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PLAN OF THE REPORT

There are four sections of this report.

1.0 This gives a general overview of what is known and what is

commonly done for the general viscous problem.

2.0 To obtain a qualitative feel for what may be achieved we turn

in section 2.0 to the inviscid problem. The general statements that can

be made about stability when boundaries are modified are described.

3.0 This section is devoted to specific inviscid examples. It is

shown that dramatic changes in stability are achievable.

4.0 In section 4.0 an interesting stability problem which arises in

boundary layer theory is analyzed.
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1.0 GENERAL DISCUSSION

1.i Introduction

The drag force on a body moving through the water is largely

determined by the nature of a thin boundary layer between the stagnant

fluid at the body surface and the free-stream fluid. At low speeds the

flow in the boundary layer is smooth (laminar) and the drag is low.

Beyond a well-defined critical speed, the flow becomes chaotic

(turbulent) and the drag is much larger.

To reduce drag, one must manipulate the boundary layer in such

a way that either the critical speed for transition to turbulence is

increased beyond the desired operating speed or, given that the flow is

turbulent, the turbulent flow is modified in a way which reduces the

actual drag force. The classic motivation to study this problem is of

course to increase the maximum speed of a vehicle with a given power

plant. A second motivation, relevant to SSBN security, is the desire to

reduce the intensity of the water disturbance caused by the passage of

even a slowly moving vehicle.

Since turbulence is an extremely complicated and ill-understood

phenomenon, we will not consider the problem of manipulating the

turbulent boundary layer, despite its overwhelming practical

importance. Our remarks are entirely directed to the problem of
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increasing the maximum speed at which the boundary layer can remain in

laminar flow, a problem which can be studied using the well-explored

mathematics of linear stability theory. We will show that substantial

improvements may be obtained by modifying the boundary conditions of the

linear stability problem. This is by no means a new suggestion, but it

seems to us that it has not been explored in sufficient generality,

especially in view of the flexibility which modern electronic and sensor

technology makes available.

The plan of this part of the report is as follows: in section

1.2 we summarize the relevant aspects of linear stability theory. In

section 1.3 we discuss methods for manipulating the boundary layer

profile about which the linear stability analysis is done. In section

1.4 we introduce the general notion of adaptive boundary conditions and

their influence on linear stability.

1.2 The Linear Stability Problem

For the purpose of studying the drag due to skin friction we

may limit our attention to essentially parallel flow past a flat plate.

The flow field is then two-dimensional (we choose coordinates x J

parallel to the plate in the flow direction and y normal to the plate)

and the relevant variables are the x and y components of velocity

(u and v) pressure (P) and, if needed, temperature (T). The boundary

conditions are usually that u - v - 0 at y - 0 and that

u a U at - . The boundary layer profile is governed by a diffusion-

type equation in which x plays the role of time. This has the
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consequence that the boundary layer thickness which we denote by

8 , grows (typically as /i ) as x increases. The actual profile

depends on the precise conditions of the problem.

The linear stability problem is posed as follows: take a basic

profile, U (x,y), which varies so slowly with x that its x-dependence

may be ignored. Then construct the equation of motion for small

perturbations, uI(x,y), on that profile and look for solutions which are

periodic in space and time (it is convenient to use the stream function

of the perturbed flow

Ul and v= (1.1)ay ax

and look for solutions of the form *(x,y) - 0(y)e a(x-ct) .) The

equation which emerges is the Orr-Sommerfeld equation,

2=-Ut(y,_=22¢ 4

(U(y)-c)(*'-a 2) - U'(y)o -'-2a 2.. + a4

(1.2)

where all velocities are measured in units of U (in particular

U(y) = Uo(y)/UW 1, and all lengths are measured in units of 6 and

R = U 6/v where v is the viscosity of water. R is what is usually

called the Reynolds number of the unperturbed flow. In order for t to

give an acceptable velocity perturbation, it must satisfy boundary

conditions * - " = 0 at both y = 0 and y 4 a . We are therefore

faced with an elgenvalue problem: for given R and a we must solve
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for c and its associated esienfunction. The phase velocity c will

in general be complex and the background flow is stable to small

perturbations only if T-c- < 0 for all a (in that case, any small

disturbance will decay away exponentially). A typical plot of stability

regions is given in Fig. 1.1. The key generic feature is that for

R < Rcrit , disturbances of any wavelength decay with time and

therefore the background flow is stable. For R > Rcrit , some

disturbances grow exponentially with time and the man flow is probably

unstable to transition to turbulence. Since 6 grows as we move

downstream the criterion for laminar flow over a plate of length L is

that U=6(L)/v <Rcrit , where 6(L) is the boundary layer thickness

at the downstream end of the plate. To enlarge the regime of laminar

flow, it is obviously necessary to make Rcrit as large as possible.

&61
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There are two methods of influencing Rcrit , both of which we

shall discuss. On the one hand, the value of Rcrit depends on the

details of the background profile, Uo(y) , and it may be possible to

change the conditions of the problem so as to change Uo(y) in a way

which increases Rcrit * On the other hand, one might take whatever

background profile comes naturally but change the properties of the

wall, thus changing the boundary conditions of the linear stability

elgenvalue problem. We shall see that it is possible in this way to

greatly change the stability of a flow. In what follows we will try to

summarize what we know about both approaches.

1.3 Modifying the Boundary Layer

The equations which determine the downstream evolution of the

boundary layer (the Prandtl equations) are obtained from the full

Navier-Stokes equations by imposing the simplifying conditions that the

flow is nearly parallel (v << u) and that transverse variations are

much more rapid than downstream variations a >> . If we include

the possible effect of temperature variations on the viscosity, we

obtain the system

au au a au
U - v Ty = ( )-Y

au +av -
ax ay

T 3T - a 2 T (1.3)
Vay
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where v is the kinematic viscosity of water and is the thermal

conductivity per unit mass.

