each simulated geometry, the measured (that is, the true TDoA)
is determined using the true sensor positions 17 and timing errors for each
pair of sensors with indices i and j as

∆t′i,j = (d′i/c+ t′i)− (d′j/c+ t′j) (4)

where the set of pairs is determined by the specified sensor pairing method
(all pairs, LIP, or disjoint pairs).

The TDoA timing difference error due to timing errors for the pair
of sensors i and j is given by

t′i − t′j . (5)

The distance difference error due to the two position errors for the
pair of sensors i and j is given by

(di − d′i)− (dj − d′j) . (6)

The associated timing difference error that results from that distance
difference error due to the speed of light is given by

(di − d′i)− (dj − d′j)
c

. (7)

17 This assumes line-of-sight signal propagation at the speed of light c.
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The TDoA solution method is provided with the measured or true TDoA
values ∆t′i,j obtained by the simulation using (4), but does not know the true
distances or timing errors.

The grid search-based method attempts to find a candidate emitter lo-
cation in the specified search area that minimizes the SSE between the true
TDoAs and those that would result if the emitter were in fact at that loca-
tion. For a grid point (xe, ye, ze) tested as a candidate emitter location, the
presumed TDoA for each pair of sensors i and j is calculated based on the
presumed sensor positions and without knowledge of timing errors as

∆ti,j = (di/c)− (dj/c) . (8)

In all pairs sensor pairing, where each sensor is paired with every other
sensor, the estimated emitter location is the coordinate set (x̂e, ŷe, ẑe) (where
ẑe = 0) that minimizes the SSE given by

N−1∑
i=1

N∑
j=i+1

(∆ti,j −∆t′i,j)
2 . (9)

In LIP n sensor pairing, where sensor n is paired with each of the other
N−1 sensors, the estimated emitter location is the coordinate set (x̂e, ŷe, ẑe)
(where ẑe = 0) that minimizes the SSE given by

N∑
i=1
i 6=n

(∆ti,n −∆t′i,n)2 . (10)

In disjoint pairs sensor pairing, where the sensor pairs are grouped
by consecutive indices, the estimated emitter location is the coordinate set
(x̂e, ŷe, ẑe) (where ẑe = 0) that minimizes the SSE given by

N/2∑
i=1

(∆t2i−1,2i −∆t′2i−1,2i)
2 . (11)

Once the TDoA solution method has obtained its best estimated location
for the emitter (x̂e, ŷe, ẑe), the LDE for that method is determined
with respect to the true emitter location as√

(x̂e − x′e)2 + (ŷe − y′e)2 + (ẑe − z′e)2 . (12)
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As mentioned in the Introduction, the LDE statistical metrics calculated
for a given configuration and set of error conditions are the mean, 50%ile
or median, 95%ile, and 99%ile for a set of simulated randomly generated
geometries.

Grid search-based methods suffer from several potential issues. The
quality of a geolocation estimate is related to the number of candidate grid
points tested, but the computational effort to find a solution increases with
the number of points. Grid solutions may select a local minimum rather
than find the global minimum. Finally, a grid search cannot resolve the
ambiguity between equally valid solutions created by a bad geometry 18 19

such as when all sensors are collinear. The last two issues are shared by
other emitter location estimation methods as well.

A great deal of the effort involved in the study outlined in this paper was
expended on implementing a grid search that was both fast and accurate.
Several heuristics were tested over ranges of parameters and a set was chosen
that gave the most overall consistently reliable performance.

A fine grid search phase was performed for each instance of a given
geometry and set of error conditions. This search consisted of a series of
passes involving finer and finer grids over smaller and smaller areas to find
a point in the search area that effectively minimized the SSE. Let p = 1, 2,
3, . . . denote the index of the pass and let ssp represent the length of the
step size in the x and y directions in pass p. An initial grid step divisor K
determined the first pass step size where ss1 = side/K. For example, for
a search area with side = 1,000 m and K = 100, the step size for the first
pass was ss1 = side/K = 10 so the (x, y) values tested in the first pass
are all of the pairs of values 0 m, 10 m, 20 m, . . . 1,000 m for a total of 1012

points.

In the subsequent passes p = 2, 3, 4, . . . , the new step size was the
previous step size divided by 10: ssp = ssp−1/10. The point found to have
the smallest SSE in pass p− 1 was the center of the searched area in pass p.

18 See the examples presented in Section 6 such as Figure 20 and Figure 21.
19 The grid search method implemented for this work was designed to find only a single

solution that minimized or closely minimized the SSE. With additional effort, however, a
grid search could identify multiple points in distinct regions of the search area as a set of
candidate solutions that provides the smallest SSE.
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Optimizing the Grid Search

Experiments were conducted to determine a good value for K. Values
of K from 10 to 5,000 were tested; the number of points and thus the
computational effort grew with the square of K. Surprisingly, larger values
of K did not always give better results. Overall, a value of K = 100 gave
the most consistently good results.

The fact that the TDoA solution method performed well with the smaller
value of K indicates that the grid search-based method was not confounded
by the multiple local minima for the SSE values. However, the fact that it
was not infallible shows how dependent the results are on the specific TDoA
solution method and its parameters.

On pass p, it should have been sufficient to search a square that was
±ssp−1 around the center point with the new step size ssp. However, it
was observed in many cases that smaller LDE values could be achieved by
searching a larger area around the center point of a pass. Let a square
with sides ±Cssp−1 around the center point be defined to have a coverage
factor of C. Trials showed that the best trade off between run time and the
quality of the results were obtained using a coverage factor C = 4; this is
to say that, on pass p, the search area around the center point was a square
with sides ±4ssp−1 or 8ssp−1 .

The fine grid search phase ended after the first pass p where ssp was less
than 1 cm.

The fine grid search was extremely slow for the larger values of N and
K, so two related algorithmic speed-ups were used.

The first speed-up was an elementary optimization that bounded the
TDoA SSE calculations by terminating the summation of the squared errors
in (9), (10), or (11) whenever it exceeded the smallest SSE value found
so far. For example, for N = 10 with all pairs sensor pairing, there are
5 × 9 = 45 pairs of TDoA measurements; if, after summing only a few
squared-error values in (9) for a given point, the sum were greater than
the current minimum SSE, then that point would be abandoned since the
remaining unevaluated squared-error pairs could only make the total SSE
value for that point larger. The second speed-up was to introduce a coarse
grid search phase to get an initial estimate of the global minimum SSE

Approved for Public Release; distribution unlimited; AFRL-2021-0842

41



value prior to the fine grid search. Referring to the coarse grid search phase
as pass p = 0, a good coarse grid step value was found to be ss0 = side/10;
this provided nearly the maximum speed-up over the ranges of N used in
these experiments.

After extensive experimentation, the standard heuristics set selected
for the TDoA solution were to use a coarse grid search before the fine grid
search, initial grid step divisor K = 100, and coverage factor C = 4.

The results and CPU run times achieved using the standard heuristics
set were the basis for comparison to those obtained using simulations using
all combinations of no coarse grid search, K = 5,000, and C = 1. Sets of
1,000 simulations were run with various numbers of sensors and search area
side lengths, alt = 100 m, σalt = 5 m, and the Standard Error Conditions
of σpos = 10 m position error and σtime = 30 ns timing error. For a few
combinations of parameters, some comparisons to the standard heuristics
set are as follows: 20

• N = 3 sensors, side = 1,000 m:

– No coarse grid search, K = 5,000, C = 1: CPU time increased
by 665X, while mean and 95%ile LDE both decreased by 2%.

– Coarse grid search, K = 5,000, C = 4: CPU time increased by
527X, while mean and 95%ile LDE both decreased by 2%.

• N = 12 sensors, side = 1,000 m:

– No coarse grid search, K = 5,000, C = 1: CPU time increased
by 267X, while mean and 95%ile LDE had no change.

– Coarse grid search, K = 100, C = 1: mean LDE increased by 7%
and 95%ile LDE increased by 3%.

• N = 12 sensors, side = 10,000 m:

– No coarse grid search, K = 5,000, C = 1: CPU time increased
by 241X, while mean and 95%ile LDE had no change.

20 The terms “increased by” and “decreased by” are used in two ways in this paper,
depending on the scale of the change. To avoid ambiguity, the following examples are
provided. “Increased by 10X” means to multiply the original value by 10; for large changes,
this is more useful than the equivalent statement “increased by 900%.” “Increased by 2%”
is equivalent to but more natural than “increased by 1.02X.” “Decreased by 2%” is more
natural than saying “decreased by 0.98X.”
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– Coarse grid search, K = 100, C = 1: mean LDE increased by
3.60X and 95%ile LDE increased by 2.47X.

• N = 24 sensors, side = 1,000 m:

– No coarse grid search, K = 5,000, C = 1: CPU time increased
by 267X, while mean and 95%ile LDE had no change.

– Coarse grid search, K = 100, C = 1: mean LDE increased by
13% and 95%ile LDE increased by 11%.

• N = 24 sensors, side = 10,000 m:

– No coarse grid search, K = 5,000, C = 1: CPU time increased
by 244X, while mean and 95%ile LDE both increased by 1%.

– Coarse grid search, K = 100, C = 1: mean LDE increased by
5.80X and 95%ile LDE increased by 3.98X.
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Observations on the Grid Search

A lesson-learned during the process of exploring, implementing, and tun-
ing the TDoA solution methods was that results depend heavily on the
specific algorithms and parameters of the algorithms. No single approach
performed best under all conditions of the random geometries created for
the configurations used in this paper.

Because of the assumption that the emitter is on the ground, it was
sufficient to implement the 2D grid search as described above. It would be
possible to do a 3D grid search as well, but at a substantial computational
cost. Pass 1 of the fine grid search alone would grow roughly as K3 instead
of the K2 cost incurred by the 2D search. The run time for subsequent
phases would grow substantially as well.

It would be interesting to determine how the issues with LDE associated
with bad geometries would manifest in the 3D case. One immediate concern
would be the ambiguity of the emitter location being below or above the thin
plane of airborne sensors.
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4.2 Flat Earth Model

The calculations in this paper are simplified by ignoring the curvature
of the earth over the region of interest. Effectively, the configuration is an
approximation based on a flat earth model (FEM) rather than a spherical
earth model (SEM). 21 For airborne sensors, the most critical factor is that
the emitter-to-sensor slant range calculated using the FEM has negligible
error from the “true” slant range obtained from the SEM. For ground-based
sensors, a justification for the FEM requires that the assumption of emitter-
to-sensor line-of-sight paths is not violated by exceeding the horizon with
respect to the sensors.

21 Of course, even the more faithful assumption of a spherical earth is still a simplifi-
cation.
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4.2.1 Airborne Sensor Slant Range

Figure 13a shows an arc representing the surface of the earth in the
SEM. R is the standard value of the mean equatorial radius of the earth
(6,378,137 m); it is assumed here that the RF wavelengths are short enough
that the actual earth radius can be used rather than the commonly used
value of 4/3R for longer-wavelength RF line-of-sight calculations [Holleman
(2012)]. 22 The altitude of a sensor above the surface is denoted by alt. The
scale of alt in Figure 13a is exaggerated in comparison with the magnitudes
of the altitudes considered in this paper. The emitter is located at surface
distance s from the point directly below the sensor. The central angle θ
is the angle between the sensor and the emitter. When the value of θ is in
radians, s is given by the fraction of the circumference of the earth subtended
by θ as

s =
θ

2π
× 2πR = θR (13)

and so

θ =
s

R
rad . (14)

The slant range r from the sensor to the emitter can be found using the
Law of Cosines as

r2 = R2 + (R+ alt)2 − 2(R)(R+ alt) cos θ (15)

where cos() takes its argument in radians.

Thus, for given values of alt and s, the slant range r is

r =

√
R2 + (R+ alt)2 − 2(R)(R+ alt) cos

s

R
. (16)

Figure 13b shows a representation of a sensor at altitude alt above a flat
earth with an emitter located at surface distance s from the point directly
below the sensor. The slant range r′ in this case is given by the Pythagorean
Theorem as

r =
√
alt2 + s2 . (17)

22 Thus, “line-of-sight” is purely geometrical. This is often referred to as “optical
line-of-sight.”
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Now it remains to be seen how the two slant ranges r and r′ differ over
the areas and configurations of interest in this paper.

Consider the case where the sensors are immersed with the emitter,
meaning they are over the same square area where the emitter is assumed
to be located. For a square that is 1,000 m on a side, the maximum diagonal
surface distance is 1,000

√
2 = 1,414 m. Applying (16) and (17), the differ-

ences in slant range between SEM and FEM (r − r′) for alt = 100 m and
alt = 1,000 m are 1 cm and 9 cm, respectively. For a square that is 10,000 m
on a side, the maximum diagonal surface distance is 10,000

√
2 = 14,142 m.

Applying (16) and (17), the differences in slant range between SEM and
FEM for alt = 100 m and alt = 1,000 m are 11 cm and 1.1 m, respectively.

Now consider the case where the sensors are standoff, meaning the sen-
sors are located over a square area adjacent to the square area where the
emitter is assumed to be located. For two squares that are 1,000 m on a
side, the maximum diagonal surface distance is 1,000

√
2 = 2,236 m. Ap-

plying (16) and (17), the differences in slant range between SEM and FEM
for alt = 100 m and alt = 1,000 m are 2 cm and 16 cm, respectively. For
squares that are 10,000 m on a side, the maximum diagonal surface distance
is 10,000

√
2 = 22,361 m. Applying (16) and (17), the differences in slant

range between SEM and FEM for alt = 100 m and alt = 1,000 m are 16 cm
and 1.74 m, respectively.

Later sections will obtain LDE values that are much greater than
these differences in slant range between the SEM and the FEM. Thus, for
the parameters used in this paper, the FEM appears to be adequate for
configurations where the sensors are not on the ground.

The next section addresses the FEM in the context of sensors on the
ground.
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Figure 13: a. Spherical Earth Model (SEM). b. Flat Earth Model (FEM).
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4.2.2 Horizon

Since signal propagation is assumed to be line-of-sight, the issue of the
horizon must be considered. In the FEM, there is no notion of a horizon.
Therefore, it must be determined under what conditions the horizon can
be neglected in the FEM. As mentioned earlier, the actual earth radius R
can be used rather than the value of 4/3 R that is commonly used for RF
line-of-sight calculations; using R as the earth radius provides the worst-case
values for the horizon.

In Figure 13a, φ is the angle of the sensor above the horizon from the
location of the emitter. When φ forms a right angle (π/2 rad), the emitter
is at the intersection of the surface of the earth and a line from the sensor
that is tangent to the surface; thus, the emitter is at the horizon from the
viewpoint of the sensor.

By the Pythagorean Theorem,

r =
√

(R+ alt)2 −R2 . (18)

The Law of Sines states that

sin π
2

R+ alt
=

sin θ

r
. (19)

Solving (19) for θ and substituting θ into (13) yields shor, the surface
distance of the horizon from the point directly below the sensor as a function
of alt, as

shor = R arcsin

√
(R+ alt)2 −R2

R+ alt
(20)

where arcsin() returns the angle in radians.

The minimum sensor altitudes required by (20) to achieve horizons suf-
ficient for strict line-of-sight visibility for the configurations noted above
are:

Immersed: shor ≥ 1,414 m requires alt ≥ 16 cm
shor ≥ 14,142 m requires alt ≥ 15.68 m

Standoff: shor ≥ 2,236 m requires alt ≥ 39 cm
shor ≥ 22,361 m requires alt ≥ 39.20 m
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All of these altitudes are less than the smallest non-zero nominal altitude
of 100 m used in the simulations described in this paper. Thus, in the case
of airborne sensors, the line-of-sight limitation of the horizon can be safely
neglected in the FEM.
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4.2.3 Ground-Level Sensing

When the sensors are on the ground, algebraically the horizon is at zero
distance from the sensor. This is a consequence of (20) which says shor is 0 m
when alt is 0 m. While this paper does not address any specific parameters
of actual RF geolocation systems, the fact that ground-based systems exist
is prima facie evidence that the mathematical concept of a zero-distance
horizon is not a limiting factor.

One reason for this is that the receiving antenna for a “ground-level”
sensor may be at some small distance above the ground and the same can
be true of the transmitting antenna for the emitter; this creates non-zero
horizons for both the sensors and the emitter.

Consider the case where the antennas for an emitter and a sensor both
are located at a small distance alt above the ground. There is then an
emitter-to-sensor line-of-sight path between a sensor and an emitter at a
distance that is 2shor (that is, two “horizons”) for a given value of alt.

For the SEM, the antenna heights required by (20) to achieve a line-of-
sight distance of 2shor for the immersed and standoff configurations noted
above are:

Immersed: 2shor ≥ 1,414 m requires alt ≥ 4 cm
2shor ≥ 14,142 m requires alt ≥ 3.92 m

Standoff: 2shor ≥ 2,236 m requires alt ≥ 10 cm
2shor ≥ 22,361 m requires alt ≥ 9.80 m

The smaller areas considered in this paper (that is, squares with sides of
1,000 m and slightly larger) require only minuscule values of alt to achieve
line-of-sight paths. Whether the values of alt required to provide line-of-
sight connectivity for the larger areas addressed in this paper (search area
squares with sides up to 10,000 m and standoff sensors) are in fact practical
is not a concern of this paper.

With the understanding that “ground-level” sensing is understood to
include cases where the antennas for the emitter and the sensors are at small
heights above the actual surface of the earth, this section has established
that the horizon determined by the SEM is not a limiting factor in the FEM.
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4.3 Parameters for Configurations and Simulations

Section 4.1.1 gave details as to how each simulation generates a geometry
of an emitter and N sensors for a given area. Section 4.1.2 described the
process for introducing position and timing errors into the geometries and
simulation process. This section summarizes the parameters used to specify
the configurations and control the simulations.

• Configuration:

– Number of sensors N .

– Mean altitude alt and its standard deviation σalt.

– Side length side for the square search area assumed to contain
the emitter.

– Sensors are either immersed in the same area as the emitter or
standoff in an adjacent area of the same size.

• Error Conditions:

– Sensor position error standard deviation σpos.

– Sensor timing error standard deviation σtime.

• TDoA Solution Method:

– Sensor pairing: all pairs, disjoint pairs, or LIP n.

– Emitter location estimation by grid search.

The Main Data Set 23 is the collection of data that are the basis
for most of the analyses in this paper. It is based on 4,840 configurations
consisting of all of the combinations of numbers of sensors ranging from
N = 3 to 24 (immersed and standoff) with mean altitudes alt = 0 m to
1,000 m (in steps of 100 m), σalt = alt/20 (or 5% of alt), and search area
side lengths side = 1,000 m to 10,000 m (in steps of 1,000 m).

All configurations in the Main Data Set use the Standard Error
Conditions 24 of σpos = 10 m and σtime = 30 ns.

The TDoA solution method used for the Main Data Set is all pairs sensor
pairing.

23 Capitalization is used to help identify this phrase as a single term.
24 Capitalization is used to help identify this phrase as a single term.
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Results are based on 10,000 simulations of randomly generated geome-
tries per configuration.

Smaller sets of simulations are used to explore specific aspects of the
problem and these data are distinguished where applicable from those of
the Main Data Set. In particular, Section 13 considers values of σalt other
than alt/20 and error conditions wider than the Standard Error Conditions.
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4.4 Random Numbers and Gaussian Distributions

Uniformly distributed random numbers used in these simulations were
produced using the “ran2” random number generator given by [Press
(2002)]. Press et al. made the following bold statement: “We think that,
within the limits of its floating-point precision, ran2 provides perfect ran-
dom numbers; a practical definition of “perfect” is that we will pay $1,000
to the first reader who convinces us otherwise (by finding a statistical test
that ran2 fails in a nontrivial way, excluding the ordinary limitations of a
machine’s floating-point representation).” Nineteen years after that state-
ment was made, there does not appear yet to have been a payoff against
this challenge.

Values for the Gaussian (Normal) distribution were generated using the
Box-Muller Transformation [Weisstein (2019a)] from the uniform random
distribution produced by ran2.

The central question addressed in this paper is “How does geolocation
accuracy improve as the number of sensors increases?” This question is
framed as the problem of estimating the marginal improvement in geoloca-
tion accuracy obtained by sequentially adding sensors to an existing geom-
etry. Similarly, it was desirable that every set contained the same 10,000
geometries (including good and bad), the only differences being the geome-
tries stretched in scale with the sides of the areas and nominal altitudes of
the sensors. Thus, each set used the same random seed . While using
the same seed for each set of simulations ordinarily would violate the norms
of Monte Carlo simulation, this was necessary to ensure that each set was
identical to every other set except for the change in the relevant parameters.

To achieve the repeatable incremental addition of sensors to the pre-
vious geometries, in each simulation all the sensor positions were initially
generated up to the maximum number of sensors to be used, and they were
included sequentially as the simulation progressed with increasing values of
N .
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4.5 Graphing

The graphs of the intersections of the TDoA hyperboloids with the sur-
face were generated in a spread sheet as follows, using an approach similar
to the grid search-based method for finding the emitter location. Graphs
were generated only for geometries involving N = 3 and 4 sensors.

Using all pairs sensor pairing, for three sensors there were three pairs
of measurements and for four sensors there were six pairs of measurements.
For a given pair of sensors i and j, the spread sheet calculated the measured
or true TDoA with respect to the emitter location for the true positions of
the sensors due to their position errors and included the timing error offsets;
this is the value denoted by ∆t′i,j obtained from (4).

The spread sheet enumerated points of a grid representing candidate
emitter locations on the ground (xe, ye, ze) (where ze = 0) in a 1 km × 2 km
area; the left half of the area represented the search area for the emitter
and the immersed sensor region and the right half represented the standoff
sensor region. The x and y step sizes were 5 m. 25 For each (xe, ye, ze)
point in this grid, the value ∆ti,j was obtained from (8) using the presumed
positions of sensors i and j and without knowledge of timing errors.

With the step size of 5 m, the spread sheet’s simulated grid contained
80,601 points. For sensors i and j, the value |∆ti,j−∆t′i,j | was calculated and
the points with the smallest 1% of that value were plotted; this represented
the locus of points on the surface for which the TDoA based on the presumed
positions of those two sensors matched the measured TDoA.

This process was repeated for each pair of sensors (three pairs for three
sensors and six pairs for four sensors) to generate the intersections of the
TDoA hyperboloids with the surface.

The graphs of the points with the “small SSE values” shown in Section 6
were generated in a similar manner. Recall that, for all pairs sensor pairing,
the estimated emitter location on the ground (x̂e, ŷe, ẑe) (where ẑe = 0) is
the coordinate set that minimizes the SSE given by (9). The points plotted

25 As described in Section 4.1.3, the grid search continues until the step size is smaller
than 1 cm, but the step size of 5 m was used in the graphing process to keep the size of
the spread sheet and the formula update time manageable.
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as “small SSE” are the points on the simulated grid that yield the smallest
0.1% of the SSE values calculated using (9).
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5 Sensitivity to Sensor Pairing Method

Three approaches for sensor pairing were discussed in Section 4.1.3. It
was observed that the computational effort incurred using the disjoint pairs
and LIP methods grows linearly with the number of sensors while that in-
curred by all pairs sensor pairing grows as N2. This section briefly addresses
how the choice of sensor pairing method impacts the LDE determined using
(12).

Sets of 10,000 simulations per configuration were performed to generate
the data for these examples, where the configurations had the sensors im-
mersed with the emitter in a 1 km × 1 km area with the Standard Error
Conditions of σpos = 10 m position error and σtime = 30 ns timing error.

The figure-of-merit used for these comparisons was the mean LDE.
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5.1 Comparing Disjoint Sensor Pairing to All Pairs Sensor
Pairing

Figure 14 shows the mean LDE for sensors on the ground, with number
of sensors 3 ≤ N ≤ 24 for all pairs sensor pairing and 4 ≤ N ≤ 24 (only even
values) for disjoint pairs. It is clear that the mean LDE for disjoint pairs
sensor pairing was never less than that of all pairs: the ratio for disjoint
pairs sensor pairing to all pairs mean LDE varied from 2.05 to 1.44 for these
simulated results.

Another way of looking at the data presented in Figure 14 is to observe
that six sensors combined as disjoint pairs yielded only slightly smaller mean
LDE than four sensors combined as all pairs. Eight sensors in disjoint pairs
performed about as well as five sensors combined as all pairs, and ten sensors
in disjoint pairs performed about as well as seven sensors combined as all
pairs.

Figure 15 shows the mean LDE for the same geometries and position
and timing errors as for Figure 14, but where the sensors were at nominal
altitudes of 100 m. The mean LDE at this altitude was less than that for
sensors on the ground, but otherwise the trends were practically the same
as for configurations with the sensors on the ground. The ratio of the mean
LDE for disjoint pairs sensor pairing to all pairs varied from 2.13 to 1.45 for
these simulated results.

As was the case in Figure 14, Figure 15 shows that six sensors combined
as disjoint pairs yielded only slightly smaller mean LDE than four sensors
combined as all pairs, eight sensors in disjoint pairs performed about as
well as five sensors combined as all pairs, and ten sensors in disjoint pairs
performed about as well as seven sensors combined as all pairs.
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Figure 14: Comparing sensor pairing methods: All pairs vs. disjoint pairs showing

mean LDE for 3 ≤ N ≤ 24 immersed sensors (only even values of N for disjoint

pairs). Parameters: side = 1,000 m, alt = 0 m, with errors.

Figure 15: Comparing sensor pairing methods: All pairs vs. disjoint pairs showing

mean LDE for 3 ≤ N ≤ 24 immersed sensors (only even values of N for disjoint

pairs). Parameters: side = 1,000 m, alt = 100 m, with errors.
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5.2 Comparing LIP Sensor Pairing to All Pairs Sensor
Pairing

The performance of LIP sensor pairing was compared to that of all pairs
sensor pairing using a different approach from that in Section 5.1 in order
to more precisely understand the sensitivity of LIP n to the choice of n,
the index of the reference sensor. For a given configuration, 50 experiments
consisting of randomly generated geometries with position and timing errors
were created and the LDE for each was obtained for LIP n over the range
of 1 ≤ n ≤ N .

Figure 16 shows the results for N = 8 immersed sensors on the ground.
This figure is a scatter plot of the LDE for all pairs sensor pairing and each
of the N individual LDE values for the LIP n emitter location estimates. 26

Figure 17 shows the ratios of all of the LIP n LDE values to the all pairs
LDE for the same experiments. 27 Not only was there wide variation in LDE
over the values of n but, for any given experiment, the LIP n LDE values
were predominantly worse than those for all pairs.

