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1 -MINIMAX AND M IN IMA X DECISION RULES

FOR COMPARISON OF TREATMENTS WITH A CONTROL*

by

Shanti S. Gupta and Woo-Chul Kim• Purdue University

1. Introduction.

In many fields of research one is faced with the problem of comparing

k experimental categories with reference to a ‘standard ’ or a ‘control ’.

Following the initial investigation by Paulson (1952), this problem has

been studied in severa l different formulations by Dunnett (1955), Gupta and

Sobel (1958) and Lehmann (1961) among others.

Let 1I
l~~
... ‘11k denote the k experimenta l categories or ‘treatment’

populations and let it
0 
denote the ‘control’ population , where the quality

of each population ~ is characterized by a real-valued parameter e~
(I 0,l ,...,k). Each treatment population ~~ is said to be ‘superior ’,

‘equivalent ’ or ‘inferior ’ to the control population 11
0 ~ ~~~~ ~

-A - 00 < 
~~~ 

01-00 < -A , respectively, where A is a given positive

constant. We consider a problem in which the treatment populations are to

be classified as one of the above three cases based on the observations from

the populations . Bhattacharyya (1956, 1958) studied this problem for the

norma l populations with unknown means when the control population is

assumed known . A similar problem has been considered by Seeger (1972).

We apply the -minimax principle to this problem.

*Thjs research was supported by the Office of Naval Research contract
NOOCI4-75-C-0455 at Purdue University. Reproduction In whole or In part
is permitted for any purpose of the United States Government.
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r-minima x principle is known as one of the techniques for the use of

incomplete prior information. Such an idea was first used by Robbins (1951 )

and independently by Hodges and Lehmann (1952) and Menges (1966). The name

• r-minimax was first used by Blum and Rosenblatt (1967). Randles and Hollander

(1971) applied such a principle to a problem of selecting the treatments

‘better’ than the control. It has been applied to various problems, and

recently to selection problems by Gupta and Huang (1975, 1977), Berger (1977)

and Miescke (1979).

In Section 2, necessary notations , definitions , a loss function and

the incomplete prior are introduced . A lema is given to help find 1 -minimax

rules. Section 3 treats the case of known control population , and a i -niiniina x

rule and a minimax rule are derived . In Section 4, the case in which the

control population parameter 00 is unknown is treated. Rules are derived

which are r-minimax among rules for which the decision about the i-th

population depends only on the observations from and A minimax rule

is also derived . A normal means problem and a normal variances problem are

given as specific examples. Section 5 consists of comparisons of i -minima x

rules with Bayes rules for i ndependent norma l priors for the normal means

problem .

2. Formulation of the problem.

Let X0,X1,. . . ,X~ be k+l independent random variables representing the
control population ~~~~ and the k treatment populations wl,.~ ‘

11k’ respectively,

with X 1 having pdf f1 (x-o 1) with respect to the Lebesgue measure on the real . 
p

‘ i ~e~tIon
line R where 0~ E e = R, I = 0,1 ,.. .,k. The random variables XO,...IXk ~~ 

•

be sufficient statistics or other statistics based on which we wish to make 0

BY .~ .

JAYIM!JtIIY ~~~~~
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— — • . • . .—-——.
~~~~~—-~~~~~~ -

~~~—



- •

3

statistical decisions . We assume that each f1 ( . )  (I = O ,l ,...,k) is symetric

about the origin and strongly unimodal , i.e., f1(.) is log-concave on the real

line. Hence f1 (x-o~
) has the monotone likel ihood ratio (MIR) property.

Obviously, we do not need any observations from 110 when 00 i s assumed known ;

therefore, it will be understood that, in such a case, the random variable

• 
X0 is deleted from our consideration .

The action space ci can be written as ci = x ...< where a1 = {l ,2,3}

for i = 1,... ,k. The action a = (a 11 ... lak) E 
(~ is to be interpreted in such

a way that , for i = 1 ,... ,k, the treatment population lTj is classified as

‘inferior ’, ‘equivalent’ and ‘superior’ to for a1 
= 1 ,2,3, respectively.

The loss L(o,a) incurred by the action a E a for e = 
~~~~~~

‘• •  .10 k ) is assumed to

be of the following form.

L(o,a) = 

~ 
L~(e,a~) (2.1)

where 11 (o,a1 ) is defined as in the following table;

Table of loss

_ _ _ _ _ _ _ _ _ _ _  
2

s -A 2 ~l ~l~~3
-A 2 O j U

0 ~~l 
0 0 2 4 (~~~~ 

> 0, 1=1 ,... ,4)

