
AD-A124 064 AN INVESTIGATION OF ORDERING TEARING AND LATENCY I/t
ALGORITHMS FOR THE'TIME-.. (U) ILLINOIS UNIV AT URBANA
COORD INATED SC IENCE LAB P YANG AUG 80 R-891

UNCLASSIFIED NO014-79-C0424 F/G 9/5 NLEIIIIIIIIIII
EIIIIIIIIIIIIu
MhEOOEEhNIEIIIIIIIIIIIIIMIII
IIIIIIIIIIIIII
IIIIIIIIIIIIII
EEEIIIIEEIIIIE



Hill; 1* .I28 125

milla

1.5~l. 1111.

M ICROCOO RlRhLUtL)N I', I T HARI



REPORT R-891 AU ST, 1980 UILU-ENG 80-2223

I?,1CORDINA TED SCIENCE LABORATORY

U AN INVESTIGATION OF ORDERING,
TEARING, AND LATENCY ALGORITHMS
FOR THE TIME-DOMAIN SIMULATION
OF LARGE CIRCUITS

PIG YANG

I
I
I
I
I

A ," ' PUBLIC *WAh. CHSTRINUTION UNLIMITED.

ECTE3

i ~~~JA 3 1983
E

"I UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS
1 83 01 31 102

|rl~a I" I ii iI~i - -



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Doe. Entor*d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECiPIENT'S CATALOG NUMBER

4. TITLE (and Sublils) S. TYPE OF REPORT & PERIOD COVERED

AN INVESTIGATION OF ORDERING, TEARING, AND LATENCY
ALGORITHMS FOR THE TIME-DOMAIN SIMULATION OF LARGE Technical Report
CIRCUITS 6. PERFORMING ORG. REPORT NUMBER

R-880; UILU-ENG 80-2212
7. AUTHOR(o) 6. CONTRACT OR GRANT NUMBER()

Ping Yang N00014-79-C-0424

4 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
Coordinated Science Laboratory AREA & WORK UNIT NUMBERS

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

1I. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE

August 1980
Joint Services Electronics Program 13. NUMBER oF PAGES

176
14. MONITORING AGENCY NAME & ADDRESS(II dif erent from Concroiling Office) IS. SECURITY CLASS. ro( this report)

UNCLASSIFIED

IS&. OECL ASSIIrlCATION/ DOWNGRAOING
SCH E DU LE

16. OISTRISUTION STATEMENT (of che aReport)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ot the *bstract entered in 8
1
'ck 20. if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on roverse side if ncessory anid Identify by block nwnber)

Integrated Circuits
Computer-Aided Analysis Program
DC and Transient Analysis Including Tearing and Latency

20. ABSTRACT (Continue on reverse aide It necessary and Identify by block number)Many circuit simulation programs have been available for the design of integrate
circuits. However, these conventional circuit simulation programs calculate
all of the node voltages or branch voltages and currents at each iteration and
each timepoint. Even with sparse matrix techniques the simulation of modern
large-scale integrated (LSI) circuits is not possible in many situations due
to the excessive computation time and high storage requirements.

The goal of this research was to investigate new approaches to the

OD FOANm 1473 UNCLASSIFIED (Over)

SECURITY CLASSIFICATION OF THIS pAGE rWhen Dots Entere )

.t,



SECURITY Ct.A$SIFICATION OF T4IS PAGO(Vehan Data Entered)

simulation of integrated circuits which can alleviate the problems of excessive
'computation time and high storage requirements. A new ordering scheme for the
modified nodal approach was developed, and some new algorithms for the dc and
transient analysis of logic circuits were studied. Different tearing methods
and sparsity considerations for the node tearing method were theoretically and
experimentally studied. Latency at the subcircuit and the network levels was
investigated. Different latency criteria were proposed and studied. The resul.
of this research is a new general purpose circuit simulation program SLATE.

UNCLASSIFIED

SECURITY CLASIICATION OF
r

TmiS PAGcrm.q 3e& t aotee.E



I
I.
I

AN INVESTIGATION OF ORDERING, TEARING, AND LATENCY ALGORITHMS FOR
THE TIME-DOMAIN SIMULATION OF LARGE CIRCUITS

by

I Ping Yang

This work was supported by the Joint Services Electronics

Program under Contract N00014-79-C-0424.

I
I
I

Reproduction in whole or in part is permitted for any purpose of

the United States Government.

I Accession For
NTIS GRA&I

DTIC TAB

Approved for public release. Distribution unlimited. Unannounced El
Justificatio

- --.-- Distribution/. " Availability Codes

* ';Avail and/or

SDist Special

1"



AN INVESTIGATION OF ORDERING, TEARING, AND LATEN4CY ALGORITHMS FORI THE TIME-DOMAIN SIMULATION OF LARGE CIRCUITS

BY

PING YANG

B.S., National Taiwan University, 1974
M.S., University of Illinois, 1978

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1980

Thesis Adviser: Professor Timothy N. Trick

and

Professor Ibrahim N. Hajj

Urbana, Illinois



3 AN INVESTIGATION OF ORDERING, TEARING, AND LATENCY ALGORITHMS FOR

THE TIME-DOMAIN SIMULATION OF LARGE CIRCUITS

Ping Yang, Ph.D.

Coordinated Science Laboratory andI Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1979

Manyi circuit simulation prc-grams have been available for the design of

integrated circuits. However, these conventional circuit simulation

programs calculate all of the node voltages or branch voltages and currents

at each iteration and each timepoint. Even with sparse matrix techniques

the simulation of modern large-scale integrated (L.SI) circuits is not

possible in many situations due to the excessive computation time and high

storage requirements.

The goal of this research was to investigate new approaches to the

simulation of integrated circuits which can alleviate the problems of

excessive computation time and high storage requirments. A new ordering

scheme for the modified nodal approach was developed, and some new

algorithms for the dc and transient analysis of logic circuits were

studied. Different tearing methods and sparsity considerations for the

node tearing method were theoretically and experimentally studied. Latency

at the subcircuit and the network levels was investigated. Different

latency criteria were proposed and studied. The result of this research is

a new general purpose circuit simulation program SLATE.
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I. INTRODUCTION

The design of integrated circuits requires an accurate method of

predicting circuit performance. The traditional breadboard method is

not able to satisfy the above requirement because of the fact that the

parasitic components that are present in the breadboard are entirely

different from the parasitic components that are present in integrated

circuits, so a circuit simulation program is a must. Conventional

circuit simulation programs [1-111 possess two serious limitations: a

computer storage requirement and a computing time requirement, so the

size of the circuit that can be simulated is limited. With the advances

of circuit simulation techniques, the size of the circuit that can be

simulated has increased; but the simulation of large scale integrated

(LSI) circuits is still beyond the capabilities of present circuit

simulation programs.

The goal of this research was to study new approaches to the

simulation of integrated circuits which can alleviate the abo've

two limitations, namely the repetitiveness and latency

properties of digital integrated circuits. Since a DEC-10 version of

SPICE2 was available to us, it was decided that this program would

serve as a vehicle for testing our algorithms. However, in the initial

phases of our research, it was found that our version of SPICE2 had

several deficiencies in the implementation of some of its algorithms

* - which occasionally caused numerical difficulties. In order to resolve

these difficulties a new reordering scheme for the modified nodal

approach was developed, a new concept -a piecewise nonlinear approach
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for the Newton-Raphson iteration was proposed, and two problems with

the numerical integration algorithm were resolved. The new reordering

scheme for the modified nodal approach not only avoids zero diagonal

pivot elements which increases numerical accuracy, but it also signi-

ficantly reduces the number of fills in the matrix which reduces the

computational cost. The piecewise nonlinear approach reduces the number

of iterations needed to find the solution of a nonlinear circuit and

improves the global convergence property of Newton-Raphson method. The

resolution of the two problems with the numerical integration algorithm

provides more efficiency and accuracy. All of these new developments

result in a modified version of SPICE2 (YSPICE), which is 2 to 5 times

faster than SPICEZ.

Although YSPICE is more efficient and more accurate than SPICE2,

it is still not powerful enough to handle LSI circuits simulation

problems. Experience has shown that LSI circuits possess properites

which can be exploited to improve the storage and computing time

requirements. The two properties are the repetitiveness of a limited

number of subcircuits and the latency that may exist within parts of

the circuits during an analysis. Conventional circuit simulation

programs do not exploit these two properties, so all of the node

voltages or branch voltages and currents are calculated at each

iteration and each timepoint. In order to increase the capabilities of

circuit simulation programs substantially, these two properties must

be fully exploited. When the first property is exploited both computer

storage requirements and computing time can be reduced in several ways.
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First, only one subcircuit description for each type of repetitive

subcircuit need be stored; secondly, only one set of small submatrix

sparse matrix pointers for each type of repetitive subcircuit is

needed so that both storage and preprocessing time can be saved;

thirdly, if one type of subcircuit is linear, then the LU factorization

of that type of subcircuit need be found once only. When the second

property is exploited, we only need to solve for the active parts of

the circuit and this reduces the computational effort considerably.

Tearing methods, first introduced by Kron [12), are well suited for the

exploitation of these two properites as well as the sparsity of the net-

work. Recently, the use of tearing methods and latency [13-24] has

been studied to exploit these two properties, but in order to fully

exploit these two properties more research effort is needed.

In the second stage of our research, these two problems were

studied extensively and the result of our investigations is a new

general purpose circuit simulation program SLATE (a Simulator with

Latency and Tearing). SLATE evolved from YSPICE, so it has all the

good features of YSPICE: in addition, several new approaches are used.

First, the new reordering strategy for the modified nodal approach is

used at both the subcircuit and interconnection levels; secondly, ways

of exploiting sparsity that exist at the subcircuit and interconnection

levels were theoretically and experimentally studied and the most

efficient way is used; thirdly, node tearing is used such that the

program is more efficient and the final equation formulation is suit-

able for latency exploitation and parallel processing; fourthly,
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latency in he Newton-Raphson iterations is exploited not only at device

and subcircuit levels, but also at interconnection levels; fifthly,

latency in the time domain is exploited not only at device and subcircuit

levels, but also at interconnection levels; sixthly, three latency in

time criteria schemes were studied thoroughly in relation to the spread

of the time constants in the subcircuits and the best scheme was deter-

mined; and lastly, the interconnection matrix formulation method is

general enough to accommodate the situation when there are no subcircuits

specified in the network or when the interconnection circuits consist of

more than tearing nodes.

Both YSPICE and SLATE are written in FORTRAN and have a SPICE-like

input language for user convenience. If no subcircuits are used, then

the methods of analysis of SLATE is equivalent to that of YSPICE, that

is, YSPICE is a subset of this new program SLATE. Simulation results

indicate that the speed of SLATE is about an order of magnitude faster

than SPICE2, and the output results are either the same as or more ac-

curate than those of SPICE2.

The new reordering scheme for the modified nodal approach is

described in Chapter 2, and the comparison between this new scheme and

that used in SPICE2 is given The piecewise nonlinear approach is

explained in Chapter 3 and simulation results are given. The two

problems with numerical integration are detailed in Chapter 4, and the

solution is given. Chapter 5 introduces the concept of tearing methods

and gives the sparsity consideration for the node tearing method.

Chapter 6 describes three latency criteria and gives the simulation

ii i I -1 I-----l - I- - - ..- - .. . -,. , -- m - " -.. . r V...



results of these three schemes. Finally, in Chapter 7 a summary of

SLATE performance is given, the conclusions are presented, and areas

for future work are described.
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II. NEW REORDERING STRATEGY FOR THE MODIFIED NODAL APPROACH

The modified nodal approach (MNA) [251 has been widely used in many

computer-aided circuit analysis programs [1,11,26,271 for formulating

circuit equations. It is well known, however, that while the more

restrictive nodal approach in general produces nonzero diagonal elements

for pivoting, the modified nodal approach, although more general, may

produce zero diagonal entries in the network matrix. This occurs, for

example, when the circuit contains voltage sources, short-circuits,

inductors at zero frequency (dc solution) and some types of controlled

sources. When sparse matrix techniques with diagonal pivoting are used for

solving these types of circuit equations, extreme care should be taken so

as not to choose a zero-valued pivot. Two methods have been proposed for

avoiding pivoting on these zero diagonal entries. One method (method 1)

involves ordering the rows and columns with zero diagonal entries last, in

the hope that they will be filled before becoming candidates for pivoting

(1,111. Another method (method 2) involves rearranging and/or combining

rows and columns in order to obtain nonzero diagonal elements [251.

However, as we show below, there are two problems with these methods.

First, even if all the zero diagonal elements which exist in the network

matrix at the formulation stage are avoided or filled during the

elimination stage, it is possible to generate zero diagonal elements during

the Gaussian elimination process regardless of the values of the circuit

elements; Secondly, these methods usually are not efficient. For example,

forcing the zero-diagonal entries to be last usually increases the number

Of fills considerably.
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In this chapter a new reordering scheme for the modified nodal

approach is described which avoids zero diagonal pivots in essentially all

practical cases and is very efficient. In Section 2.1, the problems with

previous methods are illustrated and explained. In Section 2.2, the

partitioning of the circuit variables is detailed and the ordering strategy

is introduced. In Section 2.3, theorems and examples are given. The

implementation of this new scheme resulted in YSPICE. The simulation

results from YSPICE are given in Section 2.4. In this Section examples are

given which caused computational problems in our DEC-10 version of SPICE2

due to pivoting on zero diagonal elements, but which were successfully

analyzed by YSPICE. Also the number of fills produced by YSPICE is much

less than that produced by SPICE2. In Section 2.5, a discussion of this

new ordering strategy is given.

2..Problems with Previous Methods

The MNA matrix can in general be expressed in the form [251

r R B V
= (2.1)

4. where V is the set of node-to-datum voltages and I is the set of branch

i currents which are chosen as additional circuit variables. YR is a reduced

form of the nodal matrix excluding the contributions due to voltage

sources, current controlling elements, etc. B contains partial derivatives

of the Kirchhoff current equations with respect to the additional current

variables and thus contains +1's for the elements whose branch relations

llll l I I , . .. iiii | • i ll il I II . . .. . , . -.. .



are introduced. The branch constitution relations, differentiated with

respect to the unknown vector are represented by the matrices g and D. ~

and E are the excitations.

As mentioned above, when sparse matrix techniques with diagonal

pivoting are used for solving Eq. (2.1), zero diagonal elements may be

encountered. Previously, two methods have been proposed for avoiding

pivoting on these zero diagonal elements. However, there are still two

problems with these previous methods: (1) zero diagonal elements may be

generated during the Gaussian elimination process, and (2) the methods may

not be the most efficient. In this section we consider the zero diagonal

problem, and in Section 2.4 we discuss the efficiency problem.

Method 1 orders the rows and columns with zero diagonal entries last,

in the hope that they will be filled before becoming candidates for

pivoting. Even if all the zero diagonal elements which exist in the

network matrix at the formulation stage are filled during the elimination

stage, cutsets of branches whose currents are declared as network variables

in a modified nodal formulation will generate zero diagonal elements during

the Gaussian elimination process regardless of the values of the circuit

elements. This problem is proved and illustrated by Theorem 2.1, Example

2.1, and Example 2.2.

Theorem 2.1. For any network which has cutsets of branches whose currents

are declared as circuit variables in a modified nodal formulation, if these

current variables are ordered last, then zero diagonal elements will be

generated during the Gaussian elimination process, regardless of circuit

element values.
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Proof: Since we assume that all the current variables are ordered last and

they form cutsets, therefore floating subnetworks are created. The

admittance matrices of these floating subnetworks are singular, therefore

the Y in Eq. (2.1) is singular, so zero diagonal elements will be

generated during the Gaussian elimination of Eq. (2.1).

The following Example 2.1 illustrates Theorem 2.1.

Example 2.1: A cutset of current variables (Fig. 2.1)

If the method which orders all the current variables last is used to

formulate the modified nodal equations of the circuit shown in Fig. 2.1,

the resulting equations will be as follows:

G - 0 1 0 V1  0

-G1  G 0 0 -1 V2  0

0 0 G2  0 1 V3  0

1 0 0 0 0 1E E

0 -l 1 0 0L 0

During the course of Gaussian elimination due to the resulting

floating subnetwork, a zero diagonal element will be produced at location

(2,2).

Reajr: For any subnetwork which has cutsets of branches whose currents

are declared as circuit variables in a modified nodal formulation, if the

rows corresponding to current variables which have zero-diagonal elements

,-. -_ . . . . . . . . . . . . . . . , ,-



-10-

G i 2  L

IE 
iL

d.c. Analysis XP- 6,

Fig. 2.1 Circuit used in Example 2.1.



are ordered last until a diagonal entry is filled, before it is considered

as a pivot, then zero diagonal elements may be generated during the

Gaussian elimination process, regardless of circuit element values.

The proof of this remark is the same as that of Theorem 2.1. In the

following, Example 2.2 illustrates this remark.

Example 2.2: A cutset of current variables (Fig. 2.2)

If the reordering strategy mentioned in the previous remark is used to

formulate the equations of the circuit shown in Fig. 2.2, the matrix

formulated is:

G 2 0 0 0 V 3 0

0 G -G 1 V, W 0

o -G G 0 IV 2 0

o0 0 0 1 E E

During the course of Gaussian elimination due to the resulting

floating subnetwork, a zero diagonal element will be generated at location

(3,3).

4 Method 2 interchanges rows in order to obtain nonzero diagonal

elements. Even if all the zero diagonal elements which exist in the

* network matrix at the formulation stage are avoided before the elimination,

if there are loops of branches whose currents are declared as network

variables in the modified nodal formulation, then zero diagonal elements
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1 Gi 23

E 02
C i G2

d.c. Analysis P,-6735

Fig. 2.2 Circuit used in Example 2.2.
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I may be generated during the Gaussian elimination process regardless of the

values of the circuit elements. This problem is proved and illustrated by

Theorem 2.2 and Example 2.3.