One measure of the performance of the sensor pairing methods is the
mean LDE. For the 50 geometries with position and timing errors that were
simulated and summarized in Figure 16 and Figure 17, the mean LDE for
LIP n (over all n) was 18.49 m and for all pairs the mean LDE was 15.57 m;
the ratio of these averages was 1.19 which indicates that mean LDE for
LIP n appears to trend higher than that for all pairs. However, the effect
of sensor pairing is better gauged by looking at the average of the ratios for
the 50 experiments which was 1.43.

Figure 18 and Figure 19 were generated for the same geometries and
position and timing errors as for Figure 16 and Figure 17 but where the
sensors were at nominal altitudes of 100 m. Again, the LIP n LDE values
tended to be worse than those for all pairs. The mean LDE for LIP n (over
all n) was 17.77 m and for all pairs the mean LDE was 14.52; the ratio of

26 For example, the fifth experiment (“Exper 5”) resulted in an all pairs LDE of 62.84 m,
while the LDE values for LIP n (1 ≤ n ≤ 8) were 32.36 m, 54.12 m, 60.39 m, 63.67 m,
64.02 m, 65.58 m, 66.02 m, and 73.06 m, respectively. Thus, for five of the eight choices
of n, the LIP n LDE was higher than that achieved by all pairs sensor pairing.

27 Note that the logarithmic scale for the ratios is necessary to visualize the individual
values, but it causes the eye to exaggerate the impact of the values that are less than one
and understate the values that are greater than one.
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the averages was 1.22 and the average of the ratios for the 50 experiments
was 1.44.
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Figure 16: Comparing sensor pairing methods: All pairs vs. LIP n for sensors on

the ground for 50 experiments. For each experiment, blue dot shows all pairs LDE,

red dots show LDE for LIP 1, LIP 2, . . . LIP 8. Parameters: N = 8 immersed

sensors, side = 1,000 m, alt = 0 m, with errors.

Figure 17: Comparing sensor pairing methods: All pairs vs. LIP n for same

experiments summarized in Figure 16. For each experiment, plot shows ratios of

LIP 1, LIP 2, . . . LIP 8 LDE to all pairs LDE. Ratio scale is logarithmic.
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Figure 18: Comparing sensor pairing methods: All pairs vs. LIP n for sensors

at nominal altitudes of 100 m for 50 experiments. For each experiment, blue dot

shows all pairs LDE, red dots show LDE for LIP 1, LIP 2, . . . LIP 8. Parameters:

N = 8 immersed sensors, side = 1,000 m, alt = 100 m, with errors.

Figure 19: Comparing sensor pairing methods: All pairs vs. LIP n for same

experiments summarized in Figure 18. For each experiment, plot shows ratios of

LIP 1, LIP 2, . . . LIP 8 LDE to all pairs LDE. Ratio scale is logarithmic.
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5.3 Choice of Sensor Pairing Method

It is unnecessary to analyze additional configurations, error conditions,
or LDE statistical metrics to conclude that all pairs sensor pairing provides
consistently smaller LDE values than disjoint pairs and strongly tends to
provide smaller LDE values than LIP n. If the goal is to achieve the best
possible LDE values, then it is clear that all pairs sensor pairing is to be
preferred over the other two methods. However, the considerably smaller
computational effort, especially for larger values of N , may make the other
two sensor pairings more attractive when the degradation in LDE is accept-
able. This may be in the case when the TDoA geolocation function is being
performed in real time by computationally challenged systems. In addition,
disjoint pairs may be the only option in cases where a global clock synchro-
nization is not available but pairwise timing synchronization is possible.

Due to the generally smaller and more consistent LDE values achieved
using all pairs sensor pairing compared to the other two methods, that
method only is used for the remainder of this paper.
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6 Intrinsically Bad Geometries

Section 2 gave several examples of geometries that demonstrated non-
zero LDE in the case of position and timing errors. All of those examples
were selected such that the TDoA solution method described in Section 4.1.3
yielded zero LDE in the error-free case. It is shown in this section that
certain geometries inherently have non-zero LDE, even without the intro-
duction of errors, and this is a significant issue when only small numbers of
sensors are employed.

These results depend on the specific TDoA solution method used, as
was shown in Section 4.1.3. One challenge to finding the best estimate of
the emitter location is that there may be multiple valid solutions where all
the hyperboloids intersect. When the hyperboloids do not intersect exactly,
they may converge closely enough that the TDoA solution method cannot
distinguish between the single best solution and other possible solutions.
Even when a single solution may exist, hyperboloids may intersect at small
angles and thus even minor position or timing errors may cause numerical
solutions to converge to incorrect results [Kaune (2012)].

All of the examples used in this section are error-free cases that have
non-zero LDE values solely due to their geometries and the specific TDoA
solution method used in this paper. Thus, the sensors’ presumed positions
are the same as their true positions.

It is demonstrated here that a major factor that contributes to non-zero
LDE in the error-free case is that of collinearity . When sensors are collinear
or even simply close to being collinear, or the random position of the emitter
happens to be collinear with sensors, there is side-to-side location ambiguity
as to where the minimum SSE value will be found due to multiple local
minima. In these events, it may be practically a “coin flip” as to whether
the estimated location of the emitter will be exactly correct or drastically
wrong. Unfortunately, examples that follow show that determining a priori
when collinearity or other geometric factors are an issue is problematic.

Approved for Public Release; distribution unlimited; AFRL-2021-0842

65



6.1 Longfellow Events

Figure 20 shows an error-free case with N = 3 sensors on the ground
and immersed with the emitter. The three sensors are nearly collinear. The
grid search found an estimated location of the emitter (marked with the red
square) that was 979.20 m from the correct location (marked with the green
square). Figure 21 shows the same geometry with 0.1% of the smallest SSE
values overlaid on the plot (marked with brown shading). The two distinct
patches of brown shading indicate side-to-side ambiguity in emitter location
(that is, local SSE minima), within the limitations of the TDoA solution
method used, and thus led to a drastically wrong estimate of the emitter
location.

The phenomenon where a seemingly arbitrary “coin flip” makes the dif-
ference between being either very close to a correct solution or very distant
from it is reminiscent of the verse from a famous poem by Henry Wadsworth
Longfellow [Longfellow (1904)], reportedly about his daughter:

There was a little girl
Who had a little curl

Right in the middle of her forehead.
When she was good,
She was very very good

But when she was bad
She was horrid.

In this paper, such events are called Longfellow Events to avoid the
implication that simple randomness is their cause or that their probability
of occurrence might be near 1/2.

Longfellow Events cause the grid search-based method used in this paper
to slightly underestimate the LDE statistical metrics. This is because the
grid search is constrained to a fixed area (1 km × 1 km in the examples
considered in this section), so a minimum SSE value that falls outside the
search area will not be found and the grid search fortuitously finds the cor-
rect location of the emitter without the potential penalty of the Longfellow
Event. For example, imagine that the emitter and three sensors shown in
Figure 20 were shifted to the left by 150 m but their relative positions were
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unchanged. The SSE value currently marked with the red square would
be outside the search area and so the grid search would report the correct
emitter location as the estimated location. Thus, the LDE would be under-
estimated compared to a search that was not constrained to the specified
1 km × 1 km search area.

Approved for Public Release; distribution unlimited; AFRL-2021-0842

67



Figure 20: Three immersed sensors on the ground that are nearly collinear, without

position or timing errors, where the point that has the minimum SSE is 979 m

from the true position of the emitter. Parameters: N = 3 immersed sensors,

side = 1,000 m, alt = 0 m, error-free.

Figure 21: Same geometry as in Figure 20 showing 0.1% of the smallest SSE values

overlaid on the plot (marked with brown shading). Parameters: N = 3 immersed

sensors, side = 1,000 m, alt = 0 m, error-free.
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6.2 Longfellow Events Decrease with the Number of
Sensors

Figure 22 shows an error-free case with N = 3 sensors at nominal al-
titudes of 100 m and immersed with the emitter. The LDE is 286.34 m.
Figure 23 shows the same geometry with 0.1% of the smallest SSE values
overlaid on the plot. In this case, the apparent issue with the geometry is
that the emitter is collinear with two of the sensors. Since the location of
the emitter is unknown to the TDoA solution method, there is no way to
anticipate or mitigate the situation other than by the presence of additional
sensors.

Figure 24 shows an error-free case with three sensors on the ground and
standoff from the emitter. Figure 25 shows the same geometry with 0.1%
of the smallest SSE values overlaid on the plot. The LDE is 962.24 m. The
apparent issue in this case was that the correct emitter location was close to
being collinear with a pair of sensors and the grid search found the minimum
SSE value at a distant point and erroneously placed the location estimate
so that it was close to being collinear with the sensors.

Geolocation estimates are often poor when only three sensors are used.
Figure 26 shows a histogram of LDE values for 10,000 simulations of error-
free cases with three immersed sensors on the ground. For that set of simu-
lations, 86.82% of the LDE values were zero, an additional 4.67% were less
than or equal 20 m, an additional 0.92% were less than or equal 40 m, and
7.59% were greater than 40 m. The largest LDE value was 1,082.73 m.

Figure 27 shows a histogram of LDE values for 10,000 simulations of
error-free cases with three immersed sensors at nominal altitudes of 100 m.
For that set of simulations, 89.11% of the LDE values were zero, an addi-
tional 3.55% were less than or equal 20 m, an additional 0.73% were less
than or equal 40 m, and 6.61% were greater than 40 m. The largest LDE
value was 1,104.63 m.

Figure 28 shows a histogram of LDE values for 10,000 simulations of
error-free cases with three standoff sensors on the ground. For that set of
simulations, 78.61% of the LDE values were zero, an additional 13.50% were
less than or equal 20 m, an additional 1.93% were less than or equal 40 m,
and 5.96% were greater than 40 m. The largest LDE value was 1,024.90 m.
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Figure 29 shows a histogram of LDE values for 10,000 simulations of
error-free cases with three standoff sensors at nominal altitudes of 100 m. For
that set of simulations, 80.63% of the LDE values were zero, an additional
12.42% were less than or equal 20 m, an additional 1.59% were less than or
equal 40 m, and 5.36% were greater than 40 m. The largest LDE value was
1,000.62 m.

Figure 30 shows an error-free case with four immersed sensors on the
ground. The LDE is 85.78 m. Figure 31 shows the same geometry with
0.1% of the smallest SSE values overlaid on the plot.

Figure 32 shows an error-free case with four immersed sensors at nom-
inal altitudes of 100 m. The LDE is 382.37 m. Figure 33 shows the same
geometry with 0.1% of the smallest SSE values overlaid on the plot.

LDE values in the error-free case grow smaller as the number of sensors
increases. Figure 34 shows a histogram of LDE values for 10,000 simulations
of error-free cases with four immersed sensors on the ground. For that set of
simulations, 99.10% of the LDE values were zero, an additional 0.54% were
less than or equal 20 m, an additional 0.03% were less than or equal 40 m,
and 0.33% were greater than 40 m. The largest LDE value was 788.74 m.

Figure 35 shows a histogram of LDE values for 10,000 simulations of
error-free cases with four immersed sensors at nominal altitudes of 100 m.
For that set of simulations, 99.42% of the LDE values were zero, an addi-
tional 0.38% were less than or equal 20 m, an additional 0.03% were less
than or equal 40 m, and 0.17% were greater than 40 m. The largest LDE
value was 805.62 m.

The histograms for four standoff sensors on the ground and at nominal
altitudes of 100 m showed similar reductions in the percent of non-zero LDE
values.

LDE values rapidly decrease with increasing N . This is shown for five
immersed sensors on the ground in Figure 36 and at nominal altitudes of
100 m in Figure 37. The results for six immersed sensors on the ground are
given in Figure 38 and at nominal altitudes of 100 m in Figure 39. Additional
decrease in LDE values is shown for seven immersed sensors on the ground
in Figure 40 and at nominal altitudes of 100 m in Figure 41. The reductions
in LDE for standoff sensors were on similar scales.
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For immersed or standoff sensors on the ground or at nominal altitudes of
100 m, the largest percentage of geometries with non-zero LDE was 21.39%
for N = 3, 6.20% for N = 4, 2.65% for N = 5, 1.39% for N = 6, 0.75% for
N = 7, and 0.50% for N = 8.

These results show that the fraction of non-zero LDE values in error-
free cases and, perhaps more importantly, the fraction of large LDE values,
continues to drop as the number of sensors increases.

Based on these observations, it is recommended that a minimum of five
sensors 28 be used, regardless of altitude or whether they are immersed
with or standoff from the search area for the emitter. This avoids the issue of
large percentages of grossly wrong geolocation estimates due to Longfellow
Events even when sensors do not experience position or timing errors.

28 Using more sensors would reduce LDE, but this number of sensors seems like a
reasonable compromise between geolocation accuracy and the complexity and cost of im-
plementation.
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Figure 22: Three immersed sensors at nominal altitudes of 100 m, without position

or timing errors, where the point that has the minimum SSE is 286 m from the true

position of the emitter. Parameters: N = 3 immersed sensors, side = 1,000 m,

alt = 100 m, error-free.

Figure 23: Same geometry as in Figure 22 showing 0.1% of the smallest SSE values

overlaid on the plot (marked with brown shading). Parameters: N = 3 immersed

sensors, side = 1,000 m, alt = 100 m, error-free.
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Figure 24: Three standoff sensors that are on the ground, without position or

timing errors, where the point that has the minimum SSE is 962 m from the true

position of the emitter. Parameters: N = 3 standoff sensors, side = 1,000 m,

alt = 0 m, error-free.

Figure 25: Same geometry as in Figure 24 showing 0.1% of the smallest SSE values

overlaid on the plot (marked with brown shading). Parameters: N = 3 standoff

sensors, side = 1,000 m, alt = 0 m, error-free.
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Figure 26: Three immersed sensors on the ground: histogram of LDE obtained

from 10,000 simulations. Parameters: N = 3 immersed sensors, side = 1,000 m,

alt = 0 m, error-free.

Figure 27: Three immersed sensors at nominal altitudes of 100 m: histogram of

LDE obtained from 10,000 simulations. Parameters: N = 3 immersed sensors,

side = 1,000 m, alt = 100 m, error-free.

Approved for Public Release; distribution unlimited; AFRL-2021-0842

74



Figure 28: Three standoff sensors on the ground: histogram of LDE obtained

from 10,000 simulations. Parameters: N = 3 standoff sensors, side = 1,000 m,

alt = 0 m, error-free.

Figure 29: Three standoff sensors at nominal altitudes of 100 m: histogram of

LDE obtained from 10,000 simulations. Parameters: N = 3 standoff sensors,

side = 1,000 m, alt = 100 m, error-free.
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Figure 30: Four immersed sensors on the ground, without position or timing

errors, where the point that has the minimum SSE is 86 m from the true position

of the emitter. Parameters: N = 4 immersed sensors, side = 1,000 m, alt = 0 m,

error-free.

Figure 31: Same geometry as in Figure 30 showing 0.1% of the smallest SSE values

overlaid on the plot (marked with brown shading). Parameters: N = 4 immersed

sensors, side = 1,000 m, alt = 0 m, error-free.
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Figure 32: Four immersed sensors at nominal altitudes of 100 m, without position

or timing errors, where the point that has the minimum SSE is 382 m from the true

position of the emitter. Parameters: N = 4 immersed sensors, side = 1,000 m,

alt = 100 m, error-free.

Figure 33: Same geometry as in Figure 32 showing 0.1% of the smallest SSE values

overlaid on the plot (marked with brown shading). Parameters: N = 4 immersed

sensors, side = 1,000 m, alt = 100 m, error-free.
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Figure 34: Four immersed sensors on the ground: histogram of LDE obtained

from 10,000 simulations. Parameters: N = 4 immersed sensors, side = 1,000 m,

alt = 0 m, error-free.

Figure 35: Four immersed sensors at nominal altitudes of 100 m: histogram of

LDE obtained from 10,000 simulations. Parameters: N = 4 immersed sensors,

side = 1,000 m, alt = 100 m, error-free.
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Figure 36: Five immersed sensors on the ground: histogram of LDE obtained

from 10,000 simulations. Parameters: N = 5 immersed sensors, side = 1,000 m,

alt = 0 m, error-free.

Figure 37: Five immersed sensors at nominal altitudes of 100 m: histogram of

LDE obtained from 10,000 simulations. Parameters: N = 5 immersed sensors,

side = 1,000 m, alt = 100 m, error-free.
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Figure 38: Six immersed sensors on the ground: histogram of LDE obtained

from 10,000 simulations. Parameters: N = 6 immersed sensors, side = 1,000 m,

alt = 0 m, error-free.

Figure 39: Six immersed sensors at nominal altitudes of 100 m: histogram of

LDE obtained from 10,000 simulations. Parameters: N = 6 immersed sensors,

side = 1,000 m, alt = 100 m, error-free.
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Figure 40: Seven immersed sensors on the ground: histogram of LDE obtained

from 10,000 simulations. Parameters: N = 7 immersed sensors, side = 1,000 m,

alt = 0 m, error-free.

Figure 41: Seven immersed sensors at nominal altitudes of 100 m: histogram of

LDE obtained from 10,000 simulations. Parameters: N = 7 immersed sensors,

side = 1,000 m, alt = 100 m, error-free.
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7 Location Distance Error as a Function of
Altitude and Search Area Side Length for a
Given Number of Sensors

This section explores the relationship between altitude, search area side
length, and LDE. It is observed here that LDE varies with the nominal
altitude alt and the search area side length side and, to some degree, LDE is
approximately scale-invariant with respect to the ratio of those parameters.

The curves are also approximately convex as a function of the ratio
alt/side for each of the four LDE statistical metrics. Thus, there is an
“interesting” optimal altitude that minimizes LDE for a given number of
sensors and any search area side length; the solution is “interesting” in
the sense that the optimal altitude is not necessarily at an extreme value
and there appears to be a single optimal value within the resolution of the
statistics of the data.

The data used in this section resulted from configurations that varied
side from 1,000 m to 10,000 m (in steps of 1,000 m) with the Standard
Error Conditions of σpos = 10 m position error and σtime = 30 ns timing
error. These configurations differed from all other data sets used in this
paper in that the nominal altitudes varied over a wider range. The other
configurations varied alt only up to 1,000 m, whereas the configurations used
in this section varied alt from 0 m to side (in steps of side/20) for immersed
sensors and from 0 m to 2 × side (in steps of side/10) for standoff sensors
(with σalt = alt/20); thus, the configurations used a total of 21 altitudes per
value of side.

Due to the long run times required for the large number of configurations,
only 1,000 simulations of each configuration were performed.

Figure 42 shows the four LDE statistical metrics used in this paper for
N = 5 immersed sensors as a function of the ratio alt/side. Even though the
values for each statistical metric show some scattering, 29 particularly at the

29 “Scattering” is meant in the following sense. For a given N , ten combinations of alt
and side are simulated that have the same alt/side ratio. “No scattering” would mean
that the ten values of an LDE statistical metric at a particular ratio would overlap and
appear as a single point. “Scattering” thus indicates visual divergence of the points at a
particular ratio.
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smaller ratios, the trends are clear that the four statistical metrics decrease
with the ratio to minimum values and then increase. Figure 43 shows the
same immersed situation but only for the mean and 95%ile LDE. Even with
the scattering of LDE values for a given ratio, there are indications that
there is some degree of scale-invariance of LDE with respect to the ratio
alt/side. Even with the scattering of values, the convexity of the curves is
clear in Figure 42 for all four of the LDE statistical metrics and even more
obvious in Figure 43 for the mean and 95%ile LDE.

The minimum for the mean LDE was at approximately alt/side = 0.20.
The minima occurred at approximately alt/side ratios of 0.05, 0.40, and
0.65 for the 50%ile, 95%ile, and 99%ile LDE, respectively. The term “ap-
proximately” is used because the precision of these ratios is limited by the
small number of step sizes of alt. In addition, the curves are relatively flat
around their minima, so small amounts of random variation in the measured
LDE may cause the observed minima to shift from their actual values.

Figure 44 shows the four LDE statistical metrics for N = 5 standoff
sensors, where similar dependence on the ratio alt/side can be observed. The
minima occurred at approximately alt/side ratios of 1.20, 1.00, 1.20, and
1.50 for the mean, 50%ile, 95%ile, and 99%ile LDE, respectively. Figure 45
shows the same standoff situation but only for the mean and 95%ile LDE.

Figure 46 and Figure 47 show the mean and 95%ile LDE for N = 10
immersed and standoff sensors, respectively. There is less scattering of LDE
at the lower values of the alt/side ratio. This trend continues as the number
of sensors increases as shown in Figure 48 and Figure 49 forN = 15 immersed
and standoff sensors as well as in Figure 50 and Figure 51 for N = 20
immersed and standoff sensors. Figure 52 and Figure 53 show all four of the
LDE statistical metrics for N = 20 immersed and standoff sensors.

The full sets of values of the alt/side ratios that provided the minima for
the four LDE statistical metrics are given in Table 1 for immersed sensors
and Table 2 for standoff sensors.

For immersed sensors, the mean and 50%ile metrics appeared to be bet-
ter at smaller ratios of altitude to search area side length, approximately in
the range of 0.15 to 0.20. The 95%ile and 99%ile LDE values were better
at larger alt/side ratios, but still only approximately in the range of 0.15 to
0.65.
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Standoff sensor configurations performed better at larger ratios. The
mean and 50%ile metrics were minimized at ratios approximately in the
range of 0.90 to 1.20, while the 95%ile and 99%ile LDE values were mini-
mized at ratios approximately in the range of 1.20 to 1.70.
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Figure 42: For five immersed sensors with errors, the mean, 50%ile, 95%ile, and

99%ile LDE statistical metrics are shown as a function of the ratio alt/side. See

text for ranges of alt and side.

Figure 43: For five immersed sensors, only the mean and 95%ile LDE statistical

metrics are shown as a function of the ratio alt/side. Otherwise, configurations

and conditions are the same as for Figure 42.
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Figure 44: For five standoff sensors with errors, the mean, 50%ile, 95%ile, and

99%ile LDE statistical metrics are shown as a function of the ratio alt/side. See

text for ranges of alt and side.

Figure 45: For five standoff sensors, only the mean and 95%ile LDE statistical

metrics are shown as a function of the ratio alt/side. Otherwise, configurations

and conditions are the same as for Figure 44.
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Figure 46: For ten immersed sensors with errors, the mean and 95%ile LDE

statistical metrics are shown as a function of the ratio alt/side. See text for ranges

of alt and side.

Figure 47: For ten standoff sensors with errors, the mean and 95%ile LDE statis-

tical metrics are shown as a function of the ratio alt/side. See text for ranges of

alt and side.
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Figure 48: For 15 immersed sensors with errors, the mean and 95%ile LDE statis-

tical metrics are shown as a function of the ratio alt/side. See text for ranges of

alt and side.

Figure 49: For 15 standoff sensors with errors, the mean and 95%ile LDE statistical

metrics are shown as a function of the ratio alt/side. See text for ranges of alt

and side.

Approved for Public Release; distribution unlimited; AFRL-2021-0842

88



Figure 50: For 20 immersed sensors with errors, the mean and 95%ile LDE statis-

tical metrics are shown as a function of the ratio alt/side. See text for ranges of

alt and side.

Figure 51: For 20 standoff sensors with errors, the mean and 95%ile LDE statistical

metrics are shown as a function of the ratio alt/side. See text for ranges of alt

and side.
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Figure 52: For 20 immersed sensors with errors, the mean, 50%ile, 95%ile, and

99%ile LDE metrics are shown as a function of the ratio alt/side. See text for

ranges of alt and side.

Figure 53: For 20 standoff sensors with errors, the mean, 50%ile, 95%ile, and

99%ile LDE statistical metrics are shown as a function of the ratio alt/side. See

text for ranges of alt and side.
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Table 1: Values of the alt/side ratios that provided the minima for the mean,

50%ile, 95%ile, and 99%ile LDE statistical metrics for immersed sensors.

alt/side alt/side alt/side alt/side
for min for min for min for min

N 50%ile Mean 95%ile 99%ile
3 0.25 0.30 0.35 0.55
4 0.10 0.40 0.40 0.60
5 0.05 0.20 0.40 0.65
6 0.05 0.25 0.40 0.40
7 0.05 0.20 0.30 0.35
8 0.05 0.15 0.25 0.40
9 0.05 0.15 0.25 0.30

10 0.05 0.15 0.30 0.60
11 0.05 0.05 0.25 0.40
12 0.05 0.05 0.15 0.45
13 0.05 0.05 0.20 0.40
14 0.05 0.05 0.20 0.45
15 0.05 0.05 0.25 0.30
16 0.05 0.05 0.15 0.40
17 0.05 0.05 0.25 0.35
18 0.05 0.05 0.15 0.40
19 0.05 0.05 0.15 0.35
20 0.05 0.05 0.15 0.35
21 0.05 0.05 0.05 0.35
22 0.05 0.05 0.15 0.25
23 0.05 0.05 0.10 0.15
24 0.05 0.05 0.20 0.40
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Table 2: Values of the alt/side ratios that provided the minima for the mean,

50%ile, 95%ile, and 99%ile LDE statistical metrics for standoff sensors.

alt/side alt/side alt/side alt/side
for min for min for min for min

N 50%ile Mean 95%ile 99%ile
3 1.00 1.20 1.10 1.60
4 1.10 1.20 1.20 1.20
5 1.00 1.20 1.20 1.50
6 0.90 1.10 1.20 1.40
7 0.90 1.10 1.30 1.30
8 0.90 1.10 1.50 1.50
9 0.90 1.10 1.20 1.40

10 0.90 1.10 1.30 1.50
11 1.00 1.10 1.40 1.60
12 0.90 1.10 1.30 1.50
13 0.90 1.10 1.30 1.60
14 0.90 1.10 1.40 1.70
15 0.90 1.10 1.30 1.70
16 0.90 1.10 1.30 1.50
17 1.00 1.10 1.40 1.30
18 0.90 1.10 1.40 1.60
19 0.80 1.10 1.40 1.40
20 0.90 1.10 1.30 1.50
21 1.00 1.10 1.30 1.50
22 0.90 1.10 1.40 1.70
23 1.00 1.10 1.30 1.40
24 1.00 1.10 1.40 1.60
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8 Linear Regression-Based Approximations for
Location Distance Error

This section applies linear regression to the results of simulations to gain
insight into how LDE statistical metrics improve with increasing numbers
of sensors N . Approximations of the LDE statistical metrics as functions of
N are obtained for the configurations and error conditions addressed in this
paper.