< A 1 ~2 
0 22

A 1 °i °0 A 2 24 0 0

~ A 2 21+23 2i 0

Here, A 1 
= A -€ ,  A 2 

= A+( for a given constant E: 0 < < A and it will be

• 
. . _._ •y . - ,

_ , 
—~

— ~— —~ . -. 
.
~~
— 

~
—--‘--—- —

~
— — 

-—-~~~~ .~.- —~~------- ‘--“ ~—~~~~~~~~ - 
-.—~~- 
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~~
-

~~~~
- 
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understood that the second row and the fourth row will disappear when c = 0.

Bhattacharyya (1956) derived a minimax rule assuming the above loss function

with 21 = 22 = 21+23 = 1 and € = 0 when 0
0 

is assumed known and 0 1 1 . . .  l U
k 
are

the unknown means of norma l distributions . However, the irregularity of such

a loss function has been pointed out in the sense that the minimax risk does not

tend to zero even if the sample sizes increase indefinitely, and the same

problem has been studied afresh by Bhattacharyya (1958) assuming the above loss

function with 
~l 

= 22 
= 24 

= 21+23 
= 1 and E > 0. Note that the above loss

function with € > 0 assumes the indifference zones.

For given x = (x01x11... ,Xk) consider decision rules of the form

s(x) = (5l (x),...,ok(x)) (2.2)

where o
~

(x) = (6 1( l Ix ) ,  ó 1(2~x) , 6 1(3 1x)) and, for j = 1 ,2,3, o
~
(jJ x)

denotes the conditional probability of taking action j in the i-th component

- 
• - decision problem . Note that there is no loss of generality in considering

• decision rules of the form given in (2.3). The risk function of a rule
k

o for fixed o is then R(o,s) = 

~ 
R1(o,~s~) where R1 (o ,o

~
) = E0[L 1(o,~1(X))].

• 
. For a prior distribution t(e) of 0, the overall risk of a rule o wrt -~ is

denoted by r(t ,~ ) = 

~ 
r~(t ,o~) where r1(t ,6 1) = JR 1 (o,o~

)dt(o).

• It is assumed that partial prior information is available to a decision

maker such that, for each i , he can specify i~ 
= P[1e 1—o01 ~ and

= P[~o.~-e0~ < A~~] where y 1
+-y

~ 
< 1 for i = 1 ,...,k. Let r denote the

class of all such prior distributions , i.e.,

r = { t ( e ) :  f dt(~ ) = y 1, f dr(~) = for 1 1 ,... ,k) .
10 1

0
0

1< A
1 (2.3)

Note that when E = 0, i.e., = A2, 
~~ 

+ = 1.

- -  _ ~
-

~

.- ~~~ • - - ~~~- —-~~~~-- -~~~. • - .- .“ - - - • •.•-



i __
~

_____ ’_ ___ ___
~
_ ___ • ’•_ •

~

-,- -

~ ~~

- —.— ,—‘---

~ 

—-.---. --- - —

~

-

~ 

—.
~~~ 

— --

~

-—--

~~

---- 

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

5

A rule is called a j —minimax rule if sup r (r,61’) = Inf sup r(’r,o),
rEr 6 tEl’

and sup r(1,o 1 ) is called the r—minimax value . The next result is useful

to find the j -minimax rule.

Leiimia 2.1. Suppose {~~, n = 1 ,2,...} is a sequence of priors in r.

I f Urn inf r (i n~~
) — c and if sup r(T,o1’) < c , then 6~

’ is a r—minima x
fl A TEr

rule and c is the j -minimax value. - 

-

Proof. The result follows from the following inequalities .

sup inf r(i,o) > TTiii inf r(-t~~6)
TEl’ 5 fl 6

/ r
~ 5Uf~ 

rtT , 6
TEl’

> irtf s~p r(it ,6)
6 TEl’

sup inf r(r,6).
t El’ 6

3. Known control populat ion

In this section is assumed known and thus we may assue 00 
= 0 wi thout

loss of generality . Hence x and e in this section denote (x ll...,xk) and

~~~~ 
respectively. Let us consider a rule a(x) of the form in (2.2)

where A 1 (j~x) ( j  = 1 ,2,3) is given by

o
~
(l j~ ) 

=

= 1(— d 1,d1) (x 1), (3.1)

6
1 (3 1 X )  = I(d ) (Xl )I

for 0 - d 1 and i = 1 ,.. .,k.

~



- _ _

Lemma 3.1. Suppose that a decision rule 6(x) is given by (2.2) and (3.1).

Then, for i = 1 ,... ,k,

sup r.(r,s5.) < v.

-H: tEl’ 1 ‘I 1

where V
1 

=

d1
+ I 2ivi fI(x-A2)dx .

Proof. It follows from the definition of L1(ø,a1) and the symmetry of

that, for Jo~ j < A 11

R~(e,a 1) =

= 2.2f1 (O I+di )[f(8
1
+d

1
) — 1],

where R~ denotes the derivative of R1 wrt e
~
.

It follows from the MLR property of f1 (x_o~
) that R~(o,61) has at most

one change of sign , from negative to positive if there Is any sign change

at all; therefore, R1(ø,~1) attains the supremum over o~ E (-A 1,A 1
) at

either 01 = -A
1 
or 01 = A 1. Hence, for Io~I < A 1,

R1 (e,ó1) ~ ~2 
f 1 1 ~ i1 1 )jd~d1

-
• It can be easi ly shown that

d• I
‘~ 

f f1 (x~~2)d~+~3 Lfi(X+A2)dX for Io~L
R1 (e,61) 

‘I

~ ~i
f1~~~~~~ for A 1 A 2.

. 
- —-- 

