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INTRODUCTION

Due to their attractive mechanical properties, the precipitation
hardenable (PH) martensitic stainless steels are used for many applica-
tions, particularly in the aerospace industry. These alloys possess
aged yield strengths in the 965 MPa (140 KSI) to 1379 MPa (200 KSI)
range, good toughness and corrosion resistance. However, in the past
20 years, evidence has been presented which indicates that there is
considerable susceptibility to stress corrosion cracking (SCC) and 1-yd-
rogen embrittlement (HE) in components produced from these steels. One*
early example of this was the failure of 17-4PH stainless steel valve
bolts on Titan III missiles (Reference I). More recently, cadmium plat-
ed coupling rings and bolts manufactured from 17-4PH stainless steel
used on Navy Sidewinder missiles have experienced HE (Reference 2).

It is generally recognized (References 3, 4, 5, 6) that the sus-
ceptibility of PH steels to HE can be minimized through proper control
of heat treatment. Fujii (Reference 7) reported that 17-4PH stainless
steel was sensitive to SCC at high strength levels but relatively insen-
sitive in the overaged condition. The effect of an applied cathodic
potential suggested the involvement of hydrogen. Fracture toughness
measurements of 17-4 r ' stainless steel by Capeletti (Reference 8) were
gr- *ly reduced when tested under high hydrogen gas pressures. A min-
imum toughness was ob:ained with peak-aged specimens tested at high
hydrogen pressures. Also noted was the change in fracture mechanism,
from predominately ductile rupture in helium to cleavage in high-pres-
sure hydrogen. At low hydrogen pressures, the fracture was determined
to be mixed mode (quasi-cleavage and dimpled rupture).

There appears to be disagreement as to the degree that microstruc-
ture and or strength affects hydrogen induced ductility loss in steel.
Because of this apparent disagreement and because of a lack of engineer-
ing data, work was initiated to characterize the effect of hydrogen on
PH stainless steels.

This report presents the results of a detailed study investigating
the influence of aging temperature, hydrogen charging level, and strain
rate on the susceptibility of 17-4PH stainless steel heat-treated to a
wide range of strength levels.

* ARMCO steel, registered trademark
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EXPERIMENTAL PROCEDURE

Rods of 17-4PH stainless steel 2.54cm (I in) in diameter were ob-
tained from a single heat in the solution treated condition (Condition A)
from ARMCO Steel Corporation. The composition of the material was deter-
mined to be: 0.041 C, 0.72 Mn, 0.33 Si, 3.44 Cu, 16.45 Cr, 4.67 Ni,
0.43 Cb, balance Fe. Smooth sub-size tensile specimens 0.508cm (0.200 in)
thick conforming to ASTM speZification E8 were machined from the rods.

Several different aging treatments were utilized to produce a wide
range of microstructures and strength levels in the tensile specimens.
A series of specimens was aged to each of the following conditions: H900,
H950, PI000, H1050, H1150, and H1150M. These heat treatments produced a
wide range of mechanical properties typically required for engineering
applications of 17-4PH stainless steel. All specimens except the 1900
and H115OM received a 4-hour aging treatment. The H900 tensile bars
were aged for 1 hour at 4820C (900F) while the H1150M specimens were
double overaged by heat treating at 760 0C (1400*F) for 2 hours, air
cooling, then aging at 6210C (1150*F) for 4 hours. All specimens were
air-cooled after aging. Figure I illustrates the wide range in micro-
structure brought about by the varying heat treatments. Specimens that
were given these aging treatments, along with specimens in Condition A,
were the control group for this investigation.

Hydrogen was introduced into the tensile specimens by means of
cathodic charging. The specimens were immersed at room temperature in
a 10% H 2SO solution containing 10mg/liter of As2 0 being used as a
poison to promote absorption of atomic hydrogen. A current density of
9ma/cm 2 was employed for times varying from 0.5 to 24 hours.

Tensile and hardness tests were conducted immediately after charg-
ing (except for recovery tests) in air at room temperature. An Instron
test machine was utilized to produce strain rates varying from 0.005 to
50.8cm/min (0.002 to 20 in/mmn). The specimens were tested to failure,
all fracturing within the gage length. Percent reduction in area (% RA)
at fracture was chosen as a measure of the degree of HE incurred by the
test specimens. Percent RA was measured by micrometer.