The above equations are parabolic: given a profile at an

initial value of x , the equations may be integrated forward in x to

produce a predicted profile at any downstream x . Consequently, to

specify the boundary layer one must specify an initial profile--i.e.,

one must know the details of how it started. This annoyance may be

circumvented by looking for self-similar flows--flows in which the

profiles at different downstream stations differ only in the value of a

transverse dimensional scale. The Reynolds scaling property of these

equations guarantee that we can find solutions in which the stream

function, * , and temperature, T , have the form

*(x.y) - Vvxu f(n)

T(x,y) - t(n)

n M Y (1.4)

The partial differential equations for the boundary layer then collapse

to non-linear ordinary differential equations whose solution is

completely determined by the boundary conditions at y - 0 and y - -

We will shortly discuss the properties of these solutions. There

remains the question why we are interested in self-similar solutions:

How do we know that the initial profile is just right to set up the
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self-similar boundary layer? We will eventually show that the self-

similar solutions have a certain stability property which guarantees

that small deviations from the self-similar profile die away as we go

downstream. We take this as a justification for concentrating on self-

similar profiles for our discussion of the linear stability problem

outlined in the previous section.

Let us first summarize the properties of the standard flat

plate self-similar boundary layer in which temperature variations are

ignored and the standard wall boundary conditions (u = v = 0 at y = 0)

are applied. The equations to be solved are

2f''' + ff'' = 0 (1.5)

u = U~f'(n) , v = (n'-f) (1.6)

f = V = 0 at n 0 (1.7)

V = 1 at n =  (1.8)

The equation for f must be solved numerically.

We need a definition of boundary layer thickness to specify a

Reynolds number. There are two physically significant definitions:
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Displacement Thickness 6 1 dy(1- U (1.9)

0

Momentum Thickness a 62 f dy U (I- U (1.10)

0

61 is the net outward displacement of a far field streamline due to

the presence of the plate. 62 measures the momentum lost from the

flow due to the presence of the plate. For the self-similar flow at

hand

Sv n-f(I) 1.72 (1.11)

- V( dnf'(1-f') - .664 (1.12)
2 T_~ U

Both thicknesses grow as /x as we move downstream from the front edge

of the plate. It is customary to use 61 to construct the Reynolds

number for the flow:

R U61 1.72 U (1.13)R61 = JH =

The ratio 61/62 , which in this case has the value 2.59, turns out to

be a convenient diagnostic quantity for stability of the flow.

The classic linear stability theory, when applied to this flow,

gives a critical Reynolds number

( R61)crit -420 (1.14)
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This is rather small--if we want absolutely stable flow over a surface I

m long, the maximum flow velocity is 6 cm/sl This is due to the fact

that Blasius flow is just on the boundary of instability. If the

velocity profile has a point of inflection a2Uay2 = 0 , the flow is

potentially unstable; Blasius flow has a point of inflection precisely

at y - 0. To increase stability it is obviously necessary to decrease

the curvature at y = 0 by some means.

There are two effective methods for doing this: suction and

heating. By suction is meant simply a change in the boundary conditions

at y - 0 to u = 0, v - -vo . This could be achieved in practice with

porous walls and a pumping mechanism. With this boundary condition it

is possible to find a solution in which the boundary layer is

independent of x

U - (-e - v o y / ) v v (1. 15)

Both 61 and 62 are now constants

. 7 62 1 V (1.16)

0 0

and R - U /v0 anywhere along the plate. The linear stability

analysis shows that Rcrit - 50,000 , a factor 102 improvement over the

no suction value. This is in part due to the fact that the curvature of

the velocity profile is now everywhere negative and in part due to the

fact that the diagnostic quantity 61/62 has been reduced to 2 from
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2.6. The practical possibilities are impressive: if one chooses

U./v° W 10 , well within the stability region, it is possible to

stabilize the boundary layer of a 5 m diameter 100 m long submarine

moving at 20 kts by ingesting water at the trivial net rate of 3 m3/g!

The problem is that in order for this analysis to apply the suction must

be applied uniformly over transverse dimensions smaller than the

boundary layer thickness itself. Since the boundary layer is only a

fraction of a millimeter thick this means that the boundary layer has to

be ingested through small pores which will almost certainly clog in real

ocean use. An alternate approach which may overcome this problem will

be discussed at the end of this section.

The second stabilization method is to increase the temperature

of the wall above that of the mean flow. Since the viscosity of water

at room temperature decreases rather rapidly with increasing

temperature, it becomes important to include the temperature in the

boundary layer equations. If we evaluate the first boundary layer

equation at the wall (where u = v - 0), we find:

3y2 I -= V T

If the wall is hot, viscosity must increase outward as must u

Therefore (32u/8y2 )0  is less than zero, a condition we have already

argued must increase stability.
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Numerical integration of these equations for a heated wall have

been carried out by several authors. It is found that (R 1)cri t

increases dramatically with increasing heating, with a maximum value of

12,000 being obtained for 500C temperature difference. This great

increase in stability is not achieved at the cost of extreme

modifications of the profile. What seems to count is the ratio

61/S2 : Rcrit correlates very well with this quantity, increasing by

I02 as 61/82 decreases from 2.6 to 2!

Finally, we want to return to the problem of using suction to

control the boundary layer. An alternative to distributed suction is to

extract the boundary layer fluid through large, widely-spaced slots.