~~~~~~~~~~~~~~~~~~~~~

_

~~~~~~~~~~

_ -_ __

I. ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~ 
-
~ .
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Iherefore , i t follows from (2.3) that sup r1 (r ,o1
) v 1 which completes

T €r
the proof.

Now we derive a r-minimax rule for the case where 00 is known .

Theorem 3.1. Assume that independent random variables Xl1. ..l Xk have
f1 (x 1-o 1 ),. .. ,fk(xk_o k), respectively , with f.(.) being symmetric and
strongly unimoda l , and that the loss function is given by (2.1). Then

the L -niinimax rule A t is given by (2.2) and (3.1) where each d1 
= d~ in

(3.1) is defined by d~ = max(c1,0) with c1 being determined by

(3.2)
— , > ~1y 1f 1 -A

2
) as x > , c~.

Proof. The existence of a c1 satisfying (3.2) follows from the MLR

property of f1 (x-o 1). Therefore, the decision rule is well defined .

First, we will consider the case when E > 0, i.e., A 2 
> A 1. For n >

let -

~~~~ 

be a prior distribution in r under which O l)• .  
~
‘0k are independent,

= P(o 1 
= -A

2
) = y~/2. P(o~=A 1) 

= P(e1 
- A 1) = (1-i~-y~)/2 and

= P(o. = -A 1+n~~) 
= y t/2 for i = l ,...,k. Then it can be1 1

easi ly verified that inf r(T~~~4 5 )  = ~ inf r1(r~~61 ) an d, for i = 1 ,...
45 1=1 ó .

1

inf  r 1 (t~~ó~) = 1 
~~~~~~~-~~~

where p~(x) = min (p~(l,x)1 p(2,x), p~(l~-x)} with p(2,x) = 21y~
[f1(x+A 2) +

f1 (x-A 2)] and p~(l~x) = 22y~[f1(x-A 1
+n~~)+f1(x+A 1-n~~)] +

Since f.(.) is strongly unimodal on the real line, f1(.) is

— - -

~~ 

- -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~— - - - 

.-— —
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continuous and thus Pn(X) converges, as n -÷ =~, to p(x) = min (p(1 ,x), p(2,x),

p(l,-x)) where p(1 ,x) u r n  p~(l ,x). Note that p(l ,x) > p(1 ,-x) if and only

If x > 0. This follows from the fact that, for any t > 0 f1(x-t) f.(x+t)

if and only if x > 0. Since p~(x) is bounded above by p(2,x) which is

integrable , it follows from the Lebesgue convergence theorem that

lim inf rj(T n ,451) 
= f p(x)dx/2

1 
(3.3)

• ~• 
- 

= f rnin{p(2,x), p(l ,-x)}dx.
0

• Note that f rnin{p(2 ,x), p(l ,-x)}dx can be written as

min {p(2,x), p(l ,-x))dx

= 
~ min{2 3y 1f1 (x+A2)+24(l-y1 -yp f .(x+A 1 )+22y~[f .(x+A 1 )+f. (x-A 1 )],

• 21y1f1 (x-A 2)}dx +~~ £111f1(x-A 2)dx

= h [t3Yjui 2 24(l hi fi l 22 i l ~~
fi~~~ l fl]th

d~
+

where d1 
= max( 0,c1) with c1 defined as in (3.2).

It follows from Lemma 3.1 that lIm inf r1(r ,4S 1 ) > sup r1 (i,45
1.). Therefore,

fl 6 4 TEl’ 
1

k
u r n  lnf r(~~~6) = u r n  ~ lnf r1(t ,s 1)
fl 6 fl 1=1 61

k
~ sup r1(1 ,6~)1=1 tEr

sup r1(t ,6
1’).

tEl’

Ii _ 
_ _  _  

- - - - -~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~ ~~~~~.
- — 

__

~
.upl:,.__. 

~~~~~~
I_

~
._ -‘— --- - 

~~~~~
‘ _  

• -• • - — 
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Hence Leiiiiia 2.1 yields that is a i -rninimax rule. This completes the proof

of the case when E > 0. Note that A 1 
= A 2 = A and + = 1 for i = 1 ,... ,k

i f  c 
= 0. When ( = 0, let us consider a sequence of prior distributions ,

fl :- A
1 } ,  in i- under which °l’”~

’0k are independent, P(01=A ) = P(e1 -A)

and P(o 1=A-n~~) = P(o~= -A +n~~) = y~/2 for i = l ,...,k. Then we can

prove in the exactly same manner as the above that o~
’ is a r—minima x rule.

Now we discuss the derivation of the minirnax rule for some special cases.

A iuinimax rule can be derived from the arguments in the proof of Theorem

2.1. For this purpose , assume that £1 
= 221 24 < 221 and 23 ~ 

21. We may

assume that 21 
= 

~2 
= ~ without loss of generality . Let us consider a rule

o~ of the type given by (2.2) and (3.1) where each d~ 
= d~ in (3.1) is

determined so that , for F
~
(x) = ff 1(t)dt,

-~~~

F 1(d 1—A 2)+Q 3FI(~d~~A2
) = F

~
(_d

1—A l )+Fj
(_d

1+A l ). (3.3)

Note that the existence of such a non-negative d~ follows from the strong

unimodality and the symmetry of f1 (). Let us define ‘
~

‘

~~ 

and = u — l i for

i = 1 ,...,k by

=

Since -

~~~ 

E [0,1], we can consider a family of prior distributions , r, given

by (2.3). Then it fol l ows from Theorem 2.1 that the corresponding r-minirnax

rule is of the same type as 45* except that now d~
’ 

= max(c110) where c~ is

determined so that

11(c 1 ) 
= y1 [w 3f1 (c1+A 2)—f.(c1—A 2)]+y~[f1 (c 1 —A 1 )+f1 (c 1+A 1)] 

= 0.

