AD-A239 742
 |nilinilulill

AD \qquad

GRANT NO
DAMD17-89-Z-9021
$\begin{array}{ll}\text { TITLE: } & \text { DISCOVERY AND DEVELOPMENT OF THERAPEUTIC DRUGS AGAINST } \\ & \text { LETHAL HUMAN RNA VIRUSES: A MULTIDISCIPLINARY ASSAULT }\end{array}$

PRINCIPAL INVESTIGATOR: Dr. George R. Pettit

CONTRACTING ORGANIZATION: Arizona State University Cancer Research Institute Tempe, Arizona 85287-2404

REPORT DATE: July 16, 1991

TYPE OF REPORT: Final Report

PREPARED FOR: U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

REPORT DOCUMENTATION PAGE							Form Approved OMB No. 0704-0188										
1a. REPORT SECURITY CLASSIFICATION Unclassified				16 restrictive markings													
2a. SECURITY CLASSIFICATİN AUTHORITY				3 DISTRIBUTION/AVALLABILITY OF REPORT Approved for public release; distribution unlimited													
2b. DeClassification / oowngrading schedule																	
4. PERFORMING ORGANILATION REPORT NUMBER(S)				5. MONITORING ORGANIZATION REPORT NUMBER(S)													
6a. NAME OF PERFORMING ORGANIZATION Arizona State University			66. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION													
6C. ADDRESS (City, State, and IIP Code)Cancer Research InstituteTempe, Arizona 85287-2404				7b. ADORESS (City, State, and 2IP Code)													
8a. NAME OF FUNDING/SPONSORING organization U.S. Army Medical Research \& Development Command			8b OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Grant No. DAMD17-89-Z-9021													
8c. ADDRESS (City, State, and ZIP Code) Fort Detrick Frederick, Maryland 21702-5012				10 SOURCE OF FUNDING NUMBERS													
				PROGRAM ELEMENT NO. PROIECT NO. 3MI- 62787A 62787 A871		$\begin{aligned} & \text { TASK } \\ & \text { NO. } \\ & \text { AB } \end{aligned}$	WORK UNIT ACCESSION NO WUDA317987										
11. TITLE (Include Security Classification) DISCOVERY AND DEVELOPMENT OF THERAPEUTIC DRUGS AGAINST LETHAL HUMAN RNA VIRUSES: A MULTIDISCIPLINARY ASSAULT																	
$\begin{aligned} & \text { 12. PERSONAL AUTHOR(S) } \\ & \text { George R. Pettit } \end{aligned}$																	
13s. TYPE OF REPORT Final RepOrt\quad136. TIME COVERED FROM $2 / 5 / 89 \quad$ TO $2 / 5$ 16. SUPPLEMENTARY NOTATION				14. OATE OF REPORT (Year, Month, Oay) 15. PAGE COUNT1991 July 16													
				16. SUPPLEMENTARY NOTATION													
17 COSATI CODES			18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) RAI: BD; Antiviral: Natural Products; RNA Viruses; Discovery of RNA-type antiviral drugs; Naturally occurring antiviral drugs														
FIELD	GROUP	SUB-GROUP															
06	03																
19. ABSTRACT (Continue on reverse if necescary and identify by block number) See next page																	
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT\square UNCLASSIFIEDNNLIMITED \square SAME AS RPT \square OTIC USERS				21. ABSTRACT SECURITY CLASSIFICATION Unclassified													
22a. NAME OF RESPONSIBLE INDIVIDUAL Virgina M. Miller				22b TELEPHONE (Inc/ude Area Code) 22c. OFFICE SYMBOL 301-663-7325													

19. ABSTRACT

A total of 5,799 samples were submitted for prescreen RNA-type antiviral evaluation over the grant period to USAMRIID. After confirmation of activity, a good number of high priority extracts of plant and animal origin (and synthetic compounds) were identified for further research (fractionation, isolation and characterization of new antiviral compounds). The continued fractionation of these leads is in progress.

In addition to the natural products research, further development of the scale-up isolation of pancratistatin, an active lead against Japanese Encephalitis from both plant sources by greenhouse cultivation and semi-synthetic transformation of another plant product, narciclasine, occurred during the grant period. For the semi-synthetic research, seven tons of Narcissus incomparabilis has been obtained and is at the initial stage of scale-up isolation.

In short, progress continues to be excellent and we have a promising number of new antiviral leads to pursue.

FOREWORD

Opinions, interpertations, conclusions and recommenjations are those of the author and are not necessarily entorsed by the US Army.

N/A Where copyrighted material is quoted, permission has been obtained to use such material.

M/A Where material fron locuments lesignated for limital fistribution is quoted, permission has been obtainel to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Departinent of Army enlorsenent or approval of the products or services of these organizations.
N / A In conducting research using aninals, the investigator (s) adheret to the "Guide for the Care and Use of Laboratory Animals," prepared by the committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).
N / A For the protection of human subjects, the investiojator (s) adheres to policies of applicable Feleral Law 45 CFR 46.

N/A In conlucting research utilizing reconbinant DNA technology, the investigator(s) adherel to current gui.felines promulgated by the National Institutes of Health.

table of CONTENTS

Page
Front Cover 1
Report Documentation Page 2
Foreword 4
Table of Contents 5
I. Introduction 6
II. Current Advances 6
A. Fractionation of Actives Leads from Natural Products 6
B. Scale-up Isolation of Narciclasine and Pancratistatin and Synthetic Modifications of Narciclasine 36
III. Near Term Plans 41
IV. Publications, Meeting Abstracts, Personnel 42
Appendix A (Data Tables)
Appendix B (Experimental Summaries)

I. Introduction

A long-term USAMRIID research program directed at the isolation and structural elucidation of new and potentially useful antiviral drugs from marine animals and plants has been substantially advanced by the two years of USAMRIID financial assistance. The financial support provided by the USAMRIID program was used to isolate and characterize new antiviral chemotherapeutic drugs from confirmed active extracts of marine invertebrates and vertebrates as well as marine and terrestrial plants including fungi, algae and other microorganisms. The research was sharply directed at marine animal and plant species yielding extracts with an outstanding level of antiviral activity in the USAMRIID's programs (RNA viruses).

II. Current Advances

A. Fractionation of Active Leads from Natural Products

Over the grant period, a total of 5,799 samples were submitted for antiviral evaluation (see Appendix A). Of this total 1,612 were from crude plant extracts and 3,826 were from crude marine extracts with another 288 from microorganism mycellium extracts as listed in Appendix A, Table I. Prescreen activity was determined in 1,420 of the total number and are listed in Tables II and III. Full screen submissions of fractions from 26 plant and 21 marine species are listed in Table IV. Table V lists samples submitted either in response to a specific request or as possible actives from other sources.

The ten highest priority antiviral actives determined by November, 1990 and beyond are as follows:

Marine Animal Sources

AVS-709 Styela plicata B 705028 (D048)

```
AVS-7438 Unknown sponge (Papua New Guinea) B }72312
AVS-8374 & 9217 Unknown sponge (Antarctic) B }72290
```


Plant Sources

AVS-6976-6979 Cryptocarya multipaniculata B 611679 (F009-F012)
AVS-6986 \& 6988 Virola oleifera B 619315 (FO12 \& FO14)
AVS-7032 Eucalyptus spathulata B 827298 (F008)
AVS-7067-7068 Ruprechtia tangarana B 836749 (F005-F006)
AVS-7083-7087 Phyllanthus anisolobus B 848528 (F011-FO15)
AVS-. 7092 Notelaea ligustrina B 853791 (F017)
AVS-8259 Unknown Phaeophyta (Papua New Guinea) B 848990

The accompanying data sheets and flow sheets for fractionations of active extracts follow, and provide a status report at end of this report period.

人 人 人 人 人 人 人 人 人 人人 $\boldsymbol{\wedge}$ 人 \wedge

IC95 000000000000000000000000000000000

 v

DATE	INT．CONC．
$9 / 20 / 90$	1

\circ
$\stackrel{\circ}{\circ}$
$\stackrel{y}{\circ}$
$\stackrel{1}{2}$
0
0

 $\stackrel{-\dot{a}}{\stackrel{-}{\alpha}}$

 $10182 / 7$
$101 \varepsilon 2 / 4$ $\stackrel{-}{\square}$ $\stackrel{\Gamma}{\stackrel{-}{\alpha}}$

 $\stackrel{\Gamma}{\stackrel{-}{0}}$ $16192 / 7$
$16 / 8 Z / 7$
$16 / \downarrow 2 / t$ $18182 / 7$
$16 / 92 / t$

 $\stackrel{-}{\infty}$

AVS CTR	
AVS－007438	B723123
AVS－007438	B723123
AVS－007438	B723123
AVS－007438	$B 723123$
AVS－007438	B723123
AVS－009453	B723123

B723123
Unknown sp. (Porifera)

$$
\begin{gathered}
\text { TAI } \\
5 \\
10.26 \\
20.91 \\
3.14 \\
0 \\
35.14 \\
16.87 \\
1.08 \\
0 \\
11.5 \\
11.79 \\
10.36 \\
10.49 \\
8.87 \\
21.58 \\
17.01 \\
27.17 \\
1.5 \\
3.94 \\
0
\end{gathered}
$$

$$
\wedge \wedge \wedge \wedge \wedge \wedge \wedge
$$

$$
\wedge
$$

$$
\wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge
$$

\qquad

$$
\wedge \quad \wedge \wedge \quad \wedge
$$

$$
\text { N O } 00 \underset{\sim}{N} 00 \stackrel{N}{N} 0000000000{\underset{\infty}{N}}_{\infty}^{N} 000
$$

N N
으응ㅇㅇNNNㅇㅇㅇ으으으으으은

$$
\underline{\underline{Z}}
$$

$$
\begin{aligned}
& \text { AVS } \\
& \text { AVS-008374 } \\
& \text { AVS-008374 } \\
& \text { AVS-0083744 } \\
& \text { AVS-008374 } \\
& \text { AVS-008374 } \\
& \text { AVS-009217 }
\end{aligned}
$$

$\wedge \wedge \wedge \wedge \wedge \wedge$

式
 CTR

 9
80
0
4
$\dot{8}$
0
0
$=$
\vdots

0 \begin{tabular}{l}
0

0

0

\hline

9

8

0

\hline
\end{tabular}

0
0
0

$8611679 . F 010$

$$
\begin{aligned}
& \wedge \wedge \wedge \wedge \wedge A
\end{aligned}
$$

$$
\begin{aligned}
& \lambda \\
& \begin{array}{c}
\text { N } \\
\text { N } \\
\text { N }
\end{array}
\end{aligned}
$$

$\wedge \wedge \wedge \wedge \wedge \wedge \wedge$

$$
A \quad \wedge \wedge \wedge \wedge \wedge \wedge
$$

$\wedge \wedge \wedge \wedge \wedge A$
n
0
0

п

$$
\begin{aligned}
& \text { ₹ } \\
& \bar{\sim} \stackrel{\circ}{\sim} \stackrel{m}{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{\mathcal{N}} \stackrel{\infty}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (\% }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AVS : }
\end{aligned}
$$

Cryptocarya multipaniculata

B611679

$$
\begin{aligned}
& \stackrel{N}{N}
\end{aligned}
$$

\[

\]

\qquad
$00000000000000 \underset{N}{N} 00 \underset{\infty}{\infty} \underset{\infty}{\infty} 000 \underset{N}{N} 00000000000000000$

 $6 / 21 / 90$
$6 / 21 / 90$

 O
N_{N}
N
N
N $8 / 9 / 90$

$7 / 19 / 90$ | \circ |
| :--- |
| ∞ |
| ∞ |
| ∞ |

 $\begin{array}{r}0 \\ 0 \\ 0 \\ \hline\end{array}$

元 ※

『	
	\wedge＾＾＾＾＾ヘ
$\bar{\infty}$	$\begin{array}{llll} \infty & \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\sim} & \underset{\sim}{m} & \underset{\sim}{\sim} \\ \underset{\sim}{\sim} & \underset{\sim}{\sim} \end{array}$
	$\wedge \wedge \wedge \wedge$
$\stackrel{i}{\circ}$	
గ్ర	
Oi운	
$\underset{\sim}{\text { N్O }}$	
$\begin{aligned} & \text { 』 } \\ & \text { O} \end{aligned}$	$000000 \stackrel{\text { N／}}{\sim}$ N00000000000
$\begin{aligned} & \text { ì } \\ & \text { S } \end{aligned}$	
$\stackrel{N}{\mathbf{O}}$	
$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & \underline{Z} \\ & \underline{Z} \end{aligned}$	$\tilde{0}_{0}^{N} \ldots \ldots \tilde{0}_{0}^{N} \ldots \ldots \tilde{0}_{0}^{N} \ldots \ldots \tilde{0}_{0}^{N} \ldots \tilde{0}_{0}^{N} \ldots \ldots \ldots \tilde{N}_{0}^{N} \ldots \ldots \ldots$
$\frac{\amalg}{\delta}$	ㅇㅇ
⿹ㅡㅇ	
$\begin{aligned} & \stackrel{n}{\underset{\Sigma}{x}} \end{aligned}$	
$\begin{aligned} & \text { \# } \\ & \frac{\square}{5} \end{aligned}$	 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
8	 ㅇㅇ

CTR

 AVS-007065 B836749-F003 8
8
0
4
$\dot{9}$
7
0
0
∞
0
0
8
0
8
8
0
3 m
0
0
4
4
0
i

 n
8
0
4
\vdots
0
0
0
8
0
0
0
0
0
0
8
0
0
3
 m
8
0
4
4
0
7
1

 n
0
0
4
$\dot{4}$
\dot{n}
0
0
0
0
n
0
0
0
0
i
2

 \square
8
0
\vdots
\vdots
\vdots
6
\vdots
0
0
6
0
0
0
0
\dot{n}
2

 n
8
0
1
4
0
7
n
0
0
0
0
n
0
0
0
0
i

n
0
0
4
0
\vdots
4
0
0
∞
∞
1
0
0

๔

¢	$0 \sim$	¢ ¢ ¢ ¢	응		$\stackrel{\infty}{\infty} \underset{\sim}{\infty} \underset{\sim}{N}$	$\stackrel{\infty}{\sim}$	$\stackrel{?}{5}$	$\stackrel{ल}{\omega}$

㭡

 0
0
ω
0
0 0
0
0
0
∞
∞
∞ $10 / 25 / 90$
$10 / 2190$ 00
0
0
0
0
∞
0 0
o 0
N
N
N
ㅇ \circ
0
∞
∞
∞
∞ 0
0
0
0
0
0
0 옹

웅 | \circ |
| :--- |
| 0 |
| 0 |
| \vdots |
| ∞ |

N
0
0
0
0
0

0
0
0 0
 $\begin{array}{ll}\circ & 0 \\ 0 & 0 \\ & 0 \\ \vdots & 9 \\ 0 & m\end{array}$ 0
0
o
n
N

0 \begin{tabular}{ll}
0 \& 0

0 \& 0

N \& ∞

0 \& \multirow{2}{c}{}

\hline$-\infty$

0

0

0

$\stackrel{1}{0}$

$\stackrel{1}{\circ}$

\hline
\end{tabular} 0

0
0
0
 0
0
0
0
0
 0
o
in
$\stackrel{y}{4}$
0 $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ \vdots & 0 \\ 0 & 0 \\ -\infty\end{array}$ 0
0
o
n
$\stackrel{c}{0}$
0 $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ & 0 \\ \vdots & 0 \\ -\infty\end{array}$

AVS-007085 B848528-F013

N
0

 n
\vdots
\vdots
\vdots
\vdots
N_{0}
0
0
∞
∞
∞

ぁ

Notelaea ligustrina

$$
\wedge \quad \wedge \wedge
$$

$$
\wedge \wedge \wedge \wedge
$$

$$
\wedge A A A A A A A A A A A A A
$$

$$
\wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge
$$

$$
\wedge \quad \wedge \wedge
$$

$$
\text { N N N } 00000000 \stackrel{N}{N} \underset{N}{\infty} 000000
$$

B. Scale-up Isolation of Narciclasine and Pancratistatin and Synthetic

Modifications of Narciclasine

We have pursued the pancratistatin family of antiviral leads as a top priority. The research results here have been very encouraging and pancratistatin, isonarciclasine, cis-dihydronarciclasine as well as transdihydronarciclasine have proved to be quite promising. The most exciting antiviral result has been the discovery in USAMRIID's laboratories that pancratistatin will effectively treat the in vivo experimental version of Japanese Encephalitis.

We have completed reisolation of pancratistatin (1) from $1 / 2$ ton of Pancratium littorale collected in the Republic of Seychelles. Enough pancratistatin is now available for the next series of in vivo experiments.

In order to ensure that pancratistatin is available for future clinical trials, we have been expanding our botanical research aimed at this objective. Presently we have grown 900 Pancratium littorale plants and are preparing to triple that amount in the coming year. In turn, that will ensure a steady clinical supply. In the botanical research, we have also been exploring tissue culture methods of cloning Pancratium littorale and this avenue is also becoming increasingly productive. The evaluation of other Pancratium and Hymenocallis species for pancratistatin and related compounds has continued and led to discovery of a new source for pancratistatin, namely, Hymenocallis calatay from a Singapore collection.

Related plants of the Amaryllidaceae were evaluated for antiviral constituents. We completed the isolation and structural elucidation of transdihydronarciclasine (2) as the active (Japanese encephalitis in vitro) and anticancer (P 388 lymphocytic leukemia) constituent of Zephyranthes candida.

Meanwhile we have undertaken a world-wide procurement of Amaryllidaceae plants in the Pancratium and Hymenocallis genera. Twenty such species obtained were evaluated for antiviral constituents related to pancratistatin. One of these collected in Singapore in the Hymenocallis genus (unpublished) yielded 7-deoxy-trans-dihydronarciclasine (3) as the principle antiviral constituent. Interestingly this new natural product was just prepared by us using a semisynthetic route from 7-deoxy-narciclasine isolated from Pancratium littorale and represents one of those rare examples where the synthetic product preceded discovery of the natural product.

A major effort has been devoted to scaling-up the isolation of narciclasine from a Narcissus species.

We have isolated narciclasine (4) from a large scale collection (10,000 bulbs) of Narcissus ir rarabilis. So far about 50 grams of narciclasine has been isolated by this procedure and another 100 grams is in progress. The narciclasine is being employed in a semi-synthetic approach to pancratistatin. For experimental details of the semi-synthetic approach to pancratistatin from narciclasine, please refer to Appendix B. Epoxide (5) has been prepared and converted to ketone 6. The ketone reduction step is being studied in detail to increase yields of the β-alcohol corresponding to pancratistatin. Additional quantities of narciclasine are being converted to isonarciclasine (7) another antiviral derivative of pancratistatin found by USAMRIID to have in vitro antiviral activity. While total synthesis of nancratistatin was recently achieved it involved some 30 steps and was not practical for scale-up. Thus, we plan to use the semi-synthesis from narciclasine for pancratistatin and related compounds to meet future clinical needs. Toward that end some 30,000 bulbs (about seven tons) of Narcissus incomparabllis was obtained in September, 1990,

PANCRATISTATIM
1

Marciclasine
4

Isonarciclasine
7

Lycorine 8
and the scale-up isolation of additional narciclasine has begun.
Other structure/modification studies will be directed at the Amaryllidaceae antiviral constituent lycorine (8). Here modification will involve various epoxidation and hydroxylation procedures along with conversion to glycoside derivatives. Fortunately we have already isolated 50 grams of lycorine for these investigations from Narcissus incomparabilis.

Detailed reports have been included in the manuscript section of this final summary of our research directed at evaluating structure/activity relationships in our bryostatin series of marine animal constituents. Bryostatins 1 and 2 have been found active against the HIV-I in vitro syncytia screen. The contract renewal beginning June 28 will allow each of the most important RNA antiviral leads noted above to be vigorously pursued.

III. Near Term Plans

The discuvery that pancratistatin will effectively retard USAMRIID's in vivo Japanese Encephalitis has opened the way to a new generation of antiviral drugs. The combination of isolation and synthesis from narciclasine will ensure eventual large-scale production of pancratistatin and related compounds.

Very importantly for the future, we have now underway the fractionation research on a number of high priority USAMRIID RNA antiviral actives along with the HIV actives noted above.

In short the USAMRIID research program at the ASU-CRI has been making, as usual, excellent progress concerned with discovery and development of potentially useful antiviral drugs. Again, this was only made possible by the most necessary USAMRIID support and collaborative endeavors.

IV. Publications, Meeting Abstracts, Personnel

BIBLIOGRAPHY OF PUBLICATIONS

Manuscripts submitted;

G. R. Pettit, C. L. Herald, M. R. Boyd, J. E. Leet, C. Dufresne, D. L. Doubek, J. M. Schmidt, R. L. Cerny, J. N. A. Hooper, and K. C. Rutzler, "Isolation and Structure of the Cell Growth Inhibitory Cycloheptapeptide Axinastatin 1 from the Western Pacific Marine Sponge Axinella sp.," J. Med, Chem.
G. R. Pettit, J. C. Collins, D. L. Herald, D. L. Doubek, M. R. Boyd, J. M. Schmidt, J. N. A. Hooper, and L. P. Tackett, "Isolation and Structure of Cribrostatins 1 and 2 from the Blue Marine Sponge Cribrochalina sp.," Can. J. Chem.
G. R. Pettit, D. Sengupta, P. M. Blumberg, N. E. Lewin, J. M. Schmidt, and A. S. Kraft, "Structural Modifications of Bryostatin 2," Anticancer Drug Design.

Manuscripts in press:

G. R. Pettit, D. Sengupta, C. L. Herald, N. A. Sharkey, and P. Blumberg, "Synthetic Conversion of Bryostatin 2 to Bryostatin 1 and Related Bryopyrans," Can. J. Chem.
G. R. Pettit, D. L. Doubek, and D. L. Herald, "Isolation and Structure of Cytostatic Steroidal Saponins from the African Medicinal Plant Balanites aegyptiaca," J. Nat. Prod,

Papers Published: (One copy of each attached)
G. R. Pettit, G. M. Cragg, S. B. Singh, J. A. Duke and D. L. Doubek, "Antineoplastic Agents. 162. Zephyranthes candida," J. Nat, Prod., 53, 176 (1990).
S. B. Singh and G. R. Pettit, "Antineoplastic Agents. 206. Structure of the Cytostatic Macrocyclic Lactone Combretastatin D-2," J. Org. Chem, 55, 2797 (1990).
G. R. Pettit, D. L. Herald, G. M. Cragg, J. A. Rideout, and P. Brown, "Antineoplastic Agents. 178. Isolation and Structure of Lychnostatins 1 and 2 from the South American Lychnophora antillana," J. Nat. Prod., 53, 382 (1990).
G. R. Pettit, A. Numata, T. Takemura, R. H. Ode, A. S. Narula, J. M. Schmidt, G. M. Cragg, and C. P. Pase, "Antineoplastic Agents. 107. Isolation of Acteoside and Isoacteoside from Castilleja linariaefolia," J. Nat, Prod., 53, 456 (1990).
S. B. Singh and G. R. Pettit, "Antineoplastic Agents. 195. Isolation and Structure of Aceratioside from Aceratium megalospermum," J. Nat. Prod, 53, 1187 (1990).
G. R. Pettit, C. L. Herald, J. E. Leet, R. Gupta, D. E. Schaufelberger, R. B. Bates, P. J. Clewlow, D. L. Doubek, K. P. Manfredi, K. Rutzler, J. M. Schmidt, L. P. Tackett, F. B. Ward, M. Bruck, and F. Camou, "Antineoplastic Agents. 168. Isolation and Structure of Axinohydantoin," Can, J. Chem, 68, 1621 (1990).
G. R. Pettit, D. E. Schaufelberger, R. A. Nieman, C. Dufresne, and J. A. SaenzRenauld, "Antineoplastic Agents. 177. Isolation and Structure of Phyllanthostatin $6, " \mathrm{~J}, \mathrm{Nat}_{2} \mathrm{Prod}_{2}, 53,1406$ (1990).
G. R. Pettit, F. Gao, D. Sengupta, J. C. Coll, C. L. Herald, D. L. Doubek, J. M. Schmidt, J. R. Van Camp, J. J. Rudloe, and R. A. Nieman, "Isolation and Structure of Bryostatins 14 and 15," Tetrahedron, 47, 3601 (1991).

MEETING ABSTRACTS

"Expression of the Multi-Drug Resistance (MDR) Gene Does Not Confer Resistance to the Cytostatic Effects of Bryostatin 1," C. W. McCrady, X. Huang, G. V. Massey, S. Yanovich, G. R. Pettit, and R. A. Carchman, Amer. Assoc. of Cancer Research, 8th Annual Meeting, CA, May 1989.

AMER. SOC. OF HEMATOLOGY, Annual Meeting, Atlanta, GA, December 1989:
"Bryostatin 1 Induces Differentiation of B-CLL Cells," $H_{1} \underline{G}_{\text {. }}$ Drexler, S. M. Gignac, R. A. Jones, C. S. Scott, G. R. Pettit, and A. V. Hoffbrand
"Activation and Differentiation of Normal B-Cells Induced by Bryostatin $1, "$. G. Drexler, S. M. Gignac, G. R. Pettit, and A. V. Hoffbrand
"Differential Effects of Bryostatin-1 on the Growth of Myeloid Leukemia and Normal Hematopoietic Cells in the Lewis x Brown Norway Hybrid (LBN) Rat," K. S. Durham, A. M. Yeager, D. Reardon, D. T. Kasper, W. S. May, and G. R. Pettit
"Potentiation of Ara-C Metabolism and Cytotoxicity in Leukemic Cells by Bryostatin-1, a Potent Activator of Protein Kinase C," S. Grant, G. R. Pettit, and C. McCrady

AMER. SOC. OF HEMATOLOGY, Boston, MA, December 1990:
"Modulation of the Response of Highly Purified Human Hematopoietic Progenitor Cells (MY-10 ${ }^{+}$) to Hematopoietic Growth Factors by Bryostatin 1, " C. McCrady, F. Lei, G. Pettit, and S. Grant
"The PK-C Activator Bryostatin 1 Potentiates the Radioprotective Effects of Recombinant Granulocyte-Macrophage Colony Stimulating Factor Toward Normal Human Hematopoietic Progenitor Cells," S. Grant, G. R. Pettit, and C. McCrady
"Tissue Culture of Pancratium littorale for Production of Pancratistatin, An Anticancer Drug," R, A. Backhaus, J. Ho, G. R. Pettit, III, D.-S. Huang, and G. R. Pettit, 23rd Int'l. Horticulture Congress, Italy, 8/27-9/1/90.
"Bryostatins Define the Role of Protein Kinase C in Pituitary Tumor Cell Proliferation," E. A. Mackanos, G. R. Pettit, and J. S. Ramsdell, The Endocrine Society, Bethesda, MD, June 1991.

PERSONNEL RECEIVING PAY

Name

Dr. Jozsef Barkoczy
Mr. Phillip J. Daschner
Dr. Dennis L. Doubek

Ms. Christine H. Duplissa
100 100

Dr. Grazyna Groszek 100
Dr. Rajesh K. Gupta 100
Dr. Fiona M. Hogan 63
100

Dr. Tirumalai R. Kasturi 100
Mrs. Denise N. Tackett 75
Mr. Larry P. Tackett 75
Dr. Bruce E. Tucker 100

Period
$10 / 16 / 90-1 / 31 / 91$
12/1/89 - 2/5/90
12/1/89 - 2/5/90
10/16/90 - 1/31/91
11/1/89-1/31/90
$10 / 16 / 90-1 / 31 / 91$
10/1/89-2/5/91
2/6/89-6/30/90
2/6/89-6/30/89
7/1/89-2/5/91
2/6/89-9/30/89
11/1/89-2/5/90
11/1/89-2/5/90
2/6/89-2/5/91

Patent Disclosures

Patent disclosures being filed by the University emanating from funds provided by USAMRIID continue to be reported by the University's Director of Technology Transfer.

ANTINEOPLASTIC AGENTS, 162.' ZEPHYRANTHES CANDIDA

George R. Pettit,* Gordon M. Cragg, Sheo Bux Singh, James A. Duke, and Dennis L. Doubek

Cancer Research Institute and Department of Chemistry. Arizona State Unitersity. Tempe. Arizona 85287-1604

Abstract

The Chinese medicinal plant Zephyranthes candida was found to contain a cytostatic constituent. Separation of a n-BuOH extract direcred by results of a bioassay employing the P - 388 lymphocytic leukemia led to trans-dihydronarciclasine [2] as the principal cyrostatic agent with $E_{s 0} 3.2 \times 10^{-3} \mu \mathrm{~g} / \mathrm{ml}$.

Amaryllidaceous plants such as Narcissus poeticus were recorded in the Bible as well-established treatments for cancer (1), and others were in use by the Greek physicians of the fourth century BC (2). The first isolation, in 1877 (3), of a biologically active Amaryllidaceae constituent, the now well-known lycorine (4), was an early achievement of organic chemistry, and such studies have been intensifying (4-7). In 1984, we reported discovery and structural elucidation of a strongly antineoplastic phenanthridone designated pancratistatin [1] produced by plants of Pancratium littorale $(2,8)$ and Zephyranthes grandiflora (5).

In 1964, extracts of the medicinal (5) Zephyranthes candida (Lindl.) Herb. (obrained in Hong Kong) had already proved active (KB cell line from a human epidermoid carcinoma of the nasopharynx) in the U.S. National Cancer Institute's exploratory research program, but we were unable to obrain a re-collection (People's Republic of China) until 1982. Earlier (1955) Boit and Ehmke (9) isolated four alkaloids from the Dutch Z. candida representing the pyrrolo[de]phenanthridine (lycorine), pretazettine (tazertine), and 5,10b-ethanophenanthridine (haemanthidine and nerinine) ring systems. The study was extended in 1964-65 $(10,11)$ to isolation of dihydrolycorine and zephyranthine from a Japanese variety and in 1978 to a flavone glycoside (12). We now have found the principal cytostatic (murine P-388 lymphocyric

[^0]leukemia, PS system) $(12,13)$ constituent of Z. candida to be trans-dihydronarciclasine [2] previously (14) prepared by hydrogenation of narciclasine [6] and heretofore unknown as a biosynthetic product.

6

Ground bulbs of Z. candida were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (1:1) at ambient temperature. After addition of $\mathrm{H}_{2} \mathrm{O}$, the aqueous phase was concentrated and extracted with n - BuOH . The PS-active (cell line) n - BuOH extract was concentrated and triturated with MeOH to provide a fraction that was separated (guided by PS bioassay) by successive

Sephadex LH-20 and Si gel cc steps. The resulting enriched active (ED s0 $^{0} 0.0034$ $\mu \mathrm{g} / \mathrm{ml}$) fraction was devoid of acetate groups (ir), and the major component coeluted [tlc, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (90:10:0.1)] with an authentic synthetic specimen of trans-dihydronarciclasine. The fraction was acetylated and separated on a column of Si gel to yield trans-dihydronarciclasine peracetate [3] ($\mathrm{PS} \mathrm{ED}_{50} 3.2 \times 10^{-3} \mathrm{\mu g} / \mathrm{ml}$) as the major component. The structure of the peracetate was established by detailed spectral analysis (2) and comparison with an authentic sample as well as with the product obtained by catalytic hydrogenation (Adam's catalyst in HOAc at 50 psi) of narciclasine, followed by acerylation. Hydrogenation afforded as the major product the expected cis-dihydronarciclasine accompanied by the trans isomer. Facile deacerylation of the phenolic acetoxy group was observed during chromatography and in MeOH solutions to give the 7 -hydroxy-2,3,4-triacetoxy derivative 4. Trans-dihydronarciclasine (prepared from the acetate) was found to strongly inhibit the PS leukemia with $E D_{50} 0.0032 \mu \mathrm{~g} / \mathrm{ml}$, while the synthetic cis-dihydro analogue 5 led to PS $E D_{90} 0.024 \mu \mathrm{~g} / \mathrm{ml}$.

Isolation of trans-dihydronarciclasine [2] as the major antineoplastic constituent of Z. candida has revealed another interesting and potentially useful Amaryllidaceae biosynthetic product. Further study of this very productive plant family for anticancer and other medically useful components will doubrless prove rewarding and is in progress.

EXPERIMENTAL

General methods.-Details of general procedures and chromarographic rechniques were provided in our earlier summaries $(2,5)$.

Plant material.—Z. candida PR \#55337, NSCB657832 was re-collected in China in 1981 (received February 1982) as part of the NCIUSDA collaborative program directed by Drs. J. L. Hartwell and M. Suffness. A voucher specimen is maintained at the USDA. Beltsville. MD. and in the ASU-CRI.

