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Many circuit simulation prugrams have been available for the design of

integrated circuits. However, these conventional circuit simulation
programs calculate all of the node voltages or branch voltages and currents
at each iteration and each timepoint. Even with sparse matrix techniques
the simulation of modern large-scale integrated (LSI) circuits is not

possible in many situations due to the excessive computation time and high

storage requirements.

The goal of this research was to investigate new approaches to the
simulation of 1integrated circuits which can alleviate the problems of
excessive computation time and high storage requirments. A new ordering
scheme for the modified nodal approach was developed, and some new
algorithms for the dc¢ and transient analysis of logic circuits were
studied. Different tearing methods and sparsity considerations for the
node tearing method were theoretically and experimentally studied. Latency

v at the subeircuit and the network levels was investigated. Different
latency criteria were proposed and studied. The result of this research is

- a new general purpose circuit simulation program SLATE.
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I. INTRODUCTION

The design of integrated circuits requires an accurate method of
predicting circuit performance. The traditional breadboard method is
not able to satisfy the above requirement because of the fact that the

parasitic components that are present in the breadboard are entirely

different from the parasitic components that are present in integrated
circuits, so a circuit simulation program is a must. Conventional
circuit simulation programs [1-11] possess two serious limitations: a
computer storage requirement and a computing time requirement, so the
size of the circuit that can be simulated is limited. With the advances
of circuit simulation techniques, the size of the circuit that can be
simulated has increased; but the simulation of large scale integrated
(LSI) circuits 1s still beyond the capabilities of present circuit
simulation programs.

The goal of this research was to study new approaches to the
simulation of integrated circuilts which can alleviate the abuve
two limitations, namely the repetitiveness and latency
properties of digital integrated circuits. Since a DEC-10 version of
SPICE2 was available to us, it was decided that this program would
serve as a vehicle for testing our algorithms. However, in the initial
phases of our research, it was found that our version of SPICE2 had
several deficiencies in the implementation of some of its algorithms
which occasionally caused numerical difficulties. In order to resolve
these difficulties a new reordering scheme for the modified nodal

approach was developed, a new concept - a piecewise nonlinear approach

i




- for the Newton-Raphson iteration was proposed, and two problems with

the numerical integration algorithm were resolved. The new reordering W

scheme for the modified nodal approach not only avoids zero diagonal
pivot elements which increases numerical accuracy, but it also signi-
ficantly reduces the number of fills in the matrix which reduces the

computational cost. The piecewise nonlinear approach reduces the number :

of iterations needed to find the solution of a nonlinear circuit and

improves the global convergence property of Newton-Raphson method. The
resolution of the two problems with the numerical integration algorithm
provides more efficiency and accuracy. All of these new developments
result in a modified v;rsion of SPICE2 (YSPICE), which is 2 to 5 times
faster than SPICEZ.

Although YSPICE is more efficient and more accurate than SPICE2,
it is still not powerful enough to handle LSI circuits simulation
problems. Experience has shown that LSI circuits possess properites
which can be exploited to improve the storage and computing time
requirements. The two properties are the repetitiveness of a limited
number of subcircuits and the latency that may exist within parts of
the circuits during an analysis. Conventional circuit simulation
programs do not exploit these two properties, so all of the node
voltages or branch voltages and currents are calculated at each
iteration and each timepoint. 1In order to increase the capabilities of
circuit simulation programs substantially, these two properties must
be fully exploited. When the first property is exploited both computer

storage requirements and computing time can be reduced in several ways.

- — . e — . = '. L. - ¢ ’
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First, only one subcircuit description for each type of repetitive
subcircuit need be stored; secondly, only one set of small submatrix
sparse matrix pointers for each type of repetitive subcircuit is

needed so that both storage and preprocessing time can be saved;
thirdly, if one type of subcircuit is linear, then the LU factorization
of that type of subcircuit need be found once only. When the second
property is exploited, we only need to solve for the active parts of
the circuit and this reduces the computational effort considerably.
Tearing methods, first introduced by Kron [12], are well suited for the
exploitation of these two properites as well as the sparsity of the net-
work. Recently, the use of tearing methods and latency [l3—24]_has
been studied to exploit these two properties, but in order to fully
exploit these two properties more research effort is needed.

In the second stage of our research, these two problems were
studied extensively and the result of our investigations is a new
general purpose circuit simulation program SLATE (a Simulator with
Latency and Tearing). SLATE evolved from YSPICE, so it has all the
good features of YSPICE: in addition, several new approaches are used.
First, the new reordering strategy for the modified nodal approach is
used at both the subcircuit and interconnection levels; secondly, ways
of exploiting sparsity that exist at the subcircuit and interconnection
levels were theoretically and experimentally studied and the most
efficient way is used; thirdly, node tearing is used such that the

program is more efficient and the final equation formulation is suit-

able for latency exploitation and parallel processing; fourthly,
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latency in he Newton-~Raphson iterations is exploited not only at device
and subcircuit levels, but also at interconnection levels; fifthly,
latency in the time domain is exploited not only at device and subcircuit
levels, but also at interconnection levels; sixthly, three latency in
time criteria schemes were studied thoroughly in relation to the spread
of the time constants in the subcircuits and the best scheme was deter-
mined; and lastly, the interconnection matrix formulation method is
general enough to accommodate the situation when there are no subcircuits
specified in the network or when the intercomnection circuits consist of
more than tearing nodes.

Both YSPICE and SLATE are written in FORTRAN and have a SPICE-like
input language for user convenience. If no subcircuits are used, then
the methods of analysis of SLATE is equivalent to that of YSPICE, that
is, YSPICE is a subset of this new program SLATE. Simulation results
indicate that the speed of SLATE is about an order of magnitude faster
than SPICE2, and the output results are either the same as or more ac~
curate than those of SPICE2.

The new reordering scheme for the modified nodal approach is
described in Chapter 2, and the comparison between this new scheme and
that used in SPICE2 is given The piecewise nonlinear approach is
explained in Chapter 3 and simulation results are given. The two
problems with numerical integration are detailed in Chapter 4, and the
solution is given. Chapter 5 introduces the concept of tearing methods
and gives the sparsity consideration for the node tearing method.

Chapter 6 describes three latency criteria and gives the simulation




results of these three schemes. Finally, in Chapter 7 a summary of
SLATE performance is given, the conclusions are presented, and areas

for future work are described.
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II. NEW REORDERING STRATEGY FOR THE MODIFIED NODAL APPROACH

The modified nodal approach (MNA) [25) has been widely used in many
computer-aided circuit analysis programs {1,11,26,27] for formulating
¢ircuit equations. It is well known, however, that while the more
restrictive nodal approach in general produces nonzero diagonal elements
for pivoting, the modified nodal approach, although more general, may
produce zero diagonal entries in the network matrix. This occurs, for
example, when the c¢ircuit contains voltage sources, short-circuits,
inductors at zero frequency (dc solution) and some types of controlled
sources. When sparse matrix techniques with diagonal pivoting are used for
solving these types of circuit equations, extreme care should be taken so
as not to choose a zero-valued pivot. Two methods have been proposed for
avoiding pivoting on these zero diagonal entries. One method (method 1)
involves ordering the rows and columns with zero diagonal entries last, in
the hope that they will be filled before becoming candidates for pivoting
{1,11]. Another method (method 2) involves rearranging and/or combining
rows and columns in order to obtain nonzero diagonal elements [25].
However, as we show below, there are two problems with these methods.
First, even 1if all the zero diagonal elements which exist in the network
matrix at the formulation stage are avoided or filled during the
elimination stage, it is possible to generate zero diagonal elements during
the Gaussian elimination process regardless of the values of the circuit
elements; Secondly, these methods usually are not efficient. For example,

forcing the zero-diagonal entries to be last usually increases the number

of fills considerably.
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In this chapter a new reordering scheme for the modified nodal
approach is described which avoids zero diagonal pivots in essentially all
practical cases and is very efficient. In Section 2.1, the problems with
previous methods are 1illustrated and explained. In Section 2.2, the
partitioning of the circuit variables is detailed and the ordering strategy
is 1introduced. In Section 2.3, theorems and examples are given. The
implementation of this new scheme resulted in YSPICE. The simulation
results from YSPICE are given in Section 2.4. In this Section examples are
given which caused computational problems in our DEC-10 version of SPICE2
due to pivoting on 2zero diagonal elements, but which were successfully
analyzed by YSPICE. Also the number of fills produced by YSPICE is much
less than that produced by SPICE2. In Section 2.5, a discussion of this

new ordering strategy is given.

2.'. Problems with Previous Methods

The MNA matrix can in general be expressed in the form [25]

o]
-]
<
[

(2.1)

(]
(3=}
tH
o]

7~

where Y is the set of node-~to-datum voltages and } is the set of branch
currents which are chosen as additional circuit variables. }R is a reduced
form of the nodal matrix excluding the contributions due to voltage
sources, current controlling elements, etc. § contains partial derivatives
of the Kirchhoff current equations with respect to the additional current

variables and thus contains +1's for the elements whose branch relations
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are introduced. The branch constitution relations, differentiated with
respect to the unknown vector are represented by the matrices C and D. J

and E are the excitations.

As mentioned above, when sparse matrix techniques with diagonal
pivoting are used for solving Eq. (2.1), zero diagonal elements may be
encountered. Previously, two methods have been proposed for avoiding
pivoting on these zero diagonal elements. However, there are still two
problems with these previous methods: (1) zero diagonal elements may be
generated during the Gaussian elimination process, and (2) the methods may
not be the most efficient. In this section we consider the zero diagonal

problem, and in Section 2.4 we discuss the efficiency problem.

Method 1 orders the rows and columns with zero diagonal entries last,
in the hope that they will be filled before becoming candidates for
pivoting. Even if all the 2zero diagonal elements which exist in the
network matrix at the formulation stage are filled during the elimination
stage, cutsets of branches whose currents are declared as network variables
in a modified nodal formulation will generate zero diagonal elements during
the Gaussian elimination process regardless of the values of the circuit
elements. This problem is proved and illustrated by Theorem 2.1, Example

2.1, and Example 2.2.

Theorem 2.1, For any network which has cutsets of branches whose currents
are declared as circuit variables in a modified nodal formulation, if these
current variables are ordered last, then zero diagonal elements will be

generated during the Gaussian elimination process, regardless of circuit

element values.

- .

|-l



+—

o B

-9-

Proof: Since we assume that all the current variables are ordered last and
they form cutsets, therefore floating subnetworks are created. The
admittance matrices of these floating subnetworks are singular, therefore
the }R in Eq. {(2.1) 1is singular, so zero diagonal elements will be

generated during the Gaussian elimination of Eq. (2.1).

The following Example 2.1 illustrates Theorem 2.1.

Example 2.1: A cutset of current variables (Fig. 2.1)

If the method which orders all the current variables last is used to

formulate the modified nodal equations of the circuit shown in Fig. 2.1,
the resulting equations will be as follows:
(6, - o0 1 0] [v,) (0]
—Gl G1 0 0 -1 vy 0
0 0 Gy 0 1 V3 = 0
1 0 0 0 0 IE E
KS -1 1 0 q/ L}L, LO’

During the course of Gaussian elimination due to the resulting

floating subnetwork, a zero diagonal element will be produced at location

(2,2).

Remark: For any subnetwork which has cutsets of branches whose currents
are declared as circuit variables in a modified nodal formulation, if the

rows corresponding to current variables which have zero-diagonal elements
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m
Q)
N

d.c. Analysis P-6734

Fig. 2.1 Circuit used in Example 2.1.




ﬁ— - T m e — e 1
| -11-

are ordered last until a diagonal entry is filled, before it is considered
as a pivot, then zerc diagonal elements may be generated during the

Gaussian elimination process, regardless of circuit element values.

The proof of this remark is the same as that of Theorem 2.1. In the

following, Example 2.2 illustrates this remark.

Example 2.2: A cutset of current variables (Fig. 2.2)

If the reordering strategy mentioned in the previous remark is used to

formulate the equations of the circuit shown in Fig. 2.2, the matrix

formulated is:

r N /v\ foﬁ
G, 0 0 0 3
0 G, -G, 1 v.|= (o
0 -G, G, 0 v, 0
0 1 0 0 LIE E
- y, )/

During the course of Gaussian elimination due to the resulting
floating subnetwork, a zero diagonal element will be generated at location

(3,3).

Method 2 interchanges rows in order to obtain nonzero diagonal
elements. Even if all the zero diagonal elements which exist in the
network matrix at the formulation stage are avoided before the elimination,
if there are 1loops of branches whose currents are declared as network

variables in the modified nodal formulation, then zero diagonal elements
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d.c. Analysis #o-6733

Fig. 2.2 Circuit used in Example 2.2-
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may be generated during the Gaussian elimination process regardless of the
values of the circuit elements. This problem is proved and illustrated Dby

Theorem 2.2 and Example 2.3.

Let us define the branch whose current is declared as a current
variable in the modified nodal formulation as current branch. Let us
define the 'positive' node as follows: Assuming that the datum node can
not be chosen as 'positive' and that the datum node is not contained in any
loop formed by current branches, then we can always choose one of the two
nodes of a current branch as 'positive' for that current branch and there
is a one-to-one correspondence between these ‘'positive' nodes and the

current branches. An algorithm for choosing 'positive' nodes is given in

Sectiosn 2.2.

Theorem 2.2. For any network with a loop of branches whose currents are

declared as network variables in a modified nodal formulation, and the
reference node is not contained in the loop and there is no coupling among
the voltages of the branches in the loop, then 1if all the rows

corresponding to the current variables are interchanged with the

corresponding 'positive' node voltage rows, zero diagonal elements will be

generated during the Gaussian elimination process, regardless of circuit

element values.

Proof: Let us assume that after the rows corresponding to the current
variables are interchanged with the corresponding 'positive' node voltage
rows, the rows corresponding to the current variables are ordered first,

then the MNA matrix equation (2.1) is transformed into

L

s
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The submatrix being eliminated first is the node-to-branch incidence matrix

for the 'positive' nodes and the current variable branches (28], that is ,
the B, in Eq. (2.2). Since we assume that the reference node 1s not
contained in the 1loop and there is no coupling among the voltages of the
branches of the loop, then there is a one-to-one correspondence between
each branch of the lcop and the corresponding 'positive' node and each
column in §1contains exactly a +1 and a -1, therefore, Bl is singular and

-~

zero diagonal elements will be generated during the Gaussian elimination.

The following Example 2.3 illustrates Theorem 2.2.

Example 2.3: A loop of current variables (Fig. 2.3)

THe circuit equations formulated by method 1 for the circuit shown in
Fig. 2.3 in a transient analysis using a backward Euler Formula with

timestep n have the following form:
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Fig. 2.3 Circuit used in Example 2.3.
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The submatrix Blis singular, therefore during the Gaussian elimination

a 2ero diagonal el2ment will be generated at location (4,4).

2.2. New Partitioning and Ordering Strategy

From the previous section, we conclude that the topological reasons
for zero diagonal elements being generated in the modified nodal approach
are: (1) cutsets of current variables and (2) loops of current variables.
Here we present a new partitioning and ordering strategy which has the

following good features:

(1) zero diagonal elements are avoided before the Gaussian elimination and

during the Gaussian elimination in essentially all practical circuits;

(2) it is efficient and the number of fills is less than that of previous




— aowm gy OGN S

-

-17-

methods;

(3) it is easy to implement and the partitioning and ordering are done in
the preprocessing phase, so it is well suited for the use of sparse matrix

techniques.

Consider a linear (or linearized) circuit which contains independent
current and voltage sources, two terminal resistors, capacitors, inductors
and all types of controlled sources. We assume that the circuit contains
neither 1loops of only (independent and dependent) voltage sources and

inductors nor cutsets of only (independent and dependent) current sources

and capacitors.

In the modified nodal approach, the circuit variables consist of
node-to-datum voltage yn together with a subset of branch currents I, .
(Henceforth those branches are referred to as current branches.) In the
proposed ordering strategy, the node voltages Yn are partitioned into two

subsets, Yl and YZ’ and ;b is partitioned into three subsets, I

L I, and

I5. The components of I, consist of the currents in the (dependent and

independent) voltage sources, and are in turn partitioned as follows:

EV =branch currents of the independent voltage sources.

IVCV Zbranch currents of the voltage-controlled voltage sources.

ECCV Zbranch currents of the current-controlled voltage sources.