Since 1I(d~) = 0 and d~ > 0, d~
’ 

= d~, i.e., the rule &k is the F-minima x

L

-
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rule; therefore it follows from the arguments in the proof of Theorem 2.1

that

lim inf r(T~~6) >

= 

i~ l ~~~~~~~~~~~~~~~~~~

k
SUP R.(0,ó~)• 1=1 ~ 

1 —

sup R(o,45~)
0

Therefore, we have the next result which includes the resul ts in Bhattacharyya

(1956, 1958) as special cases.

Corollary 3.1. Under the assumptions in Theorem 3.1 , if = 22 
= 1 , -

~ 1

and 9.4 < 2, then a rule ,5M of the type given by (2.2) and (3.1) with d 1 = ~

in (3.1) being determined by (3.3) is minimax.

4. Unknown control population.

In this section we will consider the case when 00 is unknown and

will derive a r-minimax decision rule 6l’ in the class of decision

rules for which 61 (x) in (2.2) depends only on x0 and x1 for i = 1 ,... ,k.

Let us consider rules 45(x) in where o. ( ,j Ix ) (j = 1 ,2,3) are given by

6~(lI~) 
=

a~(2j~) I(_ d.,d.)(x i~
xo). (4.1)

~~
3I& = ‘[d~1oo)(x1-x0)’

for 0 < d1 < and i = 1 ,... ,k.

_ _ _  _ _  

U

— —_~~-.--_--.- ----- -j- -—
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Note that the pdf of V 1 
= X 1-X0 is given by

= f  f.(t+y-o~)f0(t—o 0)dt, (4.2)

an d that 
~~~~~ (~~

- )  is strongly unimodal by the result of Ibraglrnov (1956) and

syflDfletric about the origin. Therefore, the next follows from this fact and

Lenina 3.1.

Leni 4.1. Suppose that a rule 6(x) in is given by (2.2) and (4.1).

Then , for i 1 ,... ,k,

sup r1 (t ,5.)•
1 

tEl

where, for i = 1 ,... ,k,

=

d~
+ I 21y191(y-A2)dy.

We now proceed as in Theorem 3.1 by considering the following sequence

(-t~1n A 1 of prior distributions in r for the case when E > 0. Under

(I) 
~l 

- 0O~
. ‘°k~

0O are independent,

(ii) P[oi 0o L\~] = P[0. 00 
= — A 2] =

P[
~~r

0
o 

= A1] 
= P[o1— o0= — A

1
] = (l—y. —y )/2,

P[o1—o 0 = 451-n
1
J = P[o1— o0 

= —A 1+n
1) = y~/2 and

(iii) u,~ has uniform distribution over [-n,n] and is independent of 0l~
0O’~~~’

0
k~
0
O~

it can be easily shown that the overall risk of the Bayes rule is given by

• - .
~~

-
~~~~

-- .
~~~~: • . •

p ~~~~~~~~~~~ — ~__ — — — — _- — - -- -_-— -_ - 
—.-~~ ---‘-~~~~~-~

.
~ .— ‘_~~ -~ ~~~

.. — — ~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~



ry- - — - --—----- ----- - -- —-- = _ . _— , - -

~~

—

~~

,=

~~

-‘,- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

12

L k
inf r(Tn

,ts) = 
~~~~~ .~~~ f f p~(i,x,y)dxdy (4.3)

6E~0 i=1 -
~~~ 

-
~~~

where p~(i ,x,y) = min{s~(i 1xy )1 t~(i1x~~)~ sn(i~
-x ,-y)} with

n -l -ls~(i~x~~) = 

~~~ ~n 
[f1 (x—u—A 1+n )+f~(x_u+A 1

_n )]f0(y-u)du +

+ 24(l Yf’l~) I f1 (x-u-A 1)f0(y-u)du +

n
• + 

~~~~~ 1
n 
f~(x_ u_A

2)f0(y_u)du and

• t~(i ,x,y) = Li -ri f [f1 (x—u+A 2)+f1 (x—u-452)]f0(y—u)du.