I Let us define the branch whose current is declared as a current

variable in the modified nodal formulation as current branch. Let us

define the 'positive' node as follows: Assuming that the datum node can

not be chosen as 'positive' and that the datum node is not contained in any

loop formed by current branches, then we can always choose one of the two

nodes of a current branch as 'positive' for that current branch and there

is a one-to-one correspondence between these 'positive' nodes and the

current branches. An algorithm for choosing 'positive' nodes is given in

Section 2.2.

Theorem 2.2. For any network with a loop of branches whose currents are

declared as network variables in a modified nodal formulation, and the

reference node is not contained in the loop and there is no coupling among

the voltages of the branches in the loop, then if all the rows

corresponding to the current variables are interchanged with the

corresponding 'positive' node voltage rows, zero diagonal elements wi1i be

1 generated during the Gaussian elimination process, regardless of circuit

element values.

Proof: Let us assume that after the rows corresponding to the current

I variables are interchanged with the corresponding 'positive' node voltage

rows, the rows corresponding to the current variables are ordered first,

then the MNA matrix equation (2.1) is transformed into
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1 12 =11

22 12 21 2 1; 2(2.2)

2 2 Ci

The submatrix being eliminated first is the node-to-branch incidence matrix

for the 'positive' nodes and the current variable branches [28], that is ,

the B1 in Eq. (2.2). Since we assume that the reference node is not

contained in the loop and there is no coupling among the voltages of the

branches of the loop, then there is a one-to-one correspondence between

each branch of the loop and the corresponding 'positive' node and each

column in B contains exactly a +1 and a -1, therefore, B is singular and

zero diagonal elements will be generated during the Gaussian elimination.

The following Example 2.3 illustrates Theorem 2.2.

Examole 2.1: A loop of current variables (Fig. 2.3)

THe circuit equations formulated by method I for the circuit shown in

Fig. 2.3 in a transient analysis using a backward Euler Formula with

timestep h have the following form:

L Monson



-15-

i 1 ILu2 3

12~r 12.

- Rz - G 3
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Transient Analysis P- 736

Fig. 2.3 Circuit used in Example 2.3.
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L 2 2 2 2 2 7

S2 -,'2 -. 1. 2 2 .. ) -

The submatrix B is singular, therefore during the Gaussian elimination

a zero diagonal element will be generated at location (4,4).

2.2. New Partitioning and Ordering Strategy

From the previous section, we conclude that the topological reasons

for zero diagonal elements being generated in the modified nodal approach

are: (1) cutsets of current variables and (2) loops of current variables.

Here we present a new partitioning and ordering strategy which has the

following good features:

(1) zero diagonal elements are avoided before the Gaussian elimination and

during the Gaussian elimination in essentially all practical circuits;

(2) it is efficient and the number of fills is less than that of previous
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methods;

(3) it is easy to implement and the partitioning and ordering are done in

the preprocessing phase, so it is well suited for the use of sparse matrix

techniques.

Consider a linear (or linearized) circuit which contains independent

current and voltage sources, two terminal resistors, capacitors, inductors

and all types of controlled sources. We assume that the circuit contains

neither loops of only (independent and dependent) voltage sources and

inductors nor cutsets of only (independent and dependent) current sources

and capacitors.

In the modified nodal approach, the circuit variables consist of

node-to-datum voltage V together with a subset of branch currents Ib"

(Henceforth those branches are referred to as current branches.) In the

proposed ordering strategy, the node voltages V n are partitioned into two

subsets, V, and V2, and 'b is partitioned into three subsets, I, 12 and

13. The components of I, consist of the currents in the (dependent and

independent) voltage sources, and are in turn partitioned as follows:

Iv 'branch currents of the independent voltage sources.

VCV Ebranch currents of the voltage-controlled voltage sources.

I Vbranch currents of the current-controlled voltage sources.

The components of 12 and 13 consist of the remaining currents which are

circuit variables.

1
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Let a graph GI (possibly disconnected) be first constructed to include

all the current branches, with all the other branches removed. If GI

contains loops, then a tree (or forest) is chosen, with only finite-valued

resistors as links. This is always possible since by assumption no loops

of only voltage sources, inductors and zero-valued resistors exist in the

circuit. Let 13 be the set of currents in the links of G1, then these

links can not form cutsets [28]. The components of 12 consist of currents

in the inductors and the remaining currents of the current resistors.

The components of VIconsist of the following:

YV Eset of 'positive' node voltages of the independent voltage

sources.

YVCV -set of 'positive' node voltages of the voltage-controlled

voltage sources.

YCCV Eset of 'positive' node voltages of the current-controlled

voltage sources.

VbC Eset of 'positive' node voltages of the the 12 branches.

The components of V 2 consist of the remaining node voltages.

I I I l I • • I l . . . .- ... ..2 - - T I l T I I
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fThe following algorithm is followed in selecting the 'positive' node

voltages defined above:

AlxorithM

(1) The ungrounded nodes of all grounded current branches belonging to

or 12are chosen first as 'positive';

(2) Let b. be the number of branches whose currents belong to I or I
j-1 -2

and which are incident at node j. Whenever a node of a current branch is

chosen as 'positive', the number b kat its 'negative' node k is reduced by

one.

(3) If the b k value of node k of a current branch is one and that node

has not been previously selected as 'positive', then node k is selected

'Positive' for that particular current branch. If more than one node have

their b k value equal to one and if some of these nodes do not 1413 a

conductance (i.e., a resistance whose current is not a circuit variable)

connected to them, then one of these nodes is chosen 'positive' first.

Otherwise, any one of the nodes that has its bk value equal to one is

chosen 'positive'.

Step (2) and (3) are repeated until all the branches corresponding to

11and 1 2 have been processed. Note that up to this point there is always

at least one node whose b kvalue is one. This is because I Iand I do not

form loops. Note also that the number of positive nodes is equal to the

numer f eemntsin 1and 1 2. The polarities of the currents in the

current branches are associated with the positive node assignments.
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Partitioning and ordering the circuit variables in the order of I,

12 , V1,  Y2 , and I3, and writing the modified nodal equations in the usual

way [25], we get the following equation structure:

0 I

I- I B vc Evc
B9 Z3 1 B .

I E
I - 2 - -2

1I (2.3)

A 2  iI y A V J,
Vi1CCV

AI I bC
A- I I  I I A 1 r21 . 2 --- 2 2-

A, 1 21 1Y2 IA6  J2

- ,., II~

Where the Ai's contain the partial derivatives of the Kirchhoff

current equations with respect to the circuit current variables, I, 12,

13, and thus contain 0, +1, -1 only.

By interchanging the rows corresponding to VI  with the rows

corresponding to II and 12, Eq. (2.3) can be written in the following form

(This interchange is equivalent to off-diagonal pivoting and is done in

practice by a simple change in the pointer system rather than a physical

interchange of data in the rows.)
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11 11 11 i 4 V1
I I

1-

I I

" ' ' !v v c

A Y1 IY12'

1 , ZCCV I
I I i

Ill1 03 i Xv iv (2.4)

o5 - 21i22N Z2.

0 I . I

B1 ~ 3 ,'4 (i X ccv rwc
I v"EI

IY -

o ' 7  ,A8K, z !1

I ,, I
The circuit variables are partitioned into three subgroups: (1) II

and £2' (2) VV' and (3) the remaining variables. The Markowitz scheme [29]

is used to minimize the number of operations within each subgroup. After

reordering, Eq. (2.4) can now be solved by Gaussian elimination or LU

factorization.

2.3 Theorems and Examples

If there are no current-controlled current sources or if the

current-controlled current sources are not incident at the 'positive'

nodes, then within the first two subgroups all the diagonal elements remain

1's and all the nonzero off-diagonal elements are -1's during the Gaussian

elimination process, so the leading part of the elimination can be done

simply by addition. The proof is given below in Theorem 2.3. Let us

consider the first subgroup, the 3ubmatrix associated is the node-to-branch

incidence matrix A for the 'positive' nodes and the currents belong to I

and 1 . Let us denote the directed graph of those nodes and currents by
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GI . Due to our partitioning and ordering strategy, there are no loops in

GI , so _ has 1's on the diagonal, O's or -l's on the off-diagonal and A.,a

is square and nonsingular.

Theorem 2.1. For any diagonal pivoting the LU factors of A have the

following special properties: all the diagonal elements remain 1 's and

all the nonzero off-diagonal elements are -1 's.

Proof: Let A be formulated with current Ik chosen as the first pivot

where Ik flows in branch bk, which is connected between node i and node J.

After row and column interchange the first row and column of A will have

the following form:

1 1 2
A

j -1:1

* I

n 1

where node j is assumed to be in G otherwise column one would be all

zeros below the diagonal. Note that the entry ali = 0 because G, does not

have any loops and all i=2,3 ..... ,n are either zero or -1. Pivoting on a1 1

amounts simply to adding row 1 to row J. Since adding any two rows in the

incidence matrix of a directed graph produces a row with 0, -1 or 1

. . .. ..- S# ,
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enties, row j will then contain 0 and -1's with +1 on the diagonal because

a : 0.

A

Let the submatrix generated by pivoting on a11 be denoted by A . A..a , a

can be considered as the incidence matrix of a directed graph GI where G

is derived from GI by removing branch bk and merging node 1 with node J.
A

Thus A has the same properties as A , and pivoting on its first diagonal

entry will produce a submatrix with ones on the diagonal and 0 and -1's

elsewhere. This proves the theorem.

The reasoning for the second subgroup is similar to Theorem 2.3.

Now we would like to present the main result.

Main Result. For any network which has a unique solution, if the

partitioning and orderinng strategy proposed here is used to solve the

modified nodal equations, then no zero diagonal elements will be

encountered during the Gaussian elimination process, except for the case

when controlled sources or negative-valued elements with some specific set

of circuit element values result in perfect cancellation.

Proof: There are two kinds of zero diagonal elements which may be

encountered. One type is due to the formulation method [25] and occurs in

the network matrix before the elimination process starts. These zero

Jdiagonal elements are avoided by interchanging the rows corresponding to

the 'positive' node voltages with the rows corresponding to h and I

IDuring the elimination, topologically, the zero diagonal elements are

caused either by ordering loops of current variables first or by a floating

subnetwork which results by ordering a cutset of current variables last.

I
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Both off these situations are prevented by partitioning 1 3 away from 1I and

ordering I and I first, so no loops can be formed by I and I . Since I
1 2 1 -2 -

consists off currents in the links, so 13 will not form cutsets, and thus no

floating subnetworks will result.

Alternatively, this theorem can be proved as follows: Since all the

currents are ordered first and eliminated first, from Theorem 2.3, we know

that the elimination of these currents will. not generate zero diagonal

elements. After all these currents are eliminated, if 1I is empty, we are

left with nodal matrix equations, then no zero diagonal elements will be

generated; if 13 is not empty, since 13can not form loops or cutsets, so

no zero diagonal elements will be generated.

A more rigorous and general proof can be found in 1301.

In the following we would like to use the new ordering scheme to solve

those examples used in Section 2.1.

Example 2.1:

If our approach is used, initially, the matrix formulated is:
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I

I After interchanging rows, the resulting matrix is:

I

0 .L -GI 0 G 1 vI , Hi
No zero diagonal elements will be encountered during the course of

Gaussian elimination.

Example 2.2:

I If our approach is used, initially, the matrix formulated is:

I
B 0

I
After interchanging rows, the resulting matrix is:I

I
I

-. ... ' A ;, .
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I 'o O L . -

No zero diagonal elements will be encountered during the course of

Gaussian elimination.

Example 2.1:

If our approach is used, initially, the matrix formulated is:

. 0 0 1 -1 0 0 0 - -.

3 0 3 L 0 -L 0 t.
.3 0 0 0 3 0 -( 3

L ,3 3 3, 3 3 3 -t 7. '3

L i 0 3 3 . 0 0 7, 3

0 3 3 3 Z3 0 --. ' , 3

After interchanging rows, the resulting matrix is:

AW-1. -,
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3~ 3
3~~~ 0 . 3 .3:

.3~R Z, .

No zero diagonal elements will be encountered during the course of'

Gaussian elimin~at ion.

These examples show that our approach indeed can avoid zero diagonal

elements before the elimination and during the elimination. However, as

mentioned before, if there are controlled sources or negative valued

elements with specific set of element values, zero diagonal elements may be

produced due to perfect cancellation.

2.4. Results

The implementation of this new algorithm into the DEC-10 version of

SPICE2 has resulted in YSPICE. In YSPICE, the 'positive' nodes are first

determined by the algorithm presented in Section 2.2. The network matrix

is constructed using the element stamps as in £31]. The sparse matrix

reordering is carried out using the Markowitz criterion [29,32] with

diagonal pivoting. The row interchange is done by one extra set of

pointers.
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Examples which caused computational problems in the original version

of SPICE2 due to pivoting on zero diagonal elements were successfully

analyzed using YSPICE. Furthermore, the results we obtained show that in

many cases the number of fills produced by our ordering strategy is far

lower than that produced by previous methods, resulting in less

computational cost, and at the same time, more accurate solutions.

Here a small selection of the examples analyzed by YSPICE is presented

and the results are compared with those obtained by SPICE2.

Example 2.4: The two circuits shown in Figs. 2.4(a) and (b) were analyzed

using SPICE2 and YSPICE. The CPU times required by the equation solving

subroutines in both programs for both circuits are given in Table 2.1.

Table 2.1 Simulation Data-

CPU time I number of
Circuit for the equation number of operations

solving subroutine variables per iteration

YSPICE2.4( CE 0.9090 sec. 7 16
2 .4(a)

SPICE2 1.9740 sec. 7 71

2.(b)YSPICE 0.031 sec. 10 30

SPICE2 0.108 sec. 10 101

h-
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Fig. 2.4 Example Circuits.
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The difference in the number of operations between YSPICE and SPICE2

in Table 2.1 can be explained as follows: In SPICE2, the matrix formulated

by the modified nodal approach for the circuit in Fig. 2.4(a) is as shown

in Fig 2.5(a). It can be seen that although the number of off-diagonal

elements of the rows and columns corresponding to I, 12, and 14 is small,

they are not chosen as pivots until their corresponding zero diagonal

entries are filled. The delay causes the number of fills to increase

greatly. In YSPICE, the matrix formulated for the circuit in Fig. 2.4(a)

is as shown in Fig. 2.5(b). It can be seen that the number of fills is

now zero due to the off-diagonal pivoting, and consequently, the number of

operations is reduced.

Example 2.5: The circuit shown in Fig. 2.6 was also analyzed using both

SPICE2 and YSPICE. The results of the dc analysis are shown in Table 2.2.

Table 2.2 Simulation Data.

Node 2 3 4 5 6

YSPICE 2.000 V 4.000 V 4.000 V 0.000 V 0.000 V
node voltages _

SPICE2 2.000 V 2.324 V 2.324 V -1.676 V 1675.9999 V
node voltages
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I ~l

1

3 1 iJ 2 i2 4 i4
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x x 1 xo0xo0
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x xgxgxi

00000 i
(a)
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00000 10
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L..OOOX XXX(b) ,,..,,,

Fig. 2.5(a) Structure of the Network Matrix for the
Circuit in Fig. 2 .4 (a) formulated by SPICE2.

(b) Structure of the Network Matrix for the
Circuit in Fig. 2 -4(a) formulated by YSPICE.
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Fig. 2.6 Circuit used in Example 2.5.
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Our approach gave correct results for this circuit vhile SPICE2 gave

inaccurate results. These inaccuracies can be explained as follows: In

SPICE2, if a diagonal element becomes too small, then it is replaced by

1.Ox1O In this circuit this approach is equivalent to connecting a

1.0x1012C- resistor from node 4 to ground. In this circuit the diode is

reverse biased, the equivalent resistance used in SPICE2 for this diode is

O.721xIl 2C , as a result the computed I1 in SPICE2 is 2.324x0-1 A, instead

of the correct value, which should be O.OA. This inaccuracy in computing

I, makes V5 = -1.6760V and V 6 = 1675.9999V instead of O.OV.

2.5 Discussion

In this chapter we have presented an ordering stategy to be followed

when the modified nodal approach is used. When this new strategy is used,

the possibility of selecting zero diagonal pivots is reduced. The new

strategy eliminates the need for having to continuously check the pivot and

to replace it by a nonzero value in case a zero is generated, as is done in

some existing strategies, which is both time consuming and inaccurate.

In addition, if the currents through the voltage sources are not

needed, our ordering scheme provides a convenient way of reducing

computation by performing the backward substitution step only partially to

obtain the required variables.

Although by performing off-diagonal pivoting, the circuit matrix loses

its symmetry and increases the complexity of the program, however, this is not

j a serious drawback. In fact, in many of the examples which we have

analyzed, we have observed that by using off-diagonal pivoting, the number

of fills is much less than that produced by other methods.

____
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III. MODIFIED NEWTON METHOD AND PIECEWISE-NONLINEAR APPROACH

In a computer-aided circuit simulation program, if a circuit contains

nonlinear elements, then a nonlinear solution method is required to solve

the nonlinear algebraic equations in both dc analysis and transient

analysis of the circuit. There are many nonlinear solution methods

available, but the one most widely used is the Newton-Raphson method. This

method has the desirable property that its rate of convergence is quadratic

in the neighborhood of the solution.

Although The Newton-Raphson method has excellent local convergence

properties, it has problems [1,33] when the initial guess is not close to

the solution, such as numerical overflow, slow convergence, )r no

convergence. Several modified Newton-Raphson methods have been proposed to

try to resolve the above problems, and the performance of the basic

Newton-Raphson method has been improved to some extent. Here a new

method - the piecewise nonlinear approach - is presented, and examples are

given which show even further improvement. This method evolved from the

piecewise linear method and previous modified Newton-Raphson methods, so it

has the advantages of both methods. However, this new method is still at

the experimental stage, no definite conclusion about it has been obtained.

This chapter begins with the introduction of the Newton-Raphson

method. In Section 3.2, problems with the Newton-Raphson method are

illustrated. In Section 3.3 the piecewise nonlinear approach is presented.

