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1. Introduction 

The US Army recently formulated a strategy regarding how the future Army will 
fight and the associated modernization and research priorities for achieving these 
military capabilities.1,2 Long-Range Precision Fires underpinned by hypersonic 
flight are critical to ensuring that the United States can enforce its will against any 
competitor. 

Many barriers must be overcome to realize an effective future US Army. Some of 
these gaps are in understanding hypersonic vehicle aerothermodynamics, thus 
motivating the need for foundational research. Lack of predictive knowledge of the 
complex physics and chemistry occurring around hypersonic vehicles inhibits 
timely, optimized multi-component design. Specific phenomena that are poorly 
understood include boundary layer transition and shock–boundary layer 
interactions. The inability to properly model phenomenon yields uncertainty in 
characteristics, such as the surface pressure distribution and heat flux, which 
negatively impact vehicle technologies including stability, control, and thermal 
load management. 

Fortunately, a precedent exists for promoting community-wide scientific discourse 
through defining government reference vehicles that contain functionally relevant 
artifacts but are not sensitive to specific developmental programs (see Army-Navy 
Basic Finner missile,3-8 Air Force Modified Basic Finner missile,3-8 Army-Navy 
Spinner Rocket,8 National Aerospace Plane,9 and NASA studies10,11). The goal of 
this report is to define a canonical, Army-relevant configuration suitable for 
foundational research to allow for focused collaboration with a critical mass of 
appropriate subject matter experts. Data and knowledge gained from studies on this 
open geometrical configuration may be subject to more restrictive distribution. 

2. Vehicle Description 

The High-Speed Army Reference Vehicle (HARV) is a symmetric flight vehicle 
that has an overall length-to-diameter of 10. The vehicle was initially shaped 
through a series of optimization analyses that identified design candidates with low 
drag and high lift-to-drag ratios. A more detailed description of the optimization 
process can be found in Vasile et al.12,13 Several design iterations to simplify model 
fabrication and wind tunnel experimentation resulted in the establishment of 
HARV. The flight vehicle was designed for a modular forebody as well as aftbody-
fin shapes to allow researchers to study a wide variety of phenomena.  
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The body section was a constant diameter cylinder. The diameter of the cylindrical 
body section is defined as 1 cal. Two nose profiles were studied, a cone and a Von 
Kármán ogive. The profile shapes for both cone and ogive were described using 
generic power series (i.e., n =1) and Haack series (i.e., C = 0), respectively, and 
computed as defined in Rosema.14 The equivalent half angle of the conical nose is 
approximately 5°. The fineness ratio of both forebodies is 5. The nose tips for both 
forebodies were modeled with a spherical tip defined by a bluntness radius that is 
0.05 of the base diameter (i.e., 0.05 cal.). An iterative scheme was necessary to 
solve the transition point from spherical tip to each prescribed nose profile to ensure 
a smooth transition (i.e., slope matching). Further details on the profile formulation 
are provided in the Appendix. The cross section for each nose profile shape is 
presented in Fig. 1. The forebodies allowed for studying the difference between 
boundary layers formed in favorable pressure gradients versus those without a 
pressure gradient.  

 

Fig. 1 HARV nose profile shapes 

Two tail fin configurations were defined. The vehicle can be assembled using either 
three or four clipped-delta fins azimuthally separated 120° or 90°, respectively. The 
fin-body configurations allowed for investigating the effects of distance on fin-fin 
flow physics interactions. Each fin has a sweep angle of 80° and a root and tip chord 
length of 4.8 and 2.125 cal., respectively. Each fin has a uniform cross-sectional 
thickness of 0.07 cal. with a maximum tip semi-span of 0.95 cal. The leading edge 
was rounded using 0.03-cal. radii on either side of the fin with a flat section along 
the centerline with a width of 0.01 cal. Figure 2 shows additional details on the fin 
leading edge.  
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Fig. 2 HARV leading edge details common to all models. Zoomed view is where leading 
edge meets the fin tip. 

The HARV for each unique configuration is illustrated in Figs. 3–6.  

 

Fig. 3 HARV conical nose with three fins. All units are in calibers. 

 

Fig. 4 HARV conical nose with four fins. All units are in calibers. 
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Fig. 5 HARV ogival nose with three fins. All units are in calibers. 

 

Fig. 6 HARV ogival nose with four fins. All units are in calibers. 

