N

U.S. DEPARTMENT OF COMMERCE
National Technical Information Sermce

AD-A027 455

AUTOMATIC PROGRAM VERIFICATION V
VERIFICATION-ORIENTED PROOF RULES FOR ARRAYS,
RECORDS, AND POINTERS

STANFORD UNIVERSITY

PREPARED FOR

ApvaNCED RESEARCH PROJECTS AGENCY

MarcH 1976

ADAN27455

Stanford Artificial Intelligence Laboratory March 1976
Memo AIM-278

Computer Science Department
Report No. STAN-CS-76-549

Automatic Program Verifieation V:

VERIFICATION-ORIENTED PROOF RULES
for
ARRAYS, RECORDS AND POINTERS

by

David Luckham and Norihisa Suzuki

Research sponsored by

Advenced Research Projects Agency
ARPA Order No 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

PRODUC oy e lp gl
NATIONAL TECHNICAL =0 e
. e um'ﬁ% c%ﬂyc'(ce JUL 27 1976
4 SPRINGIHLD, VA 70161

TN DISTRISUTION STATEMENT A

LY
%E“;,., o Appioved far public release:
= Distributicn Unlimited

BEST
AVAILABLE COPY

U

SECURITY CLASH VICATION OF THIS PAGE (Phen Dete Entered)

REPORT DOCUMENTATION PAGE R, . iing a2t o
1. ALPORT mumMBER 2. COVY ACSESIICHS RO 3 RECIPIEnT S CATA_OC mUMBER
STAN-CS-76-549, AIM-278
4 TITLE (and Subiitle) 3. TYPL OF RECPOAT & PEMOD COVEALD
AUTOMATIC PROGRAM VERIFICATIOX V: Verification-
Oriented Proof Rules for Arrays, Records and Technical
Pointers §. PERFORMING ODRG. REPORT NUMBER
Y. AUTMOR/Y) 6 CONTRACT ORG®o " NumBERe)
David Luckham and Norihisa Suzuki DAHCL5-77-C-0k 35
} PERFOAWING ORGANIZATION NAME AND AODRESS liﬁ::gg-'.‘:O(:*t:_'t‘rrr.“-u-&{!!g:. T ASK
Artificial Intelligence Laboratory
Stanford University ARPA Order 2494
Stanford, California 94305
11 CONTROLLING OFFICE mAME AND AODRLSS iI. REPORT DOATE
Col.Dave Russell, Dep. Dir., ARPA, IPT, March 1976
ARPA Headquarters, 1400 Wilson Blvd. 13, MUNBER OF PAGES
Arlington, Virginia 22209 S
T8 SRTTCRnG ASENCY NAWME & ACOREIHIT iiiorent From Contreliing Ottice) | 18. SECUMTY CLASS. (of iNle report)
Philip Surra, ONR Representative
Durand Aeronautics Building Room 165 15
Stanford Univer‘it’ (1 7Y betAS-&I'ICA?ION/OQ'uGlAbINC
scneouLt

Stanford, California 94305

6. O)STRIQUTION STATESMENT (of thie Repert)

Releasable without limitations on disseminati

DISTRIBUTION STATEMENT A
Appioved for public relnase,

Distribution Unlimitegq
17. DISTRIBUTION STATENMENT (of the sdotraci entered In Bloch 20, 1 @itterent tremn Repert)

18 SUPALENENTAAY NOTES

19. KLY ®0RDS (Continve an roverees oide If Netossary and Idontity by bloch numbder)

20. ABITRACT (Conitm s an roverse olde I nocosoary and idenitly by bleek b

of Pascal programs that operate on the standard Pascal data structures ARRAY,
RECORD, and POINTER. New assertion language primitives are introduced for
describing computational effects of operations on these data structures. Axio

assertion language. Similar rules for records and arrays are special cases.
= fover)

A practical method s presented for automating in a uniform way the verificatio

defining the semantics of the new primitives are g1 ‘en. Proof rules for standa
Pascal operations on pointer variables are then defined in terms of the extende

#

DD ,%anss 1473 eoimom or i mov esis omsoLare - UNCLASSIFIED
$/N 0102-016° 8401 {

SECURITY CLASHIPICATION OF THIS PAGE (Fhen Date Bntoved)

ABSTRACT (continued)

An extensible ‘xiomatic rule for the Pascal memory allocation operation, NEW,
is also given

These rules have been implemented in the Stanford Pascal program verifier,
Examples {llustrrcing the verification of progrums which operate on list structures

implemented with pointers and records are discussed. These include programs with
side-effects.

1

Stanford Artificial Intelligence Laboratory March 1976
Memo AIM-278

Computer Science Department
Report No. STAN-CS-76-549

Automatic Program Verification V:
VERIFICATION-ORIENTED PROOF RULES

CRRET for

- 50 Raln r ARRAYS, RECORDS AND POINTERS
[D S by

.. David Luckham and Norihisa Suzuki
SV AT MU ITY sy

L Y ey |

6 } | ABSTRACT
’

A practical method is presented for automaning 1n a uniform way the verification of Pascal
prozrams that operate on the standard Pascal cata siructures ARRAY, RECORD, and
POINTER New assertion language primitives are introduced for describing computational
effects of operations on these data structures Axioms defning the semantics of the new
primitives are given. Proof rules for standard Pascal operations on pointer variables are then
defined 1n terms of the extended assertion language Similar rules for records and arrays are
special cases. An extensible axiomatic rule for the Pascal memory allocation operation, NEW, is
also given

These rules have been implemented n the Stanford Pascal program verifier. Exampics
tlustrating the venification of programs which operate on hist structures implemented with
pointers and records are discussed. These include programs with side-effects

Thts research was supported by the Advanced Resesrch Pro, cts Agency of the Department of
Defense under Contract DAHC 15.73.C0435 The viens and conclustons conained in this
document are those of the author(s) and should not be interoreced as mece::seils representing the
offictal policies. either expressed or implied, of Stanford University, ARVA, o the U. S
Government.

Reproduced in the US A. Available from the National Technical Information Service, Springfield,
Virginia 22151

o

DISTRIBUTION STATEMENT A

Apprqved faz public releaso;
Dmributngp Unlimited

-a e

1. INTRODUCTION

This paper presents axiomatic prool rules for standard PASCAL operations on
the data structures ARRAY, RECORD and POINTER. Axiomatic semantics for these
data structures have been given in some form in previous publications ([Hoare &
Wirth], [Burstall), [Spitzen & Wegbreit). However, here, our emphasis is on the
notion of a proof rule. That is, we are interested in delining proofl rules for
operations on these structures that are suitable (or addition to the existing set of
prool rules employed by cirrent automatic verifiers -- this we call verification
oriented semantics. These rules not only define the semantics of operations on the
data structures axiomatically. They are also programmable reduction rules suitable
for automating a significant part of the search for proofs of programs that operate
on complex data stru .ures.

The main problem from the point of view of extending the present verifiers, is
to be able to cope with certain forms of the assignment statement. The semantic
deflinition of assignment given in [Hoare 69) is entirely adequate for assignment to a
variable of any arbitrary type. In this paper we are concerned with finding
verification rules for assignment in the case when the left hand side is an expression
containing operations which select a subsiructure of a data structure. For example,
array assignment rules given in [King), (lgarashi, London, & Luckham] (henceforth
called [ILL)), and [Suzuki a] define the semantics of A[I}-E. Here the index | "selects”
or picks out an element of the array data structure A, so the meaning is different
from assignment to the variable A itsell-- a specified part of the value of A is
changed!

We shall give rules for standard Pascal operations such as XT.F=Y where X is a

pointer to a record with field F. Rules for these kinds of operations are needed in

-

order to improve program verification methods to a point where certain classes of
complex programs such as garbage collectors and schedulers can be verified.