The idea is that the boundary layer is allowed to grow for a distance

D and then is sucked into an internal reservoir through a slot large

enough to avoid clogging. A fresh boundary layer forms at the

downstream edge of the slot and, after a distance D , is sucked in

again. The maximum thickness of the boundary layer is evidently

6 1.7 (1.18)max U

In order for that thickness of fluid to be sucked in as it passes a slot

of width d at stream velocity U , we must apply a suction velocity

v 1.7 Vd I d
U 1U) D R (.9

max
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The condition for stable flow along the plates of length D is that

R a 400 . This is achieved for interesting values of U. for
maxD - 1 m. We could realistically choose d - 1 cm and therefore control

the boundary layer with v < 10-4 , which corresponds to a very

manageable rate of water ingestion. The difficulty might be instability

associated with the new type of shear layer across the slot itself. It

is not clear that this shear layer is any more unstable than that along

the wall, but we have seen no discussion of this problem. To repeat,

the essence of this method is to achieve stability by interrupting the

growth of the boundary layer every D meters so that the effective

scale size for the stability problem is P rather than the overall

vehicle length.

1.4 Adaptive Boundary Conditions

The discussion so far has dealt with situations in which the

boundary conditions at the wall are fixed, and we have seen that large

modifications in stability can be obtained with "small" changes in those

boundary conditions. It might be more efficient to modify the wall

conditions only in response to disturbances on the basic flow, trying to

tailor the response in such a way as to damp the disturbance. If we are

very lucky a scheme of this kind might allow us to obtain higher values

of Rcrit •

The basic situation is as described in section 1.2: We have a

background flow described by a horizontal velocity profile U (Y) •

Small perturbations on this flow are described by a stream function
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*(x,y) - *(y)eiL (X1t) which satisfies the Orr-Sommerfeld equation.

We may eventually want to expand this system to include the effect of

temperature variations or to allow the background profile to have inflow

due to suction; but we will stick with the simplest system for

explanatory purposes.

We propose to modify the nature of the eigenvalue problem for

c by imposing a non-standard boundary condition at the wall (we of

course retain the usual zero velocity condition, * = t' = 0, at y = )

in which the flow at the wall is a linear function of the past history

of flow quantities sensed at the wall. Let S(x,t) be the quantity

sensed at the wall and let y(x,t) be the response. Then the sort of

boundary condition we are contemplating is

t

Y(x,t) = f dt' /dyG(x-y,t-t')S(y.t') . (1.20)

Since the small disturbances are taken to depend on x and t as

e c(x-ct) , the above equation may be Fourier transformed:

(1.21)

The only essential property of a is that the singularities in cc lie

in the lower half plane so that G is causal. G may reflect the

mechanical properties of a material surface, in which case U is

prescribed, or it may be constructed via electronic coupling of sources

and drivers, in which case it may be whatever we like. The general

1-13
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problem will be to use the freedom to pick S and G to optimize

stability. Subsets of this problem have been analyzed in some detail,

but an overview seems to be lacking.

Let us summarize some of our options for sensing and

responding. In terms of the perturbed stream function,

= *(y)ei a (x- ct) , the field quantities are

u = '(y)ei(x - ct) (1.22)

v = -ia(y)eia(x-ct) (1.23)

iap [ r(a2 +d 2) + iciU'* - icl(U-c)4i xct

(1.24)

The wall is subject to transverse forces (due to pressure) or

longitudinal forces (due to Reynolds stress, T = a + 4x) ) and

either could be the quantity we want to sense. The sensed quantity will

therefore be some linear combination of * and its derivatives

evaluated at the wall. The response quantity could be a motion of the

wall itself (compliant wall) in either the normal or the transverse

direction or a suction velocity without physical wall motion (adaptive

suction). Again, the response quantity will be a linear combination of

# and its derivatives evaluated at the wall. If the wall moves as

part of its response, the wall is no longer at y - 0, a fact which must

be accounted for in writing out the boundary condition on * . Clearly,
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temperature or heat flux could be added in an appropriate way to this

list.

We now list some specific boundAry conditions of the type we

are discussing. In all cases the problem is to solve the O-S equation

in the interval 0 4 y 4 = wit!, , () "(-) f 0 plus the two

specified conditions at y = 0:

Normal Compliant !ll:

co'(0) + U'(O)(O) - 0 ; iao(O) = G(a,ac),P(O)

(1.25)

Transverse Compliant Wall:

0'(0) = a(a,ac)O''(O) ; *(O) = 0 (1.26)

Adaptive Suction (sensing pressure)

0'(0) - 0 ; iaO(O) d (a,ac) P(O) (1.27)
P

Adaptive Suction (sensing Reynolds stress):

'(0)- 0 ; iaO(0) - C(a,c)''(O) (1.28)

1-15
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In all these cases the first condition refers to x components of

velocity and the second to y components. p(O) is meant to be

evaluated in terms of * . As advertised, the new boundary conditions

involve linear combination of * and its derivatives, plus an

adjustable response Green's function which we have denoted by •

1-16



2.0 THE EFFECT OF BOUNDARY CONDITIONS ON STABILITY OF FLOWS

2.1 Introduction

Many suggestions have been made to reduce the drag on bodies

moving through fluids by delaying the transition from laminar to

turbulent flow. Generically these ideas can be divided into two

classes. One is to modify the flow in the vicinity of the body.

Examples are heating, sucking, and the dispersal of polymers. The other

is to change the nature of the surface presented by the body to the

fluid. This can be done either actively or passively. Here we ask what

can be said, very generally about the passive case--compliant boundary

conditions.