From change of variables x = nv-w and y = nv+w, it fol lows that

f fp ~(i,x,y)dxdy/4n 
L~ 

~~~~~~~~~~~~~

110 1
~~- 11’ ~~~~~~~~~~~~~~~~~~-110 -1

Note that

n(v+l)
= 

~2~i 
~(V_ l)~~~~~~~

l
~~~~~~

i b 0  +

n(v+l)
+ s4( l -y 1 -y~ )f f1 (z-w-A l )f0(z+w)dz +

n(v+l)
+ 
~~~~~~~ 

f f1(z—w-A 2)f0(z+w )dz andn(v-1)

n(v+l)
tn(i

,nv_w, nv+w) = 2l~ i 
~(v-l) 

[f
~
(z_w +A2)+f1

(z_w_A
2)]f0(z+w)dz.

Therefore, for any (v,w) E (-l ,l)xR, ~~~ nv—w ,nv+w) converges, as n -.‘ , 3

— ___r — ’-
~~~~~~i - ‘ — ~ ca~.-~- • •—=- •_

_  _ _  - - -

~~~~~~~~~~~~~~~~~~~~~~~

—~~~~~~~~‘.~~~.— ----—---- ~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~ ‘~~~~ - .- - - -- ~~~~ .~.
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to p(i ,w) = nhin{s (i ,w), t(i ,w), s(i ,-w)) where

s(i ,w) — 

~2~i j [f1 (z-:_A 1)+f~(z-w+A 1))f0(z+w)dz +

+ 24(1-1 ._ I .) / f1 (z-w-A 1 )f0(z+w)dz +

+ 
~~~~~~~ I f1(z-w-A 2)f0(z+w)dz and

t(i ,w) = 2l~
j f[f1 (z-w+452)+f1 (z-w- A2)]f0(z+w)dz.

It follows from (4.4) that, for I = 1 ,... ,k,

h o  
~ / p~ (i1x ,y)dxdy/4n

= h(i ,y)dy,

where h(i ,y) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +

+ (21+23)11g1 (y+A2), 9.1y1 [g1 (y+A 2)+g1(y-A 2
)]}.

Then from (4.3), we have

k o o
u r n  inf r(r~~o) > 

~ 
f h(i ,y)dy. (4.5)

n 1=1 0

Note that h(i ,y)dy can be written as

~h(i ,y)dy =

0
+ / £1y1 g1(y-A2)dy

_ _ _  r

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~ ~~~~~~~~~~~~ ~~-
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=

d1
+ f s 1y~g1 (y~~2)dy,

where d1 = max(c
~

1Q) with c .~ being determined so that

2
3Y~9~ 

(y+452 )+9.2y (g 1 (y-A 1 )+g 1 (y+A 1 ) )+9.4( l—y 1 ~~Yj )g~ (y+A 1 )

• (4.6)

, .~~ t1y1g~(y-A 2) as y >, < c~.

Let ~~1 be the rule given by (2.2) and (4.1) where d1 
= d~ in (4.1) is

def ined by d1 = max(c1,0) with c1 determined by (4.6). Then it follows

from (4.5) and Lemma 4.1 that

k
Urn inf r(t

n
eó ) > ~ sup r.(t,6~)

fl 6E~0 1=1 tEr

> sup
• tEl’

Therefore, Lemma 2.1 yields the next result.

Theorem 4.1. Assume that independent random variables X01.. . ,X k have

pdf’s f0(x0-e0),. .. lfk(x k-ok), respectively, with f1 (-. ) being strongly

unimodal and symmetric , and that the loss function is given by (2.1). Then

the r-minlrna x rule 6~ in is given by (2.2) and (4.1) where d1 = d~ in

(4.1) is defined byd~
’ 

= max(c 110) with c1 
being determined by (4.6),

for all I = 1,2,...,k.

Remark 4.1. It can be easily shown that the syninetry of 
~~~~~~~~~~~ 

In Theorem

4.1 can be replaced by that of Yj(.). It should be noted that the symmetry

of g j ( )  follows when f0(.),... ~~~~ 
are Identical. 

•

_ __________  - ______  ____ --

_______________________________________ •1~.~•~ — 
- 

~~~~~~~~~~~~~~~~ •~~— -~
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The next result follows in exactly the same manner as Corollary 3.1

was proved .

Corollary 4.1. Under the assumptions in Theorem 4.1, if = 

~2 
= 1 ,

— 1 and 2, then a minimax rule 6M in ~ is given by (2.2) and (4.1)
M 

U

where d. = d1 in (4.1) is determined so that, for G1 (x) 
= J g 1 (t)dt,

+ 23G~
(_d

1
_A
2) 

=

Now we provide some examples to illustrate the application of the above

results .

Exari~~e 4.l. Suppose 
~ 

represents a normal population N(e11~4) for

I = 0,... ,k with o~ (I = 0,... ,k) known. We assume that a random sample

of size n
~ 

is taken from each of the k+l populations ire,... ,ir~~. By

sufficiency we can restrict our attention to the decision rules depending

only on the sample means X0,.. . ,X~ where has normal distribution with

mean and variance = o~/n~ for I 
= 0,1 ,... ,k.

(A) ‘-minimax rule: The r-min imax rule 6l’ in in Theorem 4.1 is

determined by d~ = (rj~ + ~~~~ max(c11 0) where c1 is defined so that

-2(A 1+€ .)x -2E.(x—A. ) —2x 1 (x—E1)+ 1 1 +e +

(4.7)
-2A .(x-E.)