The idea presented here is to generalize the rule in standard use for assignment
to an array element. This leads to a single scheme which defines prool rules for
assignment to substructures of array, record and pointer structures as special cases.
In addition, the allocation operation, NEW(X), whereby new structures can be created
during a computation, needs to be given a verification oriented rule. We do this here
at the same time.

Section 2 presents an overview of both the way prool rules can be used in
automating verification, and of how considerations similar to those which led to the
array rule will lead to our generalization of it for records and pointers. We (eel that
it is reasonable to say something about the use of the proof rules since some of our
decisions are based on facilitating implementation. However we do rely on earlier
papers [ILL, Suzuki b) for (ull details about verification systems. Section 3 gives the
general delinitions of the extended assertion language and the most general (>rm of
the new prool rules. Section 4 is devoted to illustrating how a verifier with these
rules can be used to obtain proofs of properties of programs which operate on tree
structures built up (rom pointers and records. It is shown here that our extended
verification .ystem is capable of proving such properties as " program A does not
introduce loops into list structure L” for actual programs containing about a page of
Pascal code.

In this paper we omit formal justification of our rules. Normally, this would
take the fcrm of a soundness prool. A model of PASCAL computations would be
deflined and then it would be shown that the proof rules describe state

transformations of the model. Instead we rely on the motivation in Section 2 to

- 3=

convince the reader that our formal rules do correspond to his intuitive

understanding of the PASCAL semantics.

2. MOTIVATION

The reasoning which leads us 1o our prool rules can be paraphrased as (ollows. Firet
we have to “"know” intuitively what the PASCAL operations do; that is, what
transformations they make to data structures. We extend the standard assertion
language (i.e. Pascal Boolean expressions with the addition of quantifiers and delined
relations --see [ILL, Suzuki b)) so that it contains expressions which formally
represent data structures and transformations of data structures. These new
assertion language expressions are called data structure representations. Then we can
give [ormal proof rules for Pascal operations in terms of such representations. The
representations themselves have semantic deflinition rules which permit
simplificatiors to be made automatically. This enables prools of simple programs to
be completely automated. Below we outline this reasoning by giving first the
“intuitive” transformation rule for an operation on a structure, then the new
expressions that we add to the assertion language to represent the transformation
snd the semantics of the expressions, and then the formal prool rule for that
operation. We deal in succession with the cases of Arrays, Records, and finally,
Pointers. This should clarify the general definitions of representations and proofl
rules in Section 3. We begin nei. with a short discussion of verification oriented

rules in general.

- b4 -

2.1 Reduction Rules.

Axiomatic semantic rules within Hoare's weak logic of programs [Hoare 69,71,

ILL] are nearly all of the form

meaning “if A and B are both true (the premisses of the rule) then C is also true
wconclusion)”. Here, A, B, C, are either Boolean formulas or statements about
programs. The latter kind of statement has the form P{S)Q where P and Q are
Boolean formulas and S is a program part (i.e. a sequence of Pascal statements). P and
Q are the input and output specifications for S. In the deduction rule, C is always a

statement about a program part.

We can regard a deduction as taking place by applying a rule "downwards”. However,
such a rule is employed “upwards™ as a problem reduction rule in a typical verifier
(ILL) This means that if .ome problem C’ matches C in the sense that C' s Cot where
o¢ is a substitution of actual parameters for formal parameters, then At and B will
be generated as "reduced” problems to be solved. This reduction process can be
continued until all the reduced problems are purely logical formulas and do not
contain any program statements. These formulas are called Verification Conditions
(VC's). The reader is referred to [ILL) for examples of problem reduction and

generation of VC's,

2.2 Forwards Rules and Backwards Rules.

The semantic meaning of the assignment statement is defined by axioms in
Hoare's system. For example, assignmeni to 4 simple variable may be defined by (AVF

stands for Assignment to a Variable Forwards)

AVF. P(X)AXX0{X~E]P(X0)AXSE |

where E I §8 denotes the substitution of X0 for X in E.

The axiom AVF is a true statement of the Logic of Programs for all formulas
P. Intuitively, this axiom describes the way X+E changes the state of any

computation:

It says, suppose PAX*X0 is true of the state before X~E. Then after executing

. \ S X a
X+~E, two things will be true: (a) the value of X will change to Elxe and (b) true

statements about the value of X before assignment are still true of the old value X0
after.

We call this axiom a “forwards™ rule because the postcondition (after
exccution) shows how the precondition (before execution) is changed. Such rules are

not the easiest to implement in automatic verification systems because of the

X
equality terms X'Elxa in the post condition. The basic problem is the question of

. X . .
when to substitute Elxe for X in any formulas that may get generated later on in

Y

the process. It is easier to avoid the generation of equalities aitogether. So, in

verification systems we often use "backwards” axioms like AVB (from [Hoare)).

AVB. P(E) {X~E]P(X)

where P(E) is P with E substituted for all occurrences of X. This is a “backwards”
rule: it states that if P(X) 15 to be true after X~E is executed then P(E) must be true
before. This 15 equivalent to saying that the =ffect of X~E will be to give X the value
E. The forwards and backwards versions of the rules are equivalent, and the
verification conditions produced by verifiers using either version are also equivalent.

A verifier, given a problem ENTRY {S1;.;Sn}EXIT, and using backwards axioms
will work backwards in the following sense. Starting with EXIT it will deduce (using
either upwards or backwards rules) what has to be true before statement Sn, and
from that it will deduce what must be true before Sn-1, and so on.

In the following we shail develop backwards rules since they are easier to

implement.

2.3 Assignment to Array Elements.

Now consider an axiomatic semantic rule for assignment to an element of an
array (Assignment to Array Backwards) given in terms of an informal assertion

language:

AAB. If I*] then P(E) else P(~{ID{A[I}-E}P(A[J)

G

We might all agree (given that we understand the meaning of "if-then-else” that this
defines the meaning of "A[lJ-E". The rule states what must be true of the
computation state of a program before performing All}-E if P(A[J]) is to be true
after. The semantics is defined by the change in the computation state. Rule AAB is a
scheme in that it holds for all formulas P. However, if we add this rule to 2 verifier,
we have the complication that if we are trying to verily, say

ENTRY(B;A[1}-E}P(A[J]), an application AAB will leave us to verily
(1). ENTRY(B} (if 1=J then P(E) else P(A[JD

And we will not know at the time (1) is generated whether 1*] or not. The
information required tc determine if I*J is most likely contained in the preceding
prograr B.

Thus rule AAB req'ures the assertion language to contain array and index
variables, and conditionals. In addition, the reduction rules will have to allow for
conditional assertions

Nested conditional assertions grow exponentially, and it is advisable for
implementation to replace them by an explicit representaticn in the assertion
language of the the change to A resulting from A[l}-E. To achieve this, we have
introduced assertion language expressions that represent the result of selector and
assignment operations on arrays. It should be emphasized that the expressions

represent structures resulting [rom operations.

Syntax of REWRITE and SELECTOR expressions for Arrays:

REWRITE: <A, (1) E>
SELECTOR: (J)
where A is an array of elemerts of typ: T, 2nd J are indices,

and E is an expression of type T

Intuitively, the rewrite expression represents the array obtained from A hy
assigping E 1o A(l] And <AJILE>(J) represents the Jth element of this array. The
two kinds of expressions can be concatenated together (see example 1 below), and the
rewrites may be nested 1o represent the result of sequences of operations on A.

These assertion language expressions obey the following rules which define

their semantics:

SEML. <A, (1], E>J) = E if IoJ,
<A, (I}, E>(J) » ALJY i 1o),

The verficiation-oriented rule for assignment to arrays may now be given using the

extended assertion language.

VL. Pl<AJILE>HANME]P(A)
where all occurences of A in P(A) are replaced by <A{1)E> 1o form P(<A[1)E>).

Note the special case of V1: Pi<A[ILESUIN(AL-E}P(ALID.