A limited study concerning the influence of hydrogen on impact
properties of 17-4PH stainless steel was also conducted in the course
of this investigation. Charpy impact specimens were machined to ASTM
specification E23. Aging treatments for the charpy specimens and ten-
sile specimens were concurrent, and the charging procedures were iden-
tical for both sets of specimens. Room temperature impact testing was
performed immediately after charging.

SEM fractography and optical microscopy were employed to character-
ize fracture surfaces and provide information concerning the failure
modes that were operiting.

4
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FIGURE 1. The Microstructure of 17-4PH Stainless Steel
Heat-Treated to Conditions (a) H1000, (b) H1050, and
(c) H1150. Etchout: Villela's Etch. 220X
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RESULTS

The result of hydrogen charging 17-4PH stainless steel was examined
from its effect on mechanical properties and fracLure mode. A summary
of mechanical property data of charged 17-4PH steel as a function of
heat treatment and strain rate is presented in Table 1.

HARDNESS

The hardness data (Figure 2) showed that hydrogen charged specimens
exhibited a consistent increase in hardness of from one to three Rockwell
C points when compared to the values for uncharged specimens. Although
the effect was small, it appears real in that it was observed for all
aging conditions. Each data point represents an average of at least
three independent hardness measurements.

CHARPY ENERGY

Charpy impact tests were performed and it was found that in general,
hydrogen charged specimens had comparable impact properties to uncharged
specimens. The one exception was that in the solution treated condition
which showed a significant loss of impact energy when charged. This is
not surprising since it is generally agreed that untempered martensite
is the most susceptible microstructure to HE (Reference 9). Figure 3 is
a plot of charpy energy versus ultimate tensile strength of 17-4PH, and
shows the decrease in impact energy associated with the strength increase,
as well as the charged versus uncharged impact energy results.

TENSILE

It was observed that ductility as measured by % RA was affected in
all aging treatments of the 17-4PH stainless steel when charged with hyd-
rogen. Figure 4 illustrates that the heat-treated condition of the spec-
imen had some influence on the degree to which specimens were embrittled.
For example, the H900 specimen decreased in ductility from 57.9% RA to
0.4% RA upon charging while the double overaged H1150M tensile bar only
decreased from 68.4% RA to 40% RA.

The effect of hydrogen charging time on HE was studied by varying
this time from 0.5 hour to 24 hours. The results of the four aging
treatments investigated are plotted in Figure 5 as % RA versus charging
time. It is apparent that higher aging temperatures lead to less severe
HE. In 0.5 hour of charging, the H900 and H1O00 specimens lost approx-
imately 50% of their ductility. The lower strength H1150 and H15OM
specimens required approximately 16 hours of charging to incur an equiv-
alent loss.

A series of recovery tests was performed to evaluate the reversibil-
ity of HE for the charged 17-4PH stainless steel tensile bars.

6
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TAL .Mechainic:,] Proipcrti, ; of iiydr ,,gPn Chtargted 17-41,.11 SL inleGs Steel.

Strain Rate Ilardnc:s UTS RA
Condirion (r 1 ) (R, ) '.,

NC 0.2 35.5 1021 65.8
XC 2.0 45.1 141b 52.2

16 hr C 0.2 37.3 . 10 9 4.7
11900

NC 0.2 44.9 1412 57.9
0.5 hr C 0.2 45.1 1385 25.72.0 hr C 0.2 46.3 1254 6.3
4. 0 hr C 0.2 45.8 1121 1.8
16 hr C 0.2 46.1 597 0.4
16 hr C 0.02 46.2 208 016 hr C 2.0 47.0 1001 0
16 hr C 0.002 46.3 115 0

11950
hC 0.2 39.1 1194 61.0

16 hr C 0.2 41.6 1003 1.9
H1003

NC 0.2 38.7 1137 61.2
0.5 hr C 0.2 38.9 1124 33.7
2.0 hr C 0.2 39.8 1097 8.6
4.0 hr C 0.2 38.0 1099 1.6
16 hr C 0.2 39.1 780 0.!4
16 hr C 0.002 39.8 918 3.5
16 hr C 0.02 40.1 7,5 1.9
16 hr C 2.0 41.4 1039 0.4
16 hr C 20.0 3z,.' 1162 14.4

16 hr C plus 0.2 38.1 1324 9.6
16 hr Age

16 h-r C plus 0.2 37.7 1101 29.4
40 hr Age

16 hr C pius 0.2 37.7 1;00 63.4
0.4 hr Bake @204C
11105.