The solid model rendering of the HARV for each unique configuration is presented 
in Figs. 7–10. 

 

Fig. 7 HARV conical nose with three fins solid model rendering 



 

5 

 
Fig. 8 HARV conical nose with four fins solid model rendering 

 
Fig. 9 HARV ogival nose with three fins solid model rendering 

 
Fig. 10 HARV ogival nose with four fins solid model rendering 
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Appendix. Nose Profile Definition 



 

9 

A-1. Power Series Nose Profile 

The blunted power series nose profile can be calculated through Fig. A-1 and 
subsequent content. (Figure and equations formulated from Rosema.1) 

 
Fig. A-1  Definition of power series nose profile parameters 

Basic power series relationship: 

𝑟𝑟(𝑥𝑥) = 𝑟𝑟𝑛𝑛 �
𝑥𝑥
𝐿𝐿
�
𝑛𝑛

 

The equation for cone noses is formed by setting n = 1. 

For the blunted tip, 

𝑟𝑟(𝑥𝑥) =  �2𝑥𝑥𝑟𝑟𝑏𝑏 − 𝑥𝑥2 

For blunted cases, an iterative scheme is necessary to solve for the transition point, 
𝑥𝑥𝑡𝑡. 

Set an initial value for 𝑟𝑟𝑡𝑡 ≈ 0.99𝑟𝑟𝑏𝑏  and let 

𝑡𝑡1 = 𝑛𝑛𝑟𝑟𝑡𝑡2 

𝑡𝑡2 = 1 − �
𝑟𝑟𝑡𝑡
𝑟𝑟𝑛𝑛
�
1 𝑛𝑛�

 

𝑡𝑡3 = �
𝑟𝑟𝑡𝑡
𝑟𝑟𝑛𝑛
�
1 𝑛𝑛�

 

𝑡𝑡4 = �𝑟𝑟𝑏𝑏2 − 𝑟𝑟𝑡𝑡2 + 𝐿𝐿 − 𝑟𝑟𝑏𝑏 

 
1 Rosema C. Analysis of supersonic nose pressure drag using computational fluid dynamics. Army 
RDECOM AMRDEC (US); 2014. Report No.: RDMR-SS-13-14. 
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𝑡𝑡5 = �𝑟𝑟𝑏𝑏2 − 𝑟𝑟𝑡𝑡2 

and 

𝑑𝑑𝑡𝑡1
𝑑𝑑𝑟𝑟𝑡𝑡

= 2𝑛𝑛𝑟𝑟𝑡𝑡 

𝑑𝑑𝑡𝑡2
𝑑𝑑𝑟𝑟𝑡𝑡

=
−1
𝑛𝑛𝑟𝑟𝑛𝑛

�
𝑟𝑟𝑡𝑡
𝑟𝑟𝑛𝑛
�
1 𝑛𝑛� −1

 

𝑑𝑑𝑡𝑡3
𝑑𝑑𝑟𝑟𝑡𝑡

= −
𝑑𝑑𝑡𝑡2
𝑑𝑑𝑟𝑟𝑡𝑡

 

𝑑𝑑𝑡𝑡4
𝑑𝑑𝑟𝑟𝑡𝑡

=
−𝑟𝑟𝑡𝑡

�𝑟𝑟𝑏𝑏2 − 𝑟𝑟𝑡𝑡2
 

𝑑𝑑𝑡𝑡5
𝑑𝑑𝑟𝑟𝑡𝑡

=
𝑑𝑑𝑡𝑡4
𝑑𝑑𝑟𝑟𝑡𝑡

 

then 

𝑓𝑓(𝑟𝑟𝑡𝑡) = 𝑡𝑡1𝑡𝑡2 − 𝑡𝑡3𝑡𝑡4𝑡𝑡5 

and 

𝑓𝑓′(𝑟𝑟𝑡𝑡) = 𝑡𝑡1
𝑑𝑑𝑡𝑡2
𝑑𝑑𝑟𝑟𝑡𝑡

+ 𝑡𝑡2
𝑑𝑑𝑡𝑡1
𝑑𝑑𝑟𝑟𝑡𝑡

− 𝑡𝑡3𝑡𝑡4
𝑑𝑑𝑡𝑡5
𝑑𝑑𝑟𝑟𝑡𝑡

− 𝑡𝑡3𝑡𝑡5
𝑑𝑑𝑡𝑡4
𝑑𝑑𝑟𝑟𝑡𝑡

− 𝑡𝑡4𝑡𝑡5
𝑑𝑑𝑡𝑡3
𝑑𝑑𝑟𝑟𝑡𝑡

 