The components of I, and I, consist of the remaining currents which are

circuit variables.
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Let a graph QI (possibly disconnected) be first constructed to include
all the current branches, with all the other branches removed. If Gy
contains loops, then a tree (or forest) is chosen, with only finite-valued
resistors as links. This is always possible since by assumption no loops
of only voltage sources, inductors and zero-valued resistors exist in the
circuit. Let I, Dbe the set of currents in the links of Gy, then these

links can not form cutsets [28]. The components of }2 consist of currents

in the inductors and the remaining currents of the current resistors.

The components of V.consist of the following:

Yv Zset of 'positive' node voltages of the independent voltage

sources.

YVCV Zset of 'positive' node voltages of the voltage-controlled

voltage sources.

VCCV Zset of 'positive' node voltages of the current-controlled

voltage sources.

ch =set of 'positive' node voltages of the the }2 branches.

The components of V_ consist of the remaining node voltages.

o e —— - e emame e e W s o w  mem = . o —
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' The following algorithm is followed in selecting the 'positive' node

! voltages defined above:

{ Algorithg

} (1) The ungrounded nodes of all grounded current branches belonging to
}1 or }2 are chosen first as 'positive’';

(2) Let bj be the number of branches whose currents belong to I or I

and which are incident at node j. Whenever a node of a current branch is

chosen as 'positive', the number b, at its 'negative' node k is reduced by

one.

(3) If the bk value of node k of a current branch is one and that node

has not been previously selected as 'positive', then node k is selected
t 'positive' for that particular current branch. If more than one node have
their bk value equal to one and if some of these nodes do not %2 a
conductance (i.e., a resistance whose current is not a circuit variable)
connected to them, then one of these nodes is chosen 'positive' first.

Otherwise, any one of the nodes that has its Dby value equal to one is

chosen 'positive'.

Step (2) and (3) are repeated until all the branches corresponding to
}1 and }2 have been processed. Note that up to this point there is always
at least one node whose bk value is one. This is because zl and ;2 do not
form loops. Note also that the number of positive nodes is equal to the

number of elements in I, and 12. The polarities of the currents in the

1
l current branches are associated with the positive node assignments.




Partitioning and ordering the circuit variables in the order of Il,

;2, Yl' Yz, and 53, and writing the modified nodal equations in the usual

way [25], we get the following equation structure:
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Where the éi's contain the partial derivatives of the Kirchhoff
current equations with respect to the circuit current variables, Il’ Iz,

53, and thus contain 0, +1, -1 only.

By interchanging the rows corresponding to Xl with the rows
corresponding to 51 and 32, Eq. (2.3) can be written in the following form
(This interchange is equivalent to off-diagonal pivoting and is done in
practice by a simple change in the pointer system rather than a physical

interchange of data in the rows.)
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The circuit variables are partitioned into three subgroups: (1) I

and 12, (2) Vy» and (3) the remaining variables. The Markowitz scheme [29]

is used to minimize the number of operations within each subgroup. After
reordering, Eq. (2.4) can now be solved by Gaussian elimination or LU
factorization.

2.3 Theorems and Examples

If there are no current-controlled current sources or if the
current-controlled current sources are not incident at the 'positive'
nodes, then within the first two subgroups all the diagonal elements remain
1's and all the nonzero off-diagonal elements are -1's during the Gaussian
elimination process, so the leading part of the elimination can be done
simply by addition. The proof is given below in Theorem 2.3. Let us
consider the first subgroup, the submatrix associated is the node-to-branch
incidence matrix fa for the 'positive' nodes and the currents belong to £1

and Iz. Let us denote the directed graph of those nodes and currents by
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Gr. Due to our partitioning and ordering strategy, there are no loops in
Gy, so A, has +1's on the diagonal, O's or -1's on the off-diagonal and ia

is square and nonsingular.

Theorem 2.3. For any diagonal pivoting the LU Cfactors of ﬁa have the

following special properties: all the diagonal elements remain +!'s and

all the nonzero off-diagonal elements are -1's.

Proof: Let ﬁa be formulated with current Ik chosen as the first pivot

where I, flows in branch bk’ which is connected between node i and node §.
After row and column interchange the first row and column of ﬁa will have

the following form:

1 j n
1
H ™~
P 0 ...l
11
f
|
{
t
A = 1
~a 1
j -1, 1
)
)
t
. '
n ! 1
\ ! Ve

where node j is assumed to be in GI; otherwise column one would be all
zeros below the diagonal. Note that the entry alj z 0 because G; does not
have any loops and ary 1=2,3,....,n are either zero or -1. Pivoting on a
amounts simply to adding row 1 to row j. Since adding any two rows in the

incidence matrix of a directed graph produces a row with 0, =1 or 1

e et e i i
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enties, row j will then contain 0 and -1's with +1 on the diagonal because

~
Let the submatrix generated by pivoting on a be denoted by ﬁa'

11

A
A
d

P ~
can be considered as the incidence matrix of a directed graph GI where GI

is derived from GI by removing branch bk and merging node 1 with node J.

A
Thus ﬁa has the same properties as ﬁa’ and pivoting on its first diagonal

entry will produce a submatrix with ones on the diagonal and 0 and -1's

elsewhere. This proves the theorem.
The reasoning for the second subgroup is similar to Theorem 2.3.

Now we would like to present the main result.

Main Result. For any network which has a unique solution, if the
partitioning and orderinng strategy proposed here is used to solve the
modified nodal equations, then no zero diagonal elements will be
encountered during the Gaussian elimination process, except for the case
when controlled sources or negative-valued elements with some specific set

of circuit element values result in perfect cancellation.

Proof: There are two kinds of zero diagonal elements which may be
encountered. One type is due to the formulation method [25] and occurs in
b the network matrix before the elimination process starts. These zero
diagonal elements are avoided by interchanging the rows corresponding to
the 'positive' node voltages with the rows corresponding to '31 and 52.
During the elimination, topologically, the zero diagonal elements are

caused either by ordering loops of current variables first or by a floating

subnetwork which results by ordering a cutset of current variables last.

oot pmmd  pmd Sl
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Both of these situations are prevented by partitioning 13 away from 12 and

ordering I1 and 12 first, so no loops can be formed by Il and 52. Since I

consists of currents in the links, so 13 will not form cutsets, and thus no

-~

floating subnetworks will result.

Alternatively, this theorem can be proved as follows: Since all the
currents are ordered first and eliminated first, from Theorem 2.3, we know

that the elimination of these currents will not generate zero diagonal

elements. After all these currents are eliminated, if I3 is empty, we are
left with nodal matrix equations, then no zero diagonal elements will be

generated; if 13 is not empty, since I3 can not form loops or cutsets, so

no zero diagonal elements will be generated.

A more rigorous and general proof can be found in [30].

In the following we would like to use the new ordering scheme to solve

those examples used in Section 2.1.

Example 2.1:

If our approach is used, initially, the matrix formulated is:

m

[
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After interchanging rows, the resulting matrix is:

oo os 2 s I )
J i D) b S, LL 9
o} 0 3 1 -1 '/'] 2
3 -i =Gy J Gl VZ o}

No zero diagonal elements will be encountered during the course of

’ Gaussian elimination.

Example 2.2:

T

If our approach is used, initially, the matrix formulated is:

e
S o

QO ~ O
A O
-
o &
.—P e
© O O o
< < < M
LT o L]
D |
L]
—
(] l"l'

After interchanging rows, the resulting matrix is:

Py umg  pust PR my et e
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No zero diagonal elements will be encountered during the course

Gaussian elimination.

Example 2.3:

If our approach is used, initially, the matrix formulated is:

[ o0 9 1 -1 o3 o o= [=7]

S S I I I L. :,
J p] Q Q 3 L 0 -Ya Iy o]
Lo 0 35, 9 0 SO A
SRR T S S s || o, 3
31 3 0 30 9 |fv, 3
RSO R R N A A 9
309 -t 3 3 L e : 2

- .L'-a 2 .

After interchanging rows, the resulting matrix is:

of

——d

ppreTeTIm
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I A e BB e | e B i
S N S )
A R )
R LR A I
I SR RS IS | T,
SR R N R SRR )
ST I I O | A N
3 0 a9 -v 0 2 1o, 3

b Zd e “d S

No zero diagonal elements will be encountered during the course of

Gaussian elimination.

These examples show that our approach indeed can avoid <zero diagonal
elements before the elimination and during the elimination. However, as
mentioned before, if there are controlled sources or negative valued
elements with specific set of element values, zero diagonal elements may be

produced due to perfect cancellation.

2.4. Results

The implementation of this new algorithm into the DEC-10 version of
SPICE2 has resulted in YSPICE. 1In YSPICE, the 'positive' nodes are first
determined by the algorithm presented in Section 2.2. The network matrix
is constructed using the element stamps as in [31]. The sparse matrix
reordering is carried out using the Markowitz criterion [29,32] with

diagonal pivoting. The row interchange 1s done by one extra set of

pointers.
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Examples which caused computational problems in the original version
of SPICE2 due to pivoting on zero diagonal elements were successfully
analyzed using YSPICE. Furthermore, the results we obtained show that in
many cases the number of fills produced by our ordering strategy is far
lower than that produced by previous methods, resulting in less

computaticnal cost, and at the same time, more accurate solutions.

Here a small selection of the examples analyzed by YSPICE is presented

and the results are compared with those obtained by SPICEZ2.

Example 2.4: The two circuits shown in Figs. 2.4(a) and (b) were analyzed
using SPICE2 and YSPICE. The CPU times required by the equation solving

subroutines in both programs fcr both circuits are given in Table 2.1.

Table 2.1 Simulation Data-

_ CPU time number of
Circuit for the equation number of | operations
solving subroutine | variables per iteration

YSPICE

2.4(a) 0.9090 sec. 7 16
SPICE2 1.9740 sec. 7 71
YSPICE

Z.A(b) 0-031 sec. 10 30
SPICE2 0.108 sec. 10 101




@ I
. = 1
|, oiESR o
(@)
©

——T— T —
@ _]Efpl U*:___WT E__SO”T
8Vé = 1 = = ‘L
I @
(?—lsv
(b)

Fig. 2.4 Example Circuits,
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The difference in the number of operations between YSPICE and SPICE2
in Table 2.1 can be explained as follows: 1In SPICE2, the matrix formulated
by the modified nodal approach for the circuit in Fig. 2.4(a) is as shown
in Fig 2.5(a). It can be seen that although the aumber of off-diagonal
elements of the rows and c¢olumns corresponding to Il’ I2, and I& is small,
they are not chosen as pivots until their corresponding zero diagonal
entries are filled. The delay causes the number of fills to increase
greatly. In YSPICE, the matrix formulated for the circuit in Fig. 2.4(a)
i; as shown in Fig. 2.5(b). It can be seen that the number of fills is
now zero due to the off-diagonal pivoting, and consequently, the number of

operations is reduced.

Example 2.5: The circuit shown in Fig. 2.6 was also analyzed using both

SPICEZ and YSPICE. The results of the dc¢ analysis are shown in Table 2.2.

Table 2.2 Simulation Data.

_ T
Node ! 2 3 ! 4 > | 6
TSPICE ! 2.000 v | 4.000 v | 4.000 V| 0.000 V i 0.000 Vv
node voltages |
!
SPICE2 2.000 v | 2.324 V | 2.324 v |-1.676 V |1675.9999 V
node voltages
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X X® X 1 X0
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100X XXX
01lLO0XXXX
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0001000
0000100
0000010
000X XXX _
(b) h-4852

Fig. 2.5(a) Structure of the Network Matrix for the

Circuit in Fig. 2.4(a) formulated by SPICE2.

(b) Structure of the Network Matrix for the

Circuit in Fig. 2.4(3) formulated by YSPICE.
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Qur approach gave correct results for this circuit vhile SPICE2 gave
inaccurate results. These inaccuracies can be explained as follows: In
SPICE2, if a diagonal element becomes too small, then it 1is replaced by
1.Ox10'12. In this circuit this approach is equivalent to connecting a
1.0x1012Q resistor from node 4 to ground. In this c¢ircuit the diode is
reverse biased, the equivalent resistance used in SPICEZ2 for this diocde is
0-721x10120, as a result the computed I1 in SPICEZ2 is 2.32ux10-12A, instead

of the correct value, which should be 0.0A. This inaccuracy in computing

I, makes Vg = -1.6760V and Vg = 1675.9999V instead of 0.0V.

2.5 Discussion

In this chapter we have presented an ordering stategy to be followed
when the modified nodal approach is used. When this new strategy is used,
the possibility of selecting zero diagonal pivots 1is reduced. The new
strategy eliminates the need for having to continuously check the pivot and
to replace it by a nonzero value in case a zero is generated, as is done in

some existing strategies, which is both time consuming and inaccurate.

In addition, if the currents through the voltage sources are not
needed, our ordering scheme provides a convenient way of reducing
computation by performing the backward substitution step only partially to

obtain the required variables.

Although by performing off-diagonal pivoting, the circuit matrix loses
its symmetry and increases the complexity of the program, however, this is not
a serious drawback. In fact, in many of the examples which we have
analyzed, we have observed that by using off-diagonal pivoting, the number

of fills is much less than that produced by other methods.
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III. MODIFIED NEWTON METHOD AND PIEZCEWISE-NONLINEAR APPROACH

In a computer-aided circuit simulation program, if a circuit contaias
nonlinear elements, then a nonlinear solution method is required =0 solve
the nonlinear algebraic equations in both dec analysis and ctransient
analysis of the circuit. There are many nonlinear solution methods
available, but the one most widely used is the Newton-Raphson method. This
method has t“he desirable property that its rate of convergence is quadratic

in the neighborhood of the solution.

Although The Newton-Raphson method has excellent local convergence
properties, it has problems [1,33] when the initial guess is not close <0
the solution, such as numerical overflow, slow convergence, Jr no
convergence. Several modified Newton-Raphson methods have been proposed o
try to resolve the above problems, and the performance of %“he basi:c
Newton-Raphson method has been Iamproved to Ssome extent. Here a new
zethod - the piecewise nonlinear approach - is presented, and examples are
Ziven which show even further improvement. This method evolved from “he
piecewise linear method and previous modified Newton-Raphson methods, so it
has the advantages of both methods. However, <his new method is still at

the experimental stage, no definite conclusion about it has been obtained.

This chapter begins with the introduction of the Newton-Raphson
method. In Section 3.2, problems with the Newton-Raphson method are
illustrated. 1In Section 3.3 the piecewise nonlinear approach is presented.
In Section 3.4, a new modified Newton-Raphson method for bipolar devices Is
detailed and the piecewise nonlinear approach for bipolar devices including

the avalanche effect is given in Section 3.5. In Section 3.6, the
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piecewise nonlinear approach for the MOSFET is described. In Section 3.7,

a discussion of the piecewise nonlinear approach is given.

3.1. The Newton-Raphson Algorithm
Let the set of nonlinear equations be
F(X) = 0 (3.1)

If Xk is the solution at the kth iteration, from Taylor series expansion,

we have
F(X) = F(X) +Jd(X) ( X-X ) + higher order terms (3.2)

Eq. (3.2) is used to obtain a solution to Eq. (3.1) under the assumption

that the higher order terms are negligible. Thus, we write

E()Sk) + ‘.I.()Sk) ()S X.) = 9, (3.3)

k+1 T “k

Solving Eq. (3.3) for Xk+1 we obtain

Xpy = X - TR (3.4)

Eq. (3.4) is called the Newton-Raphson iteration algorithm.

3.2. Problems with the Newton-Raphson Algorithm

The problems of numerical overflow and slow convergence can be

illustrated by a simple diode <circuit shown in Fig. 3.1. The branch

constraint for the typical semiconductor diode has the form 1 = IS(GAOv_ 1)

Given an initial estimate VO to the solution for this circuit as shown in

Fig. 3.1, it 4is not uncommon for the solution Vl to the next
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Newton-Raphson iterate to be in the neighborhood of VDD as shown in Fig.
3.1. If the exponent in the diode equation 1is too large, overflow may
occur. Even if overflow does not occur, convergence will be extremely slow
because of the very large slope of the diode characteristic in this region.
One modified Newton-Raphson algorithm which has proved successful in
avoiding the above problems was proposed by Colon [33]. In this algorithm
iteration on current is employed if Vk+l exceeds a reference junction

voltage V this is illustrated in Fig. 3.2. This algorithm is used in

REF’
the SPICE2 program.