NC 0.2 36.0 1070 61.9
16 hr C 0.2 37.5 1040 0.2

111150
NC 0.2 32.0 963 64.9

0.5 hr C 0.2 32.k 930 59.3
2.0 hr C 0.2 32.6 934 49.1.
16 hr C 0.2 33.4 911 13.7
24 hr C 0.2 33.4 937 21.7
16 hr C 0.02 32.7 910 16.4
16 hr C 2.0 33.4 980 14.9
16 hr C 20.0 34.3 993 27.0
lI 1 504

NC 0.? 28.6 904 68.4
NC 2.0 29.0 901 6..2

0.5 hr C 0.2 28.9 18 63.2
2.0 hr C 0.2 29.0 906 52.8
16 hr C 0.2 20..6 V2 40.0
24 hr C 0.2 29.1 C65 27.6
16 hr C 0.02 29.? 872 44.8
16 hr C 2.0 29.' P85 31.5
16 hr C 20.0 30.3 913 44.7

* NC: No charge
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FIGURE 2. The Influence of Hydrogen Charging on
the Hardness of 17-4PH in Various Aged Conditions.
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FIGURE 3. Charpy Impact Energy of Hydrogen Charged and
Uncharged Specimens of Varying Ultimate Tensile Strength.



NWC TI' 6343

100-

]UNCHARGED

z 016 HOUR CHARGE
C.)
CC75

<50-
z
z

~25-

COND H H H H H H
A 900 950 1000 1050 1150 1150M

FIGURE 4. Influence of Hydrogen Charging
% RA of 17-4PH in Various Aged Conditions.
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FIGURE 5. The Effect of Hydrogen Charging

Time on % RA of Heat-Treated 17-4PH.
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Three specimens in condition HI000 were charged for 16 hours. Two of
the specimens were allowed to stand at room temperature for 16 hours
and 40 hours respectively. The third specimen was baked at 204*C for
4 hours. At the end of the recovery treatment, tensile test data indi-
cated that significant ductility was recovered, going from 0.4% RA for
a 16-hour charge with no recovery to 29.4% RA for a 16-hour charge fol-
lowed by a 40-hour recovery. The baked specimen completely regained
its ductility, showing 63.4% RA compared to 61.2% RA for an uncharged
specimen (Figure 6).

The effect that charging time had on the ultimate tensile strength
(UTS) can be seen in Figure 7. It is apparent that the high strength
H900 condition lost considerable UTS with increasing charging time while
the more ductile, low strength H1150 condition was not significantly
affected. This is consistent with the results of other investigations

(References 10, 11) which explain that hydrogen decreases ductility,
leading to less workhardening, rhus decreasing the M''S. However, in
the case of 17-4PH very little workhardening occurs. Consequently the
reason for the decrease in UTS of high strength 17-4PH after hydrogen
charging may be related to relative resistance to crack propagation.
In the high strength, low fracture toughness condition, hydrogen assisted
crack propagation is not readily arrested and failure occurs at lower UTS
than in the uncharged condition. In the lower strength conditions, hyd-
rogen assisted crack propagation is more readily arrested by the tougher
material, and UTS is affected to a lesser degree.

The final variable investigated in this study was that of strain
rate. As described earlier, a series of tensile specimens that were
charged 16 hours were tested with strain rates varying from 0.002 min 1

to 20.0 min- 1 . This was performed for each of the following heat treat-
ments: H900, HlO00, H1150, and Hll5OM. Percent RA plotted versus strain
rate for the four treatments is presented in Figure 8. While the H900
condition seemed unaffected by loading rate, the other three treatments
showed varying degrees of sensitivity to the strain rate. All three
exhibited minimum values of % RA for strain rates in the vicinity of
0.2 min - I to 2.0 min -1 . At the same time, some loss of % RA was observed
no matter what strain rate was employed. Typical of the three treatments
was that for condition H1150. At a strain rate of 0.02 min - 1 the RA was
measured to be 16.4%. This decreased to a minimum value of 13.7% RA at
0.2 min -1 . At a strain rate of 20 min- I the RA increased to 27.0%.