This is our version of AAB.

Lot us see how the rules V1 and SEMI work on a simple example.

EXAMPLE 1. 1. AlK]el
2. AlAIK))-E
EXIT P(ALL)),

We want the exit assertion to be true alter the two operations. Successive
applications of (V1) state that P(<AA[KILE>(I]) must be true before instruction 2,
and Pl<<A[K)I>[<AKI>KILES(I)) must be true before 1. Using SEMI1 this last

assertion reduces (o P(E)

Essentially, the introduction of the REWRITE expressions into the assertion
language, is to represent the changes in the data stucture that occur as the result of
assignment to an array element. The semantics of programming language statements
assigning to array elements are the.: delined in terms of such changes by rule V1. The
rule SEM1 enables us to simplily expressions containing rewrites and selectors when
the values of indices are determined. It is clear that both rules are easy to implement
so that both the construction of the representations and their simplification can be

automated.

The notation for REWRITE used here is due to [Hoare and Wirth]; d'/ferent
notation appears in [Kingl One of the nice (eatures of this notation is its compact

nesting property [or representing successive assignments.

2.4 Assignment 1o Record Fields.

An assignment, RF+E where R is a record with a field F, changes a record data

-1 -

|
|

structure in exactly the same way as assignment (o an array element changes an
array. Analogous assertions and rules are used to deline the semantics of assignment

to a record (ield. We describe them brielly here.
Syntax of REWRITE and SELECTOR expressions for Records:
REWRITE: <R, .F E>
SELECTOR: F
where R is a record, F is an identifier of a field
of R of type T, and E is an expression of type T.

The semantics of these new assertion language expressions are given by:

SEM2 <R, .F, E>C * Eif FeC,
<R, F,E>C*RC il Fr ..

The verification proof rule for assi nment to record fields is:

V2. P(<R,.F, E>){R.F-E}P(R)

25 Assignment to Dereferenced Pointers.

Let us now deline similar axiomatic rules for assignment to dereferenced

pointers, i.e. assignments of the form XT+L. Intuitively, XT+-E means that the value in

= I =

the memory location to which X points is changed to E.

We might try to deline the semantics of such st.tements by a backwards rule

such as

APB. il XoY then P(E) eise P(YT){XT=E]P(Y?)

The rule is an obvious backwards way saying that il X and Y point to the same
memory location (i.e. XoY) before X1+E, then YIoE alterwards.

This rule resembles the intuitive backwards array rule, AAB, with X playing the
role of an index |. In AAB, | picks out an element of the array A. However, in this
cas- we do not have a name in the assertion language for the set of values X can
point to (ie, relerence). So the first thing we shall do is to introduce names (or such
sets of values called REFERENCE CLASSES (the early Pascal deflinition contains the
concept of a relerence class [Wirth]l. Of course, a relerence class is unbounded, but
it can be accessed and parts of it selected in exactly the same way a3 an array. So the
notation we shall use (or representing computations on relerence classes will be very
similar (in fact the dillerences are merely to distinguish them (rom operations on
arrays). For example, il PeREF is a relerence class then PeREFEXD will denote the
value that X points to (ie. the same thing as XT). The result of X1eE can be
represented by <PeREF, cX>, E>. In this notation the round brackets are analogous
to the square brackets (or indexing arrays.

Thus we extend the assertion language in order to represent computations

involving assignment (o dere(erenced pointers as (ollows.

For each pointer type declaration,

TYPE name! © thame2

we 3dd Psname2 to the assertion language. This is the name of the finite reflerence

class of elements of type name2 that exist at the start of a computation.

Syntax of REWRITE and SELECTOR expressions for Reference Classes.

REWRITE: <C, €X>, E>
SELECTOR: cX>
where C is a relerence class of elements of type T, X is a pointer

of type 1T, and E is an expression of type T.

These expressions satisly semantic rules similar (o previous ones:

SEM3I. <C, €X>d, E>cYo e Eif XeY
<C, €X>, E>cYo s CcYo if XvY

The verilication rule for assignment 1o derelerenced pointers is:

V3 4. P(<Pename2, cX>, E>){X1+E)P(Pename)
and

b. P(<Pename2, cX13, E>cY2){X1=E}P(Y?)
for all occurrences in P of Y of type namel.

The reader may note that our extension of the assertion language bhas

. e

introduced different notation f(or the same ihing; Y! and Pename2cY> both
represent the value Y points to. Il the verifier uniformly eliminates one notation in
favour of the other, we shall need only one of the V3 rules.

Let us see how this rule will work on a typical “side-effects™ example.

EXAMPLE 2. TYPE A « 18
VAR X, Y1 Ay
1. Y «X;
2- X”}‘
30 Yfﬂ-zt
EXIT Xta2,

This example has a side effect in the sense that instruction 3 mertions only the value
Yt but also changes the value X1

If the exit is true after 3, then by (VI)b. <PeBcY32>cX> » 2 must be true
before 3. By (V3)a, <<PeB,cX3,1>cY>25cX2e) must hold before 2. But now the
simple assignment rule for variables, ®(X){YeX)P(Y), tells wus that
<<PsB,cX>d,1>,cX22>cX>%2 has to hold on entry. This is easily seen to reduce to

22 by SEMJ.

26 Storage Allocation.

A relerence class is indelinitely extendible by the Pascal allocation operation,
NEW(X). The intuitive meaning of NEW(X) is that a memory cell which has not
previously occurred in the computation is appended to the ' ference class Pename?,
and the value of X is changed so that X “points 10" this new cell. The value of X1 is

undeflined. [t is assumed that such a new cell always exists. This semantics is deflined

- 16 -

by means of memory mapping (unctions in (Hoare & Wirth]

Our assertions must be able to represent such extensions, so we introduce the
notation Pename2U(X'} to represen. the releience class of X extended by the
operation NEW(X), where X' is a “n+ - " identiflier. More generally, DU[X'] represents
an extension of the class represenied by D. We reler to “U" as the extension
operation on data structures. We now have 1o see il this addition to the assertion
language is sullicient 1o permit the definition of a proof rule for allocation.

The problem (acing us here is to deline a semantic prool rule which states how
an arbitrary assetion about a computation state is alfected by allocation. Our rule
must express both of the elfects of NEW(X), namely the extension of the reference

ciass and the “newness” of X. Let us discuss these two aspects seperately.

First, suppose a relerence class has a represeatation of the form, <PsT, €Yo, E>.
Alter NEW(X) its representation will be <PeT, Y2, ESU{X'} where X' is an identifier
not occurring in any expression so (ar (i.e. a new identifier). But the newness of X'
clearly implies that <PeTU{X'], €YD, E> also represents the same structure. More

generally, we have:
SEM4 If <DS,E> represents a reference clz+ ~d X' is a new
identifier, then <D S,E>U{X'} and <[S.E - represent the

same reflerence class.

So a first approximation to a backwards rule for allocation, expressing only the

extension of a reference class (analogous to the backwards rule for assignment) is:

.18 -

Q(PeTU{X'{NEW(X)}Q(PeT)
where X' is a new identifier, and PaT is the name of the reference

class of elements of type_of X1, and X does not occur in Q.

Secondly, how does an allocation NEW(X) affect an assertion about X, say
Q(X)? The intended semantics is that X is given a “new” value X' which is distinct
from any previous pointer, and nothing else in the state is changed. Any arbitrary
new value X' may be allocated to X. Ignoring the extension of PeT, these properties

are expressed by the following backwards rule:

ALYIESET_OF PaTHX'"#Yi)2QIX"){NEW(X)}Q(X)
where X' is a new identifier, and SET_OF PsT is the set of

all pointer expressions of type_of X that do not contain X'.