Another problem with the Newton-Raphson algorithm is the lack of
convergence. This is illustrated in Fig. 3.3. The iterate solutions will

oscillate between V, and V, and never converge to the solution v

3.3. Piecewise Nonlinear Approach

This is a new approach which has the advantages of the piecewise
linear approach and the modified Newton-Raphscn methods. However, this
method is still at the experimental stage, the proof of global convergence
or conditions for global convergence has not been obtained. We restrict
our discussion to two terminal elements. In this apprecach, first, a set of
breakpoints is chosen and the device characteristic is partitioned into
several nonlinear pieces. The partition must satisfy the following

constraints:

(1) each piece must be monotonic and the first derivative must be

monotonic too;

- o

g
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Fig. 3.3 Example of a Tunnel Diode Circuit.
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(2) the piece must be chosen to be suitable for the current/voltage

iteration to avoid numerical overflow and to hasten convergence;

(3) the number of pieces must be kept as small is possible to avoid

the possibility of slow convergence.

After the partitioning, the following algorithm is used to perform the

iteration:
(1) choose an initial guess V ;

(2) linearize the circuit by Newton-Raphson wmethod and find the

iterate solution Vi4y (k = 0);

(3) if Vy4y is within the original piece, then use the moaified
Newton-Raphson method to choose Vy4;, and continue the iteration;
otherwise, if the next breakpoint in the direction of change has not been
chosen before, choose Vi4; equal to it; otherwise go into the adjacent
piece, if the derivative is not continuous at this breakpoint, then choose
this breakpoint as Vk+1 again but use the new derivative; otherwise,

choose the other breakpoint as Vk+l and continue the iteration.

This approach is illustrated in the graphical solution that is given
in Fig. 3.4, Here the tunnel diode characteristic is partitioned into
four pleces. The initial guess is V, located in piece I. The solution of
the linearized circuit is @1 which is not in piece I, s0 V{ is chosen to be
equal to breakpoint 1. The solution of the new linearized circuit is 03
which 1is still not in piece I. Enter piece II and choose breakpoint 2 as
VZ. The iterate solution @3 is not in piece II, go 1into piece III and

choose breakpoint 3 as V3, the iterate solution 04 is not in piece III.
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Enter piece IV and choose V& as V,, this time, the solution @5 is in piece
Iv. Continue the iteration by modified Newton-Raphson method until the

convergence is obtained.

3.4. A New Modified Newton-Raphson Method for Bipolar Devices

In the piecewise nonlinear approach, the diode characteristic is
partitioned into three pieces as shown in Fig. 3.5. 1In region III, in

order to avoid numerical overflow and to compensate for large higher order

terms, the modified Newton-Raphson method must be used [1,33,34].

Consider the simple diode circuit shown in Fig. 3.6. The aodal

equation is

F(V) = m, 1 -1y a0 (3.5)

By a Taylor series expansion we obtain

F (Vk)

5
F(Vi+1) = F(Vy) + F'(Vk) (Vi1 = Vi) + (V41 = V&)© (3.6)

+ higher order terms

! 1,1 v
where F (Vy) (V4 - V) = (.;.+V_S VY - V) and
t

"
F (V) R - v )2 - __Lg_er/Vt (
> k+1 k z*v%

-V

Viewr, ™ Vi)

If we assume that R is sufficiently large, then the ratio of the third term
to the second term in Eq. (3.6) is

e~ Vi)

Z*Vt

3.7
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Fig. 3.5 Diode Static I-V Characteristic.
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If (Vk+1 - Vk) is not small compared tc 2Vt’ then the assumption that the
higher order terms in Eg. (3.2) are small and can be neglected is not

true, so the correction term &V, = V

K K+l T Vk obtained by the Newton-Raphson

method may not be good.

Let AV& be the modified correction term such that

V. +4V) =V w

' k "'k DD
l"(Vk + AVk) = ——R__—._-+ Is(e

a\ADYAY
k 'k €1y = 0 (3.8)

Because AVy satisfies
F(Vk) + F'(Vk)A‘lk:O (3.9)

S0

F(V k) - F'(vk)Avk = F(V, + OV}) : (3.10)

From Eq. (3.10) we obtain

' '
(Avk Avk) Y1 (Vk+AVk)/Vt - Vk/vt(h_ f_‘_’h)
R s © =g ¢ v, (3.11)
From Eq. (3.11) we obtain
1 L
AVk AVk/Vt ) AVk AVk
+g—=-e B a— (3.12)
t e ———————
Isevk/vt

If (AV& - Avk)/R is sufficiently small compared to the exponential

term Isevk/vt, then the equation




_
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AVk
n{1l+ —v——) (3.13)

Av! = v
k t

<

yields a good approximation to the true sclution.

Now we would like to find out the relationship of Eq. (3.13) to

current iteration. For current iteration, after obtaining

A
Virr = Ve # 8V (3.14)

we can obtain

vk/Vt Is e/ V

- - S ekt .1

?Hl = I (e 1) + 7 AV, (3.15)
/i A X A )

If Wl > -Is, then there is a point Vk+l = Vk + AVk on the dicde

charateristic whose current is &k+l'

A I
Is(e(Vk+AVk)/Vt -1y = Is(evk/vt - 1) +?fl er/Vt aY, (3.16)
t
We obtain
A AVk
v o=V (3.17)
A K t:ln(1 + Vt )

We can see that Eq. (3.17) is identical to Eq. (3.13), also we can
see that the condition for Eq. (3.16) to have a solution is
Av

e 0 . (3.18)
t

Since if AV, >0, then Eq. (3.18) is satisfied, so we only need to
consider the situation when Avk < 0. This condition can be explained
graphically in Figs. 3.7(a), (b) and (¢). From Eq. (3.15) we see that
-Is é'%k+1 £ IL for -Vc £ Avk < 0. Thus, if the current intercept of the
load line with the linearized diode curve lies in this range, then IAVkl

cannot exceed Vt and convergence can be quite slow if voltage iteration is
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Fig. 3.7 Three Cases with the Simple Diode Circuit.
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used.

A
For Example in Fig. 3.7(a) we see that Ik+1 > -IS and so

SV, <V L0

A
In Fig. 3.7(b) Iy4i1 = -Ig and so
AVy = -V,
A
In Fig. 3.7(e) Ip4y < -Ig and so

In cases (a) and (b)lAVkl )

¢ » therefore # of iterations I

voltage iteration is used.

Let us consider the conditions for cases (a) and (b) to be true. From Eq.

(3.9), we obtain

-AV. (v, - V. )/R+1 (evk/vt -1
k k DD S

k. (3.19)
t 1R +1s eVK/Ve

Ve

1 v, -V __ =V - R*I
1R +=S M/ 4y kDD ¢ s
v

= *
t R*V, (3.20)
I
1/R +_s_er/Vt
Vt
Since
R |
P . o e e e — - . TLTmTTTTTLL L P | !
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*
DD . IS(ev /Ve

-1) =20 (3.21)

so from Egs. (3.19), (3.20) and (3.21), we obtain the following

conclusions:

*
(1) If \Ik >V then Avk & 0.
V, =V .-V
*
(2) If v, 2V and R 3 kK D £ | then -v < AV, £ 0. (3.22)
- - I t - -
: * Yk Vop Ve
(3) If R and V, are chosen such that Vk 2V and Ra T )
)
and voltage iteration is used in the forward region, then the number of
*
iteration is lowerbounded by |~—Vk
Ve

For example, if V, - V' z 1.0V and v, = 0.025V,

*
then v -vk = 40.

Ve

The above conclusions show why current iteration must be used in the

forward ﬁegion.

Now we would like to examine under what conditions current iteration

should be used and if there is a VREF (such as the V used in SPICE2) to

REF

determine whether current iteration or voltage iteration should be used.

* A
Let us consider the simple diode circuit in Fig. 3.8. Vk, V and Vi

satisfy Eq. (3.23)

V*
Vi

R

*
eV /Vt - e@k/vt) =

Is( (3.23)

Let us consider the limiting case when v - Vk <« Vt, then Eq. (3.23)

can be rewritten as:

R*I; V*/Ve, % A *
e (V - ) =y -V N
V. k k (3.24)
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[ gy

R*I *
s V/V . .
e t>> 1, then current iteration is preferred; else if

so if

R*Isev*/vt<< 1, then voltage iteration is preferred. These two conditions
Ve

are illustrated in Figs. 3.9(a) and (b).

From Eq. (3.2U4) we can conclude that Vppp must satisfy

R*1 \Y /v
—S. o REF 't 4 (3.25)
\Y
t
Since the value of R 1s not a constant, there is no universal VREF'

Experiments of the simple diode circuit with different values of R and VDD
were done to test the above conclusion, and the data are given in Figs.
3.10(a), (b), (ec), and (d). These data confirm Eq. (3.25). In Fig

*
3.10(a),.§;£§ev Ve ig always much larger than one, this explains why
t

current iteration is always better than voltage iteration; in Fig.
R*1 *
]
3.10(b), when V- is less than 0.7V, vt"eV AL less than one, voltage
iteration is better than current iteration; in Fig. 3.10(e), when VDD is

R*Ig *
less than 0.5V, vt eV /Vt is less than one, so voltage iteration is better

than current iteration; in Fig. 3.10(d), because_%zk,may be less than -1,
t

AV,
k is

strict current iteration in region III can not be done. Whenever "
t

less than -1, the next guess is reset to zero, and current iteration is

resumed. for this approach, current iteration is always better than

voltage iteration.

In the conventional current/voltage iteration approach, such as the
one used in SPICE2, there is a universal VREF’ if Vy4) exceeds Vppp, then
current iteration is used; otherwise, voltage iteration 1is wused. In

SPICE2, this VREF is set to the point of minimum radius of curvature:
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(b) FR7020

Fig. 3.9(a) Situation When Current Iteration Is Better Than Voltage Iteration.

(b) Situation When Voltage Iteration Is Better Than Current Iteration.
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\"
v = V,_ln(—% (3.26)
REF t Isij

From the above analysis, we can see that this VREF does not provide
any guarantee of fast convergence. The simple diode circuit was used again
to test the approach used in SPICEZ2, VDD = 5V, R = 1000K, the number of
iterations wused by SPICE2 is 12, while the number of iterations for strict

current iteration is only 3.

There is  another problem associated with the conventional
current/voltage iteration used in SPICE2. This problem is illustrated in
Fig. 3.11. Let us assume that the initial guess 1is VO and the first
iterate solution is Vl. Now we do not Iknow which load lines we are
encountering, because bYoth load lines will give us Vl' If it is load line
1, then voltage iteration should be used; if it is load line 2, then
voltage iteration is tooc slow. In SPICEZ2, because V1 is less than VREF’
voltage iteration is used for both cases. Experimental results show that
for VDD = -5V and R = 1000K the numbér of iterations used by SPICE2 is 12.
This problem can be solved by using the piecewise nonlinear approach.
Whenever this situation occurs, then the next guess is changed to zero. If
it 1is 1load line 1, the next iterate solution is in the first quadrant and
voltage iteration is used to obtain the solution. If it is 1load 1line 2,
the next iterate solution 1is in the third quadrant. The number of

iterations used by recognizing that the load 1line 2 1is being used and

changing the next guess to zero is 3.

AV
Also let us examine Eq. (3.13) again. When = k is positive and auch
t
1]
smaller than 1, then Avk 2 AV, - If the difference between L\V;< and AVk is

small compared to the iteration error tolerance, then there is no need to
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Fig. 3.11 Another Problem with the Colon Method.
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do the transformation. Let us assume the error tolerance is 10'6V, then

\'/
when 3tk is less than 0.01, there is no need %o do the transformation.

The result of all the above analysis is a new iteration scheme. The
flowchart for this new approach is shown in Fig. 3.12(a), the experimental
data for the simple diode circuit are also given in Figs. 3.10¢a), (b),
(e), and (d). These data show that this algorithm works well for resistor
load diode circuits, However, when transistor circuits are solved, the
load 1line generated by linearization changes during the iterations and the
algorithm goes into limit ecycle for some circuits. If the piecewise
nonlinear method presented in  Section 3.3 (it corresponds to a
Katzenelson's type algorithm [40] for the piecewise linear approach) is
used, then probably the 1limit cycle problem will not occur. But the
piecewise nonlinear method only allows one dicde to change regions at =2
given iteration, so0 the convergence rate is slow; also the piecewise
nonlinear method requires a linear search to accomplish the task that only
one diode changes regions. So 1instead of wusing a strict piecewise
nonlinear approach, the algorithm in Fig. 3.12(a) was modified %o
eliminate the 1limit cycle problem. The flow chart for the modified

algorithm is given in Fig 3.12(b).

Three test circuits were used to test this new iteration scheme.
These three circuits are given in Fig. 3.13(a), (b) and (e), and the data
are given in Table 3.). These test results show that the new iteration

scheme is superior to the Colon method used in SPICE2.

B . = T U pe i, -
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Fig. 3.12(a)
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Flowchart for the New Iteration Scheme.
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Fig. 3.12(b) Modified Flowchart for the New Iteration

Scheme.
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Fig. 3.13 Example Circuits (a) One Transistor Amplifier.
(b) TTL NAND Gate.
(c) Differential Amplifier.
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Table 3.1 Comparison of the Results between

the New Approach and SPICE2.

Number of iterations

Number of iterations\

Circuit (New approach) (SPICE2)
Fig. 3.13(a) 3 6
Fig. 3.13(b) 7 v
Fig. 3.13(c) 6 7
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3.5. Piecewise Nonlinear Approach for Bipolar Devices Including Avalanche

Effects

Although the avalanche charateristic of diode should consist of two
separate exponential functions [35], in order to simplify the analysis,
here the avalanche characteristic is chosen to consist of only one

exponential function. The diode 1I-V static¢ characteristic used here is

shown in Fig. 3.5.

In the forward biased region the equation for the diode current is

I = Is(eVd/Vt - 1)

d 3.27)
The reverse-biased current before breakdown is

I4=20G4V4 (3.28)
The avalanche current is

I - -eA (Vg - B*Vq) (3.29)

The constants A and B are determined from the I-V characteristic curve,

where VB is the breakdown volitage and Vd is the junction voltage.

If, in order to hasten the convergence, strict current iteration 1is
used in pieces I and III, then divergence may be encountered as shown in
Fig. 3.5. Therefore, the piecewise nonlinear approach for bipolar devices

with avalanche modeling is as follows:

(1) choose V, equal to Vppp and piece III;

(2) find iterate solution Vi+1 by the new modified Newton method. if

Vk+1 1s within piece III, repeat this step.

Al T S g
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(3) otherwise go into piece II, choose Vk+1 = 0 and use the new

derivative, if Vk+2 is within piece II, then solution is fo.

(4) otherwise, go into piece I, choose Vk+1 = VB’ and use the new

modified Newton method.

Remark: Only one nonlinear device is allowed to change its region at one

iteration, otherwise, limit cycle problems may occur.

3.6. Piecewise Nonlinear Approach for MOSFET

Let us consider the simple resistor load MOS inverter which are shown

in Fig. 3.14(a). The nodal 2quation is

vV - VDD V2
F(V) :___R__... + B[(VIN - VT)V -—-] (3.30)
2

By Taylor series expansion we obtain

"
F(Vouq) = F(Vy) + F (Vi) (V v + 2 v,)? 3
(k+]_)-(k)+ k)(k+1—k+ > k+1 " 'k (3.31)
+ higher order terms
1
1
wnere F (V) (g = Vi) = [+ 80y = Vp = VO) (¥ - V) and
F (V) C.\2 B 2
—k- Vet = Vi) =72 g = W

If we assume R is sufficiently large, then

the third term in Eq. (3.31) - v

L ke TV

the second term in Eq. (3.31) 2¢(

(3.32)

Vin ~ Ve o V)

If (Vk+1 - Vk) is not small compared to 2(VIN -V

assumption that higher order terms in Eq. (3.12) are small and can be

- Vk)’ then the
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VDD VbD

(a) (b)
Fig. 3.14(a) Resistor Load MJOS Inverter Circuit.
(b) Saturated Load MOS Inverter Circuit.
{(¢) Depletion load MOS Inverter Circuit.
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neglected is not true, so the correction term Avk = Vk+1 - Vk obtained by
the Newton-Raphson method is not good. This may result in very slow
convergence. Fig 3.15(a) illustrates this problem. If the initial guess
is VO, then the first iterate solution is Vl’ which is far away from the
exact solution V*. Because the derivative is large when Vk is negative, so
it requires a large number of iteration to converge to V*. Fig. 3.15(b)
and (c) illustrate the slow convergence problem with a saturated load MOS

inverter circuit and a depletion load MOS inverter circuit as shown in Fig.