MACROEXAMINATION

In most cases, visual examination of the fracture surfaces showed
a distinct shell near the exterior of the hydrogen charged specimens.
Figure 9 is a series of fractographs of specimens aged to condition HIO00
and hydrogen charged for varying times. It can be seen that as the charg-
ing time increases, the shell thickness also increases. The thickness of
the shell plotted against the hydrogen charging time is shown in Figure 10.

12
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100 I

H1000 + 16 HR. CHARGE
2uj

uj75 -BAKED 4 HRS.

<50- NHRE
2

z

~25

0 1 - AV
0 24 48 72 96

RECOVERY TIME, HOURS

FIGURE 6. Recovery of % RA in Hydrogen
Charged 17-4PH in Condition H1000.
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Z H1150
z20 -

0

lu10- H1000

!YH900
002 .02 .2 2 20 200

STRAIN RATE, MIN-'

FIGURE 8. The Influence of Strain Rate on % RA of
Hydrogen Charged 17-4PH in Various Aged Conditions.
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(a) (b) (c)

(d) (e)

FIGURE 9. Fracture Surfaces of 17-4PH Tensile Specimens Aged
to Condition HI000, Then Hydrogen Charged for (a) 0 hour,
(b) 0.5 hour, (c) 2.0 hours, (d) 4.0 hours, and (e) 16 hours.
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It should be noted that the aging treatment had a pronounced effect on
the shell thickness. This shell was later determined to be a zone of
transgranular and intergranular fracture, while the interior structure
was that of dimpled rupture. In the case of both the H900 and HIO00
con4itions, the shell thickness increased with charging time until it
extended across the complete cross section of the tensile bars.

ICROSCOPY

SEM fractography was employed to characterize the fracture behavior
of the embrittled material. The specimens observed were in the H900,
HlOOO, H1150, and H115OM conditions with a common charging time of 2 hours.
In each specimen (Figures 11-1) it can be observed that the structure
ranges from dimpled rupture in the center to a type of brittle fracture
at the edge. In the H900 (Figure 11) and the H1000 conditions (Figure 12),
the central region is a mixture of dimpled rupture and quasi-cleavage,
while the edge is almost exclusively quasi-cleavage. In the H1150 (Fig-
ure 13) and the H115OM conditions (Figure 14), the central region is com-
posed almost completely of dimpled rupture, while the structure at the
edge is observed to exhibit microplastic tearing mixed with some quasi-
cleavage. When exposed to longer hydrogen charging times, specimens in
the higher strength conditions exhibited instances of intergranular frac-
ture like that observed in Figure 15 (HlOOO condition, 16-hour charge).

DISCUSSION

Considerable disagreement exists in the literature concerning the
influence of internal hydrogen on the mechanical properties of ferrous
alloys. For example, it has long been believed that tensile strength and
yield strength are not affected by hydrogen charging. Many investigators
have shown that the % RA at fracture is markedly reduced. Troiano (Ref-
erence 10) found that internal hydrogen does not influence hardness, but
Morris and Roopchand (Reference 12) have shown that hydrogen causes a
significant increase in hardness. Most studies on the influence of strain
rate on hydrogen charged metal show that HE becomes increasingly prevalent
as the strain rate decreases. Tien, however (Reference 13), has proposed
a mechanism indicating that susceptibility to HE is at a maximum at inter-
mediate strain rates, becoming less important at very high or low strain
rates. Taheri, et.al. (Reference 14) have shown experimentally that
cathodicaly charged 7075 aluminum alloy in the aged condition exhibits
a maximum in embrittlement at an intermediate strain rate, this strain
rate increasing with degree of aging. More than likely, the above con-
flicts in findings are related to the mechanism by which hydrogen is
transported and how it interacts in a material.