As one of the simplest possible models we consider the case of

inviscid, incompressible parallel shear flow. We imagine a flow U(z)

established between plates at z, and z2 (z2 may be infinity). The

stability of the flow is then examined as a function of the boundary

properties.

2.2 The Classical Theorems

The case in which the boundaries are both rigid plates has been

extensively studied.

By virtue of Squire's theorem we can restrict attention to

purely two dimensional perturbations. Thus we consider a perturbed

stream function of the form

JI-I



4 - *(z)ei(a - ct) (2.1)

The stability problem reduces to finding (for fixed real a ) when there

are discrete eigenvalues c - cr + ici with ci > 0 of the Rayleigh

stability equation

(32 U "2)* 0 (2.2)

with the boundary conditions

-(zl) " O(z2 ) = 0 (2.3)

Fortunately there are some (not many) general results known

about this problem. These include:

(1) Rayleigh's Inflection Point Theorem.

This is: A necessary condition for instability is that

the basic velocity profile should have an inflection point, i.e., there

is a

zs ,z z a s z2 such that U''"(Z) = 0 (2.4)

(2) Fjortofts' Theorem

A necessary condition for instability is that

U''(U-U ) < 0 (2.5)

somewhere In the flow. (Here U i U(za) ] "

11-2



(3) Howard's Semi-Circle Theorem

For unstable waves c must lie in the semi-circle with

radius - Ui) , center at Ura x + Umin ) , and ci > 0 , i.e.,

[c a ) 2  2 (Umax -Umin) , c > 0[r - -{Umax + Umin)] + c i  T ( -

(2.6)

It should be emphasized that the Rayleigh Inflection Point

Theorem is a necessary but not sufficient condition for instability. It

is, however, of great qualitative importance. Even when considering

viscosity most attempts to delay (or elimina-e) instability are devoted

to getting as far away as possible from inflection points.

There are, however, a class of flows (which include most

boundary layer flows) for which there also exists a sufficient condition

for instability. Thus if

K(z) = U''/(U-US) (2.7)

is regular at z = zs and

K(z) > 2 2/(z2 -z1 )
2  (2.8)

everywhere, then we have instability.

11-3
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2.3 More General Boundaries

In the case of compliant boundaries the boundary conditions of

Eq. (2.3) will no longer hold. The stability Eq. (2.2) will still be

valid and since it is a second order differential equation we can put

conditions at z, and z2 . As a rather general case we take these

conditions to be that a 1 ,iear combination of * and its normal

derivative be zero.

Thus

*(zi) - + ni 4n (zi) (2.9)

(Note: The classical case is Y = 0. A free boundary corresponds to

IY il -* )

Now let us see what happens to the previous theorems.

(I) The Inflection Point Theorem

Multiplying Eq. (2.2) by *, integrating from z1 , to

z2 and using the boundary conditions, Eq. (2.9) gives

JIZ 2 + 02 12 + U"I*012 ldz = YI18 2 + Y, 2J az C IIZ z11 2 1 ±3z 1 2
zI

1 2 1 2

1 2
(2.10)
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Let

Y, - Si + iT i

Then the imaginary part of Eq.(2.10) becomes

c z2 ! 2 dz = T 2 + T 2 (2.11)

IU-cl 2  1 2

zI

We note that in general the requirement

> 0 U'' U I2 dz
U-cl 2z I

only holds if T 1 = T2 = 0 . That is the Inflection Point Theorem holds

only if Y, = Si is real. In this case

c -0 L U"(zs) =0

Until it is indicated differently we will be assuming Yi is

indeed real so that the Inflection Point Theorem holds.

(2) Fjortofts' Theorem

The real part of Eq. (2.10) is

f 2  3 2 2  2 + U"(-cr21c) j + S 2 1

(2.12)

11-5
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Adding to this

, 'Z2 U' I 2

o- (cr-Us) 1  11#12 dz (2.13)

iU-c 
=

gives:

- Iz 2 I 2

zdf2 2 + 21,121 dz + S~II

(2.14)

Thus in general Fjortoft's Theorem holds only if S1 and S2 4 0 Then

a necessary condition for instability is

U"(U-U) < 0 somewhere in the flow.

(3) Howard's Circle Theorem

This theorem essentially completely disappears when our

more general boundary conditions are applied. Even the weaker Rayleigh

theorem that cr must be in the range of U(z) fails to hold. To see

this we parallel the usual derivation of the theorem.

Let

,+-L . (2.15)

11-6
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Then Eq. (2.12) becomes

a (U-C)2 [ *+ - 2(U-c)2 *+ = 0 (2.16)

Multiply this equation by 0*+ and integrating yields:

f {+J + a21 +1}(U-c)2dz

zz! I

[ 2 Z2 (2.17)=[(U-c)2, *+__,4*jz2

Now if O(z1) = O(z 2 ) = 0 then + (z 1 ) = *+(z 2 ) = 0. (We are assuming

c i > 0 and hence U-c A 0 .) The imaginary part of Eq. (2.17) becomes

2 cfz 2  2 + a21+21 (U-cr )dz = 0 . (2.18)

z I

and hence cr is in the range of U . Consider, however, the general

boundary condition

*(zi) - 4 , i 1 1,2 (2.19)

Then (2.17) becomes

f Z Z- + 0121 +j '(Uc) 2dz

az2

- (U-c)2 11 - -I

+ (U-c)211 + U:;I.+I 2 (2.20)

11-7
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Assuming ci 0 we obtain from the imaginary part of this equation that

f 0+ la1 2 + 02120+121 (U-cr)dz'| 

#z12 
(U- r)(4+1r21z

"

=(U-Or 2 Jz 2 + S I

(2.21)

No particularly interesting result seems to follow from this.