Extraciton.-Freshly ground bulbs (18 kg) were stored in $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)(32$ liters) for 10 days. Addition of $\mathrm{H}_{2} \mathrm{O}$ (15% by volume) caused separation of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase. MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added to the aqueous phase to increase the original total volume by 50 and 25%, respectively. The plant was extracted with this mixture (2:1:0.5 ratio of MeOH- $\mathrm{H}_{2} \mathrm{O}$ to added MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) for a further 80 days. Addition of $\mathrm{H}_{2} \mathrm{O}(25 \%$ by volume) allowed the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase to separate, which was combined with the first $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract and concentrated to a $109-\mathrm{g}$ residue ($\mathrm{PS} E \mathrm{E}_{\mathrm{s} 0} 3.5 \mu \mathrm{~g} / \mathrm{ml}$). The aqueous phase was concentrated and partitioned between $\mathrm{H}_{2} \mathrm{O}$ (6 liters) and n - BuOH (4×6 liters). Concentration of the $n-\mathrm{BuOH}$ extract to a small volume and addition of MeOH (2 liters) gave an active MeOH -soluble fraction (149 g , PS ED so_{0} $0.27 \mu \mathrm{~g} / \mathrm{ml}$). Upon further dilution with MeOH $(600 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{ml})$ the solution was filtered to yield 28 g of a solid (PS ED $901.6 \mu \mathrm{~g} /$ ml). The filtrate was chromatographed on a column of Sephadex LH-20 (2.5 kg) using MeOH$\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 2)$ as eluent.

ISOLATION OF TRANS-DIHYDRONARCICLASINE [2].--Elution (the preceding LH-20 column) between volumes $7215-16950 \mathrm{ml}$ gave a 6.2-g fraction (PS ED so $_{0}<0.02 \mu \mathrm{~g} / \mathrm{ml}$). Trituration with $\mathrm{Me}_{2} \mathrm{CO}$ (50 ml) provided a light orange solid (2.72 g , PS ED ${ }_{50} 0.016 \mu \mathrm{~g} / \mathrm{ml}$) and a soluble fraction (3.5 g , PS ED so $_{0} 0.0043 \mu \mathrm{~g} / \mathrm{ml}$). When the orange solid was triturated with MeOH $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($1: 1$) ($3 \times 10 \mathrm{ml}, 1$ day), followed by MeOH ($5 \mathrm{ml}, 2$ days), a soluble fraction (2.58 g) was obrained similar (by tlc) to the $\mathrm{Me}_{2} \mathrm{CO}$-soluble fraction. An aliquot of the $\mathrm{Me}_{2} \mathrm{CO}$-soluble fraction (1.76 g) and the latcer soluble fraction $(2.58 \mathrm{~g})$ were combined and the mixture subjected to rapid chromatography on a column of Si gel (200 g). Gradient elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 liter) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (99:1 to 95:5 to 9:1)(2 liters) gave a fraction (1.05 g) which was triturated with MeOH (5 ml , I day) to give a buff-colored solid $\left[0.20 \mathrm{~g}\right.$. PS ED ${ }_{90} 0.0034 \mu \mathrm{~g} / \mathrm{ml}$, if (KBr) 3350, 1660, 1460. 1340, 1280, 1225, $1060,1025 \mathrm{~cm}^{-1} \mathrm{~J}$. Half of the solid was acetylated [Ac ${ }_{2} \mathrm{O}$-pyridine ($1: 1$) (6 ml), 24 h , room cemperature), and the product (0.12 g) was chromarographed on a column of Si gel (Lobar B column). Development with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(99: 1)(400 \mathrm{ml})$ followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(49: 1)$ (all affording berween 675 and 725 ml) total eluent volume, trans-dihydro-narciclasine-2,3,4-triacetate [4] (16 mg) which recrystallized from $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as small colorless needles: mp 309-311 ${ }^{\circ}$ [lit. (13) $\mathrm{mp} 293^{\circ}$]: $\left.\{\alpha]^{+\prime} 1\right\}+81.94^{\circ}\left(1=0.72, \mathrm{CHCl}_{1}\right) ;$ uv $\lambda \max$ MeOH (loge) 231 (4.04), 239 (4.01), 280 (3.75), $310(3.33) \mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.914 .(1 \mathrm{H}$, ddd, $J=14.0,12.5,3.0$
$\mathrm{Hz}, \mathrm{H}-1 \beta), 2.086(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ac}), 2.137(3 \mathrm{H}, \mathrm{s}$, Ac), $2.432(1 \mathrm{H}, \mathrm{ddd} . J=14.0,3.5 .3 .2 \mathrm{~Hz}, \mathrm{H}-$ $1 \alpha), 3.134(1 \mathrm{H}$, ddd, $J=12.7,12.5,3.5 \mathrm{~Hz}$, $\mathrm{H}-10 \mathrm{~b}$), 3.777 ($1 \mathrm{H}, \mathrm{dd}, J=12.7,11.8 \mathrm{~Hz}, \mathrm{H}-$ $4 \mathrm{ta}), 5.175(1 \mathrm{H}, \mathrm{dd}, J=11.8,3.0 \mathrm{~Hz}, \mathrm{H}-4)$, $5.189(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 5.438(1 \mathrm{H}, \mathrm{dd}, J=3.2$, $3.0 \mathrm{~Hz}), 5.855(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.037,6.049(1 \mathrm{H}$, each, $\left.\mathrm{d}, J=1.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.323(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 10), $9.704(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$. Acetylation $\left[\mathrm{Ac}_{2} \mathrm{O}-\right.$ pyridine ($1: 1$)] led to trans-dihydronarciclasine peracetate [3] identified by thc and ir spectra (in CHCl_{4}) with an aurhentic specimen.
Continued elution berween volumes 725-760 ml gave a mixture (14 mg) of the above criacetate and trans-dihydronarciclasine peracetate.and between volumes $760-810 \mathrm{ml}$ trans-dihydronarciclasine peracerate (80 mg).

Recrystallization from $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded a pure specimen of 3 as colorless needles: mp $181-182^{\circ}$ [lit. (14) $\left.188-189^{\circ}\right]$; $[\alpha]^{\prime 3} \mathrm{D}+123.9^{\circ}\left(6=1.13, \mathrm{CHCl}_{3}\right)$ (lit. (14) $\left.[\alpha]^{20} \mathrm{D}+128.5^{\circ}\left(i=0.82, \mathrm{CHCl}_{4}\right)\right]$; uv λ max $\mathrm{MeOH}(\log \epsilon) 231$ (4.10), 239 (4.09). 280 (3.82), 310 (3. 40) nm; ir (KBr) $v \max 3600$, 3500,3330 (sh), $3310,1760,1730$ (sh), 1670 . 1634, 1505. 1487, 1460, 1371, 1345, 1298, 1255, 1235, 1172, 1080, 1051, 1031, 930 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.906(1 \mathrm{H}$, ddd, $J=14.0,12.7,3.0 \mathrm{~Hz}, \mathrm{H}-1), 2.054$, $2.071,2.139(3 \mathrm{H}$ each, Ac) $2.364(3 \mathrm{H}$, ArOAc), 2.428 (1H, ddd, $J=14.0,3.5,3.2$ $\mathrm{Hz}, \mathrm{H}-1 \alpha), 3.140(1 \mathrm{H}, \mathrm{ddd}, J=12.7,12.0,3.5$ $\mathrm{Hz}, \mathrm{H}-10 \mathrm{~b}), 3.762(\mathrm{lH}, \mathrm{dd}, J=12.0,10.8 \mathrm{~Hz}$, $\mathrm{H}-4 \mathrm{a}) .5 .156$ ($1 \mathrm{H}, \mathrm{dd}, J=10.8,3.0 \mathrm{~Hz}, \mathrm{H}-4$), $5.192(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 5.416(\mathrm{IH}, \mathrm{dd}, J=3.2$, $3.0 \mathrm{~Hz}, \mathrm{H}-2), 5.810(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.065,6.073$ 11 H each, $\left.\mathrm{d}, J=1.2 \mathrm{~Hz},-\mathrm{O}_{2} \mathrm{CH}_{2}-\mathrm{O}\right), 6.642$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), ${ }^{11} \mathrm{C}$ nmr ($22.63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $170.34,169.35,169.14$ (4C, $4 \times \mathrm{OCOM}^{2}$). 163.35 (C-6), 152.40 (C-9), 139.63 (C-7), 137.00 (C-10a), $134.33(\mathrm{C}-8), 116.04$ (C-6a), 102.91 (OCH, O), $102.00(\mathrm{C}-10), 71.62$. $68.60,67.43(3 \times$ CHOAc $) .52 .41$ (C-4a), 35.61 (C-10b). 27.00 (C-1), 21.02, 20.86. $20.70\left(4 \mathrm{c} .4 \times \mathrm{OCOCH}_{4}\right) \mathrm{ppm}$; hreims $\mathrm{m} / \mathrm{z}_{[\mathrm{M}]^{+}}$ 477.1258 (3.09\%) (calcd 477.1271 for $\mathrm{C}_{22} \mathrm{H}_{2}, \mathrm{NO}_{11}$). 435.1165 (100\%) (calcd 435.1166 for $\left.\mathrm{C}_{20} \mathrm{H}_{2}, \mathrm{NO}_{16}\right)$.

ACKNOWLEDGMENTS

We are very appreciative of financial assistance provided by the Arizona Disease Control Research Commission. Eleanor W. Libby. The Waddell Foundation (Donald Ware), the Fannie
E. Rippel Foundation, Herbert K. and Dianne Cummings (che Nathan Cummings Foundation. Inc.), Virgina Piper, Lotte Flugel, Polly J. Trautman. Grant CA-30311-01-03 awarded by the National Cancer Institure and Contract NOI-CM-97262 with the Division of Cancer Treatment. NCI, NIH, and the U.S. Army Medical Research and Development Command under Grant No. DAMD17-89-Z-9021. For other assistance we thank Drs. J.M. Schmidt, V. Gaddamidi, M.I. Suffness, and Messrs P.J. Daschner and L. Williams. We thank Professor A. Mondon for samples of trans-dihydronarciclasine and its peracetare as well as the corresponding cis-di-hydro-compounds (see Mondon and Krohn, 14).

LITERATURE CITED

1. J.L. Hartwell, Lloydia. 30, 379 (1967).
2. G.R. Pettit. V. Gaddamidi, D.L. Herald, S.B. Singh, G. M. Cragg, J. Schmide, F.E. Boettner, M. Williams, and Y. Sagawa, J. Nat. Prod. 49, 995 (1986).
3. J. W. Cook and J.D. Loudon, in: "The AIkaloids. "Ed. by R.H.F. Manske and H.L. Holmes, Academic Press, New York, 1952. Vol. II, Chapter 11, p. 33 !.
4. S. Ghosal, K.S. Saini, and S. Razdan, Phytachemistry, 24, 2141 (1985).
5. G.R. Pettit, V. Gaddamidi, and G.M. Cragg, J. Nat. Prod. . 47, 1018 (1984).
6. M. Kihara, T. Koike, Y. Imakura, K. Kida, T. Shingu, and S. Kobayashi, Chem. Pharm. Bull. 35, 1070 (1987).
7. H.-Y. Li, G.-E. Ma, Y. Xu, and S.-H. Hong, Planta Med. 259 (1987).
8. G.R. Pettit. V. Gaddamidi, G.M. Cragg, D. L. Herald, and Y. Sagawa, J. Chem. Soc. Chem. Commun., 1693(1984).
9. H.G. Boit and H. Ehmke, Chem. Ber. 88. 1590 (1955).
10. S. Ozeki, Yakugaku Zashbi. 84, 1194 (1964).
11. S. Ozeki. Yakugaku Zasshi. 85, 200 (1965).
12. R.J. Green, N.H. Greenberg, M.M. MacDonald, A.M. Schumacher, and B.J. Abbott. Cancer Chemother. Rep.. 3, 1 (1972).
13. M. Nakayama, T. Horic, M. Tsukayama, M. Masumura, and S. Hayashi, Z. Naturfarsch. . C: Biosci., 33, 587 (1978).
14. A. Mondon and K. Krohn, Chem. Ber.. 108, 445 (1975).

Received 22 May 1989

Reprinted from The Journal of Organic Chemistry, 1990, Vol. 55.
Copyright © 1990 by the American Chemical Society and reprinted by permission of the copyright owner.

Antineoplastic Agents. 206. Structure of the Cytostatic Macrocyclic Lactone Combretastatin D-2 ${ }^{1}$

Sheo Bux Singh and George R. Pettit*

Cancer Research Institute and Department of Chemistry, Arizona State University, Tempe, Arizona 85287-1604
Received November 14, 1989

The South African tree Combretum caffrum (Combretaceae) has been found to contain two new and cytostatic (P388 lymphocytic leukemia) macrocyclic lactones designated combretastatin D-1 (1, ED 50 3.3 $\mu \mathrm{g} / \mathrm{mL}$) and D-2 (2, $\mathrm{ED}_{\mathrm{mg}} 5.2 \mu \mathrm{~g} / \mathrm{mL}$). With the X-ray crystal structure of combretastatin $\mathrm{D}-1$ (1) serving as an unequivocal reference point ${ }^{i 3} \mathrm{C}$ NMR and high field (400 MHz) ${ }^{1} \mathrm{H}$ NMR spectral techniques were employed to assign structure 2 to combretastatin D-2.

The South African tree Combretum caffrum (Combretaceae) has been found to produce two cis-stilbenes, combretastatins A-1 and A-4, that strongly inhibit growth of the P-388 lymphocytic leukemia cell line (PS system) and tubulin polymerization. ${ }^{2}$ Recently, we reported ${ }^{3}$ the iso-

[^1]lation and structure determination of an unexpected $17-$ membered macrocyclic lactone designated combretastatin D-1 (1) from the same plant. We now summarize the

isolation and structural elucidation of another PS cell line inhibitory member of this unusual series of macrocyclic lactones named combretastatin D-2 (2) along with chemical

Table I. ${ }^{1}$ H NMR Assignments for Combretastatin D-2 (2) and Derivatives 5a-c in Deuteriochloroform Solution in δ Value (ppm) with Chloroform as Internal Standard

position	2	$5 \mathbf{a}^{\text {a }}$	5b	5 c
2α	4.64, d, 6.8	4.64, d, 6.9	3.91, d, 11.4	4.05, d, 11.9
2β	4.64, d, 6.8	4.26, m	4.31, dd, 11.4, 7.0	4.56, dd, 12, 7.6
3	6.06, dt, 10.6, 6.8	2.09, 2.38 , m	4.24, m	4.27, m
4	7.11, d, 10.6	3.72, m	2.81, dd, 12.9, 8.4	2.93, dd, 13.2, 11.4
		4.06, m	3.26, dd, 12.9, 5.1	3.60, dd, 13.2, 5.3
6	7.33, d, 8.4	7.33, br d, 9.7	7.35, dd, 8.3, 2.3	7.35, dd, 8.3, 2.1
7	7.09, d, 8.4	7.09, dd, 8.0, 1.7	7.05, dd, 8.4, 2.5	7.10, dd, 8.3, 2.5
12	$6.85, \mathrm{~d}, 8.0$	$6.83, \mathrm{~d}, 8.2$	6.84, d, 8.2	6.84, d, 8.2
13	6.63, ddd, 8, 1.8, 1.7	6.61, dd, 8.4, 1.7	$6.61, \mathrm{dd}, 8.3,1.6$	6.61, dd, 8.3, 1.8
15 α	2.87, t, 5.0	2.82, m	2.72, br dd, 17.1, 8	2.61, br dd, 17.1, 7.2
15β	2.87, t, 5.0	2.85, m	2.96, br dd, 16.4, 9.9	3.05, br dd, 16.6, 10.6
16α	$2.29, \mathrm{dt}, 5.0,1.7$	2.25, m	2.23, ddd, 17, 10.5, 1.7	2.15, ddd, 15.2, 12, 1.4
16β	$2.29, \mathrm{dt}, 5.0,1.7$	2.30, m	2.35, ddd, 17, 8.2, 1.8	2.40, ddd, 16.8, 7.4, 1.4
18	7.33, d, 8.4	7.31, dd, 8.0, 1.9	7.31, dd, 8.0, 2.5	7.31, dd, 8.1, 2.2
19	7.09, d, 8.4	7.02, dd, 8.3, 2.0	7.02, dd, 8.2, 2.5	7.00, dd, 8.1, 2.5
20	5.07, d, 1.8	$5.30, \mathrm{~d}, 2.0$	$5.23, \mathrm{~d}, 1.8$	$5.21, \mathrm{~d}, 1.8$
$\begin{aligned} & 11-\mathrm{OH} \\ & 3.0 \mathrm{H} \end{aligned}$	5.47, s	$5.51, \mathrm{br} \mathrm{s}$	$\begin{aligned} & 5.50, \text { br s } \\ & 2.07, \mathrm{~d}, 6.1 \end{aligned}$	$5.48, \mathrm{~s}$

- Two major conformers; the chemical shift of the major conformer is reported.
transformations of combretastatin D-1 undertaken as part of the original structural elucidation. ${ }^{3}$
A methylene chloride-methanol (1:1) extract of Combretum caffrum stem wood was initially fractionated and separated as described. ${ }^{2 a, b}$ The fraction that previously yielded ${ }^{26}$ combretastatin A-2 was subjected to a similar PS bioassay guided chromatographic separation sequence (a series of Sephadex LH-20 partition chromatograms using hexane-toluene-methanol, $3: 1: 1$, and silica gel column chromatographic procedures employing various combinations of hexane-ethyl acetate as eluant) afforded combretastatin D-2 (2, 5.8 mg from 77 kg of wood), which exhibited PS ED ${ }_{50} 5.2 \mu \mathrm{~g} / \mathrm{mL}$.
As with combretastatin D-1 (1) mass spectral analysis of combretastatin D-2 indicated a molecular formula $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}\right)$ with 11 double-bond equivalents. The infrared spectrum of lactone 2 showed absorption due to a lactone or an ester carbonyl (at $1728 \mathrm{~cm}^{-1}$), hydroxyl group (3436, $3429 \mathrm{~cm}^{-1}$), and aromatic rings. The ${ }^{1} \mathrm{H}$ NMR spectrum contained signals corresponding to methylene adjacent to carbonyl, a benzylic methylene, an oxymethylene, eight olefinic and/or aromatic protons, and a shielded aromatic proton (Table I). The proton NMR spectrum was assigned on the basis of $2 \mathrm{D}^{1} \mathrm{H}$ NMR and ${ }^{1} \mathrm{H}$-COSY techniques. ${ }^{4}$ The spin systems were (a) $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-;$ (b) $-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}$-; (c) a para-substituted aromatic ring; and (d) an ortho,ortho,meta-substituted aromatic ring. On the assumption that combretastatin D-2 had a lactone ring, all the double-bond equivalents were thereby accounted for. The ${ }^{13} \mathrm{C}$ NMR spectrum of olefin 2 was consistent with this deduction. The ${ }^{1} \mathrm{H}$ NMR spin systems were assembled ${ }^{3}$ on the basis of NOEDS experiments.
Comparison of the ${ }^{13} \mathrm{C}$ NMR spectrum (Table II) of combretastatin D-2 with the spectrum of combretastatin D-1 (1, confirmed by X-ray crystal structure determination) provided unequivocal support for the proposed structure. The carbon-13 spectrum of lactone 2 was found to be essentially identical with that of combretastatin D-1, except for the olefinic carbon signals. Since the original ${ }^{13} \mathrm{C}$ assignments for combretastatin $\mathrm{D}-1$ were based on direct one-bond ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ correlation using the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ COSY^{6} experiment (ambiguous for the quaternary carbons), it became necessary to assign the carbon resonances of the more abundant combretastatin D-1. Therefore, all
(4) Bax, A.; Freeman, R. J. Magn. Reson. 1881, 44, 542. (5) (a) Bodenhaven. G.; Freeman, R. J. Magn. Reson. I971, 28, 471. (b) Bax, A.; Mortis, G. A. J. Magn. Reson. 1981, 42, 501.

Table II. ${ }^{13}$ C NMR Assignments for Combretastatin D-1 (1 with HMBC Correlations) and Combretastatin D-2 (2) in Deuteriochloroform

Deuteriochloroform			
position	1	2	1 (HMBC)
2	62.56	59.06	$\mathrm{C}-2 \rightarrow \mathrm{H}-3$
3	52.99	137.74	$\mathrm{C}-3 \rightarrow \mathrm{H}-2 \alpha, \mathrm{H}-2 \beta, \mathrm{H}-4$
4	55.84	135.45	$\mathrm{C}-4 \rightarrow \mathrm{H}-2 \alpha, \mathrm{H}-2 \beta, \mathrm{H}-6$
5	132.44	132.01	$\mathrm{C}-5 \rightarrow \mathrm{H}-4, \mathrm{H}-7, \mathrm{H}-19$
6	128.83	129.09	$\mathrm{C}-6 \rightarrow \mathrm{H}-4, \mathrm{H}-18$
7	123.95	123.89	$\mathrm{C}-7 \rightarrow \mathrm{H}-19$
8	156.01	155.6	$\mathrm{C}-8 \rightarrow \mathrm{H}-7, \mathrm{H}-19$
10	149.09°	$149.32^{\text {a }}$	$\mathrm{C}-10 \rightarrow \mathrm{H}-12,11-\mathrm{OH}, \mathrm{H}-20$
11	$142.62^{\text {a }}$	$142.48{ }^{\text {a }}$	$\mathrm{C}-11 \rightarrow \mathrm{H}-12,11 \mathrm{OH}, \mathrm{H}-20$
12	115.38	115.39	$\mathrm{C}-12 \rightarrow \mathrm{H}-13,11-\mathrm{OH}$
13	122.03	121.89	$\mathrm{C}-13 \rightarrow \mathrm{H}-15 \alpha, \mathrm{H}-12, \mathrm{H}-20$
14	131.90	131.14	$\mathrm{C}-14 \rightarrow \mathrm{H}-12, \mathrm{H}-15 \alpha, \beta, \mathrm{H}-16 \alpha, \beta$
15	26.97	26.89	$\mathrm{C}-15 \rightarrow \mathrm{H}-16 \alpha, \beta, \mathrm{H}-20$
16	31.24	32.42	$\mathrm{C}-16 \rightarrow \mathrm{H}-15 \alpha, \beta$
17	172.53	173.30	$\mathrm{C}-17 \rightarrow \mathrm{H}-2 \alpha, \beta, \mathrm{H}-15 \beta, \mathrm{H}-16 \alpha, \beta$
18	126.34	125.68	$\mathrm{C}-18 \rightarrow \mathrm{H}-4, \mathrm{H}-6$
19	123.14	123.89	$\mathrm{C}-19 \rightarrow \mathrm{H}-7$
20	112.24	112.58	$\mathrm{C}-20 \rightarrow \mathrm{H}-12, \mathrm{H}-13, \mathrm{H}-15 \alpha$

${ }^{a}$ Assignments with identical superscripts in vertical columns may be interchanged.
the carbon resonances of epoxide 1 were assigned by heteronuclear multiple bond connectivity (HMBC) experiments. ${ }^{6}$ The observed connectivities are recorded in Table II. The previous assignments ${ }^{3}$ remain unchanged except for reversal of the quaternary carbon signals at C-5 and C-14. Both protons at C-2 gave a strong cross correlation with the carbonyl group, clearly confirming presence of the lactone. Similarly, assignment of the chemical shift of C-8 was confirmed by correlation with $\mathrm{H}-7$ and $\mathrm{H}-19$. Definite assignment of $\mathrm{C}-10$ and $\mathrm{C}-11$ remains uncertain because of common correlation cross peaks but this is of little consequence. Combretastatin D-2 must have structure 2 and this was further corroborated by the mass spectral fragmentation pattern (structure 4).

Attempts to convert combretastatin D-1 (1) into D-2 (2) and thereby provide further support for the D-2 structure were unsuccessful. For example, reaction of combretastatin $\mathrm{D}-1$ with $\mathrm{Zn} / \mathrm{Cu}$ couple ${ }^{7}$ gave hydrocarbon derivative $5 a$ and alcohol 5 b. Several other reagents such as $\mathrm{P}_{\mathbf{2}} \mathrm{I}_{4}{ }^{8}$

[^2]

3 NOE

4 MS
or sodium iodide with acetonitrile and trifluoroacetic anhydride ${ }^{9}$ were either unreactive under the conditions studied or caused decomposition. When the epoxide group of combretastatin D-1 was hydrogenated to give alcohol $\mathbf{5 b}$, subsequent treatment with thionyl chloride in pyridine yielded 3,4-deoxy-3-chlorocombretastatin D-1 (5c).

5a: $R_{1}=R_{2}=H$
5b: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$
sc: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Cl}$
Combretastatins D-1 and D-2 both contain a new oxygen heterocyclic ring (17 -membered exterior and 15 -atom interior). We propose the designation caffrane for this new macrocyclic ring system. Combretastatin D-2 is probably a penultimate biosynthetic precursor of combretastatin D-1 and may originate biosynthethically as noted earlier ${ }^{3}$ from two units of tyrosine or equivalent via o-phenol coupling, deamination, partial reduction, and lactonization. When additional quantities of combretastatins D-1 and D-2 become available, the biological properties of these biosynthetic products will be further ascertained.

Experimental Section

Synthetic intermediates were used as received from SigmaAldrich Co. All chromatographic solvents were redistilled. Sephadex LH-20 (particle size $25-100 \mu \mathrm{~m}$) was obtained from Pharmacia Fine Chemicals AB (Uppsala, Sweden) and silica gel 60 ($70-230$ mesh) was supplied by E. Merck, (Darmstadt, Germany). Analtech. Inc. (Newark, DE) silica gel GHLF U ($0.25-\mathrm{mm}$ layer thickness) was employed for thin layer chromatograms. Development was performed with ceric sulfate-sulfuric acid spray reagent (heated at approximately $150^{\circ} \mathrm{C}$ for $5-10 \mathrm{~min}$) and/or by use of ultraviolet light. Solvent extracts of aqueous solutions were dried over anhydrous sodium sulfate.

All melting points are uncorrected and were observed with a Kofler-type hot-stage apparatus. Ultraviolet spectra were obtained on a Hewlett-Packard Model 8540A UV/VIS spectrophotometer. Infrared spectra were measured with a Nicolet FT-IR Model MX-1
(9) Sonnet, P. E. J. Org. Chem. 1978, 43, 1841.
unit. Nuclear magnetic resonance spectra were obtained with a Bruker AM-400 instrument using deuteriochloroform as solvent and the residual chloroform signal as an internal standard (δ 7.256). The ${ }^{13} \mathrm{C}$ NMR multiplicities were determined by using the APT sequence. Mass spectral measurements were performed with a MS-50 instrument at the NSF Regional Facility, University of Nebraska, Lincoln, NE.

Isolation of Combretastatins D-1 (1) and D-2 (2). Fraction A (28.6 g$)^{2 a-c}$ obtained after extraction of Combretum caffrum (77 kg) stem wood, was further separated on a column of Sephadex LH-20 (2.5 kg) by partition chromatography using hexane-tolu-ene-methanol (3:1:1) to afford two active fractions (1.97 g , PS $\mathrm{ED}_{50} 1.8 \times 10^{-2} \mu \mathrm{~g} / \mathrm{mL}$, and $\left.0.54 \mathrm{~g}, \mathrm{PS} \mathrm{ED}_{50} 1.9 \mu \mathrm{~g} / \mathrm{mL}\right)$. The latter fraction (0.54 g) was chromatographed on a silica ge! $(0.04-0.063 \mu \mathrm{~m})$ flash column $(3.0 \times 20.0 \mathrm{~cm})$. The column was packed and eluted with hexane-chloroform-acetone ($3: 2: 0.25$) to give combretastatin D-1 ($1,180 \mathrm{mg},\left(2.3 \times 10^{-4}\right) \%$ yield). For the physical data, consult ref 3.

The fraction weighing 1.97 g was dissolved in hexane-tolu-ene-methanol ($3: 1: 1,20 \mathrm{~mL}$) and the solution was filtered. The filtrate was chromatographed on a Sephadex LH-20 (200 g) column using the same solvent system. The resulting active fraction (1.35 $\mathrm{g}, \mathrm{PS} \mathrm{ED}_{50} 2.4 \times 10^{-2} \mu \mathrm{~g} / \mathrm{mL}$) was dissolved in hexane-ethyl acetate ($1: 1,5 \mathrm{~mL}$) and chromatographed on a column (60×2.5 $\mathrm{cm})$ of silica gel (60 g). Gradient elution from $4: 1 \rightarrow 1: 1$ hex-ane-ethyl acetate afforded in a $3: 1$ fraction the PS-active $(0.7 \mathrm{~g}$, $\mathrm{ED}_{50} 1.0 \times 10^{-2} \mu \mathrm{~g} / \mathrm{mL}$) material. Rechromatography in acetone (2 mL) over a long silica gel column ($100 \times 1.2 \mathrm{~cm}, 45 \mathrm{~g}$) and gradient elution with hexane ethyl acetate $(9: 1 \rightarrow 4: 1)$ furnished in the $4: 1$ fraction pure cumbretastatin $\mathrm{L}-2(2,5.8 \mathrm{mg},(7.5 \times$ 10^{-6}) \% yield based on dried plant material), needles from ace-tone-hexane: $\mathrm{mp} 148-51^{\circ} \mathrm{C}$; PS ED $50.5 \mu \mathrm{~g} / \mathrm{mL}$; UV $\lambda_{\text {max }}(\mathrm{nm})$ 235 ($\operatorname{t} 7300$), $274(2260), 339(1050)$; $\mathrm{IR}(\mathrm{NaCl}) \nu_{\max } 3436,3429$, $1728,1519,1503,1440,1215,1186,1159,1110 \mathrm{~cm}^{-1}$; HREIMS m / z $296.1052\left(\mathrm{M}^{+}, 100\right.$, calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} 296.1049$), 237.0916 (20, calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} 237.0916$), 180.0426 (5, calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ 180.0423), 138.0321 (46, calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$ 138.0317), 135.0450 (50 caled for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} 135.0446$), 116.0620 (30, calcd for $\mathrm{C}_{9} \mathrm{H}_{9}$ 116.0626), 91.0545 (35, calcd for $\mathrm{C}_{7} \mathrm{H}_{7} 91.0548$); for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data see Tables I and II, respectively.

Benzyl Bond Hydrogenolysis of Combretastatin D-1 (1 $\rightarrow \mathbf{5 b}$). Method A. To a solution of combretastatin D-1 (I, 10 $m g$) in a mixture of ethyl acetate-methanol ($5: 3,10 \mathrm{~mL}$) was added $5 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$. The mixture was hydrogenated under ambient temperature and pressure for 72 h . Catalyst was removed (filtration) and the filtrate was concentrated to give pure alcohol 5b (10 mg , quantitative yield) as needles from ethyl acetatehexane: mp 191-93 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{30} \mathrm{D}-12.6^{\circ}$ (c $0.95, \mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$, 1:1); IR (KBr) $\nu_{\text {max }} 3200,1740,1719,1521,1504,1285,1220,1163$, $1155,1142,1103 \mathrm{~cm}^{-1}$; HREIMS $m / z 314.1153\left(\mathrm{M}^{+}, 100\right.$, calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} 314.1154$), 271.0966 (69, calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{4} 271.0970$), 226.0995 (55 , calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} 226.0994$); for ${ }^{1} \mathrm{H}$ NMR data see Table I.

Method B. Combretastatin D-1 (5.0 mg) in ethanol (2 mL) was treated with freshly prepared ${ }^{7}$ zinc/copper couple (100 mg) for 10 days. The solution was filtered and the filtrate concentrated to give a mixture of unreacted starting material and two products. Separation on a preparative silica gel plate using hexane-acetone (7:3) as solvent afforded the less polar hydrocarbon product (5a, 0.8 mg) as a viscous oil (for ${ }^{1} \mathrm{H}$ NMR data see Table I): HREIMS $m / z 298\left(\mathrm{M}^{+}, 6\right), 135(10), 115(60), 107(65), 91(100)$. Unreacted combretastatin D-1 (1.0 mg) was recovered, and the most polar product (2.0 mg) was identified as alcohol 5 b by direct comparison (TLC, ${ }^{1} \mathrm{H}$ NMR) with the product of method A.