+ V,4(l— 1 .—y~)e 1 1 

~
2i~i >, 0 as x <, > c.~,

where = 
~~~~~~~~~~ and =

(Ii) Minimax rule: Assume = 

~2 
= 1 , 9.3 < 1 and 24 < 2. Then the

iiiinimax rule 5M 
~ in Corollary 4.1 Is determined by d~ = ~~~~~~~

where t1 is defined so that

-

~ 

- 

—-— - --
~~~~~~~~~~

- - -  - - - -

~~~~~~~~ i~~~~~~
_

~~~~~~ __ _  ~~~
--~~~~~~~~~~~~~
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= 

~
(
~
t1

_A
1+E~

)+
~
(_t

1+A 1
_Ej) (4.8)

with A .1 and E.~ defined as in (A) and • denoting the cdf of the standard

normal distribution.

Example 4.2. Assume that ~1 represents a norma l population N(0,44~) for

i = 0,1 ,... ,k with unknown , and that we have a random sample of size n

taken from each population it 1. Consider a problem of partitioning the

treatment populations in terms of variances with a loss structure

• analogous to that given by (2.1), i.e., a loss function obtained from the

latter by substituting log a~, log A and log E for o~, A and € ,  respectively.

Thus A and E are assumed such that 1 < E < A. By sufficiency we need to

consider only the decision rules depending on s~,. . . ,s~ where s~ denotes
the sample variance corresponding to Since n5~/o~ (1 = 0,1 ,... ,k)

are i ndependently distributed chi-square random variables wi th degrees of

freedom n, it can be easily seen that the associated location parameter

problem satisfies the assumptions in Theorem 4.1 except the symmetry

which is not necessary In this problem because of Remark 4.1. Therefore,

wi th obvious modifications we have the fol lowing results . Let denote

the class of decision rules 45 = 

~~~~~~~~~~ 
,*S

k
) for which 6.~ depends only on

s~ an d s~ and let x.~ denote s~/s~ for i = 1 ,... ,k.
f .

(A) r-minimax rule: A r-mlnimax rule 6~
’ In is given by

4(lIx j) = I 
— l 

(X
i
). 4 (21X

1
) 1  

— l 
(x i) and 6

’(31x 1 )= I [d) (xj)
‘1 i ’ i  1

for i = 1,... ,k where d1 
= max(c 11 1) with c1 being determined so that

_ 
_ _ _  _ _ _ _ _ _ _  _ _ _  _ __ __ __ _

__-J
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A 2
+y A 2

+y A2+y A
1 2~~~~( ) fl + £

21~
[(

A
_-
~~
)
~ 

+ 
~l+A 1y~~~~~ 

+

(4.9)
A2
+y A

1 2+ 
~~~~~~~~~~~~~~~~~~~ ~ 

as y > , < c~.

Here ‘1 
= A~~~~, A 2 

= AC.

(B) Minirnax rule: Assume t~~.= ~2 
= 1, 9.

3 
< 1 and 9.4 < 2. The minimax

rule in is the sartie as in (A) except that d1 
= d is determined

so that

Gn /A2) 3[1_G n dA2fl 
10 Gn(A l/d)+l~

Gn (dA i ) (4.10)

where denotes the cdf of F-distribution with degrees of freedom

n and n.

We note tha t if i~~ represents N(ii11 a~) with both and unknown,

then the above results still hold wi th n-l replacing n.

5. cp!’p~ns2!!.of 
[‘-minima x rules with Bayes rules.

When we represent our a prior information about the parameters by

prior distributions over the parameter space , one method for the use

of such information is to find a rule which is r-minimax with respect to

the class, 1’, of such prior distributions.

Another way is to select one such prior distribution

arid use the corresponding Bayes rule. Thus Bayes rules wrt prior

distributions in 1’ are natural competitors of a r-minlmax rule.

In this section we consider k+1 normal populations N(011a
2) wi th

2 known , and derive Bayes rules wrt normal prlors and then compare

theiii with the corresponding r-minima x rules from both points of view.

I.

- ~~~~~~~~~~~~~~~ ~~~~ ~~
—

~~~~
-1-

~
—

~~~~ —
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For this purpose, assume that 
~~~~~ 