2.4 Positive Results

So far all we have seen is that the introduction of our general

boundary conditions weakens the few general theorems known about

parallel shear flows. Now we will show that paralleling the proof of

the sufficient condition for instability gives us a method to estimate

the stability dependence on the Si .

The essence of the approach is the following: We construct a

neutrally stable solution for a particular s2. Then one shows that

for a2 slightly lower than a2 there is an unstable solution. Let

K(z) - -U"/(U-Us) be regular at z. • Set c - c- Us.

The Rayleigh Equation (2.2) becomes

+ [K(z)-a 2 ], - 0 (2.22)

11-8



This is a Sturm-Liouville problem with the variational principle

Iz9

[ 1 2 -K Cz Il 2 ]d z I x 2C12z ) 1

z - 1 2 
f z 2 102dz

(2.23)

First we show how this can be used to obtain a sufficient condition for

instability and then how it determines dependence on the Si.

f 2 f 2 dz f(z2 )
2  f(z1 )

2

Let n = mn 2 T (2.24)

1 f2dz

Varying f we see that the minimum is obtained if

f'" + nf = 0

and

f(z) = - SI f'(z )

f(z2) = S2f'(z 2) (2.25)

Let i be the smallest elgenvalue of this problem. Then

1

11-9
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fz2 14,12 dz - 5*z2 #(zI)2

21 2 n. (2.26)

W 2~ dz

therefore,

K(z)I 1 2dz

2 r 1 (2.27)

Iz ~ d

Thus, if K(z) > n everywhere

2
-a <0S

and so there is a neutrally stable mode. (Below we will calculate

nm for the special case S2 -0 • It will be shown that

m= 
(2.28)

where

0 y(S1) < 1 . (2.29)

.- .



It can be shown that if there is such a neutrally stable mode,

2 2
then there is an unstable mode for a just less than % . This can

be proved either by using perturbation theory ( 1) or more conveniently

using the variational principle as demonstrated in the Appendix.

We can now see the effects of varying the Si on stability.

Suppose we have for some values of S1 , S2 a neutrally stable mode

(and consequently an unstable mode nearby). Then if by changing the Si

2
we can force a to become negative we will achieve stability. Buts

2
from Fq. (2.23) we readily find the change of a with the Si

22

Indeed since - Ct is stationary we obtain the rate of change of a
s 9

merely by differentiation with respect to the explicit dependence on

the Si . Thus

'a (at) (2.30)
as 1  -s 2 z 2

Sl f 2 10(z)1 2 dz

and

-a -2 1 (2.31)

as2 a 2 f z 2
2 z 1O(z) 12 dzzi

We see these slopes are always positive. Thus any increase in S1  or
2

s2 always pushes -a2 to zero. The most stable situation is then that

with St S . The boundary conditions are then 0 -0, i.e., a
iS2  az 1

free boundary.

1--ll
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There is a caveat here, however. In general, the dispersion

relation [*2 (c)] has many branches. Since we have implicitly assumed

a continuous behavior, what has really been proved is that corresponding

to a given branch - a2 always increased with increasing Sl,S 2  It
may happen that corresponding to some values of the Si new branches of

the dispersion relation may appear--and a new instability may arise.

All this is exemplified by the following example.

2.5 A Classic Example ( I)

Consider U -sin z , zI < 0 < z2.

Then there is an inflection point at z. 0 ,and we can take

cs = 0 * The stability equation becomes

+ 0 (2.32)

For simplicity we will choose S2 0 0 , i.e., *(z2 ) - 0 . (2.33)

(Note: The n of the previous section is just I- a!.) Using the

boundary condition Eq. (2.33) and

O -I -Sf.a±j (2.34)
zz

we find

2 1 \ (2.35)
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where A is a solution of the equation

SI

tan A - - A . (2.36)z 2 - z I

Thus A is the intersection of the curve y = tan A with a straight

line through the origin with slope S1/(z2 - z1 ).

Si
Let us start with 

St

z2-z 1

The intersections occur at (n + 1/2)7r, n - 0 , 1 , . .

From Eq. (2.35)

2 lI(+1/2).2 (2.37)

and we have instability only if

(n+1/2)w < (z2-z1 ) (2.38)

Clearly the mode n - 0 is the most unstable and the requirement for

stability Is

z 2 - z 1 < ir/2

As SI/(z 2-z,) increases from - . to 0 the points of intersection move

smoothly from (n + 1/2)w to (n + lOr . The n = 0 mode is still the

11-13
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most unstable. At S1 - 0 we have stability if z2 - 21 < w • Thus

the range of z2 - zt for which we have stability has doubled.

As SI(z 2 - zI) grows from 0 to + - intersection points move

from (n + 1)w to (n + 3/2)w . Again the most unstable of these is

n - 0 and we apparently have stability for z2 - z1 < -- . . This is,2 1 2

however, incorrect. For Sl/(Z2- z) 1 1 a new mode appears. Thus with

X - 0 we have a solution

-z2  Z (2.39)

This is quite unstable with

2a = . (2.40)

When SI/z 2- z1) increases from I to + - the intersection for

this new mode moves from 0 to i/2 . Thus in this range we have

stability only for (z2 - z1 ) < j and for part of the region
211

z - z << , .