3.14(b) and (c¢) respectively.

The above slow convergence problem can be resolved by using the piece-
wise nonlinear approach. For example, for the resistor load MOS inverter
circuit, first, the MOSFET characteristic is partitioned into two pieces as
shown in Fig. 3.16, the first piece is from -e to zero, the second piece
is from zero to +em, then the circuit can be solved as illustrated in Fig.
3.16. The initial guess VO is in piece II, the first iterate solution 01
is in piece I, so V1 is chosen to be the breakpoint zero. Since 62 is

*
within piece II, the Newton-Raphson method is used to find the solution V .

Remark: In the iteration scheme for MOS circuits, the piecewise nonlinear
approach is used for Vpg. The change of Vg and Vgp are limited by 1V at

each iteration.

3.7. Discussion

Two large circuits were used to test the piecewise nonlinear approach,
one is a bipolar circuit as shown in Fig. 3.17, the other is a MOS circuit

as shown in Fig.3.18. The data are given in Table 3.2. The results show

that this me* hod improves the convergence property of the basic
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Fig. 3.15 The Slow Convergence Problem with the Circuits in Fig. 3.14.
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Fig. 3.17 Binary-to-Octal Decoder.
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Table 3.2 Comparison of the Results between
the Piecewise Nonlinear Approach
(PWNL) and SPI1CE2.

i rcuit Number of iterations Number of iterations
cir (PWNL) (SPICE2)
Fig. 3.17 34 48
Fig. 3.18 10 28
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Newton-Raphson method; however, the proof of the global convergence J

property or the conditions for global convergence have not yet been

derived. More research work on this topic is needed. {
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IV. NUMERICAL INTEGRATION

A numerical integration method is required to determine the transient

response of a circuit. In order to make the numerical integration more
accurate and efficient, some method of dynamically varying the timestep is
needed, this 1is wusually accomplished by a local truncation error (LTE)

timestep control.

Let us denote the upperbound on the local truncation error by ET. In
previous work, ET was established as follows [36]. First, a maximum
allowable global truncation error GEmax and the solution interval T are
specified. An assumption that this global error is distributed uniformly
within T is made, then the maximum allowable ET per timestep (h) is given

by

ET “%E' h (4.1)

The LTE timestep control with trapezoidal integration is implemented

as follows. First, the timestep h and t + hn are determined, the

n+l tn

solution at the timepoint t is found, then the 1local truncation error

n+l
(LTE) is evaluated by Eq. (4.2).

3 e 3
LTE = P & X(") ~ & pp3 (4.2)
i2 2
where DD3 is the 3rd divided difference [1] and b, $T <t ;- The kth
divided difference is defined by the recursive relation
DD, ,(t_.,) = DD, _,(t ) x(e_q) = x(c)
DDk = k 1k n+l k-1'"n ., DDL = n n (%.3)
X h hn
i=l n+l-1

If LTE > ET, then the timestep is considered too large, hn is rejected, a

new hn is computed using
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2/ 2%GE H'
ho= ) ——DBX 4.4 i
a T+DD3 %.4) |
and then a new timepoint t 1 is determined. If, on the other hand,
T

LTE < ET, then the local truncation error at timepoint tn+1 is considered 1

satisfactory, and the timestep hn

is computed usin
+1 P g

2
Z*GEmax

Botl ® T#DD3 (4.5)

4,1, Problems with Previous Work

When the above strategy is applied to determine the transient response

of a circuit, there are two problems:

(1) Since DD3 is only an approximation of ¥(T), whenever the timestep
is changed or the input signal changes abruptly, our investigation shows
that DD3 becomes an inaccurate estimate of LTE. This inaccuracy results in
the following unwanted situations. One situation is that at the timepoint
tn+1’ if LTE < ET, the timestep hoe1 is 1increased, but at the next

timepoint tn+ due to the inaccuracy, LTE is now found to be larger than

29

ET, so this timepoint is rejected and the timestep is reduced. The other

situation is even worse. If, at the timepoint [ the input changes
abruptly, then due to the inaccuracy of the DD3 approximation to'ikT), LTE
may be greater than ET and the timestep is reduced. Sometimes this happens
repeatedly until the timestep becomes too small and the program terminates.

These two situations are explained in detail later.

(2) For digital circuits, the total solution time T may consist of
several switching intervals. If a stable numerical integration method is
used, initially in an interval the local truncation error accumulates and

the global truncation error (GE) increases, but as the solution nears
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steady state in a given switch interval the global error decreases, and as
the solution approaches the steady state the global error goes to zero, so

that the upperbound ET given by Eq. (4.1) is too conservative. This is

illustrated in Fig. U4.1.

Now we will consider the above two problems in more detail. The first
situation of the first problem can be illustrated by a simple RC circuit as ;

shown in Fig. 4.2. In order to simplify the analysis, the backward Euler

method is used. The exact solution for this circuit is

t/7T

v(t) = 5e (4.6)

the solution obtained by the backward Euler method is

v
n

v 3 ——
o+l 14-hn/7

“%.7
where vo = 5V,

The local truncation error estimates at timepoints tn+ and tn are

1

2
T =
L En+1 hn * DD2n+1 (4.8)

2
LTE = h__, % DD2_ (4.9)

Vv .-V v -v
where DD2 L " n:l LU “h n-1
o n n-1

hn 4+ h

-V v

n-1 - 'n-1 " Yn-2

n-1 n-2
h 4+ h

Vn
DD2 =
n h

n-1 n-2
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Fig. 4.2(a) Simple RC Circuit.
(b) Waveform of the Simple RC Circuit.
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Let us consider the situation when hn = h and hn = ah, where

2 %P
a is a ratio constant. From Eqs. (4.7), (4.8) and (4.9), we obtain

2
M1 D%y o 2a a4 ] (4.10) %
LTE DD2 2 a+l ah ;
n n hn-l 1+ T :

If both LTE 1 and LTEn are good approximations of the true 1local
n

truncation errors, then from Eq. (4.6), (4.7) and the definition of local

truncation error [36] the ratio of L.‘I‘En

over LTE should be
+1 n

(4.11)

Comparison of Eq. (4.11) with Eq. (U4.10) shows that the ratio computed by
Eq. (4.10) is wrong by a factor of %%T. When a = 1, that is, the timestep
is constant, then the estimation by Eq. (4.8) 1is good. When a 1is
different from 1, then the estimation by Eq. (4.8) is not good. Table 4.1
gives the simulation results of the simple RC circuit, which confirms the
above conclusion. The ET used is 10-3V. At the first three timepoiats,
the timesteps are kept constant, so the estimation by Eq. (4.8) 1is good.
At the fourth timepoint the timestep is increased by a factor of two. The
true local truncation error is 0.8930E-3, which 1s an acceptable error;
but the estimation by Eq. (4.8) is 0.1207E-2, which is larger than ET, so

the timepoint is rejected.

Now we would like to see if this inaccuracy can be explained by the
above conclusion. The ratio of the estimation at the fourth timepoint over

the estimation at the third timepoint is
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Table 4.1 Simulation Results of the Simple
RC Circuit,

True local |
t (ns) h(timestep) LTE (estimate) truncation error
1.5 0.25 0.2355E-3 0.2339E-3
i | 1.75 0.25 0.2332E-3 0.2314E-3
i 2.00 0.25 0.2309E-3 0.2293E-3
{ 2.50 0.50 0.1207E-2 0.8930E-3
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0.1207E-2
0.2309E-3

= 5,227 (4.12)
instead of U4 as predicted by Eq. (4.11). However, note that for a = 2

2a 4 . 2.227
g3 =1l338s (4.13)

Eq. (4.13) shows that the estimation of local truncation error 1is really

2a
wrong by a factor of 77 as shown in Eq. (4.10).
Now let us consider the second situation of the first problem. This

situation can be illustrated by a simple RC circuit as shown in Fig. 4.3.
Again the backward Euler method is used here for the simplicity of the

analysis. The exact solution for this circuit is

5e-t/T t & tn
v(t) = ' (4.14)
-(t-t )/7
-t/T n
v e + 5(1L-e ) t > t
the solution obﬁ}ined by backward Euler method is
v
k
— k<n
Ly
- - by
er1 ™ by (4.23)
vk 5 -
1+ b k2n
\ By sr Mesr

where v6= 5V.

In the early version of SPICE2, when t, exceeded a source breakpoint,

then hh-l was reduced such that the value tn coincides with the breakpoint.

The timestep was reduced to a small value and then the iteration was

-
.

S 4
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Fig. 4.3(a) Simple RC Circuit.

{(b) Waveform of Vin®
(¢) Waveform of v.




p—

-86-
continued. Let wus consider the situation when h , =h, h ;= ah and
h = bh. where a and b are ratio constants. From Eqs. (4.8) and (4.15),

n
we obtain the following estimate of the local truncation error:

b(v -3)
LTE = b2h? [——2r + ——2Ft
o+l T(a+b)h 22 oy

] (4.16)

Let us also assume that bh is not small enough, so that

LTE > ET (4.17)

n+1

Then the timestep was reduced and a new timestep ch was computed by

5 b(vn+l - )

CE R

2n2| 7 ] = ET (4.18)

where ¢ < b.

The local truncation error for this new timestep ch is estimated by

c(v - 5)
2.2 5 n+l
LIE',, = ¢ h°[ + ) (4.19)
n+1 T(a+c)h T2(a+c)
It follows that
ch(v -5)
LTE' atb [14 —2tt—
n+ 2 — = =5 (4.20)
ET atc [l+ (el ]
5T

Since ¢ < b then (a + ¢) < (a + b) and for a small enough a the ratio in

Eq. (4,.20) could be greater than one. If this is the case, then the step
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size will be reduced again. This could happen again and again. This was
the case in early version of the SPICEZ2 program, and frequently after
abrupt clock or signal changes the program would not converge and the job

would be terminated prematurely.

Remark: In Eq. (4.16), the second term is an approximation to the true
local truncation error, the first term, although it is dominant, is a
parasitic term which is generated by the use of voltages at the timepoints

of the previous switching interval.

The second problem is detailed as follows. Let GEmax denote the
maximum global <truncation error at tn (Fig. 4.1). Assume that the

trapezoidal method is used and that we are dealing with an exponentially

decaying waveform. The local truncation error at the timepoint tn+1 is
given by
hy L o
L'rEn+1 =1 x(t ) e, st (4.21)
and for this example
hy
L’IEn+1 ~ 3 Vn,max (4.22)
127
From Eq. (4.22) and the definition of local truncation error, we obtain
-h /7 B
GE Ac <
atl GEmax e + 3 Vn,max GEmax (4.23)
127
where GE is the global truncation error at the timepoint ¢t . Eq.
n+l n+l
(4.23) can be reduced to
h‘3‘ < P 4.24
v GE (-) (4.24)
12,,.3 n,max max: T
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The local truncation error timestep control requires that
3

h
n
= —=V S ET (4.25)
o+l 12?3 n,max

LTE

Assuming equality in Eq. (4.25) and eliminating h, /s in Eq. (4.24), we

obtain the following upper bound on the local truncation error.

3
12(GEmax)

Vn,max

ET (4.26)

In order to check the above bound which was derived for RC circuits, a
number of digital circuits were simulated and the following empirical bound

on the local truncation error was -2termined.

(GE__)>
VDD

max

(4.27)

where !bD is the voltage swing which is the supply voltage in this example.
Eq. (4.27) also holds for exponentially rising waveforms. Given G%nax and

VbD, then ET can be determined by Eq. (4.27), and then Eq. (4.2) can be

used to control the timestep.

)3/2 for RC circuits

Fq. (4.26) shows that ET is proportional to (GEmax
if the trapezoidal method is used. In general, for RC circuits, if a stable
numerical integration method of order n is used, similar derivation as used

above can show that

ET o (GE_ y (+1)/n (4.28)

ax

Eq. (4.28) was verified experimentally for the backward Euler method and the
trapezoidal method. The RC circuit as shown in Fig. 4.2 was used. The simu-

lation results are given in Figs. 4.4 and 4.5.
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4,2, Algorithm

The following algorithm for variable timestep control was

developed

based on the discussion in the previous section. The trapezoidal method is

assumed., ET is computed by Eq. (4.27).

First let us derive an expression for the estimation of the local

truncation error which

is used in the algorithm. Let us assume that

*h-z = h ’kh-l = ah and hn = bh. The solution obtained by the trapezoidal

method for an exponentially decaying waveform is

l-hn/ZT
v z Y — (4.29)
ntl  m o) Lk J2r
n
the 3rd divided difference is given by
003 . DD2n+1 - DD2n
n+l hn-2 + hn-l + hn
- 3(1+b) n (%.30)
2 (1+a+b) 3 _h_ _ ah bh °
RS AR AT
where 211192——-—— is the error factor in the estimate of the third

2 (1+a+b)
derivative caused by varying the timestep.

By taking into account the effect of different timesteps, the expression of

local truncation error is given by

3
h .
. .n 2 (1+a+b)
LTE 1= 72— * D03, * T0imn) (4.31)




or we can define a new quantity DD3' which is given by

DpD3"! - (4.32)
n+l (b _,+h)

then Eq. (4.31) can be reduced to

h3
a2 % ' 4.33
LIE , =3 pD3) ( )
Algorithm:
(1) Record the initial time to, final time tf, minimum stepsize hmin'
maximum stepsize h , and source breakpoints.

max

(2) Set the initial timestep h = h. .

(3) Compute X, at &, = t5 + h, at t, = + 2h, and Xy at
1 1 0 2 3

t3 = to + 3h.

(4) Set n = 3 and compute LTE by Eq. (4.33).

3
ET
(5) Compute h, = h{Fm. If h, < 0.6h, then h

hy and go to (3);

ntherwise, continue.

(6) Compute el = Bp * B If t,; does not exceed a source
breakpoint, then go to (7). If tn+1 exceeds a source breakpoint, then hn

is reduced such that the value tn+1 coincides with the breakpoint. Compute

X,ep for this breakpoint. Compute LTE by Eq. (4.33), compute h_,,, if
h . <0.6h, thenh =nh , and go to (6); otherwise, set h=h _ and
tg = t,.1» then go to (3).

! : P
e - . —— - i L3 Er

e . e o~

I'd




(7) Compute X, 1- Compute LTE by Eq. (4.33), compute b, if

hq < 0.6hn, then h = h_ , and go to (6); otherwise, continue.

(8) If el > tf, then stop; if not, then n = n+1, and go to (6).

Remark: The above algorithm has been derived for a fixed order variable
stepsize method which uses the trapezoidal rule. Our simulation results
show that the problems we mentioned before in this chapter are resclved by

this algorithm. If other fixed order methods are to be used, then the

corresponding equations should be modified.
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V. TEARING METHODS AND SPARSITY CONSIDERATIONS FOR NODE TEARING METHOD

There are two kinds of tearing methods - the branch tearing method and

the node tearing method. The idea of branch tearing was first introduced

by Kron [12]. Recently Chua and Chen [16] have shown that the branch

n ————

tearing 1s just a special case of generalized hybrid analysis. The main

idea of branch tearing is to select a set of tearing branches first, then

the given network is torn apart into several subnetworks by removing these
tearing branches (Fig. 5.1), analyzing each subnetwork separately, and
obtaining the solution of the entire network by combining the solutions of
the subnetworks via the tearing branches. Algebraically, this method is
equivalent to a particular ordering of the hybrid analvsis equations such
that the resulting matrix has a bordered block-diagonal structure (Fig.
5.2). Each block corresponds to a subnetwork, and the border corresponds

to the interconnections of the subnetworks.

The idea of node tearing was first introduced by
Sangiovanni-Vincentelli, Chen and Chua [20]. The main idea is to select a
set of tearing nodes first, then the network is torn apart into several
subnetworks by removing these tearing nodes (Fig. 5.3), each subnetwork is
analyzed separately, and the solution of the entire network is obtained via
the tearing nodes. Algebraically, this method is equivalent to a
particular ordering of nodal analysis equations such that the resulting
matrix has a Dbordered block-diagonal structure (Fig. 5.4). Each block
corresponds to a subnetwork, and the border corresponds to the .

interconnections of the subnetworks. -

e g v o

B W
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n 0 Al | Y1
o | 222 A |2 2
Y33 | Aes Y3

éil ,‘5}:‘2 ﬁ::s Z, ;A,:t L
3 ﬁrt Zr: ~T

Fig. 5.2 Bordered Block-Diagonal Matrix Formulated

by Branch Tearing.
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Subnetwork 2
(023 BZ)

Subnetwork 1

The Rest of
the Network

Subnetwork 3
(a3,B3)

FP-7000

Fig. 5.3 Example of a Network Partitioned into Three
Subnetworks by the Node Tearing Method.




