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I'-MINIMAX AND MINIMAX DECISION RULES
FOR COMPARISON OF TREATMENTS WITH A CONTROL*
by

Shanti S. Gupta and Woo-Chul Kim
Purdue University

1. Introduction.

In many fields of research one is faced with the problem of comparing
k experimental categories with reference to a 'standard' or a 'control’.
Following the initial investigation by Paulson (1952), this problem has
been studied in several different formulations by Dunnett (1955), Gupta and
Sobel (1958) and Lehmann (1961) among others.

Let Hyseee s denote the k experimental categories or ‘treatment'
populations and let o denote the 'control' population, where the quality
of each population ng is characterized by a real-valued parameter 8

(i = 0,1,...,k). Each treatment population ms is said to be 'superior',

'equivalent' or 'inferior' to the control population L if ei-eo > &3

TN 0; = 0g < 8, 0,-0g < -4, respectively, where A is a given positive

constant. We consider a problem in which the treatment populations are to
be classified as one of the above three cases based on the observations from
the populations. Bhattacharyya (1956, 1958) studied this problem for the
normal populations with unknown means when the control population is

assumed known. A similar problem has been considered by Seeger (1972).

We apply the I'-minimax principle to this problem.

*This research was supported by the Office of Naval Research contract
NOOC}i4-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.




r-minimax principle is known as one of the techniques for the use of
incomplete prior information. Such an idea was first used by Robbins (1951)
and independently by Hodges and Lehmann (1952) and Menges (1966). The name !
r-minimax was first used by Blum and Rosenblatt (1967). Randles and Hollander |
(1971) applied such a principle to a problem of selecting the treatments

‘better' than the control. It has been applied to various problems, and

| recently to selection problems by Gupta and Huang (1975, 1977), Berger (1977)
| : and Miescke (1979). i

In Section 2, necessary notations, definitions, a loss function and |
; the incomplete prior are introduced. A lemma is given to help find I'-minimax
rules. Section 3 treats the case of known control population, and a I'-minimax
rule and a minimax rule are derived. In Section 4, the case in which the

control population parameter eo is unknown is treated. Rules are derived

Ty TN I —re

which are r-minimax among rules for which the decision about the i-th

population depends only on the observations from s and "o A minimax rule

is also derived. A normal means problem and a normal variances problem are

given as specific examples. Section 5 consists of comparisons of I'-minimax

rules with Bayes rules for independent normal priors for the normal means {

problem.

2. Formulation of the problem.

Let XO,X],...,X be k+1 independent random variables representing the

k
control population i and the k treatment populations TyseeesTys respectively,

with X, having pdf fi(x-ei) with respect to the Lebesgue measure on the real ; Pr
*a Section

1line R where ei €@ =R, i=0,1,...,k. The random variables XO""’xk may tastion O

be sufficient statistics or other statistics based on which we wish to make
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statistical decisions. We assume that each fi(') (i = 0,1,...,k) is symmetric
about the origin and strongly unimodal, i.e., fi(') is log-concave on the real
line. Hence fi(x-oi) has the monotone likelihood ratio (MLR) property. "
Obviously, we do not need any observations from 9 when 8 is assumed known; %
therefore, it will be understood that, in such a case, the random variable !
Xo is deleted from our consideration.
The action space G can be written as G = Gy xeeex Gk where G; = {1,2,3}
for i = 1,...,k. The action a = (a1,...,ak) € G is to be interpreted in such
a way that, for i = 1,...,k, the treatment population T is classified as
“inferior', 'equivalent' and 'superior' to 0 for a; = 1,2,3, respectively.
The loss L(g,a) incurred by the action a € G for ¢ = (eo,....ek) is assumed to :
be of the following form. é
K
L(g,a) = 7§ Li(g,ai) (2.1) §
i=] il
where Li(g,ai) is defined as in the following table; |
Table of loss L.(g,a,) :
o
State of nature 1 2 3
03=0g < =Ay 0 21 L1t |
~Bp<0,8g < =By 0 0 tq (25 > 0, i=1,...,4) 1‘
10470gk < & ko - 2! 3
Ry S iy Ay ig . 9
05700 = Ay L1t 2 0

Here, Ay = A-€5 A, = At€ for a given constant €: 0 < € < A and it will be




understood that the second row and the fourth row will disappear when ¢ = 0.
Bhattacharyya (1956) derived a minimax rule assuming the above loss function
with 2 %%y = 1]+13 = 1 and € = 0 when 09 is assumed known and Oys---50, are
the unknown means of normal distributions. However, the irregularity of such

a loss function has been pointed out in the sense that the minimax risk does not
tend to zero even if the sample sizes increase indefinitely, and the same
problem has been studied afresh by Bhattacharyya (1958) assuming the above loss
2 4" 2]+23 =1 and € > 0. Note that the above loss
function with € > 0 assumes the indifference zones.