This rule states that if Q(X) is to be true after NEW(X), then Q(X’) must be
true of any “new” X' belore.

We may combine the two rules above as follows.

NEWB. A(YitSET_OF PeTHX'*Yi)3Q | pa1, o) | X INEWIXIIQ

where PaT is the name of the reference class of elements of
type_ol XT, X'is a new identifier, and SET_OF PsT is the set of

all pointer expressions of type_of X that do not contain X'.

This rule assumes the axioms SEM4. In addition we have further

axiomatic properties of the extension operation:

- 18 -

SEMS. DU{Y}cX> « DeX> i XrY, and is undelined if XeY,

where D is a representation of a reflerence class.

Ve cannot implement NEWB as it stands because SET_OF PsT is too large.
The verification rule for NEW in Section 3 i1s weaker but can be strengthened by

additional axioms from the user.

2.7 Sequences of selectors.

So far we have dealt with assignments in which the left side contains only one
seleclor operation. Pascal allows sequences of selector operations. We have to extend
the assertion language sull (urther by introducing sequences ol selectors in order to
represent the data structure changes made by such assignments.

For example, consider X1.F1C. This is a selector sequence that would be
applicable to a list of records where the F field of each record was a pointer to the
next record in the list. We can compute the representation as (ollows. PaNcX>
represents X1, PsNcXSF represents XT.F which is another pointer; so
PeNcPeNcX>.F> represents X1.F! and the representaton of the entire sequence
above is PeNcPeNcX3.FoC. This is a sequence of the form PeNcZ>.C where 7 is
not a simple pointer varisble, but is a representation of a data structure of type
Pointer. So our selectors will not be as simple as before.

Simultaneously, the set of rewrite expressions that will now be used to

represent data structures within the assertion language must also be extended. Thus,

= }J =

the change to the reference class PeN that occurs when X1.F1.C+E is executed can be
represented by the rewrite, <PeN, cPeNcX2.F2o.C, E>. As we see (Tom this example,
the syntax of rewrites must be extended to permit representations of the form
<X,S,E> where S is a selector sequence.

It should be noted that the rule for assignment with a single selector on the
left is not sullicient 1o express the general assignment even if we introduce dummy
program variables. For example, we could try 1o rewrite X1.F1.C «E as
YeXT.F1,YCoE However, in the second case, E is placed in the C field of a new copy

of XT.F1, whereas in the first case E is placed directly into the original record.

- 13 =

3. PROOF RULES FOR OPERATIONS ON DATA STRUCTURES.

In this section we deline prool rules for assignment statements with
expressions involving data structure selectors in the most general case. The rule (or
assignment presented here can be regarded as defining the semantics of assignment. In
the case of derelerenced pointers it [ills in a gap in the axiomatic semantics of Pascal
assignment in [Hoare & Wirthl We shall also present a rule {or storage allocation
which is not complete in any reasonable sense, but which represents a compromise
between a logscally complete rule and what is computationally feasible for automating
prools. It can be extended by the user to handle any particular problem.

First, we must define the extensions of the standard assertion language
(c.{ILL] section 2) that have been introduced expressly for the purpose of making
statements about complex data struciures (ie. structures containing identifiable

substructures).

3.1 New Assertion Language Primitives

Notation: We will use ® 1o denote concatenation.

¢ denotes the empty sequence.

Complex data structures are represented by Assertion Language expressions of
the form <AJLE> and A®) where A and E are themselves data structure
representations, and | and J are sequences of applicable selectors. Intuitively, <A },E>

represents “the structure obtained from A by replacing the substructure of A

= 3K =

selected by |, with E". A®J represents “the substructure of A selected by J". This
notation generalizes the notation for arrays used by earlier writers ((McCarthy],

(King), (Hoars # Wirth]). We will first deline the syntax of the representations.

Terminology: A TYPE-NAME is any identifier introduced as the name of a

type by a Pascal type declaration.

DEFINITION (reference class identifier)
For each pointer type declaration, TYPE Te1T0; where T0 is a
type identifier, we introduce a relerence class identifier

PaTO for the reference class of TO.

Intuitively, PeT@ represents an unbounded set of data structures of type TO that
pointer variables of type T may refer to. These sets are called reference classes.
They are not types in Pascal (although the syntax for reference class appears in the
early version of the Pascal specification (Wirth)). They are assertion language
primitives and behave very much like unbounded arravs; their semantics are deflined

by axioms in Section 1.2.

DEFINITION (types)
1) INTEGER, REAL, and BOOLEAN are types.
W I T, TO, . ,Tn are types and FO, .. ,Fn are identifiers
(f1eld 1dentifiers) then
ARRAY[K.L)OF T,
RECORD FO:T9; F1:T1; —.; Fn:Tn END,

= 28 =

1T, and
PseT

are types.
ii)They are the only types.

In the definitions below we use the following notation:
D,D’-- data structure representations,
C -- a reference class representation,
E -- a Pascal expression
| -- an integer type data structure representation,
N-- a type name,
Y == 2 pointer type variable,
X--a pointer type data structure representation,
F--a field identifier,

S-= a2 selector sequence,

DEFINITION (selector sequences)

Susé|[1)eS | cX>0S | .FoS

DEFINITION (S is applicable to D)

S is empty,

+« 3 =

D is of type ARRAY([K.L] and S={1)8S’ and K<I<L and S’ is applicable to D[]},

D is of type RECORD and Se.FoS' and F is a field of D and S is applicable to D.F,

D is of type REFERENCE CLASS of N, and S=cX>e§’
and X is of type TN and S’ is applicable to DcX>.

DEFINITION

(a) (reference class data structure representation:)

C :e PeN | CU{Y} | <CS,D>

(b) (data structure representations)
D:E|C|<DSD> | DeS
subject to the restrictions:

(i) S is applicable to C and D.

(i) In <C,S,D> and <D S,D'>,
type_ol(CoS)stype_of (D) and type_of(DeS)=type_of(D").

This completes the definition of the syntax of data structure representations.

-

32 Axioms (or data structure representations.

Ax
An

Oed - D
(OO‘QF,.EO

l.
2
Ax 3, <D, (1ol . E>[J)eX »
it] o) then DIl) , L, £>X glse DelJ)ek.
6 <0 ° -F.L » E’.'w L4
it F oG then <Do.F , L , E>e< else Do.GeX.
5- (0 . CX7CL . E"CY)‘K []
it X oY then <CecX> , L , E>ek elise DecVdeX.

<D, L, Del> « 0.

Ax 7, «<D, el , V>, UK , W> &
if]leJthen D, (i) . «<Dell) , L, V>, K, W>
C|l¢ “0 '] ‘Jl.‘ [", 1] ‘l).L [v"
Ax 8. <0 , FolL , V> , .CoX . U> »
itF oG then <C , .F, <<Do.F , L, V>, K, Ur»
eise <«<0 , .CeX , H>» , Fel , V>.
Ax 9, <D, cXoel , V> , cYoeX , U> »
it X oY then <D , X, «Ooc¥s ., L, V> , K, Wrs
eloge <D , cioeX , H> , cXoel ., V>,

Ax

Ax

Ax

.

Ax 10. DuiXiecVreX o
it X Y then Undefined else DecYoeK.

Ax 11. it X » Y then
<D, cXoel , E>UlYl o <DuiYl , cXoel , E>

Examples
We illustrate how properties of data structure representations can be proved
using these axi~ns,
1) J 2 <cAfI)1>[112>5(1) = 1
This statement says that after assigning 1 (o the I-th element and 2 to the
J=th element , the value of the I-th element is | if I»).
Using Ax 3, the statement is reduced to
19 o <A fi)15{1)e1.
Then using Ax 3 again, it becomes

IeJ 2 lel.