Combining the results we see that the most stability is

obtained when S1/(z2 - zI) - I - e * Then we have stability for

(z2 - z ) < W1O + 6) (2.41)
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where

IS 0<6<

and

6 - 1/4 (2.42)

2.6 Complex Boundary Conditions

In the above we have found that for real boundary conditions

some general global statements can be made. Thus, the Inflection

Theorem hols, Fjortoft's theorem holds for Si < 0, , and for a given

branch of the dispersion curve increasing the Si increases stability.

With complex boundary conditions we have not found any global

theorems. However, we can make a local statement. Thus in the Appendix

It is shown that in the vicinity of a neutrally stable solution there

are two complex conjugate solutions for a < a . One of these is

unstable. By an appropriate choice of complex YI it is possible to

delay the instability.

We have the expressions

ac (2.43)= Pl -t'i P2

and

2 z I U-- I 2 Y I
2z 2 W0 2 dz

z z1
(2.44)
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The change in _02 at -c2 when y¥ = Si is replaced by S + iSTi

is (since a 2 is stationary) obtained merely from the explicit changes

in the Yi i.e.,

2 2 1 2

S 2

+..1. i6T1  (z )1 2  (2.45)

S I

i.e., 6a - iB with B real.
s

Then

6c - (PI t iP2 )iB - iBp 1 T- BP2 . (2.46)

With the appropriate choice of sign of B we find

Im 6c < 0. (2.47)

Therefore, locally a complex Yi (phase lag) can be chosen to

stabilize.

2.7 Conclusion

It has been found that for real boundary conditions the

stability for a given branch of the dispersion relation is always

increased by Increasing S, (i.e., the closer to a free boundary one is

the greater the stability). There is a warning, however. New, more

unstable branches can arise.
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Using complex boundary conditions can at least locally delay

instability.

Hopefully in a following note we will endeavor to see what can

be said when viscosity is included.

1

S
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3.0 COMPLEX BOUNDARY CONDITIONS

3.1 Introduction

We have seen that when the classical rigid body boundary
conditions are replaced by more general ones very little can be said in
generality. Accordingly it is useful to consider some simple models.
This is done here. It Is found that dramatic changes in stability can

be achieved.

The situation we envisage is that, instead of vanishing at the

boundary (z - zi), the stream function should satisfy

O(x,zi) L J (×xz )n (3.1)

When Fourier transformed in the x coordinate this becomes

4(z ) YI(a ) (zi) 
(3.2)

The reality condition on G implies

Y (-a) - Y (a) •(3.3)

Alternatively this can be written:

III-I



Let Y (a) - S (a) + iT (a) • (3.4)

The reality condition is then that

S (-a) S (a) (3.5)

and

T (-a) = - Ti(a). (3.6)

Since the Rayleigh stability equation is rather intractable for

a general parallel shear flow we restrict ourselves to models in which

the basic flow is at most piece-wise linear in z . However,

discontinuities in U and its derivatives are admitted.

The problem then is to find those c such that

32- 0 (3.7)

subject to the conditions

A[(U-c) "- U'- 0 , (3.8)

A .Utj1 o, (3.9)

at discontinuities and

111-2



Y{-i " (zf ' - 1, 2 (3.10)

at boundaries.

3.2 Model I

We consider the flow

U = 0 , 0 < z 4 d (3.11)

U = Sz z > d (3.12)

and the boundary conditions

*(0) = -Y(a) 411 (0), 4(o.) = 0 . (3.13)

The eigenvalue condition then is

c10l = - 2 (1 + ialY) (3.14)

where c = exp(-ad).

In particular for the imaginary part of c we obtain

ciIM Y (3.15)cl - c2 I-buIY]

To incorporate the reality properties we write

111-3
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Y S,(a) + I T(a) " (3.16)

Then S' and T' must be even functions of c * The real growth rate

Occi is then given as

c SC2T" (3.17)
[(-s') + T' 2 (

If we maximize with respect to T' we find

T- I - S' (3.18)

and then

c -SE2  (3.19)

Letting S' go to 1 from below or above (depending on the sign of S )

we see that for all a we can obtain arbitrarily large damping. The

corresponding Y is

y = I sgnS n (3.20)

with n arbitrarily small and positive.

3.3 Model 2

This is similar to the above but slightly more complicated. We

take boundaries at z I and z2 with the same Y

111-4



- Y(a) 4n (z 1 ) I I - 1, 2. (3.21)

The unperturbed flow is

U = UPU z1  1 z d + z (3.22)

U = U I+ S(Z-Z-d),  z 1+ d < 2 - d (3.23)

U = U 2 = U I + S(z 2 - d), z > z - d . (3.24)

Since the flow is so symmetric we can divide the solutions into even and

odd ones with respect to the midpoint which we take to be z = 0 . Thus

we merely need to look for solutions for o < z r z2 subject to

0(0) = 0 or 0'(0) - 0 . Also without loss of generality we can take

U2 =0 . We choose units so z2 = I . I

The eigenvalue equation then becomes

C S I E [D (3.25)c TM 

a f l+la[le_ z~al -X -ay

Here c is again exp - ald and X = +1 for odd solutions and -1

for even ones.

This is somewhat complicated to discuss. Let us, however, Just

look at the region laI >> 1, d I 1
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The equation then becomes

c a ~- i + 2 a(ld) _[~a~j(3.26)

This then is just as for our first model. Therefore again we can

achieve arbitrarily large damping.