The primary tool used here is linear regression to find models of each
of the LDE statistical metrics with respect to the configuration parameters.
It is multivariate and is applied the raw and transformed versions of the
LDE statistical metrics over sets of input variables consisting of the raw
and transformed versions of those variables as well as combinations of those
variables. Thus, it is able to uncover certain nonlinear relationships between
an output variable and the set of input variables upon which it depends.
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8.1 Linear Regression Models and Weighted Sums

The general form of the linear regression model is outlined as follows. In
the context of linear regression in this paper, the symbols x and y represent
the input and output variables for a statistical model rather than coordinate
positions. The symbol y refers to an output variable and x1, x2, x3, . . .xv
refer to the inputs to a multivariate model with v input variables.

Consider the case of linear regression for an output variable y with re-
spect to a single input variable x1 (thus, v = 1). The slope-intercept formula
for a straight line can be written as

y = w0 + w1x1 (21)

where w1 represents the slope of the line and w0 represents the y-axis inter-
cept of the line. 30 A linear regression of an ordered list of output values y
(the dependent variable) as a function of an ordered list of input values x1

(the independent variable) yields the weights w1 and w0 where the weighted
sum y = w0 + w1x1 represents the “best straight line” for the relationship
between the x1 values and the y values.

Linear regression can be performed with respect to any number of input
variables. With v input variables, linear regression generates v + 1 weights
wi, where i = 0, 1, 2, . . . v. These weights are used in a weighted sum to
produce the “best hyperplane” y = w0 +w1x1 +w2x2 +w3x3 + . . .+wvxv.

As noted above, linear regression can be performed over raw and trans-
formed versions of variables as well as their combinations. For example, if
the candidate model were believed to be power-law,

y = exp(w0 + w1 lnx1) (22)

= ew0 xw1
1 ,

then the linear regression would be performed over the transformed variables
lnx1 and ln y. The resulting statistical model would fit w0 and w1 in the
expression ln y = w0 + w1 lnx1 or y = ew0x1

w1 resulting in (22).

30 The reason for writing the slope-intercept with the intercept first will become clear
when applied to multiple input variables.
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If it were believed that y2 might be quadratic polynomial in x1 and linear
with respect to 1/x2 and x1x2, then linear regression would be performed
over the set of input variables x2

1, x1, 1/x2, x1x2 (thus, v = 4), and y2; the
resulting model with its v+1 = 5 weights would be y2 = w0 +w1x

2
1 +w2x1 +

w3/x2 + w4x1x2. 31

31 This example is cavalier with its association between the indices of the raw, trans-
formed, and combined versions of the xi variables and the wi weights of the linear regres-
sion model, but their application should be clear. It seems that this is more clear than to
generate more nomenclature and symbols for variables.
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8.2 Shotgun Approach to Building Linear Regression
Models

The linear regression models presented here were generated for the LDE
statistical metrics obtained from 10,000 simulations for each configuration
and error conditions using (12) with what can be called a “shotgun ap-
proach.” The raw configuration parameters N , alt, and side along with
transformed versions and combinations of these parameters were explored
to determine the variables that had the most significance in the linear re-
gressions. Transformations included logarithm, double logarithm, square,
and reciprocal. Among the various combinations used were ratios such as
alt/side, (alt/side)2, and side2/alt. Note that, since alt could be zero, one
millimeter was added to avoid division by zero when alt appeared as the
denominator. 32

The shotgun approach began with a multivariate linear regression in
Microsoft Excel spread sheets that first included all of the raw, transformed,
and combined input variables that were considered, and then sequentially
eliminated variables and combinations that were found to have weights close
to zero.

The goodness-of-fit of the linear regression models was determined by
their R2 values. Once a set of candidate linear regression models with the
highest or nearly highest R2 values was obtained, that set was narrowed
based on the models’ predictive or forecasting power where that factor was
determined using Mean Absolute Percentage Error (MAPE). 33

Models that provided minimum or close to minimum MAPE values were
preferred. In addition, it was desired to obtain models that were parsimo-
nious in that they required the smallest possible number of significant input
variables while achieving nearly minimum MAPE.

Finally, additional subjective criteria guided the statistical model explo-
ration among several linear regression models that were still viable candi-
dates. These selection criteria included minimizing the maximum abso-
lute percentage error and reducing the sizes of the tails of histograms of
the percentage error.

32 That is, the transformed value of altitude alt+ 0.001 m was used instead of alt.
33 See definitions of R2 and MAPE in Section 3.
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As noted in Section 6, a minimum of five sensors should be used to avoid a
significant fraction of grossly wrong geolocation estimates due to Longfellow
Events. Thus, it seemed it should be reasonable to disregard the LDE
data for three and four sensors and develop the linear regression models for
configurations and error conditions with N = 5 to 24 sensors. However, after
experimentation the surprising result was observed that the linear regression
models gave smaller MAPE for N = 5 to 24 sensors when the LDE data
for three and four sensors were included, even though the models gave very
poor results for the configurations with three and four sensors. The reason
for this was unclear but, in any case, the linear regression models reported in
this paper were built in this way with the exception of the linear regression
models for the “Ballpark Estimates” developed in Section 12.2.

While the final models for the four LDE statistical metrics differed in
the specific values of the linear regression weights of the variables, in no case
did any one of the LDE statistical metrics require a different set of input
variables to achieve a significant improvement in R2 or MAPE. Thus, all the
weighted sums had the same form.
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9 Estimating Location Distance Error for Fixed
Configurations of Altitude and Search Area
Side Length

This section explores four directions. The first is the form of the linear
regression model that best fits the LDE data in the Main Data Set. The
second is the behavior of LDE for large numbers of sensors to determine
whether there is asymptotic behavior at a level greater than zero LDE. The
third is to determine whether the number of simulations performed have
sufficiently small error bounds to yield results that are statistically signif-
icant. Finally, linear regression models are obtained for the simplest case,
that of estimating LDE as a function of the number of sensors for specific
configurations with fixed nominal altitude and search area side length.
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9.1 Linear Regression Models with Double Logarithm
Transformations

With some exploration of simulation results in the Main Data Set, it was
determined that, for a given altitude and search area side length and sensors
both immersed and standoff from the emitter, the double logarithm of
all four LDE statistical metrics varied as a linear function of the
double logarithm of the number of sensors. That is, if the output
variable y represents the mean, 50%ile, 95%ile, or 99%ile LDE, then, for a
given configuration and error conditions, there exist linear regression weights
w0 and w1 such that the expression

ln ln y = w0 + w1 ln lnN (23)

is a good approximation. Expression (23) can be solved for y and expressed
as the forms

y = exp(exp(w0 + w1 ln lnN)) (24)

= ee
w0+w1 ln lnN

= ee
w0 lnw1 N

but the alternate expressions in (24) probably do not provide any insight
beyond that already apparent in (23).
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9.2 LDE and Its Error Bounds for Very Large Numbers of
Sensors

Sets of configurations were simulated where the number of sensors ranged
from N = 3 to 100 with side = 1,000 m and alt = 0 m and 300 m. The
Standard Error Conditions of σpos = 10 m position error and σtime = 30 ns
timing error were used.

Due to the long run times resulting from quadratic growth with N , only
1,000 simulations of each configuration were performed.

Figure 54 shows the mean and 95%ile LDE for immersed sensors on the
ground. In addition, the ±3 standard error bounds 34 around the mean are
shown. Figure 55 shows the same results plotted as the double logarithms
for N and the mean and 95%ile LDE. It is clear that with 1,000 simulations
per configuration the ±3 standard error bounds are extremely tight about
the mean LDE for each value of N . Also, the double logarithm plot on
both axes demonstrates the very nearly linear decrease in mean and 95%ile
LDE with respect to N for those transformed variables. A slight bending
of both curves can be observed starting around the value of 1.2 for ln lnN ,
which corresponds to N = 28 sensors but, as this paper develops models for
up to only 24 sensors, this indicates that linearity of the double logarithm
relationships can safely be assumed.

Figure 56 and Figure 57 show the results for standoff sensors on the
ground for the same parameters as above. Again, the ±3 standard error
bounds are extremely tight about the mean LDE and both the mean and
95%ile LDE show linear decrease with increasing N .

Similar behavior is shown for immersed sensors at nominal altitudes of
300 m as shown in Figure 58 and Figure 59 for immersed sensors and in
Figure 60 and Figure 61 for standoff sensors.

Most of the results presented in this paper are based on 10,000 simula-
tions per configuration, so the tightness of the ±3 standard error bounds
for the results from only 1,000 simulations per configuration support the

34 The statistical term “standard error” refers to the standard deviation of a set of
samples divided by the square root of the number of samples [Altman (2015)] [Weisstein
(2019b)]. This term is not to be confused with the term “Standard Error Conditions” as
defined in this paper.

Approved for Public Release; distribution unlimited; AFRL-2021-0842

100



statistical validity of this approach. They also indicate that the linearity
of the relationship between double logarithm transformations of the LDE
statistical metrics and the number of sensors holds for the parameter ranges
of interest. Finally, there is no indication of convergence to an asymptotic
LDE greater than zero; thus, more sensors are always better than fewer.
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Figure 54: Mean and 95%ile LDE, with±3 standard error bounds around the mean

LDE. Parameters: N = 3 to 100 immersed sensors, side = 1,000 m, alt = 0 m,

with errors.

Figure 55: Configurations and conditions are the same as for Figure 54. The

values plotted are for the double logarithms of N and LDE.
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Figure 56: Mean and 95%ile LDE, with±3 standard error bounds around the mean

LDE. Parameters: N = 3 to 100 standoff sensors, side = 1,000 m, alt = 0 m, with

errors.

Figure 57: Configurations and conditions are the same as for Figure 56. The

values plotted are for the double logarithms of N and LDE.
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Figure 58: Mean and 95%ile LDE, with±3 standard error bounds around the mean

LDE. Parameters: N = 3 to 100 immersed sensors, side = 1,000 m, alt = 300 m,

with errors.

Figure 59: Configurations and conditions are the same as for Figure 58. The

values plotted are for the double logarithms of N and LDE.
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Figure 60: Mean and 95%ile LDE, with±3 standard error bounds around the mean

LDE. Parameters: N = 3 to 100 standoff sensors, side = 1,000 m, alt = 300 m,

with errors.

Figure 61: Configurations and conditions are the same as for Figure 60. The

values plotted are for the double logarithms of N and LDE.
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9.3 Linear Regression Models for Fixed Configurations of
Altitude and Search Area Side Length

This section explores the linearity of the double logarithm relationships
between the four LDE statistical metrics and the number of sensors, with
the appropriate weights, as expressed in (23). All of the results presented
in this section are based on the Main Data Set as described in Section 4.3.

The linear regression models are developed for specific configurations
with fixed nominal altitude and search area length. These models are gen-
eralized in Section 10.1.

Figure 62 shows the four LDE statistical metrics on linear scales for im-
mersed sensors at alt = 0 m for side = 1,000 m with the Standard Error
Conditions of σpos = 10 m position error and σtime = 30 ns timing error;
Figure 63 shows the same results on double logarithm scales. All four curves
show linearity after the double logarithm transformations. The linear regres-
sion equations resulting from Microsoft Excel are shown on the plot, along
with the associated R2 coefficients of determination. In the notation of this
paper, Figure 63 shows, for example, that the double logarithm of the mean
LDE is approximately 1.6528 − 0.8154 ln lnN and the double logarithm of
the 95%ile LDE is approximately 1.8918 − 0.6940 ln lnN . In both of these
cases, the R2 values are nearly unity (0.9984 and 0.9985, respectively) sig-
nifying excellent goodness-of-fit of the regression models.

Figure 64 and Figure 65 show the simulation results for standoff sensors
on the ground and otherwise the same configurations and error conditions as
above. Again, the R2 values are nearly unity showing good statistical fit of
the linear regression for the transformed variables. Note the shallower slope
of the regression lines in Figure 65 compared to Figure 63; this shows that,
even though the LDE statistical metrics decrease with increasing numbers
of sensors that are both immersed and standoff, the decrease for standoff
sensors is much slower than for immersed sensors.

Figure 66 and Figure 67 show the simulation results for immersed sensors
at alt = 300 m and otherwise the same configurations and error conditions as
above and Figure 68 and Figure 69 show the simulation results for standoff
sensors at alt = 300 m and otherwise the same configurations and error
conditions as above. The same trends noted above are observed here.
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The results outlined in Figure 62 through Figure 69 are systematically
expanded upon in Table 3 through Table 14. These tables present the linear
regression weights w0 and w1 derived for (23), which is the linear approxima-
tion for the double logarithm of the four LDE statistical metrics with respect
to the double logarithm of the number of immersed and standoff sensors.
The tables are valid for the numbers of sensors, the altitudes, search area
side lengths, and error conditions represented in the Main Data Set. All
results are based on 10,000 simulations per configuration. Due to format-
ting constraints in LATEX, separate tables were provided for the side ranges
1,000 m to 4,000 m, 5,000 m to 8,000 m, and 9,000 m to 10,000 m. The
mean and 95%ile LDE linear regression weights are shown together and the
50%ile and 99%ile linear regression weights are shown together.

For example, Table 3 shows the linear regression weights for mean and
95%ile LDE linear regression weights for immersed sensors in search areas
with side = 1,000 m to 4,000 m. The first line of the table is for alt = 0 m
and side = 1,000 m. The linear regression weights w0 and w1 reported for
the regression lines for those LDE statistical metrics on that line are the
same as those shown in Figure 63 for the same configurations and error
conditions.

A quick scan of the R2 columns in Table 3 through Table 14 show that
the minimum R2 for any LDE statistical metric is 0.9880 for immersed
sensors and 0.9532 for standoff sensors; only 3.07% of the combined set of
R2 values are below 0.99. This indicates an excellent goodness-of-fit for the
linear relationship expressed in (23).

Table 3 through Table 14 and (23) are applied as follows.

For example, consider the problem of estimating the mean LDE for
the configuration of N = 8 immersed sensors with alt = 300 m and
side= 5,000 m; denote the value of that statistical metric by y. For the mean
LDE, Table 4 provides the weights w0 = 1.7593 and w1 = -0.9498. These
weights are substituted into (23) to obtain ln ln y = 1.7593−0.9498 ln ln 8 =
1.0640. Solving for y, the estimate for the mean LDE based on linear re-
gressions for this configuration is 18.13 m.
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For comparison, the measured mean LDE resulting from 10,000 simula-
tions of this configuration was 17.64 m, so the error of the linear regression
estimate for the mean LDE relative to the measured value was 2.81%. 35

The predictive power of these individual regression models was found to
be excellent. As noted in Section 6, a minimum of five sensors should be
used to avoid a significant fraction of grossly wrong geolocation estimates
due to Longfellow Events. For N = 5 to 24 sensors, the four LDE statisti-
cal metrics were calculated using the linear regression weights tabulated for
each alt and side and compared to the results of the 10,000 simulations of
those configurations and error conditions. For immersed sensors, the MAPE
values were 2.18%, 3.20%, 1.96%, and 3.82% for the mean, 50%ile, 95%ile,
and 99%ile LDE, respectively. For standoff sensors, the MAPE values were
1.08%, 1.69%, 1.43%, and 2.47% for the same statistical metrics. This
demonstrated that the regression models based on specific configurations
had good predictive power for the decrease in LDE as a result of increasing
the number of sensors.

The linear regression models presented in this section are point solutions
for the central question posed in this paper. Section 10.1 uses these tabulated
values as the first stage of a two-stage linear regression model that arrives
at a generalized set of expressions for the relationship between the number
of sensors and the LDE statistical metrics.

35 The error calculations given in this paper are generally those derived from the spread
sheet calculations of the linear regression models. The error for the estimate of “18.13 m”
relative to the measured value of 17.64 m would be 2.78%, but the error was calculated
on the basis of the value “18.13485 m” in the spread sheet.
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Figure 62: Mean, 50%ile, 95%ile, and 99%ile LDE. Parameters: N = 3 to 24

immersed sensors, side = 1,000 m, alt = 0 m, with errors.

Figure 63: Configurations and conditions are the same as for Figure 62. The

values plotted are for the double logarithms of N and LDE. Linear regression

trend lines for the double logarithm transformations are shown.
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Figure 64: Mean, 50%ile, 95%ile, and 99%ile LDE. Parameters: N = 3 to 24

standoff sensors, side = 1,000 m, alt = 0 m, with errors.

Figure 65: Configurations and conditions are the same as for Figure 64. The

values plotted are for the double logarithms of N and LDE. Linear regression

trend lines for the double logarithm transformations are shown.
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Figure 66: Mean, 50%ile, 95%ile, and 99%ile LDE. Parameters: N = 3 to 24

immersed sensors, side = 1,000 m, alt = 300 m, with errors.

Figure 67: Configurations and conditions are the same as for Figure 66. The

values plotted are for the double logarithms of N and LDE. Linear regression

trend lines for the double logarithm transformations are shown.
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Figure 68: Mean, 50%ile, 95%ile, and 99%ile LDE. Parameters: N = 3 to 24

standoff sensors, side = 1,000 m, alt = 300 m, with errors.

Figure 69: Configurations and conditions are the same as for Figure 68. The

values plotted are for the double logarithms of N and LDE. Linear regression

trend lines for the double logarithm transformations are shown.
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Table 3: Linear regression models for immersed sensors for individual alt and side:

Mean and 95%ile LDE for side = 1,000 m to 4,000 m.

Mean 95%ile
ln lnN Mean Mean ln lnN 95%ile 95%ile

alt (m) side (m) w1 w0 R2 w1 w0 R2

0 1000 -0.8154 1.6528 0.9984 -0.6940 1.8918 0.9985
100 1000 -0.8141 1.6165 0.9988 -0.7016 1.8598 0.9993
200 1000 -0.7716 1.5875 0.9991 -0.6857 1.8305 0.9997
300 1000 -0.7287 1.5656 0.9990 -0.6616 1.8045 0.9992
400 1000 -0.6939 1.5570 0.9987 -0.6415 1.7917 0.9979
500 1000 -0.6663 1.5584 0.9983 -0.6222 1.7864 0.9965
600 1000 -0.6405 1.5624 0.9981 -0.6057 1.7875 0.9954
700 1000 -0.6187 1.5699 0.9981 -0.5886 1.7900 0.9956
800 1000 -0.5993 1.5787 0.9981 -0.5770 1.7978 0.9957
900 1000 -0.5819 1.5881 0.9981 -0.5627 1.8034 0.9956

1000 1000 -0.5663 1.5977 0.9981 -0.5493 1.8095 0.9955
0 2000 -0.8728 1.7188 0.9995 -0.7455 1.9544 0.9996

100 2000 -0.8943 1.6987 0.9995 -0.7653 1.9386 0.9996
200 2000 -0.8671 1.6762 0.9994 -0.7517 1.9177 0.9994
300 2000 -0.8410 1.6551 0.9990 -0.7411 1.8987 0.9987
400 2000 -0.8174 1.6383 0.9985 -0.7325 1.8832 0.9980
500 2000 -0.7914 1.6212 0.9980 -0.7192 1.8660 0.9976
600 2000 -0.7697 1.6102 0.9975 -0.7051 1.8522 0.9962
700 2000 -0.7485 1.6013 0.9972 -0.6915 1.8406 0.9955
800 2000 -0.7294 1.5955 0.9967 -0.6786 1.8321 0.9943
900 2000 -0.7126 1.5927 0.9963 -0.6671 1.8266 0.9934

1000 2000 -0.6975 1.5920 0.9960 -0.6547 1.8219 0.9921
0 3000 -0.9030 1.7519 0.9995 -0.7744 1.9854 0.9993

100 3000 -0.9316 1.7370 0.9994 -0.7989 1.9760 0.9993
200 3000 -0.9118 1.7200 0.9992 -0.7872 1.9605 0.9989
300 3000 -0.8927 1.7039 0.9990 -0.7777 1.9457 0.9984
400 3000 -0.8731 1.6876 0.9987 -0.7686 1.9312 0.9979
500 3000 -0.8567 1.6748 0.9980 -0.7628 1.9196 0.9968
600 3000 -0.8404 1.6629 0.9973 -0.7545 1.9069 0.9961
700 3000 -0.8228 1.6509 0.9967 -0.7474 1.8963 0.9951
800 3000 -0.8088 1.6433 0.9959 -0.7393 1.8871 0.9940
900 3000 -0.7918 1.6335 0.9955 -0.7279 1.8763 0.9936

1000 3000 -0.7775 1.6270 0.9950 -0.7156 1.8650 0.9931
0 4000 -0.9222 1.7725 0.9992 -0.7910 2.0033 0.9985

100 4000 -0.9557 1.7618 0.9991 -0.8168 1.9960 0.9985
200 4000 -0.9427 1.7507 0.9988 -0.8124 1.9893 0.9978
300 4000 -0.9262 1.7362 0.9984 -0.8020 1.9750 0.9975
400 4000 -0.9110 1.7233 0.9981 -0.7934 1.9623 0.9972
500 4000 -0.8973 1.7120 0.9977 -0.7883 1.9530 0.9966
600 4000 -0.8807 1.6979 0.9973 -0.7803 1.9409 0.9954
700 4000 -0.8692 1.6892 0.9967 -0.7755 1.9320 0.9949
800 4000 -0.8567 1.6800 0.9958 -0.7694 1.9226 0.9938
900 4000 -0.8449 1.6722 0.9952 -0.7635 1.9142 0.9928

1000 4000 -0.8311 1.6630 0.9947 -0.7553 1.9043 0.9928
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Table 4: Linear regression models for immersed sensors for individual alt and side:

Mean and 95%ile LDE for side = 5,000 m to 8,000 m.

Mean 95%ile
ln lnN Mean Mean ln lnN 95%ile 95%ile

alt (m) side (m) w1 w0 R2 w1 w0 R2

0 5000 -0.9366 1.7876 0.9987 -0.8041 2.0172 0.9973
100 5000 -0.9729 1.7794 0.9986 -0.8298 2.0102 0.9972
200 5000 -0.9621 1.7701 0.9984 -0.8237 2.0025 0.9971
300 5000 -0.9498 1.7593 0.9980 -0.8181 1.9943 0.9965
400 5000 -0.9364 1.7475 0.9975 -0.8106 1.9834 0.9959
500 5000 -0.9253 1.7381 0.9971 -0.8076 1.9770 0.9955
600 5000 -0.9115 1.7263 0.9969 -0.7969 1.9634 0.9954
700 5000 -0.9006 1.7172 0.9965 -0.7933 1.9566 0.9941
800 5000 -0.8905 1.7091 0.9957 -0.7903 1.9496 0.9931
900 5000 -0.8789 1.6999 0.9951 -0.7854 1.9420 0.9924

1000 5000 -0.8683 1.6920 0.9946 -0.7789 1.9326 0.9925
0 6000 -0.9493 1.8008 0.9981 -0.8136 2.0276 0.9962

100 6000 -0.9849 1.7915 0.9981 -0.8388 2.0203 0.9961
200 6000 -0.9776 1.7853 0.9978 -0.8361 2.0160 0.9959
300 6000 -0.9690 1.7780 0.9973 -0.8323 2.0106 0.9952
400 6000 -0.9573 1.7677 0.9969 -0.8243 2.0000 0.9950
500 6000 -0.9465 1.7583 0.9966 -0.8177 1.9905 0.9945
600 6000 -0.9365 1.7498 0.9961 -0.8168 1.9867 0.9940
700 6000 -0.9254 1.7401 0.9959 -0.8111 1.9788 0.9937
800 6000 -0.9156 1.7319 0.9953 -0.8043 1.9692 0.9925
900 6000 -0.9042 1.7221 0.9950 -0.7993 1.9610 0.9922

1000 6000 -0.8956 1.7152 0.9944 -0.7972 1.9560 0.9915
0 7000 -0.9576 1.8096 0.9976 -0.8214 2.0358 0.9952

100 7000 -0.9959 1.8027 0.9974 -0.8469 2.0289 0.9950
200 7000 -0.9913 1.7989 0.9972 -0.8465 2.0273 0.9949
300 7000 -0.9805 1.7892 0.9968 -0.8403 2.0197 0.9946
400 7000 -0.9735 1.7833 0.9962 -0.8371 2.0146 0.9937
500 7000 -0.9633 1.7743 0.9958 -0.8322 2.0074 0.9934
600 7000 -0.9535 1.7658 0.9957 -0.8250 1.9977 0.9929
700 7000 -0.9468 1.7601 0.9948 -0.8265 1.9967 0.9922
800 7000 -0.9368 1.7515 0.9945 -0.8215 1.9892 0.9919
900 7000 -0.9263 1.7423 0.9944 -0.8143 1.9799 0.9915

1000 7000 -0.9174 1.7347 0.9941 -0.8074 1.9711 0.9912
0 8000 -0.9667 1.8189 0.9969 -0.8288 2.0437 0.9939

100 8000 -1.0059 1.8127 0.9968 -0.8553 2.0376 0.9934
200 8000 -1.0001 1.8077 0.9967 -0.8528 2.0342 0.9938
300 8000 -0.9926 1.8010 0.9963 -0.8510 2.0313 0.9933
400 8000 -0.9860 1.7955 0.9958 -0.8472 2.0261 0.9926
500 8000 -0.9775 1.7878 0.9954 -0.8422 2.0190 0.9923
600 8000 -0.9678 1.7793 0.9953 -0.8360 2.0106 0.9922
700 8000 -0.9601 1.7726 0.9947 -0.8326 2.0050 0.9915
800 8000 -0.9547 1.7683 0.9940 -0.8329 2.0033 0.9908
900 8000 -0.9459 1.7605 0.9935 -0.8286 1.9968 0.9906

1000 8000 -0.9377 1.7535 0.9934 -0.8238 1.9902 0.9902
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Table 5: Linear regression models for immersed sensors for individual alt and side:

Mean and 95%ile LDE for side = 9,000 m and 10,000 m.