In Section 3.4, a new modified lewton-Raphson method for bipolar devices *s

detailed and the piecew ise nonlinear approach for bipolar devices including

the avalanche effect is given in Section 3.5. In Section 3.6, the

... Iii i- ,1 1 - A .... - -. . ..
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piecewise nonlinear approach for the MOSFET is described. In Section 3.7,

a discussion of the piecewise nonlinear approach is given.

3.1. The Newton-Raphson Algorithm

Let the set of nonlinear equations be

F(X) = 0 (3.1)

If Xk is the solution at the kth iteration, from Taylor series expansion,

we have

F(X) = F(Xk )  J(Xk) ( X - Xk ) + higher order terms (3.2)

Eq. (3.2) is used to obtain a solution to Eq. (3.1) under the assumption

that the higher order terms are negligible. Thus, we write

+ J-k) (Xk+l-kQ (3.3)

Solving Eq. (3.3) for X+i we obtain

X X - [J(X k)]-F(X k) (3.4)

Eq. (3.4) is called the Newton-Raphson iteration algorithm.

3.2. Problems with the Newton-Raphson Algorithm

The problems of numerical overflow and slow convergence can be

illustrated by a simple diode circuit shown in Fig. 3.1. The branch

constraint for the typical semiconductor diode has the form i = Is(e 4 - I)

Given an initial estimate V to the solution for this circuit as shown in
0

Fig. 3.1, it is not uncommon for the solution V1  to the next

L Aftp
k ;
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Fig. 3.1 Overflow and Slow Convergence Problem with the

Simple Diode Circuit.
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Newton-Raphson iterate to be in the neighborhood of VDD as shown in Fig.

3.1. If the exponent in the diode equation is too large, overflow may

occur. Even if overflow does not occur, convergence will be extremely slow

because of the very large slope of the diode characteristic in this region.

One modified Newton-Raphson algorithm which has proved successful in

avoiding the above problems was proposed by Colon [33]. In this algorithm

iteration on current is employed if Vk+1 exceeds a reference junction

voltage VREF, this is illustrated in Fig. 3.2. This algorithm is used in

the SPICE2 program.

Another problem with the Newton-Raphson algorithm is the lack of

convergence. This is illustrated in Fig. 3.3. The iterate solutions Will

oscillate between Vo and V 1 and never converge to the solution V*.

3.3. Piecewise Nonlinear Approach

This is a new approach which has the advantages of the piecewise

linear approach and the modified Newton-Raphson methods. However, this

method is still at the experimental stage, the proof of global convergence

or conditions for global convergence has not been obtained. We restrict

our discussion to two terminal elements. In this approach, first, a set of

breakpoints is chosen and the device characteristic is partitioned into

several nonlinear pieces. The partition must satisfy the following

constraints:

(1) each piece must be monotonic and the first derivative must be

monotonic too;

1*

L.'
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Fig. 3.3 Example of a Tunnel Diode Circuit.
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(2) the piece must be chosen to be suitable for the current/voltage

iteration to avoid numerical overflow and to hasten convergence;

(3) the number of pieces must be kept as small as possible to avoid

the possibility of slow convergence.

After the partitioning, the following algorithm is used to perform the

iteration:

(1) choose an initial guess Vo;

(2) linearize the circuit by Newton-Raphson method and find the

iterate solution Vk+l (k = 0);

(3) if Vk+ I is within the original piece, then use the moaified

Newton-Raphson method to choose Vk+l, and continue the iteration;

otherwise, if the next breakpoint in the direction of change has not been

chosen before, choose Vk+l equal to it; otherwise go into the adjacent

piece, if the derivative is not continuous at this breakpoint, then choose

this breakpoint as Vk+l again but use the new derivative; otherwise,

choose the other breakpoint as Vk+l and continue the iteration.

This approach is illustrated in the graphical solution that is given

in Fig. 3.4. Here the tunnel diode characteristic is partitioned into

four pieces. The initial guess is Vo located in piece I. The solution of

the linearized circuit is V1 which is not in piece I, so V 1 is chosen to be

equal to breakpoint 1. The solution of the new linearized circuit is V,

which is still not in piece I. Enter piece II and choose breakpoint 2 as

V The iterate solution V3 is not in piece II, go into piece III and

choose breakpoint 3 as V3, the iterate solution V 4 is not in piece III.
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Fig. 3.4 Example of the Piecewise Nonlinear Approach.
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Enter piece IV and choose V&4 as V4, this time, the solution V5 is in piece

IV. Continue the iteration by modified Newton-Raphson method until the

convergence is obtained.

3.4. A New Modified Newton-Raphson Method for Bipolar Devices

In the piecewise nonlinear approach, the diode characteristic is

partitioned into three pieces as shown in Fig. 3.5. In region III, in

order to avoid numerical overflow and to compensate for large higher order

terms, the modified Newton-Raphson method must be used [I1,33,34].

Consider the simple diode circuit shown in Fig. 3.6. The nodal

equation is

F(V) V VDD + I (eV/Vt - 1) . 0 (3.5)

R

By a Taylor series expansion we obtain

F(Vk+I) = F(Vk) + F'(Vk) (Vk+l - Vk) + F (Vk) (Vk+l _ Vk) (3.6)
2

+ higher order terms

' I +Is VkiVt
where F (Vk) (Vk+ I - Vk) (--L- e ) (Vk+I - Vk) and

R Vt

F (Vk) -V+ V)2 i V/Vt 2

2 2*V vk+ " k

If we assume that R is sufficiently large, then the ratio of the third term

to the second term in Eq. (3.6) is

(Vk+1 - Vk) (3.7)

2*Vt

IIII III.-,, .. .. - ]i ,J ltl..
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Fig. 3.5 Diode Static I-V Characteristic.
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Fig. 3 6(a) Simple Diode Circuit.

(b) Newton-Raphson Iteration Solutions for (a).
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If (Vk+ - V ) is not small compared to 2Vt, then the assumption that the

higher order terms in Eg. (3.2) are small and can be neglected is not

true, so the correction term AVk = Vk+ - V k obtained by the Newton-Raphson

method may not be good.

Let -W be the modified correction term such that

V +AV'-VF(V k k k Ae)V+k-DD (Vk+N~)/Vt

F(V + IS(e k 1 ) 0 (3.8)
R S

Because Vk satisfies

F(Vk) + F'(Vk)AVk0 (3.9)

so

F(V k ) + F'(V k) k Z F(Vk + "Vj) (3.10)

From Eq. (3.10) we obtain

(LAW-AVk) (Vk+AVk)/Vt Vk/Vt Avk

R + I e S e (1+ (3.11)s t

From Eq. (3.11) we obtain

AV -/v Av-AV
k kt k_1 =-e R (3.12)

if (4v Vk)/R is sufficiently small compared to the exponential

term I eVk/Vt, then the eq-..tion
s
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v V in - ) (313)
kt

yields a good approximation to the true solution.

Now we would like to find out the relationship of Eq. (3.13) to

current iteration. For current iteration, after obtaining

A
Vk+ I 1 V k + AV k  (3.14)

we can obtain

I e/Vt S Vk/Vt(.

+ (e - 1) AVk  (3.15)

If 'IK+ > -Is , then there is a point Vk+l = Vk + Vk on the dicde

charateristic whose current is Ik+l"

'A I a k V

Is(e(VkfVk)/Vt - !) I (eVk/Vt - 1) - /V A% (3.16)

We obtain

A AVk (3.17)
A V ln(l +-

k t V
t

We can see that Eq. (3.17) is identical to Eq. (3.13), also we can

see that the condition for Eq. (3.16) to have a solution is

A k
& ->(3.18)
Vt

Since if AVk _ O, then Eq. (3.18) is satisfied, so we only need to

consider the situation when AVk < 0. This condition can be explained

graphically in Figs. 3.7(a), (b) and (c). From Eq. (3.15) we see that
A

-i s  Ik+I 7 I1 for -V, AVk A -0. Thus, if the current intercept of the

load line with the linearized diode curve lies in this range, then IV kI

cannot exceed Vt and convergence can be quite slow if voltage iteration is

_ _ _ __I.. . ... .. ... ... . .I
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Fig, 3M7 Three Cases with the Simple Diode Circuit.
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used.

For Example in Fig. 3.7(a) we see that Ik+ 1 > -Is and so

-Vt < AV k _4.0

A
In Fig. 3.7(b) Ik+I = -Is and so

AVk = -Vt

In Fig. 3.7(c) Ik+1 < -I. and so

AVk < -Vt

In cases (a) and (b) IVkl 4 Vt , therefore - of iterations f V

t

voltage iteration is used.

Let us consider the conditions for cases (a) and (b) to be true. From Eq.

(3.9), we obtain

-AVk (Vk - VDD)/R + Is(eVk/Vt - 1)
- , (3.19)

V= 1/R + Is eVk/Vt

Vt

I Vk  -VD - V t  -R*I

1/R +I eVk/Vt + k DD t s

S t R*Vt (3.20)

I
/R +-..eVk/Vt

Vt

Since
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R DD, + IS (e v / v t - 1) - 0 (3.21)

so from Eqs. (3.19), (3.20) and (3.21), we obtain the following

conclusions:

(1) If Vk V then AVk .0.

k Vk VDD V

(2) If Vk -%.V and R . D , then -V ,- A 0. (3.22)

IIs ,. vk - VDD- vt(3) If R and V k are chosen such that V k _ V and R ."

Sand voltage iteration is used in the forward region, then the number of

iteration is lowerbounded by V*-Vk
Svt

For example, if V - V 1.OV and Vt  0.025V,
k

then V-Vk 40.
Vt

The above conclusions show why current iteration must be used in the

forward region.

Now we would like to examine under what conditions current iteration

should be used and if there is a VREF (such as the VREF used in SPICE2) to

determine whether current iteration or voltage iteration should be used.

* A

Let us consider the simple diode circuit in Fig. 3.8. Vk, V and Vk

satisfy Eq. (3.23)
* vk ' *

(eV /Vt - k/V - (3.23)
S (R

Let us consider the limiting case when V* - V << V' then Eq. (3.23)

k

can be rewritten as:
vR*I ev*/v t (*~

.. ! v -V k ) J Vk V (3.24)

L*



-50-

VDD
R

T*

A~ v v V00  V

'S P.7021I

Fig. 3.8 Comiparison of Current Iteration to voltage Iteration.
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so if---Is ev /Vt>> 1, then current iteration is preferred; else if
V

R*Ise V*/Vt<< 1, then voltage iteration is preferred. These two conditions

Vt

are illustrated in Figs. 3.9(a) and (b).

From Eq. (3.24) we can conclude that VREF must satisfy

R*I sV RE /VREF / t (3.25)
V

t

Since the value of R is not a constant, there is no universal VREF.

Experiments of the simple diode circuit with different values of R and VDD

were done to test the above conclusion, and the data are given in Figs.

3.10(a), (b), (c), and (d). These data confirm Eq. (3.25). In Fig,

3e10(a), /Vt is always much larger than one, this explains why

current iteration is always better than voltage iteration; in Fig.

R*I s * sls hnoe otg3.10(b), when VDD is less than 0.I7V, TeV/ is less than one, voltage

iteration is better than current iteration; in Fig. 3.10(c), when V isDD

less than 0.5V, v /vt is less than one, so voltage iteration is better
t

than current iteration; in Fig. 3.10(d), because AV may be less than -1,
t AV

strict current iteration in region III can not be done. Whenever V-is. isVt

less than -1, the next guess is reset to zero, and current iteration is

resumed. for this approach, current iteration is always better than

voltage iteration.

In the conventional current/voltage iteration approach, such as the

one used in SPICE2, there is a universal VREF, if Vk+l exceeds VREF, then

current iteration is used; otherwise, voltage iteration is used. In

4SPICE2, this VREF is set to the point of minimum radius of curvature:

£
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Fig, 3.9(a) Situation When Current Iteration Is Better Than Voltage Iteration.
(b) Situation When Voltage Iteration Is Better Than Current Iteration.
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V V ln(._ t (3.26)
REF t S

From the above analysis, we can see that this VREF does not provide

any guarantee of fast convergence. The simple diode circuit was used again

to test the approach used in SPICE2, VDD = 5V, R = 1000K, the number of

iterations used by SPICE2 is 12, while the number of iterations for strict

current iteration is only 3.

There is another problem associated with the conventional

current/voltage iteration used in SPICE2. This problem is illustrated in

Fig. 3.11. Let us assume that the initial guess is V0  and the first

iterate solution is V . Now we do not know which load lines we are
1z

encountering, because 'both load lines will give us V . If it is load line

1, then voltage iteration should be used; if it is load line 2, then

voltage iteration is too slow. In SPICE2, because V is less than VREF,

voltage iteration is used for both cases. Experimental results show that

for VDD = -5V and R = 1000K the number of iterations used by SPICE2 is 12.

This problem can be solved by using the piecewise nonlinear approach.

Whenever this situation occurs, then the next guess is changed to zero. If

it is load line 1, the next iterate solution is in the first quadrant and

voltage iteration is used to obtain the solution. If it is load line 2,

the next iterate solution is in the third quadrant. The number of

iterations used by recognizing that the load line 2 is being used and

changing the next guess to zero is 3.

Also let us examine Eq. (3.13) again. When Akis positive and much
QV

vt

smaller than 1, then AVk AVk. If the difference between &Vk and Vk is

small compared to the iteration error tolerance, then there is no need to
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do the transformation. Let us assume the error tolerance is 10" 6V, then
AVk

when- -- is less than 0.01, there is no need to do the transformation.

The result of all the above analysis is a new iteration scheme. The

flowchart for this new approach is shown in Fig. 3.12(a), the experimental

data for the simple diode circuit are also given in Figs. 3.10(a), (b),

(c), and (d). These data show that this algorithm works well for resistor

load diode circuits. However, when transistor circuits are solved, the

load line generated by linearization changes during the iterations and the

algorithm goes into limit cycle for some circuits. If the piecewise

nonlinear method presented in Section 3.3 (it corresponds to a

Katzenelson's type algorithm [403 for the piecewise linear approach) is

used, then probably the limit cycle problem will not occur. But the

piecewise nonlinear method only allows one diode to change regions at a

given iteration, so the convergence rate is slow; also the piecewise

nonlinear method requires a linear search to accomplish the task that only

one diode changes regions. So instead of using a strict piecewise

nonlinear approach, the algorithm in Fig. 3.12(a) was modified to

eliminate the limit cycle problem. The flow chart for the modified

algorithm is given in Fig 3.12(b).

Three test circuits were used to test this new iteration scheme.

These three circuits are given in Fig. 3.13(a), (b) and (c), and the data

are given in Table 3.1. These test results show that the new iteration

scheme is superior to the Colon method used in SPICE2.

II
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Fig. 3.12(a) Flowchart for the New Iteration Scheme.
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Fig. 3.12(b) Modified Flowchart for the New Iteration

Scheme.
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Fig. 3.13 Example Circuitg (a) One Transistor Amplifier.

(b) TTL NAND Gate.

(c) Differential Amplifier.

.1
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Table 3.1 Comparison of the Results between
the New Approach and SPICE2.

Number of iterations Number of iterations
Circuit (New approach) (SPICE2)

Fig. 3.13(a) 3 6

Fig. 3.13(b) 7 17

Fig. 3.13(c) 6 7

I

.1
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3.5. Piecewise Nonlinear Approach for Bipolar Devices Including Avalanche

Effects

Although the avalanche charateristic of diode should consist of two

separate exponential functions £35], in order to simplify the analysis,

here the avalanche characteristic is chosen to consist of only one

exponential function. The diode I-V static characteristic used here is

l shown in Fig. 3.5.

In the forward biased region the equation for the diode current is

Id  Is(e /Vt -1) (3.27)

The reverse-biased current before breakdown is

Id = (3.28)

The avalanche current is

Id = eA(VB - B*Vd) (3.29)

The constants A and B are determined from the I-V characteristic curve,

I where VB is the breakdown voltage and Vd is the junction voltage.

I If, in order to hasten the convergence, strict current iteration is

used in pieces I and III, then divergence may be encountered as shown in

Fig. 3.5. Therefore, the piecewise nonlinear approach for bipolar devices

with avalanche modeling is as follows:

(1) choose VO equal to VREF and piece III;

(2) find iterate solution Vk+1 by the new modified Newton method. If

IVk+1 is within piece III, repeat this step.
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(3) otherwise go into piece I, choose Vk+l = 0 and use the new

derivative, if Vk+ 2 is within piece II, then solution is fo.

(4) otherwise, go into piece I, choose Vk+ 1 - VB, and use the new

modified Newton method.

Remark: Only one nonlinear device is allowed to change its region at one

iteration, otherwise, limit cycle problems may occur.

3.6. Piecewise Nonlinear Approach for MOSFET

Let us consider the simple resistor load MOS inverter which are shown

in Fig. 3.14(a). The nodal equation is

F(V) V - DD + 0((VIN - VT)V 2 (3.30)
R 2

By Taylor series expansion we obtain
if

F(Vk+l) = F(Vk) + F (Vk) (Vk+1 . Vk) + F (VR) (Vk+ 1 _ k)2 (3.31)
2

+ higher order terms1

where F (Vk ) ( - - -+ 8 - V- k) k+1 Vk) and

F (V V)2 -$2

2 k+l - 2 (Vk+l - vk)

If we assume R is sufficiently large, then

the third term in Eq. (3.31) -(Vk+ 1 - Vk )____ ___ ___ ___ ____ ___ ___ - k(3.32)
the second term in Eq. (3.31) 2(VIN - VT - Vk )

if (V k+ - Vk) is not small compared to 2(VIN - VT - Vk), then the

assumption that higher order terms in Eq. (3.12) are small and can be

---- ---- - ~-
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neglected is not true, so the correction term Vk  V k+1 - Vk obtained by

the Newton-Raphson method is not good. This may result in very slow

convergence. Fig 3.15(a) illustrates this problem. If the initial guess

is V0, then the first iterate solution is V1 , which is far away from the
*

exact solution V . Because the derivative is large when Vk is negative, so

it requires a large number of iteration to converge to V Fig. 3.15(b)

and (c) illustrate the slow convergence problem with a saturated load MOS

inverter circuit and a depletion load MOS inverter circuit as shown in Fig.