3.4 Model 3: The Helmholtz Instability

Consider the flow in the region z I e z I z2 where z, < 0

z2 > 0 . For z z < 0 , U(z) -U 0/2 and for z2 ) z 0

U(z) - UO/2. As boundary conditions we take

, *. (3.27)

If x - [U0/2-c]/[U0 /2+c] the eigenvalue equation becomes

2 tanh[biIz2 ] - lalY (3.28)

{tanh[I[lz 1 ]}{1-1aY tanhlalz 2}

Note: If x is found, the c is given by

U0 (I - x)
c (3.29)

First consider Y B 0 (the usual Helmholtz case.) Then

x2- tanh[IIz2 ]• (3.30)
tsnh[ laz 1]
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Since z2 > 0 , and zI < 0 we see x2  is negative for all a . The

two roots for x are purely imaginary and so one of them corresponds to

an unstable mode.

Suppose now Y is real and

IalY + 1/tanh[laIz 2] • (3.31)

Since tanh 2(lalz 2 ) < 1 we see that the numerator in the expression is

negative while the denominator + -0

Therefore,

2 + , x = + (3.32)

-Uo

and c + 0 (real).

Thus stability has been achieved for all a by an appropriate choice

of Y

3.5 Complex Boundary Condition and Boundary Layer Stability

We have seen that the stability of flows in which the velocity

is piecewise constant can be dramatically affected by the use of complex

(in Fourier space) boundary conditions. Since our main interest is the

stability of boundary layer flows, in which the velocity varies

continuously, we would like to have some indication of what can be done

in such cases.

111-7



We consider the Rayleigh equation for a flow U(z) for which

U(O) - 0 , U(-) - U0 and U'(z) > 0 * If we denote the stream

function by *(z)e i(x-ct) and define

-e *2 e (3.33)

the Rayleigh equation may be written

d * M H + 1) U" 00) (3.34)

with the boundary condition

#(.) - ( 1) . (3.35)

The boundary condition at the wall (z - 0) will be specified later.

Since U(z) is monotone, and has a finite range, it makes sense to use

it as an independent variable. Then

d (1 ) + ;j/' (0 0 (3.36)

Now U' and U' are to be thought of as functions of U

We of course cannot solve this equation in general. Let us

therefore consider the long wavelength limit, a + 0 . We will see that

it is easy to arrange the wall boundary conditions so that

ac + constant in this limit. The Rayleigh equation now reads

11I-8



d , I /U' (10/ (3.37)

and its solution (incorporating the boundary condition at z - a ) is

0xp U IJ"/U "(

exp dv - I

= + exp f~~U dv (3.38)

The boundary condition at the wall is expressed in general as

*2( ° )  €'(o) C(, ac)
-- = (3.39)

*1() ao(O) a

where ' has to satisfy certain reality and causality conditions. A

form which is general enough for our purpose is

- 1 (3.40)
a (a U'O) )ib

where a and b are dimensionless, a > 0 and we have introduced

U'(0) to nondimensionalize ac

The eigenvalue condition for ac is now

U°  U" "/u"

-+ + exp dv - = (3.41)

0 ac (a aU70) -ib

The integral in the exponent can be done and we obtain (recalling that

for a boundary layer flow U'(m) - 0 1,
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exp(- U'(O)) - I + 1 (3.42)

exp- c !c {

a U 0-)

If, for simplicity, we set a - 0 , we have

_ _ 1
C b arbitrary. (3.43)U'(O) Jtn(l + ib)

The imaginary part of ac may be made as large and negative as we like

by taking b small and negative.

What does this mean? A boundary layer with definite sign of

U'" is inviscidly stable anyway. On the other hand, the decay rate is

expected to go to zero as a + 0 , indicating a nearby instability.

With the new boundary condition we can push this instability away. A

profile with an inflection point may be inviscidly unstable for small

enough a . We apparently can control this instability as well. We

really want to know whether we can improve stablity uniformly for all

a , and the above discussion gives only a hint that this is possible.

3.6 Conclusion

From these simple models we conclude it should be possible by

constructing appropriate boundary materials to dramatically affect

stability.
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4.0 BOUNDARY LAYER PERTURBATION THEORY

We would like to pose a problem which arises in the study of

the flat plate boundary layer. The basic equations (the Prandtl

equations) for the velocity components ( u is parallel to the plate,

v , perpendicular) are

3u + 1v 3u + u a2u
ax ay ax a uy 2ay2

with the boundary conditions

u(O) = v(O) - 0 , u(-) = U0 v(a) = 0

This system is parabolic: given an initial profile u(xoy) one

integrates forward in x to obtain u(x,y) at any later x. The

standard Blasius solution is obtained by imposing the condition of self-

similarity

u(x,y) = F(yvu 0/vx)

a condition which can be met because of the Reynolds scaling property of

the equations. Suppose the initial conditions deviate from those

required to produce a self-similar solution. What happens then? Does

the solution eventually converge to Blasius, or does it perhaps evolve

away from it?

IV-I
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To attack this question we will try to pose the linear

stability problem for small perturbations around the Blasius solution to

the Prandtl equations. The equations are best stated in terms of the

stream function * ,

Ua.~ V-. * (4.1)

A self-similar profile must result from a stream function of the form

S= vx f (n) n= y ,
o A

The Prandtl equations then reduce to an ordinary differential equation

f'' + 2f f'" - 0 (4.2)
o 00

f (0) - f'(O) -0, f (- I
o 0 0

whose solution can be obtained numerically.

We want to study the time evolution of small perturbations on

fo" To that end we consider stream functions of the general form

S- (fo() + fI(,),a (4.3)

and expand the Prandtl equations to first order in fl We find
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f
f + ' f" - af' f + (a + )f'fl " 0 (4.4)

This is to be solved subject to boundary conditions guaranteeing that

f does not change the basic flow:

f (0) - f'(0) - 0, f'(w% W 0 (4.5)

For the moment the parameter a , which governs the downstream growth

rate of the perturbation, is arbitrary. In fact, the differential

equation plus boundary conditions pose a sort of eigenvalue problem

for a . If we find that Re(a) < 0 , then we will conclude that

perturbations on the standard Blasius profile die away downstream, a

physically satisfactory result.