Mean 95%ile
ln lnN Mean Mean ln lnN 95%ile 95%ile

alt (m) side (m) w1 w0 R2 w1 w0 R2

0 9000 -0.9740 1.8264 0.9963 -0.8357 2.0509 0.9930
100 9000 -1.0131 1.8200 0.9963 -0.8604 2.0429 0.9925
200 9000 -1.0107 1.8181 0.9959 -0.8616 2.0434 0.9920
300 9000 -1.0033 1.8115 0.9957 -0.8572 2.0381 0.9923
400 9000 -0.9963 1.8055 0.9953 -0.8534 2.0331 0.9919
500 9000 -0.9907 1.8007 0.9946 -0.8519 2.0302 0.9908
600 9000 -0.9822 1.7931 0.9946 -0.8445 2.0211 0.9912
700 9000 -0.9728 1.7846 0.9944 -0.8423 2.0166 0.9908
800 9000 -0.9666 1.7794 0.9937 -0.8392 2.0116 0.9901
900 9000 -0.9604 1.7740 0.9930 -0.8366 2.0073 0.9900

1000 9000 -0.9510 1.7657 0.9926 -0.8326 2.0013 0.9898
0 10000 -0.9800 1.8325 0.9958 -0.8409 2.0563 0.9921

100 10000 -1.0195 1.8264 0.9957 -0.8656 2.0482 0.9916
200 10000 -1.0175 1.8249 0.9955 -0.8661 2.0483 0.9916
300 10000 -1.0125 1.8206 0.9953 -0.8641 2.0455 0.9914
400 10000 -1.0041 1.8130 0.9950 -0.8597 2.0402 0.9912
500 10000 -1.0011 1.8108 0.9942 -0.8594 2.0386 0.9900
600 10000 -0.9937 1.8041 0.9937 -0.8550 2.0326 0.9897
700 10000 -0.9854 1.7967 0.9936 -0.8486 2.0246 0.9897
800 10000 -0.9777 1.7898 0.9933 -0.8457 2.0199 0.9895
900 10000 -0.9738 1.7866 0.9923 -0.8475 2.0195 0.9880

1000 10000 -0.9660 1.7797 0.9922 -0.8422 2.0128 0.9885
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Table 6: Linear regression models for immersed sensors for individual alt and side:

50%ile and 99%ile LDE for side = 1,000 m to 4,000 m.

50%ile 99%ile
ln lnN 50%ile 50%ile ln lnN 99%ile 99%ile

alt (m) side (m) w1 w0 R2 w1 w0 R2

0 1000 -0.7539 1.4551 0.9976 -0.6180 1.9708 0.9965
100 1000 -0.7445 1.4248 0.9965 -0.6494 1.9599 0.9981
200 1000 -0.6864 1.4099 0.9959 -0.6630 1.9474 0.9983
300 1000 -0.6437 1.4081 0.9958 -0.6602 1.9285 0.9992
400 1000 -0.6108 1.4150 0.9959 -0.6470 1.9114 0.9984
500 1000 -0.5866 1.4277 0.9962 -0.6465 1.9147 0.9968
600 1000 -0.5630 1.4398 0.9960 -0.6332 1.9112 0.9959
700 1000 -0.5446 1.4548 0.9959 -0.6231 1.9148 0.9948
800 1000 -0.5291 1.4705 0.9960 -0.6106 1.9173 0.9951
900 1000 -0.5138 1.4842 0.9962 -0.6002 1.9225 0.9952

1000 1000 -0.4999 1.4971 0.9962 -0.5885 1.9272 0.9957
0 2000 -0.7703 1.4741 0.9974 -0.6918 2.0580 0.9985

100 2000 -0.7928 1.4555 0.9971 -0.7034 2.0423 0.9988
200 2000 -0.7602 1.4429 0.9969 -0.7130 2.0370 0.9992
300 2000 -0.7267 1.4311 0.9965 -0.7120 2.0221 0.9988
400 2000 -0.6985 1.4240 0.9964 -0.7251 2.0189 0.9985
500 2000 -0.6731 1.4195 0.9962 -0.7183 2.0013 0.9978
600 2000 -0.6512 1.4181 0.9960 -0.7154 1.9910 0.9967
700 2000 -0.6331 1.4202 0.9963 -0.7037 1.9760 0.9960
800 2000 -0.6176 1.4239 0.9962 -0.6983 1.9684 0.9949
900 2000 -0.6055 1.4304 0.9964 -0.6969 1.9675 0.9935

1000 2000 -0.5938 1.4369 0.9965 -0.6934 1.9651 0.9928
0 3000 -0.7768 1.4814 0.9972 -0.7287 2.0983 0.9991

100 3000 -0.8053 1.4638 0.9970 -0.7404 2.0864 0.9987
200 3000 -0.7856 1.4551 0.9971 -0.7383 2.0762 0.9989
300 3000 -0.7647 1.4483 0.9970 -0.7395 2.0679 0.9988
400 3000 -0.7412 1.4392 0.9966 -0.7385 2.0598 0.9984
500 3000 -0.7204 1.4327 0.9965 -0.7437 2.0541 0.9974
600 3000 -0.7026 1.4289 0.9966 -0.7470 2.0459 0.9972
700 3000 -0.6843 1.4248 0.9963 -0.7468 2.0368 0.9962
800 3000 -0.6695 1.4235 0.9963 -0.7452 2.0292 0.9947
900 3000 -0.6547 1.4221 0.9962 -0.7419 2.0211 0.9942

1000 3000 -0.6425 1.4232 0.9964 -0.7351 2.0112 0.9927
0 4000 -0.7810 1.4859 0.9969 -0.7509 2.1231 0.9989

100 4000 -0.8137 1.4707 0.9969 -0.7673 2.1155 0.9987
200 4000 -0.8026 1.4666 0.9969 -0.7658 2.1103 0.9985
300 4000 -0.7828 1.4565 0.9971 -0.7643 2.1020 0.9981
400 4000 -0.7678 1.4517 0.9968 -0.7612 2.0916 0.9980
500 4000 -0.7497 1.4445 0.9965 -0.7597 2.0846 0.9973
600 4000 -0.7336 1.4392 0.9965 -0.7572 2.0747 0.9969
700 4000 -0.7188 1.4349 0.9965 -0.7632 2.0716 0.9958
800 4000 -0.7053 1.4319 0.9965 -0.7685 2.0690 0.9951
900 4000 -0.6913 1.4288 0.9964 -0.7709 2.0645 0.9947

1000 4000 -0.6788 1.4260 0.9964 -0.7689 2.0573 0.9938
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Table 7: Linear regression models for immersed sensors for individual alt and side:

50%ile and 99%ile LDE for side = 5,000 m to 8,000 m.

50%ile 99%ile
ln lnN 50%ile 50%ile ln lnN 99%ile 99%ile

alt (m) side (m) w1 w0 R2 w1 w0 R2

0 5000 -0.7841 1.4890 0.9968 -0.7700 2.1425 0.9988
100 5000 -0.8175 1.4734 0.9967 -0.7865 2.1359 0.9981
200 5000 -0.8092 1.4699 0.9966 -0.7856 2.1323 0.9981
300 5000 -0.7958 1.4633 0.9969 -0.7830 2.1257 0.9978
400 5000 -0.7821 1.4580 0.9970 -0.7775 2.1146 0.9974
500 5000 -0.7701 1.4542 0.9968 -0.7776 2.1092 0.9968
600 5000 -0.7553 1.4483 0.9965 -0.7714 2.0977 0.9967
700 5000 -0.7417 1.4433 0.9965 -0.7713 2.0929 0.9961
800 5000 -0.7297 1.4397 0.9965 -0.7744 2.0888 0.9945
900 5000 -0.7186 1.4370 0.9965 -0.7784 2.0855 0.9943

1000 5000 -0.7068 1.4337 0.9966 -0.7800 2.0817 0.9934
0 6000 -0.7860 1.4910 0.9967 -0.7819 2.1551 0.9985

100 6000 -0.8196 1.4749 0.9967 -0.7989 2.1490 0.9975
200 6000 -0.8142 1.4732 0.9966 -0.7994 2.1479 0.9973
300 6000 -0.8061 1.4702 0.9966 -0.7997 2.1446 0.9971
400 6000 -0.7929 1.4632 0.9969 -0.7955 2.1358 0.9963
500 6000 -0.7810 1.4583 0.9969 -0.7920 2.1285 0.9964
600 6000 -0.7711 1.4555 0.9967 -0.7880 2.1200 0.9953
700 6000 -0.7597 1.4512 0.9965 -0.7857 2.1131 0.9954
800 6000 -0.7479 1.4466 0.9964 -0.7811 2.1049 0.9943
900 6000 -0.7364 1.4423 0.9964 -0.7850 2.1032 0.9944

1000 6000 -0.7271 1.4400 0.9964 -0.7879 2.1006 0.9932
0 7000 -0.7865 1.4916 0.9968 -0.7931 2.1665 0.9978

100 7000 -0.8219 1.4767 0.9966 -0.8120 2.1625 0.9966
200 7000 -0.8163 1.4744 0.9966 -0.8119 2.1614 0.9965
300 7000 -0.8109 1.4726 0.9964 -0.8085 2.1549 0.9964
400 7000 -0.8009 1.4675 0.9968 -0.8103 2.1541 0.9960
500 7000 -0.7910 1.4634 0.9968 -0.8039 2.1435 0.9950
600 7000 -0.7808 1.4593 0.9968 -0.7996 2.1358 0.9949
700 7000 -0.7722 1.4567 0.9967 -0.7982 2.1308 0.9936
800 7000 -0.7626 1.4532 0.9965 -0.7927 2.1214 0.9934
900 7000 -0.7516 1.4485 0.9964 -0.7922 2.1173 0.9926

1000 7000 -0.7423 1.4452 0.9963 -0.7936 2.1149 0.9929
0 8000 -0.7879 1.4928 0.9967 -0.8017 2.1758 0.9970

100 8000 -0.8241 1.4784 0.9965 -0.8224 2.1737 0.9957
200 8000 -0.8190 1.4763 0.9966 -0.8182 2.1679 0.9957
300 8000 -0.8140 1.4740 0.9966 -0.8205 2.1679 0.9959
400 8000 -0.8078 1.4718 0.9966 -0.8189 2.1639 0.9953
500 8000 -0.7981 1.4667 0.9968 -0.8151 2.1573 0.9942
600 8000 -0.7887 1.4628 0.9968 -0.8114 2.1507 0.9939
700 8000 -0.7810 1.4601 0.9966 -0.8079 2.1441 0.9935
800 8000 -0.7729 1.4573 0.9967 -0.8051 2.1379 0.9927
900 8000 -0.7646 1.4546 0.9966 -0.8046 2.1342 0.9921

1000 8000 -0.7551 1.4503 0.9963 -0.8018 2.1281 0.9915
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Table 8: Linear regression models for immersed sensors for individual alt and side:

50%ile and 99%ile LDE for side = 9,000 m and 10,000 m.

50%ile 99%ile
ln lnN 50%ile 50%ile ln lnN 99%ile 99%ile

alt (m) side (m) w1 w0 R2 w1 w0 R2

0 9000 -0.7876 1.4928 0.9967 -0.8080 2.1826 0.9964
100 9000 -0.8248 1.4789 0.9966 -0.8284 2.1798 0.9951
200 9000 -0.8220 1.4785 0.9965 -0.8284 2.1788 0.9945
300 9000 -0.8161 1.4752 0.9966 -0.8252 2.1742 0.9946
400 9000 -0.8114 1.4737 0.9964 -0.8267 2.1730 0.9947
500 9000 -0.8039 1.4700 0.9969 -0.8245 2.1690 0.9941
600 9000 -0.7955 1.4659 0.9969 -0.8213 2.1628 0.9930
700 9000 -0.7883 1.4634 0.9969 -0.8167 2.1558 0.9929
800 9000 -0.7807 1.4603 0.9967 -0.8130 2.1491 0.9921
900 9000 -0.7738 1.4582 0.9966 -0.8110 2.1440 0.9914

1000 9000 -0.7670 1.4561 0.9965 -0.8084 2.1389 0.9906
0 10000 -0.7889 1.4940 0.9966 -0.8152 2.1902 0.9959

100 10000 -0.8253 1.4793 0.9965 -0.8336 2.1848 0.9942
200 10000 -0.8222 1.4783 0.9966 -0.8349 2.1856 0.9937
300 10000 -0.8178 1.4760 0.9966 -0.8326 2.1823 0.9937
400 10000 -0.8136 1.4743 0.9964 -0.8331 2.1805 0.9941
500 10000 -0.8096 1.4736 0.9966 -0.8348 2.1802 0.9935
600 10000 -0.8013 1.4688 0.9968 -0.8308 2.1748 0.9924
700 10000 -0.7930 1.4649 0.9968 -0.8266 2.1673 0.9917
800 10000 -0.7866 1.4626 0.9969 -0.8222 2.1608 0.9915
900 10000 -0.7801 1.4602 0.9967 -0.8193 2.1554 0.9904

1000 10000 -0.7737 1.4581 0.9967 -0.8165 2.1500 0.9901
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Table 9: Linear regression models for standoff sensors for individual alt and side:

Mean and 95%ile LDE for side = 1,000 m to 4,000 m.

Mean 95%ile
ln lnN Mean Mean ln lnN 95%ile 95%ile

alt (m) side (m) w1 w0 R2 w1 w0 R2

0 1000 -0.3796 1.8085 0.9902 -0.3082 1.9693 0.9842
100 1000 -0.3959 1.8000 0.9890 -0.3210 1.9645 0.9826
200 1000 -0.3906 1.7804 0.9909 -0.3151 1.9482 0.9876
300 1000 -0.3929 1.7554 0.9941 -0.3125 1.9242 0.9941
400 1000 -0.4052 1.7335 0.9963 -0.3282 1.9096 0.9967
500 1000 -0.4193 1.7144 0.9977 -0.3456 1.8954 0.9987
600 1000 -0.4337 1.7008 0.9985 -0.3635 1.8830 0.9993
700 1000 -0.4447 1.6904 0.9989 -0.3805 1.8742 0.9989
800 1000 -0.4528 1.6835 0.9991 -0.3947 1.8679 0.9981
900 1000 -0.4584 1.6795 0.9991 -0.4089 1.8659 0.9974

1000 1000 -0.4612 1.6772 0.9991 -0.4189 1.8630 0.9973
0 2000 -0.4359 1.8812 0.9964 -0.3692 2.0488 0.9946

100 2000 -0.4543 1.8762 0.9961 -0.3848 2.0471 0.9947
200 2000 -0.4499 1.8695 0.9958 -0.3813 2.0421 0.9944
300 2000 -0.4443 1.8584 0.9962 -0.3748 2.0321 0.9953
400 2000 -0.4385 1.8435 0.9967 -0.3679 2.0185 0.9964
500 2000 -0.4354 1.8276 0.9974 -0.3643 2.0043 0.9983
600 2000 -0.4363 1.8128 0.9981 -0.3631 1.9900 0.9992
700 2000 -0.4387 1.7975 0.9986 -0.3647 1.9765 0.9992
800 2000 -0.4435 1.7838 0.9991 -0.3700 1.9653 0.9988
900 2000 -0.4485 1.7705 0.9993 -0.3757 1.9535 0.9981

1000 2000 -0.4545 1.7593 0.9993 -0.3859 1.9462 0.9976
0 3000 -0.4642 1.9153 0.9985 -0.4004 2.0867 0.9975

100 3000 -0.4826 1.9103 0.9986 -0.4159 2.0841 0.9985
200 3000 -0.4803 1.9073 0.9984 -0.4138 2.0811 0.9980
300 3000 -0.4762 1.9014 0.9982 -0.4105 2.0770 0.9977
400 3000 -0.4712 1.8931 0.9982 -0.4047 2.0690 0.9981
500 3000 -0.4661 1.8831 0.9984 -0.3992 2.0599 0.9981
600 3000 -0.4620 1.8723 0.9986 -0.3953 2.0506 0.9989
700 3000 -0.4579 1.8600 0.9988 -0.3912 2.0394 0.9995
800 3000 -0.4567 1.8491 0.9990 -0.3885 2.0287 0.9996
900 3000 -0.4575 1.8388 0.9992 -0.3877 2.0185 0.9992

1000 3000 -0.4579 1.8272 0.9993 -0.3884 2.0091 0.9987
0 4000 -0.4822 1.9363 0.9993 -0.4202 2.1093 0.9986

100 4000 -0.5007 1.9313 0.9995 -0.4366 2.1071 0.9994
200 4000 -0.4996 1.9298 0.9993 -0.4354 2.1055 0.9993
300 4000 -0.4967 1.9261 0.9993 -0.4338 2.1035 0.9992
400 4000 -0.4932 1.9211 0.9993 -0.4293 2.0980 0.9991
500 4000 -0.4888 1.9143 0.9993 -0.4238 2.0911 0.9992
600 4000 -0.4845 1.9068 0.9993 -0.4188 2.0839 0.9992
700 4000 -0.4800 1.8981 0.9993 -0.4143 2.0760 0.9993
800 4000 -0.4769 1.8898 0.9994 -0.4110 2.0687 0.9997
900 4000 -0.4740 1.8808 0.9995 -0.4096 2.0620 0.9998

1000 4000 -0.4711 1.8710 0.9994 -0.4050 2.0516 0.9997
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Table 10: Linear regression models for standoff sensors for individual alt and side:

Mean and 95%ile LDE for side = 5,000 m to 8,000 m.

Mean 95%ile
ln lnN Mean Mean ln lnN 95%ile 95%ile

alt (m) side (m) w1 w0 R2 w1 w0 R2

0 5000 -0.4952 1.9511 0.9996 -0.4342 2.1250 0.9986
100 5000 -0.5140 1.9462 0.9998 -0.4499 2.1223 0.9994
200 5000 -0.5130 1.9451 0.9998 -0.4497 2.1218 0.9994
300 5000 -0.5117 1.9432 0.9997 -0.4483 2.1200 0.9996
400 5000 -0.5089 1.9395 0.9997 -0.4468 2.1181 0.9994
500 5000 -0.5049 1.9343 0.9997 -0.4416 2.1121 0.9995
600 5000 -0.5013 1.9289 0.9997 -0.4370 2.1064 0.9996
700 5000 -0.4974 1.9226 0.9997 -0.4324 2.1000 0.9997
800 5000 -0.4937 1.9159 0.9997 -0.4281 2.0934 0.9998
900 5000 -0.4903 1.9089 0.9997 -0.4258 2.0882 0.9999

1000 5000 -0.4872 1.9016 0.9997 -0.4212 2.0804 0.9998
0 6000 -0.5051 1.9623 0.9997 -0.4442 2.1361 0.9986

100 6000 -0.5236 1.9569 0.9999 -0.4595 2.1329 0.9993
200 6000 -0.5225 1.9557 0.9999 -0.4588 2.1321 0.9993
300 6000 -0.5222 1.9550 0.9999 -0.4580 2.1310 0.9994
400 6000 -0.5201 1.9524 0.9999 -0.4576 2.1302 0.9995
500 6000 -0.5170 1.9485 0.9999 -0.4545 2.1266 0.9995
600 6000 -0.5138 1.9442 0.9999 -0.4508 2.1223 0.9996
700 6000 -0.5105 1.9394 0.9999 -0.4466 2.1173 0.9996
800 6000 -0.5078 1.9349 0.9999 -0.4437 2.1131 0.9997
900 6000 -0.5043 1.9291 0.9999 -0.4392 2.1067 0.9999

1000 6000 -0.5010 1.9230 0.9999 -0.4366 2.1019 0.9998
0 7000 -0.5135 1.9715 0.9996 -0.4527 2.1454 0.9980

100 7000 -0.5317 1.9658 0.9998 -0.4671 2.1411 0.9987
200 7000 -0.5313 1.9654 0.9998 -0.4670 2.1411 0.9989
300 7000 -0.5301 1.9639 0.9999 -0.4662 2.1400 0.9990
400 7000 -0.5291 1.9625 0.9998 -0.4651 2.1387 0.9992
500 7000 -0.5272 1.9601 0.9999 -0.4642 2.1373 0.9993
600 7000 -0.5240 1.9562 0.9999 -0.4602 2.1330 0.9994
700 7000 -0.5211 1.9523 0.9999 -0.4583 2.1304 0.9995
800 7000 -0.5182 1.9482 0.9999 -0.4555 2.1271 0.9996
900 7000 -0.5160 1.9444 0.9999 -0.4537 2.1240 0.9996

1000 7000 -0.5123 1.9389 0.9999 -0.4480 2.1168 0.9996
0 8000 -0.5203 1.9789 0.9995 -0.4605 2.1537 0.9975

100 8000 -0.5382 1.9729 0.9997 -0.4730 2.1477 0.9983
200 8000 -0.5380 1.9726 0.9997 -0.4732 2.1478 0.9983
300 8000 -0.5369 1.9714 0.9997 -0.4733 2.1478 0.9984
400 8000 -0.5357 1.9698 0.9998 -0.4710 2.1455 0.9986
500 8000 -0.5350 1.9688 0.9998 -0.4703 2.1445 0.9988
600 8000 -0.5326 1.9660 0.9998 -0.4693 2.1431 0.9990
700 8000 -0.5301 1.9627 0.9998 -0.4667 2.1401 0.9990
800 8000 -0.5272 1.9590 0.9999 -0.4640 2.1367 0.9991
900 8000 -0.5242 1.9549 0.9999 -0.4616 2.1339 0.9993

1000 8000 -0.5215 1.9509 0.9999 -0.4592 2.1306 0.9993
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Table 11: Linear regression models for standoff sensors for individual alt and side:

Mean and 95%ile LDE for side = 9,000 m and 10,000 m.

Mean 95%ile
ln lnN Mean Mean ln lnN 95%ile 95%ile

alt (m) side (m) w1 w0 R2 w1 w0 R2

0 9000 -0.5261 1.9853 0.9992 -0.4660 2.1596 0.9969
100 9000 -0.5438 1.9789 0.9995 -0.4784 2.1533 0.9977
200 9000 -0.5435 1.9786 0.9996 -0.4782 2.1533 0.9977
300 9000 -0.5425 1.9775 0.9996 -0.4784 2.1535 0.9979
400 9000 -0.5421 1.9769 0.9996 -0.4779 2.1528 0.9980
500 9000 -0.5405 1.9749 0.9996 -0.4758 2.1506 0.9982
600 9000 -0.5393 1.9734 0.9996 -0.4748 2.1494 0.9984
700 9000 -0.5375 1.9711 0.9997 -0.4748 2.1491 0.9984
800 9000 -0.5349 1.9679 0.9997 -0.4726 2.1463 0.9984
900 9000 -0.5326 1.9648 0.9998 -0.4697 2.1428 0.9986

1000 9000 -0.5297 1.9610 0.9998 -0.4663 2.1390 0.9989
0 10000 -0.5314 1.9909 0.9990 -0.4705 2.1646 0.9964

100 10000 -0.5486 1.9841 0.9993 -0.4831 2.1586 0.9972
200 10000 -0.5487 1.9842 0.9993 -0.4836 2.1591 0.9970
300 10000 -0.5480 1.9834 0.9994 -0.4831 2.1585 0.9971
400 10000 -0.5472 1.9824 0.9994 -0.4825 2.1578 0.9973
500 10000 -0.5457 1.9806 0.9994 -0.4813 2.1565 0.9975
600 10000 -0.5448 1.9794 0.9994 -0.4809 2.1559 0.9977
700 10000 -0.5434 1.9777 0.9995 -0.4795 2.1544 0.9980
800 10000 -0.5417 1.9755 0.9995 -0.4780 2.1526 0.9981
900 10000 -0.5391 1.9724 0.9996 -0.4758 2.1500 0.9980

1000 10000 -0.5375 1.9700 0.9996 -0.4745 2.1480 0.9981
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Table 12: Linear regression models for standoff sensors for individual alt and side:

50%ile and 99%ile LDE for side = 1,000 m to 4,000 m.

50%ile 99%ile
ln lnN 50%ile 50%ile ln lnN 99%ile 99%ile

alt (m) side (m) w1 w0 R2 w1 w0 R2

0 1000 -0.4211 1.7511 0.9947 -0.2701 2.0080 0.9542
100 1000 -0.4439 1.7407 0.9933 -0.2794 2.0049 0.9532
200 1000 -0.4382 1.7175 0.9941 -0.2722 1.9886 0.9685
300 1000 -0.4433 1.6918 0.9954 -0.2817 1.9759 0.9855
400 1000 -0.4464 1.6635 0.9973 -0.3049 1.9676 0.9902
500 1000 -0.4493 1.6404 0.9974 -0.3296 1.9618 0.9945
600 1000 -0.4489 1.6230 0.9971 -0.3527 1.9567 0.9971
700 1000 -0.4464 1.6105 0.9968 -0.3742 1.9531 0.9980
800 1000 -0.4426 1.6022 0.9968 -0.3920 1.9503 0.9985
900 1000 -0.4384 1.5976 0.9967 -0.4066 1.9482 0.9985

1000 1000 -0.4350 1.5960 0.9968 -0.4210 1.9494 0.9984
0 2000 -0.4582 1.7979 0.9983 -0.3506 2.1104 0.9727

100 2000 -0.4771 1.7868 0.9978 -0.3595 2.1081 0.9728
200 2000 -0.4770 1.7831 0.9978 -0.3533 2.0998 0.9752
300 2000 -0.4728 1.7721 0.9981 -0.3455 2.0891 0.9806
400 2000 -0.4678 1.7554 0.9977 -0.3407 2.0778 0.9865
500 2000 -0.4660 1.7383 0.9978 -0.3379 2.0655 0.9930
600 2000 -0.4695 1.7250 0.9980 -0.3400 2.0556 0.9969
700 2000 -0.4679 1.7070 0.9986 -0.3471 2.0476 0.9978
800 2000 -0.4675 1.6904 0.9989 -0.3563 2.0396 0.9986
900 2000 -0.4672 1.6752 0.9987 -0.3665 2.0322 0.9979

1000 2000 -0.4653 1.6613 0.9986 -0.3774 2.0251 0.9978
0 3000 -0.4739 1.8169 0.9991 -0.3869 2.1545 0.9834

100 3000 -0.4916 1.8052 0.9989 -0.3959 2.1528 0.9861
200 3000 -0.4909 1.8032 0.9988 -0.3941 2.1507 0.9850
300 3000 -0.4896 1.7989 0.9987 -0.3888 2.1444 0.9854
400 3000 -0.4865 1.7912 0.9987 -0.3829 2.1357 0.9895
500 3000 -0.4826 1.7812 0.9988 -0.3760 2.1263 0.9912
600 3000 -0.4789 1.7693 0.9984 -0.3721 2.1173 0.9944
700 3000 -0.4774 1.7580 0.9985 -0.3675 2.1072 0.9966
800 3000 -0.4790 1.7481 0.9986 -0.3685 2.1006 0.9984
900 3000 -0.4788 1.7366 0.9986 -0.3694 2.0931 0.9992

1000 3000 -0.4760 1.7224 0.9990 -0.3694 2.0842 0.9989
0 4000 -0.4830 1.8277 0.9995 -0.4118 2.1844 0.9872

100 4000 -0.4989 1.8139 0.9992 -0.4206 2.1816 0.9907
200 4000 -0.4982 1.8129 0.9991 -0.4200 2.1809 0.9898
300 4000 -0.4980 1.8114 0.9990 -0.4164 2.1767 0.9888
400 4000 -0.4974 1.8080 0.9989 -0.4117 2.1712 0.9910
500 4000 -0.4941 1.8017 0.9989 -0.4068 2.1642 0.9938
600 4000 -0.4908 1.7943 0.9991 -0.4043 2.1600 0.9944
700 4000 -0.4879 1.7861 0.9988 -0.3981 2.1510 0.9952
800 4000 -0.4853 1.7770 0.9985 -0.3954 2.1446 0.9963
900 4000 -0.4838 1.7684 0.9986 -0.3922 2.1367 0.9975

1000 4000 -0.4819 1.7583 0.9987 -0.3911 2.1302 0.9986
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Table 13: Linear regression models for standoff sensors for individual alt and side:

50%ile and 99%ile LDE for side = 5,000 m to 8,000 m.