The Newton-Raphson method may be used to solve for 𝑟𝑟𝑡𝑡: 

𝑟𝑟𝑡𝑡(𝑖𝑖 + 1)  =  𝑟𝑟𝑡𝑡(𝑖𝑖) −  𝑛𝑛
𝑓𝑓�𝑟𝑟𝑡𝑡(𝑖𝑖)�
𝑓𝑓′�𝑟𝑟𝑡𝑡(𝑖𝑖)�

 

where n is the relaxation factor and is usually set to a value of 0.1 for this case for 
stability. 

Once 𝑟𝑟𝑡𝑡 is known, 𝑥𝑥𝑡𝑡 and 𝐿𝐿0 can be solved for 

𝑥𝑥𝑡𝑡 = 𝑟𝑟𝑏𝑏 − �𝑟𝑟𝑏𝑏2 − 𝑟𝑟𝑡𝑡2 
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𝐿𝐿0 =
𝐿𝐿 �𝑟𝑟𝑡𝑡𝑟𝑟𝑛𝑛

�
1 𝑛𝑛�

− 𝑥𝑥𝑡𝑡

1 − �𝑟𝑟𝑡𝑡𝑟𝑟𝑛𝑛
�
1 𝑛𝑛�

 

For 𝑥𝑥 ≤ 𝑥𝑥𝑡𝑡, 

𝑟𝑟(𝑥𝑥) =  �2𝑥𝑥𝑟𝑟𝑏𝑏 − 𝑥𝑥2 

and for 𝑥𝑥 > 𝑥𝑥𝑡𝑡, 

𝑟𝑟(𝑥𝑥) = 𝑟𝑟𝑛𝑛 �
𝑥𝑥 + 𝐿𝐿0
𝐿𝐿 + 𝐿𝐿0

�
𝑛𝑛

 

A-2. Von Karman Nose Profile 

The blunted Von Karman nose profile can be calculated through Fig. A-2 and 
subsequent content. (Figure and equations formulated from Rosema.1) 

 
Fig. A-2  Definition of Von Karman nose profile parameters  

The Von Karman profile is derived from the Sears–Haack series profile (i.e., C = 
0): 

𝑟𝑟(𝑥𝑥) =  
𝑟𝑟𝑛𝑛�𝜙𝜙 −

sin(2𝜙𝜙)
2

√𝜋𝜋
 

where 

𝜙𝜙 =  cos−1 �1 −
2𝑥𝑥
𝐿𝐿 �

 

For the blunted tip, 



 

12 

𝑟𝑟(𝑥𝑥) =  �2𝑥𝑥𝑟𝑟𝑏𝑏 − 𝑥𝑥2 

For blunted cases, a two-layer nested iterative scheme is necessary to solve for the 
transition point, 𝑥𝑥𝑡𝑡, and the offset length, 𝑥𝑥0: 

Set an initial value for 𝑥𝑥𝑡𝑡 ≈ 0.97𝑟𝑟𝑏𝑏, 

thus 

𝑟𝑟𝑡𝑡 = �2𝑥𝑥𝑡𝑡𝑟𝑟𝑏𝑏 − 𝑥𝑥2 =  
𝑟𝑟𝑛𝑛�𝜙𝜙𝑡𝑡 −

sin(2𝜙𝜙𝑡𝑡)
2

√𝜋𝜋
 

Now iterate to solve for 𝜙𝜙𝑡𝑡 using the Newton–Raphson method where 

𝑓𝑓(𝜙𝜙𝑡𝑡) =
𝑟𝑟𝑛𝑛�𝜙𝜙𝑡𝑡 −

sin(2𝜙𝜙𝑡𝑡)
2

√𝜋𝜋
− 𝑟𝑟𝑡𝑡 

and 

𝑓𝑓′(𝜙𝜙𝑡𝑡) =
𝑟𝑟𝑛𝑛

2√𝜋𝜋
1 − cos(2𝜙𝜙𝑡𝑡)

�𝜙𝜙𝑡𝑡 −
sin(2𝜙𝜙𝑡𝑡)

2

 

𝜙𝜙𝑡𝑡(𝑖𝑖 + 1)  =  𝜙𝜙𝑡𝑡(𝑖𝑖) −  
𝑓𝑓�𝜙𝜙𝑡𝑡(𝑖𝑖)�
𝑓𝑓′�𝜙𝜙𝑡𝑡(𝑖𝑖)�

 

The outer loop iterates on 𝑥𝑥𝑡𝑡 to match the slopes at the transition point. 