The results of this investigation show a small but consistent in-
crease in hardness in all heat-treated conditions after hydrogen charging.
This behavior implies some kind of hydrogen atom-dislocation interaction
taking place, probably causing dislocation pinning to occur. This inves-
tigation also presents data indicating that at intermediate strain rates,

17
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CHARGING TIME, HRS

FIGURE 10. Relationship Between Shell Thickness and Hydrogen
Charging Time for 17-4PH in Various Aged Conditions.

18



NWC TP 6343

- 0,, 0

(a) (b)

FIGURE 11. SEM Fractography of 17-4PH in Condition H900
Hydrogen Charged for 2 hours, (a) Central Region Showing
Mixture at Dimpled Rupture and Quasi-Cleavage, and (b)
Shell Region Near Edge Exhibiting Quasi-Cleavage.

me

(a) (b)

FIGURE 12. SEN Fractography of 17-4PH in Condition H1000

Hydrogen Charged for 2 hours, (a) Central Region Showing
Mixture at Dimpled Rupture and Quasi-Cleavage, and (b)
Shell Region Near Edge Exhibiting Quasi-Cleavage.
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(a)

(b)()

FIGURE 13. SEN Fractography of 17-4PH in Condition H1150 Hydrogen
Charged for 2 Hours, (a) Central Region Illustrating Dimpled Rupture,
(b) and 0-) Shell Region Near Edge Exhibiting Microplastic Tearing.
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(a)

(b) (c)

FIGURE 14. SEM Fractographv of 17-4PH- in Condition H1150M Hydrogen
Charged for 2 Hours, (a) Central Region Illustrating Dimpled Rupture,
(b) and (c) Shell Region Near Edge Exhibiting Microplastic Tearing.
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FIGURE 15. SEM Fractographv Showing Intergranular Fracture

(if 17-4PH- in Condition H1000 After 16 Hours Hydrogen Charge.
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% RA is at a minimum. This is consistent with the mechanism proposed by
Tien (Reference 13) and the experimental results of Taheri, et.al. (Ref-
erence 14). Tien discusses the existence of a critical dislocation vel-
ocity above which dislocation transport of hydrogen can no longer occur.
At very low strain rates, Tien states that the rate of hydrogen enrich-
ment is very slow. This leads to the prediction that the most severe
embrittlement will occur at some intermediate strain rate, the value of
which depends on hydrogen diffusivity, dislocation velocity and mobile
dislocation density. For stainless steels, the critical strain rate for
maximum effect of HE was estimated by Tien to be approximately 6 min-1 .
This is in good agreement with the results found in this investigation
for 17-4PH stainless steel.

The changes in fracture mode seen in this investigation are commonly
observed in hydrogen embrittled alloys. The fracture mode of the speci-
mens whose treatments yielded high strength behavior (H900, HIOOO condi-
tions) changed from primarily dimpled rupture to quasi-cleavage after
hydrogen charging. The high temperature aging treatments (H1050, HI150)
caused the structure to change from pure dimpled rupture to a combina-
tion of quasi-cleavage and what Thompson and Chesnutt (Reference 15)
termed "tearing topography surface" (TTS).

CONCLUSIONS

1. The susceptibility of 17-4PH stainless steel to internal hydrogen
embrittlement increased as cathodic charging times were increased,
until saturation occurred.

2. 17-4PH stainless steel was sensitive to internal hydrogen embrittle-
ment in all heat-treated conditions, being progressively more susceptible
as strength was increased (lower aging temperature). The solution treated
condition (untempered martensite) was also highly susceptible to HE.

3. Decreases in % RA and UTS, and increases in hardness were produced by
hydrogen charging, the changes being recoverable on suitable outgassing.

4. The susceptibility to internal HE was shown to be a function of
strain rate, the largest decrease in % RA being measured at intermediate
strain rates.

5. Hydrogen charging caused the mode of fracture to change from ductile
to brittle. Uncharged specimens displayed primarily dimpled rupture,
while charged tensile bars exhibited quasi-cleavage and some intergranu-
lar failure.

6. The results of this investigation are consistent with dislocation-
hydrogen interactions, and the ability for hydrogen to be transported
through a dislocation-hirogen transport model.

23
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