function with 2y = &y = L

For given x = (XO’XI""’xk) consider decision rules of the form
8(x) = (87(x)s...,6,(x)) (2.2)

where &,(x) = (8;(1[x), 6;(2|x), 6,(3|x)) and, for j = 1,2,3, 6,(j|x)
denotes the conditional probability of taking action j in the i-th component
decision problem. Note that there is no loss of generality in considering
decision rules of the form given in (2.3). The risk function of a rule

s for fixed ¢ is then R(e,s) = igl Ri(g,si) where Ri(g,di) = EQ[Li(g,ni(§))].

For a prior distribution t(e) of ¢, the overall risk of a rule ¢ wrt . is

k
denoted by r(t,s) = .Z] ri(r,ai) where Pi(t,di) = jRi(g,ai)dr(g).
i=

It is assumed that partial prior information is available to a decision
maker such that, for each i, he can specify y; = P[|°1‘90| = A2] and
| P[|91'90| < A]] where y +y; < 1 for i = 1,....k. Letr denote the

class of all such prior distributions, i.e.,

r={t(e): | J | dr(e) = v4» | / | dr(g) = y; for i=1,...,k}.
0:-04]2A 04-04]<A
1 70="2 ¥ (2.3)

Note that when € = 0, i.e., By = Bys g o (B 1.
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A rule &' is called a -minimax rule if sup r(r,dr) = inf sup r(t,6),
T€r § T€r

and sup r(1,or) is called the r-minimax value. The next result is useful
1€

to find the r-minimax rule.

Lemma 2.1. Suppose {1 , n=1,2,...} is a sequence of priors in T.
If Vim inf r(1 »8) > ¢ and if sup r(r,d ) < c, then & " is a r-minimax
n [\ T€rlr

rule and ¢ is the r-minimax value.
Proof. The result follows from the following inequalities.

sup inf r(t,s) > Tim inf r(,»s)
€r 6 oo

(o

|v

|v

sup rt,6")
T€r

|v

inf sup r(1,s8)
8 - nEr

|v

sup inf r(t,s).
1€ §

|v

3. Known control population

In this section 8 is assumed known and thus we may assue 8g = 0 without
loss of generality. Hence x and ¢ in this section denote (xl....,xk) and
(n],...,uk), respectively. Let us consider a rule s(x) of the form in (2.2)
where 5.(j|x) (j = 1,2,3) is given by

5i(]|§) 5 I(‘m,’di](xi)’
5218 = Tgiia) (x), (3.1)

5;(3]x) = ‘[di.«»)("i)'

for 0 - di <wand i =1,...,k.
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Lemma 3.1. Suppose that a decision rule ¢(x) is given by (2.2) and (3.1).

Then, for i = 1,...,k,

sup r.(t,6;) < v,
el i i

where v, = / [£3yifi(X+A2)+227%(fi(x-Al)+fi(x+A]))+24(]-yi-y%)fi(x+A])]dx
i
i

d
+ f I]Yifi(x‘Az)dx.

Proof. It follows from the definition of Li(g,ai) and the symmetry of fi(-)

that, for |e.| < 4;s
R%(Q’ai) = lz[fi(di'ei)-fi(‘di-ei)]
f fi(ei-di)
tofi (04t )le o,y 11
where R% denotes the derivative of Ri wrt 8-
It follows from the MLR property of fi(x-ei) that R%(g,ci) has at most
one change of sign, from negative to positive if there is any sign change
at all; therefore, R;(g.5;) attains the supremum over o, € (-a;,4,) at

either 6, = -, or o, = A;. Hence, for |6;| < 4,

R.(8:85) < 2, £ [fi(x-A])+fi(x+A])]dx.
i
It can be easily shown that
d1 m
2 {wfi(x-Az)dx+23 £ fox+ay)dx  for Jo | .~ A,
i

1A

R:(8,6:)

L
4 £if1(x+A])dx for Ay < |o

IA
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Therefore, it follows from (2.3) that sup ri(r,di) < vy which completes
1€l

the proof.

Now we derive a Ir-minimax rule for the case where 60 is known.

Theorem 3.1. Assume that independent random variables X],...,Xk have
f](x]—o]),...,fk(xk-ek), respectively, with fi(') being symmetric and
{ strongly unimodal, and that the loss function is given by (2.1). Then

the r-minimax rule s' is given by (2.2) and (3.1) where each di = dg in

s

P (3.1) is defined by dg = max(ci,O) with c; being determined by

k3,ifi(X+A2)+127%(fi(x-A])+fi(x+A]))+24(]-yi-y%)fi(x+A1)

’ (3.2)
o2 yyfilxen,) as xo2, <ocl

Proof. The existence of a ¢, satisfying (3.2) follows from the MLR
property of fi(x-oi). Therefore, the decision rule ' is well defined.