Chlorination of Alcohol 5 b . To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of alcohol 5 b (1.0 mg) in pyridine (0.2 mL) was added thionyl chloride (0.1 mL), and the solution was stirred for 1 h at $0^{\circ} \mathrm{C}$ and overnight at room temperature. The solvent was evaporated under a stream of nitrogen and the residue was chromatographed by using a pipet filled with silica gel. Elution of the pipet column with hexaneacetone (3:1) gave 3-chloro-3,4-deoxycombretastatin D-1 (5c, 1.0 mg) as an amorphous powder from acetone-hexane: mp 170-172 ${ }^{\circ} \mathrm{C}$; IR (NaCl) $\nu_{\text {max }} 3450,1740,1597,1520,1506,1205 \mathrm{~cm}^{-1}$; HREIMS $m / z 332.0812\left(\mathrm{M}^{+}, 100\right.$, calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{36} \mathrm{Cl} 332.0816\right)$, 334.0798 (31, calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{37} \mathrm{Cl} 334.0786$), 297.1132 (29, calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{4} 297.1127$); for ${ }^{1} \mathrm{H}$ NMR data see Table I.

Acknowledgment. Financial assistance was received with appreciation from Grant CA-30311-01-03 awarded by the National Cancer Institute, DHHS, the U.S. Army Medical Research and Development Command under Grant No. DAMD 17-89-Z-9021, Virginia Piper, Herbert K. and Dianna Cummings (The Nathan Cummings

Foundation, Inc.), the Arizona Disease Control Research Commission, the National Cancer Institute Outstanding Investigator Grant CA44344-01A1, DHHS, the Robert B. Dalton Endowment Fund, the Fannie E. Rippel Foundation, Eleanor W. Libby, and the Waddell Foundation (Donald Ware).

ANTINEOPLASTIC AGENTS, 178. ISOLATION AND STRUCTURE OF LYCHNOSTATINS 1 AND 2 FROM THE SOUTH AMERICAN LYCHNOPHORA ANTILLANA ${ }^{1}$

George R. Pettit,* Delbert L. Herald, Gordon M. Cragg, John A. Rideout, and Peter Brown ${ }^{2}$
Cancer Research Institute and Department of Chemistry. Arizona State University. Tempe. Arizona 85287

Abstract

Bioassay-guided (P388 lymphocytic leukemia cell line) separation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ extract of Lychnophora antillana led to the isolation of two cytostatic ($\mathrm{P}-388$, $\mathrm{ED}_{50} 2.0$ and $0.19 \mu \mathrm{~g} / \mathrm{ml}$, respectively) germacranolides designated lychnostarins $1[1]$ and 2 [2]. Structural elucidation was based initially upon high field (400 MHz) nmr and electron impact mass spectral interpretations and unequivocally completed by X-ray crystal structure dererminations.

Although many species of the large plant family Compositae are well-known for a variety of reasons, including primitive medical applications, some occur in a few small and relatively unexplored tropical genera. One such genus, the Lychnophora of the subtribe Lychnophorinae (2,3), contain some twenty-three species indigenous primarily to Brazil. More than twenty years ago, as part of the U.S. National Cancer Institute's (NCI) world-wide explorarory programs directed (by Jonathan L. Hartwell) toward the discovery of new anticancer drugs, specimens of Lychnophora antillana Urb. (also known as Piptocoma antillana) were collected and evaluated. By 1974, an ErOH extract was found to provide $32-34 \%$ life extension against the NCI murine P-388 lymphocytic leukemia (PS system) at $4.9 \mapsto 16 \mathrm{mg} /$ injection. A 1979 Puerto Rican collection gave analogous biological results (including PS cell line $E D_{50} 0.72 \mu \mathrm{~g} / \mathrm{ml}$) and led to the present study.

The plant was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(1: 1)$, and the extract was partitioned (4) between MeOH-H2O (9: $1 \mapsto 4: 1 \mapsto 3: 2$) with hexane $\rightarrow \mathrm{CCl}_{4} \mapsto \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield an acrive $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-soluble fraction (PS ED ${ }_{50} 0.15 \mu \mathrm{~g} / \mathrm{ml}$). Separation (PS bioassay-guided) of this fraction on a Si gel column resulted in isolation of lychnostarins $1[\mathbf{1}]$ and $2[2]$ as the major PS-active ($E D_{s 0} 2.0$ and $0.19 \mu \mathrm{~g} / \mathrm{ml}$) constituents.

Initial structural investigations revealed both cytostatic compounds to be new sesquirerpene lactones of the germacranolide type. While varied biological activity has been reported for a number of such compounds from other genera (5-18), only one example of antineoplastic activity (10) has been reported for germacranolides isolated from the Lychnophora (19-24). Several germacranolides distantly related to lychnosratins 1 and 2 have been isolated from Brazilian Lychnophora (19), Eremanthus (25), and

[^3]Piptolepis (21,26) species. One of these, isolated from Lychnophora blanibetii) 19), was assigned structure 3 a structural isomet of lychnostatin 1 .

Ir, ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$-nmr, and mass spectral analyses suggested the presence of an α methylene lactone, as well as methacrylate, acetare, and ketone grours. From mass spectral data, it was determined that lychnostatin 1 [1] differed from , innostatin 2 [2] only by having an additional oxygen atom. In addition, eims exhibited significant peaks corresponding to $\left[\mathrm{M}-\mathrm{HOAc}^{+} \text {and }\left[\mathrm{M}-\mathrm{HOAc}-\mathrm{CH}_{2}=\mathrm{ClCH}_{3}\right) \mathrm{CO}_{2} \mathrm{H}\right]^{+}$fragment ions, thereby confirming the presence of the ester groups. The spectra! data and molecular formula were also consistent with a ten-membered c..ion ring bearing the substituents just noted. Extensive ${ }^{1} \mathrm{H}$-nmr and ${ }^{13} \mathrm{C}$-nmr decoupling experiments provided sufficient additional information to allow assignment of the α-methacrylate unit adjacent to the lactone. The nmr data also seemed to suggest that a hydroxyl group in lychnostatin 1 was adjacent to the lactone ring. From empirical formula data, the presence of macrocyclic ring unsaturation seemed to be excluded for both compounds. Because neither the complete regio nor stereo relarionships of the macrocyclic ring substituents could be definitively ascertained from the above information alone, a number of structural possibilities remained.

In order to establish unambiguously the complete structures of lychnostatins 1 and 2 , single crystal X-ray diffraction analyses were undertaken (Table 1). Cell parameters for both lychnostatins were nearly identical, suggesting that each of the compounds had similar cell packing charracteristics and conformations. Indeed, this assumption proved to be correct. An X-ray-analysis-derived structure for lychnostarin 1 is shown in Figure 1. The absence of unsaturation in the 10 -membered macrocyclic rings for both lychnostatins was thereby established. Although unusual, this result was not withour precedent ($19,25,27,28$). Also established were the orientation of the macrocyclic ring and the relative stereochemistry of the ring substituents for both compounds. The β disposition of the $\mathrm{C}-4$ and $\mathrm{C}-7$ substituents, as well as the $\mathrm{C}-10$ methyl, was readily apparent for the lychnostatins.

For lychnostatin 1 , the additional oxygen atom was found to be present as a β oriented C-5 hydroxy group. The two ester substituents attached to the C-8 and C-10 ring atoms of both compounds, as well as the $\mathrm{C}-6$ oxygen atom (which forms part of the trans-fused α-merhylene lactone ring) were all α-oriented with respect to the $10-\mathrm{mem}$ bered ring. The more stable trans-fusion of the lactone ring to the 10 -membered ring is a feature commonly observed for a majority of germacranolide sesquiterpene lactones. The α-methylene- $\boldsymbol{\gamma}$-lactone rings of both lychnostatins 1 and 2 exhibited some nonplanarity (endocyclic torsion angle moduli sum of 49° and 55°, respectively). Examples

$3 \mathrm{R}=\underset{\mathrm{COCH}^{\mathrm{CH}} \mathrm{CH}_{2}}{\substack{\mathrm{CH}_{3}}}$

4

Table 1. Crystal Data Experimental and Refinement Parameters for Lychnostacin 1[1] and Lychnostatin 2 [2].

Parameters	Compound	
	1	2
Crystal data		
Molecular formula	$\mathrm{C}_{21} \mathrm{H}_{2 \times} \mathrm{O}_{4}$	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}$.
F.W.	+08.45	392.45
F(000)	872	840
Space group	P2, 2, 2 ,	P2, 2121
Crystal dimensions (mm)	$0.07 \times 0.10 \times 0.32$	$0.08 \times 0.10 \times 0.45$
Radiation, \bar{A}. . .	CuKo, $\lambda=1.54184$	CuK $\alpha, \lambda=1.54184$
Temperature, ${ }^{\circ} \mathrm{C}$	26 ± 1	26 ± 1
Cell constants		
d. \dot{A}	5.876(2)	5.785 (4)
b, A	8.865 (1)	8.902 (3)
\& A	$40.057(8)$	40.457 (6)
V. A'	2089.3	2083.4
7.	4	4
مo. $\mathrm{g}^{\prime} \mathrm{cm}^{\text {+ }}$	1.289	1.245
$\rho \mathrm{c}, \mathrm{g} / \mathrm{cm}^{\text {a }}$	1.298	1.251
$\mu, \mathrm{cm}^{\text {- }}$	- 9	7.4
Collecrion Parameters		
Instrument . .	Enrat-Nonius CAD4́ diffractometer	Enrat-Nonius CAD4
Monochromator	Graphite crystal, incident beam	Graphice crystal, incident beam
Artenuator	Nifoil, tactor 11.9	Ni foil, factor 11.9
Take-otf angle, deg .	2.8	2.8
Detector aperature. mm	4.0 to 5.9 horizontal, 4.0 vertical	4.0 to 5.9 horizontal, 4.0 verrical
Crystal-derector dist.	21 cm	21 cm
Scan type	W-2 2	$\omega-2 \theta$
Scan rate, $/$ min (in ω)	1 to 5	1 to 5
Scan width. deg .	$0.9+0.140 \tan \theta$	$0.8+0.140 \tan \theta$
Maximum 2 $\boldsymbol{\theta}$, deg	150.0	150.0
No. of refl measured	2676 cotal, 2537 unique	2602, 2532 unique
Corrections made	Lorentz-polarization Linear decay, 0.815 to 1.185 on I)	Lorentz-polarization Linear decay. (0.985 to 1. 129 on I) Empirical absorption, (0.88 to 0.99 on I)
Solution and Refinement Parameters		
Solution merhod	Direct Merhods	Direct Methods
Hydrogen atoms	Refined, Uiso $=0.06 \AA^{-}$, restrained to ride	Refined, Uiso $=0.06 \AA^{2}$. restrained to ride
Refinement	Full marrix least-squares	Full matrix least-squares
Minimization function	$\Sigma_{w(I F o l-\|F c\|)^{2}}$	$\Sigma_{\text {w }}(\underline{\text { Fol- }} \text { Fcl })^{2}$
Least-squares wetghts		$1 / \sigma^{2}(\mathrm{Fo})$
Anomalous dispersion	All non-hydrogen atoms	All non-hydrogen atoms
Reflections included	2178 with Fo ${ }^{->}>3.0 \mathrm{O}^{\left(\mathrm{Fo}^{2}\right)}$	1297 with $\mathrm{Fo}^{2}>3.00\left(\mathrm{Fo}^{2}\right)$
Parameters retined	262	254
Unwerghred R factor	0.045	0.049
Weighted R factor	0.044	0.038
EDS of obs. of unit wr.	2.30	2.74
Convergence, Largest shift. A	0.07	0.06
High peak in final diff. map, $\mathrm{e} / \AA^{\mathbf{A}}$	0.20(4)	0.20 (5)
Computer hardware.	PDP-11/23, MicroVax II	-
Compurer software	SDP-PLUS(Enraf-Nonius \& B. A. Frenz and Assoc., Inc.) CRYSTALS (CCL, Univ. of Oxford)	-

covering the range of nearly complete planarity to pronounced non-planarity of the trans-fused lactone ring have been reported ($10,27,29-32$).

No abnormalities were observed for the bond distances and angles of eirher compound, the values being in good agreement with those reported for similar substances (27,29, 30, 33-35). Conformational analysis of the data for lychnostatins 1 and 2. with respect to the 10 -membered macrocyclic ring, revealed a contormational deviation from that previously proposed and/or observed for cyclodecane/cyclodecanone rings (36-39). Among these are two boat-boat conformations, referred to as the "O-inside" and the "O-outside" conformations, as depicted in Figure 2 in the "O-inside" conformation, the oxygen is approximately perpendicular to the imagined slane of the cyclodecane ring, whereas in the " O -outside" conformation, the oxygen lies approximately in the plane of the ring. The "O-inside" is conformationally favored over the "O-outside," primarily due to the decreased number of destabilizing intra-annular hydrogen atom interactions present in this conformation (36). The conformation assumed by lychnostarins 1 and 2 is depicted in Figure 3 as a twist chair-boat contormation. Although subtly different from the boar-boat "O-inside" conformer, it still maintains one essential distinguishing feature of that conformer, i.e., positioning of the carbonyl oxygen in a perpendicular orientation to the plane of the 10 -merabered ring.

With lychnostatins 1 and 2, significant intra-annular hydrogen interactions (interatomic bond distance $<2 \times \mathrm{H}$ van der Waals radii or ca. $2.30 \AA$) occur on both the α and β faces, as signified by arrows in Figure 3 . Table 2 summarizes the intra-annular interatomic distances occurring in the lychnostatins. In each case the carbonyl oxygen, O i, does not seem to participate in any significant intra-annular interactions. All intraannular atomic distances involving $\mathrm{O}-1$ were found to be $2.40 \AA$ or greater. On the other hand, a greater number of hydrogen-hydrogen intra-annular interactions occur in the conformer adopted by lychnostatins I and 2 , as compared to the "normal" boat-boat

Ficitre: 2. Two possible cydodecanone contormers.
O-inside conformer. Presumably, the trans-fusion of the α-methylene- γ-lactone ring to the 6,7 position of the cyclodecanone ring, as well as the α orientation of the ester side chains, provides steric factors contributing to this conformarional modification or deviation.

The absolute configuration of lychnostatins 1 and 2 could not be ascertained from the X -ray data, only the relative configuration; nearly identical R values were obrained for both enantiomers. Thus, either the structures depicted by 1 and 2 or their mirror images are equally plausible. A less reliable method ($27,29-31,40,41$) for atfixing absolute stereochemistry about the ring juncture of the α-merhylene- γ-lactone and the cyclodecanone ring, based upon cd data, also failed due to interference by the methacrylate moiety with the diagnostic $n \mapsto \pi^{*}$ transition curve of the lactone. Finally, utilization of information based solely on the possible biosynthetic pathway previously proposed for the generation of germacranolides must also be excluded, as there are no carbon-carbon double bonds in the 10 -membered ring that might indicate its mode of origin. The aforementioned problems concerning absolute contigurational assignments and correct classification ($12 \longrightarrow 6$ or $12 \longrightarrow 8$ lactonization) have been encountered earlier (27,29).

As previously mentioned, Bohlmann et al. (19) have investigated L. hanchetii collected in northease Brazil and assigned structures 3, 4, and 5 to three of the con-

Fiod ke: Gintormation assimed by the lychnostatins

Table 2. Intra-annular Atomic Distances in Lechnostatan 1 [1] and Lychnostatin 2 $2 \boldsymbol{2}\}<3.00 \mathrm{~A})$.

Atoms	Lychnostatin i		lychnostatin?	
	α-face	β-face	α-face	β-face
H-9-H-6	2.09 A		2.10 A	
H-i-H-11	2.36 A		$2 .+3 \mathrm{~A}$	
H-3-H.-	$>3.00 \mathrm{~A}$		$>3.00 \mathrm{~A}$	
H-1-H-9)		2.00 A		$\therefore \quad .00 \mathrm{~A}$
H-4-H-1+		$\therefore 12 \mathrm{~A}$		$213 A$
H-4-6)-1		2.54 A		2.58 A
H-(r)-	2.31 A		2.26 A	
H-6-H.11	2.30 A		2.29 A	
H-- ${ }^{-}$- 11	2.19 A		2.20 A	
H-9-H-14		$\therefore .07 \mathrm{~A}$		$2.0{ }^{-1}$
H-9-()-1		$\therefore .50 \mathrm{~A}$		2.49
$\mathrm{H}-1+\mathrm{O}-1$		2.40 A		$\therefore+10 \mathrm{~A}$

stituents. In addition to these germacranolides, they also identified the two pentacyclic criterpenes. lupeol and lupenone. In the present study, we found berulinic and ursolic acads as representatives of the latter group. More importantly, germacranolide 3 appears to be a structural isomer of lychnostatin 1. From biosynthetic considerations it seems likely that structure $\mathbf{3}$ may need further refinement.

Lychnostatins 1 [1] and 2 [2] now augment the small number of germacranolides known to exhibit cell growth inhibitory and/or antineoplastic activity ($6,10,12,13$, 15-18). The lychnostatins are also unusual in that they don't completely satisfy the posrulare proposed by Manchand and Blount (17) that antirumor activity requires, in addition to the α-methylene- γ-lactone, an oxygen function or double bond at $\mathrm{C}-4$. Furrher experiments directed at biological evaluation and unambiguously defining absolute configuration of the lychnostatins are under way.

EXPERIMENTAL

solvents used for chromatography were redistilled. Ambient cc procedures employed Si gel (${ }^{-2}$ (230 mesh), supplied by E. Merck. Darmstadt. Cc under pressure was carried our using prepacked Lubar Lichro Prep $5 i$ gel $60(40-63 \mathrm{um})$. Fraction collection was partially automated. using a Gilson microtractionaror. Tlc was performed with Si gel GHLF from Analtech. Inc. The tle plates were developed by uv light and/or a ceric sultate spray reagent.

All melting points are uncortected and were observed using a Koetfler-type melting point apparatus. Each substance was colorless. Ir spectra were recorded with a Perkin-Elmer Model 299 spectrophotomerer. Optical rotatons were determined with a Perkin-Elmer model 241 Automatic Polarimeter. The 100 MHz ${ }^{\prime} \mathrm{H}$-nmr spectra were recorded with a Varian XL-100 instrument and the 400 MHz with a Bruker W'H$+(0) \mathrm{nmr}$ spectrophotometer. The ${ }^{14} \mathrm{C}$ spectra were obrained employing a Bruker WH-90 at 22.63 MHz . TMS was used as an internal reference, and δ values are reported in ppm. Mass spectra were obtained using an MAT 312 spectrophotometer.

Plant material. - L. antillana istems and leaves, herbarium specimens NSC B $50^{-} 1+$ mantained by the USDA) was recollected in Puerto Rico in 1979 , under auspices of the Economic Borany Laboratory. Agricultural Research Center East, USDA, Beltsville. Maryland, as parr of a joint NCI-USDA program dırected by Drs. M.I. Sutfness and J. A. Duke.

Extraction and solvent partitioning. - The stems and leaves of L. antillana ($5+\mathrm{kg}$) were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(1: 1)(320$ liters) at ambient temperature for 4 days. Decantation of solvent and subsequent dilution with $\mathrm{H}_{2} \mathrm{O}(25 \%$ by volume) allowed the chlorocarbon phase to separate. The CH, Cl, was removed to yield a viscous, brown gum (1145 g) which was further purified by partitioning (t) employing the sequence $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(9: 1 \mapsto 4: 1 \rightarrow 3: 2)$ against, respectively, hexane $\rightarrow\left(\mathrm{Cl}, \mapsto \mathrm{CH}, \mathrm{Cl}_{2}\right.$. An aliquot (40 g) of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ fraction (total weight, 315 g) was chromatographed on a column of Sigel $(\mathrm{XOO} \mathrm{g})$. Elution with hexane- $\mathrm{Me}_{2} \mathrm{CO}(9: 1)(6.0$ liters to 10.0 liters) yielded fraction $\mathrm{A}(0) .18 \mathrm{~g})$ as a color-
less solid. Further elurion (13.0 to 18.0 liters) resulted in solation of lychnostatin [[1] as a colorless solid ($0.31 \mathrm{~g}, 5.7 \times 10^{-5}$ chy yield).

Rechromatography of fraction A(see above) on a column of Si gel (18 g , dry packed column) and elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ atforded a single product, lychnostatin $2[2]\left(20 \mathrm{mg}, 3.7 \times 10^{\circ} \mathrm{r}\right.$ y yeld $)$. Further elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(44: 1)$ gave a mixcure $(0.10 \mathrm{~g})$ which was rechromatographed on Si gel (Lobar B column). Gradient elution with $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(9): 1 \mapsto 44: 1\right)(400 \mathrm{ml}$ total) led to $₫$ pure compound (34 mg) that recrystallized from $\mathrm{MeOH} / \mathrm{CH}_{2}, \mathrm{C}$! , to give berulinic acid (20 mg), mp $\left.304-30\right)^{-5}$. Further elution with the same solvents yielded anorher minor product (22 mg), which proved to be ursolic acid, mp 260-265 . Both triterpene carboxylic acids were identified by comparison (tlc, ir, ${ }^{1} \mathrm{H}$ nmr) with authentic specimens.

Lichnostatin $1[\mathbf{1}]$ - Recrystallization from Me ${ }_{2} \mathrm{CO} /$ hexane afforded crystals melting ar 2.28$230^{\circ}$: th $R, 0.85$ in $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$; $\left.\left.[\alpha]^{21} \mathrm{D}\right)+8\right)^{\circ}\left(i=1.0, \mathrm{CHCl}_{2}\right)$; ir $(\mathrm{KBr}) v$ max 3580 , $i+30$, 1780.1532.1710, 1702 (sh), 1660, 1633, 1460, 1i80, 1308, 1276, 1267, 1253, 1154, 1120, 1095. 107; , 1060, $1020.993,960,816,805.763,700,600 \mathrm{~cm}{ }^{\prime}, \mathrm{H} \mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{i}\right) \delta 1.08(\mathrm{~d} . ; \mathrm{H}$. $J=8 \mathrm{~Hz}, \mathrm{Me}-15), 1.62(1 \mathrm{H}, \mathrm{brs},-\mathrm{OH}), 1.74(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-14), 1.94(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-3$) , 1.70-2.10(3H. m. $-\mathrm{CH}_{2}-2.20\left(3 \mathrm{H} . \mathrm{s}, \mathrm{Me}-2^{\prime \prime}\right), 2.32\left(1 \mathrm{H}, \mathrm{dd}, J=16,2 \mathrm{~Hz},-\mathrm{CH}_{2}\right), 266-2 .-4(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{C})$, $\mathrm{o}^{-}(1 \mathrm{H}$. $\mathrm{d} . J=10 \mathrm{~Hz}, \mathrm{H}-7), 3.41(1 \mathrm{H}, \mathrm{dd}, J=8,7 \mathrm{~Hz}, \mathrm{H}-5), 4.5(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-6), 4.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8)$, $5.65(2 \mathrm{H}$. br s. H-1 ia or H-13b, H-4'a or H-4'b), 6.16(1H, brs, H-4'a or H-4'b), 6.24(1H. br s. H-

 $18.23(4, \mathrm{C}-15) ; \mathrm{erms} m / z[\mathrm{M}]^{+} 408,[\mathrm{M}-\mathrm{HOAc}]^{+} 318 .\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2}\right]^{+} 305,[\mathrm{M}-\mathrm{HOAc}-$ $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \mathrm{O}^{\prime} 262 .\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right]^{+} 245$ Anal calcd for $\mathrm{C}_{2} \mathrm{H}_{24} \mathrm{O}_{4}, \mathrm{C} 61.75 . \mathrm{H} 6.91$: found C.61.66. H 6.67\%

Lychnostatin 2 2 2]. -Recrystallization of lychnostatin 2 [2] from Me ${ }_{2} \mathrm{CO} /$ hexane provided tine needles: $\mathrm{mp} 190-193^{\circ}:[\alpha]^{\prime \prime} \mathrm{D}+20.9^{\circ}\left(6=0.67,\left(\mathrm{CHCl}_{3}\right)\right.$; ir $(\mathrm{KBr}) v \max 2950,1780,1740,1^{7} 12$. $16+5,1+60,1385,1312,1300,1275,1178,1156,1126,1105,1065,1022,955,878,810,7+1,61+$ $(\mathrm{m})^{\prime} \mathrm{H} \mathrm{nmr}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{5}\right) \delta 1.04(3 \mathrm{H}, \mathrm{d}, j=6 \mathrm{~Hz}, \mathrm{Me}-15), 1.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-14), 1.96(3 \mathrm{H}, \mathrm{s}$,

 1:5.86(s, C-11 or (-2'), $134.69\left(\mathrm{~s}, \mathrm{C}-11\right.$ or $\left.\mathrm{C}-2^{\prime}\right), 126.53$ (t. $\mathrm{C}-13$ or $\left.\mathrm{C}-\mathrm{t}^{\prime}\right), 124.88\left(\mathrm{t}, \mathrm{C}-13\right.$ or $\left.\mathrm{C}-\mathrm{t}^{\prime}\right)$.

 $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}+\mathrm{L}_{1}, 399^{199^{\circ}}$ 2)

X-RAY (RYSTAI.ST. .CTURE DETERMINATICNSOFIY(HNOSTATIN I[1]ANDIYCHNOSTATIN 2 [2]. -Preliminary examinations and data collections for lychnostatins 1 and 2 were performed at room remperature by the moving-crystal, moving-counter technique with background measurements made on both sides of the peak using an Enrat-Nonius CAD-f automatic diffractometer. Crystal data, collection, and refinement parameters for the two conipounds are summarized in Table 1. In each case, data was corrected for Lurentz and polarization effects. For lychnostatin 2, an additional semi-empirical absorpuon correction was also applied [the absorption correction being based on a scries of psi scans (42)]. Space group assignments for each compound were derived on the basis of Laue symmerty and observed systematic extinctions. Cell dimensions were determined from least-squares refinement. using the setting angles of 25 carefully measured reflecions. The structures were solved by direct methods $(43$). Scattering factors were taken from Cromer and Waber (44). Initial stages of refinemerit were performed using the SDP-PLUS (4 (5) sotiware package; final refinements were done with CRYSTALS (46). Anomalous dispersion corrections were made in $F \subset$ (47) for both compounds; the values of ΔF^{\prime} and $\Delta F^{\prime \prime}$ were those of Cromer (48); extinction coefficients were refined on both compounds. 'A perspective view (49) displaying all essential contormaconal and contigurational features for lychnosratins 1 and 2 appears in Figure 1.

Colorless crystals of lychnostatin 1 , arising from MeOH-H2O solution, were used in mass spectral.

[^4]density and X-ray data collections. The observed densicy and mass spectral dara indicaced a single molecule of lychnostatin I per asymmerric unit in space group $P \sum_{12}, 2$, All unique reflections (one octane) were collected. Structural solution proceeded without incident, the nonhydrogen atoms being located readily. The remaining hydrogen atom coordinates were calculated at ideal positions and assigned fixed coordinates and isorhermal parameters during subsequent structure-tactor full-matrix least-squares retinements. Here the function minimized for least-squares was $\Sigma_{w}(|F|-|F c|)^{2}$ with the weight w defined as $1 /,{ }^{\prime}(F O)$. Refinement was continued until convergence to a residual of $R=0.045$ and $R_{w}=0.044$.

The crystal structure of lychnostatin 2 was performed on a fine needle-shaped crystal obtained from $\mathrm{Me}, \mathrm{CO} /$ heptane solution. Observed density measurements again indicated one molecule per asymmetric unt corresponding to the $P 2,2,2,1$ space group. Solution by direct methods proceeded with some diffculry. After a number of unsuccessful preliminary attempes, a starting set of seven reflections was used (from 400 reflections) with the largest E 's (minimum E of 1.29) in order to generate 12.659 relationships. In addition, the lower limit of probabilicy of acceptance of phases determined by the sigma 1 formula being included in the starting set was extremely low (i.e. . 0.650). In this manner, a total of 200 possible phase sets were generated; the phase ser with the Kighest overall figure of merit (2.99) provided an E map which revealed all 28 nonhydrogen atoms. Hydrogen atom coordinates again were calculated, fixed, and assigned isotropic thermal parameters in subsequent least-squares refinements. Anisotropic refinement was done on all nonhydrogen atoms by full matrix least-squares methods. Refinement converged to a residual of $R=0.049$ and $R_{u}=0.038$.

ACKNOWLEDGMENTS

Appreciation and thanks for the necessary tinancial support are extended to Eleanor W. Libby, the Waddell Foundation (Donald Ware), Robert E. Dalton Endowment Fund, the Arizona Disease Control Research Commission, the Fannie E. Rippel Foundation, Herbert K. and Dianne Cummings, the Narhan Cummings Foundation. Inc., Lotre Flugel, Polly J. Trautman, Grant CA-30311-010i, and the Ourstanding Investigator Grant CA44344-01A1 awarded by the National Cancer Institute, Contract NOI-CM-97262 with the Division of Cancer Treatment, NCI, DHHS, the National Cooperative Drug Discovery Group Grant AI 25696-02, the U.S. Army Medical Research and Development Command under Grant No. DAMD17-89-Z-9021, and NSF Equipment Grant CHE 862017? to the University of Nebraska. For other assistance we thank Drs. J.M. Schmidt and M.I. Suffness.