...o k) have prior distribution -c~ under

which 
~~~~ ~

0k are independent and each o~ has a normal distribution

wi th mean and variance v~. Let x0,... ,xk denote the observed saiiiple

means based on samples of size n
~ 

(i 0,1 ,... ,k). To simplif y forthcoming

formulas , let us introduce the following notations ;

= a~/n 1, b
1 

= [( 2+v 2Y~
1 +(0o

2 +v 2)1]~,

(5 .1)
m1 = (c42x 1+ v~

2
~1 )(o

2+v 2Y1 , 
~ 

= (rn1—m0)/b1 .

The following theorem describes the Bayes rule.

Theorem 5.1. Assume the loss function is given by (2.1). Then the Bayes

rule 45B wrt is given by 6~(l~~) = ‘( d  ~(y1 ), ~~(2~~) = ‘(—d ,d

and 45~ (3j~ ) = ‘[d
~~
,
~~)~~

Y
i

) for i = 1,.. ,k where d1 = max(c
~
,0) wi th c1 being

determined so that

9.3o(-A2b
~1-y)+9.4[

~(-A 1b
~~-y)-o(-A2b

~~-y)]

• +

>, < 0  as y < , > c 1.

Proof. It suffices to find the Bayes rule for each of the k component

decision problems. This reduces to the comparison of posterior risks of

three possible actions. We will do this for the first component decision

problem without loss of generality . Let p1(y1), p2(y1) and p3(y 1) denote

the posterior risks of the actions 1 , 2 and 3, respectively, in the first

component problem. Then it can be shown that

L ~
_
~~ 11~~~ _ _ _ _ _ _ _ _ _ _ _ _ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

19

p1(y) = (9.1+9.3)+(-A 2b~
1+y) + Z4[41(A 2b1

1 —y)—1 (A 1b1
1 —y)] +

+ ~2 (A 1bj 1-y )-~ ( -45 1b 1-y)],

p2(y) 
= 9.1 L+ (-A2b1

1-y)+4(.A2b1~+y)] and

=

Note that p1 (y) - p3(y) can be written as E~H(Z) where Z has a normal

distribution with mean y and variance ‘I and H(~) is given by

if z > A2b~
1 - 

—

9.
4 

1 A 1 1  < Z < A 2 1

11(z) = 0 if -A 1bj
1 

< z <

- 

~ L4 
if —h

2
b~~ < z < —A

1
b
1

1

if z < —A2b1
1 .

Since the density of the normal distribution N(y,1) has the MLR property,

it follows that p 1 (y) - p3(y) has at most one sign change .

Furthermore, it can be shown that p1(y)-p3(y) is strictly increasing on

(-Ab~
1 , Ab~

1 ) and p1 (0)-p3(0) 
= 0. Thus p1 (y)-p3(y) > , < 0 as y > , < 0.

Similarly, we can show that p3
(y)_p

2(y) > , < 0 as y < , > c1 for some real

number c1 unless p3(y)-p2(y) < 0 for all y. Therefore the result follows.

Now we compare the r-minimax rule ol’ given in Example 4.1 and the

Bayes rule given in Theorem 5.1 under the assumption that v..~ 
= 

~2 ~4 
=

= ~ , n1 = n and v~ = v2 for i 10 0,... ,k. Note that we compare these

rules under the relations

and = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ for j 10 
~~~~~~~ ,k. Each

of them is the best in its own merit. Therefore there are two ways of any

L _  _ _ _ _ _ _  : ~~I_ _ _
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meaningful comparison of these rules . One way is to examine the increase

in the overall risk wrt t0 resulting from the use of Another way i s

to compare them in terms of sup r (t,6). When n1 
10 n and v~ = for i =

tEr
0,1 ,... ,k, the Bayes rule depends onx only through x1-x0,.. . ,X~~Xo and

it can be shown that sup r(t,6B) ~ sup r1 (t,o~). Thus it suffices to
tEl’ i 1  -tEl

compare these rules wrt classification of one population . We choose -si~ for

this purpose without loss of generality .

Now we introduce the parameters used in the comparison as follows.

• 2 ~ —
~~

1 — —- r— , 
~~ 

— —, ~ 
— an ~ —

. ~ —f 
, —a- ~‘,/2v ,/2v v’2v

It can be verified that the overall risk wrt of these rules can be

written as

-I
0
(—A-B—C, -D—E ; p)+(l-9.)40(A—B—C , D—E;p)

— i~0
(—A+B—C , D—E; p) + ~0(A-B-C , —D—E ; p)

- D
0
(-A+B-C , -D-E ; ~~)-o

0
(A-B-C , D-E; p)

• + ~0(
-A+B-C , D-E ; ~~)-~~0(A-B-C , -D-E; p)

- ~0
(A+B-C , D-E; p )- (l-&)~~0

(A+B—C, —D—E ; p)