Let 

𝐿𝐿ℎ = 𝐿𝐿 − 𝑥𝑥𝑡𝑡 + 𝑥𝑥0 

where 

𝑥𝑥0 = (𝐿𝐿 − 𝑥𝑥𝑡𝑡)
1 − cos(𝜙𝜙𝑡𝑡)
1 + cos(𝜙𝜙𝑡𝑡)

 

Now let 𝑓𝑓(𝑥𝑥𝑡𝑡) equal the difference in the slopes of the two curves: 

𝑓𝑓(𝑥𝑥𝑡𝑡) =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜙𝜙=𝜙𝜙𝑡𝑡

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑥𝑥=𝑥𝑥0

−
𝑟𝑟𝑏𝑏 − 𝑥𝑥𝑡𝑡
𝑟𝑟𝑡𝑡
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𝑓𝑓′(𝑥𝑥𝑡𝑡) =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜙𝜙=𝜙𝜙𝑡𝑡

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑥𝑥2

�
𝑥𝑥=𝑥𝑥0

+ �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑥𝑥=𝑥𝑥0

�
2 𝑑𝑑2𝑟𝑟
𝑑𝑑𝜙𝜙2�

𝜙𝜙=𝜙𝜙𝑡𝑡

+
1
𝑟𝑟𝑡𝑡

+
(𝑟𝑟𝑏𝑏 − 𝑥𝑥𝑡𝑡)2

𝑟𝑟𝑡𝑡3
 

where 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜙𝜙=𝜙𝜙𝑡𝑡

=
𝑟𝑟𝑛𝑛

2√𝜋𝜋
1 − cos(2𝜙𝜙𝑡𝑡)

�𝜙𝜙𝑡𝑡 −
sin(2𝜙𝜙𝑡𝑡)

2

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑥𝑥=𝑥𝑥0

=
1

�𝑥𝑥0𝐿𝐿ℎ − 𝑥𝑥02
 

𝑑𝑑2𝑟𝑟
𝑑𝑑𝜙𝜙2�

𝜙𝜙=𝜙𝜙𝑡𝑡

=
𝑟𝑟𝑛𝑛

2√𝜋𝜋

⎝

⎜
⎛ 2 sin(2𝜙𝜙𝑡𝑡)

�𝜙𝜙𝑡𝑡 −
sin(2𝜙𝜙𝑡𝑡)

2

−
(1 − cos(2𝜙𝜙𝑡𝑡))2

2 �𝜙𝜙𝑡𝑡 −
sin(2𝜙𝜙𝑡𝑡)

2 �
3
2�

⎠

⎟
⎞

 

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑥𝑥2

�
𝑥𝑥=𝑥𝑥0

=
2𝑥𝑥0 − 𝐿𝐿ℎ

2(𝑥𝑥0𝐿𝐿ℎ − 𝑥𝑥02)3 2�
 

And finally 

𝑥𝑥𝑡𝑡(𝑖𝑖 + 1)  =  𝑥𝑥𝑡𝑡(𝑖𝑖) −  𝑛𝑛
𝑓𝑓�𝑥𝑥𝑡𝑡(𝑖𝑖)�
𝑓𝑓′�𝑥𝑥𝑡𝑡(𝑖𝑖)�

 

where 0 < 𝑛𝑛 ≤ 1, but 𝑛𝑛 = 0.01 is recommended 

For 𝑥𝑥 ≤ 𝑥𝑥𝑡𝑡, 

𝑟𝑟(𝑥𝑥) =  �2𝑥𝑥𝑟𝑟𝑏𝑏 − 𝑥𝑥2 

and for 𝑥𝑥 > 𝑥𝑥𝑡𝑡, 

𝑟𝑟(𝑥𝑥) =  
𝑟𝑟𝑛𝑛�𝜙𝜙 −

sin(2𝜙𝜙)
2

√𝜋𝜋
 

where 

𝜙𝜙 =  cos−1 �1 −
2(𝑥𝑥 − 𝑥𝑥𝑡𝑡 + 𝑥𝑥0)

𝐿𝐿ℎ
� 
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