3.14(b) and (c) respectively.

The above slow convergence problem can be resolved by using the piece-

wise nonlinear approach. For example, for the resistor load MOS inverter

circuit, first, the MOSFET characteristic is partitioned into two pieces as

shown in Fig. 3.16, the first piece is from -- to zero, the second piece

is from zero to +f, then the circuit can be solved as illustrated in Fig.

A
3.16. The initial guess V0 is in piece II, the first iterate solution V1

A
is in piece I, so VI is chosen to be the breakpoint zero. Since V2 is

within piece II, the Newton-Raphson method is used to find the solution V

Remark: In the iteration scheme for MOS circuits, the piecewise nonlinear

approach is used for VDS. The change of VGS and VGD are limited by 1V at

each iteration. I
3.7. Discussion I

Two large circuits were used to test the piecewise nonlinear approach,

one is a bipolar circuit as shown in Fig. 3.17, the other is a MOS circuit

as shown in Fig.3.18. The data are given in Table 3.2. The results show

that this method improves the convergence property of the basic I
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Fig. 3.15 The Slow Convergence Problem with the Circuits in Fig. 3.14.
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U
I

3 Table 3.2 Comparison of the Results between
the Piecewise Nonlinear Approach
(PWNL) and SPICE2.

ICircuit Number of iterations Number of iterations
iE'WNL) (SPICE2)

I Fig. 3.17 34 48

Fig. 3.18 10 28

I
I
I
I
I
I
I
I
I
I

[i
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Newton-Raphson method; however, the proof of the global convergence

property or the conditions for global convergence have not yet been

derived. More research work on this topic is needed.
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I
IV. NUMERICAL INTEGRATION

I
A numerical integration method is required to determine the transient

I response of a circuit. In order to make the numerical integration more

i accurate and efficient, some method of dynamically varying the timestep is

needed, this is usually accomplished by a local truncation error (LTE)

timestep control.

Let us denote the upperbound on the local truncation error by ET. In

previous work, ET was established as follows [36]. First, a maximum

I allowable global truncation error GE and the solution interval T aremax

specified. An assumption that this global error is distributed uniformly

within T is made, then the maximum allowable ET per timestep (h) is given

f by

ET - amaX * h (4.1)
T

The LTE timestep control with trapezoidal integration is implemented

as follows. First, the timestep h and tn+1 = tn + hn are determined, the

solution at the timepoint tn+1 is found, then the local truncation error

(LTE) is evaluated by Eq. (4.2).

LTE = * h) 3 DD3 (4.2)12 T-

I where DD3 is the 3rd divided difference [] and tn  T < tn+I .  The kth

divided difference is defined by the recursive relation

DDk'l(tn+l) - DDk'l(tn) - X(tn+) X(tn)
DDkk , DD1 (4.3)

i-I hn+-ii n

If LTE > ET, then the timestep is considered too large, hn is rejected, a

new h. is computed using
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2 2*GEM x
n T*DD3 (4.4)

and then a new timepoint t is determined. If, on the other hand,
n+l

LTE < ET, then the local truncation error at timepoint t n+ is considered

satisfactory, and the timestep h is computed usingn+.

22*GEmax  (4.5)

h n-I-i T*DD3

4.1. Problems with Previous Work

When the above strategy is applied to determine the transient response

of a circuit, there are two problems:

(1) SinceoDD3 is only an approximation of x(T), whenever the timestep

is changed or the input signal changes abruptly, our investigation shows

that DD3 becomes an inaccurate estimate of LTE. This inaccuracy results in

the following unwanted situations. One situation is that at the timepoint

n+19 if LTE < ET, the timestep hn+1  is increased, but at the next

timepoint tn+2, due to the inaccuracy, LTE is now found to be larger than

ET, so this timepoint is rejected and the timestep is reduced. The other

situation is even worse. If, at the timepoint tn  , the input changes

abruptly, then due to the inaccuracy of the DD3 approximation to x(T), LTE

may be greater than ET and the timestep is reduced. Sometimes this happens

repeatedly until the timestep becomes too small and the program terminates.

These two situations are explained in detail later.

(2) For digital circuits, the total solution time T may consist of

several switching intervals. If a stable numerical integration method is

used, initially in an interval the local truncation error accumulates and

the global truncation error (GE) increases, but as the solution nears

.1
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I steady state in a given switch interval the global error decreases, and as

g the solution approaches the steady state the global error goes to zero, so

that the upperbound ET given by Eq. (4.1) is too conservative. This is

3 illustrated in Fig. 4.1.

3 Now we will consider the above two problems in more detail. The first

situation of the first problem can be illustrated by a simple RC circuit as

I shown in Fig. 4.2. In order to simplify the analysis, the backward Euler

method is used. The exact solution for this circuit is

v(t) = 5e-t/T (4.6)I
the solution obtained by the backward Euler method isI v

n
v n+1 " nI hn (4.7)

I where v 5V.0

I The local truncation error estimates at timepoints tn+l and tn are

I LTE h2 * DD2+ (4.8)
LTn+I n l

n-LTE =h 2  * DD2 (4.9)
n n-I n

where DD2nl Vn+Ih  -v n  v n h n v n-l

h n + h n -I.I hn+°
V - V -

DD2 V v n - Vn-I Vn-2In h n- h hn- 2

n n -

n-A-

I
I 

.M,
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Fig. 4 .2(a) Simple RC Circuit.

(b) Waveform of the Simple RC Circuit.
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Let us consider the situation when hn-2 = h h and hn  ah, where

a is a ratio constant. From Eqs. (4.7), (4.8) and (4.9), we obtain

LTEn 1  DD2 n+i 22 2-- l n+ n 2a 2 i

- *a(4.10)
LTEn n 2 a+ 1 + ah

n-1 T

If both LTE and LTE are good approximations of the true local
n+1 n

truncation errors, then from Eq. (4.6), (4.7) and the definition of local

truncation error [36] the ratio of LTEn+l over LTEn should be

LT++ 1 a2n

LTEn+1 2 1 (4.11)

LTEn +ah

Comparison of Eq. (4.11) with Eq. (4.10) shows that the ratio computed by
2a

Eq. (4.10) is wrong by a factor of a-. When a = 1, that is, the timestep

is constant, then the estimation by Eq. (4.8) is good. When a is

different from 1, then the estimation by Eq. (4.8) is not good. Table 4.1

gives the simulation results of the simple RC circuit, which confirms the

above conclusion. The ET used is 10 3V. At the first three timepoints,

the timesteps are kept constant, so the estimation by Eq. (4.8) is good.

At the fourth timepoint the timestep is increased by a factor of two. The

true local truncation error is 0.8930E-3, which is an acceptable error;

but the estimation by Eq. (4.8) is 0.1207E-2, which is larger than ET, so

the timepoint is rejected.

Now we would like to see if this inaccuracy can be explained by the

above conclusion. The ratio of the estimation at the fourth timepoint over

the estimation at the third timepoint is

LI
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I

Table 4.1 Simulation Results of the Simple3 RC Circuit.

I
True local

t(ns) h(timestep) LTE(estinate) truncation error

1.5 0.25 0.2355E-3 0.2339E-3I
1.75 0.25 0.2332E-3 0.2314E-3

i 2.00 0.25 0.2309E-3 0.2293E-3

2.50 0.50 0.1207E-2 0.8930E-3

I

I
I
[



-84-

0.1207E-2 5.227 (4.12)
0.2309E-3

instead of 4 as predicted by Eq. (4.11). However, note that for a 2

2a . 4 133 5.227 (4.13)
a+1 3 4

Eq. (4.13) shows that the estimation of local truncation error is really
2a

wrong by a factor of- as shown in Eq. (4.10).
a+, ssow nE. 41)

Now let us consider the second situation of the first problem. This

situation can be illustrated by a simple RC circuit as shown in Fig. 4.3.

Again the backward Euler method is used here for the simplicity of the

analysis. The exact solution for this circuit is

5e- T t tn

v(t) - (4.14)

e- t/T + 5( •-(t - tn )/T  tvn - n

the solution obtained by backward Euler method is

k<n

vk+1 = I(4.15)

vk

1 + hk/T + I+hk 
n

where v = 5V.
0

In the early version of SPICE2, when tn exceeded a source breakpoint,

then h was reduced such that the value t coincides with the breakpoint.
n-I n

The timestep was reduced to a small value and then the iteration was

-i ;.1
It
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I,

continued. Let us consider the situation when han2  h, hn 1 : ah and

h = bh! where a and b are ratio constants. From Eqs. (4.8) and (4.15), J
we obtain the following estimate of the local truncation error:

LTE =2 2 5 + 2 (4.16)
n+1 [ T(a+b)h T (a+b)

Let us also assume that bh is not small enough, so that

LTEn+1 >ET (4.17)

Then the timestep was reduced and a new timestep ch was computed by

22 b (vn - 5)

c2h 2 5(a+b)h + 2 =ET (4.18)
T~a~bh T 2(a+b)

where c < b.

The local truncation error for this new timestep ch is estimated by

LIE' 2 2 5 c (V n+ 1 - 5)LTEnC+ h [ 7(a- h+ 2(ac (4.19)

n+lct ach T 2(a+c)

It follows that

ch(vn+i -5)
LT '+1 a+b [1l+ 5T ]1
ET -- (4.20)

ET a+c [I+ +h____"5_

5T

Since c < b then (a + c) < (a + b) and for a small enough a the ratio in

Eq. (4.20) could be greater than one. If this is the case, then the step

' .1
I.'
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U size will be reduced again. This could happen again and again. This was

the case in early version of' the SPICE2 program, and frequently after

abrupt clock or signal changes the program would not converge and the job

I would be terminated prematurely.

Remark: In Eq. (4.16), the second term is an approximation to the true

local truncation error, the first term, although it is dominant, is a

Iparasitic term which is generated by the use of voltages at the timepoints

of the previous switching interval.

The second problem is detailed as follows. Let GEmax  denote the

maximum global truncation error at t (Fig. 4.I). Assume that the

I ltrapezoidal method is used and that we are dealing with an exponentially

decaying waveform. The local truncation error at the timepoint t n+I is

I given by

I LTEn+1 ) n t n+ (4.21)

and for this example

I0
LTEn+1 in3 Vn'max (4.22)

12T

From Eq. (4.22) and the definition of local truncation error, we obtain

-hI/T h 3

GE n+1 -GEMAX e n +n3 V n,max- GEmax (4.23)j n~max12T

where GE n+Ibis the global truncation error at the timepoint t n+. Eq.

(4.23) can be reduced to
h I 3  h
12T V "m GE max(_n) (4.24)

1 12j n,max max
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The local truncation error timestep control requires that

h 
3

LTE _2-3 V Se ET (4.25)
n~l 2T3 n~mx

Assuming equality in Eq. (4.25) and eliminating hn/ in Eq. (4.24), we

obtain the following upper bound on the local truncation error.
12 (GE m

ET ! (4.26)V
Vn , max

In order to check the above bound which was derived for RC circuits, a

number of digital circuits were simulated and the following empirical bound

on the local truncation error was -3termined.

ET 10 (4.27)
VDD

where V is the voltage swing which is the supply voltage in this example.
DD

Eq. (4.27) also holds for exponentially rising waveforms. Given GFmax and

VD' then ET can be determined by Eq. (4.27), and then Eq. (4.2) can be

used to control the timestep.

Eq. (4.26) shows that ET is proportional to (GEmax ) for RC circuits

if the trapezoidal method is used. In general, for RC circuits, if a stable

numerical integration method of order n is used, similar derivation as used

above can show that

ET ; (GEma x (n+l)/n (4.28)

Eq. (4.28) was verified experimentally for the backward Euler method and the

trapezoidal method. The RC circuit as shown in Fig. 4.2 was used. The simu-

lation results are given in Figs. 4.4 and 4.5.
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I
4.2. Algorithm

The following algorithm for variable timestep control was developed

I based on the discussion in the previous section. The trapezoidal method is

assumed. ET is computed by Eq. (4.27).

First let us derive an expression for the estimation of the local

truncation error which is used in the algorithm. Let us assume that

I -2 h , = ah and hn = bh. The solution obtained by the trapezoidal

method for an exponentially decaying waveform is

I -h n/2T
vn I m n  (4.29)

1 +hn/2T

the 3rd divided difference is given by
I

I DD2n+ 1 - DD2
DD3n+I h hn_2- -+hn  +h

n-2 n-1 n

3(ahb) bh (4.30)
2(1a+b) 6T3 (1 _ L -- ( + L bhI 2T (1 2T' 2T

where 3(1+b) is the error factor in the estimate of the third
2(1+a+b)

derivative caused by varying the timestep.!
By taking into account the effect of different timesteps, the expression of

local truncation error is given by

h 3

LTE n 3  2(1+a+b) (4.31)ITn+I - 2 n+l * 3(1+b)

[ -~ -F



-92-

or we can define a new quantity DD3' which is given by

DD2n+L DD2n
DD3' . =- .--- (4.32)

n+1 (h n-2 +hn)

nnthen Eq. (4.31) can be reduced to

LTE - * DD3+ (4.33)

Algorithm:

(1) Record the initial time to, final time tf, minimum stepsize hmin '

maximum stepsize h , and source breakpoints.
max

(2) Set the initial timestep h = hmin"

(3) Compute X1  at tj = to + h, X2  at t2 = t + 2h, and X3  at

t 3 = t0 + 3h.

(4) Set n z 3 and compute LTE by Eq. (4.33).

(5) Compute hn = h - . If hn < 0.6h, then h = hn  and go to (3);

otherwise, continue.

(6) Compute tn+1 = tn + hn . If in+1 does not exceed a source

breakpoint, then go to (7). If tn+1 exceeds a source breakpoint, then hn

is reduced such that the value t n41 coincides with the breakpoint. Compute

Xn+ 1  for this breakpoint. Compute LTE by Eq. (4.33), compute hn+, if

hn+ 1 < o.6h n , then hn z hn+1 and go to (6); otherwise, set h hmin and

to 2 tn+i, then go to (3).

. . .. .-.. ..-
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(7) Compute Xn+ 1. Compute LTE by Eq. (4.33), compute h n1 , if

ht+1 < 0.6hn, then he = hn+, and go to (6); otherwise, continue.

i (8) If t > tf, then stop; if not, then n = n+1, and go to (6).

I Remark: The above algorithm has been derived for a fixed order variable

stepsize method which uses the trapezoidal rule. Our simulation results

I show that the problems we mentioned before in this chapter are resolved by

1 this algorithm. If other fixed order methods are to be used, then the

corresponding equations should be modified.

I
II
I
I

.1

,1

!-- __ 7
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V. TEARING METHODS AND SPARSITY CONSIDERATIONS FOR NODE TEARING METHOD

There are two kinds of tearing methods - the branch tearing method and

the node tearing method. The idea of branch tearing was first introduced

by Kron (12]. Recently Chua and Chen (163 have shown that the branch

tearing is just a special case of generalized hybrid analysis. The main

idea of branch tearing is to select a set of tearing branches first, then

the given network is torn apart into several subnetworks by removing these

tearing branches (Fig. 5.1), analyzing each subnetwork separately, and

obtaining the solution of the entire network by combining the solutions of

the subnetworks via the tearing branches. Algebraically, this method is

equivalent to a particular ordering of the hybrid analysis equations such

that the resulting matrix has a bordered block-diagonal structure (Fig.

5.2). Each block corresponds to a subnetwork, and the border corresponds

to the interconnections of the subnetworks.

The idea of node tearing was first introduced by

Sangiovanni-Vincentelli, Chen and Chua £20). The main idea is to select a

set of tearing nodes first, then the network is torn apart into several

subnetworks by removing these tearing nodes (Fig. 5.3), each subnetwork is

analyzed separately, and the solution of the entire network is obtained via

the tearing nodes. Algebraically, this method is equivalent to a

particular ordering of nodal analysis equations such that the resulting

matrix has a bordered block-diagonal structure (Fig. 5.14). Each block

corresponds to a subnetwork, and the border corresponds to the

interconnections of the subnetworks.

111. 7
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I Recently, because tearing methods possess several advantages over

conventional circuit analysis methods, a lot of effort has been devoted to

£ the study of tearing methods for the analysis of large scale circuits. The

advantages of tearing methods are as follows: First, tearing methods are

suitable for the exploitation of the repetitiveness of a limited number of

subnetworks; secondly, tearing methods are suitable for the exploitation

of latency; thirdly, tearing methods are suitable for parallel processing.

IIn order to solve the network by tearing methods one must specify a

Ipartitioning strategy, and also one must specify a technique for solving

the partitioned equations. In the literature mostly the branch tearing

Umethod has been used to solve large networks 122-24]. The solution

strategy has been to estimate the current or voltage at each tearing port

i and to excite the torn subnetworks with independent sources at these ports.

The remaining port responses are computed, and are substituted into the

6 interconnection equations. If these equations are not satisfied, then

another estimate is made of the variables chosen as port excitations. This

iterative procedure continues until convergence is achieved. If the

subnetworks are nonlinear a multilevel iteration scheme is used, such as a

Gauss-Seidel [22], Newton-SOR [24] or a multilevel Newton iteration [42].

However, the first two iteration schemes do not have second-order

convergence while the third scheme requires the computation of an

add-itional Jacobian matrix.

Because the above approach introduces new variables, such as tearing

1 branch currents, the complexity, of the problem is increased. Also, a

multilevel iteration scheme is required. Another disadvantage of the

I branch tearing method is that each subnetwork must contain the datum node

for the network, or else a local datum node must be chosen for each

subnetwork. In the program SLATE a different approach is used, and the
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internal subnetwork variables are eliminated from the tearing node

equations. Then the tearing node voltages are computed. Only a one level

Newton iteration is required, and the internal variables for each

subnetwork can be eliminated using parallel processing methods. The

elimination of the internal variables is equivalent to replacing the

subnetworks by Norton equivalent circuits at the tearing nodes.

In our study of tearing methods it was assumed that the user specifies

the subnetworks, and any part of the network not specified as a subnetwork

is automatically included in the subnetwork called rest of network in Figs.