where 
~~~~~~ 

p) is the cdf of a bivariate norma l distribution wi th zero

means, unit variances and correlation coefficient p, and where A =

B = .331 C = 34~ p 34 (u+ i.3l )
~~

, D = d
1~~ j~ 

for 6B, ~ 
10 max(c 1,0)(l+ 1 )

for o~, E = for 45B and E = p134 for a~’ Wi th d1 and c 1 being those in

Theorem 5.1 and Example 4. 1, respectIvely. Also sup r1 (i,451) for both rulesrEf
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can be written as

a

+ Y~[l1 (_R-S+T_U)+~(_R+S_T +U )]
V[o( R+s÷T u)+,(R_S T+(J)]

f (l_ ~~j)l (_ R + jS (_ T+U )

where x~y = max(x ,y), T U 10 13313~. S 
= 13413-i for 6B, S 10 0

for R = 
~

(l+ 1. -
~i
)
~ 

d
1 
for 45B R 10 max(c 1,0) for with d1 and

c1 being those in Theorem 5.1 and Example 4.1, respectively. For

selected values of 
~ 

(I = 1 ,... ,4), Table I and Table II give r1 (r 0161)

and sup r1( t , 451) for = for 2. = 0 and 9. = 1 , respectively. It
-tE L

can be observed from these tables that, in many cases , the increase in the

overall risk wrt from the use of 6ç is only slight compared to that

in sup r1 (t ,~ 1) from the use of tS~. In this sense, 45 1’ is more robust
Bagainst other formulation than 6 . Such properties of 6 become more

prominent as the difference between the prior means (134) increases and

the prior variance (b 1 ) gets smaller. When we have the same prior means

and the prior variance is large, both rules compare favorably with each

other. In most cases , we can observe that 61’ compares favorably with ~8

in terms of the overall risk.

~
j 

_ _ _ _ _ _ _ _

_ _ _  -
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Table I

-~ Overall risks and the values of sup r (r,6) of 6B and ó~ when 9. = 0.
tEl’ 

*

- -

_ _  

.25 1.0

= 0.5 133 = 0 .125
.4961 .9696 .4097 .7784 .2816 .5404

1.0 .3930 .2587 .2864 .2097 .2001 - .1189
.5344 .8274 .4577 .5201 .3312 .4359

0.5 .4520 .3957 .3321 .2963 .2121 .1615
.5164 .5527 .4568 .4626 .3413 .3492 

-

0.0 .4599 .4544 .3341 .3315 .2103 .1786

- 132 0.5 133 — 0.05
.5250 .9731 .4471 .8117 .3261 .6276

1.0 .4140 .2853 .3103 .2395 .2413 .1493
.5768 .8460 .5088 .6703 .3999 .5306

0.5 .4898 .4330 .3840 .3368 .2899 .2021
.5680 .5937 .5170 .5190 .4210 . 3 ~l

0.0 .5027 .4978 .3828 .3764 .2856 .2232 

133 = 0.2
.4770 .9598 .3793 .7074 .2574 .4408

1.0 .3909 .2824 .2539 .1931 .1369 .0923
.3739 .7920 .3450 .5344 .2692 3449 

-

0.5 .3594 .3163 .2424 .2237 .1152 .1083
.3172 .5226 .3066 .3794 .2546 .26~6T0.0 .3151 .3050 .2404 .2298 .1133 .1131

_ _ _ _ _  

132 0.8 133
0.08

.5365 .9699 .4541 .7840 .3573 ~5860
”

1.0 .4380 .3309 .3190 .2411 .2407 .1353
.4357 .8308 .4278 .6286 .3960 .4890

0.5 .4311 .3742 .3137 .2801 .1632 .1588
.3789 .5827 .3785 .4658 .3679 .3967

0.0 .3789 .3658 .3509 .2887 .1939 .1659

The numbers un the first (second) row In each box are the values of

sup r(t,6) (r(-r 0,o)).
tEl’

L 
_ _ _ _ _  

_ 
_ _..‘ 

—V.-— . — —- 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - LJLI

- ~~~- — -~~~~. . 
— - -- — - -

.~~~ 
- - 

—
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Table II

Overall risks and the va lue of sup r(r- ,6) of and when 9. = 1.
tEl’

458 45 1’

25 1 0  4 0

82 = 0.5 83 = 0.125

.6655 1.6167 .5435 1.0979 .3258 .5696
1.0 .5218 .2929 .2947 .2195 .1674 .1194

- 

.5746 1 .2157 .5098 • 7758 .3496 .4498
0.5 .5280 .4325 .3361 .3082 .1941 .1620
- 

.5299 .6991 .4865 .5298 .3529 .3560
0.0 .5085 .4817 .3474 .3437 .1985 .1791

132 = 0.5 133 = 0.05
- 

.7117 1.6582 .6084 - 

1.1721 .4027 .6698
1.0 .5688 .3264 .3280 .2523 .2059 .1500• - 

.6242 1.2762 .5775 .8566 .4372 .5520
0.5 .5872 .4778 .3828 .3522 .2445 .2030

- 

~~5817 .7627 .5545 .6032 .4452 .4502
0.0 .5683 .5316 .4017 .3923 .2510 .2242

82 0.8 133 = 0.2

.5021 1.4114 .3982 .8181 .2580 .4413
1.0 .4248 .2883 .2465 .1938 .1355 .0923

.3745 .9929 .3470 .5702 .2693 .34~10.5 .3642 .3195 .2448 .2243 .1151 .1083

.3l72 .5774 .3070 .3900 .2546 .2667

.3157 .3062 .2420 .230 3 .1133 .1131

82
_
0.8 13

3
0.08

- - 

.5665 1.4765 .4861 .9276 .3617 .5872 
—

1.0 .4891 .3393 .2966 .2423 .2239 .1353
.4357 1 .0748 .4289 .6799 .3960 .4894

0.5 .4337 .3789 .3222 .2811 .1632 .1588- 
~.3789 .6540 .3785 .4823 .3679 .3969

°~L .3789 .3675 .3520 
— 

.2895 .1939 .1659

• The numbers on the first (second) row in each box are the values of

sup r( i ,I’I) (r(- r 0,45) ) .
pt - I.

~ ________________________________
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