First, we will consider the case when € > 0, i.e., AZ > A]. For n > A{],

let ™ be a prior distribution in T under which e],...,ek are independent,

P(Ui=A2) = p(“i = -A2) = yi/2, P(ei=A]) = P(ei = - A]) = (1-yi-y;)/2 and
P(0,=A;-n") = P(0, = -a;#n"V) = y!/2 for i = 1,....k. Then it can be
i 1 Ty

easily verified that inf r(rn,é) = )} inf ri(rn.di) and, for i = 1,...,k,

) i=1 51

2 s o cabalN s o

i:f Fi(rn,éi) = {w pn(x)dx/2,
i

where pn(x) = min{pn(l,x), p(2,x), pn(l,-x)} with p(2,x) = zlyi[fi(x+A2) +
fi(x'/\z)] and pn(]9x) = ZzY-'i[fi(X'A"+n-])+fi(X+A1'n-])] + 24(]'Y1‘Y%)fi(x'A])+

(%]+M3)Yifi(x-A2). Since fi(') is strongly unimodal on the real line, fi(-) is




f

min{p(1,x), p(2,x),

continuous and thus pn(x) converges, as n - =, to p(x)

p(1,-x)} where p(1,x) = lim pn(l,x). Note that p(1,x) > p(1,-x) if and only
N0

.

if x > 0. This follows from the fact that, for any t > 0 fi(x-t) > fi(x+t)
if and only if x > 0. Since pn(x) is bounded above by p(2,x) which is

integrable, it follows from the Lebesgue convergence theorem that

]:'lm 121“ ri(c,s8;) = {wp(x)dxlz
i (3.3)

min{p(2,x), p(1,-x)}dx.

o8

Note that [ min{p(2,x), p(1,-x)}dx can be written as
0

oo

6 min{p(2,x), p(1,-x)}dx

* é min{23Yifi(X+A2)+l4(]'Yi'Y%)fi(x+Al)+22Y%[fi(x+Al)+fi(x'A])]a

0
miyifi(x-az)}dx +_£ z]yifi(x-Az)dx

= £ Logvyfy(xean)te, (Vv -y i) Fy(ckag Jragyd (£, (x-0 J+F, (x+a4)) Jdx
i

d

where di = max(o,ci) with ¢4 defined as in (3.2).

It follows from Lemma 3.1 that lim inf ri(Tn,Gi) > sup ri(x,sg). Therefore,

1im inf r(7_,6) = lim inf r.(c ,4;)
n o6 v n 121 Lt g

8

|v

) (1s65)
. Sup r.(1,¢
i=1 €r | i

|v

sup ri(Toér)'
T€r

e L D A AL AT TR S T
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Hence Lemma 2.1 yields that s' is a r-minimax rule. This completes the proof
of the case when € > 0. Note that 4, = 45 = 4 and vs ¥ y% =1 fori=1,...,k

if ¢ = 0. When € = 0, let us consider a sequence of prior distributions,

Ligs M- A-]}, in r under which ¢,,...,6, are independent, P(6i=A) = P(ei= -A)

(;/2 and P(ui=A—n']) = P(ei= -A+n']) = y;/2 for i =1,...,k. Then we can
prove in the exactly same manner as the above that 5F is a r-minimax rule.

Now we discuss the derivation of the minimax rule for some special cases.
A winimax rule can be derived from the arguments in the proof of Theorem
2.1. For this purpose, assume that 2y = o 2y 5_21] and 23 229 We may
assume that £y = 0% 1 without loss of generality. Let us consider a rule
s* of the type given by (2.2) and (3.1) where each d; = d; in (3.1) is
determined so that, for Fi(x) = jmfi(t)dt,

-0

Note that the existence of such a non-negative dg follows from the strong
unimodality and the symmetry of fi(°)' Let us define y; and y; = 1-y, for

i=1,...,k by
vi = LF(d3=a,)+F, (34 ) J/0F, (d8-0p) -2, (d3+a,)+F, (d-0;)+F, (d+a;)].

Since y; € [0,1], we can consider a family of prior distributions, r, given
by (2.3). Then it follows from Theorem 2.1 that the corresponding r-minimax
rule is of the same type as s* except that now dg = max(ci,O) where c. is

determined so that

Hie;) = vilagfile rag)-fylc -ap) Ihvilf (eg-a )4 (ci*a )] = 0.