50%ile 99%ile
ln lnN 50%ile 50%ile ln lnN 99%ile 99%ile

alt (m) side (m) w1 w0 R2 w1 w0 R2

0 5000 -0.4881 1.8336 0.9995 -0.4305 2.2052 0.9904
100 5000 -0.5029 1.8192 0.9993 -0.4418 2.2046 0.9934
200 5000 -0.5039 1.8197 0.9992 -0.4414 2.2039 0.9926
300 5000 -0.5033 1.8185 0.9991 -0.4398 2.2021 0.9921
400 5000 -0.5034 1.8172 0.9991 -0.4352 2.1971 0.9922
500 5000 -0.5013 1.8129 0.9990 -0.4302 2.1913 0.9939
600 5000 -0.4993 1.8084 0.9991 -0.4272 2.1867 0.9954
700 5000 -0.4963 1.8027 0.9991 -0.4237 2.1815 0.9962
800 5000 -0.4939 1.7963 0.9990 -0.4192 2.1754 0.9959
900 5000 -0.4909 1.7890 0.9989 -0.4158 2.1694 0.9972

1000 5000 -0.4896 1.7823 0.9986 -0.4147 2.1646 0.9977
0 6000 -0.4917 1.8380 0.9995 -0.4454 2.2218 0.9924

100 6000 -0.5062 1.8234 0.9993 -0.4566 2.2200 0.9949
200 6000 -0.5065 1.8234 0.9992 -0.4559 2.2192 0.9944
300 6000 -0.5069 1.8232 0.9992 -0.4563 2.2197 0.9935
400 6000 -0.5072 1.8227 0.9991 -0.4527 2.2160 0.9941
500 6000 -0.5055 1.8197 0.9991 -0.4486 2.2110 0.9946
600 6000 -0.5045 1.8170 0.9991 -0.4449 2.2066 0.9952
700 6000 -0.5026 1.8132 0.9990 -0.4418 2.2021 0.9963
800 6000 -0.5011 1.8091 0.9991 -0.4385 2.1974 0.9975
900 6000 -0.4978 1.8030 0.9992 -0.4349 2.1924 0.9979

1000 6000 -0.4956 1.7974 0.9991 -0.4318 2.1875 0.9977
0 7000 -0.4942 1.8412 0.9994 -0.4577 2.2350 0.9937

100 7000 -0.5089 1.8269 0.9993 -0.4699 2.2342 0.9956
200 7000 -0.5092 1.8270 0.9992 -0.4690 2.2334 0.9956
300 7000 -0.5091 1.8263 0.9991 -0.4668 2.2309 0.9954
400 7000 -0.5089 1.8257 0.9991 -0.4649 2.2290 0.9955
500 7000 -0.5092 1.8251 0.9991 -0.4635 2.2273 0.9954
600 7000 -0.5080 1.8226 0.9990 -0.4592 2.2226 0.9957
700 7000 -0.5069 1.8200 0.9990 -0.4566 2.2192 0.9965
800 7000 -0.5048 1.8164 0.9990 -0.4517 2.2131 0.9975
900 7000 -0.5039 1.8132 0.9990 -0.4507 2.2109 0.9981

1000 7000 -0.5019 1.8090 0.9991 -0.4474 2.2065 0.9984
0 8000 -0.4954 1.8429 0.9993 -0.4681 2.2461 0.9944

100 8000 -0.5106 1.8290 0.9992 -0.4796 2.2449 0.9958
200 8000 -0.5108 1.8290 0.9991 -0.4800 2.2452 0.9957
300 8000 -0.5115 1.8294 0.9990 -0.4766 2.2418 0.9964
400 8000 -0.5114 1.8287 0.9991 -0.4743 2.2393 0.9964
500 8000 -0.5117 1.8286 0.9990 -0.4755 2.2406 0.9959
600 8000 -0.5108 1.8269 0.9990 -0.4728 2.2374 0.9954
700 8000 -0.5095 1.8245 0.9990 -0.4694 2.2335 0.9968
800 8000 -0.5086 1.8221 0.9989 -0.4642 2.2277 0.9974
900 8000 -0.5066 1.8191 0.9989 -0.4623 2.2249 0.9980

1000 8000 -0.5055 1.8158 0.9989 -0.4586 2.2201 0.9983
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Table 14: Linear regression models for standoff sensors for individual alt and side:

50%ile and 99%ile LDE for side = 9,000 m and 10,000 m.

50%ile 99%ile
ln lnN 50%ile 50%ile ln lnN 99%ile 99%ile

alt (m) side (m) w1 w0 R2 w1 w0 R2

0 9000 -0.4969 1.8449 0.9993 -0.4766 2.2552 0.9951
100 9000 -0.5124 1.8311 0.9990 -0.4869 2.2528 0.9965
200 9000 -0.5126 1.8312 0.9990 -0.4882 2.2540 0.9961
300 9000 -0.5129 1.8313 0.9990 -0.4835 2.2492 0.9972
400 9000 -0.5133 1.8310 0.9989 -0.4839 2.2495 0.9969
500 9000 -0.5124 1.8300 0.9990 -0.4809 2.2464 0.9969
600 9000 -0.5129 1.8299 0.9989 -0.4820 2.2474 0.9961
700 9000 -0.5123 1.8284 0.9990 -0.4788 2.2437 0.9962
800 9000 -0.5109 1.8261 0.9988 -0.4758 2.2403 0.9971
900 9000 -0.5104 1.8242 0.9988 -0.4727 2.2365 0.9979

1000 9000 -0.5086 1.8215 0.9989 -0.4714 2.2345 0.9983
0 10000 -0.4981 1.8465 0.9992 -0.4837 2.2625 0.9957

100 10000 -0.5140 1.8329 0.9990 -0.4937 2.2597 0.9971
200 10000 -0.5139 1.8328 0.9990 -0.4943 2.2605 0.9969
300 10000 -0.5143 1.8330 0.9990 -0.4923 2.2585 0.9969
400 10000 -0.5145 1.8328 0.9989 -0.4908 2.2567 0.9970
500 10000 -0.5143 1.8322 0.9989 -0.4892 2.2551 0.9967
600 10000 -0.5147 1.8322 0.9989 -0.4894 2.2552 0.9966
700 10000 -0.5143 1.8313 0.9989 -0.4897 2.2555 0.9964
800 10000 -0.5142 1.8303 0.9988 -0.4863 2.2514 0.9965
900 10000 -0.5121 1.8274 0.9988 -0.4825 2.2473 0.9975

1000 10000 -0.5117 1.8258 0.9987 -0.4805 2.2447 0.9982
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10 Estimating Location Distance Error as a
Function of Altitude and Search Area Side
Length

This section generalizes the results of Section 9.3 for individual
configurations of given altitude and search area side length to arrive at
expressions that estimate the LDE statistical metrics over all simulated
altitudes and search area side lengths. Again, the method used is linear
regression over a set of transformed variables and various combinations of
those variables.

The initial attempts to find linear regression models for LDE statisti-
cal metrics were based on direct application to the set of input variables
and their transformations and combinations. However, those approaches re-
sulted in expressions that had twice or greater MAPE than that achieved by
the method described below in this section. In addition, the expressions that
provided the smallest MAPE were different for the various LDE statistical
metrics and for immersed and standoff sensors in the sense that the expres-
sions were functions of different sets of input variables. The expressions
also had greater worst-case MAPE. Therefore, after much experimentation,
linear regression directly over the set of input variables was abandoned in
favor of the following approach.
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10.1 Generalizing the Linear Regression Models Developed
for Fixed Configurations

A two-stage linear regression model was used to obtain estimates of
the four LDE statistical metrics. The first stage has already been described:
it was the procedure given in Section 9.3 that produced Table 3 through
Table 14, which list the linear regression weights w0 and w1 for the weighted
sum for the double logarithm of the LDE statistical metrics as a function of
the double logarithm of the number of sensors as expressed in (23).

The second stage was another pair of linear regressions that estimated
the weights w0 and w1 as weighted sums of the sets of input variables based
on altitude and search area side length. It is worth stating again that, unlike
the direct approach outlined above, the same set of variables in weighted
sums (with different weights) gave nearly optimal MAPE across the four
LDE statistical metrics and for immersed and standoff sensors. The shot-
gun approach described in Section 8.2 found that the best linear regression
models of w0 and w1 had v = 5 significant input variables: alt/side, 1/alt,
1/side, 1/side2, and alt/side2. Thus, there are v + 1 = 6 weights in each
the weighted sums for w0 and w1 for each of the LDE statistical metrics,
denoted by w′0, w′1, w′2, w′3, w′4, w′5.

These weights for immersed sensors are given in Table 15. The MAPE
achieved by these linear regression models for N = 5 to 24 were 2.33%,
2.01%, 3.79%, and 4.69% and the largest percentage errors were 14.30%,
9.31%, 20.51%, and 22.58% for the mean, 50%ile, 95%ile, and 99%ile LDE,
respectively; the worst R2 for those four linear regression models was 0.8959.
The weights for standoff sensors are given in Table 16. The MAPE achieved
by these linear regression models for N = 5 to 24 were 2.43%, 2.61%, 2.94%,
and 3.54% and the largest percentage errors were 15.31%, −13.70%, 18.01%,
and 23.35% for the mean, 50%ile, 95%ile, and 99%ile LDE, respectively; the
smallest R2 for any linear regression model was 0.9764.

These weights are used as follows. In Table 15 for immersed sensors or
Table 16 for standoff sensors, there are two rows for each of the LDE sta-
tistical metrics; let the LDE statistical metric be represented by the output
variable y. The first row lists the w′0, w′1, w′2, w′3, w′4, w′5 weights for the
expression for w0 and the second row lists the w′0, w′1, w′2, w′3, w′4, w′5 weights
for the expression for w1. Using the weights from the corresponding row for
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w0 or w1, the linear regression estimate for the weights w0 and w1 are given
by: 36

w0 = w′0 +w′1
alt

side
+w′2

1

alt+ 0.001
+w′3

1

side
+w′4

1

side2
+w′5

alt

side2
(25)

w1 = w′0 +w′1
alt

side
+w′2

1

alt+ 0.001
+w′3

1

side
+w′4

1

side2
+w′5

alt

side2
(26)

The estimated linear regression weights w0 and w1 are then used in
(23) to obtain the estimate of the LDE statistical metric represented by the
output variable y as a function of the number of sensors N .

36 As noted in Section 8.2, a millimeter was added to the altitude alt to avoid division
by zero when alt appeared as the denominator; thus, the transformed value alt+ 0.001 m
was used instead of alt.
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Table 15: Linear regression models for immersed sensors, based on shotgun ap-

proach as functions of alt and side, for mean, 50%ile, 95%ile, and 99%ile LDE.

LDE wi w′0 w′1 w′2 w′3 w′4 w′5
Mean w0 1.8619 −5.3677× 10−1 1.0873× 10−5 −3.9855× 102 1.3623× 105 5.0824× 102

Mean w1 −1.0566 6.2847× 10−1 4.1311× 10−5 3.8009× 102 −1.5350× 105 −3.4133× 102

50%ile w0 1.4859 −2.4263× 10−1 2.0301× 10−5 −6.2005× 101 −2.1106× 104 3.2277× 102

50%ile w1 −0.8421 6.6214× 10−1 3.8413× 10−5 6.7325× 101 2.3593× 104 −3.8132× 102

95%ile w0 2.0853 −4.8795× 10−1 6.3765× 10−6 −3.4933× 102 1.1160× 105 4.2128× 102

95%ile w1 −0.8967 3.0668× 10−1 3.0214× 10−5 3.1799× 102 −1.3927× 105 −1.3033× 102

99%ile w0 2.2256 −3.7335× 10−1 2.9147× 10−6 −4.3234× 102 1.5763× 105 3.3242× 102

99%ile w1 −0.8609 5.2166× 10−2 2.1083× 10−5 3.8667× 102 −1.8934× 105 7.1724× 100

Table 16: Linear regression models for standoff sensors, based on shotgun approach

as functions of alt and side, for mean, 50%ile, 95%ile, and 99%ile LDE.

LDE wi w′0 w′1 w′2 w′3 w′4 w′5
Mean w0 2.0281 −3.1295× 10−1 −5.2250× 10−6 −3.6449× 102 1.4236× 105 1.6165× 102

Mean w1 −0.5782 1.6218× 10−1 1.7738× 10−5 3.2424× 102 −1.2837× 105 −2.4539× 102

50%ile w0 1.8626 −2.7988× 10−1 5.7116× 10−7 −1.5297× 102 3.7051× 104 1.0113× 102

50%ile w1 −0.5277 7.5116× 10−2 1.8956× 10−5 1.1361× 102 −2.9788× 104 −7.3787× 101

95%ile w0 2.2044 −2.8498× 10−1 −6.3793× 10−6 −3.7504× 102 1.3953× 105 1.6075× 102

95%ile w1 −0.5180 1.8181× 10−1 1.3979× 10−5 3.4433× 102 −1.2544× 105 −2.9617× 102

99%ile w0 2.3141 −2.8758× 10−1 −5.6204× 10−6 −5.2354× 102 2.1414× 105 2.2034× 102

99%ile w1 −0.5364 1.9332× 10−1 7.5542× 10−6 4.8418× 102 −2.0102× 105 −3.6142× 102
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10.2 Applying the Two-Stage Linear Regression Models

Table 15 and Table 16, (25) and (26), and finally (23) and (24) are applied
in the two-stage linear regression model as follows. The same example used
in Section 9.3 is used here.

Consider the problem of estimating the mean LDE for the configuration
of N = 8 immersed sensors with alt = 300 m and side = 5,000 m; denote
the value of that statistical metric by y. In the first step, for the mean
LDE, Table 15 provides the weights w′0, w′1, w′2, w′3, w′4, w′5 in the “w0”
row to obtain w0 = 1.7616 from (25) and the weights w′0, w′1, w′2, w′3, w′4,
w′5 from the “w1” row to obtain w1 = -0.9531 from (26). In the second
stage, the weights w0 and w1 are substituted into (23) to obtain ln ln y =
1.7616− 0.9531 ln ln 8 = 1.0637. Solving for y as (24), the linear regression
estimate for the mean LDE for this configuration is 18.12 m.

For comparison, the measured linear regression weights listed in Table 4
resulting from 10,000 simulations of this configuration are w0 = 1.7593 and
w1 = -0.9498 as noted in the example involving this configuration in Sec-
tion 9.3.

The measured mean LDE for this configuration was 17.64 m, so the error
of the two-stage linear regression model estimate for the mean LDE relative
to the measured value was 2.75%.

Compared to the candidate linear regression models developed directly
over the set of input variables, the two-stage linear regression model pro-
duced linear regression estimates of the four LDE statistical metrics that
better matched the convex shape of the LDE curves (noted in Section 7)
as a function of altitude for a given number of sensors and search area side
length. The plots of the LDE statistical metrics shown in Section 7 were
functions of the alt/side ratio, but here the plots are shown as a function
of alt for a given value of side so as to better observe the tightness of the
LDE estimates without scattering.

The linear regression estimates obtained using the two-stage linear re-
gression model were applied to the data used in Section 7. The two-stage
linear regression estimates were based on sets of 10,000 simulations per con-
figuration where the altitude was varied from 0 m to 1,000 m (in steps of
100 m). The data used in Section 7 were obtained using a different random
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seed, were based on 1,000 simulations per configuration, and the altitudes
were incremented in steps of 10% of the range from 0 m to side for immersed
sensors and 2 × side for standoff sensors. Thus, the demonstration of the
effectiveness of the two-stage linear regression model involved a different set
of data from that for which the linear regressions were obtained. The results
are shown in Figure 70 through Figure 85. As in Section 7, the four LDE
statistical metrics are plotted as functions of the alt/side ratio, but in this
case the linear regression estimates are shown in addition to the measured
results from the simulations. Note that only the results for altitudes from
0 m to 1,000 m are shown as the linear regression models are valid for only
that range. To avoid the issue of Longfellow Events, only configurations of
five and more sensors are considered.

Figure 70 shows the four LDE statistical metrics for five immersed sen-
sors as a function of the alt/side ratio. The superimposing of eight sets
of points makes the plot difficult to read, but the only important observa-
tion is the fact that the plotted points for the linear regression estimates
track closely or are covered by those for the measured results. For clarity,
Figure 71 shows the same comparison but only for the mean and 95%ile
LDE.

The same situations for standoff sensors are shown in Figure 72 for the
four LDE statistical metrics and in Figure 73 for the mean and 95%ile LDE.
The same close tracking of the measured and estimated LDE statistical
metrics are observed over the plotted range of alt/side ratios.

Most encouraging is the fact that the two-stage linear regression model
is able to reproduce the convex behavior of the LDE statistical metrics
with respect to the alt/side ratio, which other candidate linear regression
approaches did not accomplish.

The comparisons continue in Figure 74 and Figure 75 for N = 10 im-
mersed sensors and Figure 76 and Figure 77 for N = 10 standoff sensors, in
Figure 78 and Figure 79 for N = 15 immersed sensors and Figure 80 and
Figure 81 for N = 15 standoff sensors, and in Figure 82 and Figure 83 for
N = 20 immersed sensors and Figure 84 and Figure 85 for N = 20 standoff
sensors. It can be observed that the close tracking of the measured LDE
statistical metrics and their linear regression estimates only improve with
increasing numbers of sensors.
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The two-stage linear regression model generalized the extensive sets of
weights listed in Table 3 through Table 14 into a few equations. It is unfor-
tunate that the double logarithm relationships between the LDE statistical
metrics and the number of sensors expressed in (23) provide little intuitive
feeling for the trends of those relationships. The next section provides a set
of simpler power-law approximations based on an alternate approach.
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Figure 70: For five immersed sensors, the mean, 50%ile, 95%ile, and 99%ile LDE

statistical metrics are shown as a function of the ratio alt/side. See text for ranges

of alt and side. With errors.

Figure 71: For five immersed sensors, only the mean and 95%ile LDE statistical

metrics are shown as a function of the ratio alt/side. See text for ranges of alt

and side. With errors.
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Figure 72: For five standoff sensors, the mean, 50%ile, 95%ile, and 99%ile LDE

statistical metrics are shown as a function of the ratio alt/side. See text for ranges

of alt and side. With errors.

Figure 73: For five standoff sensors, only the mean and 95%ile LDE statistical

metrics are shown as a function of the ratio alt/side. See text for ranges of alt

and side. With errors.
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Figure 74: For ten immersed sensors, the mean, 50%ile, 95%ile, and 99%ile LDE

statistical metrics are shown as a function of the ratio alt/side. See text for ranges

of alt and side. With errors.

Figure 75: For ten immersed sensors, only the mean and 95%ile LDE statistical

metrics are shown as a function of the ratio alt/side. See text for ranges of alt

and side. With errors.
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Figure 76: For ten standoff sensors, the mean, 50%ile, 95%ile, and 99%ile LDE

statistical metrics are shown as a function of the ratio alt/side. See text for ranges

of alt and side. With errors.

Figure 77: For ten standoff sensors, only the mean and 95%ile LDE statistical

metrics are shown as a function of the ratio alt/side. See text for ranges of alt

and side. With errors.
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Figure 78: For 15 immersed sensors, the mean, 50%ile, 95%ile, and 99%ile LDE

statistical metrics are shown as a function of the ratio alt/side. See text for ranges

of alt and side. With errors.

Figure 79: For 15 immersed sensors, only the mean and 95%ile LDE statistical

metrics are shown as a function of the ratio alt/side. See text for ranges of alt

and side. With errors.
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Figure 80: For 15 standoff sensors, the mean, 50%ile, 95%ile, and 99%ile LDE

statistical metrics are shown as a function of the ratio alt/side. See text for ranges

of alt and side. With errors.

Figure 81: For 15 standoff sensors, only the mean and 95%ile LDE statistical

metrics are shown as a function of the ratio alt/side. See text for ranges of alt

and side. With errors.
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Figure 82: For 20 immersed sensors, the mean, 50%ile, 95%ile, and 99%ile LDE

statistical metrics are shown as a function of the ratio alt/side. See text for ranges

of alt and side. With errors.

Figure 83: For 20 immersed sensors, only the mean and 95%ile LDE statistical

metrics are shown as a function of the ratio alt/side. See text for ranges of alt

and side. With errors.
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Figure 84: For 20 standoff sensors, the mean, 50%ile, 95%ile, and 99%ile LDE

statistical metrics are shown as a function of the ratio alt/side. See text for ranges

of alt and side. With errors.

Figure 85: For 20 standoff sensors, only the mean and 95%ile LDE statistical

metrics are shown as a function of the ratio alt/side. See text for ranges of alt

and side. With errors.
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11 Improvement Ratio for Location Distance
Error

Prior to this section, attention has focused on estimating the values of
an LDE statistical metric of interest (the mean, 50%ile, 95%ile, or 99%ile)
for two values of N (the number of sensors) and comparing them. The
challenges in developing the linear regression models were to maximize R2

and minimize MAPE to produce the best estimates of the LDE statistical
metrics for a given configuration, altitude, search area side length, and error
conditions.

This section seeks to answer directly the central question of the relative
improvement in LDE as the number of sensors increases. The key idea is
to work directly with the ratio of an LDE statistical metric of interest with
respect to a reference value, as a function of N , rather than the value of the
LDE statistical metric itself. Because Longfellow Events can be disregarded
for configurations involving five or more sensors, that reference value is the
LDE statistical metric with five sensors. The approach then consists of
obtaining, for a configuration of N sensors, the ratio of the LDE statistical
metric with N sensors to the reference value at five sensors.
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11.1 Improvement Ratio for an LDE Statistical Metric

For a given configuration and set of error conditions, the term
“Improvement Ratio for the Mean LDE for N sensors” 37 means
“the ratio of the mean LDE for that configuration with N sensors
relative to the mean LDE for the same configuration with five sen-
sors,” where the mean LDE is obtained by simulating 10,000 geometries per
configuration in the case of the Main Data Set.

For example, if the mean LDE for a specific configuration 38 with eight
sensors were 18.14 m and the mean LDE for the same configuration with
five sensors were 34.46 m, then the Improvement Ratio for the Mean LDE
for eight sensors would be 18.14/34.46 = 0.5264.

The terms “Improvement Ratio for the 50%ile LDE for N sen-
sors,” “Improvement Ratio for the 95%ile LDE for N sensors,” and
“Improvement Ratio for the 99%ile LDE for N sensors” are defined
similarly for the other LDE statistical metrics. Thus, if y represents an LDE
statistical metric, the Improvement Ratio for y for N sensors for a
given configuration and error conditions is given by

y for that configuration with N sensors

y for that configuration with 5 sensors
(27)

with the convention that, even when approximated, the Improvement Ratio
is defined to be 1.0 for N = 5 and approximations are used only for N ≥ 6.

37 Capitalization is used to help identify this long phrase as a single term.
38 This configuration has immersed sensors on the ground in a search area with

side = 1,000 m with the Standard Error Conditions of σpos = 10 m position error and
σtime = 30 ns timing error. These mean LDE values are based on 10,000 simulations per
configuration.
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11.2 Power-Law Linear Regression Model for the
Improvement Ratio

It was observed that the power-law (22) linear regression models, with
the input variable x1 replaced b y N , provided excellent fits for the
Improvement Ratios for the configurations used in this paper.

Contrary to the experience with the linear regression models for the
LDE statistical metrics as noted in Section 10.1, the best linear regression
model fits for the Improvement Ratios were obtained using the data for five
and more sensors (and not including the data for three and four sensors).
Again, as noted in that section, the reasons for this are unclear. The power-
law fit for five sensors, however, is not close to the actual value of 1.0 for
the Improvement Ratio for five sensors and so (as noted in Section 11.1) it
is defined to be exactly 1.0 for five sensors.

Thus, the power-law for an Improvement Ratio y can be defined in
terms of N and the linear regression weights in a manner similar to that of
(24) as

y = exp(w0 + w1 lnN) (28)

= ew0 Nw1

for N ≥ 6, and y = 1 for five sensors.

To be completely forthcoming, the power-law fit was not quite the op-
timal linear regression model. The best fit in all cases appeared to be an
exponential function of the double logarithm of the number of sensors (that
is, the logarithm of an LDE statistical metric y was a linear function of
the double logarithm of the number of sensors N). However, the improve-
ments in R2 and MAPE were so slight that the increased complexity of the
exponential function of the double logarithm did not warrant their use. 39

39 It is also not clear why the “logarithm of the Improvement Ratios as a linear function
of the logarithm of N” (that is, the power-law) and the “logarithm of Improvement Ra-
tios as a linear function of the double logarithm of N” linear regression model fits were
considerably better than the “double logarithm of the LDE statistical metrics as a linear
function of the double logarithm of N” as observed in Section 9.1. Since the denominator
in the Improvement Ratio for an LDE statistical metric is a constant with respect to N ,
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Figure 86 shows the Improvement Ratio for the Mean LDE for immersed
sensors on the ground in a search area with side= 1,000 m with the Standard
Error Conditions. The Improvement Ratio for N = 8 sensors is 0.5264, as
was calculated in the example above. The trend line for a power-law fit,
y = 3.7354N−0.921, is shown on that plot and it can be seen that R2 is
nearly unity.

Figure 87, Figure 88, and Figure 89 show the Improvement Ratios for
several other configurations, and the power-law is seen to provide good fits.

For the mean LDE for all of the configurations in the Main Data Set,
MAPE for the power-law approximation was 4.75% when calculated for
N ≥ 6 immersed sensors. The maximum absolute percentage error for
any configuration was 11.05% and the minimum R2 was 0.9669. Fits
were similarly good for the other LDE statistical metrics and for standoff
configurations. 40

The sets of w0 (or ew0) and w1 weights for the power-law linear regression
model (28) could have been tabulated for each specific configuration as was
done in Section 9.3 or generalized linear regression models could have been
developed using the shotgun approach as was done in Section 10.1. However,
good approximations of the Improvement Ratio are obtained by using the
LDE linear regression models of Section 9.3 or Section 10.1.