Fig. 5.4 Bordered Block-Diagonal Matrix Formulated

by Node Tearing.
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Recently, because tearing methods possess several advantages over
conventional circuit analysis methods, a lot of effort has been devoted to
the study of tearing methods for the analysis of large scale circuits. The
advantages of tearing methods are as follows: First, tearing methods are
suitable for the exploitation of the repetitiveness of a limited number of
subnetworks; secondly, tearing methods are suitable for the exploitation
of latency; thirdly, tearing methods are suitable for parallel processing.
In order to solve the network by tearing methods one must specify a
vartitioning strategy, and also one must specify a technique for solving
the partitioned equations. In the literature mostly the branch tearing
method has been used to solve 1large networks [22-24]. The solution
strategy has Dbeen to estimate the current or voltage at each tearing port
and to excite the torn subnetworks with independent sources at these por%s.
The remaining port responses are computed, and are substituted into the
interconnection equations. If these equations are not satisfied, then
another estimate is made of the variables chosen as port excitations. This
iterative procedure continues until convergence is achieved. If the
subnetworks are nonlinear a multilevel iteration scheme is used, such as a
Gauss-Seidel [22], Newton-SOR [24] or a multilevel Newton iteration [42].
However, the first two iteration schemes do not have second-order
convergence while the +third scheme requires the computation of an

additional Jacobian matrix.

Because the above approach introduces new variables, such as tearing
branch currents, the complexity of the problem is increased. Also, 2
multilevel iteration scheme 1is required. Another disadvantage of the
branch tearing method is that each subnetwork must contain the datum node
for the network, or else a 1local datum node must be chosen for each

subnetwork. In the program SLATE a different approach is used, and the

—~—
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internal subnetwork variables are eliminated from the tearing node
equations. Then the tearing node voltages are computed. Only a one level
Yewton iteration 1is required, and the internal variables for each
subnetwork can be =eliminated using parallel oprocessing methods. The
elimination of the invernal variables is equivalent +to replacing the

subnetiyorks Norton uivalent circuits at the %tearing nodes.
=

In our study of tearing methods it was assumed *that the user specifies
the subnetworks, and any part of the network not specified as a2 subnetwork
is automatically included in the subnetwork called rest of network in Figs.
5.1 znd 5.3. The subnetworks are processed first in the solution
algorithm, and the tearing branches or nodes along with *the rest of network
equations are processed last. Thus, the branch tearing method and the node
tearing method described in Section 5.1 and Section 5.2 are somewha*
different from those found in the literature [12—14}. In Section 5.3, a
comparison between branch tearing and node tearing is given. In Section
5.4, the derivation of the construction of the node tearing matrix from
subnetworks is detailed. The sparsity considerations for the node tearing
method are presented in Section 5.5. The implementation of node tearing is
described in Section 5.6. The circuit interpretation of the tearing
methods is given 1in Section 5.7. Some conclusions are given in Section

5.8.

5.1. Derivation of the Branch Tearing Method

Let N be a connected network having (n+1) nodes: the datum node n,

and the nondatum nodes a = {nl,nz,......,nn}, and b branches,

g = {bl,bz,......bb}. Let the branch voltages, branch currents and the

T
node-to-datum voltages be denoted by e = (el.ez,......eb),

-~
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o LT . T . 1
i (11,12,......1b) and v (vl,vz,......vn), respectively. Let  the ]

~

interconnection be defined as the remaining part of the network when all
the subnetworks are removed, that is, the set of tearing branches and the
rest of the network in PFig. 5.1. Let us assume that a proper set of
tearing branches has been chosen such that <+there is no mutual coupling
aither among the torn subnetworks or between the torn subnetworks and the
interconnection, and that all subnetworks contain the common datum node.

This latter assumption is made in order to avoid floating subnetworks which

L el

result in singular submatrices. The more general case when all subnetworks

do not contain a common datum node is discussed in [17]. Subscripts s, ¢t

and r are used to denote juantities vpertaining to +*he subnetworks, the

tearing Dbranches and the remaining branches, respectively, so the branzh

set 8 is partitioned into three subsets ' and {Fig. 5.1), and the
. Bs 8 Sr

t
node set ¢ 1is partitioned into two subsets o and .. This yields the
following special structures for the reduced incidence matrix A and the

branch -<onductance matrix G of network N:

@

S Bt Br

a | A A 0

"' A = S{AsS ~L ~ (5.1)
§ ~ w }o A
t i~ ~Tt ALY
g
5 B, B, B
B18 8 8
E = Bt ,9, Er, 2 (3.2)
Br .2 2 E&

GED N JED O OGN WS T SRs See W CUN Wee IR W A B @ G D
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and 35 be partitioned correspondingly into k subsets apr «
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subne tworks

Nl’ Nz,......,Nk. Let @,

2,......,(1/k and

....,Bk respective’y. With this partitioning, the node-to-brancn

matrix A can be written as
N

I
Gl 82 o o o s Bk ‘Ek :ER\
g "
o | Zs1 :‘;‘tl.
]
]
% 2s2 2 i
3 ! . :O
. * . o« -
. 0 . I e
. ~ . o, !
. } . :
]
oy Lsk ,.étk: J
AT
%r 0 | ért: e
i ]
1 ¥

B, B, ... R 'B '3
1 2 k t
( B
G } 1
li~sl | |
i !
52 Ss2 2 1 ]
. .‘ lo |o
. . P~ =
: 0 * | |
~ . l |
Gk Ssk! !
LI i T ey T S,
8, 9 :.Sc:-g.
- =
Br\ 2 |2 :Er)
{ )

(5.3)

(5.4)

‘Ttﬁlk:‘b.izlii
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The network variables are constrained by the Kirchhoff's current law

(KCL), Kirchhoff's voltage law (KVL) and the branch constraint relations

(BC) [28].
(L) AL, + Ak = 2 5.
Aede * 2220 (5.6)
(KVL) e = A&S (5.7)
g Ay, - At (5.8)
~r - A:rzr (5.9)
(BC) 1y = Io + 585 - 8ol (5.10)
Bt % Bes tEeie - Ziles G.11)
i =1 +Ge -Ge (5.12)

Substituting Eqs. (5.7), (5.8) and (5.9) into Eqs. (5.10) and (5.12), and

then substituting the results into Eqs. (5.5) and (5.6), we obtain

T
ASohe¥s * At = dss (5.13)
A 1 +A4 GAYT vy =4 514y

~rtat )2 %ad ‘ad 2 'axd ~rs

Substituting Eq. (5.8) into Eq. (5.11), we obtain

T T -

ﬁeb!s Ethi-c * .‘.\.rr,xr = .E.,cs (5.15)
where J éAGe -AI ,
~Gwov8S  ASvSS
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(5.2) and G of Eq. (5.3) into A G AT, we obtain
~S PP

\

azo . o .ka

a
Y

¥ {2st

o’2 252
AGAL = . ', 0
~ e G S . ~

. 0 "

N k\ ~sk/

where Y = A G AT 3=1,2,......,k,

~sj ~sjwsjvs]

so Eq (5.16) can be rewritten as:

—

/

)
[ N
1 |-étl { Yr1
| |
I 8 (A2 Y2
. i * 1 ¢
. Lo .
. N .
9 ’ : ! . =
* | . 1 .
_______ Lok _tSek [ [ Yax
T T T | 1 LT
Al A Aex 1% lf‘.rt i
————————— -‘ - e ey ey - - - -
0 ]
—~— ~ :ért: 'Ay \YTJ
]

(5.16)

and Ets = s = Lilese
Eqs. (5.13), (5.14) and (5.15) can be rewritten in the following form:
~ N (\
A G AT A 0 \ (J }
~FwFwS At ~ ~S ~SS
T T . -
B Ze ~rt e Ees
T
S Aee AeSefer| |3 2rs
N / N\ \ /
T
Let us now examine the term ‘ésgsés in Eq. (5.16). Substituting AS of Egq.

(5.17)

. (5.18)
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T

- )
where '\Y‘r = —érns'.pérr’ Eq. (5.18) is the resulting matrix by branch tearing

method, which has the desirable bordered block-diagonal structure and it is

a particular ordering of the hybrid analysis equations.

5.2. Derivation of the Node Tearing Method

Let the interconnection be defined as the remaining part of the

network when all the subnetworks are removed, that is, the set of tearing

' nodes and the rest of network in Fig. 65.3. Let us assume that a proper
set of tearing nodes has been chosen such that no coupling exists either
;
, ' among the torn subnetworks or between the torn subnetworks and the
' interconnection. The node set o is partitioned into three subsets @,
and Q. and the branch set @ is partitioned into two subsets GS and Br
' (Fig. 5.3). This ylelds the following special structures for the reduced
incidence matrix l\_ and the branch conductance matrix 5 of the network N:
i) g
€ .
I o | A 0
S| ~s ~
l Ao b A (5.19)
wl8 4
o
§
2 5
¥ l s r
H
'f -] Es 0
g = (5.20)
! l Br 2 AG..r
:
i
§
- |
:
gl o | } M = . -~‘ '
o~ o - . O IPE | = L Pt SR -t !

.
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Let the torn subnetwork have k subne tworks Nl’ NZ""' .,Nk. Let
ag and BS be partitioned correspondingly into k subsets ) az,......, @
and ‘@1’ e ,......,Gk respectively. With this partitioning, the node-branch
incidence matrix A can be written as:
I
/Bl 52.....6k ,Br
al ésl : w
!
c¥2 «A..SZ 2 |
A= . <, 10 (5.21)
. {
; g C
°’k .ﬁ‘sk :
U | Bes1 Bes2 Besk 1 Ber
2 9 A
~ LS
The branch conductance matrix G can be written as:
Bl BZ o o Bk IGt
- | W
@1 -Esl '
{
2 Ss2 \
. ¢ 0 |
. ¢ ~ ¢
G= . * t0 (5.22)
~ . L) 1 ~
. 0 " I
B. |
1? Ssk !
- t--=- === =~-
8 0 S
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The network variables are constrained by the Kirchhoff's current

law

(KCL), Kirchhoff's voltage law (KVL) and the branch constraint relations

(BC).

(KCL) ﬁs}-s =0

(KVL) e = A'v +ATv

(BC) .i.s = lsst G2~ 98
~r * E,rs + g.r.&r - Er.u-rs

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

Substituting Eqs. (5.26) and (5.27) into Eqs. (5.28) and (5.29), and then

substituting the results into Egs.

AGAYY +AGAT v =

~ eSS ~S St 9t ~S S
T T T T

AraSeho¥s * (A G + ALG ALY, + ALGAY,
T T

ASpheo¥e * ASA Y, = I

where J é A G A I
ere Jss = L9ls%ss " Lelss!?
J S84 ce A +A_G -A 1
~t8  ~LSvg~8S ~t9wsS ~th~p~rs ~tpors’

ne>

and J AGe -AI .
~LS  ~DwDSES  ~D~TS
Eqs. (5.30), (5.31) and (5.32) can be rewritten as:
ool e ST —

(5.23), (5.24) and (5.25), we obtain

(5.30)

(5.31)

(5.32)




-108-

~ N ~
AGAT A G AT 0 CANE
T T T T
~ts§sﬁs étsgséts"étrgrétr étr'grér ~t | = ’lt:s (5.33)
0 G AT G AT 3 J
~ ) 2 S o ~L~T~YT ~T ~rS
NN/ N ) !
S
Let us now examine the term A&G‘sﬁ: in Eq. (5.33). Substituting the As of r
T .
Eq. (5.21) and Es of Eq. (5.22) into Asgsés’ we obtain
a a * * . L] a
1 2 k
e N
| ~Y..sl
% Ls2
AGA = . .o (5.34)
~rSwgwS . ~
. 0 .
~ L]
a
k ~sk
N y,
where Y ., = A .G AL, j=1,2 K
X5 '~sj~usj~sj 21,20 00e00y
, 30 Eq. (5.33) can be rewritten as:
-~ Il ‘| N /7 N\ N
Z,sl lxstl . Is1 ~ssl
|
Ls2 9 1se2 | ¥g2 Lss2
» ' L] 0 . .
¢ . l . ' ~ . .
0 . by . = . (5.35)
~ . ' . ' L] L]
RISV D SO’ sk
R It L I e
lI-Csl xt:sz . thk_lxtt | X'tr Xe
e e = - — == e I R
L 2 :xrt | xrr \,‘!,r
o ST

o et m o Wt R s o
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where Y .z A G AL §21,2,......,K
~stj ~Sjsjets Te !
Y . =A .G AL, §21,2,...... k
'mts} ~ ~tsiesies] vere ’
Y =A GAT +a gl
~tt ~tLs~o~ts ~tr~pr~tr
T
’Ert = itvgv&r
g
’Ert = A-ng'avﬁtr
T
and Y = AGA”.
~rTr [ o5 cand of

Eq. (5.35) is the resulting matrix by node tearing method, which has
the desirable bordered block-diagonal structure and is a particular
ordering of the nodal analysis equations. In the above derivation the
modified nodal method could have been used. In this case the vectors v

~8

and v_ consist of hoth node voltages and currents of branches for which an

~

admittance description presents difficulties. This is actually the

formulation used in the program SLATE.

5.3. Comparison of the Branch Tearing Method with the Node Tearing Method

As described above, branch tearing is equivalent to a particular
ordering of the hybrid equations, node tearing is equivalent to a
particular ordering of the nodal equations, so branch tearing requires the

use of tearing branch currents as extra variables. As a result of the

- ! i
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above property, node tearing possesses the following advantages over branch

tearing:

(1) the dimension of the matrix formulated by node tearing is smaller

than that formulated by branch tearing;

(2) the number of nonzero entries in the matrix formulated by node

tearing is smaller than that formulated by branch tearing [20];

(3) for passive networks, node tearing generates a diagonally-dominant
matrix, so any application of the Gaussian elimination method with diagonal
pivoting is stable, while this is not the the case in the branch tearing

method;

(4) usually, in the analysis of large scale circuits, node tearing
preserves the identities of the resulting torn subnetworks, while branch
tearing sometimes destroys the identities of the torn subnetworks.
However, one can generate examples in which the opposite is true, but these

situations were not encountered in our examples.

The above conclusions are not conclusive; although the dimension of
the matrix formulated by branch tearing is larger than that of node
tearing, the extra nonzero entries are either +1 or -1. If this property
is fully exploited, then node tearing may not be so advantageous. But full
exploitation of the property that extra entries are either +1 or -1
requires a much more complicated sparse matrix technique. So node tearing

is preferred and is used in the program SLATE.
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5.4. Constructing the Node Tearing Matrix from Subnetworks

In Section 5.2, the derivation of node tearing is given; however, in
the real implementation we do not want to solve the whole matrix equation
at one time. We would like to process each subnetwork separately, and then
obtain the solution of the entire network by combining the results of

subnetwork process.

In the following the procedure of constructing the node tearing matrix
from subnetworks is detailed. Let us consider one subnetwork N;j. Let the

tearing nodes which are connected to Ni be denoted by Ay s the node voltage

of « be denoted by v

ti Yeir the nodes of Ni be denoted by @;, the node

voltages of @y be denoted by vsi, and the currents which represents the
relationship of the rest of the network with this subnetwork be denoted by

J i (Fig. 5.5). Yei andliti satisfy the following relations:

leaUZe ©-36)
Zd;=0 (by KCL) (5.37)
i

4
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% To the Rest

Subnetwork N; of the Network

(@;,B)

Fig. 5.5 One Subnetwork.
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The node equations for this subnetwork have the following form:

o ey
o'1‘. -Xsi zsci '!si Jssi .9
= + (5.38)
il Yesi  FTeei | [Vet st g

By augmenting with appropriate zeros to match the dimension and summing Eq.