Since H(d¥) = 0 and d¥ >0, d; = df, i.e., the rule & is the r-minimax
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rule; therefore it follows from the arguments in the proof of Theorem 2.1

that

|v

k
im 1 - -] - ] -*— —* .
l;m IQf r(rn,é) iZ]Yi[Fi(d? A2)+£3Fi( d¥ AZ)]+Yi[Fi( dj A])+Fi( di+A])J

k
iZ] [Fi('d;'A])+Fi('d$*A])]

k
) sup R;(8,6%)
i=1 o

| v

sup R(9,8*)
0

Therefore, we have the next result which includes the results in Bhattacharyya

(1956, 1958) as special cases.

Corollary 3.1. Under the assumptions in Theorem 3.1, if 8y = % = 1, £y < 1
and 2 < 2, then a rule 6M of the type given by (2.2) and (3.1) with 4, = d?

in (3.1) being determined by (3.3) is minimax.

4. Unknown control population.

In this section we will consider the case when 89 is unknown and
will derive a r-minimax decision rule ér in the class &0 of decision
rules for which 51(5) in (2.2) depends only on Xg and x. for = 1,....k

Let us consider rules &§(x) in 8, where 5i(j|§) (j = 1,2,3) are given by

6 018) = (o g 175
Sy\ein) = Mgy S0 o
Gi(3|§) g I[divm)(xi-xo)’

for 0 5-di <wand i = T,...,k.  S—
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Note that the pdf of Yi = X].-X0 is given by

9;(y-(0,-09)) = ]mfi(t+y-0i)f0(t-00)dt. (4.2)

-0

and that gi(') is strongly unimodal by the result of Ibragimov (1956) and
symmetric about the origin. Therefore, the next follows from this fact and

Lemma 3.1.

Lemma 4.1. Suppose that a rule &(x) in 8, is given by (2.2) and (4.1) ‘
Then, for 3 = By ..ak;

3 sup (1,6 ) < wys
T€l

i where, for i = 1,...,k,

37395 (Y8, )+ 253 (94 (y- 2, )+, (y+4,) )44, (1-v,-v1)g, (y+4,) 1dy

+

f
d
d
f Y g-'l(.V'Az)dy.

We now proceed as in Theorem 3.1 by considering the following sequence

(e > Af]t of prior distributions in T for the case when € > 0. Under T

(i) O] = Ugs---»0 -0, are independent,

(ii) P[o1 0 'Azj P[ei-e0 = -Az] = yi/z,
PDH°% = ]] P[e-e-—-%] = (1- g Y)/Z
P[“i'”o = A1-n']] = P[ei-e0 = -A]+n']] = y%/Z and

(iii) 09 has uniform distribution over [-n,n] and is independent of 6]-60,...,6k-60.

It can be easily shown that the overall risk of the Bayes rule is given by i




ne~x

: S
inf r(rn,d) o

g fmpn(i,x,y)dxdy (4.3)
ed i=1 -

o =00

where pn(i,x,y) = min{sn(i,x,y), tn(i,x,y), sn(i,-x,-y)} with

n
3 — (] 3 '] -]
sn(1,x,y) RN E [n Lfi(x-u-A]+n )+fi(x-u+A]-n )]fo(y-u)du +

+

n
14(1-71-7%) [n fi(x-u-A])fO(y-u)du +

<+

n
(z]+z3)yi !n fi(x-u-Az)fo(y-u)du and

n
tn(i,x,y) = 27 {n [fi(x-u+A2)+fi(x-u-Az)]fO(y-u)du.

| From change of variables x = nv-w and y = nvtw, it follows that

=00 =00 -0 =

ui [ [ (i.x.y)dxdy/an = [ [ p (i,nv-w,nv+w)dvdw/2
d
| (4.4)

© 1
= [ Bt desi 2,

-0 -

Note that

?(v+l)
LoYs
2" -

sn(i,nv-w,nv+w) [fi(z-w-A]+n'])+fi(z-w+A]-n°])]fo(z+w)dz +

R TR A

(v-1

n(v+1)
14(]-yi-y%)f fi(z-w-A])fo(z+w)dz +
n(v-1)

<+

n(v+1)
(2]+z3)yi £(v-]) fi(z-w-Az)fo(z+w)dz and

+

: n(v+1)
tn(1,nv-w, nviw) = 2175 {(V_]) [fi(z-w+A2)+fi(z-w-Az)]fo(z+w)dz.