-39 -

2) <<AfIXJ)12>[K1B>[IXL)
* il Kel then
(if LeJ then 2 else A[IXL)) eise B(I)XL)
Applying Ax 3 to the left-hand side of the equation reduces it to
il Kel then
<<A[1J)2>(1),¢,B>(L] else <A [1JJ)2>(1XL]
Applying Ax 2 to the then-part and Ax 3 to the else-part, we get
i Kol then B(L) else <A[1},(J]2>(L]
This (inally reduces by Ax 3 to
if Kol then B(L] else if JoL then 2 else A{I)L]

- 2% -

33 Axioms (or assignment and storage allocation.

Rule I(Introduction ¢f Reference Class Identifiers)
In all Boolean formulas, all dereferenced pointers, Xt , are replaced by
PsTcX> where type_of(X)*tT.

Examples:
Xt < PHTcX> asesuming type_of (X)eT,
Xt.F < FTcX>.F
AIX®.F] < A(PHTeX>.F)
Xt.Ft.C < POSCPHTCX>.F5.C assuming type_of (X?.F)eS.
Note that the introduction
wust take place from inside out.
The reflerence class introduction rule can be formally delined by the following

function ar. (ar stands for actual representation.)

ar(V) oV ;. i Visasimple variable
ar(Al1De ar(ANar(1));

ar(R.F) » ar(R).F ;

ar(Zt) o PaTcar(Z)> ; where type_ol(Z1)T.

Rule 2(General rule for assignment).

arniy)
Plearntv),orsiv) gs{ Y*E } P

where arn(V) is the name part of the actual representation of V and ars(V) is the

selector sequence part of V. Thus, ar(V) » arn(V)8ars(V).

-8 -

We can deline orn(V) and ars(V) formally as follows.

arn(V) =V ; il Visa simple variable
arn(A[l])® arn(A) ;
arn(R.F) = arn(R) ;
arn(Z1) o PeT ; where type_of(Z1)eT.

ars(V) ¢ ;

ars(A[1))e ars(A)ofar(l)] ;
ars(R.F) = ars(R)S.F ;
ars(Z1) = car(Z)> .

Rule 2 reduces in simple cases to rules in [Hoare & Wirth):
1) Simple variable V.

In this case arn(V)e V and ars(V) e ¢

So the rule becomes

v
Pld,"'e, {veE) P

However, ([rom Ax 2, <V@.E> o E Thus, we obtain the original rule.
2) Simple array VeA[l]
arn(V)eA and ars(Vie[I]l So the simple array assignment rule is obtained
from the general rule.
A
"' <A, (1).E> (Al)-E) P

3) Simple record VeRF

Then arn{V)*R and ars(V}e.F. So the simple record assignment rule is
obtained (rom the general rule.

R
Pl Fes (RFE} P

Rule 3 (Storage allocation)

PaT X
A VX' 3 Qlpgry e Iy (NewiX)) Q

ViF
where type_ofl(X)*TT. X' is a newly created variable which does not appear anywhere,

and F is the set of variables of Q whose types are 1T.

The allocation rule NEWB (Section 26) cannot be derived from Rule 3. NEWB is not
suitable for implementation because of the potentially large number of terms in the
SET_OF PeT each of which contributes an inequality in the premiss. This leads to
very large Verilication Conditions with large numbers of irrelevent inequalities. The
set F .n Rule 3 is a “first approximation” to SET_OF PeT. The union notation for
the extension of the reference class PeT permits the user to add documentation

statements which have the effect of adding extra assumptions to the premiss.
For example, suppose we introduce a predicate NOTEQUAL(C,D,D’) satislying:
i. NOTEQUALI(C,E,F)=E#F (or all relerence classes C and terms E and F,

. NOTEQUAL(PeTU{X'},Y1S,X') for all variables Y and selector sequences S,
X' being the newly created variable,

- -

. NOTEQUAL(PsTU{X"),Y,X") for all variables Y differert (rom X"

Then we will be able to prove TRUE (NEW(Z)} Z#X1.CDR . This is not
provable using Rule 3 alone although it is 3 consequence of NEWB.

4. EXAMPLES.

The extensions to the assertion language and prool rules delined in Section 3
have been implemented in the Stanlord Pascal verifier. The verifier also uses axioms
Axl-Ax6 (Section 32) to simplify VC's.

Some example verifications of programs with pointer type parameters are given
below. Details of the verifier and studies of other applications can be found in
(Suzuki 2], [v.Henke & Luckham), and [Luckham & Sutukil In particular a
methodology for verilying programs with this sort of verifier is outlined in [v.Henke

& Luckham]

4.1 Side effects in pointer data structures.

Example 1.

TYPE LINEAR-RECGRO VAL:INTEGER, NEXT;tLINEAR ENO,
VAR W,X,Y, 21 tLINEAR,

BEGIN
NEM (W) ¢ NEW(X) NEW(Y) JNEW (D),
HE. VAL 1 |,
UE.NEXT e X
X®.VAL 31e 2,
x'.mx' le Y‘
Yf.v“ le 3‘
Y'.mx' le ZC
z"vAL le “
(At this point there is a four cell lingar list. Fig. 1)
Xf.'ixt le ZC
(Nou, Y* has been cut out of the linear list. Fig.2)

-29 .

Fig. |

|

Fig. 2 shows the final state of the relerence class PeLINEAR. The only operation
involving WINEXTINENTT.VAL assigns 3 to the cell That cell is then "short

circuited” out of the list by an operation that does not explicitly mention it.

Uhe result of giving example 1 1o the veriic, is a single VC; before simplification it

looks like this:

-3 -

FOR THE MAIN PROGRAM
THERE ARE | VERIFICATION CONDITIONS

8]

(~Y82-2082 &

~X@8202 &

~Hd-202 §

~i22=Y22 §

~X2R-Y22 &

~i23%02 &

TRU

<<<<<<<<PILIN€ARUILOGIUlXﬂouIYRlulZﬂl.dﬂ:.vk 1>, cli@@o . NEYT »22
CX@@o. VAL, 2>, cH@@>. NEXT, Y3@>,cYB82>. VAL, 35,cYd85. N2 7, 222>, c28¢>. &
CcX@@>. NEXT, Z&bc««««Pl’ INEARU (W@ v INQ2IuiveRl y 12223 Cwle>. v
CcHOBO . NEXT, XB@>, cXO@>. VAL , 2>, cKB@D . NEX T, V@5, cYR2= . VAL , 3> cYde- *
c2085. VAL , &>, cKB®>. NEXT, 28> ccccc PR INEARY @2 L 5221 1128
cH@Bo. VAL, 1>, cHRd>. REAT X@8>,c¥R@5. VAL , 25>, cX@80. a2 1. 7305, cv@do. AL,
cY88>.NEXT, 200>, 208>, VAL . 4>, cXd>. NEY T, 28@>chi@5 . NEX TS NEX T, VAL oa

AFTER SOME SIMPLIFICATION, YOU CAN CET

LR
TRUE
TIME: 21 CPU SECS, S4 REAL SECS

'ses

The unsimplified YC has the form Q=(D8Se4) where D represents all the change
made to PeLINEAR (in order), and S selects WINEXTINEXTT.VAL. (Ciearly 1 wou.
be nice to have a picture of D such as Fig. 2') Variables X008, Y00, ete. and 1t

inequalities between them result [rom the allocation rule.

In this example the simplification axioms (Section 3.2) reduce the VC compleie
TRUE and no additional information is required of the user.