(5.38) for all the subnetworks and the interconnection, we obtain

Y 1 : Y : N /:7 N ’/J )
~5 ‘~stl ' ~sl Ssl
3 0 Yoo, !
s2 . ~ !~s.t2 | ~g2 lss2
* . . . [ 2 .
E . . ‘ . I . = . (5.39)
. | M { ¢ M
oo Tok Ksek sk Issk
Y —-— -— 'd - - — - - ~— o
~tsl ~ts2 ~tsk l~tt | 'Xtr t s
—_— e et m e e et e o - - - -
, - —
k ~ :zrt [ 'er ~r 3:::5
| i ~N




o, ] o, .
i t1i
< o, Y (D ( 1 N (7
o11'. \\ Esil Esi —Xst:i zsi Esi issi -.o.
N i
};Si DR
SR . I TR N SR A ORI A R
-1 ! * J* 3
i Jesi Lsi : Jees ~ti ~tsi ~ei
i
| S N/ N / N/
(5.41)
mere LUy = X0
* -
ltti =~Zt'.ti - tesi (.Y.si)l;ysti'
3 . o ¢ \
i
e i cnetR Rt . .
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We can see that Eq. (5.39) is identical to Eq. (5.35).

Eq. (5.39) is solved by first eliminating all the Y, . ; to obtain the

interconnection matrix equations.

x *
Lee  Ler ~t ~ts
= (5.40)
Y Y J
~rt ~IT ~T ~LS
k -1
*
wnere Loe = lee - lrsi M) Yot
i=1
* k -1
and  Joe *dse - E Tesi (Esi) Jssi
i=1
Eq. (5.40) is solved to obtain solutions for y, and y,., and then the

solution Vei can be obtained by using backward substitution.

The above solution procedure can be modified to enable us to process
each subnetwork separately to obtain the interconnection matrix equations.

Let us consider Eq. (5.38) again, after eliminating Ytsi' we have
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-1
*
and fltsi = itsi - :{-tsi (:{.si) issi'

The partial interconnection matrix equations obtained from Eq. (5.41) are

Leei| [Rei| = [Zesi| T [ des (.42)
By augmenting the above arrays with appropriate =zeros to match the
dimension of Y;t (this is only conceptual, because Sparse matrix techniques
are used and every elment is put in the appropriate location in a one
dimensional array) and summing up Eq. (5.42) for all the subnetworks and

the interconnection, we obtain Eq. (5.40) again.

Since g Jti = 0 by KCL, therefore Jti does not appear in the final
i~ ~ -~
matrix equations (5.39) and (5.40), so we can neglect Jti in both Egs.

(5.38) and (5.42).
So the modified solution. procedure is as follows:

(1) Formulate the simplified Eq. (5.38) for each subnetwork, i.e.

A %y
o Y . Y .. v . J .
i | ~si sti ~gi - ~ssi (5.43)
il Tesi Teei| [ Jei esi

(2) Process Eq. (5.43) to obtain the simplified Eq. (5.42) for each

subnetwork, i.e.

* * S.44
Jeei Jei Jesi (5.44)
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(3) Sum up Eqs. (S5.44) for all subnetworks and the interconnection

Wwith appropriate dimension match to obtain Eq. (5.40);

(4) Solve Eq. (5.40) to obtain Ve and Vo
(5) Solve the upper part of EqQ. (5.41) by backward substitution to

obtain Vsi for each subnetwork Ei'

5.5. Sparsity Considerations for the Node Tearing Method

Now let us compare different ways of sparsity exploitation for
processing Eg. (5.43). For the solution procedure discussed in the
previous section, both LU factorization and substitution procedures are
required. In SLATE the modified nodal equation formulation and the new
reordering strategy described in Chapter 2 are used at the subnetwork
level. After the current variables and the corresponding 'positive' node
voltage variables are eliminated, the final subnetwork matrix is
structurally symmetric. So here we assume that the subnetwork matrix is
structurally symmetric, under this assumption, there are two possible LU
factorization procedures we would 1like ¢to compare. there are other
procedures described in [38], but these procedures are either equivalent to

them or are less efficient.

The two LU factorization procedures are denoted by F; and fz (381, and

are given in Table 5.1,

-1
where Eskp-sk * }-sk’ X- = -Esk!-stk’
T -1 A -1
E = }-cskgsk’ Vs Eshy-’

* -1 -
and L, U= Yeew ® Yook - Z.cskgskksk]!sck'
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Table 5.1 Possible Factorization Procedures.

F F
Lo 91{Y%x Y LaSsk 91|12 Y
w oL llo wu v, L 0 U
~ ~L ~ ~tk ~tsk ~tk ~ ~tk

|
1
l
1
1
l
[
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~

In F , only those rows of v (3 ) which are required to compute V_ are
2 ~ ~req ~p

~

computed, ‘Ep consists of those rows of‘X corresponding to the nonzero

columns °r.3tsk'

Let |.| denote the number of nonzero elements in a vector or a matrix,
and M(.3) and M(j.) the jth column and the jth row of matrix M,

respectively. Let nt denote the number of tearing nodes, and B(k)

satisfies the following relation.

B(k) = (5.45)
1 k 2 1, k integer

The following lemmas are used to compare the number of operationa between

Fl and FZ.

Lemma 5.1. Suppose the subnetwork matrix is structurally symmetric, then

the number of rows of ¥ equals the number of nonzero rows of V.

req

Proof: From the definition of VP’ we know that any nonzero row of V which
is not a row °f,3p must consist of only fill-ins. Suppose it is row i,

then there must be a nonzero row j of_ip, J <1i, and a nonzero'& . Row

sk,1ij

J together withi: creates the fill-ins of row i. Due to structure

sk,ij

symmetry, there also must be a nonzero U
~sk, ji

row j of %p, it is necessary to evaluate the row i of’z.

So in order to evaluate the

Lemma 5.2. Suppose the subnetwork matrix is structurally symmetric and zsk

1

is mxm, then the difference in the number of operations between Fl and §2

(DNF) is:
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m m
oW = £ 3GONIGOL T ¥ Gl - DIyal
j=1 j=

m m R m "
- =Ty anlivaafedyan] - £y, CHIYGEHIBAYGHD  6.46)
i=2 i=j+l ” j=1

If ¥__ is full, then
~req
m m
ONF = = v llval - zl(lgsku-)l ROYCHER N{CEPIDE-ICAACEDIP
jal j:

- ngl g 647

m
Proof: DNF = %1<|gsk<-j>l -DINGH] + zllf(-nllg(j')!
ja ja

o m - m .
i i L) - -3 i (5.48
AR M Ypeq @) I e DT gl .48)

From structure symmetry, we obtain

WG = |va| (5.49)
\L’T(-J‘)l = vl (5.50)
lﬂzk(d)l = U, ] (5.51)

From Lemma 5.1, we obtain

‘i’:eq(j‘)l = |¥a) B LaaD (5.52)

Substituting Eqs. (5.49), (5.50), (5.51), and (5.52) into Eq.
(5.48), we obtain Eq. (5.46),

If V__  is full, then
~req

3Gl =, (5.53)

Substituting Eq. (5.53) into Eq. (5.u46), we obtain Eq. (5.47).

P G pmi Gud N Sws EEs O omm eI UEA B @ G & &R am AR am
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Associated with Fl and EZ' there are five possible substitution

k%

* * * %
procedures denoted by Sl’ S Sl , 52’ and S, ([38] which are given in

11
Table 5.2, where breq consists of the rows of g which are required to
compute bp. bp are those rows of b corresponding to the nonzero columns of

gtsk'

Let C(.) denote the number of operations required in performing a
given procedure 5. By comparing the entries of the five substitution

procedures in Table 5.2, the following equation is obtained.

* k% * Je %
C(§;) = C(5) ) = C(§)) - C(3, ) (5.54)

In large scale integrated circuits, most of devices are nonlinear.
Due to the current sources generated by Newton-Raphson iteration and
numerical integration, it is reasonable to assume that the source vectors
Jdssk and Jygp are full. Also, since ¥, and V., are the required node
voltages, it is reasonable to assume that they are full. Under the above

assumptions, we obtain the following lemmas.
Lemma 5.3. a, b, y, and a are full.

Lemma 5.4. Suppose that the subnetwork matrix is structurally symmetric,

then the number of rows of preq equals the number of nonzero rows of V.

Lemma 5.5. Suppose that that subnetwork matrix is structurally symmetric
and Xsk is mxm, then the difference in the number of operations between S;

*
and S; (DNS1) is:
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*
DNS1 = C(Sl) - C(Sl)

¢

J,,llvu )= =1(IU G [-1BY (G- >() L

=|vl-y (lU LG -DB(YGHD

tsk J=l

m
= (number of fill-ins in V) -2, (JU, (4O I-DBYG O (5.5

Lemma 5.6. Suppose that the subnetwork matrix is structurally symmetric

and Xsk is mxm, then the difference of number of operations between S; and

*k
S1 (DNS2) is:

k%
DNS2 = C(S;) = C(S; )

“t nt
= DNS1 + 2, VO (-2 [X G 3 ,11 CLODIBAYGOD
= DNST +[V[-]¥, J=1([0 LD -DB(YEH D=, ==1B([V(J 9D
m
= 2%DNS1 - T B[V D (5.56)

*
Remark. From Lemma 5.6 we can conclude that if C(Sp) < C(Sy) ‘then

*% %*
C(Sy) < C(S; ), that is, only when C(S;) > C(S;) do we need to compare S;

*%
with Sl .
Lemma 5.7. Suppose that the subnetwork matrix is structurally symmetric
and Y sk is mxm, then
% *
(5.57)
c(s)) ¢ C(s,)
* %k
c(s1™ ¢ ctsy (5.58)

Proof: From Eq. (5.54), we obtain




C(s)) - c(sp) = c(s]) = c(s,") (5.59)
* *
So we only need to prove C(Sl) - C(SZ) <0
. * m . m '
C(s)) - C(sy) =j§1(}gsk(j-)l-l)u(ly<J-)!)—jgl(;gsk(g-)}-1)

m m
+j§l(lﬁsk<j-)l-1)-j§1(lqsk(j-)I-l)lgz(J)l

m ;
= e - ¢ - i 5-60
Z1(8g GO -LBUYTEHID 12, (5.60) 1
Since ;
1z, D [=BULGHD (5.61) |
and
12, (212, D] (5.62)
so we have
12, () [PBUYGHD (5.63)

Substituting Eq. (5.63) into Eq. (5.60), we obtain

5y )< 5.64
C(sy) - €(S,) <0 (5.64)

e
From Lemma 5.7, we know that S2 and 82 are not as efficient as the

' other procedures, so they are eliminated from the 1list of possible
) substitution procedures. Now we are left with Sl’ S; and SI*. The
- possible combinations of factorization methods and substitution methods are
i F, + S,, F, + S* F, + S** ; + S*, and F, + S**. Theoretically we can
1 1’ "1 11 1 %2 1 2 1
: not eliminate any of these five combinations, because we can always come up
- with a special subeircuit structure for which a particular combination
I: gives the Dbest result. However, after conducting a large number of
o studies, we found experimentally that Fl + S1 gives the best results for
1‘ all the practical circuits we used; moreover, Fl + S1 is well compatible
L :
, , Y |

EECAE .3

—- - i

- .. - - — - v ememrs e = T == - e — .. - - [
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with the sparse matrix techniques and is the easiest one to implement, so

Fl + Sl was chosen to be used in the program SLATE.

In the following we would like to present a small selection of the
examples which we have analyzed by using Lemma 5.2, Lemma 5.5 and Lemma

5.6.

Example 5.1. The subcircuit used is a TTL two-input NAND gate with
parasitic resistors included (Fig. 5.6). The admittance matrix for this

subeircuit is shown in Fig. 65.7.

DNF = 20 - 23 -~ 39 = -42

DNS1

9 - 13 = =4

DNS2 = -8 -~ 10 = -18

so the best combination for this subecircuit is Fl + Sl.

Example 5.2. The subcircuit used is an ECL two-input NOR gate with
parasitic resistors included (Fig. 5.8). The admittance matrix for this

subeircuit is shown in Fig. 5.9.
DNF = 17 = 15 = 27 = 25

DNS1 6 = 8 = =2

DNS2 z -4 - 6 = =10

so the best combination for this subcircuit is Fl + Sl.

Example 5.3. The subcircuit used is an MOS two-input NAND gate with

Tre b N
! TLT

- - - — e o % e . e e - - — . - - [ U
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FP.7003

Fig. 5.6 TTL Two-Input NAND Gate.
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Fig. 5.7 Admittance Matrix for the Subcircuit in Fig. 5.6.
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2
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Fig. 5.8 ECL Two-Input NNR Gate.
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Fig. 5.9 Admittance Matrix for the Subcircuit in Fig. 5.8.
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parasitic resistors included (Fig. 5.10). The admittance matrix for this

subcircuit is shown in Fig. 5.11.

DNF = 18 = 9 - 30 = =21

DNS1

3-5=<2

DNS2 = -4 - 7 = =11

so the best combination for this subcircuit is F1 + Sl'

These three examples show that at the subnetwork 1level the best

combination is Fl + 3.

For the interconnection matrix, because this matrix has the same
property as that of the matrix formulated by the MNA for any circuit, so
the new reordering strategy of the MNA and the Markowitz sparse matrix

scheme are used to exploit the sparsity at this level.

5.6. Implementation of the Node Tearing Method

As concluded in the previous section the best combination at the
subcircuit level 1is in most cases Fl + Sl’ now we would like to describe
the implementation of this approach. First, at the subcircuit level, the

source vector is appended to the matrix to form

Yo Toex Jssk

¥ 3 (5.65)
~tsk Ltttk ~tsk

Secondly, use the new reordering strategy of the MNA and the Markowitz

sparse matrix scheme to find the LU factorization of Xsk. The LU
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Fig. 5.10 MOS Two-Input NAND Gate.
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factorization operates on the whole matrix but terminates after the LU

factorization of Xsk is obtained. Now the original matrix is transformed

into ( | { ~
S o | |
~ U l 1
~ ~sk -1 -1
( f
Lok RN o { Il‘sk zstk q ali'sk ‘Essk
v
...... R R (5.66)
- 1 Y* | J*
l ~
Tesk sk : ~ttk | tsk
~ | ! 7~
Thirdly, formulate the interconnection matrix equation (5.40). Fourthly,

use the new reordering strategy of the MNA and the Markowitz sparse matrix
scheme to find the LU factorization of Eq. (5.40), and use forward and

backward substitution to find the solutions for v, and Vo Fifthly, use

t
backward substitution to solve the upper part of Eq. (5.46) to obtain the
solutions V __.
~sk

Remark: The reordering of the subnetwork and network matrix equations is
done in the preprocessing phase. The subnetwork matrix equations are

reordered first. So when the network matrix equations are reordered, the

* *
's are known. From the structures of all the Y .. 's ,

structures of all the zttk ~ttk

and the circuit description of the network, we can reorder the network matrix
equations by the new reordering strategy of the MNA and the Markowitz sparse

matrix scheme.

-

-l

h
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5.7. Circuit Iaterpretation of the Tearing Methods

Although the derivations of  the tearing methods are quite
mathematical, there 1is a very simple circuit interpretation. The node
tearing method is just a generalized Norton equivalent circuit approach.

The branch tearing method is just a generalized Thevenin eqivalent circuit

approach.

Let us consider node tearing first. Consider the special case when
there 1is only one tearing node. The partial interconnection matrix
equations (BEq. (5.42)) that we obtain for each subnevwork are just the
Norton equivalent circuit matrix equations for that subnetwork. This is
illustrated in Fig. 5.12(a). So for the case when there are more than one
tearing node, Eq. (5.42) is just the generalized Norton equivalent circuit
matrix equations for each subnec. See Fig. 5.12(b) for an illustration of

the case of two tearing nodes.

Now let us consider branch tearing for the special case when there is
only one tearing branch. The partial interconnection matrix equations that
4e obtain for each subnetwork are just the Thevenin equivalent circuit
matrix equations for that subnetwork. This is 4illustrated in Fig.
5. 13(a). So for the case when there is more than one tearing branche, the
partial interconnection matrix equations that #e obtain for each subnetwork
are just the generalized Thevenin eqivalent circuit matrix equations for

that subnetwork Fig. 5.13(b) illustrates the case of two tearing branches.
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5.8. Discussion and Conclusion

The reason why we considered many possible LU factorization and
substitution procedures at the subnetwork level is that at the subnetwork
level we only want to perform Gaussian elimination for the variables Ysk

and the elimination procedure terminates after the LU factorization of XEk

is obtained. At the interconnection level, because we perform the Gaussian

elimination for all the variables, only one LU factorization and

substitution procedure is used.