LITERATURE CITED

[^5]```
21. F. Bohimann. M Wallmeyer, R.M. King, and H. Kobinson. Pbimimemsin. 21, 1ay (19R2).
```



```
23. F. Bohlmann. C. Zdero, R.M. King, and H. Robinson. Phwtikemtitr. 19. 26(0) (1980)
24. F. Bohimann, C. Zdero, H. Robinson, and R. King. Phytiokment. 19. 2381 (1980)
25. F. Buhlmann, R.K. Gupta, J. Jakupovic, H. Robinson. and R.M. King. Phifenbematr. 20. Io(o)
 (1981).
26. F. Bohimann, C. Zdero, H. Robinson, and R.M. King, Phstwhemisn. 20. -il (198l)
27. J. Gershenzon, T.J. Mabry. J.D. Korp, and 1. Bernal, Phutmbemtstry. 23. 2561 (198-1).
28. L. Rodregez-Hahn, J. Cardenas. E. Maldonado, A. Ortega, M. Martinez, M.S. Garcta, and A. Tus-
 cano. I. Org. Cbem. . 53, 2965 (1988).
29. J.D. Kurp. I. Bernal. N.H. Fischer. C. Leonard, 1. Lee, and N. Le.Van. J. Heterm wi. Chem. 19. I\$1
 (1982).
i0. 1. Gershenzon. Y. Liu. T.J. Mabry. J.D. Korp, and I. Bernal. Pbyimhematr, 23, 1281 (198+1.
i1. W. Herz and V.L. Goedken. J. Org. Chem.. 47. 2-98 (1982)
32. J.D. Asher and G.A. Sim, J. Chem. Sar.. 1584 (1965).
3i. W. Herz, R. de Groote, R. Murari, and N. Kumar. /. Org. Chem., 44. 2-8+(19?9).
```



```
is. A. Quick and D. Rogers. J. Chem. Son.. Perkin Trans. ․ tis (19 \({ }^{\circ} 6\)).
36. M. Hanack. in: Organic Chemistry. A Series ot Monographs. Viol. i. Contormation Theory. Ed
 by A.T. Blomquist, Academic Press, New York, 1965, pp. 35. 166
it. A.l. Kitangorodsky, in: "Physical Chemistry, A Series ot Monographs. Vol. 29. Molecular C.rvstals \(^{7}\)
 and Molecules."Ed. by E.M. Loebl. Academic Press, New York, 1973. F 112
```



```
 \(13 i .20^{-}\)
39. J.D. Dunitz. in. "Perspectives in Seructural Chemisery." Ed. by J D. Dunitz and J. A. Hers. John
 W'iley \& Sons. New York. 1968, Vol. II, p. 21.
10. A. G. Ober, F.R. Fronczek, and N.H. Fischer. /. Nat. Prad. 50, (0.4 (1987).
+1. W. Herz and R.P. Sharma, J. Org. Chem. . 40. 3118 (1975).
42. A.C.T. North, D.C. Philips, and F.S. Marhews, Acta Crofallogr. Sect. A. 24. is l (190k)
43. Perer Main, S.J. Fiske. S.E. Hull, L. Lessinger, G. Germain, J. -P DeClercq, and M M. W'onitson.
 "MLLTANBO, A System of Computer Programs tor Automatic Solution of Crystal Seructures trom
 X-Raw Dittraction Data," University of York, York. England. 1980.
t. D T Cromer and I.T. Waber. "Internatoonal Tables tor X-Ray Crystallography," Vol. IV. The
 Kivnoch Press. Birmingham. England. 197t. Table 2 2li
\({ }_{45} \mathrm{~B} \lambda\) Frenz. in Computing in Crvstallography. Ed. by H. Somk, R Olthor-Hazelkamp, H
 winkomesseld. and G.C. Bassi. Delfi Liniversity Press. Deltt. 19². pp. 6+- \({ }^{-1}\)
```