For a given configuration, one of those linear regression models can be
used to get an estimate of a desired LDE statistical metric for N sensors
and for five sensors, and ratio of those values provides an estimate of the
Improvement Ratio. Using the linear regression models of Section 9.3, for
all configurations with N ≥ 6 immersed sensors, MAPE was 7.6% and the
maximum absolute percentage error for any configuration was 14.56%. For
standoff sensors, MAPE was 1.75% and the maximum absolute percentage
error for any configuration was 10.69%.

the overall shape of the Improvement Ratio should follow the overall shape of the specific
LDE statistical metric. It is possible that the values of the LDE statistical metric for five
and more sensors may be modeled better by the power-law. This might be the basis for
future statistical exploration.

40 MAPE would have been even smaller if it were calculated for N ≥ 5 sensors using
the definition that the Improvement Ratio is 1.0 for N = 5.
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Figure 86: Improvement Ratio for the Mean LDE and its power-law trend line for

immersed sensors. Parameters: side = 1,000 m, alt = 0 m, with errors.

Figure 87: Improvement Ratio for the 95%ile LDE and its power-law trend line

for immersed sensors. Parameters: side = 5,000 m, alt = 7,000 m, with errors.
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Figure 88: Improvement Ratio for the Mean LDE and its power-law trend line for

standoff sensors. Parameters: side = 3,000 m, alt = 300 m, with errors.

Figure 89: Improvement Ratio for the 95%ile LDE and its power-law trend line

for standoff sensors. Parameters: side = 8,000 m, alt = 500 m, with errors.
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11.3 Reciprocal Approximations for the Improvement
Ratio

Averaging over all of the configurations in the Main Data Set, the value
of w1 in the power-law fit for the Improvement Ratio hovered around neg-
ative one. For immersed sensors, w1 averaged −0.9360, −0.7073, −1.1194,
and −1.2761 for the mean, 50%ile, 95%ile, and 99%ile LDE, respectively,
although the w1 values for specific configurations ranged from −0.6322 to
−1.4269. For standoff sensors, w1 averaged −0.9291, −0.8203, −0.9981, and
−1.1339 for the mean, 50%ile, 95%ile, and 99%ile LDE, respectively, and
the w1 values for specific configurations ranged from −0.6458 to −1.2959.

The fact that the averaged w1 weights were close to negative one sug-
gested that (28) might be approximated by a simple reciprocal function of
N for these statistics. That is, the estimate of an Improvement Ratio for
an LDE statistical metric, denoted by y, given by (28) as a function of two
weights w0 and w1, might itself be estimated by the simpler Reciprocal
Approximation 41 that is a function of a single weight 42 wRA as

y =
wRA
N

. (29)

for N ≥ 6, and y = 1 for five sensors.

Since the MAPE curve as a function of wRA is convex, the value of wRA
that minimizes MAPE over all of the configurations in the Main Data Set
(for a given LDE statistical metric and for immersed or standoff sensors) for
(29) is easily found. 43 For each of the four LDE statistical metrics, Table 17
gives the weights that minimized the MAPE for all configurations as well as
the worst-case percentage error for any N for any configuration.

For example, if y is the Improvement Ratio for the Mean LDE for im-
mersed sensors, then the value of wRA the Reciprocal Approximations given
in Table 17 is 4.07; thus, (29) yields y = 4.07/N which has a MAPE of
10.92% over all configurations in the Main Data Set with N ≥ 6. If y is the

41 Capitalization is used to help identify this phrase as a single term.
42 The term “weight” is used for wRA for consistency, although the more general term

“coefficient” might be more appropriate.
43 Unlike the methods used to obtain the linear regression model weights for other

estimates in this paper, the process of finding a good value of wRA for the Reciprocal
Approximations by minimizing MAPE is not linear regression.
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Improvement Ratio for the 95%ile LDE for standoff sensors, the Reciprocal
Approximation yields y = 3.80/N which has a MAPE of 11.56% over all
configurations in the Main Data Set with N ≥ 6.
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Table 17: Reciprocal Approximation weights wRA for immersed and standoff sen-

sors, based on Main Data Set, for mean, 50%ile, 95%ile, and 99%ile LDE.

LDE Max
Sensor Statistical Percentage
Pairing Metric wRA MAPE Error

Immersed: Mean 4.07 10.92% -45.02%
50%ile 5.96 12.13% -31.02%
95%ile 3.20 11.96% -46.34%
99%ile 2.50 15.29% -44.64%

Standoff: Mean 4.28 10.70% -43.40%
50%ile 5.16 9.23% -37.71%
95%ile 3.80 11.56% -48.99%
99%ile 3.00 18.09% -58.57%
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12 Ballpark Estimates and Reciprocal
Approximations of the Envelope of the
Improvement Ratio

The key idea of the previous section was to use the Improvement Ratio
as the figure-of-merit for the decrease of an LDE statistical metric as the
number of sensors increases. The previous section applied the Improvement
Ratios and their Reciprocal Approximations to configurations with specific
values of alt and side.

This section introduces another key idea where all configurations in the
Main Data Set are considered at once using the envelope of an LDE sta-
tistical metric.

Approved for Public Release; distribution unlimited; AFRL-2021-0842

149



12.1 Envelope of the Improvement Ratio

The approach used here is to produce estimates of relative perfor-
mance based on the statistics for an envelope of the Improvement Ratio
for an LDE statistical metric for all of the configurations and error
conditions in the Main Data Set (separately for immersed and standoff
sensors), rather than considering the configurations individually. Figure 90
plots the Improvement Ratios for the Mean LDE for N = 5 to 24 immersed
sensors for all of the configurations and error conditions represented in the
Main Data Set. Each point in the envelope represents the Improvement
Ratio for the Mean LDE resulting from 10,000 simulated geometries for
a configuration with N sensors and a specific combination of altitude and
search area side length. Similarly, Figure 91 plots the Improvement Ratios
for the Mean LDE for N = 5 to 24 standoff sensors.

The surprisingly narrow width of the envelopes over the range of N
prompted exploration of the descriptive statistics that describe the en-
velopes. These Ballpark Estimates 44 bound the envelope of the complete
Main Data Set, for a given number of sensors, rather than try to pin down
the LDE for a specific configuration and error conditions.

44 Capitalization is used to help identify this phrase as a single term.
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Figure 90: Envelope of all of the Improvement Ratios for the Mean LDE in the

Main Data Set for immersed sensors.

Figure 91: Envelope of all of the Improvement Ratios for the Mean LDE in the

Main Data Set for standoff sensors.
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12.2 Ballpark Estimates of the Statistics for the Envelope
of the Improvement Ratio

For each of the four Improvement Ratios for an LDE statistical met-
ric, linear regression models are obtained for descriptive statistics for
the envelopes for N sensors. The envelope for the Improvement Ratios
for the Mean LDE at N sensors, for example, is described using lin-
ear regression models for these descriptive statistics: the Minimum of
the Improvement Ratios for the Mean LDE, the Mean of the
Improvement Ratios for the Mean LDE, and the Maximum of the
Improvement Ratios for the Mean LDE. 45 These descriptive statistics
are obtained for a vertical slice through the envelope at a given value of N .

Thus, based on the envelope of the Improvement Ratios, the complete set
of combinations of the descriptive statistics for the Improvement Ratios 46

for the statistical metrics is:


Minimum

Mean
Maximum

 of the Improvement Ratios for the


Mean
50%ile
95%ile
99%ile

 LDE

for N

{
immersed
standoff

}
sensors, with respect to five sensors.

Figure 92 shows the linear regression models for the statistics for the
envelope of the Improvement Ratios for the Mean LDE for immersed sensors
plotted in Figure 90. For numbers of sensors N = 5 to 24, the points plotted
are the Minimum, Mean, and Maximum of the Improvement Ratios for the
Mean LDE for any configuration and error conditions in the Main Data Set
with N sensors.

Just as the Improvement Ratios for the LDE statistical metrics were
modeled adequately using a power-law function of the number of sen-
sors, it was found that the descriptive statistics for the envelopes of the
Improvement Ratios for the LDE statistical metrics also were described

45 Capitalization is used to help identify these long phrases as single terms.
46 Recall that the LDE statistical metric for five sensors is used to provide the reference

value for the ratio so as to eliminate Longfellow Events.
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faithfully using power-law relationships; these expressions are referred to
in this paper as the Ballpark Estimates.

The power-law equation for a Ballpark Estimate linear regression model
is defined in terms of linear regression weights in (28), where the output
variable y represents the Minimum, Mean, or Maximum of the Improvement
Ratios for the Mean, 50%ile, 95%ile, or 99%ile LDE. 47 Two alternate ex-
pressions are given in (28), where the second is the form displayed as the
trend line equations in the plots shown in Figure 92.

Expression (28) is used only for N = 6 to 24 sensors because
Improvement Ratios are defined to be 1.0 for five sensors.

Figure 92 shows the Microsoft Excel trend lines, their equations, and
R2 values for these statistics. For example, the trend line equation for the
Maximum of the Improvement Ratios for the Mean LDE (for all of the
simulated configurations and error conditions in the Main Data Set for N
immersed sensors) is displayed as y = 2.7711x−0.703; in the notation of this
paper and with an extra digit of precision in the exponent obtained from the
more detailed linear regression, this would be written as y = 2.7711N−0.7027

with y denoting the Maximum of the Improvement Ratios for the Mean LDE
at the given value of N . The R2 value for this linear regression model is
0.9879 showing an extremely close fit to the measured values. Similarly,
the linear regression model for the Minimum of the Improvement Ratios
for the Mean LDE would be written as y = 4.1546N−1.0452 and the linear
regression model for the Mean of the Improvement Ratios for the Mean
LDE would be written as y = 3.6026N−0.9263 . The R2 values for these two
power-law linear regression models are also both close to unity indicating
excellent goodness-of-fit.

It was noted in Section 8.2 that all of the linear regression models except
those in this section were based on simulation data for N = 3 to 24 but are
useful only for five and more sensors. It was also noted that experimentation
showed that the best results for the Ballpark Estimate approach described
here were obtained using the simulation data for N = 5 to 24. In a sense
however, the same phenomenon occurred again in that it was found that the
Ballpark Estimate linear regression models developed in this section must
be applied only for N = 6 to 24; although the Ballpark Estimate linear

47 Capitalization is used to help identify these long phrases as single terms.
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regression models give poor results for five sensors, the Improvement Ratio
for the Mean LDE is, by definition, exactly 1.0 for five sensors.

Figure 93 shows the trend lines for the same statistics and the same
configurations and error conditions as above for standoff sensors. The
linear regression model for the Maximum of the Improvement Ratios for
the Mean LDE (for all of the simulated configurations in the Main Data
Set for N standoff sensors) is y = 2.9173 N−0.7124, the linear regression
model for the Minimum of the Improvement Ratios for the Mean LDE is
y = 4.135N−1.0812, and the linear regression model for the Mean of the
Improvement Ratios for the Mean LDE is y = 3.7142N−0.9192 . Again, the
R2 values for all three power-law linear regression models are nearly unity.

Figure 94 and Figure 95 (for immersed and standoff sensors, respectively)
show the power-law linear regression models for the Minimum, Mean, and
Maximum of the Improvement Ratios for the 50%ile LDE. The envelopes
for the Improvement Ratios for the 50%ile LDE are even tighter than those
for the Improvement Ratios for the Mean LDE.

Figure 96 and Figure 97 show the power-law linear regression mod-
els for the three Improvement Ratios for the 95%ile LDE and Figure 98
and Figure 99 show the power-law linear regression models for the three
Improvement Ratios for the 99%ile LDE.

The smallest R2 value for any of these dozen linear regression models is
0.9530, indicating excellent goodness-of-fit.

Table 18 through Table 25 give the weights and R2 values for all of the
descriptive statistics for the Ballpark Estimate linear regression models.

These tables are used as follows. For example, suppose it is desired
to estimate the Mean of the Improvement Ratios for the Mean LDE as a
function of the number of immersed sensors.

First, from Table 18, the second line gives the weights for the Mean of
the Improvement Ratios for the Mean LDE. The values for w1 and either
w0 or ew0 are plugged into the appropriate expression in (28) to obtain the
linear regression model for the Mean of the Improvement Ratios for the
Mean LDE for immersed sensors. Here, the second alternate expression for
the Mean of the Improvement Ratios for the Mean LDE is used:
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y = 3.6026N−0.9263 . (30)

(The corresponding expression for standoff sensors is obtained using
Table 19, where the second line gives the weights for the Mean of the
Improvement Ratios for the Mean LDE that are plugged into (28) to obtain
the linear regression model for the Mean of the Improvement Ratios for the
Mean LDE for standoff sensors:

y = 3.7142N−0.9192 . (31)

Expressions (30) and (31) are used in Section 12.4.)

Second, having obtained (30) for immersed sensors, the reduction in the
Mean of the Improvement Ratios for the Mean LDE achieved by increasing
the number of sensors can be estimated. Setting N = 6 in (30) yields
the result that randomly selected configurations from the Main Data Set
with six immersed sensors have y = 0.6852 or 68.52% of the Mean of the
Improvement Ratios for the Mean LDE as the same configurations with only
five sensors. Setting N = 8 in (30) estimates that eight immersed sensors
have 52.49% of the Mean of the Improvement Ratios for the Mean LDE as
the configurations with five sensors.

Expression (30) can also be solved for N to determine how many im-
mersed sensors are needed to reduce the Mean of the Improvement Ratios
for the Mean LDE to a target level. If a target value of y = 0.25 for the
Mean of the Improvement Ratios for the Mean LDE were required, then the
requisite value of N would be d17.82e = 18 immersed sensors; the estimated
Mean of the Improvement Ratios for the Mean LDE with 18 immersed sen-
sors would be 24.77%, which would achieve the required target value.

Bounds on the statistics for the Improvement Ratio for an LDE statistical
metric are used as follows. From Table 18 and (30), the Minimum of the
Improvement Ratios for the Mean LDE for immersed sensors is given by

y = 4.1546N−0.9669 (32)
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and the Maximum of the Improvement Ratios for the Mean LDE for im-
mersed sensors is given by

y = 2.7711N−0.9879 . (33)

Setting N = 6 in (32) and (33) yields the lower and upper bounds of 63.86%
and 78.68% for the Mean of the Improvement Ratios for the Mean LDE for
eight immersed sensors compared to the same configurations with only five
sensors. Setting N = 8 in (32) and (33) yield the lower and upper bounds of
47.28% and 64.28% for the Mean of the Improvement Ratios for the Mean
LDE for eight immersed sensors compared to the same configurations with
only five sensors.
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Figure 92: For the envelope shown in Figure 90, power-law trend lines and lin-

ear regression models are shown for the Minimum, Mean, and Maximum of the

Improvement Ratios for the Mean LDE for immersed sensors.

Figure 93: For the envelope shown in Figure 91, power-law trend lines and lin-

ear regression models are shown for the Minimum, Mean, and Maximum of the

Improvement Ratios for the Mean LDE for standoff sensors.
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Figure 94: For envelope of the Improvement Ratios for the 50%ile LDE, power-law

trend lines and linear regression models are shown for the Minimum, Mean, and

Maximum of the Improvement Ratios for the 50%ile LDE for immersed sensors.

Figure 95: For envelope of the Improvement Ratios for the 50%ile LDE, power-law

trend lines and linear regression models are shown for the Minimum, Mean, and

Maximum of the Improvement Ratios for the 50%ile LDE for standoff sensors.
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Figure 96: For envelope of the Improvement Ratios for the 95%ile LDE, power-law

trend lines and linear regression models are shown for the Minimum, Mean, and

Maximum of the Improvement Ratios for the 95%ile LDE for immersed sensors.

Figure 97: For envelope of the Improvement Ratios for the 95%ile LDE, power-law

trend lines and linear regression models are shown for the Minimum, Mean, and

Maximum of the Improvement Ratios for the 95%ile LDE for standoff sensors.
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Figure 98: For envelope of the Improvement Ratios for the 99%ile LDE, power-law

trend lines and linear regression models are shown for the Minimum, Mean, and

Maximum of the Improvement Ratios for the 99%ile LDE for immersed sensors.

Figure 99: For envelope of the Improvement Ratios for the 99%ile LDE, power-law

trend lines and linear regression models are shown for the Minimum, Mean, and

Maximum of the Improvement Ratios for the 99%ile LDE for standoff sensors.
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Table 18: Weights for power-law linear regression model for Minimum, Mean, and

Maximum of the Improvement Ratios for the Mean LDE for immersed sensors, as

shown in Figure 92.

Statistics for ratio:
(Mean LDE for N sensors)
/ (Mean LDE for 5 sensors) w0 w1 ew0 R2

Max of ratio 1.0192 -0.7027 2.7711 0.9879
Mean of ratio 1.2817 -0.9263 3.6026 0.9732

Min of ratio 1.4242 -1.0452 4.1546 0.9669

Table 19: Weights for power-law linear regression model for Minimum, Mean, and

Maximum of the Improvement Ratios for the Mean LDE for standoff sensors, as

shown in Figure 93.

Statistics for ratio:
(Mean LDE for N sensors)
/ (Mean LDE for 5 sensors) w0 w1 ew0 R2

Max of ratio 1.0707 -0.7124 2.9173 0.9929
Mean of ratio 1.3122 -0.9192 3.7142 0.9809

Min of ratio 1.4195 -1.0182 4.1350 0.9733

Table 20: Weights for power-law linear regression model for Minimum, Mean, and

Maximum of the Improvement Ratios for the 50%ile LDE for immersed sensors, as

shown in Figure 94.

Statistics for ratio:
(50%ile LDE for N sensors)
/ (50%ile LDE for 5 sensors) w0 w1 ew0 R2

Max of ratio 0.9591 -0.6322 2.6094 0.9950
Mean of ratio 1.0439 -0.7063 2.8404 0.9902

Min of ratio 1.0773 -0.7377 2.9367 0.9876

Table 21: Weights for power-law linear regression model for Minimum, Mean, and

Maximum of the Improvement Ratios for the 50%ile LDE for standoff sensors, as

shown in Figure 95.

Statistics for ratio:
(50%ile LDE for N sensors)
/ (50%ile LDE for 5 sensors) w0 w1 ew0 R2

Max of ratio 0.9713 -0.6479 2.6414 0.9935
Mean of ratio 1.1958 -0.8173 3.3063 0.9879

Min of ratio 1.2453 -0.8613 3.4741 0.9845
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Table 22: Weights for power-law linear regression model for Minimum, Mean, and

Maximum of the Improvement Ratios for the 95%ile LDE for immersed sensors, as

shown in Figure 96.

Statistics for ratio:
(95%ile LDE for N sensors)
/ (95%ile LDE for 5 sensors) w0 w1 ew0 R2

Max of ratio 1.1423 -0.8176 3.1340 0.9784
Mean of ratio 1.5301 -1.1067 4.6187 0.9716

Min of ratio 1.6797 -1.2310 5.3637 0.9687

Table 23: Weights for power-law linear regression model for Minimum, Mean, and

Maximum of the Improvement Ratios for the 95%ile LDE for standoff sensors, as

shown in Figure 97.

Statistics for ratio:
(95%ile LDE for N sensors)
/ (95%ile LDE for 5 sensors) w0 w1 ew0 R2

Max of ratio 1.1283 -0.7332 3.0903 0.9957
Mean of ratio 1.3945 -0.9835 4.0328 0.9787

Min of ratio 1.4862 -1.0798 4.4203 0.9697

Table 24: Weights for power-law linear regression model for Minimum, Mean, and

Maximum of the Improvement Ratios for the 99%ile LDE for immersed sensors, as

shown in Figure 98.

Statistics for ratio:
(99%ile LDE for N sensors)
/ (99%ile LDE for 5 sensors) w0 w1 ew0 R2

Max of ratio 1.3103 -0.9678 3.7074 0.9640
Mean of ratio 1.7089 -1.2606 5.5230 0.9657

Min of ratio 1.8388 -1.4070 6.2890 0.9530

Table 25: Weights for power-law linear regression model for Minimum, Mean, and

Maximum of the Improvement Ratios for the 99%ile LDE for standoff sensors, as

shown in Figure 99.

Statistics for ratio:
(99%ile LDE for N sensors)
/ (99%ile LDE for 5 sensors) w0 w1 ew0 R2

Max of ratio 1.1706 -0.7525 3.2239 0.9964
Mean of ratio 1.5382 -1.1026 4.6560 0.9756

Min of ratio 1.7272 -1.2943 5.6246 0.9548
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12.3 Reciprocal Approximations for the Mean of the
Envelope of the Improvement Ratio for the Mean LDE

In Table 18 and Table 19, note that the w1 weights for the Mean of the
Improvement Ratios for the Mean LDE for both immersed and standoff sen-
sors are close to negative one: they are −0.9263 and −0.9192, respectively.
This fortunate situation indicates that (28) again can be approximated by a
simple reciprocal function wRA/N for these statistics. As the MAPE curve
as a function of wRA is convex, the value of wRA that minimizes MAPE
is easily found. This optimization process yielded the simplified expression
for the Mean of the Improvement Ratios for the Mean LDE for immersed
sensors

y =
4.25

N
(34)

and the Mean of the Improvement Ratios for the Mean LDE for standoff
sensors

y =
4.50

N
. (35)

These simplified expressions for the Ballpark Estimates are referred to as
Reciprocal Approximations. As was the case for (28), these expressions
are valid for N = 6 to 24 and the Improvement Ratio for the Mean LDE is
defined to be exactly 1.0 for five sensors.

The close fits of (34) and (35) to the true mean values of the mean LDE
are shown in Figure 100 and Figure 101 for immersed and standoff sensors,
respectively. MAPE for (34) is 6.26% and MAPE for (35) is 5.69% over the
range N = 6 to 24.

It must be emphasized that these MAPE values are with respect to
the mean value of the mean LDE for all of the configurations and error
conditions in the Main Data Set, with respect to a given number of sensors,
rather than with respect to specific configurations as was done in previous
sections.
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Figure 100: Reciprocal Approximation for the Mean of the Improvement Ratio

for the Mean LDE for immersed sensors.

Figure 101: Reciprocal Approximation for the Mean of the Improvement Ratio

for the Mean LDE for standoff sensors.
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12.4 Testing the Ballpark Estimates and Reciprocal
Approximations

The estimates of the descriptive statistics for the Ballpark Estimates
and Reciprocal Approximations were developed only for the envelope of all
of the configurations and error conditions contained in the Main Data Set,
but it is instructive and irresistible to see how closely they model the specific
configurations. Only the estimates for Mean of the Improvement Ratios for
the Mean LDE were considered.

For all of the configurations with N = 6 to 24 immersed sensors in the
Main Data Set, Ballpark Estimates of the Mean of the Improvement Ratios
for the Mean LDE were obtained using (30). MAPE for those estimates was
12.06%, and the largest percentage error was −38.49%. Using the Reciprocal
Approximation for the Mean of the Improvement Ratios for the Mean LDE
given by (34), MAPE for those estimates was 11.45%, and the largest per-
centage error was −42.59%. For comparison, the MAPE achieved by the
linear regression model presented in Section 10.1 was only 2.33% and the
largest percentage error was 14.33% over the range of N = 5 to 24 immersed
sensors.

Similarly, for all of the configurations with N = 6 to 24 standoff sensors,
MAPE for the Ballpark Estimates given by (31) was 12.17%, and the largest
percentage error was −36.50%. Using the Reciprocal Approximation for the
Mean of the Improvement Ratios for the Mean LDE given by (34), MAPE for
those estimates was 11.61%, and the largest percentage error was −40.49%.
The MAPE achieved by the linear regression model presented in Section 10.1
was 2.43% and the largest percentage error was 15.31% over the range of
N = 5 to 24 standoff sensors.

Clearly, the more detailed linear regression model that takes into ac-
count the specific altitude and search area side length provides much tighter
estimates than the Ballpark Estimates and Reciprocal Approximations, but
the trade-off of simplicity and fewer assumptions may make the Ballpark
Estimates more attractive to a user.
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13 Sensitivity to Variations in Sensor Altitude
and Error Conditions

In the previous sections, all of the simulations set the coefficient of vari-
ation of the nominal altitude σalt/alt to be 5%. In addition, the Standard
Error Conditions of σpos = 10 m position error and σtime = 30 ns timing
error were used. These notional amounts of variation in the configurations
and error conditions were selected to be reasonable but not based on any
actual military or civilian systems or scenarios.

This section explores the sensitivity of the results of this paper’s analyses
to ranges of values of σalt, σpos, and σtime. The ranges are intended to be
reasonable but not tied to any actual implementation.
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13.1 Sensitivity to Variations in Nominal Altitude

A set of simulations was performed to determine how the standard de-
viation σalt about the mean altitude affects LDE. Only the mean LDE was
considered. The simulated configurations had N = 5, 10, 15, and 20 im-
mersed sensors in a search area with side length side = 1,000 m at nominal
altitudes of alt = 500 m and 1,000 m. The Standard Error Conditions were
used.

The coefficient of variation σalt/alt was varied over the values 0, 0.05,
0.1, 0.2, and 0.25. Thus, for alt = 500 m, the configurations used the
values σalt = 0 m, 25 m, 50 m, 100 m, and 125 m. For alt = 1,000 m, the
configurations used the values σalt = 0 m, 50 m, 100 m, 200 m, and 250 m.

Due to the long run times required, only 1,000 simulations of each con-
figuration were performed.

The variation in mean LDE obtained for the configurations using the five
simulated values of σalt for a given nominal altitude was used to assess the
effect of σalt on LDE. Specifically, the variation in mean LDE is expressed
here in the form similar to a “percent error” calculation: it is defined as
the percentage difference between the maximum and minimum mean LDE
(for the five values of σalt) for a configuration, with respect to the minimum
mean LDE. Thus, the percentage variation in mean LDE is given by

(max mean LDE) − (min mean LDE)

(min mean LDE)
× 100% . (36)

It was found that the percentage variation in mean LDE was small for
every combination of N and alt tested. For the numbers of sensors and the
nominal altitudes identified above, the percentage variations in mean LDE
were:

• 3.89% for N = 5 and alt = 500 m

• 3.00% for N = 5 and alt = 1,000 m

• 2.49% for N = 10 and alt = 500 m

• 5.10% for N = 10 and alt = 1,000 m

• 2.22% for N = 15 and alt = 500 m
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• 6.02% for N = 15 and alt = 1,000 m

• 2.67% for N = 20 and alt = 500 m

• 6.65% for N = 20 and alt = 1,000 m

Within each set of mean LDE values for the five σalt per nominal altitude,
there was no obvious pattern that indicated that mean LDE was worse for
small or large σalt. Based on these small values of the percentage variations
in mean LDE, it can be concluded that the model used in this paper is
practically insensitive to the standard deviation of the nominal altitude of
the sensors. 48

48 A formal test of hypothesis concerning the difference of two means would have to be
conducted to confirm whether there is, in fact, any statistically significant difference in
mean LDE for the ranges of σalt that were simulated.
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13.2 Sensitivity to Variations in Error Conditions

The Standard Error Conditions used prior to this section fixed the value
of σpos at 10 m and σtime at 30 ns. This section explores the effect on mean
LDE of varying either σpos or σtime over a range of values with the other
error condition set at zero.