As discussed in Section 5.5, it 1is possible to generate special
subcircuit structures for which some other combinations give better
results, however, our experimental results show that even for these
specially constructed circuits the difference of the number of operations
is only 1 or 2 most of the time, so this very small savings does not
Justify the extra difficulties of implementation associated with these
other combinations; moreover, for all the practical circuits .we tested,

Fl + S1 showed considerable savings over all the other combinations.
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VI. LATENCY EXPLOITATION

In conventional circuit simulation programs [1,2], all of the node
voltages or branch voltages and currents are calculated at each iteration
and each timepoint. Even with sparse matrix techniques the simulation of
modern large-scale integrated (LSI) circuits is not possible in many
situations due tc the excessive computation time and high storage
requirements. The 1latency approach is a circuit analysis version of the
selective trace approach used in logic simulation. This approach takes

advantage of the fact that in some circuits only a small portion of the
circuit is active at any given time and at any iteration, and t .us provides

savings in CPU time.

In the program SLATE this approach is applied at three levels: (1)
device level; (2) subnetwork level; (3) network level. At the device
level, it is also called the bypass scheme. This scheme is done by
monitoring the operating point :. each nonlinear device. If the operating
point does not change significantly between timepoints or Newton-Raphson
iterations, then the device models are not reevaluated, and the matrix
entries computed at the previous timepoint or the previous iteration are
used again. This scheme is used in SPICE2 [2] and SPLICE [39]. Latency at
the subnetwork and network 1levels can be well exploited when tearing
methods are used to analyze the network. The tearing method used in
program SLATE is node tearing, so in the following discussion about latency
at the subnetwork and network levels, node tearing is assumed. Latency
exploitation at the subnetwork level is presented in Section 6.1. Latency
exploitation at the network level is presented in Section 6.2. In Section

6.3 a discussion is given.
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6.1. Latency Exploitation at the Subnetwork Level

As discussed in Chaoter V, the node tearing method is just a
generalized Norton equivalent circuit aporoach. After all the internal
circuit variables of a subnetwork are eliminated, a generalized YNorton
equivalent circuit of the subnetwork is obtained. Combining the equivalent
circuits of all the subnetworks with the rest of the network (Fig. 6.1),
We obtain the interconnection circuit. So after apolying the node tearing
method ¢to tear +the network apart into several subnetworks, the
oreprocessing of each subnetwork to obtain the contribution to the
interconnection matrix is equivalent to constructing an equivalent circuit
for each subnetwork. If the solutions of the circuit variables of 2
subnetwork do not change significantly between timepoints or Newton-Raphson
iterations, then there ig no need to reconstruct an equivalent circuit for
that subnetwork. The equivalent circuit constructed at the orevious
timepoint or the previous iteration is used again and the subnetwork is
declared as latent. The subnetwork remains latent until the solutions of
the circuit variables of the subnetwork change significantly between when
it is declared latent and the nresent time or the oresent iteration. This

is the basic concept of latency at subnetwork level.

There are two tyses of latency at the subnetwork level: one is

latency in the Newton-Raphson iteration, the other is latency in time.

Latency in the Newton-Raphson iteration is not natural. 1%t is related
to the convergence property of each subnetwork and the initial guess of the
operating point for each subnetwork. Let us consider the example in Fig.
6.2, It 1is assumed that the input signal 1is constant and that a dc

analysis is required. Different subnetworks may require different number
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Subnetwork 1 Subnetwork 2

(a2132)

The Rest of
the Network

Subnetwork 3
(03,33)

The Rest of
the Network

FP-7048

Fig. 6.1(a) A Network Partitioned into Three Subnetworks by
the Node Tearing Method.

(b) Equivalent Interconnection Circuit obtained from
the Node Tearing Method.
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of 1iterations to converge, for example, because the initial guess of the
operating points may be good for some subnetworks and bad for the others.
After these subnetworks converge, they are declared as latent. The
Newton-Raphson iterations continue until all the subnetworks converge.
This ohenomenon is called latency in the Newton-Raphson iteration. Taking
advantage of this latency results in savings in the execution time. This

latency may not exist in some circuits. For example, 2 linear circuit.

Latency in time is a natural ohenomenon. All ohysical devices have
intrinsic delay time between excitation and response. For a large network,
vhen the input signal changes, it takes time for this change to oropagate
to the rest of the network. Let us consider the example in Fig. 6.2
again. Let us assume that the input changes from OV to 5V at time tO.
Initially, orobabably only the first few subnetworks are not latent, the
rest of the subnetworks are latent. As time ovasses, the change in the
regoonse oropagates to the intermediate subnetworks. At this time, only
the intermediate subnetworks are not latent, the rest of the subnetworks
are latent. PFinally, the change osropagates to the lagt few subnetworks and
the rest of the subnetworks are latent. This vhenomenon is called latency
in time, and it always exists in real circuits. Taking advantage of this

iatency results in savings in the execution time.

In order to exploit these two tyses of latency, some sort of latency
criteria are required to determine if a subnetwork is latent. The latency
criteria proposed here are developed for the node tearing method, if the
branch tearing method is used, these criteria shoula be modified

accordingly.

\
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Let us consider one subnetwork Nk' Let the tearing node voltages of

Nk be denoted by Ytk’ the node voltages of Nk be denoted by Vg the node

voltages of all the nonlinear devices be denoted by Ynlk

First, let us consider the latency criterion in the Newton-Raphson
iteration. In principle, the solution of all the c¢ircuit variables of a
subnetwork should be checked to determine if the subnetwork is latent.
However, to check for latency in the Newton-Raphson iteration only the node
voltages of all the nonlinear devices need be checked. The latency
criterion in the Newton-Raphson iteration used in SLATE is as follows: A
subnetwork Nk is declared as latent at the ith iteration if the following

two conditions are satisfied.

i-1)- - < £ 6.1
(1) Ivnlk (i-1) Volk (i-2)] < e.f € max(]vnlk -1l , (6.1)
m m m
- : m=1,2,....
‘ankm(i 2)‘) 1<
(2) . . - (6.2)
Ivtk (1)-v (i-1) < e* & max(lvtk (i)l , ]Vtk (i 1)!)
m m m m
m=1,2,....
where €4 and ¢, are absolute and relative error criteria.
The subnetwork Nk will remain latent as long as
c ey _ ! 6.3
(3) (Vtk (i4) Ve (i-1)| < et e, max(!vtk A+, (6.3)
m m m
lv.. (1-1)]) m=1,2,....
tkm jo=1,2,....

Once a subnetwork is declared as latent in the Newton-Raphson
iteration, no linearization of the nonlinear devices of Ny is required, no
preprocessing of the subnetwork to obtain the partial contribution to the
interconnection matrix is required, no backward substitution to obtain the

solutions of the internal circuit varizbles is required, and no convergence

— v m——— - — . . -
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tests are required. One only needs to monitor the tearing node voltages
and to bring the previous partial c¢ontribution to the interconnection

matrix.

The simulation data from SLATE show that considerable savings in
execution time is obtained and the output results are essentially the same
as those from YSPICE. Table 6.1 gives the simulation data from SLATE for
the circuit shown in Fig. 6.3. A dec analysis was performed. For this
circuit, a U42.42% latency exploitation was achieved and a 22.65% savings in

CPU time was obtained.

Remark: Because the CPU time shown in Table 6.1 is the total CPU time,
which includes the time spent in the I/0 and other utility subroutines, the

savings in CPU time is not the same as the latency exploitation.

For the latency in time criteria, four schemes are proposed here. The
first three schemes, scheme (0, scheme 1 and scheme 2, have been implemented

and tested in program SLATE. Scheme 3 is still under investigation.

Scheme 0 1is the easiest and the c¢rudest scheme that could be

implemented. A subnetwork Nk is considered latent at time tn if

(1) vy (g)=vy (g O < et e max(lv, (€], (6.4)
m m m

Ivttm(tn'l)l) m=1,2,....
The subnetwor Nk will remain latent as long as

(2) lvtkm(tn+j)-vtkm(tn—1)! < et €. max([vtkm(tn+j) , (6.5)

1,2,....

[v =
= 1,2

ckm(tn-l)f) §

k|
The advantages of Scheme 0 are:

u‘




-144-

*8A93a9AUY JO ur®Y) Y IyaomiaN dayiuy (q)

T9IB) 19333AUT SOW Uy :3gndayaqns (®)gc9 °81d

0£0L-d 4 (2)

AG=%




-4

-
»

e

Table 6.1 Simulation Data of a DC Analysis
for the MOS Circuit in Fig. 6.3.
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DC analysis STATE SPICE2
# of subnetworks !
times # of 231 231
iterations ]
+
# of nonlatent f
subnetworks times 133
# of iterations f
Latency exploitation 42.427%
Total CPU time 3.927 5.077
(sec.)
Savings in CPU 22.65%

| time
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(1) It is very easy to implement and there is no overhead.

(2) It is faster than Scheme 1
The disadvantages of Scheme 0 are:

(1) It is not reliable and it is not accurate. If the network is a
stiff system and some of the node .voltages are slowly varying, then it is
possible to declare a slowly varying subnetwork as latent and consequently

wrong answers are obtained.

(2) The tearing node voltages at time t ., must be stored, that is ,

more memory is required.

Scheme 1 is the most accurate scheme, and it only takes advantage of
latency in the Newton-Raphson iteration. It is based on the idea that if a
subnetwork is latent in time, then it is also latent in the Newton-Raphson
iteration. Even if we do not take advantage of latency in time, all the
subnetworks are treated as nonlatent in time and are solved at least once
at every timepoint. Those subnetworks which are latent in time at any
timepoint will be declared as latent in the Newton-Raphson iteration after
one 1iteration at that timepoint. So at most one iteration for each latent

subnetwork is wasted at one timepoint. Scheme 1 is as follows:

(1) Solve the entire network including all the subnetworks at least

once at every timepoint.

(2) If any subnetwork is latent in time, then it is latent in all the

subsequent Newton-Raphson iterations at that timepoint. So only one

iteration for that subnetwork is performed.
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(3) For the nonlatent subnetworks, the Newton-Raphson iterations are
continued until convergence is obtained at that timepoint.
The advantages of Scheme 1 are:
(1) It is very easy to implement and there is no overhead.

(2) The tearing node voltages at time t,_; need not be stored, that

is, less memory is required.
(3) It is accurate and reliable.

The disadvantage of Scheme 1 is that at every timepoint one iteration is

wasted for each subnetwork latent in time.

Scheme 0 is efficient but is not reliable. Scheme 1 is reliable but
is not efficient. If the network being solved is not stiff, then Scheme 0
is preferred. However, if the netwerk is stiff and efficiency is
important, then both Scheme 0 and Scheme 1 are not suitable. Scheme 2 was

developed to accommodate this situation. It is similar to Scheme 0 in

efficiency and it is similar to Scheme 1 in reliability. It differs from
Scheme 0 in that some extra checks are made to make sure that slowly
varying subnetworks will not be declared as latent. All the slowly varying

subnetworks are declared as nonlatent.

Let the charges of capacitors and the fluxes of inductors of
subnetwork Nk be denoted by 9k = (le'QkZ""""ka)' Let the currents of
capacitors and the voltages of inductors of subnetwork N, be denoted by
T = (TypolggreeeesesIyp). Scheme 2 is as follows: A subnetwork N is

considered as latent if the following three conditions are satisfied.
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(1) ]vtkm(tn)-vtkm(tn_l)i < et e max(lvtkm(tn) Iy (6.6)

‘Vtkm(tn-l) m=1, 2, ...,
This condition is the same as that of Scheme O.

- (6.7)
(2) 11, (-1 (r | Setep max(]Ikm(tn)t,
m 'm b
{Ikm(tn_l)l) m= 1,2 ...»
where Ec is the absolute error criterion for current. This condition is

used to check if the changes of the energy-storage elements of subnetwork
N, are small.

I (:“)-Ikm(cn_l)l

(3)h_ - 21 =1, 2, ..., b (6.8)
n-1 ka(tn) ka(tn—l)l m

This condition is used to check if there are slowly varying nodes within

subnetwork Ny In order to avoid division by zero, if
|Ikm(tn)-1km(tn_l)|< € (¢ is a very small qu-~ntity, it is 10%2  in
SLATE), then condition (3) is skipped.

The subnetwork Nk will remain latent as long as
- (6.9)
(4) 'vtkm(tn+j) vtkm(tn-l)l Se+eg max([vtkm(tn+j)[,

|verq(tp 1)) m=1, 2, ...
Eq. (6.8) {s derived based on the following reasoning. Let us assume

that we are dealing with a linear capacitor and an exponential waveform,
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w )
Vs vppliee T (6.12)
t /T
= n (6.13)
! Q(tn) = CWyp (1 - @ )
t ./t
-1
l Q(tﬂ"l) = C‘VDD(1 - e n ) (6.14)
Crv_
' I(t) = - —{DB e " (6.15)
C*V ~tn_1/1
.- D0l 6.16
I I(tn—l) T °© ( )
l From Eqs. (6.13), (6.14), (6.15), and (6.16), we obtain
fo-1 e 1) | Pad (6.17)
f Qe () - T
‘ So Eq. (6.8) means that although the change in the response of a capacitor

is very small, if h,_j is smaller than T, then the capacitor is not latent,

it is just slowly varying.

. The advantages of Scheme 2 are:

(1) It is faster than Scheme 1.

(2) It is accurate and reliable. Slowly varying subnetworks are

detected and are treated as nonlatent subnetworks.

The disadvantages of Scheme 2 are:

(1) More checking is required.
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" |

-150-

(2) The tearing node voltages at time t,-] must be stored, that Iis,

more memory is required.

(3) slowly varying subnetworks are detected and are treated as
nonlatent subnetworks, even though the changes in the response may be

negligible.

Remark: The detection of slowly varying subnetworks increases the accuracy
and reliability of the program, that is why it is an advantage. However,
since the changes in these slowly varying subnetworks are small, treating

them as nonlatent subnetworks is not efficient, that is why it is also a

disadvantage.

In order to overcome this problem, Scheme 3 was proposed. Scheme 3

takes full advantage of latency in time. Scheme 3 is as follows:

(1) The truncation error criteria are used to determine the timestep

for each subnetwork.

(2) Each subnetwork is analyzed with its own timestep.
The advantages of Scheme 3 are:

(1) It should be faster than all the other schemes.

(2) It is accurate and reliable. Since every subnetwork has its own

timestep, there will not be the pﬁoblem of slowly varying subnetworks.

The disadvantages of Scheme 3 are:
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(1) It is not compatible with the present version of SLATE. An extra
event scheduler is required and the data structures of SLATE has to be

revised.
(2) It is more complicated to implement.

Because Scheme 3 is not compatible with the present version of SLATE,

therefore it has not been tested and implemented in SLATE.

In the following, a small selection of examples is presented to give a
comparison among the first three schemes of SLATE: Scheme 0, Scheme 1, and

Scheme 2, and YSPICE.

Example 6.1: The MOS circuit shown in Fig 6.3 was analyzed by SLATE and
YSPICE. The output results of the three schemes of SLATE and YSPICE are
essentially the same (within four significant figures). The simulation
data of a transient analysis are given in Table 6.2. The simulation data
show that both Scheme 0 and Scheme 2 are more efficient than Scheme 1. For

this circuit, Scheme 2 is the most efficient and is about 2.5 times faster

than YSPICE.

This example shows that the latency in time approach is useful for the
analysis of MOS circuits. The next example shows that the latency in time

approach is also useful for bipolar circuits.

Example 6.2: The TTL circuit shown in Fig 6.4 was analyzed by SLATE and
YSPICE. The output results of the three schemes of SLATE and YSPICE are
essentially the same(within four significant figures). The simulation data

of a transient analysis are given in Table 6.3. For this example, the




-152-

Table 6.2 Simulation Data of a Transient Analysis
for the MOS Circuit in Fig. 6.3.

Transient Scheme 0 | Scheme 1 | Scheme 2 | YSPICE
analysis

# of subnetworks

times # of 2849 2475 2585

iterations

# of nonlatent

subnetworks times 790 1277 706

# of iterations

I.atency o

exploitation 72.27% 48.407% 72.69%

Total CPU time 18.358 22.073 17.022 42.877

(sec.)

Savings in o g
| cPU time 57.12% 48.52% 60.30%
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Table 6.3 Simulation Data of a Transient Analysis
for the TTL Circuit in Fig. 6.4.
Tran31gnt Scheme 0 Scheme 1 Scheme 2 YSPICE
analysis
# of subnetworks
times # of 2850 2945 2770
iterations {
# of nonlatent
subnetworks times; 1516 2128 1945
# of iterations
Latency o
exploitation 46.81% 27.74% 29.78%
Total CPU time | g gg¢ 97.164 86.033 132.338
(sec.)
Savings in g o o
LCPU time 47.86% 26.58% 34.99%
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simulation data show that Scheme 0 is the most efficient, Schéme 1 is still
the least efficient. The reason why Scheme 2 is not as efficient as Scheme
0 can be traced to the close-coupling of bipolar circuits. So the
conclusion obtained from this example is that the error criteria should be
loosened for bipolar circuits. Scheme 0 is about 2 times faster than

YSPICE.