Therefore, for any (v,w) € (-1,1)xR, pn(i, nv-w,nv+w) converges, as n » w,

- A ATRAR S T RIS B I RIESIE N NG 2 2o 0 2o $V/00 ST 4 ’ * -
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to p(i,w) = min{s(i,w), t(i,w), s(i,-w)} where

s(i,w) = Lo¥; [m[fi(z-w-A])+fi(z-w+A])]fo(z+w)dz +

-+

24(]~yi-y%) {mfi(z-w-A])fo(z+w)dz +

-+

(E]+l3)yi {wfi(z-w-Az)fo(z+w)dz and

t(i,w) = 2174 fm[fi(z-w+A2)+fi(z-w-Az)]fO(z+w)dz.

It follows from (4.4) that, for i = 1,...,k,

lim [ f p (i.x,y)dxdy/4n > { p(i,w)dw
n

-w “*00 “~o

o

= 6 h(i,y)dy,
to(agtegdy 05 (v+ap)s aqvileg(y*ay)ta, (y-a,) 11

Then from (4.3), we have

k
Lim inf r(c ,6) > ) g h(i,y)dy. (4.5)
n ﬁﬂo i=1

Note that é h(i,y)dy can be written as
éh(" ,.Y)dy = (j)‘m.'n{23¥-|g‘ (y+A2)+24(]'Y1‘Y% )gi (.V*A-. )+EZY% (g-i (¥+A] )+g'i (.Y'A] )) ’

0
L1vi94(y=85) 1y + [ 27v;9,(y-,)dy
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= é'[23Yigi(y+A2)+22Y%(gi(y'A])+gi(y+A1))+24(]'Y1'Y%)gi(y+A])]dy
1
d.

i
+ {mzlYigi(Y'Az)dya
where d, = max(ci,O) with ¢; being determined so that

L3y ;95 (y#a, )4,y (g, (y-0, )4g, (y+a, )0+, (T-v,-v1) g, (y*a,)
(4.6)

< 2 4gv39;(y-8,) as y >, < cy.

Let &' be the rule given by (2.2) and (4.1) where di = dg in (4.1) is
defined by di = max(ci,O) with ¢, determined by (4.6). Then it follows
from (4.5) and Lemma 4.1 that
k r
lim inf r(rn,d) > ) sup ri(r,si)
n ae&o i=1 <€r

> sup r(t,dr).
T€r

Therefore, Lemma 2.1 yields the next result.

Theorem 4.1. Assume that independent random variables XO,...,Xk have
pdf's fo(xo-eo),...,fk(xk-ek), respectively, with fi(') being strongly
unimodal and symmetric, and that the loss function is given by (2.1). Then
the r-minimax rule &' in 8 is given by (2.2) and (4.1) where di = dg in
(4.1) is defined by dg = max(ci.o) with c; being determined by (4.6),

for all i = 1,2,...,k.

Remark 4.1. It can be easily shown that the symmetry of fi(') in Theorem
4.1 can be replaced by that of 91(')' It should be noted that the symmetry
of 91(') follows when fo(-),...,fk(-) are identical.

e
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The next result follows in exactly the same manner as Corollary 3.1

was proved.

Corollary 4.1. Under the assumptions in Theorem 4.1, if 8 T Ay = 1, d

by < 1 and Ly < 2, then a minimax rule GM in 8 is given by (2.2) and (4.1)
X

where di = d? in (4.1) is determined so that, for Gi(x) =f gi(t)dt,

ot M 50404 L5 ot AT i PO D

Gi(di-Az) + E3Gi(-di-A2) = Gi(-di-A])+Gi(-di+A]).

Now we provide some examples to illustrate the application of the above

results.

Example 4.1. Suppose n; represents a normal population N(ei’°$) for
i=0,...,k with o? (i = 0,...,k) known. We assume that a random sample
of size n; is taken from each of the k+1 populations LOTERRRL By
sufficiency we can restrict our attention to the decision rules depending

only on the sample means XO""’xk where Xi has normal distribution with

mean 0. and variance n? = c?/ni for i = 0,1,...,k.

(A) r-minimax rule: The r-minimax rule s in ”0 in Theorem 4.1 is

i 4
determined by d; = (nf + ng)2 max(ci,O) where c; is defined so that

-2(Ai+6i)x -2€i(x-xi)*

y + Y
NIl zZYI[e

|
-2x,; (x-€;) : |
"Gl ot L W |

(4.7) i
-2x;(x-€5) |
* 24(]-yi-y%)e “2qvq 2 <0 a8 x <, > ¢y E

- 1 --1
where ky ® A(n?*ng) < and €y = E(n§+ng) ",

(B) Minimax rule: Assume by = Ay = 1, fq < 1 and % < 2. Then the

minimax rule aM in 8 in Corollary 4.1 is determined by dg = (“$+"S)éti

whereti is defined so that
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¢(ti-xi-ei)+z3¢(-ti-xi-ei) = ¢(-ti-xi+ei)+¢(-ti+xi-ei) (4.8)

with A and €; defined as in (A) and ¢ denoting the cdf of the standard

normal distribution.