```
 lography Laboratory. University ot Oxtord. Oxtord. England. 1985
```



```
18 D) T Comer, "Incernational Tables tor X-Ray C.rystallography. Vot. N. The Kinuxh Press. Bii.
 mingham. England. 1974. Table 2. 3.1.
49. ORTEP-Il was used for crystallographic illustrations C.K. Johnson, Oak Ridge. ORNL-;-9.4.
 1970.
```


# ANTINEOPLASTIC AGENTS, 107. ISOLATION OF ACTEOSIDE AND ISOACTEOSIDE FROM CASTILLEJA LINARIAEFOLIA ${ }^{1}$ 

George R. Pettit, * Atsishi Numata, ${ }^{2}$ Tsuruko Takemura, ${ }^{2}$ Richard H. Ode. A.S. Narlea. Jean M. Schmidt, Gordon M. Cragg, and Charles P. Pase

Cancer Research Institute and Department of Chemustry. Arizona State Universty. Tempe. Arizona 85287


#### Abstract

The southwestern Indian paintbrush, Castillega linariaefolia, yielded extracts thar dispiayed in vivo activity against murine P-388 (PS) lymphocytic leukemia. Separation guided by PS cell line inhibition led to isolation of cytotoxic compounds that were identified as the known glycosides acteoside ( $\mathbf{1}$ ] ( $\mathrm{ED}_{50} 2.6 \mu \mathrm{~g} / \mathrm{ml}$ ) and isoacteoside [ $\mathbf{2}$ ] ( $\mathrm{ED}_{90} 10 \mu \mathrm{~g}$ ) ml ). The identifications were established by spectral measurements and degradation studies. Mannitol was also found in chis plant.


In mountainous areas of northern Arizona (2) and southern Utah, Castilleja linariaefolia Bench. is known as Indian paintbrush. While some 50 species of the large ( 3000 species and 220 genera) Scrophulariaceae family have been used in primitive cancer treatment, only one has been represented by the Castilleja genus (3), namely, the Mexican (Yucatan) Castilleja communis Benth. (4).

Extracts from C. linariaefolia gave confirmed activity against the Walker carcinosarcoma 256 (intramuscular WM system) in the rat. Each of the major plant parts appeared to contain the anticancer constituent(s), with the flowers showing the highest activity $190 \%$ inhibition of tumor growth at $266 \mathrm{mg} /$ kg ). When the murine $\mathrm{P}-388 \mathrm{lym}$ phocyric leukemia (PS system) became available and a key fraction showed T/C $125-165 \%$ ( $10-40 \mathrm{mg} / \mathrm{kg}$ ), we discontinued use of the WM system. [The PS in vitro studies were conducted in our laboratory according to procedures developed by the National Cancer Insticute, and PS in vivo bioassays were performed under the auspices of the NCI (5).] Inconsistent results were obrained with both in vivo systems making fractionation difficult. Monitoring fractionation of $C$. linariaefolia with in vitro PS

[^6]eventually yielded two of the PS cytostatic constituents. These were found to be the known glycosides acteoside (6-9) and isoacteoside (8). These caffeoyl glycosides have been isolated from a Labiatae species (8), and acreoside also occurs in a Gesneriaceae (7) and two Oleaceae $(6,9)$ species; neither glycoside had hitherto been found in a plant of the Scrophulariaceae. The research was completed using a series of recently developed (10) experimental procedures augmented by dccc. The decc rechnique has previously been used in the separarion of iridoid glycosides from Castilleja miniata (11). Interestingly, dccc was the only effective merhod found for separation of myricoside, a bioactive substance closely resembling acreoside in structure (12). As part of the current study, Dmannitol also was isolared.

Acteoside [1] was identified on the basis of detailed specrral analyses (uv, ir, etc.) and by identification of alkaline and acid hydrolysis products and confirmed by comparison with an authentic sample provided by Professor I. Nishioka, Faculty of Pharmaceutical Sciences, Kyushu University. The general spectral features of isoacteoside [2] closely resembled those of acteoside, except that the $L$ rhamnose unit methyl group signal in the ${ }^{1} \mathrm{H}$-nmr spectrum was shifted from $\delta$ 1.12 to 1.27 ppm . Also, the C-6 and C3 D-glucose unit carbon signals in the ${ }^{13} \mathrm{C}$-nmr spectrum were shifted from $\delta$ 62.43 to 64.70 and from 81.64 to 84.15

ppm, respectively. These data suggested an isomeric relationship, which was confirmed by a series of methylation, acerylarion, and hydrolysis experiments (11.13,14).

Acreoside and isoacteoside exhibited moderate to weak cytotoxic activity in the PS in vitro system (ED $9,2.6$ and 10 $\mu \mathrm{g} / \mathrm{ml}$, respectively). Because of the antibacterial (12) and cAMP phosphodiesrerase inhibitory (15) activity shown by several closely related natural products, these glycosides are worthy of further biological study.

## EXPER!MENTAL

General experimental promedures.Paper partition chromatography (ppC) was performed by the ascending method using Toyo Roshi No 50 paper and $n-\mathrm{BuOH}-\mathrm{HOAc}-\mathrm{H}, \mathrm{O}$ $(+1: 2)$. Mp's were derermined on a Yanagimoro micro meiting point apparatus and are uncorrected. Ir were recorded with an Hitachi EPI-GI? spectrometer. The ${ }^{1} \mathrm{H}$-nmr spectra were measured with an Hirachi R 40 spectromerer at 90 $\mathbf{M H z}$ and the ' 'C.-nmr spectra with a JEOL JNM FX-200 spectrometer at 50.3 MHz . Chemical shifes are given in ppm ( $\delta$ ) downield from TMS as an internal standard. Solution phase sims (16) mass specrea were obrained using a Varian MAT 312 spectrometer equipped with a modified capillaritron ssurce and 0.14 M NaI in sulfolane as liquid phase. The eims were recorded using an Hitachi M-70 spectrometer.

Plant material. - The recollection (original in Auguse 1966, Kaibab, N.F.. Arizona) of C. Imariaefolia (ia 500 kg dry wo), used here was made in August 1978. in the Dixie National Forest, Garfield Co.. Urah, at an elevation of

T000-8000 ft. Taxonomic identification was made by one of us (CPP) in the USDA Laboratory and by E. Lethto in the Department of Botany at Arizona State University. Herbarium specimens are maintaned in the Department of Botany and in the Cancer Research Institute at Arizona State University

Plant extraction.-Dried plane materiai (leaves, stems, and roots, 36 kg ) from the 1978 collection was extracted with a mixture ( 160 li rers) of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathrm{MeOH}(1: 1)(10)$ at ambient remperature for 3 weeks. The extract was separated into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$ phases on addition of $25 \%$ by volume of $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was adjusted by the addition of MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to achieve $\mathrm{a}+1: 2$ ratio for $\mathrm{H}, \mathrm{O}-\mathrm{MeOH}-\mathrm{CH}, \mathrm{Cl}$. the plant was extracted with this mixture for weeks. Addition of $15 \%$ by volume of $\mathrm{H}_{2} \mathrm{O}$ resulted in separation of the $\mathrm{C}, \mathrm{H}, \mathrm{Cl}$, phase which was combined with that obrained from the first partition. Concentration gave a ( $\mathrm{H}_{2} \mathrm{Cl}$, exeract 1712 g ; PS in vitro $\mathrm{ED}_{90} 19 \mu \mathrm{~g} / \mathrm{ml}$ : PS in vivo inactive ar $12.5-100 \mathrm{mg} / \mathrm{kg}$ ). The $\mathrm{H}_{2} \mathrm{O}$ phase was concentrated to give an extract ( 3.5 kg ) that was marginally active (in vivo T/C $120 \%$ ar 25 mg $\mathrm{kg}: \mathrm{PS}$ in vitro $\mathrm{ED}_{\mathrm{s}}>100 \mu \mathrm{~g} / \mathrm{ml}$ )

Solvent partition sequence.-A porrion of the $\mathrm{H}_{2} \mathrm{O}$ extract ( 180 g ) was successively partitioned between $\mathrm{MeOH}-\mathrm{H}, \mathrm{O}$ (9:1) ( 1800 $\mathrm{ml} \rightarrow(4: 1) \rightarrow(1: 1)$ with hexane $(; \times 1800 \mathrm{ml})$. $\mathrm{CCl}_{1}(3 \times 1800 \mathrm{ml})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1800 \mathrm{ml})$. respectively. Concentration of the partitioned fractions gave hexane ( 1.5 g ; PS in vitro $E D_{81} 6$ $\mu \mathrm{g} / \mathrm{ml}), \mathrm{CCl}_{4}\left(1.2 \mathrm{~g}\right.$; PS in vitro $\left.\mathrm{ED}_{50} 24 \mu \mathrm{~g} / \mathrm{ml}\right)$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4.6 \mathrm{~g}\right.$; PS in vitro $\left.\mathrm{ED}_{50} 51 \mu \mathrm{~g} / \mathrm{ml}\right)$, and $\mathrm{H}_{2} \mathrm{O}\left(142.8 \mathrm{~g}\right.$; PS in vitro $\left.\mathrm{ED}_{50} 36 \mu \mathrm{~g} / \mathrm{ml}\right)$ fractions. None of these fractions exhibited activity in the PS in vivo system when tested at dose levels of $3.12-25 \mathrm{mg} / \mathrm{kg}$. However, in a number of earlier experiments, fractions had been obtained ar this srage showing $T / C 165$ at $40 \mathrm{mg} / \mathrm{kg}$.

Isolation of acteoside [1] and isonc. TEOSIDE [2]. -An aliquot ( 10.22 g ) of the $\mathrm{H}_{2} \mathrm{O}$ fraction was chromatographed on Sephadex LH $20(805 \mathrm{~g} ; 7.7 \times 8 \mathrm{~cm})$ using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(4: 1)$ as eluent. Fractions were monitored by ppc. After elution of 5.1 g of material, a fraction ( 2 g ) was obrained from which D-mannitol ( 0.252 g ) was isolared as colorless needles, mp 171-172 ${ }^{\circ}$. and tound to be identical (ir. thc) with an authentic sample. Further elution gave 1.8 g of material (inactive against PS in vitro), followed by a fraction ( 1.3 g ) that was active in vitro (ED $94+1 \mu \mathrm{~g} /$ ml . PS in vivo inactive at $3.12-25 \mathrm{mg} / \mathrm{kg}$ ). A 1.94-g portion ot the in-vitro-active fraction (obtained atter repeating the Sephadex LH-20 chromatographic step) was treated with MEOH. The soluble traction ( $1 . i 8 \mathrm{~g}$ ) was dissolved in a minimum volume of the upper layer prepared from $\mathrm{CHCl}_{4}-\mathrm{MeOH}-\mathrm{H}, \mathrm{O}\left(5: 5 .^{-}\right.$. 3 ) and placed in the cranster rube of a dccc appararus filled with the upper laver ot the same solvent system as stationary phase. The How rate of the moving lower phase was $0.60 \mathrm{ml} / \mathrm{min}$. Three tractions were collected on the basis of monitoring by pps .

Acteoside [1] (0.388 g) was isolated as a pale yellow amorphous powder trom the third fraction. The first traction ( $0.17+\mathrm{g}$ ) was again subjected to dacc to give isoacteoside [2] (0.107g) as a light brown amorphous powder. Acteoside [1] exhibited the tollowing physical propercies: mp 145-149 [lit. (6) mp 147-150 ${ }^{\circ}$ ]; solution phase sims $m / z[M+H]^{+} 625(217), 480(10 \%), 472$ (24\%). $\quad[\mathrm{M}+\mathrm{H}-$ caffenyl-i.t-dihydroxyphenethyl] ${ }^{+} 325$ ( $100 \%$ \% $\%$. The idencity was confirmed by direce comparison of the ' H - and ${ }^{1} \mathrm{C}$ - nm spectra with those of an aurhentic sample. Trearment of acteoside wirh Ac,Oipyradine followed by Si gei co gave the peracetate as a colorless amorphous powder: uv (MeOH) $\lambda \max 283$ (loge $+19) \mathrm{nm}$ : the ed specrrum was identical with that already published (12). Isoacreoside [2] exhibited mp $136-139^{\circ}$ and solution phase sims $m / z$ $625[\mathrm{M}+\mathrm{H}]^{+}(227) .480(29 \%) .+72$ (30\%). $325\left[\mathrm{M}+\mathrm{H}\right.$ - caffeoyl-. .4 -dihydroxyphenethyl] ${ }^{+}$ ( $100 \%$ ). Acerylation and chromatography of the produce gave the peracetate as a colorless amorphous powder: uv $(\mathrm{MeOH}) \mathrm{A} \max 280(\log \epsilon$ 4.53) nm. Acteoside [1] and isoacteoside [2] borh showed activity against the PS cell line ( $E_{90}, 2.6$ and $10 \mu \mathrm{~g} / \mathrm{ml}$, respectively).

## ACKNOWLEDGMENTS

Financial support for this investigation was provided by Eleanor W. Libby, the Waddell Foundation (David Ware), Mary Dell Pritzlaff, the Olin Foundation (Spencer $T$. and Ann W.), the Fannie E. Rippel Foundation, the Flinn Foundation, the Robert B. Dalton Endowment Fund, Virginia L. Bayless, Sourhwest Forest Industries, Elias M. Romley, NIH Grant CA 30311-01-03, Contract NO1-CM-97297 with
the Division of Cancer Treatment. NCI. DHHS. the National Cooperative Drug Discovery Group Grant No. AI 25696-02, and the U.S. Army Medical Research and Development Command under Grant No. DAMD17-89-Z-9021. Wealso appreciate other assistance contributed by Drs. D.L. Doubek. J.J. Einck, W.C. Fleming, C.L. and D.L. Herald. P. Lohavanijaya, M.L. Suffness, and I. Nishoka, as well as G.C. Bryan and J.F. Day, M.J., W.E., M.S. , and G.R. (III) Perrit.

## LITERATURE CITED

1. L.R. Nassimbeni, M.L. Niven. G.M. Cragg, and G.R. Pettit, Acta Crystallogr. . C41, 728 (1985).
2. T.H. Kearnev, R.H. Peebles, and collaborators, "Arizona Flora," University of Calitornıa Press, Berkeley and Los Angeles, CA. 1951, p. 789.
i. J.L. Harrweil, Lloydia. 34, 204 (1971).
3. P.C. Sranley, "Flora of Yucatan," Field Museum of Natural History Publications, Boranical Series, No. 279. 1930, p. 157.
4. R.I. Geran. N.H. Greenberg, M.M. MacDonaid. A.M. Schumacher, and B.J. Abbort, Cancer Cbemuther. Rep.. Part 3. 3, 1 (1972).
5. L. Birkofer, C. Kaiser, and U. Thomas, $Z$. Naturjorsch. . 23b, 1051(1968).
6. G. Nonaka and I. Nishioka, Phyfochemistry. 16. 1265 (1977).
7. T. Miyase, A. Koizums. A. Ueno, $T$. Noro, M. Kuroyanagi, S. Fukushima, Y. Akivama. and T. Takemoto, Chem. Pharm. Bull. . 30, 2732(1982).
8. S. Kitagawa. H. Tsukamoto, S. Hisada. and S. Nishibe. Cbem. Pharm. Bull.. 32. 1209(1984).
9. G.R. Pettit, Y. Kamanu. R. Aovagi, C.L. Herald. D.L. Doubek, J.M. Schmidt, and J.J. Rudloe. Telrabedron. 41, 985 (1985).
10. K. Hostermann. M. Hostertmann-Kaldas, and O. Sticher, J. Chromatogr., 186, 529 (1979).
11. R. Cooper, P.H. Solomon. I. Kubo, K. Nakanishi. J.N. Shoolery, and J.L. Occolowitz. J. Am. Chem. Sic.. 102, 7953 (1980).
12. J. Chopin. B. Roux, M.L. Bouillant, A. Durix. A. D'Arcy, T. Mabry, and H. Yoshıoka. C.R. Hebd. Seances Acad. Siz.. Ser. C. 268, 980 (1969)
13. G.R. Perrit. G.M. Cragg, and M. Suffness. J. Org. Chem. 50. 5060 (1985).
14. S. Nishibe, K. Okabe, H. Tsukamoro, A. Sakushima, and S. Hisada, Chem. Pharm. Bull. 30. 1048 (1982).
15. G.R. Pettit, C.W. Holzapfel, G.M. Cragg, C.L. Herald, and P. Williams, J. Nat. Prod., 46. 917 (1983).
Rexetied 16 Marth 1989

# ANTINEOPLASTIC AGENTS, 195. ISOLATION AND STRUCTURE OF ACERATIOSIDE FROM ACERATIUM MEGALOSPERMUM ${ }^{1}$ 

Sheo Bux Singh and George R. Pettit*

Cancer Research Instituse and Department of Chemistry, Arizona State University. Tempe. Arizona 85287


#### Abstract

A new tecralin glucoside [1], named aceratioside, has been found to be a weakly cytostatic ( PS ED $_{50} 9 \mu \mathrm{~g} / \mathrm{ml}$ ) constituent in leaves produced by the Australian rain forest tree Acerativm megalospermum. Structural determination of aceratioside was primarily accomplished with results from a series of acetylation, methylation, and high field amr (including heteronuclear multiple bond correlation) experiments.


The largest (200 of 350 species) genus, Elaeocarpus, of the subtropical to tropical Elaeocarpaceae (2) contains the Elaeocarpus alkaloids (3), a series of indolizidines that have received principal phytochemical attention. Chemical constituents of the genus Aceratium (4) in this family have remained essentially unexplored. Aceratium species occur primarily in the rain forests of Papuasia ( $\$$ ), and their relarive inaccessibility probably accounts for the lack of prior chemical investigation.

Early (1962) in the U.S. National Cancer Institute's (NCI) world-wide evaluation of plants with potential anticancer constituents, extracts of the Queensland tree (to 15 $m$ high) Aceratium megalospermum (F. v. M.) von Balgooy (6) began to be evaluated, and in the period 1964-66 they were confirmed as active against the NCI KB cell line ( $\mathbf{E D}_{50}$ $0.17 \mu \mathrm{~g} / \mathrm{ml}$ ) and Walker carcinosarcoma ( $72 \%$ tumor reduction at $22 \mathrm{mg} / \mathrm{kg}$ ). This lead was pursued with a 1979 re-collection of Ac. megalospermum leaves and the NCI P-388 lymphocytic leukemia cell line (PS system).

A CH2 $\mathrm{Cl}_{2}-\mathrm{MeOH}$ (1:1) extract of the leaves ( 55 kg ) was successively partitioned between $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(9: 1 \mapsto 3: 2)$ and hexane $\rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The PS activity was found concentrated in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{ED}_{50} 0.07 \mu \mathrm{~g} / \mathrm{ml}\right)$ and residual $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\left(\mathrm{ED}_{50} 0.16\right.$ $\mu \mathrm{g} / \mathrm{ml}$ ) fractions. The more pronounced cell growth inhibitory activity of the former fraction was due to the presence of cucurbitacins; cf. Bittner et al. (7). The latter fraction was separated by Si gel chromatography to afford the cytostatic constituent, aceratioside [1], in $5.0 \times 10^{-3} \%$ yield, as a colorless powder ( PS ED $_{50} 9 \mu \mathrm{~g} / \mathrm{ml}$ ) from $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{CHCl}_{3}$.

The high resolution fab mass spectrum of aceratioside [ 1 ] showed a molecular ion at $m / z 371[\mathrm{M}+\mathrm{H}]^{+}$corresponding to the molecular formula $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{9}$ and suggested seven double bond equivalents. Uv and ir spectra indicated the presence of an aromatic ring system bearing a phenolic hydroxyl group (bathochromic shift by addition of NaOMe ). The ir spectrum also exhibited absorption bands for hydroxyl groups (3446$3380 \mathrm{~cm}^{-1}$ ), a carboxyl type carbonyl ( $1682 \mathrm{~cm}^{-1}$ ) group, and an aromatic ring. The $400 \mathrm{MHz}^{1} \mathrm{H}$-nmr spectrum (Table 1) showed a complex pattern, and the proton spin systems required resolution employing $2 \mathrm{D}{ }^{1} \mathrm{H},{ }^{1} \mathrm{H} \operatorname{COSY}$ (8). The latter 2D data revealed structural segments consisting of meta-coupled aromatic protons, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{X}) \mathrm{CH}_{2}-\mathrm{Ar}$ (subunit A ), and $-\mathrm{OCH}(\mathrm{O})-\mathrm{CH}(\mathrm{O})-\mathrm{CH}(\mathrm{O})-\mathrm{CH}(\mathrm{O})-$ $\mathrm{CH}(\mathrm{O})\left(\mathrm{CH}_{2} \mathrm{O}\right.$ )- (subunit B).

The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum (Table 2 ) of $\mathbf{1}$ exhibited signals for seventeen carbons, deduced to be three simple methylenes, an oxymethylene, a shielded methine, five oxymethines, two olefinic methines (one relatively shielded at 102.7 ppm ), two olefinic quaternary carbons, two oxygenated quaternary carbons, and a shielded carbonyl car-

[^7]
$R=R_{1}=R_{2}=H$
$\mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ac}$
$3 \mathrm{R}=\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$

$R=$ glucose
bon. The proton-bearing carbons were correlated to the protons attached to them by interpreting a ${ }^{1} \mathrm{H}_{-}^{13} \mathrm{C} \operatorname{COSY}(9,10)$ spectrum. For example, the meta-coupled proton appeared at $\delta 6.95$ and was correlated to the carbon at $\delta 102.7$, reminiscent of an aromatic carbon ortho to two oxygen-bearing carbons.

Acetylation of aceratioside yielded a pentaacetate 2, and methylation (MeI and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in refluxing $\mathrm{Me}_{2} \mathrm{CO}$ ) gave the methyl ether 3. The aromatic methyl ether and methyl ester signals appeared at $\delta 3.85$ and 3.77 and in the ir at $1726 \mathrm{~cm}^{-1}$. These results clearly suggested that subunit A contained a carboxyl group and subunit $\mathbf{B}$ a trihydroxypyranose with a hydroxymethyl group. Because the aromatic ring contained only one free hydroxy group, the other aromatic ring bonded oxygen atom must form an ether linkage. These facts suggested a 1,2,3,4-terrahydronaphthalene-2-carboxylic acid glycoside. Placement of both oxygen atoms in a meta orientation in the aromatic ring was achieved using $n O e$ methods. Irradiation of the isolated proton triplet at $\delta$ $3.42(\mathrm{H}-1)$ in the ${ }^{1} \mathrm{H}$-nmr spectrum of aceratioside [1] significantly enhanced the signal at 86.65 (H-8) and placed oxygens at $\mathrm{C}-5$ and $\mathrm{C}-7$ (meta).

Exact position of the glycoside linkage was resolved on the basis of nOe studies (see 4) and application of 2D nmr heteronuclear multiple bond connectivity (HMBC) (1113) methods. With the methylation product 3 , nOe irradiation of methoxy singlets at $\delta 3.85$ and 3.77 ppm enhanced signals for the aromatic protons at $\delta 6.35$ and 6.32 ppm, respectively. The observed nOe between the methyl group of the methyl ester and H-8 was explained by a partial boat conformation 4 for the cyclohexene ring, thereby forcing the methyl ester closer to the aromatic ring. In this conformation $\mathrm{H}-2$ and $\mathrm{H}-4 \mathrm{a}$ appear in a quasi 1,3 diaxial relationship or even closer if the molecule resides in a semi chair conformation [5]. One likely explanation of the nOe results depends on the two semi boat/chair conformations $\mathbf{4}$ and 5 existing in equilibrium.

Table 1. 'H-nmr Assignments for Aceratioside [1], Aceratioside Pentaacetate [2] and the Mechyl Ether 3

| Proton | Compound |  |  |
| :---: | :---: | :---: | :---: |
|  | $1\left(\right.$ in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}+\mathrm{D}_{2} \mathrm{O}\right)$ | $2\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$ | $3\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$ |
| H-la | 2.44, dt, 5.4, 12.6 | 2.30, m | 2.39, dt, 4.4, 13 |
| $\mathrm{H}-1 \mathrm{~b}$ | 3.42, dt, 5.4, 12.6 | 2.88, dt, 3.5, 10.2 | 3.02, dt, 4.6, 13 |
| H-2 . . . | $1.80, \mathrm{~m}$ | 1.69, m | $1.78, \mathrm{~m}$ |
| H-3a . . . | 1.75 , m | 1.78 , m | 1.87, m |
| H-3b . . . | 1.88, m | 1.79, m | 1.87, m |
| H-4a . . . . | 2.29, dd, 2.3, 14.2 | 2.44, m | 2.27, m |
| H-4b . . . | 2.54, dd, 5.3, 14.6 | 2.52,m | 2.53, td, 4.2, 16 |
| H-6 | 6.95.d, 2.8 | 6.78, d, 2.7 | 6.35, d, 2.8 |
| H-8 | $6.65, d, 2.8$ | 6.73, d, 2.7 | 6.32,d, 2.8 |
| H-1' . . . . . . . . . . | $4.81, \mathrm{~d}, 8$ | 5.05, d, 6.8 | 4.30,d. 7.7 |
| H-2' . . . . . . . . . . | 4.20, dd, 8, 9 | 5.24, dd, 6.8,8.6 | 3.63, r. 8.5 |
| H-3' | 4.14, dd, 9, 9 | 5.18, t, 8.6 | 3.53, r. 8.6 |
| H-4' | 3.84, dd, 9, 9 | 5.29.t, 10 | 3.51, c, 8.8 |
| H-5' | 4.10, ddd, 3, 9, 11 | $3.73, \mathrm{dt}, 3.5,10$ | 3.65,m |
| H-6'a . . . . . . . . | 4.77. dd, 11, 11 | 3.98, dd, 3.5, 12 | 4.49, dd, 12, 4 |
| H-6'b. | 5.00, dd, 3, 11 | 4.40. dd, 3.5, 12 | $4.50, \mathrm{dd}, 12,12$ |
| Ac | - | $\begin{aligned} & 2.02,2.04,2.07 \\ & 2.24,2.29 \end{aligned}$ | - |
| OMe | - | - | 3.77, 3.85 |
| OH . . . | - | - | $2.40,2.67,4.84$ |

The HMBC technique was used to assign (Table 2) all the carbon resonances. Strong and multiple correlation peaks were observed for all the protons two or three bonds away from carbon atoms. The H-1' ( $\delta 4.81$ ) proton was correlated to aromatic ring $\mathrm{C}-4 \mathrm{a}(\mathbf{\delta} 138.8), \mathrm{C}-3^{\prime}(74.6)$, and $\mathrm{C}-\mathrm{S}^{\prime}(\delta 78.0)$. Relationship of the carboxyl group ( $\delta 173.3$ ) to $\mathrm{H}-3(\delta 1.75,1.88 \mathrm{ppm}), \mathrm{H}-2(\delta 1.80)$, and $\mathrm{H}-4(\delta 2.29,2.54 \mathrm{ppm})$ was also established. Proton $\mathrm{H}-6(\delta 6.95)$ was related to $\mathrm{C}-4 \mathrm{a},-5,-7$, and -8 , and $\mathrm{H}-8$ with $\mathrm{C}-1,-4 \mathrm{a},-6$, and -7 . For other connectivities refer to Table 2. Interestingly, whenever a proton was arranged in a W-type spatial relationship with a carbon, a four-bond-apart HMBC correlation was observed. The HMBC experiments allowed placement of the glycoside at C-5 and confirmed the substitution pattern of the aromatic ring and carboxylic acid at position $\mathbf{C}-2$. The glycoside linkage was assigned $\boldsymbol{\beta}$ on the basis of the anomeric proton coupling constants for the doublet $H-1^{\prime}$ in aceratioside [1] ( $J=8$ Hz ), pentaacetate $2(J=6.8 \mathrm{~Hz})$, and methyl ester $3(J=7.7 \mathrm{~Hz})$. Acid hydrolysis of aceratioside led to the isolation of glucose and assignment of structure 1 to aceratioside.

The cd spectrum of methyl ester 3 in MeOH exhibired two relatively weak negative Cotton effect curves at $\lambda \max 230$ and 270 nm due to the phenethyl chromophore (14). On the basis of direct comparison of the cd spectrum with that of the 1,2,3,4-tetrahy-dronaphthalene-( $2 S$ and $2 R$ )-carboxylic acids (15), the absolute configuration of aceratioside [1] ar C-2 was assigned $S$. [Cd spectra of 1,2,3,4-tetrahydronaphthalene( $2 S$ and $2 R$ )-carboxylic acids in MeOH are: $2 S[\alpha] \mathrm{D}-55^{\circ} ; \epsilon(\mathrm{nm}) 0(280),-1.2(270)$, $0(250), 0(225),-33.3(210) ; 2 R:[\alpha] \mathrm{D}+28.5^{\circ} ; \epsilon(\mathrm{nm}) 0(280),+0.7(270), 0(250)$, +34.4(210).]

Certain tetralins have shown a variety of biological activities. For example, 6-substituted 1,2,3,4-tetrahydro-1-naphthoic acids have exhibited moderate anti-inflammatory activity (16) in mice. Other 1,2,3,4-tetrahydro-1-naphthoic acids have shown plant-growth-regulating activities (17), and 5,7-dihydroxy-2-aminoterralins have

Table 2. ${ }^{13} \mathrm{C}$-nmr Assignments for Aceratioside [1] and Aceratioside Pentaacetate [2] and HMBC Correlations for Glucoside 1.

| Carbon | Compound |  |  |
| :---: | :---: | :---: | :---: |
|  | 1 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ ) | $2\left(\right.$ in $\mathrm{CDCl}_{3}$ ) | HMBC of $\mathbf{1}$ ( in C, $\mathrm{D}_{5}$, N ) |
| C-1 | 31.2 | 29.1 | H-1 $\rightarrow$ C-2, -3, -4a, -8, -8a |
| C-2 | 31.5 | 28.7 | $\mathrm{H}-2 \rightarrow \mathrm{C}-3$ |
| C-3 | 25.8 | 25.6 | $\mathrm{H}-3 \rightarrow \mathrm{C}-1,-4,-9$ |
| C.4 | 34.8 | 34.1 | $\mathrm{H}-4 \rightarrow \mathrm{C}-2,-3,-9$ |
| C-4a | 138.8 | 138.6 |  |
| C. 5 | 152.4 | 146.8 |  |
| C-6 | 102.7 | 114.7 | H-6 $\rightarrow$ C-4a, -5, -7, -8 |
| C-7 | 156.7 | 143.1 |  |
| C-8 | 107.8 | 120.5 | H-8 $\rightarrow$ C-1, -4a, -6, -7 |
| C-8a | 138.0 | 142.9 |  |
| C-9 | 173.3 | 173.5 |  |
| C-1' | 108.4 | 100.5 | H-1 ${ }^{\prime} \rightarrow$ C-4a, $3^{\prime},-5^{\prime}$ |
| C-2' | 75.4 | 72.2 | $\mathrm{H}-2^{\prime} \mapsto \mathrm{C}-1^{\prime},-5^{\prime}$ |
| C.3' | 74.6 | 71.0 | H-3' $\rightarrow$ C-1', - $\mathbf{2}^{\prime}$, $4^{\prime}$ |
| C.4' | 73.7 | 68.7 | H-4 $\rightarrow$ C- $3^{\prime},-5^{\prime},-6^{\prime}$ |
| C. $5^{\prime}$ | 78.0 | 73.1 | H-5 $\mathrm{S}^{\prime} \rightarrow$ C-6', $\mathbf{- 2}^{\prime}$, $-4^{\prime}$ |
| C-6' | 64.7 | 60.6 | H-6' $\rightarrow$ C-5' |
| Ac | - | 20.6( $\times 3$ ), 20.8 |  |
|  |  | 21.1,168.2 |  |
|  |  | 169.0, 169.2 |  |
|  |  | 169.4, 170.3 |  |

exhibited dopaminergic and adrenergic action in dogs (18). Further biological evaluation of aceratioside is under way.

## EXPERIMENTAL

General experimental procedures. - Analtech Si gel GF ( 0.25 mm ) plates were used for tk and developed with either $3 \%$ ceric sulfate in $3 \mathrm{NH}_{2} \mathrm{SO}_{4}$ spray and/or iodine vapor. Stationary phases used for gravity or flash cc were E. Merck (Darmstadt) Si gel ( $70-230$ mesh for gravity and $40-63$ mesh for flash), Whatman Si gel LPS-1 (13-24 mesh), or Sephadex LH-20 (Pharmacia Fine Chemicals AB, Uppsala. Sweden).

Melting points were observed with a Kofler-type hot stage apparatus. Uptical rotation values were recorded using a Perkin-Elmer 241 polarimeter. The uv spectra were obtained in MeOH solution with a Hewlett-Packard 8450A UV/vis spectrophotometer. A Nicolett MX-1 FT spectrophotometer was employed for ir measurements. TMS, residual $\mathrm{CHCl}_{3}(7.256 \mathrm{ppm})$, or $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~S} .32 \mathrm{ppm})$ was used as an inrernal reference in all nmr experiments, which were determined with Bruker AM $400\left({ }^{1} \mathrm{H},{ }^{31} \mathrm{C}\right.$ ), or WWH 90 ( $' \mathrm{H}$ ) instruments. Chemical shifts are recorded in $\mathrm{ppm} . \mathrm{CDCl}_{3}$ was used as nmr solvent unless otherwise mentioned. The hreims and sp-sims (fabms) were recorded with a Kratos MS 50 instrument in the NSF regional mass spectrometry facility at the University of Nebraska.

Plant material.-The teaves of Ac. megalospermum, earlier (1875) classified as Aristotelia megalosporma, were collected in the rain forests of Queensland, Australia in 1979 as part of the NCI-USDA programs directed by Drs. John L. Hartwell, Matthew Suffness, and J. Duke (USDA). The plant was assigned NCI B631963, and a herbarium specimen is maintained by the USDA, Beltsville, Maryland.

IsOLATION of aceratioside [1] (7-hydroxy-1,2,3,4-tetrahydronaphthalene-2-CarBoxylic acid-S- $\beta$-D-GLUCOSIDE). -Dried leaves ( 50 kg ) of Ac. megalaspermwow were extracred at ambient temperature with 400 liters of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (1:1), and the extract was converted to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ fraction ( $2.07 \mathrm{~kg}, \mathrm{PS} \mathrm{ED}_{90} \mathrm{O} .3 \mu \mathrm{~g} / \mathrm{ml}$ ) by addition of $\mathrm{H}_{2} \mathrm{O}$ ( 100 liters). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ fraction ( 1.55 kg ) was dissolved in 8 liters of $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ ( $9: 1$ ) and extracted with hexane $\left(4 \times 4\right.$ liters). The $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ phase was adjusted to $3: 2$ by addition of $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $3 \times 4$ liters) to give $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 358 g , PS
$E D_{50} 0.07 \mu \mathrm{~g} / \mathrm{ml}$ ) and residual aqueous fractions ( 93 g , PS ED so $_{0} 0.16 \mu \mathrm{~g} / \mathrm{mi}$, PS T/C 121 at $25 \mathrm{mg} / \mathrm{kg}$ ). An 11.8-g aliquot of the latter fraction was chromatographed on a column of Si gel employing gradient elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(49: 1 \mapsto 17: 3)$ to give an active fraction that crystallized from $\mathrm{Me}, \mathrm{CO} / \mathrm{CHCl}_{4}$ to furnish aceratioside [1] (0.32 g, 0.005\% yield) as a buff colored powder: mp 273-275 $, ~ R, 0.35$ [Si gel, $\left.\mathrm{CH}_{2} \mathrm{Cl}-\mathrm{MeOH}(9: 1)\right] ;[\alpha] \mathrm{D}+10^{\circ}(c=1.2, \mathrm{MeOH})$; hr fabms $m / z[\mathrm{M}+\mathrm{H}]^{+} 371.1366$ ( $100 \%$ ) for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{9}\left(\right.$ calcd 371.1341 ); eims $m / 2[\mathrm{M}]^{+} 370(8 \%),\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+} 352(5 \%)$, $\left[\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+} 334(10)$, $[\mathrm{M}-\text { glucose }+\mathrm{H}]^{+} 208$ (73), $[\mathrm{M}-\text { glucose }-\mathrm{CO}]^{+} 180(100)$, $\left[\mathrm{M}-\right.$ aglycone] ${ }^{+} 163$ (24), [M-glucose $-2 \times \mathrm{CO}^{+} 152(30)$; uv (MeOH) $\lambda \max 226(\epsilon 5124), 281(2032)$; uv ( $\mathrm{MeOH}+\mathrm{NaOCH}_{3}$ ) $\lambda \max$ 230 ( $\epsilon 5442$ ), 235 ( 5255 ), 290 (3097); ir (KBr) $v \max 3446,3380,1682,1607,1492,1343,1165$, 1147, 1084, $1071,1054,1037 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ nmr see Table $1 ;{ }^{13} \mathrm{C}$ nmr see Table 2. Anal. catcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{9} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 51.38, \mathrm{H} 6.09$; found C 50.88 . H 5.83 .

ACERATIOSIDE PENTAACETATE [2]. - A solution of glycoside $\mathbf{1}(50 \mathrm{mg})$ in pyridineiAc, O ( 1 ml each) was acetylated at room temperature (overnight). After addition of EtOH , the solvent was evaporated at reduced pressure. The pentaacetate ( 70 mg ) crystallized from EtOH as an amorphous powder: mp 189 $191^{\circ}$; $R_{f} 0.2$ or 0.72 [Si gel, hexane-EtOAc (9:5 or $1: \overline{1}$ ]; $[\alpha] \mathrm{D}-10^{\circ}(c=1.2 . \mathrm{MeOH})$; hreims $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$ $580.1886(2 \%)$ (calcd for $\left.\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{44}, 580.1792\right)$. $[\mathrm{M}-2 \times \mathrm{Ac}-\mathrm{OHAc}]^{+} 436.1356$ ( $6 \%$ ) (calcd for $\left.\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{10}, 436.1370\right),\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{9}\right]^{+} 418.1281(14),[\mathrm{M}-2 \times \mathrm{OHAc}-2 \times \mathrm{Ac}]^{+} ; 76.1144$ ( 16 ). $\left[\mathrm{C}_{1}-\mathrm{H}_{18} \mathrm{O}_{7}\right]^{+} 334.1046(7),\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{6}\right]^{+} 292.0948(20),\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5}\right]^{+} 250.0833(80),\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}\right]^{-}$ $208.0739(100),\left[\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}\right]^{+} 180.0789(61),\left[\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}\right]^{+} 152.0474$ (34); ir ( NaCl ) 1757. 1476, 1370 , 1214, 1199, 1069, $1035 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H} \mathrm{nmr}$ see Table $1 ;{ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 2.