5.1 and 5.3. The subnetworks are processed first in the solution

algorithm, and the tearing branches or nodes along with the rest of network

equations are processed last. Thus, the branch tearing method and the node

tearing method described in Section 5.1 and Section 5.2 are somewhat

different from those found in the literature r12-141. T, Section 5.3, a

comparison between branch tearing and node tearing is given. In Section

5.4, the derivation of the construction of the node tearing matrix from

subnetworks is detailed. The sparsity considerations for the node tearing

method are presented in Section 5.9. The implementation of node tearing is

described in Section 5.6. The circuit interpretation of the tearing

methods is given in Section 5.7. Some conclusions are given in Section

5.8.

5.1. Derivation of the Branch Tearing Method

Let N be a connected network having (n+1) nodes: the datum node n0

and the nondatum nodes o = ln,,n 2 . .. . .. 9nn , and b branches,

S1bi9b2 .. . .. .. bb. Let the branch voltages, branch currents and the

T
node-to-datum voltages be denoted by e (e i e ..... e )

-. e 9  b'

A.- d1
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(i i 2 . . . . . . i )  and v (v,v 2 . . . . . . V) respectively. Let the

interconnection be defined as the remaining part of the network when all

the subnetworks are removed, that is, the set of tearing branches and the

I rest of the network in Fig. 5.1. Let us aasume that a proper set of

g tearing branches has been chosen such that there is no mutual coupling

either among the torn subnetworks or between the torn subnetworks and the

interconnection, and that all subnetworks contain the common datum node.

This latter assumotion is made in order to avoid floating subnetworks which

I result in singular submatrices. The more general case when all subnetworks

g do not contain a common datum node is discussed in r17]. Subscripts s, t

and r are used to denote quantities pertaining to the subnetworks. the

tearing branches and the remaining branches, respectively, so the branch

set 9 is partitioned into three subsets 8s, St and Sr (Fig. 5.1), and the

node set C is partitioned into two subsets csand r. This yields the

jfollowing special structures for the reduced incidence matrix A and the

branch ionductance matrix G of network N:

SB S r

A S (5.1)
Of 0 A A5

s t r

G 0 0
s -3 S

G t o G 0 (5.2)

r 0 _O*

ti
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Let the torn network have k subnetworks Ni, N2 , . .. . .. ,Nk. Let os

and 3s  be partitioned correspondingly into k subsets oi (29 ...... 1Qk and

S i t a2, ...... 9ak respectively. With this partitioning, the node-to-brancn

incidence matrix A can be written as

1 2 .... k Otof t A tl

Qe A 0

A • 0 (5.3)

0 .

k Ask A tk

1r 0 Art ,Arr
\II

I /

the branch conductance matrix G can be written as:

33 a .3 13
1 2 k t r

13 G0
1I '.sl

2 os2 _

G 0 0 (5.4)

* 0 I

k 2 skI

0 ;Gt 0
-- o- --3t  0 'SOrG

r o

A -

J
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I
The network variables are constrained by the Kirchhoff's current law

I (KCL), Kirchhoff's voltage law (KVL) and the branch constraint relations

(BC) [28).

(KCL) A i + A t = 0 (5.5)

A i + A i r 0 (5.6)

(KVL) e = A Tv (5.7)

AT
-- ATv + v (5.8)-t -,,s -r,-r

T T

A A T v (5.9),%.r Zrr r

(BC) i = I + Gspe- Gges (5.10)

t ~t s + z- t -Z;.-t S5tt

i=I + G e G e (5.12)
~--r "-r S ,,P--r "~v ,,Es

Substituting Eqs. (5.7), (58) and (5.9) into Eqs. (510) and (5.12), and

then substit-iting the results into Eqs. (5.5) and (5.6), we obtain

A G A Tv + A i=- J (5.13)

Arl A G A T V = O (5.14)
rtt ~rr--rrr -rs

Substituting Eq. (5.8) into E q. (5.11), we obtain

ATv - Z i + AT v = E (5.15)
-- B ,,--t -rt-r - s

where J A G e -A I

-" J :A Ge -A I
-.rs -rp-v.-rs -rr,-rs
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A
and E :e -Zian ts " ts " Z-ts"

Eqs. (5.13), (5.14) and (5.15) can be rewritten in the following form:

AGA T  A 0 v
,,9%-,SFS ~t- S ,Ss

T T
A A i E (5.16)

t -C r -t -Cs

0 A A G A v J-rt-rv--v,-rr -r -rs

Let us now examine the term As Gs.AT in Eq. (5.16). Substituting A of Eq.
S -S

2 Ys2

TT

A G of Eq.. 0 (5.17)

•0•

\t y

k y-sk

where Y = A G AT J=1,2 .......,k,
~Sj ~s jS s) sj

so Eq (5.16) can be rewritten as:

I /

Y A tl v rl J ssl

~s2 --t2 -r2 ss2

'00 0I

0• (5.18)

Lsk .tk v k k
AIT AT  T I AT

-tl -t2 -tk t"Z rt t E t

-rt -r _ _rs

o -- ---- --r - -.--.---
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where Y A vG TA Eq. (5.18) is the resulting matrix by branch tearing

method, which has the desirable bordered block-diagonal structure and it is

a particular ordering of the hybrid analysis equations.

5 I5.2. Derivation of the Node Tearing Method

Let the interconnection be defined as the remaining part of the

network when all the subnetworks are removed, that is, the set of tearing

3 nodes and the rest of network in Fig. 5.3. Let us assume that a proper

set of tearing nodes has been chosen such that no coupling exists either

5 among the torn subnetworks or between the torn subnetworks and the

interconnection. The node set a is partitioned into three subsets as , a

and ar, and the branch set 8 is partitioned into two subsets 8S  and3 r

(Fig. 5.3). This yields the following special structures for the reduced

incidence matrix A and the branch conductance matrix G of the network N:I

S A 0

A a A A (5.19)
t - tts -tr
rC1 0 A=

i r
G aI s r

G - Sj (5.20)B 0
r E

I
I.
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Let the torn subnetwork have k subnetworks Ni, N 2 Y .. . .. . ' N k  Let

and B be partitioned correspondingly into k subsets C11' a2 ..... ' ak

and 3 1, 8 2 .. . . . . 8 k respectively. With this partitioning, the node-branch

incidence matrix A can be written as:

a. 2..... aB I a

of A
I sI

2 As2 I

A .•0 (5.21)

A I

t .tsl _.ts2 -tsk I r

r 0 -i

The branch conductance matrix G can be written as:

1 2 . r

i

I G G
2 Zs2

" 0 I
S 5

G '0 (5.22)

* 0

k. 2 skI

r

o -li
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The network variables are constrained by the Kirchhoff's current law

(KCL), Kirchhoff's voltage law (KVL) and the branch constraint relations

(BC).

(KCL) A. = 0 (5.23)

I At£ i + A (5.24)

A- :0 (5.25)

I TT
(KVL) e = ATv + A v (5.26)

e = AT v ATV (5.27)

(BC) i = I + G e - G e (5.28)
~s -SS ~-SS -&SS

i = I - G e (5.29)
~r .-rs -.r-r -t'-rs

Substituting Eqs. (5.26) and (5.27) into Eqs. (5.28) and (5.29), and then

substituting the results into Eqs. (5.23), (5.24) and (5.25), we obtain

A G AT  + AGA T v =JS (5.30)

T T I~s~

A G ATv + (A G AT  + A G AT )v + A G ATV J (5.31)tts tss-ts -tr-v.-tr - t cr.V--r~r -ts

Av T
,A G~vvt + A O6v J (5.32)_tv r wr, r _rs

*1where J :AGe - &

J :A G e -A I + A G e -A I
-Cs -.-- ss -Ce--ss ~tr-D-rs tprs

and J A G e - A I
IPr s --,P rs S ,,-rs

Eqs. (5.30), (5.31) and (5.32) can be rewritten as:

I



-1.08-

T T
A G AT  A G A 0 v

T T T T
At GAs At G +It AT G A GA v 3
t&..S.S.S .. S.S-..s .t r---tr r-r-r -t = (5.33)

0 AGA A G A T v J
r r t r-rr -r -rs

TLet us now examine the term A G AT in Eq. (5.33). Substituting the A of !

Eq. (5.21) and G of Eq. (5.22) into A G AT , we obtain

Ct y

1 i - 2 . . ..l.
1i 4S

of2 Ys2
T

AG f. . 0 (5.34)

* 0

kL Ysk

where Y. A GA T J=1,2 ........,k

so Eq. (5.33) can be rewritten as:

1 ~I -sts Js
l I v

0Xs2 o I1x9t 2  42 Js2

0 " " .(5.35)

s k tk -sk -ssk

y s ts2 . '.. tsk t-Ytt I -tr V _it

0 Y v J
rt 1rr r ,r s

, - : 000,
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where Y = A G AT j=1,2 ...... kI -Stj -s-j.. ts

'Yrs = A G A T  J=1,2, ..... k

= ~tsssj ......

I AYG A T  +A T
~-t t -s- S--Cs -r--Cr

,Y :A AT
~rt _tr-2-r

,Y :AG-AI -rt -vZ-rC

T
and Y =A G A.

Irr -- r

Eq. (5.35) is the resulting matrix by node tearing method, which has

the desirable bordered block-diagonal structure and is a particular

ordering of the nodal analysis equations. In the above derivation the

modified nodal method could have been used. In this case the vectors v
-s

and v consist of hoth node voltages and currents of branches for which an
_r

admittance description presents difficulties. This is actually the

formulation used in the program SLATE.

5.3. Comparison of the Branch Tearing Method with the Node Tearing Method1
As described above, branch tearing is equivalent to a particular

jordering of the hybrid equations, node tearing is equivalent to a

particular ordering of the nodal equations, so branch tearing requires the

use of tearing branch currents as extra variables. As a result of the

I
I
I
I



above property, node tearing possesses the following advantages over branch

tearing:

(1) the dimension of the matrix formulated by node tearing is smaller

than that formulated by branch tearing;

(2) the number of nonzero entries in the matrix formulated by node

tearing is smaller than that formulated by branch tearing [201;

(3) for passive networks, node tearing generates a diagonally-dominant

matrix, so any application of the Gaussian elimination method with diagonal

pivoting is stable, while this is not the the case in the branch tearing

method;

(4) usually, in the analysis at' large scale circuits, node tearing

preserves the identities of' the resulting torn subnetworks, while branch

tearing sometimes destroys the identities of the torn subnetworks.

However, one can generate examples in which the opposite is true, but these

situations were not encountered in our examples.

The above conclusions are not conclusive; although the dimension at'

the matrix formulated by branch tearing is larger than that at' node

tearing, the extra nonzero entries are either +1 or -1. If this property

is fully exploited, then node tearing may not be so advantageous. But full

exploitation at' the property that extra entries are either +1 or -1

requires a much more complicated sparse matrix technique. So node tearing

is pref'erred and is used in the program SLATE.
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5.4. Constructing the Node Tearing Matrix from Subnetworks

In Section 5.2, the derivation of node tearing is given; however, in

I the real implementation we do not want to solve the whole matrix equation

at one time. We would like to process each subnetwork separately, and then

obtain the solution of the entire network by combining the results of

U subnetwork process.

I

In the following the procedure of constructing the node tearing matr.x

from subnetworks is detailed. Let us consider one subnetwork Ni . Let the

tearing nodes which are connected to Ni be denoted by oti' the node voltage

of 'ti be denoted by vti' the nodes of Ni be denoted by ai, the node

voltages of ai be denoted by vsi, and the currents which represents the

1 relationship of the rest of the network with this subnetwork be denoted by

i (Fig. 5.5). vti and Jti satisfy the following relations:

Uzt (5.36)I~ I.

E = ti 0 (by KCL) 
(5.37)I3.

I
1
I_ _ _ _ _ _ _1
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To the Rest
Subntwok Ni4,2 of the Network

RP- 7001

Fig. 5.5 One Subnetwork.
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I
The node equations for this subnetwork have the following form:

I 
i 

A 
Kti 

II

,

By augmenting with appropriate zeros to match the dimension and summing Eq.

(5.38) for all the subnetworks and the interconnection, we obtainI
I

ysl I s 2 
-

I Ys*t s j

I.

ly V

- s 2 0 I Yst2 -s Z. 2

0 ". ""(5.39)

Ysk -stk i 2 ssk

Ytsl Yts2 4tsk I-tt I -tr -v itsI 0 4 . . .

-Irt Irr -vr a00r rs

T

I



We can see that Eq. (5.39) is identical to Eq. (5.35).

Eq. (5.39) is solved by first eliminating all theYtsi to obtain the

interconnection matrix equations.

Y tt Y r v It

(5.40)

* k )-I~

* k

an 2st =  st I: Ytsi ( Ysi JS

i= 1

Eq. (5.40) is solved to obtain solutions for v t  and v r , and then the

solution v . can be obtained by using backward substitution.

The above solution procedure can be modified to enable us to process

each subnetwork separately to obtain the interconnection matrix equations.

Let us consider Eq. (5.38) again, after eliminating Y s, we have

CI.I
. I f ti

U L. . L.I  0
S, usi I -si si -si. ~Si SSI ~0L Is " I

-W I %I +iLi L

where L U 2Y
-s i.si ~Si'.

Y * Y -Y
tti Ytsi __si i L -u.--- -
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I . ~-
and i i Y (

atsi = tsi - si -s i J  "S

The partial interconnection matrix equations obtained from Eq. (5.41) are

=tt t = I + t (5.42)

By augmenting the above arrays with appropriate zeros to match the

dimension of Y (this is only conceptual, because sparse matrix techniques

I are used and every elment is put in the appropriate location in a one

dimensional array) and summing up Eq. (5.42) for all the subnetworks and

Ithe interconnection, we obtain Eq. (5.40) again.

Since Z J 0 by KCL, therefore J does not appear in the final

i1ti2- -ti
matrix equations (5.39) and (5.40), so we can neglect J. in both Eqs.

(5.38) and (5.42).

I So the modified solution- procedure is as follows:

1(1) Formulate the simplified Eq. (5.38) for each subnetwork, i.e.

i 0ti

i Si st s SSI (5.43)

(2) Process Eq. (5.43) to obtain the simplified Eq. (5.42) for each

subnetwork, i.e.I
= ts (5.44)I@ tJ )
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(3) Sum up Eqs. (5.44) for all subnetworks and the interconnection

with appropriate dimension match to obtain Eq. (5.40);

(4) Solve Eq. (5.40) to obtain vt and vr;

(5) Solve the upper part of Eq. (5.41) by backward substitution to

obtain V I for each subnetwork Ni.

5.5. Sparsity Considerations for the Node Tearing Method

Now let us compare different ways of sparsity exploitation for

processing Eq. (5.43). For the solution procedure discussed in the

previous section, both LU factorization and substitution procedures are

required. In SLATE the modified nodal equation formulation and the new

reordering strategy described in Chapter 2 are used at the subnetwork

level. After the current variables and the corresponding 'positive' node

voltage variables are eliminated, the final subnetwork matrix is

structurally symmetric. So here we assume that the subnetwork matrix is

structurally symmetric, under this assumption, there are two possible LU

factorization procedures we would like to compare. there are other

procedures described in 138), but these procedures are either equivalent to

them or are less efficient.

The two LU factorization procedures are denoted by F1 and F2 £38), and

are given in Table 5.1.

-1

whereL U ' V L
Zs k-s k -sk' - sk' tk'

T A1 i -1
W = Y UV

- ts1k'k - sl

and LtkUtk :ttk : ttk "tskUsWs 2 stk '

-Aft
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" I
I

I Table 5.1 Possible Factorization Procedures.

I

I F 2

i Lk u -sk k sk 0 1 v
IT Ltj 0lok s L k 0 Utk

I

I
I
I

I

.I
[ 2,
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In Fw only those rows of hich are required to compute V are2' onytoeroso Vreq ~
computed, V consists of those rows of V corresponding to the nonzero

columns of Ytsk"

Let 1.1 denote the number of nonzero elements in a vector or a matrix,

and M(.J) and M(J.) the jth column and the jth row of matrix M,

respectively. Let nt  denote the number of tearing nodes, and B(k)

satisfies the following relation.

r k=O

B(k) = (5.45)

1 k 1, k integer

The following lemmas are used to compare the number of operations between

F and F2.

Lemma 5.1. Suppose the subnetwork matrix is structurally symmetric, then

the number of rows of [ equals the number of nonzero rows of V.
-req

Proof: From the definition of V p, we know that any nonzero row of V which

is not a row of V must consist of only fill-ins. Suppose it is row i,

then there must be a nonzero row j of V , J < i, and a nonzero L Row

j together withLskij creates the fill-ins of row i. Due to structure

symmetry, there also must be a nonzero U sk,ji So in order to evaluate the

row j of Vp, it is necessary to evaluate the row i of V.

Lemma 5.2. Suppose the subnetwork matrix is structurally symmetric and Y

is mxm, then the difference in the number of operations between F1 and F2

(DNF) is:



DNF = LI v- ) t I I (l5 () 1I(j.)l :(
j=1 j.1

U j=2 i-j+1 j

if V rqis full, then
r eq

DNF Lj-i) t~.(i-)I - E dL 8ki) -1)n- 1y(iiI)B(Iy(i.)I)
j21. j.1

t- yLtskl (5.47)

5Proof: DNF E (J .~ - 1)IW(j.)I + z IwT(.j)I Iv(i)I

j=2 i~jl re j=1 req

E E~i1 -u6~iI~ e~-I-Z ys -~j e j (5.49)

From steutua 5.1, ety obtain ai

I IW~req - 2 !V-)I Bjy(*) (5.52)

Sustttn Eqs (5.9) (5.0) (5.51) an(55)5noE.1

(5.48)ma5., we obtainEq (54)

-req

Substituting Eq. (5.53) into Eq. (5.46), we obtain Eq. (5.47).
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Associated with F and F,> there are five possible substitution

procedures denoted by Si , Sl, S1 , S2 , and S. [38] which are given in

Table 5.2, where b req consists of the rows of b which are required to

compute b . bp are those rows of b corresponding to the nonzero columns of

-p -p
- tsk"

Let C(.) denote the number of operations required in performing a

given procedure S. By comparing the entries of the five substitution

procedures in Table 5.2, the following equation is obtained.