Example 4.2. Assume that s represents a normal population N(O,u?) for
i=0,1,...,k with of unknown, and that we have a random sample of size n
taken from each population - Consider a problem of partitioning the
treatment populations in terms of variances with a loss structure
analogous to that given by (2.1), i.e., a loss function obtained from the
latter by substituting log o?, log A and log € for 0 A and €, respectively.
Thus A and € are assumed such that 1 < € < A. By sufficiency we need to
consider only the decision rules depending on sg,...,si where s% denotes

the sample variance corresponding to LT Since nsf/o$ (i = 0,1,...,k)
are independently distributed chi-square random variables with degrees of
freedom n, it can be easily seen that the associated location parameter
problem satisfies the assumptions in Theorem 4.1 except the symmetry
which is not necessary in this problem because of Remark 4.1. Therefore,
with obvious modifications we have the following results. Let 8, denote

the class of decision rules § = (6],...,6k) for which 6i depends only on

2 2

So and s

2 2 R e
i and let X; denote si/s0 for ¥ 2 Veeovsks

(A) r-minimax rule: A r-minimax rule ' in 00 is given by

T o r, & r =
51(]|x1) = I(O,d;]](xi)’ 61\2|x1)—l d;],di (xi) and Gi(3|xi)—l[dim)(xi)

for i = 1,...,k where di = max(ci,l) with <y being determined so that




17
Aty Aoty Aty A
27 yn (L, 27 ynq1yn/2
ERL M (e MR el e B
(4.9)
Apty A
| L L5 i ..,2.,_-_ n __]_ n/2
+ V-4(] Y; 'i)(l+/\]y) (AZ) gy > E‘Yi as y >, f_ci-
lere A} = At-], Ay = AC.
(B) Minimax rule: Assume 0= &, = 1, %3 < 1 and 2y < 2. The minimax
rule aM in b is the same as &' in (A) except that di = d is determined
so that
Gn(d/A2)+l3[]-Gn(dA2)] = Gn(A]/d)+]-Gn(dAl) (4.10)

where Gn denotes the cdf of F-distribution with degrees of freedom

n and n.
We note that if "y represents N(ui,cf) with both My and 0? unknown,
then the above results still hold with n-1 replacing n.

5. Comparison of r-minimax rules with Bayes rules.

When we represent our a prior information about the parameters by
prior distributions over the parameter space, one method for the use
of such information is to find a rule which is r-minimax with respect to
the class, ', of such prior distributions.
Another way is to select one such prior distribution
and use the corresponding Bayes rule. Thus Bayes rules wrt prior
distributions in ' are natural competitors of a r-minimax rule.

In this section we consider k+1 normal populations N(ei,oz) with
e known, and derive Bayes rules wrt normal priors and then compare

them with the corresponding r-minimax rules from both points of view.
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For this purpose, assume that (eo,...,ek) have prior distribution L under

which 92+ -0, are independent and each 05 has a normal distribution

.

with mean P and variance Vi Let xo,...,xk denote the observed sanple

means based on samples of size n, (i = 0,1,...,k). To simplify forthcoming

formulas, let us introduce the following notations;

Q
[}

1 = s o 5 g 1
02/n1-, b_i - [(0i2+vi2) ] +(0 2 +V02) ]]3."

0

(5.1)
-2
1

=
"

(035 ;2 @i,y = (mpemg) /.

The following theorem describes the Bayes rule.

Theorem 5.1. Assume the loss function is given by (2.1). Then the Bayes

B HEhEE B EY B b
rule & wrt 1y is given by 51(]|¥) = I(-m,-di](yi)’ ai(2|x) I(°di’di)(yi)
and 6?(3]3) = I[di,w)(yi) for i = 1,..,k where di = max(ci,O) with c; being

determined so that

R‘3¢(°A2b;]“.Y)"'9«4[¢(-A-|b;]'.Y)'¢(-A2b;]-y)]
+ 25L0(aqb7"-y)-0(-a;b71-y) 12 0(-a,b7 4y)

2, <0 as y <, >cy.

Proof. It suffices to find the Bayes rule for each of the k component

decision problems. This reduces to the comparison of posterior risks of
three possible actions. We will do this for the first component decision
problem without loss of generality. Let p](y]), pz(y]) and p3(yl) denote
the posterior risks of the actions 1, 2 and 3, respectively, in the first

component problem. Then it can be shown that
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pyly) = (z]+sc3)(v(-A2b]]+y) + 24[¢(A2b}'—y)-¢(a,b]'-y)] +
¥ Qzl‘l’(A]b;]‘y)'@ ('A]b;]".y)]s
Pyly) = m][«v(-/\?_b}]-y)+¢(-A2b]]+y)] and ‘J

P3ly) = py(-y).