To see whether the boundary conditions can be met, we look at

the large y limit of Eq. (4.4). That, in turn, is governed by the

large y limit of f (q) . The asymptotic behavior of fo is found
00

from a study of Eq. (4.2) to be

f(n) * n-1.72 + 0(e - n  ) (4.6)

Substituting this into Eq. (4.4) and dropping terms of O(e r2 /4) we

obtain

fl + (n-1.72) f - af - 0

IV-3
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This is a standard hypergeometric equation for fl with two non-trivial

solutions. The three possible asymptotic behaviors of f, are

fl , n2 a + 1/ 2  n2 ) - a  l

f ~ , (I2 , e %,(n -a (4.7)

All solutions satisfy the boundary conditions of Eq. (4.5) so long as

a + 1/2 < I . (We will shortly see that we must actually impose the

condition a + 1/2 < 0) . For a less than this limit, any a is

acceptable. For a greater than this limit, only discrete values of

a for which the coefficient of the (4)a+1/2 solution vanishes will be

acceptable.

To see why we must impose the condition a + 1/2 < 0 , it is

helpful to look at the two important definitions of boundary layer

thickness-displacement thickness (6 ) and momentum thickness (62

The definitions are

6 o dyl - u

62 dy . - ) (4.6)

where u is the component of velocity parallel to the wall. 61 is

equal to the outward displacement of the stream lines far from the wall

compared to their position when the wall is absent. 62 is the

thickness which would have to be removed from the free stream flow in

order to match the momentum actually lost to the wall. If we use our
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general expression for * (Eq. (4.3)], remember that u - 3*/Dx

expand to first order in f, and integrate by parts whenever necessary,

using the equations satisfied by fo and fl , we obtain

61 - [1.72 + Uaf()]j--

62 1.66 + xa f'(O)l vx (4.7)

Since the displacement thickness mist be finite on phy3ical grounds, it

is apparent that we must impose the condition fI(a) < w . By the

previous paragraph, this means that we must choose a + 1/2 < 0 or find

a (hypothetical) discrete eigenvalue of a for which the offending

(n2) a + 1/2 term does not appear in the asymptotic behavior of fj "

Since a numerical search did not show any sign of the existence of a

(real) eigenvalue, we shall henceforth ignore this possibility.

As has been noted in many places, the parameter which is of the

greatest importance for stability is the ratio 61/62 • A 10% change in

this parameter can cause an order of magnitude change in the critical

Reynolds number. To first order in fj we have

61 (a) 1

-2.5911 - xc. 7  + .66(a+112)
2

f W =

O(a) -( c - fi'(0)
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fi'(O) can be thought of as the constant normalizing fl: one

integrates Eq. (4.4) with the starting conditions

f1 (O) - f1 (O) = 0 f'(O) - c . The quantity 0(a) is obtained by

integrating the differential equation out to infinity, and is just a

function of a , defined for a < -1/2 .

We have done the requisite nmerical integration for a range of

values of a < -1/2 and we find that by choosing the sign of c

properly we can always arrange the perturbation to decrease the quantity

61/62 thereby increasing stability. Because a < -1/2 , the

perturbation must die away downstream at least as rapidly as x- 1/2

Since x- 1/2 is a rather slow rate of decrease, there might be some

advantage to attempting to set up the perturbation for which a - -1/2

--the stability increase which is achieved then decays very slowly,

perhaps slowly enough to maintain laminar flow over a region of

interesting size.

The issue we have not yet explored is the question of whether

there may be complex discrete eigenvalues and whether to represent a

general perturbation, complex values of a are required. We would like

to come back to this question in the future, although we expect it to be

a rather difficult question to analyze, since the operator involved is

not hermitean.
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* Figure 4.1
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APPENDIX

Here we want to show that there is an unstable mode for a

stightly smaller than a . It was shown in Eq. (2.23) that5

Z I 2 + U - 10 121 dz - SY12  
- Sl(z 1 2

-2 Z 1 2Z

2 1 d z  (Al)

Consider the change of - a2 with c in the vicinity of cs . Since

- a2 is stationary we merely need to differentiate with respect to the
s

explicit occurrence of c • Since we are looking for unstable modes we

evaluate at c = c + ic

z 2  U'1 1
2 dz

a21 z I (U-c-ie)- c r =(A2)
asa 1f12 dz

z 1

Since U''(z5 ) = 0 the integrand in the numerator of Eq. (A2) has a

simple pole at z zs  The ic tells how we are to go around this.

We find

A-I
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f 2  1112 dz + wi[sgn U'(z 6 ]U''(zs)I.+(ze)I12

ac - 8z [u, (z ]2

I~ ICZ) 1 dz

(03)

i.e.,-aa a +ib. (A4)

therefore,

8 c -2%(a-ib) 
(5

with

z U -U~z)
a- I s (6

z

and

b u. Z)oz)2sgn U'(z) (A7)
U, (. 2  #()2

Then f or small a a
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2a b
= s (a - as).
a +b

Let us see how this checks with our example.

U(z) = sin z, z = 0
s

Then U'(z ) - + I , U''(z ) = -

Therefore, b < 0 .

If a > as Eq. (A8) gives ci < 0 , contrary to our assumption. On the

other hand if a < a we see we do indeed obtain a ci > 0 We

conclude there is an unstable mode for a slightly smaller than a !
S
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