Methylation of aceratioside. - To a solution of aceratioside [1] (11.3 mg) in anhydrous $\mathrm{Me}_{2} \mathrm{CO}(3 \mathrm{ml})$ was added anhydrous $\mathrm{K}_{2} \mathrm{CO}_{4}(50 \mathrm{mg})$ and MeI ( 1 ml ). The mixture was heared at retlux for 3 $h$. The $\mathrm{K}_{2} \mathrm{CO}_{3}$ was removed by filtering the solution, and the filtrate was purified by chromatographic separation on a small Si gel column. Elution with ErOAc-hexane-MeOH (9:1:1) provided methyl ester 3 (8 mg ) as an amorphous prowder: mp 208-210 ${ }^{\circ} R_{f} 0.32$ [Si gel, hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H} \mathrm{H}_{2} \mathrm{O}(10: 80: 10: 1)$ ], hreims $m / z\left[\mathrm{M}^{+} 398.1575(3 \%)\left(\right.\right.$ calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{9}, 398.1577\right),\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}\right]^{+} 236.1047(2 \mathrm{I})$; cd $(\mathrm{MeOH}) \in(\mathrm{nm}) 0(283),-1.0(270), 0(256), 0(240),-7.6(230), 0(220)$; ir $(\mathrm{NaCl}) 3500,1726,1598$, 1492, 1450, 1350, 1210, 1095, 1075, 1055, $1040 \mathrm{~cm}^{-1}$ : ${ }^{1} \mathrm{H}$ nmr see Table $1 ;{ }^{13} \mathrm{C}$ nmr see Table 2.

HYDROLYSIS OF ACERATIOSIDE. - The glucoside $1(14.3 \mathrm{mg})$ was heated in a refluxing solution of 1 $\mathrm{N} \mathrm{HCl}-\mathrm{MeOH}(1: 1)(5 \mathrm{ml})$ for 24 h . ErOAc ( 15 ml ) was added, and the EtOAc phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{ml})$ and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ). Solvent was removed from both phases. The ErOAc extract was found to be a complex mixture, whereas the aqueous phase yielded glucose [identified by difect comparison with an authentic specimen using tlc on a cellulose plate with pyridine-ErOAc-HOAc- $\mathrm{H}_{2} \mathrm{O}$ $(5: 5: 1: 3)$ as mobile phase and by ${ }^{1} \mathrm{H}$-nmr comparison]. The pentacetare derivative was also found to be identical with an authentic sample of glucose pentaacerate by the same procedures.

## ACKNOWLEDGMENTS

For financial contributions we are pleased to thank National Cancer Institue Grants CA- 30311 -0103, Outstanding Investigator Award CA 44344-01A1, and Contract N01-CM-97262 with the Division of Cancer Treatment, DHHS, Eleanor W. Libby, the Waddell Foundation (Donald Ware), the Fannte E. Rippel Foundation, the Arizona Disease Control Research Commission, the U.S. Army Medical Research \& Development Command under Grant No. DAMD17-89-Z-9021, and National Cooperative Drug Discovery Group Grant AI 25696-02. For other assistance we thank Drs. G.M. Cragg. D.I. Doubek. J. Douros, J.L. Harrwell, A. Horeau [College De France, for providing samples of 1,2,3.4-terrahy-dronaphthalene-( 25 and $2 R$ )-carboxylic acid), and M. Suffness.

## LITERATURE CITED

1. H. G. Drexler, S.M. Gignac, R. A. Jones, C.S. Scort, G.R. Petrit, and A.V. Hoffbrand, Blond. 74, 1747 (1989).
2 V.H. Heywood, "Flowering Plants of the World," Mayflower Books. New York, 1978, p. 89.
2. A.S. Howard and J. P. Michael, in: "The Alkaloids." Ed. by A. Brossi, Academic Press, New York. 1986, Vol. 28, p. 210.
3. H.T. Clifford and G. Ludlow, "Keys to the Families and Genera of Queensland Flowering Plants (Magnoliophyta)," University of Queensland Press, 2nd ed., 1978, p. 108.
4. M.J.E. Coode, Brenonta, 1, 131 (1978).
5. M.M.J. Van Balgooy. Blumea, 12, 72 (1963).
6. M. Birtner, K. A. Poyser, J.P. Poyser, M. Silva, E. Weldr, and P.G. Sammes, Phvtochemistry, 12. 1427 (1973).
7. A. Bax and R. Freeman, J. Magn. Reson., 44, 542 (1981).
8. G. Bodenhausen and R. Freeman. J. Magn. Reson., 28, 471 (1971).
9. A. Bax and G.A. Morris, J. Magn. Reson., 42, 501 (1981).
10. M.F. Summers, L.G. Marzilli, and A. Bax, J. Am. Chem. Soc., 108, 4285 (1986)
11. A. Bax and M.F. Summers, J. Am. Cbem. Soc., 108, 2093 (1986).
12. A. Bax, A. Aszalos, Z. Dinya, and K. Sudo, J. Am. Chem. Sac., 108, 8056 (1986).
13. P. Crabbe and W. Klyne, Tetrabedron, 23, 3449 (1967).
14. A. Schoofs, J. P. Guetre, and A. Horeau, Bull. Soc. Chim. Fr., 1215 (1976).
15. P.F. Juby, W. R. Goodwin, T.W. Hudyma, and R. A. Partyka, J. Med. Chem.. 15, 1306 (1972).
16. T. Fujita, K. Kawazu, T. Mitsui, and M. Katsumi, Phytochemistry, 6, 889 (1967).
17. J.G. Cannon, A.N. Brubaker. J.P. Long, J.R. Flynn, T. Verimer, P. Harnirattisai, B. Costall, R.J. Naylor, and V. Nohria, J. Med. Chem.. 24, 149 (1981).

# Antineoplastic agents. 168. Isolation and structure of axinohydantoin ${ }^{1}$ 

George R. Pettit, ${ }^{2}$ Cherry L. Herald, John E. Leet, Rajesh Gupta. Daniel E. Schaufelberger, Robert B. Bates, ${ }^{3}$ Paul J. Clewlow, Dennis L. Doubek, Kirk P. Manfredi, Klaus Rützler, ${ }^{4}$ Jean M. Schmidt, Larry P. Tackett, Franklin B. Ward, Michael Bruck, ${ }^{3}$ and Fernando Camou ${ }^{3}$ Cancer Research Institute and Department of Chemistry, Arizona State University, Tempe, AZ 85287, U.S.A.

Received July 4, $1989^{5}$

George R. Pettit, Cherry L. Herald, John E. Leet, Rajesh Gupta, Daniel E. Schaufelberger, Robert B. Bates, Paul J. Clewlow, Dennis L. Doubek, Kirk P. Manfredi, Klaus Rützler, Jean M. Schmidt, Larry P. Tackett, Franklin B. Ward, Michael Bruck, and Fernando Camou. Can. J. Chem. 68, 1621 (1990).

Western (Palau) and Eastern (State of Truk) Caroline Islands and Papua New Guinea sponges of the genera Axinella and Hymeniacidon were found to contain the cytostatic (PS ED 502.5 and $2.0 \mu \mathrm{~g} / \mathrm{mL}$ ) and antineoplastic (PS T/C $143 \mathrm{at} 3.6 \mathrm{mg} / \mathrm{kg}$ and T/C 138 at $3.6 \mathrm{mg} / \mathrm{kg}$ ) pyrrologuanidines $1 a$ and $1 b$. The related hydantoin 2, designated axinohydantoin, was also isolated from an Axinella sp . and its structure was assigned by X-ray crystallographic techniques. Present experience with sponges in the Axinella and Hymeniacidon genera suggests that the previously known hymenialdisine ( $1 b$ ) and analogous imidazole derivatives may be widely distributed among these and related orange colored Porifera.

Key words: axinohydantoin, hymenialdisine, Axinella, Hymeniacidon, cystostatic.
George R. Pettit. Cherry L. Herald, John E. Leet, Rajesh Gupta, Daniel E. Schaufelberger, Robert B. Bates, Paul J. Clewlow, Dennis L. Doubek, Kirk P. Manfredi, Klaus Rützler, Jean M. Schmidt, Larry P. Tackett, Franklin B. Ward, Michael Bruck et Fernando Camou. Can. J. Chem. 68, 1621 (1990).

On a trouvé que les éponges du genera Axinella et du Hymeniacidon des iles Caroline occidentale (Palau) et orientale (État de Truk) ainsi que de la Nouvelle Guinée contiennent des pyrrologuanidines $1 a$ et $1 b$ qui sont des cytostatiques (PS ED 502.5 et $2,0 \mu \mathrm{~g} / \mathrm{mL}$ ) et des antinéoplasiques (PS T/C 143 à $3,6 \mathrm{mg} / \mathrm{kg}$ et T/C 138 à $3,6 \mathrm{mg} / \mathrm{kg}$ ). À partir d'un Axinella sp . . on a aussi isolé l'hydantoïne apparentée 2 , appelée axinohydantoïne, et on a déterminé sa structure à l'aide de la diffraction des rayons- X . L'expérience acquise avec les éponges de l'ixinella et de l'Hymeniacidon genera suggère que l’hyménialdisine ( $\mathbf{1 b}$ ). qui était connue antérieurement, ainsi que les dérivés imidazoles analogues sont peut-être très répandus dans ces éponges et dans les Porifera apparentés de couleur orange.

Mots clés : axinohydantöne, hyménialdisine, Axinella. Hymeniacidon, cytostatique.
[Traduit par la revue]

## Introduction

Early (2) in our evaluation of marine animals as new sources of potentially useful anticancer drugs, good leads were uncovered among the Porifera, and this initial (1966-1968) promise is now being amply realized (3.4). In 1979 in Palau we collected a Hymeniacidon species (at -40 m ) and an Axinella sp. that provided extracts with confirmed levels of activity against the U.S. National Cancer Institute's (NCI) murine P388 lymphocytic leukemia (PS system). Other PS active sponge collections were completed in 1981 (Papua New Guinea) and 1985 (Truk, Federated States of Micronesia) that included Axinella carteri (Dendy) and a Hymeniacidon species.

Initial extracts of each sponge were found to provide a confirmed level of activity against the PS system. By means of PS (in vitro) bioassay guided separation procedures, these sponge species led to two cytostatic and antineoplastic alkaloids ( $1 a, b$ ) accompanied in the case of Axinella sp. by a closely related. but marginaliy (PS ED so $_{0} 18 \mu \mathrm{~g} / \mathrm{mL}$ ) inactive, component (2). The PS active marine alkaloids proved to be identical ${ }^{6}$ with the known (5-7) hymenialdisine ( $1 b$, ref. 6. PS

[^8]$\mathrm{ED}_{50} 2.0 \mu \mathrm{~g} / \mathrm{mL}$ and $\mathrm{T} / \mathrm{C} 138$ at $\left.3.6 \mathrm{mg} / \mathrm{kg}\right)^{7}$ and its debromo derivative $1 a$ (refs. 5-7, PS ED $50.5 \mu \mathrm{~g} / \mathrm{mL}$ and T/C 143 at $3.6 \mathrm{mg} / \mathrm{kg}$ ).


1a. $\mathrm{R}=\mathrm{H}$ debromohymenialdisine 1b. $\mathrm{R}=\mathrm{Br}$ hymenialdisine


2
axinohydantoin

The unequivocal X-ray crystal structure of hymenialdisine was nicely established by Cimino et al. (5) and reconfirmed in the following year by the Kitagawa group (6). In turn, these advances simplified characterization of the companion substance from Axinella sp., herein named axinohydantoin (2), as a closely related compound. But establishing the exact geometrical configuration for its hydantoin-lactam $s p^{2}$ bond required the following crystal structure determination.

Axinohydantoin (2) crystallized from methanol as yellow prisms, which corresponded to $\mathrm{C}_{1} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{3}$ (by hreims) and with one mole of methanol. The structure was solved using

[^9]

FIG. 1. ORTEP view of a single molecule of 2, with $50 \%$ thermal ellipsoids.

MULTAN (8) and refined to $R=0.054$ using anisotropic temperature factors for Br and oxygens other than $\mathrm{O}-3$, and isotropic temperature factors for the other non-hydrogens and for hydrogens (unrefined) in calculated positions. $\mathrm{HN}-1, \mathrm{HN}-11$, and HN-9 were calculated to be $0.95 \AA$ along a line to the respective oxygen. These positions differed very little from those calculated assuming bonding to trigonal atoms. HN-4 has been shown at the calculated position assuming a trigonal $\mathrm{N}-4$ that is too far ( $2.4 \AA$ ) from the closest $\mathrm{O}-10$ for significant hydrogen bonding; it may actually bend somewhat toward this O-10.
The structure deduced for axinohydantoin (2, Fig. 1) was found to be closely related to that of hymenialdisine ( $1 b$ ), with reversal of configuration at the $\mathrm{C} 7-\mathrm{C} 8$ double bond being the most interesting difference. In turn, this suggested that axinohydantoin was not simply a hydrolysis product of guanidine $\mathbf{1 b}$. The most prominent bond length difference between the two structures occurs at $\mathrm{C} 10-\mathrm{Ol} 0$, with $1.23 \AA$ in hydantoin 2 compared to $1.33 \AA$ for C11-N11 in $1 b$. No significant differences in bond angles were observed. An angle of $36^{\circ}$ was observed between the least-squares planes of the two nearly planar five-membered rings in hydantoin 2, compared to $43.8^{\circ}$ in guanidine $1 b$. In both cases, the seven-membered ring has adopted a boat conformation with C-5 at the prow, and similar torsion angles except for $\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 5$ expanding from $-10.5^{\circ}$ in $1 b$ to $-15^{\circ}$ in 2 , and $\mathrm{C} 2-\mathrm{C} 13-\mathrm{C} 7-\mathrm{C} 6$ contracting from $41.1^{\circ}$ in $1 b$ to $31^{\circ}$ in 2. The twist angle $\mathrm{C} 13-\mathrm{C} 7 \ldots \mathrm{C} 8-$ C 12 about the carbon-carbon double bond increases from $0.5^{\circ}$ in $1 b$ to $10^{\circ}$ in 2 , presumably to relieve the steric interaction between $\mathrm{O}-12$ and $\mathrm{HC}-14$.

The arrangement of intermolecular hydrogen bonds govern-
ing the packing in hydantoin 2 (see supplementary material) ${ }^{8}$ was found to be completely different than that in guanidine $1 b$ (6). The hydantoin ring in each molecule was found linked to the hydantoin rings of two other molecules via base-pairing interactions across centers of symmetry. The pyrrole NH proved to be hydrogen bonded to the methanol solvate oxygen and in turn to O-3. Only a few substances (9-12) with a hydantoin system have been isolated from sponges, and one of these, midpacamide, found by Scheuer and co-workers (9) in an unidentified Marshall Island sponge, may be biogenetically related to axinohydantoin. From evidence now in hand, pyrroles 1 and 2 and related substances may prove to be ubiquitous Porifera biosynthetic products.

## Experimental

## General methods

Marine sponge taxonomic identification was performed in the Smithsonian Institution where voucher specimens are deposited in the collections of the Department of Invertebrate Zoology, National Museum of Natural History. All solvents employed were redistilled. Size exclusion chromatography was accomplished with Sephadex LH-20 (particle size: $25-100 \mu \mathrm{~m}$ ) suppled by Pharmacia Fine Chemicals, Uppsala, Sweden. Thin-layer chromatography was carried out with silica gel GHLF Uniplates (Analtech Inc.) and with RP-8 precoated plates (layer thickness: 0.25 mm ) from E. Merck, Darmstadt, Germany. High-speed countercurrent chromatography was accomplished with an Ito multilayer coil extractor-separator (P.C. Inc., Potomac, MD) using 2.6 mm i.d. tubing, and an FMI Lab Pump.

Melting points are uncorrected and were determined on a Kofler-type hot-stage apparatus. Ultraviolet spectra were recorded employing a Hewlett-Packard model 8450 uv /vis spectrophotometer and ir spectra with a Nicolet ft-ir model MX-1 instrument. The nmr spectra were measured in DMSO- $d_{6}$ using a Bruker AM-400 instrument and are recorded in ppm downfield to TMS (assignments bearing the same superscript may be reversed). The ${ }^{13} \mathrm{C} \mathbf{n m r}$ multiplicities were determined with AP' experiments based on an average coupling constant of 135 Hz . The eims spectra were recorded with a Kratos AEI 5076 spectrometer at the NSF Regional Facility. University of Nebraska. Lincoln, Nebraska.

Palau Porifera (Axinella sp. and Hymeniacidon sp.) collection and extraction.
The initial collection of Axinella sp. (Demospongiae class. Axinellida order. Axinellidae family) in Palau, Western Caroline Islands, was conducted in May, 1979. The sponge displayed a brownish-yellow exterior of irregular mass. A 2-propanol-- $\mathrm{CHCl}_{3}$ extract gave confirmatory in vivo activity with PS T/C 201 at $100 \mathrm{mg} / \mathrm{kg}$. PS ED $\boldsymbol{s k}_{0}=$ $2.5 \mu \mathrm{~g} / \mathrm{mL}$. A scale-up re-collection ( 220 kg wet wt.) of this sponge was completed in March. 1985, and preserved in 2-propanol. The preserving solution was separated from the sponge, concentrated to an aqueous slurry, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (13). The remaining sponge material was re-extracted with 2-propanol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ : the extract was separated, solvent removed, and the residue partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ At this early stage a solid precipitate appeared at the $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}$ interface. The precipitate was separated and amounted to

[^10]1.8 kg (PS T/C 227 at $294 \mathrm{mg} / \mathrm{kg}, \mathrm{ED}_{50} 2.8 \mu \mathrm{~g} / \mathrm{mL}$ ). Analogous solid fractions were also obtained at this initial $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ step during separations of the sponge extracts summarized below.

The orange sponge Hymeniacidon sp. (Demospongiae class, Halichondrida order, Hymeniacidonidae family) was collected (1979), re-collected (in $1985,218 \mathrm{~kg}$ wet wt.), and extracted (2-propanol extract showed PS T/C 130 at $5.5 \mathrm{mg} / \mathrm{kg}$ and $E D_{50} 27 \mu \mathrm{~g} / \mathrm{mL}$ ) as summarized above. Removal of solvent from the initial 2-propanol extract led to an aqueous concentrate that contained 1.2 kg of a solid fraction with PS ED ${ }_{50}=3.7 \mu \mathrm{~g} / \mathrm{mL}$.

## Isolation of hymenialdisine ( $\mathbf{1 b}$ ) and axinohydantoin (2)

A 10 g aliquot from the 1.8 kg of solid precipitate noted above was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$ ( 400 mL ) and separated by size exclusion chromatography on a column of Sephadex LH-20 ( $100 \times 10 \mathrm{~cm}$ ) to yield two major marine alkaloid fractions. When fraction 1 (elution volume: $12.0-12.6 \mathrm{~L}$ ) was allowed to stand for 24 h at room temperature, axinohydantoin (2) slowly crystallized as yellow needles ( 30 mg ): $\mathrm{mp}>350^{\circ} \mathrm{C}$; thc on silica gel $R_{\mathrm{f}}=0.83,1-\mathrm{BuOH}-\mathrm{AcOH} 50 \%(95: 5)$; tle on RP-8 $R_{\mathrm{f}}=0.51, \mathrm{CH}_{3} \mathrm{OH}-\mathrm{AcOH} 5 \%(1: 1)$; uv $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }}$ : 264sh $(\log \varepsilon=3.88), 345(\log \varepsilon=4.16) \mathrm{nm}$; ir $(\mathrm{KBr}) \nu_{\text {max }}: 1740$, $1702,1638,1480,1425,1407 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) \delta: 2.67(2 \mathrm{H}$, m, H-6), 3.22 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ ). 6.66 (1H, s, H-14), 7.89 (1H, t, HN-4), 9.83, $10.91(2 \times 1 \mathrm{H}, \mathrm{s}, \mathrm{HN}-9, \mathrm{HN}-11), 12.35(1 \mathrm{H}, \mathrm{s}, \mathrm{HN}-1) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO-d $\mathrm{d}_{6}$ ) 8: 36.2 (t. C-6), 38.5 (t, C-5), 101.6 ( $\mathrm{s}, \mathrm{C}-15$ ), 113.9 (d, C-14), 120.0 (s, C-13), 121.2 (s, C-7), 125.5 (s, C-2), 126.5 (s. C-8), 153.8 (s, C-10), 162.7 ( $\mathrm{s}, \mathrm{C}-3$ ), 163.3 ( $\mathrm{s}, \mathrm{C}-12$ ); hreims $\mathrm{m} / \mathrm{z}$ : 325.9842 and $323.9834\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}\right.$ requires 325.9836 ).

Fraction 2 (elution volume: $12.9-13.5 \mathrm{~L}$ ) yielded a crystalline precipitate ( 100 mg ), which was identified as hymenialdisine ( 1 b ) by comparison (uv, ir, ${ }^{3} \mathrm{H} \mathrm{nmr}$, eims) with an authentic sample (6).

## Truk Porifera (Axinella carteri) collection and extraction

In May 1985, approximately 1 kg of an orange-yellow sponge subsequently identified as Axinella carteri (Dendy), was collected in the Truk Lagoon, Federated States of Micronesia, at -13 to -24 m . The preserving solution (2-propanol) was removed and this extract proved toxic down to $50 \mathrm{mg} / \mathrm{kg}$ against the PS leukemia. The 2-propanol extract was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ and the resulting $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was successively partitioned (13) between 9:1-4:1-1:1 MeOH: $\mathrm{H}_{2} \mathrm{O}$ with hexane- $\mathrm{CCl}_{4}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The final $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract showed PS T/C 135 at $100 \mathrm{mg} / \mathrm{kg}$ and PS cell line $\mathrm{ED}_{50}=$ $1.2 \mu \mathrm{~g} / \mathrm{mL}$.

In October 1985, approximately 148 kg (wet wt.) of the sponge was recollected and preserved in MeOH . The MeOH solution was decanted, and the sponge was ground and extracted with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1). The original MeOH solution was concentrated to an aqueous phase and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$ followed by $1-\mathrm{BuOH}$. Study of this $1-\mathrm{BuOH}$ fraction was discontinued when PS results showed minimal activity.

When the ambient temperature extraction of the sponge with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was completed, the aqueous MeOH phase was separated and concentrated to an aqueous phase, which was extracted with $1-\mathrm{BuOH}(15 \mathrm{~L})$. The $1-\mathrm{BuOH}$ phase was concentrated. redissolved in MeOH ( 1.5 L ). and dried to give a 232 g fraction (PS ED $501.4 \mu \mathrm{~g} / \mathrm{mL}$ ). A 97 g aliquot of the MeOH soluble fraction was treated with $1-\mathrm{BuOH}$ $\left(800 \mathrm{~mL} .50^{\circ} \mathrm{C} .12 \mathrm{~h}\right.$ ) and the relatively insoluble part ( 50 g, PS ED 50 $1.5 \mu \mathrm{~g} / \mathrm{mL}$ ) was collected. The $\mathrm{MeOH}(600 \mathrm{~mL})$ sparingly soluble portion weighed 4.26 g (PS ED so $0.11 \mu \mathrm{~g} / \mathrm{mL}$ ).

## Papua New Guinea Porifera (Hymeniacidon sp.) collection and extraction

The collection (May 1981, near Motapure Island. Papua New Guinea) and recollection (October 1983.44 kg wet wt.) of an orange Hymeniacidon sp. as well as the large scale extraction (crude extract PS $\mathrm{T} / \mathrm{C} 136 \mathrm{at} 100 \mathrm{mg} / \mathrm{kg}$ and $\mathrm{ED}_{30} 24 \mu \mathrm{~g} / \mathrm{mL}$ ) and solvent partitioning were performed as described above for A. carteri. In this case, when the 934 g initial $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ fraction was subjected to further separation by MeOH: $\mathrm{H}_{2} \mathrm{O}$ with the hexane $\rightarrow \mathrm{CCl}_{4} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}$ sequence, a total

Table 1. Positional and thermal parameters

| Atom | $x$ | $y$ | $z$ | $B\left(\AA^{2}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| Br | $0.56111(6)$ | $0.0097(2)$ | $0.18172(7)$ | $4.40(3)$ |
| O3 | $0.7915(4)$ | $-0.210(1)$ | $0.0865(4)$ | $3.4(2)^{*}$ |
| O12 | $0.7371(3)$ | $-0.194(1)$ | $0.4049(4)$ | $3.0(2)$ |
| O10 | $0.9511(3)$ | $-0.093(1)$ | $0.5586(3)$ | $3.3(2)$ |
| OM | $0.6407(4)$ | $-0.152(2)$ | $0.0121(5)$ | $7.3(3)$ |
| N1 | $0.6929(4)$ | $-0.069(1)$ | $0.1562(4)$ | $2.3(2)^{*}$ |
| N4 | $0.8760(4)$ | $-0.055(1)$ | $0.1624(5)$ | $2.9(2)^{*}$ |
| N11 | $0.8375(4)$ | $-0.161(1)$ | $0.4951(4)$ | $2.5(2)^{*}$ |
| N9 | $0.9106(4)$ | $-0.056(1)$ | $0.4357(4)$ | $2.0(2)^{*}$ |
| C15 | $0.6581(5)$ | $-0.024(2)$ | $0.2056(5)$ | $2.5(2)^{*}$ |
| C14 | $0.7046(4)$ | $-0.000(2)$ | $0.2706(5)$ | $2.2(2)^{*}$ |
| C13 | $0.7725(4)$ | $-0.036(1)$ | $0.2599(5)$ | $1.8(2)^{*}$ |
| C2 | $0.7630(5)$ | $-0.073(1)$ | $0.1875(5)$ | $2.0(2)^{*}$ |
| C3 | $0.8108(5)$ | $-0.120(2)$ | $0.1407(6)$ | $2.8(2)^{*}$ |
| C5 | $0.8961(5)$ | $0.083(2)$ | $0.2145(5)$ | $2.6(2)^{*}$ |
| C6 | $0.9053(4)$ | $0.024(2)$ | $0.2915(5)$ | $2.4(2)^{*}$ |
| C7 | $0.8393(4)$ | $-0.031(1)$ | $0.3144(5)$ | $1.8(2)^{*}$ |
| C8 | $0.8468(5)$ | $-0.069(1)$ | $0.3839(5)$ | $1.9(2)^{*}$ |
| C12 | $0.7982(5)$ | $-0.147(1)$ | $0.4248(5)$ | $2.0(2)^{*}$ |
| C10 | $0.9045(5)$ | $-0.104(2)$ | $0.5026(5)$ | $1.9(2)^{*}$ |
| CM | $0.5809(8)$ | $-0.093(2)$ | $-0.0359(8)$ | $6.3(4)^{*}$ |

*Starred atoms were refined isotropically.
Anisotropically refined atoms are given in the form of the isorropic equivalent thermal parameter, defined as $8 \pi^{2}\left(U_{11}+U_{22}+U_{33}\right) / 3$.
of 135 g (PS ED $5014 \mu \mathrm{~g} / \mathrm{mL}$ ) of a solid interfacial fraction was collected and used to isolate hymenialdisines $1 a$ and $1 b$.

## Isolation of hymenialdisines Ia and Ib-Procedure A

An aliquot ( 250 mL ) of the preceding Axinella carteri MeOH $(600 \mathrm{~mL})$ solution was applied to a column of Sephadex LH-20 (1.9 kg in MeOH ). A total of 460 fractions wi 20 mL each were collected and a fraction weighing 0.73 g (PS ED ${ }_{50} 2.2 \mu \mathrm{~g} / \mathrm{mL}$ ) was further separated using high speed countercurrent distribution with an Ito coil. A 50 mg aliquot was applied ( 6 mL ) in $1-\mathrm{BuOH}: \mathrm{HOAc}: \mathrm{H}_{2} \mathrm{O}(4: 1: 5)$ to the coil with the $1-\mathrm{BuOH}$ phase as stationary (upper) and the aqueous part as mobile (lower) phase. Fractions ( 120 ) of 6.5 mL each were collected: fractionation was monitored with ultraviolet detection ( 254 nm ). The fractions were neutralized ( pH 7 ) with aqueous NaOH and refrigerated. Debromohymenialdisine $1 a, 9 \mathrm{mg}$, $\mathrm{PS}^{\mathrm{ED}} \mathrm{Et}_{5}=3.0 \mu \mathrm{~g} / \mathrm{mL}$, crystallized from fractions 28-33 and was identical (tle, ms. nmr) with an authentic sample (6).

The MeOH less soluble fraction $(4.26 \mathrm{~g})$ described above was extracted with $\mathrm{MeOH}\left(5 \times 25 \mathrm{~mL}\right.$ ) at $40^{\circ} \mathrm{C}$ and the solution filtered to give 3.73 g of residue. A 0.90 g portion was triturated with DMSO ( 10 mL ). The soluble portion ( 0.25 g ) was chromatographed on a column of Sephadex LH-20 in MeOH to provide 0.13 g of hymenialdisine ( $1 b$ ) as yellow crystals (PS ED so $_{0} 0.62 \mu \mathrm{~g} / \mathrm{mL}$ ). identical (tlc and ms comparisons) with an authentic sample (6).

## Procedure B

The 1.2 kg fraction (see above) from the Palau Hymeniacidon sp . was further separated by successive Soxhlet extraction ( 20 g aliquot) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \times 5 \mathrm{~L}), \mathrm{EtOH}(6 \times 5 \mathrm{~L})$, and $1-\mathrm{BuOH}(6 \times 5 \mathrm{~L})$ to give respectively 35 g (PS ED $5026 \mu \mathrm{~g} / \mathrm{mL}$ ), 500 g (PS ED $500.6 \mu \mathrm{~g} / \mathrm{mL}$ ). and 106 g (PS ED $5_{50} 2.6 \mu \mathrm{~g} / \mathrm{mL}$ ) fractions. A 10 g sample of the $1-\mathrm{BuOH}$ fraction in MeOH was subjected to chromatography on a column of Sephadex LH-20 ( 500 g ) to give 26 individual (by tle comparisons) fractions using $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{MeOH}$. Of these, 56 mg proved to be largely debromohymenialdisine $1 a\left(\mathrm{PS}^{2} \mathrm{ED}_{90} 1.4 \mu \mathrm{~g} / \mathrm{mL}\right.$ ) and hymenialdisine ( $5.5 \mathrm{mg}, 1 b, \mathrm{PS} \mathrm{ED}_{50} 7.5 \mu \mathrm{~g} / \mathrm{mL}$ ) by comparison nmr and tle.

## Procedure C

The 135 g fraction from the Papua New Guinea Hymeniacidon sp.
was extracted (Soxhlet procedure with two stainless steel 1-gallon extractors) with ErOH to yield a 22 g alcohol soluble fraction. Treatment of this fraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}(1: 1)$ yielded a precipitate $(4.3 \mathrm{~g}$, PS ED $\mathrm{so}_{50} 8.5 \mu \mathrm{~g} / \mathrm{mL}$ ), which was extracted with hot $1-\mathrm{BuOH}$. The $1.5 \mathrm{~g} 1-\mathrm{BuOH}$ soluble fraction was preabsorbed onto silica gel and separated by chromatography on a column ( $3 \times 62 \mathrm{~cm}$ ) of silica gel ( 180 g ). Gradient elution with $95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}$ with increments of MeOH provided fractions that yielded ( 0.17 g and 0.06 g respectively) debromohymenialdisine ( $1 a$, PS T/C 143 at $3.6 \mathrm{mg} / \mathrm{kg}$ and $\mathrm{ED}_{\text {so }}$ $2.5 \mu \mathrm{~g} / \mathrm{mL}$ ) and hymenialdisine ( 1 b, PS T/C 138 at $3.6 \mathrm{mg} / \mathrm{kg}$ and $\mathrm{ED}_{50} 2.7 \mu \mathrm{~g} / \mathrm{mL}$ ). Both $1 a$ and $1 b$ were identified by direct comparison with authentic samples (6) employing thc, ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H} \mathrm{nmr}, \mathrm{ms}$, uv, and ir spectral data.
$X$-ray structure of axinohydantoin (2)
$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{BrN}_{4} \mathrm{O}_{3} \cdot \mathrm{CH}_{3} \mathrm{OH}$

$$
f w=357.17
$$

Monoclinic, $C 2 / c, a=19.558(2), b=7.505(1), c=19.092(3) \AA$, $\beta=103.78(1)^{\circ}, V=2754.3 \AA^{3}, Z=8, \rho_{c}=1.72$; Nicolet $P 2_{1}$ diffractometer, crystal $0.17 \times 0.13 \times 0.08 \mathrm{~mm}, 23^{\circ} \mathrm{C}, \mathrm{MoK}_{\alpha}, \lambda=$ $0.71073 \AA, 2 \theta / \theta$ scans, $2 \theta_{\max } 50^{\circ} ; 836$ of 2446 reffections with $F_{0}{ }^{2}>3 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$ used; solved by direct methods; $R=0.053, R_{w}=$ 0.055 excluding unobserved reflections. Coordinates and isotropic temperature factors of non-hydrogens are given in Table $1 .{ }^{8}$

## Acknowledgments

We are pleased to acknowledge the very necessary financial assistance provided by the Fannie E. Rippel Foundation, the Arizona Disease Control Research Commission, Outstanding Investigator Grant CA 44344-01A1 and PHS Grants CA-16049-07-12 awarded by the National Cancer Institute, DHHS, the Robert B. Dalton Endowment Fund, Virginia Piper, Polly Trautman, Eleanor W. Libby, the Donald Ware Waddell Foundation, Herbert and Dianne Cummings (The Nathan Cummings Foundation, Inc.) Mary Dell Pritzlaff, the Olin Foundation (Spencer T. and Ann W.), and by the U.S. Army Medical Research and Development Command under Grant No. DAMD17-89-Z-9021.

Other helpful assistance was provided by the Governments of Papua New Guinea (N. Kwapena, A. Richards, and Drs. John
L. Munro, J. M. Lock, and N. Polunin), the Federated States of Micronesia (Truk, D. E. Aten, R. Killion, and A. Amaraich), and Palau (Dr. T. Paulis and K. B. Batcheller), Singapore Airlines Ltd. (M. Theam Kong), Blue Lagoon Dive Shop (MOEN, Truk), Drs. C. G. Bass, C. Dufresne, Mr. G. R. Pettit III, Mrs. D. N. Tackett, S. Taylor, and T. N. Trautman, the Smithsonian Institution Oceanographic Sorting Center, The U.S. National Science Foundation (Grant CHE-8409644), The Swiss National Science Foundation (to D.E.S.), and the NSF Regional Instrumentation Facility in Nebraska (Grant CHE-8620177).

1. J. A. McBain, G. R. Pettit, and G. C. Mueller. Cell Growth and Differentiation, 1, 281 (1990).
2. G. R. Pettit, J. F. Day, J. L. Hartwell, and H. B. Wood. Nature, 227, 962 (1970).
3. Y. Kato, N. Fusetani, S. Matsunaga, and K. Hashimoto. J. Org. Chem. 53, 3930 (1988).
4. Y. Hirata and D. Uemura. Pure Appl. Chem. 58, 701 (1986).
5. G. Cimino, S. Derosa, S. DeStefano, L. Mazzarella, R. Puliti, and G. Sodano. Tetrahedron Lett. 23, 767 (1982).
6. I. Kitagawa, M. Kobayashi, K. Kitanaka, M. Kido, and Y. Kyogoku. Chem. Pharm. Bull. 31, 2321 (1983).
7. F. J. Schmitz, S. P. Gunasekera, V. Lakshmi, and L. M. V. Tillekeratne. J. Nat. Prod. 48, 47 (1985).
8. P. Main, S. J. Fiske, S. E. Hull, L. lessinger, G. Germain, J. P. Decierq, and M. M. Woolfson. MULTAN 80. A system of computer programs for the automatic solution of crystal structures from X-ray diffraction data. University of York, England, and Louvain, Belgium. 1980.
9. L. Chevolot, S. Padua, B. N. Ravi, P. C. Blyth, and P. J. Scheuer. Heterocycles, 7, 891 (1977).
10. R. Kazlauskas, P. T. Murphy, R. J. Quinn, and R. J. Well.s. Tetrahedron Lett. 1, 61 (1977).
11. P. Diura, D. B. Stierle, B. Sullivan. D. J. Faulkner. E. Arnold and J. Clardy. J. Org. Chem. 45, 1435 (1980).
12. D. J. Faulkner. Nat. Prod. Rep. 3. 1 (1986).
13. G. R. Pettit. Y. Kamano. R. Aoyagi, C. L. Herald. D. L. Doubek, J. M. Schmidt, and J. J. Rudloe. Tetrahedron. 41. 985 (1985).

ISOLATION AND STRUCTURE OF BRYOSTATINS 14 AND $15^{1}$
G. R. Pettit," F. Gao, D. Sengupta, J. C. Coll, C. L. Herald, D. L. Doubek, J. M. Schmidt, J. R. Van Camp, J. J. Rudloe, and R. A. Neman

Cancer Research Institute and Department of Chemistry Arizona State University, Tempe, AZ 85287-1604

## (Received in USA 28 January 1991)

SUMARY: Further investigation of constituents from the marine bryozoan Bugula neritina employing new $1,000 \mathrm{~kg}$ recollections from the Gulf of Mexico and Eastern Pacific Ocean (California) has led to isolation and structural determination of two previously undetected members of the bryostatin (1-13) series, bryostatins 14 (14) and 15 (15). Structural analyses were conducted primarily with high field ( 400 MHz ) NMR and high resolution mass spectral techniques. Both new bryostatins significantly inhibited growth of the P388 lymphocytic leukemia.

Discovery ${ }^{2}$ of bryostatins 1-13 (cf. 1-13) has made available a new class of important biochemical probes ${ }^{3}$ with considerable clinical potential. For example, with fresh samples of human myeloid leukemia, bryostatin 1 generally caused differentiation responses leading to macrophage-like morphology.4 Again, with peripheral blood cells from $\beta$-chronic lymphocytic leukemia patients, this substance triggered activation and differentiation ${ }^{4 b}$ and



A,
B, 只足



is undergoing clinical evaluation. In order to meet potential clinical supply requirenents for the bryostatins, it becane necessary to increase (to $1,000 \mathrm{~kg}$, damp wt.) the size of Bugula neritina recollections from the Gulf of Mexico ${ }^{2 t}$ (Florida) and further explore such challenging quantities of biomass from the Eastern Pacific Ocean (California). ${ }^{21}$ We now report the isolation and structural elucidation of bryostatin 14 (14) fron the Gulf of Mexico specimens in $1.02 \times 10^{-5}$ yield and bryostatin 15 (15) in $8.6 \times 10^{-7}$ yield from the Pacific Ocean collection of this remarkable bryozoan.

Bryostatins $4-8(4-8)$ and 10 (10) were again ${ }^{2 f}$ isolated from the Gulf of Mexico recollection (1986) and this allowed application of contemporary NMR techniques (HMBC and NOE) to make some refinements in position assignments (Table 1). In turn, these twodimensional NMR correlations aided the characterization of bryostatin 14 (14), separated fron the previously known bryostatins by chromatography.