Note that p;(y) - p5(y) can be written as EyH(Z) where Z has a normal

distribution with mean y and variance 1 and H(:) is given by

Byteg  if 2> Azb;‘
Ly if A]b;] < Z< Azb-].]
% ; -1 =}
H(z) =<« 0 i -aby <z < gy
-9 if -a b-] < Z < =A b-]
4 271 1
7 -1
k -(8q+25) if 2 < ~a,by 0.

Since the density of the normal distribution N(y,1) has the MLR property,

it follows that p](y) - p3(y) has at most one sign change.

Furthermore, it can be shown that p](y)-p3(y) is strictly increasing on

(-Ab]], Ab]') and p,(0)-p3(0) = 0. Thus p,(y)-ps(y) >, <0 asy >, < 0.

Similarly, we can show that ps(y)-p,(y) >, < 0 as y <, > ¢; for some real

number ¢, unless p3(y)-p2(y) < 0 for all y. Therefore the result follows.
Now we cdmpare the r-minimax rule s’ given in Example 4.1 and the

Bayes rule 6B given in Theorem 5.1 under the assumption that By = Ly =R

2 é

V3 = %, My =N and Vg ¥ for i = 0,...,k. Note that we compare these

g = 1

i ok
rules under the relations vy * ¢[(-A2+ui-uo)(2v2) 2]+¢[(-A2-ui+uo)(2v2) 2]

. «d -t
and y; = ~|'L(A,-u,.+u0)(2v2) “]-¢[(-A]-ui+u0)(2vz) %] for 1 = 1,...,k. Eéch

of them is the best in its own merit. Therefore there are two ways of any
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meaningful comparison of these rules. One way is to examine the increase

in the overall risk wrt 1) resulting from the use of s'. Another way is

to compare them in terms of sup r(t,s). When n; =n and v? = v2 for i = 4
1€r

0,1,...,k, the Bayes rule depends on x only through X17Xgs s X "X and 1

it can be shown that sup r(r,d ) = X sup r, (r,a ). Thus it suffices to
t€r i=1 te€r

compare these rules wrt classification of one population. We choose " for

this purpose without loss of generality.

Now we introduce the parameters used in the comparison as follows.

2 HyH
g =M, p =L g =€ andg =120,
1 2 2 2 3 2 4 _—?
2 Vv Vv Vv

It can be verified that the overall risk wrt 0 of these rules can be 1

written as

26(-A-B-C)+¢(A-B-C)+o(D-E)+2o(-D-E)

-¢0(-A—B-C, -D-E; p)+(]-2)¢0(-A—B-C, D-E3p)

¢0(~A+B-C, D-E; p) + ¢0(A-B-C, -D-E; p)

¢0(-A+B-C, -D-E; p)-¢0(A-B-C, D-E; p)

+

¢0(-A+B'C, D’E; O) (A‘B'C, 'D'E; D)

-¢0

¢0(A+B-C, D-E; p)-(]-£)¢0(A+B-C, -D-E; o)

where ¢0(-,-; p) is the cdf of a bivariate normal distribution with zero
means, unit variances and correlation coefficient p, and where A = bos

i e -1 . -3 B = -!
B =gy C= Bgs 0 = sf(1+31) %, D = dygy® for s, D = max(c'.O)(lfﬁ])

p°]34 for s°

for 6r. E and E = o8, for s with dl and 3 being those in

4

Theorem 5.1 and Example 4.1, respectively. Also sup r (1.6]) for both rules
1€l

- e e ey Y A e et
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can be written as
yl[w(R+|S[—T-U)-w(—R+[S[-T+U)+z¢(-R+|S|-T-U)]

+ 'yi['l'(-R-S+T-U)+¢(-R+S-T+U)]v[¢(-R+S+T-U)+¢(-R-S-T+U)]

b (1-v})o(-Re [S|-T+U)

1 1 .
where x'y = max(x,y), T = BoB5s U = B3Bf. S = 84812 for 68. S=0
' . 1
for o', R = u]“(l+u])“ d] for 68, R = max(c],O) for &' with d] and
G being those in Theorem 5.1 and Example 4.1, respectively. For

selected values of b (i =1,...,4), Table I and Table II give r,(ro.él)

and sup r](l,dl) for 8y = ag, 6? for £ = 0 and ¢ = 1, respectively. It
el

can be observed from these tables that, in many cases, the increase in the

overall risk wrt 19 from the use of 62 is only slight compared to that

in sup rl(x,ol) from the use of 6?. In this sense, 5
el
against other formulation than 68. Such properties of s' become more

is more robust

prominent as the difference between the prior means (34) increases and
the prior variance (n]) gets smaller. When we have the same prior means

and the prior variance is large, both rules compare favorably with each

B

other. In most cases, we can observe that cr compares favorably with §

in terms of the overall risk.