Although the above two examples show that Scheme 0 is very efficient,
however, as mentioned before, Scheme O has a reliability problem. The
following example shows that Scheme 0 may give 1inaccurate output results

for stiff systems.

Example 6.3: The RC circuit shown in Fig. 6.5 was analyzed by the three
schemes of SLATE. This circuit is a stiff system. the output results are
given in Table 6.4. For scheme 0, because the changes of the tearing node
voltages of subnetwork 1 and subnetwork 2 are very small after t = 13 ns,
both subnetworks are declared as latent. Since the input is constant too
after t =z 13 ns, all the calculated output voltages will remain unchanged
afterwards, while the true output voltages should increase slowly. This
phenomenon can be observed from the unchanged output voltages after
t = 13 ns in Table 6.4(a). This example shows that Scheme 0 may not give
accurate results when the network is stiff and that both Scheme 1 and

Scheme 2 give accurate results even when the network is stiff.

r




-156-

0.5K 0.5

Sv 05K

ov Subnetwork 1 Subnetwork 2 '

Flg. 6.5 An Example of a Stiff System.
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Table 6.4(a) Scheme 0.

TIME v(2) v(3) V(4)
0.000D+00 0.000D+00 0.000D+00 0.000D+00
1.000D-09 2.936D+00 7.567D=01 4.445D-13
2.000D-09 3.604D400 1.146D+00 3.726D-12
3.000D-09 3.733D+00 1.237D+00 1. 144D-11
4.000D-09 3.749D4+00 1.249D+00 2. 403D-11
5.000D-09 3.751D+00 1.251D+00 4.161D-11
6.000D-09 3.749D+00 1.249D400  6.187D-11
7.000D-09 3.750D+00 1.250D+00 8.020D0-11
8.000D-09 3.750D+00 1.250D+00  9.850D-11
9.000D-0% 3.749D+00 1.249D+00 1.161D=10
1.000D-08 3.749D+00 1.249D+00 1.260D-10
1.100D-08 3.748D+00 1.2U8D+00 1.307D~10
1.200D-08 3.748D+00 1.248D+00 1.302D-10
1.300D-08 3.749D+00 1.249D+00 1.246D-10
1.400D-08 3.749D+00 1.249D+00 1.145D-10
1.500D0-08 3.749D+00 1.2U9D+00 1.145D-10
1.600D-08 3.749D+00 1.249D+00 1.145D-10
1.700D-08 3.749D+00 1.249D+00 1.145D=-10
1.800D-08 3.749D+00 1,249D4+00 1.145D-10
1.900D-08 3.749D+00 1.249D+00 1.145D=10
2.000D-08 3.749D+00 1.249D+00 1.145D-10
2.100D-08 3.749D400 1.249D+00 1. 145D-10
2.200D-08 3.749D400 1.249D+00 1. 145D-10
2.300D-08 3.749D+00 1.249D+00 1.145D-10
2. 400D-08 3.749D+00 1.249D+00 1.145D-10
2.500D0-08 3. 749D+00 1.249D+00 1. 145D=10

—
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Table 6.4(b)

TIME

.000D+Q0
.000D-09
. 000D-09
.000D-09
. 000D =09
. 000D-09
.000D-09
. 000D-09
.000D-09
.000D-09
. 000D-08
. 100D-03
. 200D-08
.300D-08
. 400D-08
.500D-08
. 600D-08
. 700D-08
. 800D-08
.900D-08
.000D-08
. 100D-08
.200D-08
. 300D-08
. 400D-08
.500D-08

v(2)

wwwwwwwwwwwwwwwwwwwwwmwuNo

.000D+00
.936D+00

. 604D 400

. 733D+00

. T49D+00

.751D+00
. T49D+00
. 750D+Q0
. 750D+00
. T49D+00
. T49D+00
. TU9D+00
. T49D+00
. 750D+00
. 751D+00
. 751D+00
. 751D+00
. 7510400

.751D+00

. 751D+00
.751D+00
. 751D+00
. T751D+00
. 750D+00
. 7500400
. 7500400
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Scheme 1.

v(3)

.000D+00
.567D~01
. 146D 400
. 237D+00
. 249D+00
. 251D+00
. 249D+00
. 250D400
. 250D+00
. 249D+00
. 249D+00
. 249D400
. 249D+00
. 250D400
.251D+00
. 251D+00
. 251D+00
. 251D+00
. 251D 400
. 2510400
. 251D+00
.251D+00
. 251D+00
. 250D+00
. 250D+00
. 250D+00

_._.._.._._._._._._._._._-__._;_a_._._._._a_._a_.._.ﬂo

V(L)

. 000D+00
444D -13
.726D-12
. 144D=11
. 403D-11
. 161D=-11
L187D-11
.020D=-11
.850D-11
. 172D=-10
. 404D-10
.666D-10
.358D-10
.281D-10
.629D-10
.919D-10
. 208D-10
., Ug8D-10
.788D-10
.077D=-10
.367D-10
.656D-10
.946D-10
. 236D-10
.525D-10
.815D-10
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Table 6.4(c)

TIME

. 000D+00
. 000D-09
. 000D=09
. 000D-09
.000D-09
.000D-09
. 000D-09
.000D-09
.000D-09
.000D-09
.000D-08
.100D-08
.200C-08
. 300D-08
. 400D-08
.500D-08
.600D-08
.700D-08
.800D-08
.900D-08
.000D-08
. 100D-08
.200D-08
.3000-08
. 400D-08
.500D-08
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Scheme 2,
V(3)
.000D+00 0.000D+00
.936D+00 7.567D-01
.604D+00 1.146D+00
. 733D+00 1.237D+00
. T49D+00 1.249D+00
. 7510400 1.251D+00
. T49D+00 1,249D+00
.750D+00 1.250D+00
. 750D0+00 1.250D+400
. T49D+00 1.249D+00
. TE9D+00 1.249D+00
.T49D+00 1.249D+00
. T49D+00 1.249D+00
. 750D+00 1.250D+00
.T751D00 1.251D+00
.751D+00 1.251D+00
.751D+00 1.251D+00
.751D+00 1.251D+00
.751D+00 1.251D+00
.751D+00 1.251D+00
.751D+00 1.251D+00
.751D+00 1.251D+00
.751D+00 1.251D+00
. 750D+00 1.250D+00
. 750D+00 1.250D+00
.750D+00 1.250D+Q0

V(4)

. 000D+00
L444p-13
.726D-~12
. 144D-11
.403D-11
.161D=11
. 187D-11
.020D-11
.850D-11
.172D-10
. U04D-10
.666D-10
.958D-10
.281D-10
.629D-10
.919D-10
.208D-10
. 498D-10
.788D-10
.077D-10
.367D-10
.656D-10
.946D-10
.236D-10
.525D-10
.815D-10
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5.2. latency Exploitation at the Network Level

¥hen the submatrices are large and the interconnection matrix is small
and sparse, then latency exploitation at the subnetwork level provides =nost
of the savings in CPU time. Nhen the reverse 1is truz, that 1is, the
submatrices are small and the interconnection matrix is 1large and
relatively dense, then the latency exploitation at network level Dbecomes

important. Usually, the latter situation is true for MOS circuits.

Latency exploitation at the network level is equivalent to solving a
smaller interconnection matrix by using voltage source substitution. From
the substitution theorem we know that the same results will be obtained.
This approach can be explained by the following example as shown in Fig.
6.6(a). Let us assume that at a particular time or a particular iteration,
only subnetworks 5 and 6 are nonlatent, all the other subnetworks are
latent. By using voltage source substitution, the network can be replaced
by the equivalent network as shown in Fig. 6.6(b). The equivalent network
is solved to obtain the solutions of all the nonlatent nodes {nodes which
belong to nonlatent subnetworks). This equivalent network is obtained as
follows. First, all the nonlatent subnetworks and all the latant
subnetworks which are ad jacent to the nonlatent subnetworks are included in
the equivalent network; secondly, all the tearing nodes which only Ybelong
to latent subnetworks are replaced by voltage sources, the resulting
network is the equivalent network. For this example, in the equivalent
network, the nonlatent subnetworks are subnetworks 5 and 5, the latent
subnetworks are subnetworks 4 and 7, the tearing nodes which are replaced
by voltage sources are nodes 5 and 3. After the solution for all the
ncnlatent nodes is obtained, subnetworks 4 and 7 are checked to see if they

remain latent. If the answer is yes, then the same equivalent circuit is
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used again. If the answer is no, then a new -equivalent network is

generated.

The above is the conceptual idea. In the implementation, because
sparse matrix techniques are used, we do not want to really generate the
equivalent network and we do not want to reorder the interconnection matrix
and reconstruct the sparse matrix pointer systems everytime a new
equivalent circuit is generated. So the following algorithm is implemented

in SLATE.

(1) The ordering of the interconnection matrix is determined in the
preprocessing phase assuming all the subnetworks are nonlatent, and this

ordering is used in the whole analysis.

(2) At every timepoint or iteration, all the subnetworks are checked
to determine their latent status. All the tearing nodes which only belong

to latent subnetworks are labelled as latent nodes.

(3) All the rows corresponding to the latent nodes are replaced by the
branch constraint relations of grounded voltage sources. This is done by
skipping these rows and columns during the LU factorization and forward and

backward substitutions.

Example é;i: The MOS circuit shown in Fig. 3.18 was analyzed by SLATE
with and without the latency exploitation at network level. Scheme 2 was
used. The output results are esgentially the same for both
approaches(whithin four significant figures). The simulation data for both
approaches are given in Table 6.5. This example shows that the latency

exploitation at network level also provides savings in CPU time.




Table 6.5 Simulation Data of a Transient Analysis

for the MOS Circuit in Fig. 3.18.

Scheme 2 with
latency exploitation
at network level

Transient
analysis

Scheme 2 without
latency exploitation
at network level

Total CPU time

(sec.) 80.102

102.365

Savings in

CPU time 21.75%
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6.3. Discussion

Four schemes for latency exploitation at subnetwork level are proposed
in this chapter. Scheme 0, Scheme 1 and Scheme 2 were implemented and
tested in the program SLATE. Scheme 3 is not compatible with the [ . :nt
version of SLATE, so it is still at the development stage. From the
simulation data obtained from the first three schemes, our conclusion 1is
that Scheme 2 is the best of these three schemes. However, for bipolar
circuits, Scheme 2 is not the most efficient one. Conceptually, Scheme 3
should be the optimal one, so more work will be devoted to study this

scheme.

In order to illustrate the ideas and to estimate the inherent latency
easily, chains of inverters are used as example circuits in this chapter.

More complicated circuits are used in the next chapter to evaluate the

latency approaches used in SLATE.
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VII. CONCLUSIONS

The examples used in Chapter 6 are chains of inverters. One example
has eleven levels of inverters, the other has five levels of inverters.
From the simulation data we can see that the latency exploitation increases
with the number of levels of logic gates. Since the number of levels of
logic gates for those circuits is large and those circuits have very simple
interconnection networks, so significant latency exploitation was obtained.
In this chapter, the simulation data for some circuits, which have a
complicated interconnection network and for which the number of levels of
logic gates is small, are presented to see if the latency approach can
provide significant savings in CPU time for these circuits. The simulation

data are compared with those obtained from our DEC-10 version of SPICE2.

Example 7.1: The TTL circuit shown in Fig. 3.17 was analyzed by SLATE and
SPICE2. Scheme 2 was used in SLATE. The output results of SLATE and
SPICE2 are essentially the same (within four significant figures). The
simulation data of a transient analysis are given in Table 7.1. For this
bipolar circuit example, a 32.66% latency exploitation was achieved and a

40.15% savings in CPU time was obtained.

Example 7.2: The MOS circuit shown in Fig. 3.18 was analyzed by SLATE and
SPICE2. Scheme 2 was wused in SLATE. The output results of SLATE and
SPICE2 are essentially the same (within four significant figures). The
simulation data of a transient analysis are given in Table 7.2. For this
MOS circuit example, a 22.53% 1latency exploitation was achieved and a

46.70% savings in CPU time was obtained.
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Table 7.1 Simulation Data of a Transient Analysis
for the TTL Circuit in Fig 3.17

Transient

analysis SLATE SPICE2
# of subnetworks

times # of 6426

iterations

# of nonlatent
subnetworks times 4327
# of iterations

lLatency exploitation 32.667%

Total CPU time

(sec.) 189.56 316.74

Savings in

CPU time 40.15%
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Table 7.2 Simulation Data of a Transient Analysis
for the MOS Circuit in Fig. 3.18.

— eems omn SN SN

:::T;:::t SLATE SPICE2
# of subnetworks
times # of 3600

iterations

# of nonlatent
subnetworks times 2789
I # of iterations

-—

Latency exploitation 22.53%

Total CPU time

(sec.) 72.23 135.52

Savings in

CPU time 46.70

o R— SR abincmnbtiifiiosie et
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Also these simulation data show that not only the latency approach but
also other new approaches implemented in SLATE provide savings in CPU time.
This observation is obtained by noting that the latency exploitation is
smaller than the savings in CPU time. These other new approaches which
also provide savings in CPU time are the new reordering scheme for the
modified nodal approach presented in Chapter 2 and the piecewise nonlinear
approach presented in Chapter 3. The new reordering sScheme for the
modified nodal approach avoids the problem of pivoting on zZero diagonal
elements and decreases the number of operations at the same time. However,
the efficiency provided by the new reordering scheme is problem-dependent.
For example, if the circuit does not have voltage sources or inductors,
then certainly nc efficiency can be obtained by using our approach. The
piecewise nonlinear approach is still at the experimental stage. All the
examples we have simulated show that the use of the piecewise nonlinear
approach hastens the convergence and improves the global convergence
property of the Newton-Raphson method for bipolar and MOS c¢ircuits.
However, the proof of global convergence or the conditions for global
convergence for the piecewise nonlinear approach has not been obtained.
Further research is needed to prove the global convergence, or to modify
the approach we proposed to ensure global convergence. Also more work is
needed to study if the strict piecewise nonlinear approach is efficlent. and
if it 1is not efficient, then the problem of how to use the ideas of the
piecewise nonlinear approach to hasten the convergence and to improve the
global convergence property of the Newton-Raphson method should be studied.
The  solution of the two problems of numerical integration makes the program
more reliable and more accurate. This 1is described in Chapter 4. An

equation was presented to compute the upperbound on the local truncation
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error (LTE) from the maximum global error (GEmax) and the solution time T.
The 1inaccuracy in the estimation of the local truncation error caused by
different timesteps was resolved by introducing a new formula for the
estimation. The inaccuracv in the estimation of the local truncation error
caused by using the node voltages at timepoints of the previous switch
interval was resolved by recognizing this situation and restarting the

numerical integration from the breakpoint.

In Chapter 5, the ideas of tearing methods were detailed, the most
efficient way of implementing the node tearing method was determined
theoretically and experimentally, and a circuit interpretation of tearing

methods was given.

In Chapter 5, four latency criteria schemes were proposed. The first
three schemes: Scheme O, Scheme 1 and Scheme 2, Wwere implemented and
tested. From the simulation data we conclude that Scheme 2 is the best out
of these three. Scheme 3 is still under investigation and we think it
should be the best scheme to exploit latency. More work is needed to study
how %o implement this scheme efficiently and reliably, and to find out if

it is really the best scheme.

The nested subnetwork approach [41,42,43] is the approach which allows
several levels of subnetworks and in which the latency approach is used at
every level of the subnetworks. This approach may provide savings in the
time spent in checking the 1latent status of subnetworks. Only latency
exploitation at the network level is implemented in program SLATE 2and we
believe that this checking time may be small, thus the savings in CPU time
provided by the nested subnetworks approach probably 1is not significant.

However, further investigation is needed to yield conclusive results.
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Device characteristic latency and function latency are two concepts which
may provide some more savings in CPU time. More investigations need to be

done to expioit these two latencies.

In the present version of SLATE, a lot of information which 1is not
needed is still stored because SLATE evolved from YSPICE. Due to this

reason, although tearing methods should provide savings in memory, no

comparison of memory usage was presented in this thesis.
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