C(S1 ) - C(S) C(s 2 ) - C(S 2 )(.54)

In large scale integrated circuits, most of devices are nonlinear.

Due to the current sources generated by Newton-Raphson iteration and

numerical integration, it is reasonable to assume that the source vectors

4ssk and 4tsk are full. Also, since Vsk and Vtk are the required node

voltages, it is reasonable to assume that they are full. Under the above

assumptions, we obtain the following lemmas.

Lemma 5.. a, b, y, and ^ are full.

Lemma 5.4. Suppose that the subnetwork matrix is structurally symmetric,

then the number of rows of b req equals the number of nonzero rows of V.

Lemma .j. Suppose that that subnetwork matrix is structurally symmetric

and Y sk is mxm, then the difference in the number of operations between S1

and S1 (DNS1) is:

-I
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DNS1 = C(S1 ) - C(S1 )

m mm

='1 Vsk j=l'-tsk
m

=IV1-l Y s I -!: (JUsk ( j ) I - 1 ) B (  Qj ) I

m

=(number of fill-ins in V) - (IlUsk(j.) l-)B(V(j )I) (5.55)

Lemma 5.6. Suppose that the subnetwork matrix is structurally symmetric

and Ysk is mxm, then the difference of number of operations between S1 and

S I  (DNS2) is:

DNS2 = C(S1 ) - C(SI
n t n t m

" DNS1 j I'V('j)I-jIIY tk('J) II L sk(.'B(IV(j')
m m

DNS1 lvl-lYtskl-j--l" (lusl,(J') -I)B((V(J')[)-j-B(fV(j.)I)
m

2DNS1 - IVB(jV(j-)I) (5.56)

Remark. From Lemma 5.6 we can conclude that if C(SI) < C(SI) then

C(Si) < C(S1 ), that is, only when C(S1 ) > C(S1 ) do we need to compare Sl

with Sr*.

eMa 5.7. Suppose that the subnetwork matrix is structurally symmetric

and Y is mxm, then

C(S1*) < C(S 2 ) (5.58)

Proof: From Eq. (5.54), we obtain

* _ . . . . .

bA
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C(S1) 1 C(S2) =C(S) C(S2 ) (5.59)

So we only need to prove C(SI ) - C(S2 ) < 0

+M

=j-l(IUsk(i) -1)(B(IV(J')I)-Z 2 (j ) I)  (5.60)

Since
I I (j) I-B(IV(j

"  I[) (5.61)

and
Iz2(j) IlIz4 (j) 1 (5.62)

so we have

[ IZ (j ) I B ( V ~j ") 1) (5.63)

Substituting Eq. (5.63) into Eq. (5.60), we obtain

C(S*) - C(S*) " 0 (5.64)

From Lemma 5.7, we know that S2 and S2 are not as efficient as the

other procedures, so they are eliminated from the list of possible

substitution procedures. Now we are left with S1 , S1  and S. The

* possible combinations of factorization methods and substitution methods are

F1 + Sl, F1 e+ SI, F1 + S1 , F2 + SI , and F2 + S1 . Theoretically we can

not eliminate any of these five combinations, because we can always come up

with a special subcircuit structure for which a particular combination

gives the best result. However, after conducting a large number of

Ir studies, we found experimentally that F1 + S,. gives the best results for

A all the practical circuits we used; moreover, F1 + S1 is well compatible

A.

- - ... 1... .. 9,
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1
with the sparse matrix techniques and is the easiest one to implement, so

F1 + S I was chosen to be used in the program SLATE.

In the following we would like to present a small selection of the

examples which we have analyzed by using Lemma 5.2, Lemma 5.5 and Lemma

5.6.

Example 5.1. The subcircuit used is a TTL two-input NAND gate with

parasitic resistors included (Fig. 5.6). The admittance matrix for this

subcircuit is shown in Fig. 5.7.

DNF = 20 - 23 - 39 = -42

DNS1 = 9 - 13 -4

DNS2 -8 - 10 = -18

so the best combination for this subcircuit is F1 s S1 .

Example 5.Z. The subcircuit used is an ECL two-input NOR gate with

parasitic resistors included (Fig. 5.8). The admittance matrix for this

suboircuit is shown in Fig. 5.9.

DNF = 17 - 15 - 27 = -25

DNS1 = 6 - 8 = -2

DNS2 -4 - 6 - -10

so the best combination for this subeircuit is F. + SI .

Example The subcircuit used is an MOS two-input NAND gate with
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I Fig. 5.6 TTL Nwo-Input NAND Gate.
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23 22 5 6 3 8 7 9 10 11 12 4 14 15 16 17 IS 13 2 19 20 21
(5) 23 1 0 X 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0
(6) 22 0 1 0 X 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 X

(23) 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(22) 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 00 xO0 0 00 xO 00 00 00 00 00 00
8 00 0 00 X XXO0 00 00 00 00 00 00 0
7 00 0 00 X X X0 000 00 0 00 0 x00 0
90 00 00 XX X 000 00 0 00 00 F 0X

10 0 0 X 0 0 0 0 0 X X X0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 X 0 0 0 X X X 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 X X X X 0 0 0 0 0 0 0 0 0 0
4 00 0 X 0 00 00 0 X O 0X0 0 XC 0 00 00

14 0 0 0 0 0 0 0 0 0 0 0 0 X X 0 0 0 XX 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 X X X 0 0 F X F0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X 0 0 X 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X 0 X F 0 0
18 0 0 0 0 0 0 0 0 0 0 0 X 0 F X X X F FF 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 X X 0 0 F X FF X 0
2 0 0 0 00 0 XF0000X F 0X F F XFF F

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X F F F FX F F
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X FF X F
21 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 FF F X

Fig. 5.9 Admittance Matrix for the Subcircuit in Fig. 5.8.
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I parasitic resistors included (Fig. 5.10). The admittance matrix for this

3 subcircuit is shown in Fig. 5.11.

DNF 18 - 9 - 30 = -21

DNS1 3 - 5 -2

DNS2 = -4 - 7 = -11I
so the best combination for this subcircuit is F1 + S1.

These three examples show that at the subnetwork level the best

combination is F1 + S1 .

jFor the interconnection matrix, because this matrix has the same

property as that of the matrix formulated by the MNA for any circuit, so

jthe new reordering strategy of the MNA and the Markowitz sparse matrix

scheme are used to exploit the sparsity at this level.I
1 5.6. Implementation of the Node Tearing Method

As concluded in the previous section the best combination at the

subcircuit level is in most cases F1 + Sl, now we would like to describe

jthe implementation of this approach. First, at the subcircuit level, the

source vector is appended to the matrix to form

!.V~k jstk Jssk'

1tsk ittk tsk 
(5.65)

Secondly, use the new reordering strategy of the MNA and the Markowitz

I sparse matrix scheme to find the LU factorization Of Isk. The LU

I AJ
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Ii

!
!

13 2 5 4 8 9 3 7 6 10 11 12
(2) 13 1 X 0 0 X 0 0 0 0 0 0 0

(13) 2 0 1 0 0 0 0 0 0 0 0 0 0

5 0 0 X X 0 0 0 0 0 0 X 04 0 0 X X 0 0 X 0 0 0 X 0
I 8 0 x 0 0 x x 0 0 0 0 0 x

i9 0 0 0 0 X X 0 0 0 0 0 X

3 0 0 0 X 0 0 X X 0 0 F 0
7 0 0 0 0 0 0 X X X X F 0

.6 0 0 0 0 0 0 0 X X X F X
10 0 0 0 0 0 0 0 X X X F F

11 0 0 X X 0 0 FF F F X F

12 0 0 0 0 X X 0 0 X F F X

I
I
I

Fig. 5.11 Admittance Matrix for the Subcircuit in Fig. 5.10.

I
I
I
I
I
I
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factorization operates on the whole matrix but terminates after the LU

factorization of Ysk is obtained. Now the original matrix is transformed

into I I

Lsk -sk -stk I-sk -ssk

(5.66)

Y*g
Ztsk Esk Lttk

Thirdly, formulate the interconnection matrix equation (5.40). Fourthly,

use the new reordering strategy of the MNA and the Markowitz sparse matrix

scheme to find the LU factorization of Eq. (5.40), and use forward and

backward substitution to find the solutions for vt and vr" Fifthly, use

backward substitution to solve the upper part of Eq. (5.46) to obtain the

solutions V~sk"

Remark: The reordering of the subnetwork and network matrix equations is

done in the preprocessing phase. The subnetwork matrix equations are

reordered first. So when the network matrix equations are reordered, the

structures of all the Y 's are known. From the structures of all the Y tk
ttk

and the circuit description of the network, we can reorder the network matrix

equations by the new reordering strategy of the MNA and the Markowitz sparse

matrix scheme.

: L ........... 1 P
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I
5.7. Circuit Interpretation of the Tearing Methods

Although the derivations of the tearing methods are quite

I mathematical, there is a very simple circuit interpretation. The node

tearing method is just a generalized Norton equivalent circuit approach.

II The branch tearing method is just a generalized Thevenin eqivalent circuit

I approach.

Let us consider node tearing first. Consider the special case when

there is only one tearing node. The partial interconnection matrix

jequations (Eq. (5.42)) that we obtain for each subnetwork are just the

Norton equivalent circuit matrix equations for that subnetwork. This is

illustrated in Fig. 5.12(a). So for the case when there are more than one

tearing node, Eq. (5.42) is just the generalized Norton equivalent circuit

I matrix equations for each subnec. See Fig. 5.12(b) for an illustration of

the case of two tearing nodes.

Now let us consider branch tearing for the special case when there is

only one tearing branch. The partial interconnection matrix equations that

we obtain for each subnetwork are just the Thevenin equivalent circuit

matrix equations for that subnetwork. This is illustrated in Fig.

15. 13(a). So for the case when there is more than one tearing branche, the

partial interconnection matrix equations that we obtain for each subnetwork

are just the generalized Thevenin eqivalent circuit matrix equations for

that subnetwork Fig. 5.13(b) illustrates the case of two tearing branches.

i
- - - - II - I I ... . . . . . . . ...... ... - - - - - ---- i . . .. . -II .. .....
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5.8. Discussion and Conclusion

The reason why we considered many possible LU factorization and

substitution procedures at the subnetwork level is that at the subnetworkc

level we only want to perform Gaussian elimination for the variables v sk

and the elimination procedure terminates after the LU factorization of Y s

is obtained. At the interconnection level, because we perform the Gaussian

elimination for all the variables, only one LU factorization and

substitution procedure is used.

As discussed in Section 5.5, it is possible to generate special

subcircuit structures for which some other combinations give better

results, however, our experimental results show that even for these

specially constructed circuits the difference of the number of operations

is only 1 or 2 most of the time, so this very small savings does not

justify the extra difficulties of implementation associated with these

other combinations; moreover, for all the practical circuits we tested,

F + S showed considerable savings over all the other combinations.
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VI. LATENCY EXPLOITATIONI
In conventional circuit simulation programs [1,2], all of the node

3 voltages or branch voltages and currents are calculated at each iteration

and each timepoint. Even with sparse matrix techniques the simulation of

modern large-scale integrated (LSI) circuits is not possible in many

j situations due tc the excessive computation time and high storage

requirements. The latency approach is a circuit analysis version of the

selective trace approach used in logic simulation. This approach takes

advantage of the fact that in some circuits only a small portion of the

circuit is active at any given time and at any iteration, and t us provides

savings in CPU time.

In the program SLATE this approach is applied at three levels: (1)

device level; (2) subnetwork level; (3) network level. At the device

* level, it is also called the bypass scheme. This scheme is done by

* monitoring the operating point :2 each nonlinear device. If the operating

point does not change significantly between timepoints or Newton-Raphson

iterations, then the device models are not reevaluated, and the matrix

entries computed at the previous timepoint or the previous iteration are

used again. This scheme is used in SPICE2 [2] and SPLICE [39]. Latency at

the subnetwork and network levels can be well exploited when tearing

methods are used to analyze the network. The tearing method used in

I program SLATE is node tearing, so in the following discussion about latency

at the subnetwork and network levels, node tearing is assumed. Latency

I exploitation at the subnetwork level is presented in Section 6.1. Latency

exploitation at the network level is presented in Section 6.2. In Section

6.3 a discussion is given.
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6.1. Latency Exploitation at the Subnetwork Level

As discussed in Chaoter V, the node tearing method is just a

generalized Norton equivalent circuit aporoach. After all the internal

circuit variables of a subnetwork are eliminated, a generalized Norton

equivalent circuit of the subnetwork is obtained. Combining the equivalent

circuits of all the subnetworks with the rest of the network (Fig. 6.1),

we obtain the interconnection circuit. So after applying the node tearing

method to tear the network apart into several subnetworks, the

preprocessing of each subnetwork to obtain the contribution to the

interconnection matrix is equivalent to constructing an equivalent circuit

for each subnetwork. If the solutions of the circuit variables of a

subnetwork do not change significantly between timepoints or Newton-Raphson

iterations, then there is no need to reconstruct an equivalent circuit for

that subnetwork. The equivalent circuit constructed at the orevious

timepoint or the previous iteration is used again and the subnetwork is

declared as latent. The subnetwork remains latent until the solutions of

the circuit variables of the subnetwork change significantly between when

it is declared latent and the oresent time or the oresent iteration. This

is the basic concept of latency at subnetwork level.

There are two types of latency at the subnetwork level: one is

latency in the Newton-R~ahson iteration, the other is latency in time.

Latency in the Newton-Raphson iteration is not natural. It is related

to the convergence property of each subnetwork and the initial guess of the

operating point for each subnetwork. Let us consider the example in Fig.

6.2. It is assumed that the input signal is constant and that a ic

analysis is required. Different subnetworks may require different number
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Fig. 6 .1(a) A Network Partitioned into Three Subnetworks by

the Node Tearing Method.

(b) Equivalent Interconnection Circuit obtained from

the Node Tearing Method.
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of iterations to converge, for example, because the initial guess of the

operating points may be good for some subnetworks and bad for the others.

After these subnetworks converge, they are declared as latent. The

1 Newton-Raphson iterations continue until all the subnetworks converge.

I This phenomenon is called latency in the Newton-Raphson iteration. Taking

advantage of this latency results in savings in the execution time. This

j latency may not exist in some circuits. For example, a linear circuit.

Latency in time is a natural phenomenon. All physical devices have

intrinsic delay time between excitation and response. For a large network,

j qhen the input signal changes, it takes time for this change to propagate

to the rest of the network. Let us consider the example in Fig. 6.2

again. Let 'us assume that the innut changes from OV to 5-V at time t
0*

Initially, probabably only the first few subnetworks are not latent, the

rest of the subnetworks are latent. As time oasses, the change in the

response propagates to the intermediate subnetworks. At this time, only

the intermediate subnetworks are not latent, the rest of the subnetworks

are latent. Finally, the change oropagates to the last few subnetworks and

the rest of the subnetworks are latent. This phenomenon is called latency

in time, and it always exists in real circuits. Taking advantage of this

Jlatency results in savings in the execution time.
J In order to exploit these two tyoes of latency, some sort of latency

criteria are required to determine if a subnetwork is latent. The latency

I criteria proposed here are developed for the node tearing method, if the

branch tearing method is used, these criteria should be modified

accordingly.

I
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Let us consider one subnetwork Nk. Let the tearing node voltages of

Nk be denoted by vtk' the node voltages of Nk be denoted by Ysk, the node

voltages of all the nonlinear devices be denoted by Vnlk.

First, let us consider the latency criterion in the Newton-Raphson

iteration. In principle, the solution of all the circuit variables of a

subnetwork should be checked to determine if the subnetwork is latent.

However, to check for latency in the Newton-Raphson iteration only the node

voltages of all the nonlinear devices need be checked. The latency

criterion in the Newton-Raphson iteration used in SLATE is as follows: A

subnetwork Nk is declared as latent at the ith iteration if the following

two conditions are satisfied.

(1) IVnlk (i-l)-Vnlk (i-2) 4 E+ Er m ax( Vnlkm (i-) (6.1)

IVnlk (i-2)I) m = 1,2,...
m

(2) IVtk (i)vtk 4l Ca+ Er max(Iv k (i) I IVk (i-I)!) (6.2)

m in in m

m - 1,2,....

where E a and er are absolute and relative error criteria.

The subnetwork Nk will remain latent as long as

(3) (vtk (i+j)-vtk (i-1l) I < a + Er max(Ivtk (i+J) , (6.3)

IVtk (i-1) 1) m 1,2.
m j 1,2.

Once a subnetwork is declared as latent in the Newton-Raphson

iteration, no linearization of the nonlinear devices of Nk is required, no

preprocessing of the subnetwork to obtain the partial contribution to the

interconnection matrix is required, no backward substitution to obtain the

solutions of the internal circuit varietles is required, and no convergence

A
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tests are required. One only needs to monitor the tearing node voltages

and to bring the previous partial contribution to the interconnection

matrix.I
The simulation data from SLATE show that considerable savings in

execution time is obtained and the output results are essentially the same

as those from YSPICE. Table 6.1 gives the simulation data from SLATE for

the circuit shown in Fig. 6.3. A dc analysis was performed. For this

I circuit, a 42.42% latency exploitation was achieved and a 22.65% savings in

CPU time was obtained.

Remark: Because the CPU time shown in Table 6.1 is the total CPU time,

which includes the time spent in the I/O and other utility subroutines, the

savings in CPU time is not the same as the latency exploitation.

For the latency in time criteria, four schemes are proposed here. The

first three schemes, scheme 0, scheme I and scheme 2, have been implemented

J and tested in program SLATE. Scheme 3 is still under investigation.