. _‘,_4;5,,"...«" Shid o . . e
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Table I
Overall risks and the values of sup r(t,s) of 68 and §' when ¢ = 0.
f 1€l i &
| of &5 T P 8! _‘qp
j By
| By .25 1.0 4.0
ﬂf 8, = 0.5 By = 0.125
' .4961 .9696 .4097 .7784 .2816 .5404
1.0 .3930 . 2587 .2864 .2097 .2001 - .1189
.5344 8274 4577 5201 3312 4359
0.5 .4520 .3957 .3321 .2963 .2121 L1615
5164 5627 . 4568 4626 3413 .3492
0.0 .4599 .4544 .3341 .3315 .2103 1786
By = 0.5 B3 = 0.05
; 5250 .9731 4471 8117 3261 6276
] 1.0 .4140 .2853 .3103 .2395 .2413 .1493
g .5768 .8460 .5088 .6703 .3999 5306
0.5 .4898 .4330 .3840 .3368 .2899 .2021
.5680 .5937 5170 5190 L4210 24391
| 0.0 .5027 .4978 .3828 .3764 .2856 2232
|
| 8, = 0.8 By = 0.2
1 4770 .9598 .3793 7074 2574 4808
| § 1.0 .3909 .2824 .2539 .1931 .1369 .0923
. .3739 .7920 .3450 .534% .2692 .3449
1 0.5 .3594 .3163 .2424 .2237 .1152 .1083
! 3172 .5226 .3066 3794 .2546 .2667
§ ; 0.0 3151 .3050 .2404 .2298 .1133 1131
F
é By = 0.8 B3 = 0.08
] .5365 .9699 4541 .7840 .3573 5860
3 1.0 .4380 .3309 .3190 .2411 .2407 .1353
] . .4357 .8308 4278 .6286 .3960 .4890
: 0.5 .4311 .3742 .3137 .2801 .1632 .1588
, .3789 . 5827 .3785 .4658 .3679 .3967
| 0.0 .3789 .3658 .3509 .2887 .1939  .1659

The numbers un the first (second) row in each box are the values of

sup r(t,6) (r(To,é)). ]
T€T '

. , TTTTEEIT T T TR L e
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Table II
Overall risks and the value of sup r(r,s8) of 6B and ép vhen ¢ = 1.
T€r
ﬁ]‘ SB Gr GB GF GB
£
Fa .25 1.0 4.0
B, = 0.5 By = 0.125
.6655 .6167 .5435 1.0979 .3258 .5696
1.0 §..5218 .2929 .2947 .2195 .1674 .1194
.5746 .2157 .5098 .7758 . 3496 .4498
0.5 .5280 .4325 .3361 . 3082 .1941 .1620
.5299 .6991 .4865 .5298 . 3529 .3560
0.0 .5085 .4817 .3474 .3437 .1985 .1791 |
B, = 0.5 By = 0.05 :
s 7117 .6582 .6084 - 1.1721 .4027 .6698
1.6 . | .5688 .3264 . 3280 .2523 .2059 .1500
.6242 .2762 .5775 .8566 .4372 .5520 !
g5 .5872 .4778 . 3828 . 3522 .2445 .2030
.5817 L1627 .5545 .6032 .4452 .4502 :
0.0 .5683 .5316 .4017 .3923 .2510 .2242 - 1
%
By = 0.8 By = 0.2 |
% .5021 414 . 3982 .8181 .2580 .4413
1.0 ] .4248 .2883 .2465 .1938 .1355 .0923
.3745 .9929 .3470 .5702 .2693 . 3451
0.5 | .3642 .3195 .2448 .2243 .1151 .1083
.3172 .5774 .3070 .3900 .2546 .2667
0.0 1 .3187 . 3062 .2420 .2303 .1133 L1131
By = 0.8 By = 0.08
"1 5665 .4765 4861 .9276 .3617 .5872 e
1.0 .4891 .3393 .2966 .2423 .2239 .1353
.4357 .0748 .4289 .6799 .3960 .4894
0.5 | .4337 .3789 .3222 .2811 .1632 .1588
.3789 .6540 .3785 .4823 .3679 .3969
090 § .38 .3675 . 3520 .2895 .1939 .1659
The numbers on the first (second) row in each box are the values of
sup r(,48) (r(»ro,(s)).
161"
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