-3 -

42 Verilication Bases

Verifications normally depend on user-sugplied lemmas. The verifier uses these
lemmas to simphify and prove VC's. If all VC's are reduced to TRUE this means that
there is a prool thai the program satisflies its ENTRY/EXIT specifications assuming
the lemmas. The set of lemmas 15 called a BASIS of the verification. A basis is not
necessarily a2 complete aviomatization of given programming concepts but need be
only 2 set of lemmas provable from such ar ariomatitation. Indeed, the verifier can
be viewed as an instrumen: (or searching (or reasonable sets of assumptions that
imply the consistency of a program with its specifications. Methods for constructing
and analysing bases are described in [v.Henbe & Luchham]

Lemmas are stated in simple logical forms called AXIOMS and COALS. They
contain informaticn about how they 4re (o be used in prool searches; this need not
concern us here. To read the lemmas as logical statements, simply ignore all “@” signs
in the examples. Then a lemma of the form AXIOM A~B is the logical equivalence
A=B, and GOAL A SUB B s the implication B=A.

The following examples deal with veriiying that programs maintain the
looplreeness of the list structures .hey operate on. The examples also show (3! the
use of the extended assertion language to expiess concepts such as loopfreeness of

lists, and (b) the characterization of concepts by lemmas in the basis.

43 Reachability in Linear Lists.

We wish to verily the loopireeness of linear lists, in which each cell has one

pointer field, the NEXT field, which points to the next cell in the list. One way to
approach this problem is to introduce a predicate Reach(D,X)Y), where D is a
reference class representation of type reference class of T, and Y,Y are both pointer
variables of type tT. REACHI(D,X,Y) means that the sequence X, XTNEXT,
XT.NEXTLNEXT,. in the reference class D contains (or reaches) Y. This implies that
the list structure between X and Y in D is loopfree under the NEXT operation.
Notice that NEXT ought to be an explicit parameter of REACH, but since we are
assunung that our list structure have only one NEXT field, we have omittd it.
Example 2 is the insertion [an element into the middle of a linear list. Ve
verily that Reach(D,ROOTSENTINEL) is still preserved after the insertion, ROOT
and SENTINEL being pointers to the beginning and end of the list
SENTINELTNEXTeNILL means that SENTINEL points to the last element of the list.

Example 2.

ENTRY REACH (P#MJORD,ROOT,SENTINEL)A (Y#SENTINEL)A(SENTINELT. NEXTNILL) A
REACH (P#WORD, ROOT, Y) AREACH (P#WORD, Y, SENTINEL) ;

EXIT REACH(PMJIORD,ROOT,SENTINEL),

TYPE REF «tWORD;
TYPE WORD « RECORD COUNT: INTEGER: NEXT: REF END;

VAR Y,2.RO0T,SENTINEL:REF;

BEGIN
NEUW(2Z) ;
2t . NEXTeYE NEXT;
Y?.HE)(T»Z:

END .

- 33 -

The set of lemmas in the goalfile below is a Basis for verifying example 2. We
do not claim that it is a complete characterization of REACH(D,X,Y), but merely
that each of the lemmas is an obvious property of REACH that would be provable
given a complete set of axioms.

Thus Coal 1 states that for W to be reachable from X in a reference class
resulting from class D by performing YL.NEXT+Z, it is sufficient that REACH(D,X,Y)
and REACH(D,Z,¥) and also ~REACH(D,Z,Y) to ensure that no loop is introduced by
the operation. Clearly the truth of this lemma depends on more atomic properties e.g.
REACH(D,Y,YL.NEXT), transitivity (Coal 4), and REACH(D,Y,Y) (from which
SREACHI(D,Z,Y) implies Z#Y).

Goal 2 is a statement about a "short circuit” operation; <D, €Zo.NEXT,
DcYS.NEXT> represents (he reference class that results from D by
ZTNEXTeYINEXT. This excludes Y from the sequence Z, ZL.NEXT, . provided Y#/
and Y cannot be reached from YLNEXT. A loop might however, be introduced into
the new structure unless ~REACHI(D,Y,Z).

Goal 3 states sufficient conditions for Y not to be reachabie from YT.NEXT.

Goal 5 is a typical frame axiom for storage allocation. It means that
reachability is not affected by the allocation of a new cell; Goals 6 and 7 are similar.

Goais 8 and 9 state conditions for Reachability when operations are performed
on a new cell.

It turns out that only goals 123689 are used in proving the verification

condition below.

- & =

GOALFILE

Gl: GOAL REACH(<aD,ceY>.NEXT,e2>.eX, ad)
SUB REACH(D,X,Y)A=REACHID, 2. Y)AREACH(D,Z W) ;

G2: GOA!. -REACH(<20. ceZ>.MEXT,e0ceY>.NEXT>, o, eY)
SUS (ZeY)A -REACH(D,DcY>.NEXT,Y)

G3: GOAL -REACH(e0,eDcaY>.NEXT,aY)
SUB (N]LLeDceSo>.NEXT)A REACH(D,Y.e5);

G&4: GOAL REACH(eD,eX.eY)
SUB REACHI(D,X,eZ) AREACH(D,e2.Y);

GS: GOAL REACH(eDU leZ!, eX,eY)
SUB REACHI(D,X,YIA(ZeX}A(ZaY);

C6: GOAL -REACH!eDU IeZ!, @0u lel)ceX>.NEXT,eY)
SUB -~REACH(D,DcX>.NEXT.Y)

G7: GOAL (eDu (e2) ceSoeNILL)
SUB (DcSoeNILL)

G8: GOAL REACH(<eDv i@Z),ceZ>.NEXT, o>, 0X, @Y)
SUE REACHI(D,X,Y)A(ZeX)A(Z20Y);

G9: GOAL REACH(<eDv (82! ,ceZ>.NEXT,@0U l@Z} ceY>.NEXT>, @Z, eH)
SUB REACHI(D,Y,H)A(ZaY);

The result of giving the verifier the goallile and example 2 is the following:

FOR THE MAIN PROGRAH
THERE ARE 1 VERIFICATION CONDITIONS

-3

(=SENTINEL=220 &

-R00T=-200 &

-Y=700 &

REACH (P#WORD,ROOT, SENTINEL) &
-YeSENTINEL &
PHUORDCSENT INELS. NEXTeNILL &
REACH (P#WJORD,RO0T.Y) &

REACH (P#UCRD, Y, SENTINEL)

REACH (<<P#WORDY (208} , c283>. NEXT . PAUCRDU (2881 cY>.NEXT>, cY>. NEXT, 288>, ROOT,
SENTINEL))

e M=

AFTER SOME SIMPLIFICATION, YOU CAN GET

I8\ TRUE

Notice that the relerence class expression in the unsimplified V7, conclusion
represents the result of executing example 2. So this VC might itsell be accepied as a

lemma about insertion operations in the verification of more complex programs.

- % -

Example 3 illustrates what happens when we reverse the order of instructions
in the example 2. The program is no longer correct in that it does introduce a loop
nto 2 looplree structure. The program was run through the verifier with the same

GOALFILE .hat was used previously.

Example 3.

ENTRY REACH (PAUORD,RO0T,SENTINEL) A (YoSENTINEL)A(SENTINELT.NEXTeNILL) A
REACH (P#JORD, ROOT, Y) AREACH (PAORD, Y, SENTINEL)

EXIT REACH (P#JORD,ROOT,SENTINEL)

TYPE REF «?WCRD:
TYPE HORD = RECORD COUNT: INTEGER; NEXT: REF END;

VAR Y,Z,RO0T, SENTINEL:REF;

BEGIN
NEWI(Z)
Y?.'EXTO-ZS
25 NEXTeY NEXT;
END .

-3 .