IScheme 0 is the easiest and the crudest scheme that could be

implemented. A subnetwork N is considered latent at time t ifkn
(1) IV tk (t n ) - v t k (tn-1 ) 1 '5 a+ Er 'a~lt M tn"J64

Ivt.(t n-1)Dl m - 1,2,....
The subnetworkN k will remain latent as long as

(2) IVtk(t.j)-vtk( I < ea+ e max(Iv tk(tn+j) (6.5)

IVk(t )D M 1)
- 1,2,...

The advantages of Scheme 0 are:
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I
Table 6.1 Simulation Data of a DC Analysis

for the MOS Circuit in Fig. 6.3.

IDC analysis T SLATE S PICE2

#of subnetworks
Itimes # of 231 231

iterations
II

# of nonlatent
subnetworks times 133
# of iterations

Latency exploitation 42.42%
__ _ _ _ _ _ _ _ _ _ _ __ _ _

Total CPU time 3.927 5.077

(sec.)

Savings in CPU 22.65%

time

f.
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(1) It is very easy to implement and there is no overhead.

(2) It is faster than Scheme I

The disadvantages of Scheme 0 are:

(1) It is not reliable and it is not accurate. If the network is a

stiff system and some of the node voltages are slowly varying, then it is

possible to declare a slowly varying subnetwork as latent and consequently

wrong answers are obtained.

(2) The tearing node voltages at time tn_1 must be stored, that is

more memory is required.

Scheme 1 is the most accurate scheme, and it only takes advantage of

latency in the Newton-Raphson iteration. It is based on the idea that if a

subnetwork is latent in time, then it is also latent in the Newton-Raphson

iteration. Even if we do not take advantage of latency in time, all the

subnetworks are treated as nonlatent in time and are solved at least once

at every timepoiit. Those subnetworks which are latent in time at any

timepoint will be declared as latent in the Newton-Raphson iteration after

one iteration at that timepoint. So at most one iteration for each latent

subnetwork is wasted at one timepoint. Scheme 1 is as follows:

(1) Solve the entire network including all the subnetworks at least

once at every timepoint.

(2) If any subnetwork is latent in time, then it is latent in all the

subsequent Newton-Raphson iterations at that timepoint. So only one

iteration for that subnetwork is performed.
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I
(3) For the nonlatent subnetworks, the Newton-Raphson iterations are

continued until convergence is obtained at that timepoint.

The advantages of Scheme 1 are:

I (1) It is very easy to implement and there is no overhead.

is, (2) The tearing node voltages at time tn_ 1 need not be stored, that

is, less memory is required.

1 (3) It is accurate and reliable.

j The disadvantage of Scheme I is that at every timepoint one iteration is

wasted for each subnetwork latent in time.

Scheme 0 is efficient but is not reliable. Scheme 1 is reliable but

is not efficient. If the network being solved is not stiff, then Scheme 0

is preferred. However, if the network is stiff and efficiency is

important, then both Scheme 0 and Scheme 1 are not suitable. Scheme 2 was

developed to accommodate this situation. It is similar to Scheme 0 in

efficiency and it is similar to Scheme 1 in reliability. It differs from

Scheme 0 in that some extra checks are made to make sure that slowly

varying subnetworks will not be declared as latent. All the slowly varying
'4

subnetworks are declared as nonlatent.

Let the charges of capacitors and the fluxes of inductors of

i subnetwork Nk be denoted by Qk = (Qkl'Qk2' ...... 'Qkb )" Let the currents of

capacitors and the voltages of inductors of subnetwork Nk be denoted by

Ik z (Ikl'Ik2' ...... 'Ikb)- Scheme 2 is as follows: A subnetwork Nk is

i considered as latent if the following three conditions are satisfied.

I
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(1)IVk (tn)v+tk (t 1  E a r max(Ivtk (tn) 1 (6.6)
m m m

Vtkm (tn-1 ) m 1 1, 2,

This condition is the same as that of Scheme 0.

(2) 1I (t n )-I k (tl E+ Er max(I Ikm(tn)lg (6.7)

i ( ) ) m = 1,2 ... , b
m

where E is the absolute error criterion for current. This condition is
C

used to check if the changes of the energy-storage elements of subnetwork

Nk are small.

I km(rn)-I km(n.l)

(3) h I Qkm(tn)Qkm(tn-l) 1 m = 1, 2, .... b (6.8)

This condition is used to check if there are slowly varying nodes within

subnetwork Nk. In order to avoid division by zero, if

Ik (t n)-Ikm(tnl)l (e is a very small qv-ntity, it is 1T'2 in

SLATE), then condition (3) is skipped.

The subnetwork Nk will remain latent as long as

(4) Vtk m(tn+j)-Vtkm

IVtk (tn I)) m 1 1, 2,

Eq. (6.91 is-derived based on the following reasoning. Let us assume

that we are dealing with a linear capacitor and an exponential waveform,

then

Q -oy ¢(6.10)

N 1 (6.11) Z

di
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V = VDD(-e -t/) (6.12)

Q(tn) = CVD ( 1 e tn) (6.13)

Q(tn 1 ) C*VDD(I - e ) (6.14)

(tn) C*VDD e- n/ (6.15)

C*V DD -tn-i / .r
I(t-) =e (6.16)

I From Eqs. (6.13), (6.14), (6.15), and (6.16), we obtain

LT h I (tn)-It (n-1) hn-i (6.17)
I n-iQ(tn)_Q(tn-l )  T

So Eq. (6.8) means that although the change in the response of a capacitor

is very small, if hn_1 is smaller than T, then the capacitor is not latent,

it is just slowly varying.

* The advantages of Scheme 2 are:

1 (1) It is faster than Scheme I.

1 (2) It is accurate and reliable. Slowly varying subnetworks are

detected and are treated as nonlatent subnetworks.

The disadvantages of Scheme 2 are:

(1) More checking is required.

I
IL
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(2) The tearing node voltages at time tn_1 must be stored, that is,

more memory is required.

(3) slowly varying subnetworks are detected and are treated as

nonlatent subnetworks, even though the changes in the response may be

negligible.

Remark: The detection of slowly varying subnetworks increases the accuracy

and reliability of the program, that is why it is an advantage. However,

since the changes in these slowly varying subnetworks are small, treating

them as nonlatent subnetworks is not efficient, that is why it is also a

disadvantage.

In order to overcome this problem, Scheme 3 was proposed. Scheme 3

takes full advantage of latency in time. Scheme 3 is as follows:

(1) The truncation error criteria are used to determine the timestep

for each subnetwork.

(2) Each subnetwork is analyzed with its own timestep.

The advantages of Scheme 3 are:

(1) It should be faster than all the other schemes.

(2) It is accurate and reliable. Since every subnetwork has its own

timestep, there will not be the problem of slowly varying subnetworks.

The disadvantages of Scheme 3 are:

-

.oA
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(1) It is not compatible with the present version of SLATE. An extra

event scheduler is required and the data structures of SLATE has to be

revised.I
(2) It is more complicated to implement.

Because Scheme 3 is not compatible with the present version of SLATE,

1therefore it has not been tested and implemented in SLATE.

In the following, a small selection of examples is presented to give a

comparison among the first three schemes of SLATE: Scheme 0, Scheme 1, and

Scheme 2, and YSPICE.

Example 6.1: The MOS circuit shown in Fig 6.3 was analyzed by SLATE and

YSPICE. The output results of the three schemes of SLATE and YSPICE are

essentially the same (within four significant figures). The simulation

data of a transient analysis are given in Table 6.2. The simulation data

show that both Scheme 0 and Scheme 2 are more efficient than Scheme 1. For

this circuit, Scheme 2 is the most efficient and is about 2.5 times faster

than YSPICE.

This example shows that the latency in time approach is useful for the

analysis of MOS circuits. The next example shows that the latency in time

approach is also useful for bipolar circuits.

.Example 6.2: The TTL circuit shown in Fig 6.4 was analyzed by SLATE and

YSPICE. The output results of the three schemes of SLATE and YSPICE are

essentially the same(within four significant figures). The simulation data

jof a transient analysis are given in Table 6.3. For this example, the

L .1
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Table 6.2 Simulation Data of a Transient Analysis
for the MOS Circuit in Fig. 6.3.

Transient Scheme 0 Scheme I Scheme 2 YSPICE
analysis

# of subnetworks
times # of 2849 2475 2585
iterations

# of nonlatent
subnetworks times 790 1277 706

# of iterations

Latency 72.27% 48.40% 72.69%
exploitation

Total CPU time 18.358 22.073 17.022 42.877
(sec.)

Savings in 57.12% 48.52% 60.30%
CPU time

is



I -153-

I
I

-4I r-. I' -

a.

~A.I
U,1 U,

'.4

I '.4

4'
~J %4.4
00I

-4
~ 0

C-,I ~
ji 1.4

0

-d JJ .4J
-44'

-
U
1.4 4)

U -41.4

.~ 4J

C/~ Cz~

-S ~

e~J 0 .~

1 +i ji ao-4

I
I K
I
I
I
1 .1



-154-

Table 6.3 Simulation Data of a Transient Analysis
for the TTL Circuit in Fig. 6.4.

Transient Scheme 0 Scheme I Scheme 2 YSPICE
analysis

# of subnetworks
times # of 2850 2945 2770
iterations

# of nonlatent
subnetworks times 1516 2128 1945
# of iterations

Latency 46.81% 27.74% 29.78%
exploitation

Total CPU time 68.996 97.164 86.033 132.338
(sec.)

Savings in 47.86% 26.58% 34.99%
CPU time



M -155-------

simulation data show that Scheme 0 is the most efficient, Scheme 1 is still

j the least efficient. The reason why Scheme 2 is not as efficient as Scheme

0 can be traced to the close-coupling of bipolar circuits. So the

I conclusion. obtained from this example is that the error criteria should be

gloosaned for bipolar circuits. Scheme 0 is about 2 times faster than

YSPICE.

I Although the above two examples show that Scheme 0 is very efficient,

however, as mentioned before, Scheme 0 has a reliability problem. The

following example shows that Scheme 0 may give inaccurate output results

1 for stiff systems.

I Example 6.3: The RC circuit shown in Fig. 6.5 was analyzed by the three

schemes of SLATE. This circuit is a stiff system. the output results are

given in Table 6.4. For scheme 0, because the changes of the tearing node

j voltages of subnetwork 1 and subnetwork 2 are very small after t =13 ns,

both subnetworks are declared as latent. Since the input is constant too

I after t =13 ns, all the calculated output voltages will remain unchanged

afterwards, while the true output voltages should increase slowly. This

phenomenon can be observed from the unchanged output voltages after

j t =13 ns in Table 6.4(a). This example shows that Scheme 0 may not give

accurate results when the network is stiff and that both Scheme 1 and

Scheme 2 give accurate results even when the network is stiff.
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Fig. 6.5 An Example of a Stiff System.
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I
Table 6.4(a) Scheme 0.

I-

TIME V(2) V(3) V(4)

O0.OOOD0 0 0 0.000D+00 0.OOOD+O 0. OOOD+O0
1 . OOOD-09 2. 936D+O0 7. 567D-01 4. 445D-1 3
2.OOOD-09 3.604D+00 1. 146D+00 3.726D-12
3.OOOD-09 3.733D+00 1.237D+00 1.144D-11
4. OOOD-09 3. 749D+00 1. 249D+00 2. 403D-11
5.OOOD-09 3.751D+00 1,251D+O0 4.161D-11
6. OOOD-09 3. 749D+O0 1 .249D+O0 6. 187D-1 1
7. OOOD-09 3. 750D.00 1. 250D.+00 8. 020D-11
8.OOD-09 3. 750D+00 1. 250D+00 9. 850D-1 1
9.OOOD-09 3.749D+O0 1.249D+00 1.161D-10
1.OOOD-08 3.749D+00 1. 249D+O0 1. 260D-10
1. 100D-08 3.748D+00 1. 248D+00 1 307D-10
1 .200D-08 3.748D+00 1. 248D+00 1 302D-10
1. 300D-08 3. 749D+O0 1. 249D00 1. 246D-10
1.40OD-08 3.749D+00 1.249D+00 1.145D-10
1 500D-08 3.749D+O0 1.249D+O0 1. 145D-10
1.600D-08 3.749D+00 1.249D+00 1. 145D-10
1.700D-08 3.749D+00 1.249D400 1.145D-10
1. 800D-08 3.749D+00 1.249D+00 1. 145D-10
1.900D-08 3.749D+00 1.249D+00 1.145D-10
2.OOOD-08 3.749D+00 1.249D+00 1.145D-10
2. 100D-08 3.749D+O0 1.249D+00 1.145D-10
2.200D-08 3.749D+O0 1.249D+O0 1. 145D-l0
2.300D-08 3.749DO0 1.249D+00 1. 145D-10
2.40OD-08 3.749D+00 1.249D.00 1. 145D-10
2.500D-08 3.749D+00 1.249D+00 1. 145D-10

I

1
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Table 6.4(b) Scheme 1.

TIME V(2) V(3) V(4)

O.O00D4O0 0.OOD.O0 O.000D+00 O. + 000D00
1. OOOD-09 2. 936D400 7. 567D-01 4. 444D-13
2.OOOD-09 3.604D+00 1. 146D+,00 3.726D-12
3.OOOD-09 3.733D400 1.237D400 1.144D-11
4. OOOD-09 3. 749D+00 I. 249D+00 2. 403D-1 1

5.OOOD-09 3.751DO0 1.251D+O0 4.16lD-11
6.OOD-09 3.749D+00 . 249D+00 6. 187D-11
7.OOOD-09 3.750D+00 1.250D+00 8.020D-11
8. OOOD-09 3. 750D100 . 250D+00 9. 850D-1 1
9.OOOD-09 3.749D+00 1.249D+00 1. 172D-10
1.OOOD-08 3.749D+O0 1.249D+00 1.404D-10
1. 100D-08 3.749D+00 1.249D+00 1.666D-10
1. 200D-08 3. 749D+00 1. 249D+00 1. 958D-10
1.300D-08 3.750D+O0 1.250D+OO 2.281D-10
1.400D-08 3.751D+O0 1.251D+00 2.629D-10
1.500D-08 3.751D+00 1.251D+00 2.919D-10
1.600D-08 3.751D+00 1.251D+00 3.208D-10
1.700D-08 3.751D+00 1.251D+00 3.498D-10
1.800D-08 3.751D+00 1.251D+00 3.788D-10
1.900D-08 3.751D+00 1.251D+00 4.077D-10

2.OOOD-08 3.751D+00 1.251D+00 4.367D-10
2.100D-08 3.751D+O0 1.251D+00 4.656D-10
2.200D-08 3.751D+00 1.251D+O0 4.946D-10
2. 300D-08 3. 750D4*0 1. 250D+00 5. 236D-10
2.400D-08 3.750D+00 1.250D+00 5.525D-10
2.500D-08 3.750D,00 1.250D+00 5.815D-10
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I

Table 6.4(c) Scheme 2.

I

TIME V(2) V(3) V(4)

O.OOOD+O0 O.OOOD+O0 O.OOOD+O0 O.OOOD+O0
1.OOOD-09 2.936D+00 7.567D-01 4. 444D-13
2.OOOD-09 3.604D+00 1.146D+00 3.726D-12
3.OOOD-09 3.733D+00 1.237D4.O0 1.144D-11
4.OOOD-09 3.749D400 1.249D+00 2.403D-11
5.OOOD-09 3.751D+00 1.251D+O0 4.161D-11
6.OOOD-09 3.749D+00 1.249D+Oo 6.187D-11
7.OOOD-09 3.750D+00 1.250DOo 8.020D-11
8.OOOD-09 3.750D+00 1.250D+00 9.850D-11
9.OOOD-09 3.749D+O0 1.249D+O0 1. 172D-10
1. OOOD-08 3.749D+O0 0 249D+00 1.404D-10
1 100D-08 3.749D+00 . 249D400 1.666D-10
1 .200D-08 3.749D+00 1. 249D+O0 1.958D-10
1.300D-08 3.750D+00 1.250D+O0 2.281D-10
1.400D-O8 3.751D+00 1.251D+00 2.629D-10
1500D-08 3.751D+00 1.251D+00 2.919D-10
1.600D-08 3.751D+00 1.251D+00 3.208D-10
1700D-08 3.751D+00 1.251D+00 3.498D-10
1.800D-08 3.751D+00 1.251D+O0 3.788D-10
1.900D-08 3.751D+00 1.251D+o0 4.077D-10
2.OOOD-08 3.751D+00 1.251D+00 4.367D-10
2..100D-08 3.751D+O0 1.251D+O0 4.656D-10
2.200D-08 3.751D+O0 1.251D+00 4,946D-10
2. 300D-08 3. 750D+00 1. 250D+O0 5. 236D-10
2.J400D-08 3.750D+00 1.250D+00 5.525D-10
2.50OD-08 3. 750D+00 1. 250D+00 5. 815D-10

L
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6.2. Latency Exploitation at the Network Level

When the submatrices are large and the interconnection matrix is small

and sparse, then latency exploitation at the subnetwork level provides most

of the savings in CPU time. When the reverse is true, that is, the

submatrices are small and the interconnection matrix is large and

relatively dense, then the latency exploitation at network level becomes

important. Usually, the latter situation is true for MOS circuits.

Latency exploitation at the network level is equivalent to solving a

smaller interconnection matrix by using voltage source substitution. From

the substitution theorem we know that the same results will be obtained.

This approach can be explained by the following example as shown in Fig.

6.6(a). Let us assume that at a particular time or a particular iteration,

only subnetworks 5 and 6 are nonlatent, all the other subnetworks are

latent. B1 using voltage source substitution, the network can be replaced

by the equivalent network as shown in Fig. 6.6(b). The equivalent network

is solved to obtain the solutions of all the nonlatent nodes (nodes which

belong to nonlatent subnetworks). This equivalent network is obtained as

follows First, all the nonlatent subnetworks and all the latent

subnetworks which are adjacent to the nonlatent subnetworks are included in

the equivalent network; secondly, all the tearing nodes which only belong

to latent subnetworks are replaced by voltage sources, the resulting

netw4ork is the equivalent netdork. For this example, in the equivalent

netdork, the nonlatent subnetworks are subnetworks 5 and 6, the latent

subnetworks are subnet-dorks 4 and 7, the tearing nodes which are replaced

by voltage sources are nodes 5 and 9. After the solution for all the

nonlatent nodes is obtained, subnetworks 4 and 7 are checked to see if they

remain latent. If the answer is yes, then the same equivalent circuit is

At
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used again. If the answer is no, then a new equivalent net-work is

generated.