A dozen combinations of simulated configurations were used with
N = 5, 10, 15, and 20 immersed sensors in a search area with side length
side = 1,000 m at nominal altitudes of alt = 0 m, 500 m, and 1,000 m with
σalt = alt/20.

Due to the long run times required, only 1,000 simulations of each con-
figuration were performed.

The figures-of-merit for these analyses were the mean LDE as well as the
Improvement Ratio for the Mean LDE as defined in Section 12.1.
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13.2.1 Varying Only Position Error Conditions

The effect of introducing position error alone was explored by varying
σpos while σtime was set to zero. The values of σpos varied from 5 m to 20 m,
which were half to twice the standard error condition of σpos = 10 m used
in the Main Data Set.

Figure 102 shows the mean LDE for the 12 simulated configurations over
the given range of σpos. The major takeaway from this figure is that the
mean LDE increased essentially linearly with the position error. Table 26
provides the linear regression models for (21) for each of the 12 simulated
configurations, where w1 is the slope of the best straight line estimate and
w0 is the intercept. The R2 goodness-of-fit values are essentially unity.

Figure 103 shows how the Improvement Ratios for the Mean LDE in-
crease as position error increases for sensors on the ground. The trend lines
are very nearly parallel. The figure shows that position error is a factor
for immersed sensors on the ground as the benefit of using more sensors is
slightly reduced when σpos increases.

On the other hand, Figure 104 where alt = 500 m and Figure 105 where
alt = 1,000 m show Improvement Ratio for the Mean LDE trend lines that
are practically flat. This indicates, at least for the configurations and range
of position errors considered here, that position error for immersed airborne
sensors has little effect on the Improvement Ratio for the Mean LDE.
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Figure 102: Mean LDE as a function of standard deviation of position error

(σpos). See text for description of configurations and error conditions.

Table 26: Linear regression models for the mean LDE relationships as a function

of σpos (in m) shown in Figure 102.

N alt (m) w0 w1 R2

5 0 3.8997 1.6994 0.9930
10 0 0.7578 0.8334 0.9985
15 0 0.3366 0.6021 0.9994
20 0 0.1569 0.4981 0.9998
5 500 0.7706 1.5696 0.9995

10 500 0.1443 0.8530 1.0000
15 500 0.0745 0.6607 1.0000
20 500 0.0432 0.5575 1.0000
5 1000 0.9416 2.2947 0.9997

10 1000 0.1567 1.2783 1.0000
15 1000 0.0947 0.9965 1.0000
20 1000 0.0642 0.8412 1.0000
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Figure 103: Improvement Ratios for the Mean LDE for immersed sensors on the

ground, with trend lines and linear regression models, as a function of σpos. See

text for description of configurations and error conditions.

Figure 104: Improvement Ratios for the Mean LDE for immersed sensors at nom-

inal altitudes of 500 m, with trend lines and linear regression models, as a function

of σpos. See text for description of configurations and error conditions.
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Figure 105: Improvement Ratios for the Mean LDE for immersed sensors at nomi-

nal altitudes of 1,000 m, with trend lines and linear regression models, as a function

of σpos. See text for description of configurations and error conditions.
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13.2.2 Varying Only Timing Error Conditions

The effect of introducing timing error alone was explored by varying
σtime while σpos was set to zero. The values of σtime varied from 15 ns to
60 ns, which were half to twice the standard error condition of σtime = 30 ns
used in the Main Data Set.

Note that the plots and linear regression models are functions of σtime
in nanoseconds rather than in seconds.

Figure 106 shows the mean LDE for the 12 simulated configurations over
the given range of σtime. As was the case for position error, the clear obser-
vation from this figure is that the mean LDE increased essentially linearly
with the timing error.

Table 27 provides the linear regression models for (21) for each of the
12 simulated configurations, where w1 is the slope of the best straight line
estimate and w0 is the intercept. The R2 goodness-of-fit values are again
nearly indistinguishable from unity.

Figure 107 shows how the Improvement Ratios for the Mean LDE in-
crease as timing errors increase for sensors on the ground. As for non-zero
σpos alone, the trend lines are nearly parallel for the Improvement Ratios
for the Mean LDE as a function of σtime.

The slopes of the trend lines in Figure 107 (with timing error scaled
in nanoseconds) are roughly half those in Figure 103 (with position error
scaled in meters). Even so, it is clear that timing error is still a factor for
immersed sensors on the ground and the benefit of using more sensors is
slightly reduced even when only σtime increased.

Figure 108 where alt = 500 m and Figure 109 where alt = 1,000 m show
that the Improvement Ratios for the Mean LDE are nearly flat with respect
to increases in σtime. Thus, for the configurations and range of timing errors
considered here, it appears that timing errors for immersed airborne sensors
have little effect on the Improvement Ratios for the Mean LDE.
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Figure 106: Mean LDE as a function of standard deviation of timing error

(σtime). See text for description of configurations and error conditions.

Table 27: Linear regression models for the mean LDE relationships as a function

of σtime (in ns) shown in Figure 106.

N alt (m) w0 w1 R2

5 0 5.3424 0.6844 0.9919
10 0 0.8977 0.3425 0.9989
15 0 0.4421 0.2582 0.9994
20 0 0.2780 0.2087 0.9996
5 500 1.9009 0.7852 0.9984

10 500 0.3425 0.4273 0.9998
15 500 0.2050 0.3194 0.9999
20 500 0.1350 0.2723 0.9999
5 1000 2.3808 1.0570 0.9987

10 1000 0.4788 0.5898 0.9998
15 1000 0.2765 0.4479 0.9999
20 1000 0.1922 0.3825 0.9999
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Figure 107: Improvement Ratios for the Mean LDE for immersed sensors on the

ground, with trend lines and linear regression models, as a function of σtime. See

text for description of configurations and error conditions.

Figure 108: Improvement Ratios for the Mean LDE for immersed sensors at nom-

inal altitudes of 500 m, with trend lines and linear regression models, as a function

of σtime. See text for description of configurations and error conditions.
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Figure 109: Improvement Ratios for the Mean LDE for immersed sensors at nomi-

nal altitudes of 1,000 m, with trend lines and linear regression models, as a function

of σtime. See text for description of configurations and error conditions.
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13.2.3 Equivalent Values of σpos and σtime for Mean LDE

The problem considered now is to how to determine the value of σpos
that provides the same mean LDE as a given value of σtime, or the value of
σtime that provides the same mean LDE as a given value of σpos, when only
one of those error conditions is present.

As described in Section 13.2.1 and Section 13.2.2, Table 26 gives the
linear regression model weights for mean LDE in terms of σpos (in m) and
Table 27 gives the linear regression model weights for mean LDE in terms of
σtime (in ns). For given values of N and alt, the equations given by (21) by
those two linear regression models can be set equal to each other and solved
either for σpos in terms of σtime or for σtime in terms of σpos.

Table 28 gives the weights for the functions for these equivalences. The
w0 intercepts can effectively be disregarded. The w1 weights for the conver-
sion of a σtime value to the value of σpos that yields the same mean LDE
hover in the range of about 0.4 to 0.5. The w1 weights for the conversion of
a σpos value to the value of σtime that yields the same mean LDE hover in
the range of about 2 to 2.5.

Thus, it appears that an additional nanosecond of timing error standard
deviation is equivalent to approximately an additional half (or a little less)
of a meter of position error standard deviation or, conversely, an additional
meter of position error standard deviation is equivalent to approximately two
(or a little more) additional nanoseconds of timing error standard deviation.

Using c = 3× 108 m/sec as the speed of light, one meter is equivalent to
3.33 nanoseconds. This ratio is considerably higher than the approximation
obtained here for the equivalence between position and timing error standard
deviation for mean LDE.

It is not correct in general to take the inverse of a linear regression
model. However, the linear fits based on the R2 values are so good that
the error percentages for all but the smallest values of σpos and σtime were
in the range of ±5% to less than ±1%. This is certainly adequate for an
overall understanding of the equivalence between these two types of error
conditions.
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Table 28: Weights for equivalences between the linear regression models for mean

LDE in terms of standard deviations of position error (in m) and timing error (in

ns) based on Table 26 and Table 27.

σtime to σpos: σtime to σpos: σpos to σtime: σpos to σtime:
N alt (m) w0 w1 w0 w1

5 0 0.8490 0.4027 -2.1080 2.4830
10 0 0.1679 0.4109 -0.4086 2.4335
15 0 0.1752 0.4288 -0.4086 2.3321
20 0 0.2430 0.4190 -0.5800 2.3864
5 500 0.7201 0.5002 -1.4395 1.9991

10 500 0.2324 0.5009 -0.4640 1.9964
15 500 0.1975 0.4835 -0.4085 2.0682
20 500 0.1646 0.4885 -0.3370 2.0470
5 1000 0.6272 0.4606 -1.3616 2.1711

10 1000 0.2520 0.4614 -0.5461 2.1674
15 1000 0.1824 0.4495 -0.4059 2.2248
20 1000 0.1522 0.4547 -0.3346 2.1990
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13.2.4 Sensor Position Errors and Timing Errors Are Not
Linearly Additive

In spite of the findings in Section 13.2.3 that indicate that there are
proportional equivalences between the effects of sensor position errors and
timing errors on LDE, those errors do not add linearly. That is to say, the
sum of the LDE resulting from pure position error and the LDE resulting
from pure timing error does not equal the LDE resulting from position errors
and timing errors. Thus, the principle of superposition does not apply.

Sufficient proof of this conclusion is provided by a few demonstrations
involving combinations of the Standard Error Conditions. Mean LDE val-
ues were obtained from simulations of N = 5, 10, 15, and 20 immersed
sensors in a search area with side length side = 1,000 m at nominal al-
titudes of alt = 0 m, 500 m, and 1,000 m with σalt = alt/20. For the
configurations with both position and timing errors (that is, with the Stan-
dard Error Conditions of σpos = 10 m and σtime = 30 ns), the Main Data Set
was used. For the configurations with only position error (σpos at 10 m) and
the configurations with only timing error (σtime at 30 ns), 1,000 simulations
were performed to obtain the mean LDE.

The mean LDE for the position errors-only and timing errors-only were
added for each configuration and compared to the mean LDE of the same
configuration with both position and timing errors. The mean LDE resulting
from introducing both position and timing errors was less than the sum of
the mean LDE of the configurations with only one error condition.

The surprising result was observed that the ratio of the mean LDE
with both position and timing errors to the sum of the mean LDE of the
configurations with only one error condition was nearly a constant. The
average value of the ratio for the set of configurations enumerated above
was 0.704 and ranged only from 0.696 to 0.712.

Thus, it was shown that the principle of superposition did not hold for
position errors and timing errors. Furthermore, in the case of these very
limited experiments and specifically for mean LDE and the Standard Error
Conditions used in this paper, the effect of the combination of both position
and timing errors was only 70% of the sum of the individual effects of those
errors conditions.
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14 Estimating Location Distance Error for
Sensor Error Conditions Wider than the
Standard Error Conditions

The linear relationships of the Improvement Ratios for the Mean
LDE with respect to varying position errors, timing errors, or both error
conditions indicate that the same linear regression model approaches used
in prior sections for the Main Data Set with the Standard Error Conditions
would work under different error conditions. Therefore, two data sets with
half- and twice-Standard Error Conditions were generated and Ballpark Es-
timates were obtained as was done in Section 12.2 for the Main Data Set
and the Standard Error Conditions.

The half-standard error condition data set used the same configurations
as in the Main Data Set but with the position and timing errors set to half
the Standard Error Conditions: σpos = 5 m and σtime = 15 ns. The twice-
standard error condition data set used the same configurations but with
the position and timing errors set to twice the Standard Error Conditions:
σpos = 20 m and σtime = 60 ns.

Due to the long run times required, only 200 simulations per configura-
tion were performed for the half- and twice-standard error condition data
sets.
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14.1 Ballpark Estimates of the Improvement Ratio for the
Mean LDE for Half- and Twice-Standard Error
Conditions

Figure 110 shows the Minimum, Mean, and Maximum of the
Improvement Ratios for the Mean LDE for immersed sensors in the case
of half the standard position and timing error conditions used in the Main
Data Set. As was the case with the Ballpark Estimates for the Main Data
Set, the Ballpark Estimates for the half-Standard Error Conditions have
power-law linear regression models with R2 goodness-of-fit values that are
nearly unity. The envelope (bounded by the minimum and maximum val-
ues) in Figure 110 for the half-Standard Error Conditions is slightly tighter
than that in Figure 92 for immersed sensors in the Main Data Set.

Figure 111 shows the Minimum, Mean, and Maximum of the
Improvement Ratios for the Mean LDE for standoff sensors in the case
of half the standard position and timing error conditions used in the Main
Data Set. The statements made in the paragraph immediately above apply
to this figure as well, including the comparison to Figure 93 for standoff
sensors in the Main Data Set.

Figure 112 for immersed sensors and Figure 113 for standoff sensors show
the Minimum, Mean, and Maximum of the Improvement Ratios for the Mean
LDE in the case of twice the standard position and timing error conditions
used in the Main Data Set. The statements made in the two paragraphs
immediately above hold for these configurations as well, except that the
envelope for the standoff sensors with twice-Standard Error Conditions is
slightly wider than those for the Standard Error Conditions or the half-
Standard Error Conditions.
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Figure 110: Minimum, Mean, and Maximum of the Improvement Ratios for the

Mean LDE for immersed sensors in the case of half-standard position and timing

error conditions, with trend lines and power-law linear regression models.

Figure 111: Minimum, Mean, and Maximum of the Improvement Ratios for the

Mean LDE for standoff sensors in the case of half-standard position and timing

error conditions, with trend lines and power-law linear regression models.

Approved for Public Release; distribution unlimited; AFRL-2021-0842

183



Figure 112: Minimum, Mean, and Maximum of the Improvement Ratios for the

Mean LDE for immersed sensors in the case of twice-standard position and timing

error conditions, with trend lines and power-law linear regression models.

Figure 113: Minimum, Mean, and Maximum of the Improvement Ratios for the

Mean LDE for standoff sensors in the case of twice-standard position and timing

error conditions, with trend lines and power-law linear regression models.
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14.2 Expanded Ballpark Estimates and Expanded
Reciprocal Approximations for an Ensemble Data Set
Incorporating All of the Error Conditions Simulated

Having the individual data sets with (σpos, σtime) = (5 m, 15 ns), (10 m,
30 ns), and (20 m, 60 ns), 49 the next logical step was to pool them into a
single Ensemble Data Set and obtain an Expanded Ballpark Estimate
as well as an Expanded Reciprocal Approximation. 50

Only the Improvement Ratios for the Mean LDE are considered in this
section.

Initially, these estimates were applied to the envelope of the combined
immersed and standoff configurations in the Ensemble Data Set, but the
results were poor compared to the estimates based on the envelopes of the
Ensemble Data Sets for immersed and standoff sensors separately.

Figure 114 shows the Expanded Ballpark Estimate for immersed sensors
based on the envelope of the Ensemble Data Set. The power-law weights
and R2 values for the Expanded Ballpark Estimate linear regression models
for the Minimum, Mean, and Maximum of the Improvement Ratios for the
Mean LDE are given in Table 29. These weights are used in the appropriate
expression in (28) as was described in Section 12.2 for the Ballpark Estimate
of the Mean of the Improvement Ratios for the Mean LDE for the Main Data
Set immersed sensors that used the values in Table 18.

Figure 115 shows the Expanded Ballpark Estimate for standoff sensors
based on the envelope of the Ensemble Data Set. The power-law weights
and R2 values for the Expanded Ballpark Estimate linear regression models
for the Minimum, Mean, and Maximum of the Improvement Ratios for the
Mean LDE are given in Table 30. These weights are used in the appropriate
expression in (28) as was described in Section 12.2 for the Ballpark Estimate
of the Mean of the Improvement Ratios for the Mean LDE for the Main Data
Set standoff sensors using the values in Table 19.

As done in Section 12.2, these data were used to estimate the Mean of
the Improvement Ratios for the Mean LDE as a function of the number of

49 That is, the data sets are those with the half-Standard Error Conditions, the Standard
Error Conditions, and the twice-Standard Error Conditions.

50 Capitalization is used to help identify these phrases as single terms.

Approved for Public Release; distribution unlimited; AFRL-2021-0842

185



immersed or standoff sensors for the Ensemble Data Set. From Table 29, the
second line gives the weights for the Mean of the Improvement Ratios for
the Mean LDE. The values for w1 and either w0 or ew0 are plugged into the
appropriate expression in (28) to obtain the linear regression model for the
Mean of the Improvement Ratios for the Mean LDE for immersed sensors.
As was done previously, the second alternate expression for the Mean of the
Improvement Ratios for the Mean LDE is used:

y = 3.9184N−0.9333 . (37)

Similarly, for standoff sensors, from Table 30, the second line gives the
weights for the Mean of the Improvement Ratios for the Mean LDE that are
plugged into (28) to obtain the linear regression model for the Mean of the
Improvement Ratios for the Mean LDE for standoff sensors:

y = 3.5768N−0.8747 . (38)

It can be seen in Table 29 and Table 30 that the w1 weights for the
Mean of the Improvement Ratios for the Mean LDE for both immersed and
standoff sensors are close to negative one so, again, (28) can be approximated
by a simple reciprocal function of N for these statistics. As was done in
Section 12.4, weights were found for simplified expressions for the Mean of
the Improvement Ratios for the Mean LDE for immersed sensors.

Thus, the Expanded Reciprocal Approximation for the Mean of
Improvement Ratios for the Mean LDE for immersed sensors based on the
Ensemble Data Set is

y =
4.5

N
(39)

and the Expanded Reciprocal Approximation for the Mean of the
Improvement Ratios for the Mean LDE for standoff sensors based on the
Ensemble Data Set is

y =
4.8

N
. (40)
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These expressions are valid for N = 6 to 24 and the Improvement Ratio for
the Mean LDE is defined to be exactly 1.0 for five sensors.
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Figure 114: Expanded Ballpark Estimates of the Minimum, Mean, and Maximum

of the Improvement Ratios for the Mean LDE based on Ensemble Data Set for

immersed sensors, with trend lines and power-law linear regression models.

Figure 115: Expanded Ballpark Estimates Minimum, Mean, and Maximum of the

Improvement Ratios for the Mean LDE based on Ensemble Data Set for standoff

sensors, with trend lines and power-law linear regression models.
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Table 29: Weights and R2 for Expanded Ballpark Estimate linear regression mod-

els for immersed sensors shown in Figure 114.

Statistics for ratio:
(Mean LDE for N sensors)
/ (Mean LDE for 5 sensors) w0 w1 ew0 R2

Max of ratio 1.0485 -0.6968 2.8534 0.9904
Mean of ratio 1.3657 -0.9333 3.9184 0.9881

Min of ratio 1.4242 -1.0452 4.1546 0.9669

Table 30: Weights and R2 for Expanded Ballpark Estimate linear regression mod-

els for standoff sensors shown in Figure 115.

Statistics for ratio:
(Mean LDE for N sensors)
/ (Mean LDE for 5 sensors) w0 w1 ew0 R2

Max of ratio 0.9261 -0.5756 2.5246 0.9952
Mean of ratio 1.2745 -0.8747 3.5768 0.9848

Min of ratio 1.4195 -1.0182 4.1350 0.9733
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14.3 Testing the Expanded Ballpark Estimates and
Reciprocal Approximations

The close fits of the Expanded Reciprocal Approximations for the Mean
of the Improvement Ratios for the Mean LDE given by (39) and (40) to
the actual values are shown in Figure 116 and Figure 117 for immersed and
standoff sensors, respectively. MAPE for immersed sensors in the Ensemble
Data Set obtained from (39) is 4.54% and MAPE for standoff sensors in
the Ensemble Data Set obtained from (40) is 7.11% over the range N = 6
to 24. Again, these MAPE values are for the Reciprocal Approximations
for the Mean of the Improvement Ratios for the Mean LDE for all of the
configurations and error conditions in the Ensemble Data Set, with re-
spect to a given number of sensors, rather than with respect to specific
configurations.

The linear regression models for the Expanded Ballpark Estimates and
Expanded Reciprocal Approximations were developed only for the envelope
of all of the configurations and error conditions contained in the Ensemble
Data Set, but once again it is irresistible to see how closely they model the
specific configurations. As was done in Section 12, only the Mean of the
Improvement Ratios for the Mean LDE was considered.

For all of the configurations with N = 6 to 24 immersed sensors in
the Ensemble Data Set, Expanded Ballpark Estimates of the Mean of
the Improvement Ratios for the Mean LDE were obtained using (37).
MAPE for those estimates was 9.50%, and the largest percentage error was
36.45%. Using the Expanded Reciprocal Approximation for the Mean of
the Improvement Ratios for the Mean LDE given by (39), MAPE for those
estimates was 9.42%, and the largest percentage error was −39.49%.

Similarly, for all of the configurations with N = 6 to 24 standoff sensors
in the Ensemble Data Set, MAPE for the Expanded Ballpark Estimates of
the Mean of the Improvement Ratios for the Mean LDE given by (38) was
12.06%, and the largest percentage error was −44.12%. Using the Expanded
Reciprocal Approximation for the Mean of the Improvement Ratios for the
Mean LDE given by (39), MAPE for those estimates was 12.04%, and the
largest percentage error was −49.64%.
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Figure 116: Mean of Improvement Ratio for the Mean LDE for immersed sensors

and its Reciprocal Approximation given by (39).

Figure 117: Mean of Improvement Ratio for the Mean LDE for standoff sensors

and its Reciprocal Approximation given by (40).
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15 Conclusions

The context of this work is the problem of geolocating an emitter on
the ground by combining Time-difference-of-arrival (TDoA) measurements
at pairs of sensors, where those sensors may be on the ground or in the air.
Sensors may be immersed in or above the search area where the emitter
is known to be located or they may be standoff in or above an adjacent
area. The analyses used configurations with up to 24 sensors in most cases
although behavior with up to 100 sensors was also considered.

The mainstream of this study was based on the assumption that the
locations of the emitter and the sensors are random. An appendix considers
a minor optimization where a minimum separation of the sensors is enforced.

The central question addressed in this paper has been to determine the
trend of the relative improvement in geolocation accuracy as the number of
sensors increases. The primary figure-of-merit for geolocation accuracy was
the Location Distance Error (LDE) and the statistical metrics of its mean,
50%ile or median, 95%ile, and 99%ile. Additional LDE statistical metrics
based on these statistical metrics were developed to quantify aspects of
geolocation accuracy and its relative improvement.

The results in this paper were derived from large numbers of Monte Carlo
simulations involving randomly generated geometries based on parameter-
ized configurations of emitter and sensors. The locus of points that satisfy
TDoA measurements between sensors form hyperboloids and, ideally, the
emitter should be found at the intersection of those hyperboloids on the
ground. The simulations implemented a grid-based TDoA solution method
that found an estimated location for the emitter which minimized the sum
of the squared TDoA errors compared to the true but unknown location of
the emitter.

Most of the results in this paper were obtained using the “Main Data
Set” consisting of a large number of configurations of immersed and standoff
sensors with a wide range of nominal altitudes and search area side lengths.
Numbers of sensors from three to 24 were included. For airborne sensors,
their nominal altitude was assumed to vary with a Gaussian distribution
about the mean altitude with a coefficient of variation of 5%. The “Standard
Error Conditions” assumed zero-mean Gaussian distributions where position
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error had a standard deviation of 10 m and timing error had a standard
deviation of 30 ns.

This paper explored various methods for pairing sensors to obtain TDoA
measurements and found that using all possible pairs gave the smallest
mean LDE. Based on this finding, all of the results presented in this pa-
per are based on simulations involving all pairs sensor pairing. However, it
was pointed out that real-time geolocation applications may find that the
quadratic growth in TDoA solution run time for all pairs sensor pairing
is prohibitive and the benefit of the linear growth of Linearly Independent
Pairs (LIP) sensor pairing or disjoint pairs sensor pairing outweighs the
penalty of the larger mean LDE.

Even in the absence of position or timing errors, configurations with
small numbers of sensors have many geometries where the LDE is very
large. For example, in 10,000 simulations of three immersed sensors at
nominal altitudes of 100 m, the largest LDE observed was more than 1.1 km
in a 1 km × 1 km search area. More than 21% of error-free geometries
with three sensors may have non-zero LDE. One common cause of this is
where sensors are collinear, but this situation occurs unpredictably with
many other geometries.

The phenomena where LDE values are unpredictably very small or very
large are called “Longfellow Events” in this paper in honor of H.W.Longfel-
low. Paraphrasing the poet, one could say of LDE resulting from small
numbers of sensors: “When they are good, they are very very good, but
when they are bad they are horrid.” At least in the case of all pairs sensor
pairing, it was found that Longfellow Events can be largely avoided using
configurations that consist of at least five sensors.

It was found that the LDE statistical metrics were roughly scale-invariant
with the ratio of the nominal altitude of the sensors to the search area side
length. The LDE statistical metric curves, as functions of that ratio, were
convex so there were optimal altitudes for any given sizes of search area.

Multivariate linear regression was used to develop models of how the
LDE statistical metrics varied as a function of the number of sensors (im-
mersed or standoff), nominal altitude, and search area side lengths. A “shot-
gun approach” was used to find linear regression models with the smallest
numbers of variables that maximized the coefficient of determination (R2)
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and minimized the Mean Absolute Percentage Error (MAPE). Even though
the linear regression models were developed for five and more sensors, it was
found that the models that included the data for three and more sensors
were superior to those based only on five and more sensors.

For configurations with specific values for nominal altitude and search
area lengths, it was found that the best linear regression models expressed
the double logarithm of the LDE statistical metrics as linear functions of
the double logarithm of the number of sensors. The R2 values for these
linear regression models were close to unity and MAPE values were small
percentages.