FOR THE MAIN PROGRAN
THERE ARE 1 VERIFICATION CONDITIONS

8]

(~SENTIMNEL 208 &

-fR00T-Z2028 &

~Ye200 &

REACH (P#MJORD,ROOT, SENTINEL) &
~Y«SENTINEL &
P#JORDCSENTINELS. NEXTeNILL &
REACH (PAIORD,ROOT, Y) &

REACH (P#JORD, Y, SENT INEL)

REACH (<<P#MJORDVY 12881 , cY>. NEXT, 288>, cZ28>. NEXT, <PMIORDU (2881 , cY>. NEXT, 28~
@>cY>.NEXT>,ROOT,SENTINEL))

AFTER SOME SIMPLIFICATION, YOU CAN GET
u |

(~208-Y &

REACH (P#JORD,ROOT, SENTINEL) &
-~Y«SENTINEL &
PMUORDCSENTINEL S NEXTeNILL &

REACH (PAUORD, ROOT, Y) &

REACH (P#JORD, Y, SENTINEL) &
~ZB0eSENTINEL &

~288-R00T

£ J

REACH (< <PMJORDU (2081 , cY>. NEXT, 288> ,cZ08>. NEXT, 208>, ROOT, SENTINEL))

The loop construction can be seen by analysis of the relerence class expression
in the conclusion of the simplified YC. The simplification results from Axioms 32. It
is now easy to see that the final operation represented is ZINEXTeZ which clearly

introduces a loop.

- 38 -

4.4 Root and Sentinel Problem

This program was suggested by N. Wirth. It operates on a linear list. Each cell
of the list has three fields: KEY, COUNT, and NEXT. KEY field contains the
identification name (or the cell, COUNT field contains the number of times SEARCH
is called with the corresponding KEY, and NEXT field -ontains the pointer to the
next cell in the list. ROOT points to the firs. cell and SENTINEL points to the next
to the last cell. The last cell 2 dummy cell.

TYPE REF « tWORD,

TYPE WGROSRECORD KEY1 INTEGER; COUNT: INTEGER; NEXT: REF END;
VAR K: INTEGER;

ROOT, SENTINEL:IREF;

PROCEDURE SEARCH (X1 INTEGER: SENTNEL 1 REF; VAR ROOTIREF)

YAR Wl,H21REF,
BEGIN W1+ROOT;

SENTINEL?.KEYeX;
IF W1eSENTINEL THEN
BEGIN
NEW(ROOT) ¢
ROOT*.KEY-X; ROOT®.COUNT~1; ROOT®.NEXT-SENTINEL;
ENO ELSE .
é; H1t.KEY =X THEN W1t.COUNT-H1%.COUNT+] ELSE
EGIN
REPEAT W2-4l; Wleli2® NEXT
UNTIL RIt.KEYeX;
IF W1eSENTINEL THEN
BEGIN
W2+RO0T; NEW(ROOT)
ROOT®.KEY«X; ROOT*.COUNTel; ROOTH.NEXTeld2
END ELSE
BEGIN
H1t.COUNT-KH1T.COUNTS1;
H2t NEXTH]*. NEXT;
H1t.NEXT-ROOT; ROOT«W]
ENO
END

END; .,

-39 -

In order to verily this program we have to show that several properties hold.
Here are some of them. (1) The list structure is always loopiree and SENTINEL is
reachable from ROOT. (2) Il a cell with the given KEY exists in the list, no new cell
is added; otherwise, one cell is added. (3) No two KEY's of cells in the list are the
same. (4) After execution the list is reordered so that the [rst ceil has the same KEY
as the given KEY argument of SEARCH, and the order of the other cells is
unchanged. (5) Only the COUNT field of the cell with the given KEY is incremented
by 1, and the rest are unchanged And (inally the program terminates. Here we are
going to show a verilication that the first two properties -- reachadility and non
deletion -- hold.

Example 4 is the program with assertions about reachability. The ENTRY and EXIT
assertions state that lcopireeness is maintained. The only additional documentation is

an invariant 'escribing obvious properties of the varisbles in the REPEAT loop.

- W -

Example 4.

PASCAL

TYPE REF «tORD;

TYPE WORDRECORD KEY: INTEGER; COUNT: INTECER; NEXT: REF EHJ:
VAR K: INTEGER;

ROOT, SENTINEL:REF;

PROCEOURE SEARCH (X: INTEGER; SENTINEL i REF ; VAR ROOTIREF) ;
ENTRY REACH (PAJORD,ROOT, SENTINEL) A (SENTINELT . NEXTeNILL) ¢
EXIT REACH (P#UORD,RO0T, SENTINEL)

VAR W1,H2:REF

BEGIN UW1.-RO0T;
SENTINEL®.KEY+X;
IF W]1«SENTINEL THEN

BEGIN

NEW(ROOT) s

ROOT®.KEY+X; ROOTS.COUNT+1; ROOTS.NEXT-SENTINEL;
END ELSE
IF W1t.KEY oX THEN W1t.COUNT+U]t.COUNTe]l ELSE

BEGIN
REPEAT W2.41; W]leW2t. NEXT
INVAR]ANT
REACH (P#JOR0, ROOT, W2) A (W] «l2t NEXT) A (H2«SENTINEL) A
(SENTINEL®. W XTeNILL)
UNTIL HIT.KEYeX;
IF W]eSENTINEL THEN

BEGIN
W2+RO0T; NEW(ROOT),
END ELSE

BEGIN
W1t COUNTW1t.COUNTe1
W2t . NEXTeW] 2. NEXT,
W1t NEXT-ROOT; ROOT&U]
ENO
END
ENO; . ¢

¢ Bl =

Below is 3 COALFILE containing a basis that is sulficient to verily Example 4 (i.e.
that the program satisfies its documentation). Comments explaining some of the goals
appear between X signs. [t turned out that goals 9,12, were not used in this

verilication.

GOALFILE
Gl AX]OM REACH (@D.eX.0X) « TRLE:

G2: GOAL REACH @D, e¥,eY)
SUB REACH(D,X, 02! AREACH(D, 02.Y);

G31 GOAL REACH(#0, R, 00ceXo. NEXT) SUB REACH(D,R,X)

G4: GOAL REACH (0D, eDceX>.NEXT oY) SUB ~(XaY) AREACH(D,X,Y)
IXt.NEXT ie Detueen X ang Y%

GS: GOAL ~leXeeY) SUB -10DcX>.KEY « #DcY>.KEY),
IKEY fielas of distinct cells are distinets

G6: GOAL ~{elieolceY> . NEXT) SUB
~REACHID, DeYo . NEXT, K) ¢

This is @ special case oft 1f W 19 not reachadle from

X then ¥e, %

G7: AX]OM REACH(<@D,coX>.KEY, 05>, 0Y.82) = AEACH(D,Y,2);
G8: AXIOM SEACH(<8D,coX>.COUNT, 66>, 0Y,.02) = REACH(D,Y.2)

YAXIOMS 7 ana 8 state that operaticns on the KEY ang COUNT fields
do not alter loopfireeness?

G3: GOAL -REACHIeDu ieX) ,eX,02) SUB ~IXeZ);
G18: GOAL -REACH(eDu leX),e2,0%) SUB -(Xe);

Gll: GOAL REACH(e0u 02}, 0¥, eY)
Sm -(ZOX’ﬂ ‘(ZDV'I\K‘D“(D.X-V“
X3-11 define the Reachavility relation on newiy allocated celleX

Cl2: GOAL REACH ! <0Du 102) , col>.NEXT, 60U 102) coY>. NEXT>, @2, obd)
SUB ~(2«Y)AREACH(D,Y W)

G13: GOAL REACH(<#0,ceY>.MEXT 0>, 0%, o)
SUB MACH(D.X.V)A-GEACHGU.Z.V)AREACH(D.Z.U)8
%12,13 descrive sufficient conditions for preservation of
Reachabi(ity uhen 2 is inserted by operations simiiar

=48 -

to example 2%

Glé: GOAL REACH (<00, ceYo . NEXT ol>, 0¥, o)
SUB REACH (D, X, Y)AREACH(D, Y, Z) AREACH (D, 2, W) A= (Yel)
%16 gives sufficient conaitions for preservation of Reachadility
uhen cells betueen Y ano Z are cut out of the 1istX