Bryostatin 14 ( 14, P388 $E D_{50} 0.33 \mu \mathrm{~g} / \mathrm{mL}$ ) exhibited a FAB mass spectral base peak at $\underline{m} / \underline{z}$ $831[\mathrm{M}+\mathrm{Li}]^{+}$corresponding to molecular formula $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{O}_{16}$. The EIMS of bryostatin 14 typically ${ }^{2 \mathrm{~m}, 2 \mathrm{~h}}$ did not show a molecular ion. Fragments at $\underline{m} / \underline{2} 806,788$ and 770 suggested loss of three hydroxyl groups. The ${ }^{1} H-N M R$ spectra of bryostatin 14 indicated the presence of the bryopyran ring. ${ }^{2 \mathrm{~b}}$ Both ${ }^{1} \mathrm{H} \cdot{ }^{1} \mathrm{H} \operatorname{COSY}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ chemical shift correlation spectra allowed assignment of most ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals (Tables 2 and 3 ). Exceptions involved several overlapped ${ }^{1} \mathrm{H}-$ NMR signals and ${ }^{13} \mathrm{C}$-NMR signals for carbons without proton bonds. A doublet at $\delta 75.13$ clearly indicated a free hydroxyl group at the $C-20$ position. A pivalate was evident from the strong signals in the ${ }^{1} \mathrm{H}$ ( $\delta 1.16,9$ protons) and ${ }^{13} \mathrm{C}$ ( $\delta 27.14$ )-NMR spectra. The shift of the $H-7$ signal downfield to $\delta 5.10$ suggested attachment of the pivalate group at C-7. Other ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals were consistent with the assigned structure. However, a methyl singlet at $\delta 1.24$ assigned to $\mathrm{H}-33$ was at lower field than expected (Table 2). Unequivocal support for the bryostatin 14 structural assignment ( 14 ) was obtained by acetylation (acetic anhydride/pyridine) to afford diacetate 14 a . As one result, the H-33 signal shifted upfield (from $\delta 1.24$ in bryostatin 14 to $\delta 1.04$ or 0.93 in acetate derivative 14a). Acetylation of bryostatin 5 (5) yielded a single product identical with diacetate 14 a . Thus, the paramagnetic shift of the H-33 signal of bryostatin 14 was due to the $C-20$ hydroxyl group.

Additional evidence for the structure previously assigned bryostatin 5 and thence bryoscatin 14 was obtained by HMBC ( ${ }^{1} \mathrm{H}$-detected multiple-bond heteronuclear multiple-quantum coherence) ${ }^{5}$ NMR experiments that established attachment of the pivalate group at $C-7$, and unambiguous assignments for each of the carbonyl carbon atoms as well as C-8, C-9, C-13, C18, C-19 and C-21 (Table 4). Finally, NOE difference spectroscopy was applied to assign the geminal dimethyl groups (C-28, 29 and C-32, 33). Irradiation of the H-28 signal at 60.91 enhanced the $H-7$ signal (at $\delta 5.10$ ) and a broadened doublet signal at $\delta 1.64$ ( $\mathrm{H}-10 \mathrm{a}$ ). Reciprocal irradiation of the $H-7$ signal enhanced the signal at $\delta \mathbf{0 . 9 1}$. In contrast. irradiation of the signal at 60.98 enhanced only signals at $\delta 2.03$ (doublet of doublets, $H$ $10 \beta$ ) and $1.40(H-6 \beta)$. Therefore, the $s i g n a l$ at $\delta 0.91$ was assigned to the $C-28$ methyl and the signal at 0.98 to the C-29 methyl hydrogens. Irradiation of H-20 enhanced dramatically

Table 1. The ${ }^{13} \mathrm{C}$-NMR chemical shift assignments for bryostatins $4,5,6,8$, and 10 recorded at $100.6 \mathrm{MHz}, 6 \mathrm{pps}$ in $\mathrm{CDCl}_{3}$ solution.

| Bryostatin 4 |  | Bryostatin 5 | Bryostatin 6 | Bryostatin | Bryostatin 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C-1 | 172.29 | 172.37 | 172.48 | 172.24 | 172.66 |
| 2 | 42.14 | 42.19 | 42.17 | 42.30 | 42.14 |
| 3 | 68.46 | 68.53 | 68.48 | 68.47 | 68.15 |
| 4 | 39.91 | 39.96 | 39.85 | 39.87 | 39.78 |
| 5 | 65.48 | 65.56 | 65.62 | 65.72 | 65.63 |
| 6 | 33.19 | 33.24 | 33.38 | 33.38 | 33.20 |
| 7 | 72.64 | 72.66 | 72.71 | 72.54 | 72.61 |
| 8 | 41.20 | 41.26 | 41.04 - | 41.02 | 41.27 |
| 9 | 101.73 | 101.79 | 101.85 | 101.82 | 101.79 |
| 10 | 41.86 | 41.92 | 41.91 | 41.96 | 42.05 |
| 11 | 71.45 | 71.51 | 71.54 | 71.51 | 71.35 |
| 12 | 44.13 | 44.17 | 44.16 | 44.14 | 44.19 |
| 13 | 157.23 | 157.18 | 157.06 | 156.71 | 157.07 |
| 14 | 36.48 | 36.46 | 36.44 | 36.37 | 36.57 |
| 15 | 78.91 | 78.98 | 79.04 | 79.08 | 78.95 |
| 16 | 129.66 | 129.73 | 129.68 | 129.56 | 130.45 |
| 17 | 138.97 | 138.96 | 138.96 | 139.13 | 137.90 |
| 18 | 44.75 | 44.80 | 44.80 | 44.82 | 44.75 |
| 19 | 98.84 | 98.85 | 98.83 | 98.89 | 100.94 |
| 20 | 74.24 | 74.45 | 74.42 | 74.24 | 39.78 |
| 21 | 151.83 | 151.73 | 151.68 | 151.81 | 157.03 |
| 22 | 31.20 | 31.23 | 31.20 | 31.22 | 36.11 |
| 23 | 64.70 | 64.74 | 64.72 | 64.71 | 64.62 |
| 24 | 35.81 | 35.85 | 35.85 | 35.89 | 35.73 |
| 25 | 73.59 | 73.67 | 73.76 | 73.69 | 73.84 |
| 26 | 70.03 | 70.09 | 70.13 | 70.18 | 70.21 |
| 27 | 19.83 | 19.70 | 19.66 | 19.78 | 19.66 |
| 28 | 21.00 | 21.06 | 21.08 | 21.06 | 21.06 |
| 29 | 16.92 | 16.98 | 16.92 | 16.88 | 17.06 |
| 30 | 113.99 | 114.10 | 114.14 | 114.31 | 114.19 |
| 31 | 166.73 | 166.79 | 166.81 | 166.72 | 166.82 |
| 32 | 19.78 | 19.86 | 19.71 | 19.78 | 20.39 |
| 33 | 24.57 | 24.63 | 24.60 | 24.57 | 24.45 |
| 34 | 119.59 | 119.73 | 119.72 | 119.63 | 115.73 |
| 35 | 166.98 | 167.00 | 166.99 | 166.99 | 167.00 |
| 36 | 51.08 | 51.16 | 51.13 | 51.07 | 51.07 |
| 37 | 51.01 | 51.07 | 51.07 | 51.01 | 50.84 |
| $\mathrm{R}_{2} 1^{\prime}$ | 178.32 | 178.32 | 173.60 | 173.40 | 178.14 |
| 2' | 39.08 | 39.07 | 36.56 | 36.54 | 39.05 |
| 3. | 27.09 | 27.15 | 18.55 | 18.54 | 27.16 |
| $4^{\circ}$ | 27.09 | 27.15 | 13.66 | 13.65 | 27.16 |
| 51 | 27.09 | 27.15 |  |  | 27.16 |
| R $1^{\prime \prime}$ | 172.00 | 169.37 | 169.36 | 172.00 |  |
| 2" | 36.41 | 21.49 | 21.48 | 36.54 |  |
| 3 " | 18.17 |  |  | 18.22 |  |
| 4" | 13.58 |  |  | 13.61 |  |

Table 2. The ${ }^{1} H$ NRR data for compounds $14,14 a$ and 15 recorded at 400 MHz in $\mathrm{CDCl}_{3}$ (some $J$ values were measured with $J$-resolved 2D NMR).

|  | 14 | 14a | 15 | 15 |
| :---: | :---: | :---: | :---: | :---: |
| H-2 | 2.52 t(11) | $2.39 \mathrm{dd}(12.5,14)$ | 2.45 brs | R |
| 2 | $2.42 \mathrm{dd}(2.2,11)$ | $2.37 \mathrm{~d}(14)$ | 2.45 brs | 2" $5.93 \mathrm{~d}(15.4)$ |
| 3 | $4.12 \mathrm{brd}(11)$ | 4.08 ${ }^{\text {a }}$ | 4.16 m | 3" 7.24 m |
| 4 | 1.97 brdd( 11,15 ) | $1.95{ }^{\text {a }}$ | 1.75 m | $4^{\prime \prime} 6.39 \mathrm{dd}(11,15.5)$ |
| 4 | 1.54 brd(15) | $1.53 \mathrm{dt}(15,2)$ | 1.60 m | 5" $6.07 \mathrm{dd}(7.5 .15 .5)$ |
| 5 | 4.20 brt(11) | 4.18 brt(11) | $4.20 \mathrm{brt}(10)$ | 6" 4.38 q(7.5) |
| 60 | 1.67 brdd (5,12) | 1.68 brdd(5,12) | 1.77 m | 7" 1.59 m |
| 68 | $1.40 \mathrm{dt}(12,12)$ | $1.38 \mathrm{dt}(12,12)$ | 1.48 m | 1.72 m |
| $7 \times$ | $5.10 \mathrm{dd}(5,12)$ | $5.05 \mathrm{dd}(5,12)$ | $5.14 \mathrm{dd}(5,12)$ | 8" 0.94 t(7.5) |
| 10a | 1.64 brd(15) | 1.62 brd(15) | 1.65 m |  |
| $10 \beta$ | 2.03 dd (8,15) | 2.03 dd( 8,15 ) | 2.07 m |  |
| 11 | 3.91 ddd (4,8,13) | $3.78 \mathrm{brdd}(8,13)$ | 3.81 m |  |
| 12 | 2.15 brt(13) | 2.15 brt(13) | 2.21 brt(13) |  |
| 12 | $2.05 \mathrm{dd}(8,14)$ | $2.0{ }^{\circ}$ | $2.07{ }^{\text {a }}$ |  |
| 14 | 3.65 brd(14) | 3.58 brd(14) | 3.68 ${ }^{\text {a }}$ |  |
| 14 | $1.90 \mathrm{brdd}(12,14)$ | $1.85 \mathrm{brdd}(12,14)$ | $1.96 \mathrm{brt}(12)$ |  |
| 15 | $4.02 \mathrm{brdd}(8.5 .12)$ | $4.05 \operatorname{brdd}(8.5,12)$ | 4.07 m |  |
| 16 | $5.30 \mathrm{dd}(8.5,16)$ | $5.24 \mathrm{dd}(8.5 .16)$ | $5.29 \mathrm{dd}(8.5 .16)$ |  |
| 17 | $5.75 \mathrm{~d}(16)$ | $5.71 \mathrm{~d}(16)$ | $5.78 \mathrm{~d}(16)$ |  |
| 20 | $3.89 \mathrm{~d}(7.5)$ | 5.04 s | 5.21 s |  |
| 22 | 3.68 ${ }^{\text {a }}$ | 3.62* | $3.68{ }^{\text {a }}$ |  |
| 22 | $2.15 \mathrm{brdd}(11,13)$ | 1.98 brdd( 11.13 ) | 2.10 m |  |
| 23 | 3.98 brt(11) | $3.93 \mathrm{brt}(11)$ | 4.01 m |  |
| 24 | $1.86{ }^{\circ}$ | 1.82 ${ }^{\text {a }}$ | 1.81 m |  |
| 24 | 1.80 brdd ( 11,14 ) | 1.72 ddd( $3,11,13)$ | 1.81 m |  |
| 25 | 5.12 brm | 5.25 brm | 5.20 m |  |
| 26 | $3.74 \mathrm{dq}(7,6.5)$ | $4.95 \mathrm{dq}(7,6.5)$ | 3.81 m |  |
| 27 | $1.18 \mathrm{~d}(6.5)$ | $1.16 \mathrm{~d}(6.5)$ | $1.23 \mathrm{~d}(6.5)$ |  |
| 28 | 0.91 s | $0.95{ }^{\text {b }}$ s | $0.94{ }^{\text {bs }}$ |  |
| 29 | 0.98 s | $0.88{ }^{\text {b }}$ | $0.99{ }^{\text {b }}$ s |  |
| 30 | 5.65 brs | 5.62 brs | 5.68 brs |  |
| 32 | 1.12 s | $0.93{ }^{\text {b }}$ | $0.99{ }^{\text {b }} \mathrm{s}$ |  |
| 33 | 1.24 s | $1.04{ }^{\text {b }}$ | $1.14{ }^{\text {bs }}$ |  |
| 34 | 5.77 brs | $5.91 \mathrm{~d}(1.8)$ | 6.00 brs |  |
| 36 | 3.68 s | 3.64 s | 3.69 s |  |
| 37 | 3.66 s | 3.61 s | 3.66 s |  |
| $\mathrm{R}_{2}{ }^{3}$, | 1.16 s | 1.13 s |  |  |
| $4^{\prime}$ | 1.16 s | 1.13 s |  |  |
| $5{ }^{\prime}$ | 1.16 s | 1.13 s |  |  |
| 20.0 H | $4.22 \mathrm{~d}(7.5)$ | $\begin{aligned} & 2.01 \mathrm{~s}\left(\mathrm{R}_{1}\right) \\ & 2.09 \mathrm{~s}(\mathrm{R}) \end{aligned}$ | $2.04 \mathrm{~s}\left(\mathrm{R}_{2}\right)$ |  |

a, Couplings obscured due to overlapping.
b, Assignments for these signals may be interchanged.

Table 3. The ${ }^{13} \mathrm{C}$ - NRR assignments for bryostatin 14 (14), derived diacetate (14a) and bryostatin 15 (15) recorded at $100.6 \mathrm{MHz}, \delta \mathrm{ppm}$ in $\mathrm{CDCl}_{3}$ solution; The $n$ (negative, 3 or 1 protons) and $p$ (positive, 2 or no protons) are APT results.

|  | 14 | 14. | 15 |  | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C-1 | 172.57p | 170.82 | 172.24 | R |  |
| 2 | 42.25p | 42.21 | 41.95 | 1" | 165.10 |
| 3 | 68.53n | 68.60 | 68.48 | 2" | 121.75 |
| 4 | 40.00p | 39.98 | 39.87 | 3" | 144.58 |
| 5 | 65.58n | 65.83 - | 65.73 | $4{ }^{\prime \prime}$ | 130.82 |
| 6 | 33.24p | 33.20 | 33.34 | 5" | 141.35 |
| 7 | 72.62n | 71.47 | 72.88 | $6 "$ | 86.86 |
| 8 | 41.25p | 41.18 | 40.98 | $7{ }^{\prime \prime}$ | 25.44 |
| 9 | 101.76p | 101.76 | 101.83 | $8{ }^{\prime \prime}$ | 9.57 |
| 10 | 41.92p | 41.96 | 42.28 |  |  |
| 11 | 71.48n | 72.14 | 71.49 |  |  |
| 12 | 44.11p | 44.05 | 44.14 |  |  |
| 13 | 156.70p | 156.06 | 156.67 |  |  |
| 14 | 36.46p | 36.33 | 36.36 |  |  |
| 15 | 79.01n | 79.03 | 79.08 |  |  |
| 16 | 129.56n | 129.54 | 129.58 |  |  |
| 17 | $139.15 n$ | 139.21 | 139.09 |  |  |
| 18 | 44.93 p | 44.77 | 44.88 |  |  |
| 19 | 99.38p | 98.88 | 98.95 |  |  |
| 20 | 75.13n | 71.47 | 74.33 |  |  |
| 21 | 156.94 p | 151.63 | 151.73 |  |  |
| 22 | 30.56p | 31.13 | 31.30 |  |  |
| 23 | 64.40 n | 64.60 | 64.72 |  |  |
| 24 | 35.78p | 35.90 | 35.84 |  |  |
| 25 | 73.74 n | 74.32 | 73.63 |  |  |
| 26 | 70.04 n | 70.35 | 67.00 |  |  |
| 27 | 19.54 n | 19.88 | 19.80 |  |  |
| 28 | 21.02n | 21.01 | 21.14 |  |  |
| 29 | 16.93n | 16.85 | 16.82 |  |  |
| 30 | $114.23 n$ | 114.63 | 114.32 |  |  |
| 31 | 166.72p | 167.00 | 166.72 |  |  |
| 32 | 19.88 n | 16.49 | 24.65 |  |  |
| 33 | 24.66n | 24.50 | 29.69 |  |  |
| 34 | 116.69n | 119.68 | 119.74 |  |  |
| 35 | 167.09p | 166.64 | 166.98 |  |  |
| 36 | 51.04 n | 51.08 | 51.05 |  |  |
| 37 | 51.04n | 51.05 | 51.05 |  |  |
| $\mathrm{R}_{2} 1^{\prime}$ | 178.23p | 177.93 |  |  |  |
| 2' | 39.03p | 39.01 |  |  |  |
| 3'-5' | 27.14 n | 27.15 |  |  |  |
| $\mathbf{R}_{1}$ |  | 170.30;21.47 | 170.99;21.06 |  |  |
| R |  | 169.28;21.18 |  |  |  |

Table 4. Bryostatin 14 (14) ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ multiple bond correlations (HMBC) recorded at 500 MHz in $\mathrm{CDCl}_{3}$ solution. ${ }^{\text {a }}$

| Proton position |  | Proton position |  |
| :---: | :---: | :---: | :---: |
| H- 2 | C-1, C-3, C-4 | 22 | $\mathrm{C}-21, \mathrm{C}-23, \mathrm{C}-24, \mathrm{C}-34$ |
| 4 | C-2 | 23 | C-22 |
| 4 | C-2 | 24 | C-23 |
| 5 | C-3 | 26 | C-24, C-25, C27 |
| 6 | C-5, C-8 | 27 | C-25, C-26 |
| 6 | C-4, C-5, C-8 | 28 | C-7, C-8, C-9, C-29 |
| 7 | $\mathrm{C}-1, \mathrm{C}-6, \mathrm{C}-8, \mathrm{C}-28, \mathrm{C}-29$ | 29 | $\mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-28$ |
| 10 | C-8, C-9, C-11, C-12 | 30 | $\mathrm{C}-12, \mathrm{C}-13, \mathrm{C}-14, \mathrm{C}-31$ |
| 10 | C-9, C-11 | 32 | $\mathrm{C}-17, \mathrm{C}-18, \mathrm{C}-19, \mathrm{C}-33$ |
| 12 | $\mathrm{C}-11, \mathrm{C}-13, \mathrm{C}-14, \mathrm{C}-30$ | 33 | C-17, C-18, C-19, C-32 |
| 12 | C-11, C-13, C-14, C-30 | 34 | C-20, C-21, C-22, C-35 |
| 14 | C-13 | 36 | C-31 |
| 14 | C-13, C-15, C-16, C-30 | 37 | C-35 |
| 15 | C-17 | $\mathbf{R}_{2}$ |  |
| 16 | C-14, C-18 | 3'-5' | C-1', C-2' |
| 17 | C-15, C-18, C-19, C-32, C-33 | $\mathrm{C}-9 \mathrm{OH}$ | C. 9 |
| 20 | C-21, C-34 | $\mathrm{C}-19 \mathrm{OH}$ | C-18, C-19, C-20 |
| 22 | C-21, C-20, C-34 | $\mathrm{C}-20 \mathrm{OH}$ | C-19, C-20 |

a, Underlined positions correspond to weak signals; H-3' correlated also with $\mathrm{C}-4^{\prime}, 5^{\prime}$; $\mathrm{H}-4^{\prime}$ with $\mathrm{C}-3^{\prime}, 5^{\prime}$ and $\mathrm{H}-5^{\prime}$ with $\mathrm{C}-3^{\prime}, 4^{\prime}$.
the H-34 signal at $\delta 5.77$ and to some extent the methyl signal at $\delta 1.12$, but not at $\delta 1.24$. In keeping with this result, irradiation of the signal at $\delta 1.12$ ( $C-32$ hydrogen) enhanced the signals for $\mathrm{H}-20$ ( $\delta \mathbf{3 . 8 9}$ ) and H-16 ( 65.30 ) whereas irradiation of the $H-33$ methyl signal (at $\delta 1.24$ ) increased the H-17 signal ( $\delta$ 5.75). Thus, the methyl hydrogen signals at $\delta 1.12$ and 1.24 were assigned respectively to $\mathrm{C}-32$ and $\mathrm{C}-33$.

For reisolation of bryostatins 1 (1) and 2 (2) from a more recent (1987) recollection ( $\sim 1,000 \mathrm{~kg}$, damp wt) of California Bugula neritina we initiated separation of the crude extract as previously described ${ }^{21}$ and then devised a very useful high speed countercurrent distribution (HSCCD) ${ }^{6}$ technique followed by further separation using HPLC and recrystallization to yield $8.6 \mathrm{mg}\left(8.6 \times 10^{-7}\right.$ yield) of bryostatin 15 ( $15, \mathrm{P}_{\mathrm{g}} 888 \mathrm{ED} 501.4$ $\mu \mathrm{g} / \mathrm{mL}$ ) .

The FAB wass spectrun of bryostatin 15 gave $[M+L I]^{+}$at $m / z 927$ corresponding to molecular formula $\mathrm{C}_{47} \mathrm{H}_{68} \mathrm{O}_{18}$ ( 16 mass units more than bryostatin 1 at mol. wt. 904). The ${ }^{1} \mathrm{H}$ NMR ( 400 MHz ) spectrum revealed a macrocyclic lactone possessing an octadienoate side chain similar to bryostatin 1 (1). But chemical shifts of hydrogen signals in the olefinic region suggested a substitution change in the octadienoate side chain. The C-4" hydrogen signal of this ester appeared at $\delta 6.39$ (dd, J $15.5,11 \mathrm{~Hz}$ ) and the $C-5^{n}$ at $\delta 6.07$ (dd, J $15.5,7.5 \mathrm{~Hz}$ ) downfield compared to their counterparts in bryostatin 1 at $\delta 6.16$ (dd, J 8.5, 2.4 and 4.8, 1.5 Hz respectively). At other positions in the C-20.ester the $\mathbf{2 n}^{n}$ hydrogen signal showed a doublet at $\delta 5.93\left(J 15.4 \mathrm{~Hz}\right.$ ). The $3^{n \prime}$ hydrogen appeared slightly downfield at $\delta 7.28$ (multiplet) compared to that of uryostatin 1 at $\delta 7.25$ (multiplet). These observations were further supported and confirmed by $2 D \operatorname{COSY}$ and ${ }^{13} \mathrm{C}$ NMR experiments which led to a firm structure assignment for bryostatin 15 (15).

The biosynthetic processes orchestrated by Bugula neritina have produced a very useful series of bryostatins for detailed structure/activity studies. Whether by endogenous and/or exogenous biosyntheses, we now have a number of subtle structural modifications in hand that would be very difficult to realize by total' or semisyntheses. In turn, further biological evaluation of these substances should provide important insights for future anticancer drug design.

## EXPERIMENTAL

GENERAL PROCEDURES. Solvents used for column chromatography were freshly distilled. Sephadex LH-20, particle size $25-100 \mu m$, used in gel permeation and partition column chromatographic separations was obtained from Pharmacia Fine Chemicals AB, Uppsala, Sweden. The P.C. Inc. Ito-Multilayer Coil Separator-Extractor Model 1 was employed for high speed countercurrent distribution (HSCCD). An FMI lab pump Model RP SYX (Fluid Metering Inc., Oyster Bay, N.Y.) delivered the mobile phase and fractions were collected using Gilson FC- 220 race track and FC-80 microfractionators. Thin layar chromatography silica gel plates were obtained from Analtech, Inc. The TLC plates were viewed under shortwave UV-light and then developed by 20 sulfuric acid and/or anisaldahyde-acetic acid spray reagent followed by heating at approximetely $150^{\circ} \mathrm{C}$. Uncorrected melting points were observed with a Kofler-type mp apparacus. Optical rotations were deternined employing a Perkin-Elmer Model 241
polarimeter. IR spectra were recorded with a Nicolet NX-1 FT-IR Spectrometer and UV spectra were obtained by using a Hewlett-Packard 8450 UV-VIS spectrometer. In high pressure liquid chromatography separations Phenomenex Prepex (particle size $5-20 \mu, \phi 10.0$ mai 25 cm ) C-8 was used in reversed phase mode and Phenomenex Prepex (particle size 5-20 $\mu, \$ 10.0$ man 25 $\mathrm{cm})$ silica gel was used in normal phase mode using Altex (Model 110A) solvent metering pumps and Gilson HM UV detection at 254 nm. The ${ }^{1} H$ MRR, ${ }^{13} \mathrm{C}$ NRR, 2 D COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation, and NOE were recorded with a Bruker AM-400 instrument equipped with cryomagnet and ASPECT-3000 computer. The HMBC data were recorded using a Varian 500 NRR spectrometer. Mass spectra ( 70 eV and $F A B$ ) were obtained employing a Kratos MS-50 spectrometer.

Bryostatin 14 (14). Approximately $1,000 \mathrm{~kg}$ (damp wt.) of Bugula neritine was recollected in May, 1986 in the Gulf of Mexico near Florida, USA. The animal was preserved in 2-propanol and subjected to separation as previously discussed for a $50 \mathrm{~kg}, 1984$ collection. ${ }^{2 t}$ The methylene chloride fraction from the solvent partition sequence was diluted with a mixture of ethyl acetate-2-propanol-water ( $12: 1: 6,55 \mathrm{~L}$ ). Separation of the organic phase ( 33.6 L ) yielded 906.5 g of P 388 lymphocytic leukemia cell line active fraction which was subjected to a series of steric exclusion and partition colum chromatographic steps using Sephadex LH-20 and silica gel, similar to those previously described. ${ }^{2 g}$ Further purification was performed with high speed countercurrent distribution employing hexane-ethyl acetate-methanol-water (3:7:5:5), with the upper layer as mobile phase and lower layer as stationary phase (detailed below for bryostatin 15) followed by HPLC using hexane-1sopropanol (9:1) in normal phase and methanol-water (4:1) in reversed phase. By these techniques the known bryostatin 4 ( $306 \mathrm{mg}, 3.06 \times 10^{-5}$ g yield), ${ }^{2 d}$ bryostatin 5 ( $187 \mathrm{mg}, 1.87 \times 10^{-52}$ yield), ${ }^{2 .}$ bryostatin $6\left(32.5 \mathrm{mg}, 3.25 \times 10^{-6 \pi}\right.$ yield), ${ }^{2 f}$ bryostatin $7\left(3.1 \mathrm{mg}, 3.1 \times 10^{-7} 8\right.$ yield), ${ }^{2 f}$ bryostatin $8\left(23.5 \mathrm{mg}, 2.35 \times 10^{-6}\right.$ g yield), ${ }^{2 f}$ and bryostatin $10\left(39.0 \mathrm{mg}, 3.9 \times 10^{-62}\right.$ yield) ${ }^{2 h}$ were obtained accompanied by 102 mg ( $1.02 \times 10^{-5} \%$ yield) of the new bryostatin 14 ( 14 ) as an amorphous powder: mp $174-176^{\circ} \mathrm{C},[\alpha]^{22} \mathrm{D}=+41.3^{\circ}$, (c $0.92, \mathrm{CH}_{2} \mathrm{Cl} \mathbf{l}_{2}$ ); HRFABMS ( $3-\mathrm{NBA} / \mathrm{LiI}$ as matrix), found, 831.4346 (calc. for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{O}_{16} \mathrm{Li} 831.4354$ ); EIMS $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}, 806\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(198) , $\left.788\left[806-\mathrm{H}_{2} \mathrm{O}^{+}\right](1004), 774\left[806-\mathrm{SH}_{3} \mathrm{OH}\right]^{+}(80 \%), 770\left[788-\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}(338) ;$ FABMS, $m / \mathrm{z}, 831[\mathrm{M}+\mathrm{Li}]^{+}$for mol. wt. 824 corresponding to $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{O}_{18}$; IR (thin film) $\nu_{\text {max }} \mathrm{cm}^{-1}: 3460$ ( OH ), 1730 ( COO ), 1650 (C-C), 1170 (COOR); NMR ( ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ ) appear in Tables $2-4$; and $\mathrm{P}^{288} \mathrm{ED}_{50}=0.33 \mu \mathrm{~g} / \mathrm{ml}$.

Acetylation of bryostatin 5 (5). To bryostatin 5 (5, 0.8 mg ) in acetic anhydride ( 100 $\mu \mathrm{l}$ ) was added $50 \mu \mathrm{l}$ of pyridine. The reaction course was monitored by TLC. After 10 hr , reaction was complete and afforded 0.8 mg of bryostatin 5 26-acetate (14a); $R_{f}-0.61$ (in $5: 4$ hexane:ethyl acetate), 0.90 (in $3: 1: 1$ toluene:ethyl acetate:methanol), 0.40 (in $9: 1$ methanolwater, RP C-8 plate).

Acetylation of bryostatin 14 (14) A sample ( 0.8 mg ) of bryostatin 14 (14) was acetylated as sumarized above for bryostatin 5 (5), except for a 20 hr reaction period. HPLC yielded 0.5 mg of pure bryostatin 1420,26 -diacetate identical (by TLC and $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR) with bryostatin $5 \mathbf{2 6 - d i a c e t a t e}$ and exhibiting $[\alpha]^{22}{ }_{\mathrm{D}}+73.2^{\circ}$ (c $0.59, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).

Bryostatin 15 ( 15 ). Bugula neritina ( $1,000 \mathrm{~kg}$, damp wt) was recollected from the U.S. Southern California Coast in 1987. The animal was preserved in 2 -propanol and chis solution
was partitioned with methylene chloride to produce a fraction ( 6.13 kg ) that was partitioned between hexane and 9:1 methanol-water. The hexane fraction was evaporated under reduced pressure to produce 4.3 kg of hexane extract. The methanol water portion was adjusted to a concentration of $3: 2$ and extracted with methylene chloride. Removal of solvent from the methylene chloride fraction afforded 1.25 kg of a P 388 cell line active fraction, which was subjected to a series of steric exclusion and partition column chromatographic steps using Sephadex LH-20. ${ }^{21}$ Typically, 40 to 45 g aliquots of active methylene chloride fraction were applied to Sephadex LH-20 in $1: 1$ methylene chloride-methanol. Fractions containing bryostatins 1 and 2 were located by TLC ( $95: 5$ methylene chloride-methanol) giving a combined weight of 348.7 g . Partition chromatography of 26 g aliquots on Sephadex LH-20 using hexane:toluene:methanol ( $3: 1: 1$ ) provided separate fractions enriched in bryostatin 1 ( 37.51 $g$ ) and bryostatin $2(14,11 \mathrm{~g})$. High speed countercurrent distribution allowed further purification of bryostatins 1 and 2. A biphasic solvent system was prepared from hexaneethyl acetate-methanol-water (4.5:1.5:1:0.3). HSCCD was accomplished with the Ito horizontal flow-through coil planet centrifuge using the planet gear drive at $\sim 800 \mathrm{rpm}$. The column consisted of 2.6 mm PTFE tubing (approx. volume 375 ml ). The column was filled with the lower (stationary) phase of the two phase solvent system and counter-balanced. An 0.80 g aliquot (from 37.51 g of bryostatin 1 enriched fraction) dissolved in $3-4 \mathrm{ml}$ of stationary phase was pumped into the column. The upper phase of the solvent system (the mobile phase) was pumped into the column from a tail to head direction with planetary motion of the column. An FMI lab pump maintained pressure at $25-30$ psi. Fractions were collected and monitored by TLC. From 140 fractions ( 18 ml each) collected ( 2.5 L mobile phase) over a 5 hr period, fractions $50-120$ contained bryostatin 1 . The resulting bryostatin 1 fraction weighed 0.18 g . The HSCCD was repeated ( 45 x ) to give 4.4 g total of vearly pure bryostatin 1 . Similar experimental procedures were followed for purification of the bryostatin 2 containing fraction. The solvent system was prepared using hexane-eit 1 acetate-methanol-water (4:2.5:1.2:0.5). The lower phase was stationary. After HSCCD (14x) a combined fraction (3. 36 g ) enriched in bryostatin 2 was obtained. Subsequent flash column chromatography (silica gel) with $1: 1$ hexane-ethyl acetate for bryostatin 1 separation and $9: 1$ ethyl acetate. hexane for bryostatin 2 separation, and crystallization from ethyl acetate-hexane produced bryostatin 1 as an amorphous solid, mp $226.30^{\circ} \mathrm{C}\left(1.5 \mathrm{~g}, 1.5 \times 10^{-4} \%\right.$ yield) and bryostatin 2 . $\mathrm{mp} 186-187^{\circ} \mathrm{C},\left(2.0 \mathrm{~g}, 2.0 \times 10^{-4}\right.$ yield). The mother 1 iquor from the bryostatin 1 crystallization was separated by HPLC with a Prepex $5-20$ silica column ( $10 \mathrm{~mm} \times 25 \mathrm{~cm}$ ). Elution with hexane-methylene chloride-methanol (14:8:1) at a flow rate of $0.8 \mathrm{ml} / \mathrm{min}$ gave bryostazin 15 as an amorphous solid, mp $140-141^{\circ} \mathrm{C}\left(8.6 \mathrm{mg}, 8.6 \times 10^{-7}\right.$ yield) and bryostatin $8\left(5.6 \mathrm{mg}, 5.6 \times 10^{-7}\right.$ yield). The known bryostatins 1,2 and 8 were identified by direct comparison (principally by $400 \mathrm{MHz}{ }^{1} H \mathrm{NMR}$ and TLC) with authentic samples.

Bryostatin 15 exhibited FABMS $m / z 927$ [M+Li] for mol. wt. 920 corresponding to
 3464. 2923, 2845, 1735, 1470, 1375, 1360, 1240, 1135. 1090 cm . For the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR see Tables 2 and 3.

## ACKNOWLEDGMENT

For indispensable financial support we thank: the U. S. National Cancer Institute, DHHS, Outstanding Investigator Grant CA-44344-01A1 and Grants CA-16049-05-12; National Cooperative Drug Discovery Group Grant AI 25696-02-03; the Fannie E. Rippel Foundation; the Robert B. Dalton Endowent, Eleanor W. Libby and the Waddell Foundation (Donald Ware); the Arizona Disease Control Research Commission; U. S. Army Medical Research and Medical Command Grant No. DAMD17-89-Z-9021; the Ladies Auxiliary, V.F.W., Dept. of Arizona; and the Eagles Art Ehrmann Cancer Fund. Other assistance was provided by Dr. F. M. Hogan and Mr. W. Schulz, the NSF Regional Instrumentation Facility in Nebraska (Grant No. CHE-8620177) and National Science Foundation Grant No. CHE-8409644.

## REFERENCES

1. Antineoplastic Agents series number 225. For part 224 refer to Pettit, G. R.; Gao, F. $J$. Org. Chem., submitted.
2. (a) Pettit, G. R.; Herald, C. L.; Doubek, D. L.; Herald, D. L.; Arnold, E.; Clardy, J. J. Am. Chem. Soc. 1982, 104, 6846; (b) Pettit, G. R.; Herald, C. L.; Kamano, Y.; Gust, D.: Aoyagi, R. J. Nat. Prod. 1983, 46, 528 ; (c) Pertit, G. R.; Herald, C. L.; Kamano, Y. J. Org. Chem. 1983, 48, 5354 ; (d) Pettit, G. R.; Kamano, Y.; Herald, C. L.; Tozawa, M. J. Am. Chem. Soc. 1984, 106, 6768; (e) Pettit, G. R.; Kamano, Y.; Herald, C. L.; Tozawa, M. Can. J. CheL. 1985, 63, 1204; (f) Pettit, G. R.; Kamano, Y.; Aoyagi, R.; Herald, C. L.; Doubek, D. L.; Schmidt, J. M.; Rudloe, J. J. Tetrahedron 1985, 41, 985; (g) Pettit, G. R.; Kamano, Y.; Herald, C. L. J. Nat. Prod. 1986, 49, 661; (h) Pettit, G. R.; Kamano, Y.; Herald, C. L. J. Org. Chem. 1987, 52, 2848; (i) Pettit, G. R.; Leet, J. E.; Heralc, C. L.; Kamano, Y.; Boettner, F. E.; Baczynskyj, L.; Nieman, R. A. J. Org. Chem. 1987, 52, 2854.
3. (a) McBain, J. A.; Pettit, G. R.; Mueller, G. C. Cell Growth \& Differentiation 1990, i, 281; (b) Cirillo, R.; Triggiani, M.; Siri, L.; Ciccarelli, A.; Pettit, G. R.; Condorelli, M.; Marone, G. J. Immunol. 1990, 144, 3891; (c) Jetten, A. M.; George. M. A.; Pettit, G. R.; Herald, C. L.; Rearick, J. I. J. Investig. Dermatol. 1989. 93, 108; (d) Dale, I. L.; Bradshaw, T. D.; Gescher, A.; Pettit, G. R. Cancer Res. 1989, 49, 3242; (e) deVries, D. J.; Herald, C. L.; Pettit, G. R.; Blumberg, P. M. Biochem. Pharm., 1988 , 37. 4069; (f) Blumberg, P. M.; Cancer Res. 1988, 48, 1; (g) Gschwendt, M.; Furstenberger, G.; Rose-John, S.; Rogers, M.; Kittstein, W.; Pettit, G. R.; Herald, C. L. Marks, F. Carcenogenesis 1988, 9, 555: (h) Hess, A. D.; Silanskis; M. K.; Esa, A. H.; Pettit, G. R.; May, W. S. J. Immunol. 1988, 141, 3263; (i) Trenn, G.; Pettit, G. R.; Takayama, H.; Hu-Li, J.; Sitkovsky, M. V. J. Immunol. 1988, 140, 433; (j) May. W. S.: Sharkis, S.J.; Esa, A. H.; Gebbia, V.; Kraft, A. S.; Pettit, G. R ; Sensenbrenner, L. Proc. Natl. Acad. Sci. USA 1987, 84, 8483; (k) Wender, P. A.; Cribbs, C. M.; Koehler. K. F.; Sharkey, N. A.; Herald, C. L.; Kamano. Y.; Pettit, G. R.; Blumberg. P. M.; Proc. Natl. Acad. Sci. USA 1988, 85, 7197; (1) Hennings, H. Blumberg, P: M.; Pettit, G. R.: Herald, C. L.; Shores, R.; Yuspa, S. H. Carcenogenesis 1987, 8, $13+3$.
4. (a) Kraft, A. S.; William, F.; Pettit, G. R.; Lilly, M. B. Cancer Res. 1989, 49, 1287; (b) Drexler, H. G.; Gignac, S. M.; Jones, R. A.; Scott, C. S.; Pettit. G. R.; Hoffbrand, A. V. Blood 1989, 74, 1747.
5. Keough, M. J. Biol. Bull. 1989, 177, 277 and Keough, M. J. Ecology 1987, 68, 199.
6. (a) Kantoci, D.; Pettit, G. R. C Cichacz. Z. J. Liquid Chromatogr. 1990, in press; (b) Schaufelberger, D. E.; Pettit, G. R. J. Liquid Chromatogr. 1989, 12, 1909;
(c) Pettit, G. R.; Kamano, Y.; Schaufelberger, D.; Herald, C. L.; Blumberg, P. M.; May, W. S. J. Liquid Chromatogr. 1989, 12. 553.
7. Kageyama, M.; Tamura, T.; Nantz, M. H.; Roberts. J. C.; Masamune, S. J. Am. Chem. Soc. 1990, 112, 7407.

# ANTINEOPLASTIC AGENTS, 177. ${ }^{1}$ ISOLATION AND STRUCTURE OF PHYLLANTHOSTATIN 6 

George R. Pettit,* Daniel E. Schaufelberger, Ronald A. Nieman, Claude Dufresne, and J.A. Saenz-Renauld

Cancer Research Institute and Department of Chemistry. Arizona State University, Tempe, Arizona 85287-1604


#### Abstract

The isolation and structural elucidation of a new Phyllanthus glycoside, phyllanthostatin 6 [7], was summarized. Phyllanthostatin 6 [7] was isolated from the roots of Phyllantbus acuminatus (Euphorbiaceae) and was found to inhibit ( $\mathrm{ED}_{50}=0.35 \mu \mathrm{~g} / \mathrm{ml}$ ) growth of the murine P-388 lymphocytic leukemia cell line. Two other new constituents were shown to be didesacetylphyllanthostatin 3 [9]and descinnamoylphyllanthocindiol [10]. Structure determinations were achieved employing hrfabms and 2D-nmr spectroscopy. Application of an hple separation technique to the Phyllanthus glycosides and development of a new isolation procedure for the major antineoplastic constituenr, phyllanthoside [1], are also described.


The Central American tree Phyllantbus acuminatus Vahl (Euphorbiaceae) has been found to produce a new series of potentially useful antineoplastic glycosides. From 1978 to 1986, Costa Rican collections of the roots and stems of this tree were investigated; these investigations led to the isolation and structural elucidation of phyllanthoside [1], phyllanthostatin 1 [2], the related phyllanthostatins 2 [6], 3 [8], 4 [3], and 5 [4] ( 2,3 ), and two cytostatic lignans (4). Recently, three new lignans were isolated from the Indian medicinal plant Phyllantbus niruri (5). Because of strong activity against human neoplastic cell lines representing breast, CNS (TE671), colon (Colo 205), lung, ovary, and melanoma (Lox) cancers combined with curative levels of activity against the U.S. National Cancer Institute's ( NCI ) murine B 16 melanoma, the phyllanthoside-phyllanthostatin 1 ortho acid equilibrium product has been undergoing preclinical development by the NCI Division of Cancer Treatment and is now in phase 1 clinical trial. Subsequently, Smith and colleagues completed the first total synthesis of phyllanthoside (6), phyllanthostatin 1 (7) and phyllanthostatin 2 (8). A variety of syntheses are now available for the aglycone, phyllanthocin (9).


|  | R | $\mathrm{R}_{1}$ | $\mathrm{R}_{2}$ | R; | $\mathrm{R}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Me | H | Ac | Ac | H |
| 2 | Me | Ac | H | Ac | H |
| 3 | Me | H | Ac | H | Ac |
| 4 | Me | Ac | H | H | Ac |
| 5 | Me | H | H | H | H |
| 6 | $\mathrm{CH}_{2} \mathrm{OH}$ | H | Ac | Ac | H |
| 7 | $\mathrm{CH}_{2} \mathrm{OH}$ | H | H | H | H |

[^11]The present report summarizes a procedure for improving the yield of phyllanthoside [1]. In addition, a sixth member [7] of the cytostatic phyllanthostatin series and two inactive ( NCI murine P - 388 lymphocytic leukemia cell line, PS system) transformation products have been discovered. Earlier (2) phyllanthoside was isolated in yields ranging from $7.4 \times 10^{-4} \%$ to $1.4 \times 10^{-2} \%$. In the present study we found that extraction of the dry root with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is an efficient and selective way to obtain a phyl-lanthoside-rich (corresponding to $\sim 1 \%$ of the root) crude extract. The extract was efficiently separated by size exclusion chromatography on Sephadex LH-20 [elution with $n$-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:3) and $n$-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}$ (1:3:1)] followed by high-speed countercurrent distribution (hsced) with $n$-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (2:4:5:2) as solvent system. By this means phyllanthoside [1] was quickly isolated (only 4 steps) in yields as high as $0.2 \%$, and rearrangement and degradation of glycoside 1 were minimized.

The hplc technique we previously developed for detection of phyllanthostatin $A$ (4) was very helpful in developing the new isolation procedure for phyllanthoside. Inspection of the hplc analyses corresponding to crude $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Figure la) and MeOH (Figure lb) extracts of $P$. acuminatus illustrates this point. Both extracts displayed a large peak assigned to phyllanthoside [1], the most dominant phyllanthostatin constituent in crude extracts of $P$. acuminatus.


Figure 1. Hplc separation of a Pbyllanthws accmimatus $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract (a) and an MeOH extract (b) using RP- 18 Si gel with a linear gradient of $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(3: 7 \mapsto 7: 3)$ (photodiode array detector). Identified peaks are noted with corresponding structure numbers.