While most of the configurations used in this paper were limited to a
maximum of 24 sensors, experiments were conducted with up to 100 sensors
to determine whether the results regarding the LDE statistical metrics were
statistically significant. It was shown that the ±3 standard error bounds
for the mean LDE were extremely tight even when based only on 1,000
simulations per configuration; note that most of the results in this paper were
based on 10,000 simulations per configuration. The apparent linearity of the
double logarithm of the mean and 95%ile LDE with respect to the double
logarithm of the number of sensors continued, with only slight downward
bending, up to the limit of 100 sensors.

The extensive tabulation of linear regression model weights for specific
configurations of nominal altitude and search area lengths was used as the
basis for more general models for the LDE statistical metrics as functions of
those parameters. This generalization again expressed the double logarithm
of the LDE statistical metrics as a linear function of the double logarithm
of the number of sensors, but the weights for these linear functions were
obtained from the linear regression models for individual nominal altitudes
and search area side lengths. The weights for the generalized linear regres-
sion models were, in turn, functions of nominal altitude and search area side
lengths as transformed and combined variables.

As the central question addressed in this paper was to determine the
trend in the relative improvement of LDE with respect to the number of
sensors, the LDE-based figure-of-merit termed the “Improvement Ratio for
an LDE statistical metric” was introduced. To avoid Longfellow Events,
it was assumed that the value of a chosen LDE statistical metric with five
sensors was the baseline against which geolocation improvement is measured.
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For instance, the “Improvement Ratio for the Mean LDE for N sensors” was
defined to be the ratio of the mean LDE for N sensors to the mean LDE for
five sensors; the Improvement Ratios for the other LDE statistical metrics
were defined similarly.

As an example, for immersed sensors on the ground in a 1 km × 1 km
search area, the Improvement Ratio for the Mean LDE for eight sensors was
found to be 0.5264, meaning that using eight sensors reduces the mean LDE
to about 53% of that achieved using only five sensors.

It was determined that a power-law linear regression model was a good
fit for the Improvement Ratios for the specific configurations in the Main
Data Set. However, rather than once again extensively tabulate the weights
for those linear regression models, the observation was made that the
weights corresponding to the exponents of N in the power-law fits aver-
aged fairly close to 1. This led to the formulation of a set of “Reciprocal
Approximations” of the form wRA/N , where wRA is a tabulated value for
one of the eight combinations of immersed or standoff sensor configurations
and the mean, 50%ile, 95%ile, or 99%ile LDE. For example, the Reciprocal
Approximation for the 95%ile LDE for standoff sensors is 3.80/N which has
a MAPE of 11.56% with respect to the Improvement Ratios for the 95%ile
LDE for all configurations in the Main Data Set for numbers of sensors
ranging from six to 24.

For a given number of sensors and a specific LDE statistical metric,
the Improvement Ratios for the configurations in the Main Data Set have
a range of values. The next step was to work with the envelope of those
ranges by finding linear regression models for their minimum, mean, and
maximum; these models are called the “Ballpark Estimates.”

There are 24 combinations of the Minimum, Mean, or Maximum of the
Improvement Ratios for the Mean, 50%ile, 95%ile, or 99%ile LDE for im-
mersed or standoff sensors. An example of one of those combinations would
be the “Mean of the Improvement Ratio for the Mean LDE for immersed
sensors.”

It was found that power-law linear regression models were good fits for
the two dozen Ballpark Estimates. The R2 values for those linear regression
models were close to 1, indicating excellent goodness-of-fit.
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For example, for immersed sensors, the Reciprocal Approximations for
the Mean LDE for eight sensors yield the bounds of 47% for the minimum,
52% for the mean, and 64% for the maximum for any configuration in the
Main Data Set; those values give the range and expected value of the relative
improvement achieved by increasing the number of sensors from the baseline
of five sensors to eight.

While most of the weights corresponding to the exponents of N in
the power-law fits for the Ballpark Estimates were not very close to 1,
fortuitously that was the case for the Ballpark Estimates of the Mean
of the Improvement Ratios for the Mean LDE. Thus, the Reciprocal
Approximations for these Improvement Ratios were found to be 4.25/N
and 4.50/N for immersed and standoff sensors, respectively. While these
Reciprocal Approximations were developed for the mean values of the en-
velope of the Improvement Ratios, they had MAPE of only 11% and 12%
with respect to the specific configurations with six and more immersed and
standoff sensors, respectively.

Most of the results described in this paper were based on the assumption
of sensor nominal altitude varying with a Gaussian distribution with a 5%
standard deviation about the mean altitude and zero-mean Gaussian dis-
tributed position error with 10 m standard deviation and timing error with
30 ns standard deviation. These values were chosen to be reasonable but
not based on any actual military or civilian system or scenarios. However,
it was vital to establish the sensitivity of results to these parameters. Only
mean LDE was considered as well as only a few configurations for immersed
sensors.

It was found that the standard deviation of sensor nominal altitude had
very little effect on mean LDE. In fact, the small percentages of difference
in mean LDE did not even follow a consistent trend with respect to the
coefficient of variation for the altitude.

Sensitivity to position error alone was gauged by varying the standard
deviation of position error from half (5 m) to twice (20 m) the value used in
the Standard Error Conditions of the Main Data Set. It was observed that
the mean LDE varied linearly with position error for all of the configurations
and numbers of sensors tested.
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The mean LDE curves for given numbers of sensors were not parallel,
however. Thus, when those results were expressed as Improvement Ratios
for the Mean LDE, the Improvement Ratios for a given number of sensors
varied linearly with small but positive slopes with respect to position er-
ror, although they were practically flat for non-zero altitudes. Thus, the
Improvement Ratio degrades slightly for sensors on the ground as position
error increases but practically not at all for airborne sensors.

Sensitivity to timing error alone was determined in a similar way by
varying the standard deviation of timing error from half (15 ns) to twice
(60 ns) the value used in the Standard Error Conditions of the Main Data
Set. It was observed that the mean LDE varied linearly with timing error
for all of the configurations and numbers of sensors tested.

As was the case for position error alone, the mean LDE curves for given
numbers of sensors as a function of timing error were not parallel, so the
Improvement Ratios for the Mean LDE varied linearly with small positive
slopes with respect to timing error alone. The Improvement Ratios for
sensors on the ground had the largest slopes, and those for airborne sensors
were close to flat with respect to timing error.

When only position error or timing error is present, it was found that
adding a meter of position error standard deviation was roughly equivalent
to adding two nanoseconds of timing error standard deviation in terms of
the resulting increase in mean LDE.

The effects of position errors and timing errors together do not pos-
sess the property of superposition; that is, their effects are not linearly
additive. It was found that, for the configurations tested, the mean LDE
for configurations with the Standard Error Conditions of 10 m position er-
ror standard deviation and 30 ns timing error standard deviation was only
about 70% of the sum of the mean LDE for the configurations with position
error or timing error alone.

Data sets were generated with half-Standard Error Conditions and twice-
Standard Error Conditions, and those data sets were then combined with the
Main Data Set to produce an “Ensemble Data Set.” As was the case for the
envelope of the Improvement Ratios for the Mean LDE for the Main Data
Set, the power-law fits for the data sets with the half- and twice-Standard
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Error Conditions and the Ensemble Data Set had R2 values that were nearly
unity, indicating excellent goodness-of-fit.

The power-law linear regression model fits for the Improvement Ratios
for the Mean LDE for the Ensemble Data Set are referred to here as the
“Expanded Ballpark Estimates.” When the weights for those power-law fits
were tabulated, it was observed that the exponents for the Expanded Ball-
park Estimates for the Mean of the Improvement Ratio for the Mean LDE
were close to 1. The “Expanded Reciprocal Approximations” for the Mean
of the Improvement Ratio for the Mean LDE were found to be 4.5/N and
4.8/N for immersed and standoff sensors, respectively. Even though those
Expanded Reciprocal Approximations were not developed for the individual
configurations in the Ensemble Data Set, it was found that MAPE for the
configurations with six and more immersed sensors was 9.42% and 12.04%,
respectively.

An appendix that follows this section addresses the distribution of timing
difference errors for sensor pair TDoA measurements under the assumption
that timing errors and position errors for individual sensors have Gaussian
distributions. Timing difference errors clearly are Gaussian because they are
simply the difference of two Gaussian distributions. While timing difference
error due to distance difference error is simply proportional to the distance
difference error, the analysis is more complicated because the geometry of
the RF signal path must be considered; the distribution of distance difference
error was found to have a sharp peak at a distance difference slightly greater
than zero and it had tails much smaller than those that would result from
a Gaussian distribution.

A second appendix considers a means for improving LDE by simply
enforcing a minimum xy distance between any two sensors to avoid small
baselines between the foci of the hyperboloids. Based on a restricted set of
configurations, it was shown that mean LDE appears to decrease linearly
with the minimum xy separation. If it is assumed that the sensors move ran-
domly and the geometries are just tested to see if they satisfy the minimum
xy separation, then the application of this strategy is limited by the fact that
the number of randomly generated geometries grows exponentially with the
number of sensors. Ultimately, there is a packing limit on the number of
sensors that can satisfy the minimum xy separation.
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The benefit of enforcing minimum xy separation was looked at from the
point of view of an equivalent number of sensors. For example, for immersed
sensors on the ground in a 1 km × 1 km search area, ten sensors with an
enforced 200 m minimum xy separation provide, on average, the mean LDE
achieved by 14 sensors with no minimum separation.

This paper has provided a framework for determining the improvement
in TDoA geolocation accuracy achieved by increasing the number of sensors.
While the results obtained rely on the specific values of the parameters used
in this paper, the analyses suggest how these results can be applied for other
values of the parameters. Through a series of approximations with various
degrees of goodness-of-fit and error percentages, the geolocation accuracy or
its proportional improvement can be estimated.

The two most significant findings were the following. First, a minimum
of five sensors, paired in all of their combinations, are needed to avoid hav-
ing significant fractions of bad geometries that inherently results in poor
emitter locations even without sensor position or timing error. Second, ge-
olocation distance error, by several measures, appears to decrease roughly
as the reciprocal of the number of sensors.
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A Timing Difference Error Distributions as a
Function of Distance and Timing Error
Conditions

The LDE resulting from any of the sensor pairing methods described
in this paper is affected by sensor position and timing errors, where those
errors are assumed to have Gaussian distributions with zero mean and stan-
dard deviations σpos and σtime, respectively. This appendix deals with the
relationship between timing errors and timing difference errors as well as the
relationship between sensor position errors, sensor distance errors, and sen-
sor distance difference errors as they relate to the calculation of the TDoA
of RF signals at pairs of sensors.
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A.1 Distribution of Timing Error and Timing Difference
Error

As described in Section 4.1.1 and Section 4.1.2, each simulation of a
given configuration of emitter and sensors and error conditions creates a
random geometry where sensor i is assigned a timing error t′i that is Gaussian
distributed with zero mean and standard deviation σtime. The timing error
t′i is added to each pairwise TDoA calculation involving sensor i.

As described in Section 4.1.3, the timing difference error in a TDoA
measurement between sensors with indices i and j is given by t′i - t′j .
The difference of two Gaussian random variables is also Gaussian and,
for the difference of any two distributions, the mean is the difference of
the individual means and the variance is the sum of the individual vari-
ances [Rohatgi (1979)]. Thus, for the error model used in this paper, the
distribution of the timing difference error for the TDoA measurement be-
tween any two sensors is Gaussian with zero mean and standard deviation√
σ2
time + σ2

time =
√

2σtime.
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A.2 Distribution of Distance Error and Distance Difference
Error

Distance error, and thus distance difference error, is the result of sensor
position errors. Figure 118 shows an instance of sensor i created in a sim-
ulation at the presumed position (xi, yi, zi). As stated in Section 4.1.2, the
true (but unknown) position (x′i, y

′
i, z
′
i) is also created with a position error

magnitude given by the absolute value of a Gaussian distribution with zero
mean with standard deviation σpos. For sensors on the ground, the angle of
the position error is uniformly distributed in the xy-plane from 0◦ to 360◦.
For airborne sensors, the angle of the position error is uniformly distributed
with respect to the three axes. The simulation places the emitter at the true
(but unknown) location (x′e, y

′
e, z
′
e) on the ground (so z′e = 0) in the search

area.

In Figure 118, di is the Euclidean distance from the emitter to the pre-
sumed position of sensor i and d′i is the Euclidean distance from the emitter
to the true position of sensor i. For the purpose of this analysis, let di be
specified in multiples of σpos and, without loss of generality, let σpos = 1 m.

The distance error with respect to the emitter is given by (3).

Figure 119 shows the distribution of the distance error where di = 6 m
(thus, sensor i is 6σpos from the emitter). This histogram is based on 100,000
random generations of the true sensor position performed in Microsoft Excel.
The histogram also shows a Gaussian distribution that has the same mean
and standard deviation as that of the observed distribution of the distance
error; it is clear that the distance error distribution is not Gaussian.

With σpos = 1 m, the observed mean magnitude of the sensor position
error from the presumed position to the true position for the simulations
represented in Figure 119 was 0.7953 m and the maximum for the 100,000
simulations was 4.1904 m. The mean sensor distance error was 0.0590 m
with standard deviation of 0.4956 m. (These values varied slightly over
multiple trials of 100,000 simulations.) For practical purposes, the standard
deviation of the distribution of distance error converged to 0.5 m.

The mean of the distribution of distance error approached zero for larger
values of di and was larger for smaller values of di, but was always greater
than zero. This conclusion can be derived from Figure 118, where q is the
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randomly generated magnitude of the sensor i position error and γ is the
angle of the position error off the axis between the presumed sensor position
and the emitter. If di = d′i, then γ must be less than 90◦ and so the spherical
cap facing the emitter must enclose less than half the volume of the sphere
with radius q. Therefore, the probability that any randomly generated true
position with position error magnitude equal to q for sensor i has d′i > di is
greater than 1/2 and thus the mean distance error is greater than zero.

Having an understanding of the distribution of the distance error asso-
ciated with a single sensor i, now the distribution of the distance difference
error between two sensors i and j, given by (6), can be addressed.

Because the directions of the position errors of two sensors are assumed
to be independent, the relative positions of the two sensors are irrelevant
for the purpose of determining the distribution of their distance difference
errors.

For the sake of simplicity, let di = dj = 6 m. Cases where the distances
from the emitter to the presumed positions of two sensors are unequal will
be discussed later.

Figure 120 shows the distribution of the distance difference error based
on 100,000 simulations. Again, the histogram also shows a Gaussian dis-
tribution that has the same mean and standard deviation as that of the
observed distribution of the distance difference error and it is clear that
the distance difference error distribution is clearly not Gaussian as the peak
is far sharper. For the case represented here, the mean of the distance
difference error distribution was observed, over many trials of 100,000 simu-
lations, to closely hover about zero as expected. The standard deviation of
the distribution was observed to be 0.7073 m, which is close to the value of√

0.52 + 0.52 =
√

2/2 = 0.7071 m as expected.

Keeping σpos = 1 m, for di = 4 m and dj = 6 m, the observed mean
distance difference error was 0.0280 m and the standard deviation was
0.7064 m. For di = 6 m and dj = 10 m, the observed mean distance dif-
ference error was 0.0262 m and the standard deviation was 0.7035 m. The
standard deviation remained near

√
2/2 m as expected.

The mean and standard deviation of the distribution of the distance
difference error for two sensors scale linearly with σpos in this model. Using
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σpos = 10 m, let di = 4σpos = 40 m and dj = 6σpos = 60 m. Then, based on
the results above from the simulations, the mean of the distance difference
error would be 0.0280σpos = 0.280 m. The predicted standard deviation
would be 0.7071σpos = 7.071 m. The mean is very small and can probably
be disregarded, while the standard deviation is significant when distance
difference error is converted into timing difference error.
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Figure 118: Sensor with position error showing distance from emitter at presumed

sensor position and true sensor position.
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Figure 119: Distribution of distance error from an emitter in the case of sensor

position error. See text for description of error conditions.

Figure 120: Distribution of distance difference error for two sensors from an emit-

ter in the case of sensor position error. See text for description of error conditions.
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A.3 Comparing the Effects of Timing Difference Error and
Distance Difference Error

As stated in Section 4.1.2, most results obtained in this paper in the
case of errors are based on simulations where the Standard Error Conditions
σpos = 10 m and σtime = 30 ns were used. They were chosen to be reasonable
yet independent of any actual military or civilian systems or scenarios. They
were also chosen to be somewhat commensurate in scale, as 10 m of distance
is roughly equivalent to 30 ns at the speed of light c. Now, those values
can be tested to determine how similar their effects are on TDoA timing
difference error between pairs of sensors.

The mean of the timing difference error due to σtime was shown in Ap-
pendix A.1 to be zero. The mean of the distance difference error due to
σpos was shown to be non-zero but practically negligible. Thus, the analysis
focuses on the effects on the standard deviations of the timing difference
errors caused by the position and timing error conditions.

It was also shown in Appendix A.1 that the standard deviation of
the timing difference error between two sensors is given by

√
2σtime. For

σtime = 30 ns, the standard deviation of the TDoA time measurement be-
tween any two sensors would be 42.42 ns.

The standard deviation of the distance difference error between two sen-
sors is given by

√
2/2σpos. Using c= 3× 108 m/sec as the speed of light, that

distance (in m) is converted to time (in ns) as
√

2/2σpos× 1 sec
3× 108 m

×109 ns
1 sec ns

= 10
√

2/2σpos ns = 2.3570σpos ns, although, as noted earlier, the distri-
bution of the distance difference error is not Gaussian. For σpos = 10 m,
the standard deviation of the TDoA measurement between any two sensors
would be 23.57 ns.

Thus, the standard deviation of the timing difference error between any
two sensors due to the standard error condition of σtime = 30 ns alone is
1.8X that of the timing difference error due to the standard error condition
of σpos = 10 m alone.

Setting σpos = 18 m alone would equal the standard deviation of the
timing difference error between any two sensors due to the error condition
of σtime = 30 ns alone. Setting σtime = 17 ns alone would equal the standard
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deviation of the timing difference error between any two sensors due to the
error condition of σpos = 10 m alone.

In Section 13.2.3 it was found that, for the mean LDE based on simula-
tions of a range of configurations with immersed sensors, a meter of position
standard deviation is approximately equivalent to two (or a little more)
nanoseconds of timing error standard deviation. This is a little larger than
the calculated ratio of 1.8X for the equivalence between position (in m) and
timing (in ns) error conditions for the standard deviation of the timing dif-
ference error between any two sensors. While these two problems are only
indirectly related, it is still a good sanity check to see that the two ratios
are relatively close in scale.

While it has been shown here that there is a proportional equivalence
between position errors and timing errors in their impact on mean LDE,
recall that it was shown in Section 13.2.4 that the principle of superposition
does not apply to position errors and timing errors. That is, the LDE
resulting from only position errors and the LDE resulting from only timing
errors do not sum linearly to yield the LDE resulting from the combination
of the same position and timing errors.
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B Benefits of Enforcing Minimum xy Sensor
Separation

The analyses in this paper have been based on the assumption that
the sensors are placed randomly or their movements are random. Potential
optimizations could involve eliminating poor geometries, such as collinear
sensors, to avoid Longfellow Events. This is a very difficult task, as examples
in Section 2 showed. This appendix considers the simplest possible geometric
optimization, which would be to enforce a specified minimum xy separation
between any two sensors

Sets of simulations were run with enforced minimum xy separation of
50 m, 100 m, 150 m, and 200 m, and the results were compared to the
baseline of 0 m (that is, no minimum xy separation). The configurations
consisted of N = 3 to 10 immersed sensors in a search area with side
length side = 1,000 m at nominal altitudes of alt = 0 m and 500 m, with
σalt = alt/20. The Standard Error Conditions σpos = 10 m and σtime = 30 ns
were used.

Due to the long run times required, only 1,000 simulations of each con-
figuration were performed.

Two figures-of-merit are used. The first was the ratio of mean LDE with
a specified enforced minimum xy separation to the mean LDE with zero
minimum xy separation. The second was the equivalent number of sensors
required for a configuration with zero minimum xy separation to achieve
the mean LDE of a configuration with a specified enforced minimum xy
separation.
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B.1 Ratio of LDE With and Without Enforced Minimum
xy Separation

For each simulation of a given configuration and minimum xy separation,
random geometries were generated and used only if no two sensors violated
the minimum xy separation requirement. Figure 121 shows two instances
of ten sensors placed at random, where tight “clusters” of sensors appear.
Figure 122 shows two instances of ten sensors placed at random with an
enforced minimum of 200 m xy separation; the clusters of sensors have been
eliminated.

Figure 123 shows the ratio (per configuration) of the number of random
geometries generated and tested to the number of geometries that achieved
the required minimum xy separation. For small minimum xy separation, the
overhead was small. For minimum xy separation of 150 m, the ratio grew
approximately as e0.4261 N . For minimum xy separation of 200 m, the ratio
grew approximately as e0.7883 N and, worse, the ratio for N = 10 sensors
was nearly double the value predicted by that regression. For minimum
xy separation of 200 m and N = 10 sensors, an average of 361 random
geometries had to be generated and tested to obtain a single geometry that
met the minimum xy separation requirement.

With a minimum xy separation of 200 m in a search area with side
length 1,000 m, the greatest number of sensors for which that requirement
could be satisfied was 14. Figure 124 shows two instances of 14 sensors
placed at random with minimum xy separation of 200 m. The search was
terminated after finding only those two geometries; based on only those
two successes, the ratio of generated geometries to geometries that met the
specified minimum xy separation requirement was 345,481.5. 51

For stationary sensors, such overhead might be acceptable as a one-time
cost while planning a sensor deployment. However, for sensors hosted on
moving platforms, these ratios give an indication of the computational cost
to find such geometries (literally on the fly) or the low probability that
sensors in motion would, at random, satisfy the minimum xy separation
requirement at any given instant of time.

51 That is, in each case, more than a third of a million geometries were generated, tested,
and rejected to find a geometry that satisfied the minimum xy separation of 200 m.
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Figure 125 shows, for sensors on the ground, the ratio of the mean
LDE for a given enforced minimum xy separation to the mean LDE with
zero minimum xy separation. This figure-of-merit drops from 1.0 for zero
minimum xy separation (by definition) to approximately 0.7 to 0.8 as the
minimum xy separation increases to 200 m. There is no apparent trend for
this ratio as a function of the number of sensors.

Figure 126 shows, for sensors at alt = 500 m, the ratio of the mean LDE
for a given minimum xy separation to the mean LDE with zero minimum
xy separation. The same observations given above for sensors on the ground
apply here as well.

Figure 127 combines the data shown in Figure 125 and Figure 126 by
plotting the average ratios for N = 3 to 10 for alt = 0 m and alt = 500 m.
The average values for these two nominal altitudes were so close that it is
fair to do a single linear regression for those combined data. The average
ratio (over this range of N) appears to fall off linearly with the increase in
minimum xy separation.
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Figure 121: Two instances of ten immersed sensors with no enforced minimum xy

separation.

Figure 122: Two instances of ten immersed sensors with 200 m enforced minimum

xy separation.
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Figure 123: Ratio of the number of randomly generated geometries tested to

the number of geometries that satisfied the required minimum xy separation, as a

function of the number of sensors. Trend lines and exponential fits are given for

growth of the ratios.

Figure 124: Two instances of 14 immersed sensors with 200 m enforced minimum

xy separation. Only these two instances were found after a substantial run time.
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Figure 125: Ratio of the mean LDE for a given minimum xy to the mean LDE

with no enforced minimum xy separation, for immersed sensors on the ground, with

errors.

Figure 126: Ratio of the mean LDE for a given minimum xy to the mean LDE

with no enforced minimum xy separation, for immersed sensors at nominal altitudes

of 500 m, with errors.
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Figure 127: Trend line and linear regression model for combined data shown in

Figure 125 and Figure 126.
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B.2 Effectively Increasing the Number of Sensors by
Enforcing Minimum xy Separation

The second figure-of-merit determines how a enforcing a minimum xy
separation effectively increases the number of sensors. For a given N
and specified minimum xy separation, let the equivalent number of
sensors Nequiv denote the largest number of sensors with zero minimum
xy separation that provide equal or greater mean LDE compared to that
achieved by N sensors with the specified minimum xy separation enforced.

The measured mean LDE values from the Main Data Set were used to
find Nequiv for alt = 0 m and alt = 500 m with minimum xy separation of
200 m. For N = 3 to 10, respectively, those values were:

Nequiv = 3, 4, 6, 7, 8, 10, 12, 14 immersed sensors for alt = 0 m, and

Nequiv = 3, 4, 6, 7, 8, 9, 11, 13 immersed sensors for alt = 500 m.

Thus, for example, five sensors with an enforced minimum xy separation of
200 m provide equal or better LDE compared to that achieved by six sensors
without an enforced minimum xy separation, for both of these nominal
altitudes.

As a test of the accuracy of the linear regression models presented in
Section 9.3, (23) and the weights in Table 3 were used to obtain estimates
forNequiv from the mean LDE observed for the given minimum xy separation
values. If y denotes such a mean LDE, then (23) and Table 3 yield ln ln y =
−0.8154 ln lnN+1.6528 for alt = 0 m and ln ln y = −0.6663 ln lnN+1.5584
for alt = 500 m. Solving these expression for Nequiv yields

Nequiv = exp(exp

{
1.6528− ln ln y

0.8154

}
) for alt = 0 m (41)

s

and

Nequiv = exp(exp

{
1.5584− ln ln y

0.6663

}
) for alt = 500 m . (42)

Using the mean LDE for minimum xy separation of 200 m for y, rounding
the results of (41) and (42) gave
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Nequiv = 3, 5, 6, 8, 8, 10, 12, 14 immersed sensors for alt = 0 m, and

Nequiv = 3, 5, 6, 8, 9, 10, 11, 13 immersed sensors for alt = 500 m,

which differed in the six instances noted in red font from the Nequiv values
obtained using the measured values from the Main Data Set.

Better results were obtained by taking the floor instead of rounding the
results of (41) and (42), which gave

Nequiv = 3, 4, 6, 7, 8, 10, 11, 14 immersed sensors for alt = 0 m, and

Nequiv = 3, 4, 6, 7, 8, 9, 10, 13 immersed sensors for alt = 500 m

which differed in only the two instances noted in red font from the Nequiv

values obtained using the measured values from the Main Data Set.

This appendix has shown that enforcing a minimum xy separation be-
tween sensors improves mean LDE linearly with the amount of separation,
with about a 20% to 30% reduction in mean LDE with a minimum xy
separation of 200 m. For ten sensors, enforcing a minimum xy separation
can provide the equivalent of adding up to four sensors compared to not
enforcing a minimum xy separation.
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