G1S: GOAL -REACH(<e0,ceY>.NEXT, 0>, eX, &) SUB
REACHID, X, Y)AREACH D, ¥, W) AREACK (D, W, 2) A-REACH(D, 2, H) A
~(Yold) A= (W)
X15 states that)¢ W is strictiy vetueen Y and Z, and there are no
loops back to W after Z, then W cannot be reached after cutting
out the cells betueen Y and Z.%

G16: GOAL -REACH(e0,eDceX>.NEXT, @Y)
SUB REACH (D, Y, X) AREACH (D, X,e5) A (DcaSo>. NEXTeNILL) ¢
LY cannot be reached from Xt.NEXT ¢ X can be reached from Y and there
are no loops after X. Here S is the end cell of the list structure and
it it is reachadbie fros X then there are no loops after X.%

-~ &8 =

Below is the annotated program to prove the subset property, ie. the cells of the
input list are a subset of those of the output. Ve have introduced a function
LIST(X,Y,D) which is defined if REACH(D,X,Y) and whose value is the set of cells
between pointers X and Y excluding Y? in relerence class D. Also we use the
predicate SUBSET(A,B).

Example 5.

PASCAL

TYPE REF « *WORD;

TYPE WORD-RECORD KEY: INTEGER; COUNT: INTEGER;NEXT:REF END;
VAR X INTEGER;

ROOT, SENTINEL:REF;

PROCEDURE SEARCH (X: INTEGER; SENTINEL s REF; VAR ROOT:REF) ¢
ENTRY (PMJORD«P@) A (ROOT=R) AREACH (P#JIORD,ROOT, SENTINEL) A
(SENTINEL* . NEXTNILL)
EXIT SUBSET(LIST (R@,SENTINEL,P8) ,LIST(ROOT,SENTINEL ,PAIORD))} ¢
VAR W1,W2:REF
BEGIN WI-ROOT;
SENTINEL®.KEY-X;
IF Wl1eSENTINEL THEN

BEGIN
NEU(ROOT) ¢
ROOT?.KEY-X; ROOTT.COUNT-]; RCOTH, NEXT-SENTINEL;
END ELSE
IF WIt.KEY oX THEN H1%.COUNT-U14.COUNTe] ELSE
BEGIN
REPEAT W2+l WleW2® NEXT
INVAR|ANT
SUBSETILIST(RD,SENTINEL ,FB) ,LIST(ROOT,SENTINEL , PMIORD))
A(SENTINELT . KEYeX) A(SENTINEL2 . NEXTeNILL)
AREACH (PSUORD, ROOT , W2) AREACH (PSWORD, W1, SENTINEL)
A(<PB,cSENTINELD.KEY, X>«P#JORD)
AU U2 NEXT)A(HN2#SENTINEL)
UNTIL W12 . KEYeX;
IF W1eSENTINEL THEN

BEGIN
W2+R00T; NEW(ROOT),
ROOT?.KEYeX; ROOT®.COUNT«1; ROOT®.NEXTeW2
END ELSE
BEGIN
W11.COUNT«U1t.COUNT1:
W24 NEXToULt NEXYT,
- W1¢.NEXTROOT; ROO™«Ul

ENO
END; ..

- 44 -

This COALFILE together with the previous COALFILE for reachability form a Basis
for verilying Example 5. The AXIOMS here describe straightforward properties of
LIST and SUBSET. UNION is the usual union operation on sets.

GOALFILE

1. AXION LIST(eX,eY,<eD,cak>.KEY,025) « LIST(X,Y,D);
2. AX]OM LIST(eX,eY, <eD,ceK>.CONT, 02>) » LIST(X,Y,0),
3. AXION IF (Xe2)AalYel) THEN LIST(eX.eY,0Duie2)) « LIST(X,Y,0);
4. AX]OM IF REACH(D,R®,X)AREACH(D,Y,R1)A-REACK(D,Y,X)

THEN LIST (eR2,0R1, <€D, coX>.NEXT, @Y>)

w UNJON(LIST (R, Dcx>.NEXT, D), LIST(Y,R1,0));

S. AXIOM [F REACH(D,Z,X)a ~REACH(D.X,2)

THEN LIST(eX, @Y, <00, ce25. NEXT, 0E5) « LIST(X,Y.0);
6. AXIOM LIST(eR,eR.e0) « 2ERD,

7. AX]OM UNION(eD,Z2ERO) « D
8. AXIOM UNION(LIST (eX.eY.eD),
UNION(LiST(eR,ex,e0) .LIST (@Y, eS,00)))
= LIST(R,S,D)

9. AX|OM SUBSET(eX,eX) « TRUE,
11. AXIOM SUBSET (eX,UNION(eY,eX)) = TRUE;

- HE

Acknowledgement
We wish to thank our colleagues Derek Oppen and Robert Cartwright for

many debates and discussions based on early dralts of this paper which were very
helpful and resulted in delinite improvements.

- 46 -

Bibliography

(Burscall) Burseall, R. M.,
Some Techniques for Proving Correctness of Programs which Alter Data Structures,

Machine Intelligence 1,
Edinburgh University Press,
Nov.]1972.

(von Henke & Luckham) von Henke, F. W. and D. C. Luckham,
A Methodology for Verifying Programs,
Proceeding: of international Conlerence of Reliable Software,
IEEE, pp.156-i64, 1975.

(Hoare 69) Hoare, C. A. R.,
An Axiomatic Basis for Computer Programming,

CACM, Vol. 12, 1969, Oct., pp576-580.

(Hoare 71) Hoare, C. A. R,
Procedures and Parameters: an axiomaiic appreach,

Symposium on Semantics of Algorithmic Languages,
E. Engeler(ed.), Springer-Verlag, 1971, pp.102-116.

(Hoare & Wirth) Hoare, C. A. R. and N. Wirth,
An Axiomatic Definition of the Programming Language PASCAL,

Acta Informatic, Vol. 2, 1973, pp335-355.

(ILL] Igarashi, S. and R. L. London, and D. C. Luckham,
Automctic Program Verification |: Logical Basis and lts Implementation,

Acta Informatica, Vol. 4, pp.145-182, 1975.
(King] King, J. C.

A Program Verifier,

Ph.D. thesis, Carnegie-Mellon University, 1969.

(McCarthy) McCarthy, J,,
A Formal Description of a Subset of ALGOL,

= &Y =

Formal Language Description Languages (or Computer Programming,
Proc. IFIP Working Conference 1964(T. B. Steel, Jr. od.)ppl-12,
North-Holland Publishing Co., Amsterdam, 1966.

(Luekham & Suzuki) Luckham, D.C. and N. Suzuki,
Automatic Program Verification IV:
Proof of Termination within Weak Logic of Programs,
Stanfor Artificial Intelligence Laboratory Meme 269,
October, 1975.

(Oppen & Cook) Oppen, D.C. and S.A. Cook,
Proving Assertions about Programs that Manipulate Data Structures,

Proc. of Tth Annual ACM Symp. un Theory of Computing, May 1975.

(Spitzen & Wegbreit)
TAe Vertfication and Synthesis of Date Structures,
Acta Informatica, Vol. 4, No. 2, 1975, ppd27-144.

(Suzuki a) Suzuki, Norihisa,
Verifying Programs by Algebraic and Logical Reduction,
Proceedings of Intl. Conl. on Reliable Software,
SIGPLAN Notices, June , 1975, pp.473-481.

(Suzuki b] Suzuki, Norihisa,

Automatic Verification of Programs with Complex Data Structure,
Ph.D. Thesis, Stanford University, 1975,

(Wirth?1]) Wirth, Niklaus,

The Programming Language Pascal,
Acta Informatica, Vol. 1, No. 1, 1971, pp.35-63.

- 48 -