The above is the conceptual idea. In the implementation, because

sparse matrix techniques are used, we do not want to really generate the

equivalent network and we do not want to reorder the interconnection matrix

and reconstruct the sparse matrix pointer systems everytime a new

equivalent circuit is generated. So the following algorithm is implemented

in SLATE.

(1) The ordering of the interconnection matrix is determined in the

preprocessing phase assuming all the subnetworks are nonlatent, and this

ordering is used in the whole analysis.

(2) At every timepoint or iteration, all the subnetworks are checked

to determine their latent status. All the tearing nodes which only belong

to latent subnetworks are labelled as latent nodes.

(3) All the rows corresponding to the latent nodes are replaced by the

branch constraint relations of grounded voltage sources. Thib is done by

skipping thote rows and columns during the LU factorization and forward and

backward substitutions.

Example 6.4: The MOS circuit shown in Fig. 3.18 was analyzed by SLATE

with and without the latency exploitation at network level. Scheme 2 w.as

used. The output results are essentially the same for both

approaches(whithin four significant figures). The simulation data for both

approaches are given in Table 6.5. This example shows that the latency

exploitation at network level also provides savings in CPU time.

-•-- - ,-I
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I Table 6.5 Simulation Data of a Transient Analysis
for the MOS Circuit in Fig. 3.18.I

Transient Scheme 2 with Scheme 2 without
analysis latency exploitation latency exploitation

at network level at network level

Total CPU time 80.102 102.365
(sec.)

I Savings in
21.75%*CPU time

a.

II

[
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6.3. Discussion

Four schemes for latency exploitation at subnetwork level are proposed

in this chapter. Scheme 0, Scheme 1 and Scheme 2 were implemented and

tested in the program SLATE. Scheme 3 is not compatible with the . 3nt

version of SLATE, so it is still at the development stage. From the

simulation data obtained from the first three schemes, our conclusion is

that Scheme 2 is the best of these three schemes. However, for bipolar

circuits, Scheme 2 is not the most efficient one. Conceptually, Scheme 3

should be the optimal one, so more work will be devoted to study this

scheme.

In order to illustrate the ideas and to estimate the inherent latency

easily, chains of inverters are used as example circuits in this chapter.

More complicated circuits are used in the next chapter to evaluate the

latency approaches used i.n SLATE.
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I VII. CONCLUSIONS

I
The examples used in Chapter 6 are chains of inverters. One example

I has eleven levels of inverters, the other has five levels of inverters.

I From the simulation data we can see that the latency exploitation increases

with the number of levels of logic gates. Since the number of levels of

logic gates for those circuits is large and those circuits have very simple

interconnection networks, so significant latency exploitation was obtained.

In this chapter, the simulation data for some circuits, which have a

complicated interconnection network and for which the number of levels of

logic gates is small, are presented to see if the latency approach can

provide significant savings in CPU time for these circuits. The simulation

data are compared with those obtained from our DEC-10 version of SPICE2.

Example L: The TTL circuit shown in Fig. 3.17 was analyzed by SLATE and

SPICE2. Scheme 2 was used in SLATE. The output results of SLATE and

SPICE2 are essentially the same (within four significant figures). The

simulation data of a transient analysis are given in Table 7.1. For this

bipolar circuit example, a 32.66% latency exploitation was achieved and a

40.15% savings in CPU time was obtained.

Example .2: The MOS circuit shown in Fig. 3.18 was analyzed by SLATE and

SPICE2. Scheme 2 was used in SLATE. The output results of SLATE and

SPICE2 are essentially the same (within four significant figures). The

, simulation data of a transient analysis are given in Table 7.2. For this

MOS circuit example, a 22.53% latency exploitation was achieved and a

46.70% savings in CPU time was obtained.
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Table 7.1 Simulation Data of a Transient Analysis
for the TTL Circuit in Fig 3.17

Transient SLATE SPICE2
analysis

# of subnetworks
times # of 6426
iterations

# of nonlatent
subnetworks times 4327
# of iterations

Latency exploitation 32.66%

Total CPU time 189.56 316.74
(sec.)

Savings in 40.15%
CPU time

"L-



-167-

!
Table 7.2 Simulation Data of a Transient Analysisi for the MOS Circuit in Fig. 3.18.

I Transient SLATE SPICE2a nalysis SAE SIE

# of subnetworks
times # of 3600
i terations

I# of nonlatent

subnetworks times 2789
# of iterations

Latency exploitation 22.53%

Total CPU time 72.23 135.52
(sec.)

Savings in 46.70
CPU time

I

I
!

t.'
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Also these simulation data show that not only the latency approach but

also other new approaches implemented in SLATE provide savings in CPU time.

This observation is obtained by noting that the latency exploitation is

smaller than the savings in CPU time. These other new approaches which

also provide savings in CPU time are the new reordering scheme for the

modified nodal approach presented in Chapter 2 and the piecewise nonlinear

approach presented in Chapter 3. The new reordering scheme for the

modified nodal approach avoids the problem of pivoting on zero diagonal

elements and decreases the number of operations at the same time. However,

the efficiency provided by the new reordering scheme is problem-dependent.

For example, if the circuit does not have voltage sources or inductors,

then certainly no efficiency can be obtained by using our approach. The

piecewise nonlinear approach is still at the experimental stage. All the

examples we have simulated show that the use of the piecewise nonlinear

approach hastens the convergence and improves the global convergence

property of the Newton-Raphson method for bipolar and MOS circuits.

However, the proof of global convergence or the conditions for global

convergence for the piecewise nonlinear approach has not been obtained.

Further research is needed to prove the global convergence, or to modify

the approach we proposed to ensure global convergence. Also more work is

needed to study if the strict piecewise nonlinear approach is efficient, and

if it is not efficient, then the problem of how to use the ideas of the

piecewise nonlinear approach to hasten the convergence and to improve the

global convergence property of the Newton-Raphson method should be studied.

The solution of the two problems of numerical integration makes the program

more reliable and more accurate. This is described in Chapter 4. An

equation was presented to compute the upperbound on the local truncation



-169-

error (LTE) from the maximum global error 02E ' and the solution time T.
max

The inaccuracy in the estimation of the local truncation error caused by

different timesteps was resolved by introducing a new formula for the

estimation. The inaccuracy in the estimation of the local truncation error

caused by using the node voltages at timepoints of the previous switch

interval was resolved by recognizing this situation and restarting the

numerical integration from the breakpoint.

In Chapter 5, the ideas of tearing methods were detailed, the most

efficient way of implementing the node tearing method was determined

theoretically and experimentally, and a circuit interpretation of tearing

methods was given.

In Chapter 6, four latency criteria schemes were proposed. The first

three schemes: Scheme 0, Scheme 1 and Scheme 2, were implemented and

tested. From the simulation data we conclude that Scheme 2 is the best out

of these three. Scheme 3 is still under investigation and we think it

should be the best scheme to exploit latency. More work is needed to study

how to implement this scheme efficiently and reliably, and to find out if

it is really the best scheme.

The nested subnetwork approach f4l,42,43] is the approach which allows

several levels of subnetworks and in which the latency approach is used at

every level of the subnetworks. This approach may provide savings in the

time spent in checking the latent status of subnetworks. Only latency

exploitation at the network level is implemented in program SLATE and we

believe that this checking time may be small, thus the savings in CPU time

provided by the nested subnetworks approach probably is not significant.

However, further investigation is needed to yield conclusive results.

Li_
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Device characteristic latency and function latency are two concepts which

may provide some more savings in CPU time. More investigations need to be

done to exploit these two latencies.

In the present version of SLATE, a lot of information which is not

needed is still stored because SLATE evolved from YSPICE. Due to this

reason, although tearing methods should provide savings in memory, no

comparison of memory usage was presented in this thesis.

-~ ... .. ....



-17!-

REFERENCES

[1] L. W. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor

Circuits," ERL Memo., No. ERL-M520, University of California,

Berkeley, May 1975.

[2] L. W. Nagel and R. A. Rohrer, "Computer Analysis of Nonlinear

Circuits, Excluding Radiation (CANCER)," IEEE J. Solid-State

Circuits, Vol. SC-6, August 1971, pp. 166-182.

[3] R. A. Rohrer, L. W. Nagel, R. G. Meyer, and L. Weber, "CANCER:

Computer Analysis of Nonlinear Circuits, Excluding Radiation,"

Proc. 1971 IEEE International Solid-State Circuits Conference,

Philadelphia, February 18, 1971, pp. 124-125.

[4] F. S. Jenkins and S. P. Fan, "TIME---A Nonlinear DC and Time-Domain

Circuit-Simulation Program," IEEE J. Solid-State Circuits, Vol. SC-6,

August 1971, pp. 188-192.

[5] "ASTAP General Information Manual (GH20-1271-0)," IBM Corp.,

Mechanicsburg, Pa.

[6] H. Qassemzadeh, and T. R. Scott, "Algorithm for ASTAP---A Network

Analysis Program," IEEE Trans.M Circuit Theory, Vol. CT-20,

November 1973, pp. 628-634.

[7] "ECAP II Application Description Manual (GH20-0983)," IBM Corp.,

Mechanicsburg, Pa.

[8] F. H. Branin, G. R. Hogsett, R. L. Lunde, and L. E. Kugel, "ECAP

II--A New Electronic Circuit Analysis Program," IEEEJ.. S d-State

Circuits, Vol. SC-6, August 1971, pp. 146-165.

[9] B. Dembart and L. Milliman, "Circus-2, A Digital Computer Program

for Transient Analysis of Electronic Circuits," Harry Diamond

Laboratories, Washington, D. C., July 1971.

-I I I I_ _ III_ I I_ _ _ ii _l _...._ _ _ _ _.... . _ _... II A. .



-172-

10] L. D. Milliman, W. A. Massena, and R. 4. Dickhaut, "CIRCUS---A

Digital Computer Program for Transient Analysis of Electronic

Circuits, "Harry Diamond Laboratory, Washington, D. C., Rep.

AD-346-1 , January 1961.

i] P. R. Bryant, 1. N. Hajj, S. Skelboe and M. Vlach, "WATAND Primer,"

University of Waterloo, Report 73-4, June 1979.

F1 2] -. Kron, "A Set of Principles to Interconnect the Solution of

Physical S~stems," Journal of .plied Physics, Vol. 24, No. 9.,

August 1953, pp. 965-980.

F131 G. Kron, Diakoptics---Piecewise Solution of Large-Scale 5rstems,

Macdonald, London, 1963.

F14] H. H. Happ, Diakoptics And Networks, Academic Press, New York, 1971.

[15] F. H. Branin, "The relation between Kron's Method and the Classical

methods of Network Analysis," The Matrix and Tensor Quarterly,

Vol. 12, No. 3, March 1962, pp. 69-115.

F16 ] L. 0. Chua and L. K. Chen, "Diakoptics and Generalized Hybrid

Analysis," IEEE Trans. on Circuits and Svstems, Vol. CAS-23, No. 12,

December 1976, pp. 694-705.

F17] F. F. Wu, "Solution of Large Scale Networks bY Tearing," IEEE Trans.

on Circuits and Systems, Vol. CAS-23, No. 12, December 1976,

pp. 706-71 3.

ri 8 ] L. 0. Chua and L. K. Chen, "Nonlinear Diakoptics," Proc. IEEE Int.

Srmp. on Circuits and Systems, April 1975, pp. 373-376.

19 ] K. U. Wang and T. Chao, "Diakoptics for Large Scale Nonlinear Time-

Varying Networks," Proc. IEEE Int. N mp. on Circuits and SNstems,

April 1975, pp. 277-278.

L i" .. . . . . llllI . .. I I I 
' d '

.. . . .h - .. l



-173-

r201 A. Sangiovanni-Vincentelli, L. K. Chen, and L. 0. Chua, "A New

Tearing Approach---Node Tearing Nodal Analysis," Proc. IEEE Int.

Swrmp. on Circuits and Svstems, Anril 1977, pp. 143-147.

r21 ] P. Linardis, K. G. Nichols, and E. J. Zaluska, "Network Partitioning

and Latency Exploitation in Time Domain Analysis of Nonlinear

Electronic Circuits," Proc. IEEE Int. S'mp. on Circuits and Sstems,

May 1978, pp. 510-513.

F22] N. B. Rabbat and H. Y. Hsieh, "A Latent Macromodular Approach to

Large-Scale Soarse Networks," IEEE Trans. on Circuits and Svstems,

Vol. CAS-22, No. 13, December 1976, pp. 745-752.

F23 ] H. Y. Hsieh and N. B. Rabbat, "Computer-Aided Design of Large

Networks by Macromodular and Latent Techniques," IEEE Int. 'mp.

on Circuits and Systems, April 1977, pp. 688-692.

[24] N. B. Rabbat and H. Y. Hsieh, "Concepts of Latency in the Time-Domain

Solution of Nonlinear Differential Equations," Proc. IEEE Int. S~rmp.

on Circuits and Systems, May 1978, pp. 813-825.

[25] C. W. Ho, A. E. Ruehli and P. A. Brennan, "The Modified Nodal

Approach to Network Analysis," IEEE Trans. on Circuits and

Systems, Vol. CAS-22, pp. 504-509, June 1975.

[26] A. R. Newton and D. 0. Pederson, "A Simulation Program with Large

Scale Integrated Circuit Emphasis," IEEE Int. 5Wmp. on Circuits

and Svstems, New York, May 1978.

[27] G. Arnout and H. J. Deman, "The use of Threshold Functions and

Boolean-Controlled Network Elements for Macromodelling of LSI

* Circuits," IEEE J. Solid-State Circuits, vol. SC-13, pp. 326-332,

June 1978.1



r ..

-174-

r2 ]j C. A. Desoer and E. S. Kuh, Basic Circuit Theory, McGraw-Hill Book

Co., New York, 1969.

291 H. M. Markowitz, "The Elimination Form of the Inverse and its

.Aplication to Linear Programming," Management Sci., Vol. 3,

pp. 255-269, 1957.

[30] I. N. Hajj, P. Yang and T. N. Trick, "Avoiding Zero Pivots in the

Modified Nodal Approach," IEEE Trans. on Circuits and S stems,

to appear.

E3 11 W. J. McCalla and D. 0. Pederson, "Elements of Computer-Aided Circuit

Analysis," IEEE Trans. on Circuit Theory, Vol. CT-IS, January

1971, pp. 14-26.

F3 2 ] R. D. Berry, "An 0Otimal Ordering of Electronic Circuit Equations

for a Sparse Matrix Solution," IEEE Trans. on Circuit Theory,

Vol. CT-IS, January 1971, pp. 40-50.

[33] W. H. Kao, "Comparison of Quasi-Newton Methods for the DC analysis

of Electronic Circuits," M. S. Thesis, University of Illinois at

Urbana-Champaign, 1972.

[341 H. Gupta and J. Sharma, "An Algorithm for DC Solution of Electronic

Circuits," IEEE Int. 3$rmp. on Circuits and Sstems, July 1979.

[35] M. E. Daniel, "Development of Mathematical Models of Semiconductor

Devices for Computer-Aided Circuit Analysis," Proceeding of the

IEEE, Vol. 55, No. 11, Nov. 1967.

[36] L. 0. Chua and P. M. Lin, Computer-Aided Analysis of Electronic

Circuits: Algorithms and Computational Techniques. Englewood Cliff,

New Jersey, Prentice-Hall, 1975.



3 -175-

1 37] F. H. Branin, "A Sparse Matrix Modification of Kron's Method of

Piecewise Analysis," Proc. IEEE Int. Svmp. on Circuits and

Systems, April 1975, pp. 383-386.

I [38] I. N. Hajj, "Sparsity Considerations in Network Solution by Tearing,"

IEEE Trans. on Circuits and Sfstems, May 1980, pp. 357-366.

[39] A. R. Newton and D. 0. Pederson, "A Simulation Program with Large

I Scale Integrated Circuit Emphasis," IEEE int. SWmp. on Circuits

and Systems, New York, May 1978.

[40] J. Katzenelson, "An Algorithm for Solving Nonlinear Resistive

Network", Bell SWst. Tech. J., Vol. 44, pp. 1605-1620,

Oct. 1965.

[41] A. E. Ruehli, A. L. Sangiovanni-Vincentelli and N. B. Rabbat,

Time Analysis of Large-Scale Circuits Containing One-Way

Macromodels," Proc. IEEE Int. Symp. on Circuits and Sy'stems,

April 1980, pp. 766-770.

[42] N. B. Rabbat, A. L. Sangiovanni-Vincentelli and H. Y. Hsieh, "A

Multilevel Newton Algorithm with Macromodeling and Latency for the

Analysis of Large-Scale Nonlinear Circuits in the Time Domain",

IEEE Trans. on Circuits and S rstems, Vol. CAS-26, pp. 733-741,

Sept. 1979.

[43] H. Y. Hsieh and N. B. Rabbat, "Multilevel Newton Algorithm for

Nested Macromodel Analysis of Bipolar Networks", Proc. IEEE Int.
4.

Symp. on Circuits and Srstems, April 1980, pp. 762-765.

T



-176-

VITA

Ping Yang was born in Ping-Tung, Taiwan, China on July 15, 1952. He

attended National Taiwan University in Taipei and Graduated in June 1974

with a Bachelor of Science in Physics. He was an Ensign in the Chinese

Navy from 1974 to 1976. In August 1976 he entered the University of

Illinois. From August 1976 to August 1930 he held a teaching assistantshia

in the Electrical Engineering department and a research assistantshio with

the Coordinated Science Laboratory. His research interests are in the

areas of computer-aided design, circuits and systems, large-scale

integrated circuits, and solid-state electronics.

9. -



S/