Figure 2 illustrates the separation of a mixture of phyllanthoside [1] and its isomers 2-4. Pbyllantbus glycosides 7/9 and 6/8, which coeluted (Figure 1) on an RP-18 hplc column, were easily separated on RP-8 (aqueous MeOH). However, the latter system was less powerful for the separation of complex samples such as total extracts. Finally, a freshly prepared $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the original $P$. acuminatus roots (collected in 1978) was analyzed as just described. Again, large amounts of phyllanthoside anc' unly traces of phyllanthostatin 1 were detected. Compared to a 1986 sample, the chr: -arogram (not shown) obtained from the 1978 sample displayed a much larger peak at Rt 6.7 min , assigned to phyllanthostatin 3 [8], as well as additional peaks between Rt 4 and 6 min (nonidentified degradation products).


Figure 2. Hplc separation of phyllanthoside [1] isomers on a column of RP-8 Si gel using a $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(2: 3 \mapsto 9: 1)$ gradient.

Phyllanthostatin 6 [7] was isolated from a fresh 1986 MeOH extract of $P$. acuminatus. The MeOH extract ( 22 g ) was separated by size exclusion chromatography (Sephadex LH-20; MeOH), affording a phyllanthostatin-6-rich fraction (4.95 g), which was further purified by hsced (4, 10-12) using a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (5:5:3) solvent system. Semi-preparative reversed-phase hplc finally afforded 12 mg of phyllanthostatin $6[7]\left(3.7 \times 10^{-3} \%\right.$ yield, PS ED $500.35 \mu \mathrm{~g} / \mathrm{ml}$ ). Didesacetylphyllanthostatin 3 [9] and descinnamoylphyllanthocindiol [10] were both isolated from a fraction prepared during an earlier (1983) large-scale isolation of the phyllanthostatins (2). Separation of these relatively polar Pbyllanthus constituents was accomplished by a size exclusion (Sephadex LH-20), hsccd, and reversed-phase liquid chromatographic sequence. The pure compounds 9 ( 105 mg ) and $10(0.75 \mathrm{~g})$ were found to be inactive against the PS cell line. Structural determinations were conducted as follows.

Phyllanthostatin $6[7]$ showed spectroscopic (uv, ir, nmr) properties similar to those of the phyllanthostatins. Acid hydrolysis of the glycoside 7 afforded rwo hexoses with the same rlc mobility as glucose and 6-deoxyglucose. By hrfabms the molecular formula was established as $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{16}$. The ion observed at $\mathrm{m} / \mathrm{z} \quad 613$ $[(\mathrm{M}+\mathrm{Na})-146]^{+}$indicated that deoxyglucose was the rerminal hexose of the disaccharide moiety of phyllanthostatin 6 . Both the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ chemical shifts were assigned based on 2D nmr experiments ( ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$ and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-COSY). Chemical shifts of the cinnamoyl-sesquiterpene moiety were identical to those previously assigned to the phyllanthostatin aglycone (2). For example, the epoxide was confirmed by carbon resonances at $849.80(\mathrm{C}-14), 71.02(\mathrm{C}-7)$, and $102.08(\mathrm{C}-8)$ and by the $\mathrm{C}-14$ protons at $\delta \mathbf{2 . 9 3} \mathbf{~ p p m}$.



10

From nmr and ms spectra it became apparent that the phyllanthostatin 6 disaccharide was not acetylated. The disaccharide proton resonances were fully assigned by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-COSY and double-quantum filtered phase-sensitive COSY experiments (13,14). Figure 3 shows the sugar resonances between $\delta 2.9$ and 4.2 ppm with the corresponding correlation peaks (double-quantum filtered phase-sensitive COSY spectrum). Interpretation of the latter spectrum compared to a normal ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$ was simplified by less overlapping of the correlation peaks on and close to the diagonal. The $\mathrm{C}-14$ protons, for example, appeared as a very weak signal, whereas the normal ${ }^{\mathrm{t}} \mathrm{H},{ }^{1} \mathrm{H}$ COSY spectrum showed a prominent signal at $\delta 2.93 \mathrm{ppm}$. Complete correlation between sugar protons was observed from S-1 through S-6 and from S-1' through S-6', respectively. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-COSY spectrum showed that the $\mathrm{S}-2$ proton was correlated to the carbon resonance at $\delta \mathbf{8 2 . 1 5} \mathrm{ppm}$ typical of glycosylation at this position and confirming glucose as the inner sugar. Chemical shifts assigned to the terminal sugar were typical of 6-deoxy-D-glucose (2). The coupling constants ( $J=8 \mathrm{~Hz}$ ) of both anomeric


FigURE 3. Double-quantum-filtered phase-sensitive COSY spectrum of phyllanthostatin 6 [7] carbohydrate moiety ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ).
protons confirmed the $\boldsymbol{\beta}$ linkage of the 2-0-(6-deoxy-D-glucopyranosyl)-D-glucopyranosyl unir. The anomeric proton and carbon of the inner glucose unit displayed chemical shifts ( $\delta 5.48 / 92.40 \mathrm{ppm}$ ) identical to those obser ied with phyllanthostatin 3 [8]. Overall assignment of the phyllanthostatin 6 [7] chemical shifts were in agreement with those reported (2) for the other phyllanthostatins. Thus, structure 7 was assigned to this new member of the series.

The molecular formula of didesacerylphyllanthostatin 3 [9] was determined by hrfabms to be $\mathrm{C}_{66} \mathrm{H}_{50} \mathrm{O}_{16}$. Except for ${ }^{13} \mathrm{C}$-nmr chemical shifts recorded for $\mathrm{C}-7$ ( 85.33 ppm ), C-8 ( 106.31 ppm ), and C-14 ( 66.61 ppm ), indicating a diol unit at $\mathrm{C}-7-\mathrm{C}-14$ (2), glycoside 9 displayed spectroscopic properties similar to those of phyllanthostatin 6 [7]. The ' H - and ${ }^{13} \mathrm{C}$-nmr resonances assigned to positions $1-15$ and $1^{\prime}-9$ ' were in accord with those of phyllanthostatin 3, but chemical shifts of the sugar moiety were more typical of a $\beta$-linked phyllanthose unit and indeed agreed with the corresponding data for didesacetylphyllanthoside [5] (2). Hence, this component was assigned to didesacetylphyllanthostatin 3 [9].

Descinnamoylphyllanthocindiol [10] gave the same tlc color reaction (browngray $\rightarrow$ pink after 24 h ) upon development with anisaldehyde, as observed with the phyllanthostatins. Lack of uv absorption suggested absence of the cinnamoyl ester, and the molecular formula (by hrfabms), $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7}$, suggested lack of a disaccharide unit (confirmed by nmr analyses). Assignments for the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts were achieved by 2D nmr techniques and indicated a phyllanthocindiol (2) analogue with a hydroxyl at C-10 and a carboxyl group at C-3. Compared to glycoside 9, carbon resonances C-9 to C-11 of glycoside 10 appeared at higher (C-11 at $\delta 34.22$, C-9 at $\delta 36.76$ ppm ) and lower ( $\mathrm{C}-10$ at $\delta \mathbf{6 8 . 2 2} \mathbf{~ p p m}$ ) fields in agreement with a hydroxyl group at C10. Structure 10 was thereby identified as descinnamoylphyllanthocindiol.

Both the improved procedure herein summarized for isolation of phyllanthoside and its useful total syathesis $(6,7)$ have diminished the problem of furure supplies of this substance and the isomeric phyllanthostatin 1. Isoiation of phyllanthostatin 6 appears to complete the series of principal antineoplastic and/or cytostatic glycosides produced by $P$. acuminatus.

## EXPERIMENTAL

General experimental procedures. - All hplc-grade solvents (Omnisolv) were obtained from EM Science, and all other solvencs were redistilled. Adsorption ce was performed with Si gel 60 ( $70-230$ mesh, E. Merck, Darmscadt, Germany). Reversed-phase Si gel chromatography was accomplished with RP-8 Lobar columns (size B, 40-63 $\mu \mathrm{m}$, E. Merck) and size exclusion chromatography with Sephader LH20 (particle size: 25-100 $\mu \mathrm{m}$ ) supplied by Pharmacia Fine Chernicals, Uppsala, Sweden. Mc was carried out with Si gel GHLF Uniplates (Analtech Inc.). The tle plates were examined under uv light and developed with an anisaldehyde spray reagent. High-speed countercurrent distribution (hsced) was performed with an Ito Multilayer Coil Extractor-Separator (P.C. Inc., Potomac, Maryland) using 2.6 mm i.d. tubing, FMI Lab Pump, Linear recorder, and Gilson Model Holochrome uv/vis detector ( $2.5 \mathrm{~mm} / 3.2 \mu \mathrm{l}$ cell) with a Micro Fractionator. The hplc-uvivis separations were accomplished with Ultremex $3 \mu \mathrm{~m}$ RP-8 and RP-18 columns ( $100 \times 4.6 \mathrm{~mm}$ i.d.; Phenomenex, Rancho Palos Verde, California). The mobile phase wes delivered by two Gilson Model 302 pumps using an Apple Il programmer and a Rheodyne 7161 injector with a $0.5 \mu \mathrm{~m}$ in-line precolumn filter (Rainin). Linear gradient elution was carried our with $\mathrm{McCN}-\mathrm{H}_{2} \mathrm{O}(3: 7 \rightarrow 7: 3)(\mathrm{RP}-18)$ and $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(2: 3 \rightarrow 9: 1)(\mathrm{RP}-8)$ within 15 min at a flow race of 1 mV min. All pure compounds for hplc analyses were dissolved in MeOH ( $\sim 0.1 \mathrm{mg} / \mathrm{ml}$ ). Roocs of $P$. acuminans ( 1 g powder) were extracted at room temperacure with MeOH or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $3 \times 30 \mathrm{ml}$ solvent). The MeOH extract ( 78 mg ) and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts ( 16 mg of 1978 samples and 8 mg of 1986 specimens) were dissolved or suspended in 2 and 1 ml of MeOH , respectively. These solutions were ench passed through a SepPak C-18 cartridge (Waters). The cartridges were washed with MeOH until 4 ml (MeOH extract) and 2 ml $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ eluates were collected. These solutions $(10 \mu \mathrm{l})$ were injected for hplc analyses. Signals were identified by comparison of tetention times with those of auchentic samples by co-injection. More than 20 nonidentified minor peals with uv spectra typical of the phyllanchostacins were observed. The same results were obeained when crude extracrs were separaced on RP-8 Si gel with MeOH-H2O (2:3 $\rightarrow 9: 1$ ) as eluent.

Melting points are uncorrected and were determined using a Kofler-type hot-stage apparatus. Optical rocations were measured with a Perkin-Elmer Model 241 Automatic Polarimeter. The uv spectra were recorded employing a Hewlett-Packard Model 8450 A uv/vis spectrophotometer and ir spectra with a Nicolet Ft-ir Model MX-1 instrument. Nmr spectra were measured using a Bruker AM-400 instrument and are reconded in ppm downfield to TMS. Assignments bearing the same superscript may be reversed. The ${ }^{13} \mathrm{C}$ nmt multiplicities were determined with APT experiments based on an average coupling constant of 135 Hz. Normal 2D homonuclear and heteronuclear shift correlated spectra were recorded using standard pulse sequences ( $15-17$ ). The double-quantum filtered phase-sensitive COSY experiment was pursued following the procedure of Wuechrich and co-workers (13,14). Eims spectra were obtained using a Varian MAT 312 spectrometer. Fabms spectra were recorded with a MS-50 instrument at the NSF Regional Facility, University of Nebraska, Lincoln.

PLant Material and extraction. -The 1986 collection of P. acwminatur roors was obeained in Costa Rica, and a voucher specimen is preserved in our Institute. The dry powdered roors ( 345 g ) were extracted at room temperature successively with n-hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and MeOH ( $3 \times 6$ liters each solvent), yielding $0.6,3.6$, and 25.0 g extracts, respectively. Extraction, solvent partitioning, and chromatographic separation of $P$. acwminatws ( 1978 collection) were performed as described by Pettit et al. (2).

ISOLATION OF PHYLLANTHOSIDE [1]. -The $1986 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract ( 3.6 g ) was separated on a column of Sephadex $\mathrm{LH}-20\left(60 \times 4 \mathrm{~cm}\right.$ i.d.) with n-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 3)$ as initial solvent system. After eluting with 2.5 liters, the solvent was changed to $n$-hemane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me} \mathrm{e}_{2} \mathrm{CO}(1: 3: 1)$, and a phyllanthosiderich ( 0.833 g ) fraction was eluted. An aliquot of this fraction ( 106 mg ) was purified by hsced with the solvent system n-herane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (2:4:5:2). The sample was dissolved in a mixture ( 4 ml ) of stationary and mobile phase ( $6: 1$ ) and introduced in the coil through the head inlet. The coil was rotated at 800 rpm , and the mobile phase (lower layer) was pumped at a flow rate of $200 \mathrm{ml} / \mathrm{h}$. Decection (uv) was set at 280 nm and fractions collected every 1.5 min. Retention of the stationary phase was $\mathbf{4 5 \%}$. Pure (by hplc) phyllanchoside ( 93 mg ) was obcained (elution volume 265-335 mi) and its identity confirmed by comparison with an auchentic sample (ir, ${ }^{1} \mathrm{H}$ nmr, and ${ }^{13} \mathrm{C}$ nmr).

IsOLATION OF PHYLLANTHOSTATIN 6 [7]. -The MeOH extract ( 22 g ) of P. acmamatus ( 1986 collecrioa) was separared by size exclusion chromatography on Sephedex $L \mathrm{H}-20(100 \times 10 \mathrm{~cm}$ i.d., MeOH), and 7 fractions were collected. Fraction $5(4.95 \mathrm{~g}$, elution volume $6150-6700 \mathrm{ml})$ was furcher separaced by heced with the solvent system $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ ( $5: 5: 3$ ). Samples ( 2 g ) were dissolved in a mixture of upper ( 13 ml ) and lower ( 2 ml ) phas: Jie hsccd was conducted with the lower, organic phase and a flow mese of $200 \mathrm{~m} / \mathrm{h}$. A uv detector wass s. at 280 nm and fractions collected every 1.5 min . Fractions eluted between 120 and 150 min after sample introduction were combined and afforded 38 mg of almost pure phyllanthostatin 6 [7]. Combined fractions were purified by semi-preparative hplc (RP-8, Prepex 5-20 $\mu \mathrm{m}, 250 \times 10 \mathrm{~mm}$, Phenomenex) with aqueous $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(3: 7)$ at a flow rate of $2 \mathrm{ml} / \mathrm{min}$, yielding 12 me ( $3.7 \times 10^{-3} \%$ yield) of phyilanchoscatin $6[7]$ : amorphous solid; mp $136-139^{\circ}$; tlc on Si gel $R_{f} 0.12$ $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(9: 1)\right], R, 0.25$ [CH $_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(5: 5: 3)$ (lower phase)]; $[\alpha]^{25} \mathrm{D}+12.0^{\circ}(c=0.25$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); hrfabms $\pi / 2[\mathrm{M}+\mathrm{Na}]^{+} 759.2839$ (calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{16} \mathrm{Na}, 759.2840$ ) with $\Delta=0.1 \mathrm{ppm}$. $[(\mathrm{M}+\mathrm{Na})-146]^{+} 613$; uv $\lambda \max (\mathrm{MeOH}) 277 \mathrm{~nm} ;$ ir $(\mathrm{KBr}) v \max 3422,2940,1745,1707,1635$, $1450,1315,1281,1169,1123,1075,1021 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) 80.83(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{H}-15)$, $1.20\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{~S}-6^{\prime}\right), 1.27(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.57(\mathrm{H}-1), 1.63(\mathrm{H}-9), 1.76(\mathrm{H}-4), 1.91(\mathrm{H}-9), 1.94$ (H-11), 1.98 (H-1, H-6), 2.32 (H-4), 2.50 (H-3), 2.93 (2H, br s, H-14), 2.97 (S-2), 3.04 (S-4'), 3.25 (S-S'), 3.30 (S-2'), 3.37 (S-S), 3.43 (H-12), 3.44 (S-3'), 3.46 (S-4), 3.66 (S-3), 3.75 (S-6), 3.98 ( 1 H, $\mathrm{dd}, J=11.5 \mathrm{~Hz}, \mathrm{H}-12), 4.13\left(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{~S}-1^{\prime}\right), 4.42(\mathrm{H}-5), 5.14(\mathrm{H}-10), 5.48(1 \mathrm{H}, \mathrm{d}, J=7.7$ $\mathrm{Hz}, \mathrm{S}-1), 6.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.1 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 7.39\left(3 \mathrm{H}, \mathrm{brs}, \mathrm{H}-5^{\prime}, \mathrm{H}-\mathbf{7}^{\prime}, \mathrm{H}-9^{\prime}\right), 7.56\left(2 \mathrm{H}, \mathrm{br} 5, \mathrm{H}-6^{\prime}, \mathrm{H}-\right.$ $\left.8^{\prime}\right), 7.78\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right) ;{ }^{13} \mathrm{C} \operatorname{nmr}\left(\mathrm{CDCl}_{3}\right) 812.73(\mathrm{q}, \mathrm{C}-15), 17.76\left(\mathrm{q}, \mathrm{S}-6^{\prime}\right), 21.84(\mathrm{t}, \mathrm{C}-1)$, 25.62 (t, C-2), 29.47 (t, C-4), 33.14 (d, C-11), 34.31 (t, C-9), 37.04 (d, C-3), 38.21 (d, C-6), 49.80 (t, C-14), $61.64(\mathrm{t}, \mathrm{S}-6), 62.79(\mathrm{t}, \mathrm{C}-12), 69.15(\mathrm{~d}, \mathrm{~S}-4), 69.70(\mathrm{~d}, \mathrm{C}-10), 71.02(\mathrm{~s}, \mathrm{C}-7), 72.16\left(\mathrm{~d}, \mathrm{~S}-\mathrm{s}^{\prime}\right)^{2}$, $72.61(\mathrm{~d}, \mathrm{C}-5), 74.87\left(\mathrm{~d}, \mathrm{~S}-2^{\prime} \mathrm{y}^{\prime}, 75.15\left(\mathrm{~d}, \mathrm{~S}-4^{\prime}\right), 76.03\left(\mathrm{~d}, \mathrm{~S}-3^{\prime}\right)^{\mathrm{b}}, 76.10(\mathrm{~d}, \mathrm{~S}-3), 76.30(\mathrm{~d}, \mathrm{~S}-5)^{\mathrm{b}}, 82.15\right.$ (d, S-2), $92.40(\mathrm{~d}, \mathrm{~S}-1), 102.08$ (s, C-8), $104.50\left(\mathrm{~d}, \mathrm{~S}-1^{\prime}\right), 118.57\left(\mathrm{~d}, \mathrm{C}-2^{\prime}\right), 128.29\left(2 \times \mathrm{d}, \mathrm{C}-6^{\prime}, \mathrm{C}-8^{\prime}\right)$, 129.24 ( $2 \times \mathrm{d}, \mathrm{C}-5^{\prime}, \mathrm{C}-9^{\prime}$ ), 130.61 (d, C-7'), 134.34 (s, C-4'), 145.01 (d, C-3'), 166.99 (s, C-1'), 174.38 (s, C-13).

Hydrolysis. - A solution of phyllanthostatin $6[7](2 \mathrm{mg})$ in $\mathrm{MeOH}(2 \mathrm{ml})$ and $2 \mathrm{~N} \mathrm{HCl}(10 \mathrm{ml})$ was heared at refux for 30 min, diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracred with $\mathrm{CHCl}_{3}$. The aqueous phase was neurralized $\left(\mathrm{NaHCO}_{3}\right)$, the solvent was evaponaced. and the sugars were extrected with pyridine. Glucose and 6-deoxyslucose were detected in the extract by tlc on Si gel using the solvent system ErOAc-MeOH$\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}(65: 15: 15: 30)$ followed by spraying with anisaldehyde reagent and hearing to reveal spors at $\boldsymbol{R}_{f} 0.58$ and $\boldsymbol{R}_{f} 0.70$ chancteriscic of D-glucoec and 6-deony-D-glucone, respectively.

ISOLATION OF DIDESACETYLPHYLANTHOSTATIN 3 [9] AND DESCINNAMOYLPHYLLANTHOCINDIOL \{10\}.-A fraction obrained from an earlier large-scale isolation of phyllanthoside (2) was separated by size exclusion chromatography on Sephadex LH-20 in MeOH ( $100 \times 10 \mathrm{~cm}$ i.d.; 100 g and 92 g samples) yielding 11 fractions. Part ( 6 g ) of the major fraction ( 111 g ; elution volume $4550-5925 \mathrm{ml}$ ) was further separated by hsced with the solvent system $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ ( $5: 5: 3$ ). The organic layer was used as mobile phase and was passed at a flow rate of $400 \mathrm{ml} / \mathrm{h}$. Retention of the stationary phase was about $50 \%$. Samples ( $3 \times 2 \mathrm{~g}$ ) were dissolved in a 20 ml mixture of both phases, and fractions were collected every minute. Fractions eluted between volumes 150 and 250 ml were combined ( 0.36 g ) and further purified by re-versed-phase liquid chromatography with MeOH- $\mathrm{H}_{2} \mathrm{O}(3: 2 \rightarrow 7: 3)$ (Lobar RP-8, size B) to afford 105 mg of didesacetylphyllanthostatin $3\left(7 \times 10^{-6} \%\right.$ yield). Anorher aliquot ( 6.3 g ) of the main fraction was separated by reversed-phase liquid chromatography with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 3)$ (Lobar RP-8, size $\mathrm{B}, 3 \times 2.1 \mathrm{~g}$ samples). Fractions containing diol 10 were combined in MeOH solution and further purified on a column of Sephadex LH-20, yielding 0.75 g of descinnamoylphyllanthocindiol [ 10$]$ ( $5 \times 10^{-5} \%$ yield).

Didesacetylphyllanthostatin 3 [9] was isolated as an amorphous solid: mp 135-139 ; tlc on Si gel $\boldsymbol{R}_{\boldsymbol{f}}$ $0.08\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(9: 1)\right] ;[\alpha]^{25} \mathrm{D}+9.1^{\circ}\left(\mathrm{c}=0.11, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; hrfabms m$/ \mathrm{z}[\mathrm{M}+\mathrm{Li}]^{+} 745.3236$ (calcd for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{O}_{16} \mathrm{Li}, 745.3260$ ), $\Delta=3.3 \mathrm{ppm}$; uv $\lambda \max (\mathrm{MeOH}) 277 \mathrm{~nm}$; ir ( KBr ) $v$ max 3433, 2940, $1745,1707,1635,1445,1309,1281,1233,1169,1117,1074 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.85(3 \mathrm{H}, \mathrm{d}$, $J=5.6 \mathrm{~Hz}), 1.21\left(3 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{~S}-6^{\prime}\right){ }^{2} 1.25(3 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{~S}-6)^{2}, 1.32(\mathrm{H}-2), 1.38(\mathrm{H}-1)$, $1.59(\mathrm{H}-1), 1.73(\mathrm{H}-4), 1.82(\mathrm{H}-6), 1.94(\mathrm{H}-9, \mathrm{H}-11), 2.02(\mathrm{H}-2), 2.14(\mathrm{H}-9), 2.17(\mathrm{H}-4), 2.51(\mathrm{H}-3)$, $3.00(\mathrm{~S}-2), 3.04(\mathrm{~S}-4), 3.05\left(\mathrm{~S}-4^{\prime}\right), 3.23\left(\mathrm{~S}-5^{\prime}\right)^{\mathrm{b}}, 3.25\left(\mathrm{~S}-2^{\prime}\right), 3.38(\mathrm{~S}-5)^{\mathrm{b}} .3 .42\left(\mathrm{~S}-3^{\prime}\right), 3.49(\mathrm{H}-12, \mathrm{H}-14)$, 3.57 (S-3), 3.93 (H-14), $4.01(\mathrm{H}-12), 4.16(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}$ in C, D, N, S-1'), 4.18 (H-5), 5.13 (H10), $5.45(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}$ in C, $\mathrm{D}, \mathrm{N}, \mathrm{S}-1), 6.50\left(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 7.46\left(\mathrm{H}-5^{\prime}, \mathrm{H}-7^{\prime}\right), 7.55$ $\left(\mathrm{H}-6^{\prime}, \mathrm{H}-8^{\prime}\right), 7.75\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 12.67(\mathrm{q}, \mathrm{C}-15), 17.61\left(\mathrm{q}, \mathrm{S}-6^{\prime}\right)^{4}$. $17.82(\mathrm{q}, \mathrm{S}-6)^{2}, 20.47$ (t, C-1), $26.11(\mathrm{t}, \mathrm{C}-2), 29.47$ (r, C-4), 33.21 (d, C-11), $35.32(\mathrm{r}, \mathrm{C}-9), 36.87$ (d, C-3), $43.22(\mathrm{~d}, \mathrm{C}-6), 62.77(\mathrm{r}, \mathrm{C}-12), 66.21(\mathrm{t}, \mathrm{C}-14), 70.06(\mathrm{~d}, \mathrm{C}-10), 72.10\left(\mathrm{~d}, \mathrm{~S}-2^{\prime}\right), 72.70(\mathrm{~d}, \mathrm{~S}-5)^{\mathrm{b}}$, 72.83 (d, C-5), 74.58 (d, S-5') ${ }^{\mathrm{b}}, 75.07$ (2d, S-4, S-4'), 75.88 (d, S-3'), 76.23 (d, S-3), $81.70(\mathrm{~d}, \mathrm{~S}-2$ ), 85.33 (s, C-7), 92.28 (d, S-1), 104.15 (d, S-1'), $106.31(\mathrm{~s}, \mathrm{C}-8), 118.56$ (d, C-2'), 128.32 ( $2 \times \mathrm{d}, \mathrm{C}-\mathbf{6}^{\prime}$, C-8'), 129.22 ( $2 \times \mathrm{d}, \mathrm{C}-\mathrm{S}^{\prime}, \mathrm{C}-9^{\prime}$ ), 130.52 (d, C-7'), 134.35 (d, C-4'), 145.15 (d, C-3'), 167.22 ( $\mathrm{s}, \mathrm{C}-$ $\left.1^{\prime}\right), 174.72$ (s, C-13).

Descinnamoylphyllanthocindiol [10] was obtained as an amorphous solid: mp $60-65^{\circ}$; tic on Si gel $R_{f} 0.18\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}(20: 80: 5)\right] ;[\alpha]^{29} \mathrm{D}+92^{\circ}(c=0.25, \mathrm{MeOH}) ;$ hrfabms m/z 323.1688 $\left[\mathrm{M}+\mathrm{Li}^{+}\right.$(calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}, \mathrm{Li}, 323.1683$ ), $\Delta=1.5 \mathrm{ppm}$; ir ( KBr ) $v \max 3456,2954,1707,1455$, 1417, 1390, 1121, 1082, 1040, 1022, $985 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}_{\left(\mathrm{CDCl}_{3}\right)} \delta 0.90(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-15)$, 1.30-1.39 (H-2). 1.51-1.60 (H-1), 1.72-1.82 (H-1, H-4. H-6, H-9. H-11), 2.05-2.13 (H-2, H-9), $2.18-2.22(\mathrm{H}-4), 2.59-2.65(\mathrm{H}-3), 3.44(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{H}-14), 3.51(\mathrm{H}-12), 3.79(\mathrm{H}-12), 3.86$ $(\mathrm{H}-10), 4.00(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{H}-14), 4.20(\mathrm{H}-5){ }^{13} \mathrm{C} \mathrm{nmr}\left[\mathrm{CDCl}_{2}-\mathrm{MeOD}(9: 1)\right] \delta 12.56(\mathrm{q}, \mathrm{C}-15)$, 20.21 (t, C-1), 25.74(t, C-2), 29.33(t, C-4), 34.22 (d, C-11), $36.76(\mathrm{t}, \mathrm{C}-9), 36.84(\mathrm{~d}, \mathrm{C}-3), 42.71(\mathrm{~d}$, $\mathrm{C}-6), 62.03(\mathrm{t}, \mathrm{C}-12), 65.19(\mathrm{t}, \mathrm{C}-14), 68.22(\mathrm{~d}, \mathrm{C}-10), 74.01(\mathrm{~d}, \mathrm{C}-5), 84.11(\mathrm{~s}, \mathrm{C}-7), 107.52(\mathrm{~s}, \mathrm{C}-8)$, 180.00 (s, C-13, in MeOD).

## ACKNOWLEDGMENTS

With special appreciation we thank for financial assistance National Cancer Institure Grants CA-30311-01-03. Outstanding Investigator CA 44344-01A1, and Contract NOI-CM-97262 from the Division of Cancer Treatmenc, (NCI. DHHS), The National Cooperative Drug Discovery Group Grant \#AI25696-02, the U.S. Army Medical Research and Development Command under Grant \#DAMD17-89-Z-9021, the Arizona Disease Control Research Commission, the Swiss National Science Foundation (to D.S.), Eleanor W. Libby, the Waddell Foundation (Donald Ware). the Fannie E. Rippel Foundation, Herbert K. and Dianne Cummings, the Nathan Cummings Foundation, Lotre Flugel, and Polly J. Trautman. For other assistance we thank Drs. S.B. Singh, J. M. Schmide. M.I. Suffness, and Messrs. P.J. Daschner and L. Williams. We also acknowledge assistance from the NSF Regional Instrumentation Facility in Nebraska (Grant CHE-8620177) and the NSF NMR equipment grant CHE-8409644.

## LITERATURE CITED

[^12]6. A.B. Smith III and R.A. Rivero, I. Am. Chem. Soc. . 109. 1272 (1987).
7. A.B. Smith III, K.J. Hale, and H.A. Vaccaro. J. Chem. Sxi. Chem. Commun.. 1026 (1987).
8. A. B. Smith III, K.J. Hale, and H.A. Vaccaro, Tetrabedron Lett. 5591 (1987).
9. A.B. Smith III and M. Fukui, J. Am. Chem. Sor. 109, 1269 (1987).
10. Y. Ito, CRC Crit. Kev. Anal. Chem. . 17, 65 (1987).
11. D.E. Schaufelberger and G.R. Pertit, J. Liq. Cbromatogr. 12, 1909 (1989).
12. S. Kohmoro, O.J. McConnell, and A. Wright, Experientia. 44, 85 (1988).
13. D. Marion and K. Wuethrich, Bixhem. Biophys. Res. Commun. . 113, 967 (1983)
14. M. Rance, O. W. Sorensen, G. Bodenhausen, G. Wagner, R. R. Ernsr, and K. Wuethrich. Buchem. Biophys. Res. Commun. 117. 479 (1983).
15. H. Kessler, C. Griesinger, J. Zarbock, and H. R. Loosli. J. Magn. Reson., 57, 331 (1984)
16. K. Nagayama. A. Kumar, K. Wuethrich, and R.R. Ernst. J. Magn. Reson. 40, 321 (1980).
17. A. Bax and G. Morris, J. Magn. Reson. . 42, 501 (1981).

Receited 22 Notember 1989

## A P P E NDIX A

Table I. Prescreen Submissions for Grant Period
Table II. Prescreen Actives (2/6/89-10/31/90)
Table III. Prescreen Actives (11/1/90-7/5/91)
Table IV. Full Screen Submissions for Grant Period
Table V. Special Sample Submissions for Grant Period

Table I

## Prescreen Submissions for Grant Period

All plants and marine animals listed represent crude extracts unless otherwise noted.

| Date | Total | Plants | Marines | Mycelliums | Synthetics |
| :---: | :---: | :---: | :---: | :---: | :---: |
| In BRFF | 1770 | 81 | 1401 | 288 |  |
| Repository |  |  |  |  |  |
| " " | 161 |  | 19** |  |  |
|  |  |  | 142 |  |  |
| 5/22/90 | 144 |  | 144 |  |  |
| 6/26/90 | 183 | 21 | 162 |  |  |
| 8/20/90 | 152 | 32 | 120 |  |  |
| 8/23/90 | 111 |  | 111 |  |  |
| 9/21/90 | 200 | 3 | 197 |  |  |
| 10/11/90 | 200 | 27 | 173 |  |  |
| 11/13/90 | 200 | 196 | 4 |  |  |
| 11/29/90 | 189 | 69 | 120 |  |  |
| 12/13/90 | 161 |  | 161 |  |  |
| 1/15/91 | 15 |  |  |  | 15 |
| 1/23/91 | 195 |  | 195 |  |  |
| 2/4/91 | 30 | $30^{*}$ |  |  |  |
| 2/19/91 | 193 | 54 | 139 |  |  |
| 2/28/91 | 191 | 191 |  |  |  |
| 3/13/91 | 298 | 255 | 43 |  |  |
| 3/27/91 | 200 |  | 200 |  |  |
| 4/10/91 | 198 | 3 | 195 |  |  |


| Date |  | Total | Plants | Marines | Mycelliums | Synthetics |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4/24/91 |  | 197 | 37 | 160 |  |  |
| 5/8/91 |  | 211 | 103 | $\begin{gathered} 9 * \\ 99 \end{gathered}$ |  |  |
| 5/22/91 |  | 200 | 200 |  |  |  |
| 6/6/91 |  | 200 | 140 | 60 |  |  |
| 6/21/91 |  | 200 | 200 |  |  |  |
|  |  | 5,799 | 1,642 | 3,854 | 288 | 15 |
| * = fractions |  |  |  |  |  |  |
| Summary: | $\begin{array}{r} 1,612 \\ 30 \\ 3,826 \\ 28 \\ 288 \\ 15 \end{array}$ | Plant C <br> Plant F <br> Marine <br> Marine <br> Mycelli <br> Synthet | ons s ions |  |  |  |

1420 of the total submissions showed activity in one or more of the viruses and have been submitted for full screen testing. This figure equals $24 \%$ of the total number of samples submitted for prescreen testing during the grant period.

Prescreen Actives (2/6/89 - 10/31/90)

| Drug_Num | AVS_Num | Visue |
| :---: | :---: | :---: |
| B23-11C | 4855 | PT, YF |
| 8720914 | 7332 | YF |
| 8720916 | 7099 | PT |
| 8720933 | 8513 | VEE |
| 日720937 | 7100 | PT |
| B720940 | 7101 | PT |
| B720941 | 7102 | PT' |
| B720951 | 7103 | PT |
| B720952 | 7104 | PT |
| B720958 | 7105 | PT |
| B720963 | 7106 | PT |
| B720979 | 7107 | PT |
| B720998 | 7349 | PT |
| B721000 | 7350 | PT |
| B721011 | 7298 | PT |
| B721021 | 7299 | PT |
| 8721031 | 7368 | PT |
| 8721045 | 7373 | PT |
| 13721045 | 7373 | YF |
| B721051 | 7375 | PT, YF |
| B721053 | 7377 | YF |
| B721054 | 7378 | YF |
| 8721055 | 7379 | PT |
| B721060 | 7300 | PT |
| B721061 | 7301 | PT |
| B721062 | 7302 | PT |
| 8721063 | 7383 | Pr |
| B721064 | 7303 | PT |
| 8721092 | 1312 | PT |
| B721095 | 1315 | PT |
| B721166 | 1908 | PT, YF |
| 8721173 | 7108 | YF |
| 8721177 | 7385 | P' |
| B721178 | 7386 | PT |
| B721257 | 7390 | YF |
| B721260 | 7391 | YT |
| B721295 | 8309 | PT |
| B721348 | 8311 | PT |
| 8721374 | 7304 | PT |
| B721377 | 7305 | PT |
| B721378 | 7306 | PT |
| R721392 | 7307 | PT |
| B121511 | 1801 | Pr, MF |
| B721532 | 1818 | PT |
| B721568 | 1850 | PT, YF |
| B721592 | 7308 | PT |
| B721595 | 7309 | PT |
| B721596 | 7310 | PT |
| 8721604 | 8323 | PT |
| 8721611 | 7311 | PT |
| B721616 | 7399 | PT |
| 8721628 | 7403 | PT |


| Drug_Num | AVS_Num | Virus |
| :---: | :---: | :---: |
| B721743 |  | PT |
| B721749 | 6584 | PT |
| B721787 | 6585 | PT |
| B721818 | 6586 | PT |
| B721823 | 6248 | PT, YF |
| B721826 | 6587 | PT |
| B721838 | 6588 | PT |
| B721880 | 6589 | PT |
| B721892 | 6590 | PT |
| B721899 | 6591 | PT, YF |
| B721905 | 6592 | PT |
| B721908 | 6593 | PT |
| B721910 | 6594 | PT |
| B721917 | 6595 | PT |
| B721925 | 6596 | PT |
| B721953 | 6597 | PT, YF |
| B721958 | 6598 | PT |
| B721979 | 6599 | PT |
| B722006 | 6600 | PT |
| B722048 | 6601 | PT |
| B722052 | 6602 | PT |
| B 722054 | 6603 | PT |
| B722060 | 9180 | PT |
| B722076 | 6604 | PT |
| B722077 | 6605 | PT |
| B722078 | 6606 | PT |
| B722080 | 6607 | PT |
| B722081 | 6608 | PT |
| B722087 | 6609 | PT, YF |
| B722089 | 6610 | PT |
| B722091 | 6611 | PT |
| B722094 | 6612 | PT |
| B722109 | 6613 | YF |
| B722111 | 6614 | YF |
| B722116 | 9183 | PT, YF |
| B722117 | 9184 | PT |
| B722141 | 6615 | PT |
| B722162 | 6616 | PT |
| B722165 | 6617 | PT, YE |
| B722168 | 6618 | PT |
| B722181 | 6619 | YF |
| B722182 | 6620 | PT, YF |
| B722183 | 6621 | PT, YF |
| B722222 | 6622 | PT |
| B722224 | 6623 | PT |
| B722228 | 6624 | PT |
| B722230 | 6625 | PT |
| B722239 | 6626 | PT, YF |
| B722241 | 6627 | PT, YF |
| 8722216 | 6628 | PT, YF |
| 8722247 | 5629 | PT, YF |
| B722279 | 8238 | PT |
| B722280 | 8239 | PT |


| Drug_Num | AVS_Num | Virus |
| :---: | :---: | :---: |
| B722518 | 7109 | YF |
| B722525 | 7110 | PT |
| B722559 | 8240 | PT |
| B722591 | 8241 | PT |
| B722507 | 8242 | PT |
| B722628 | 8244 | PT |
| B722632 | 8245 | PT |
| B722634 | 8246 | PT |
| B722689 | 8228 | PT |
| B722743 | 8250 | PT |
| B722745 | 8251 | PT |
| B722752 | 7405 | PT |
| B722805 | 7111 | PT |
| B722808 | 7112 | PT |
| B722811 | 7113 | PT |
| B722823 | 8271 | PT |
| B722824 | 7114 | YF |
| B722849 | 7115 | PT |
| B722854 | 7406 | PT |
| B722867 | 7312 | PT |
| B722871 | 7313 | PT |
| B722874 | 7314 | PT |
| B722883 | 7315 | PT |
| B722886 | 7316 | PT |
| B722889 | 7317 | PT |
| B722904 | 7318 | PT |
| B723037 | 7116 | PT |
| B723044 | 7117 | PT |
| B723061 | 7443 | VEE |
| B723062 | 7445 | PT |
| B723096 | 7439 | VEE |
| B723103 | 7442 | VEE |
| B723106 | 7408 | PT |
| B723110 | 7410 | PT |
| B723123 | 7438 | YF |
| B723136 | 7446 | VEE |
| B723141 | 7440 | YF,VEE |
| B723148 | 7441 | VEE |
| B723203 | 7444 | VEE |
| 8723247 | 8201 | VEE |
| B723250 | 8212 | VEE |
| B723268 | 8216 | PT |
| 8723275 | 8217 | VEE |
| B723278 | 8218 | PT |
| B723280 |  | PT |
| B723286 | 8220 | VEE |
| B723289 | 8221 | VEE |
| B723290 | 8222 | PT, VEE |
| B723297 | 8223 | PT |
| 8723315 | 8226 | VEE |
| 8723318 | 8227 | VEE |
| B723322 | 8210 | VEE |


| Drug_Num | AVS_Num | Virus |
| :---: | :---: | :---: |
| B723409 | 8204 | VEE |
| B723412 | 8206 | YF |
| B723414 | 8208 | VEE |
| B724373 | 6630 | PT |
| B724379 | 6631 | PT |
| B724382 | 6632 | PT |
| B724384 | 6633 | PT |
| B724385 | 6634 | PT |
| B724387 | 6635 | PT |
| B724394 | 6636 | PT |
| B724396 | 6637 | PT |
| B724405 | 6638 | PT |
| B724406 | 6639 | PT |
| B724411 | 6640 | PT |
| B724413 | 6641 | PT |
| B724415 | 6642 | PT |
| B724416 | 6643 | PT |
| B724417 | 6644 | PT |
| B724418 | 6645 | PT |
| B724420 | 6646 | PT |
| B724423 | 6647 | PT |
| B724433 | 6648 | PT |
| B724434 | 6649 | PT |
| B724436 | 6650 | PT |
| B724439 | 6651 | PT |
| B724442 | 6652 | PT, YF |
| B724447 | 6653 | PT |
| B724453 | 6654 | PT |
| B724455 | 6655 | PT |
| B724456 | 6656 | PT |
| B724457 | 6657 | PT |
| B724458 | 6658 | PT |
| B724466 | 6659 | PT, YF |
| B724,468 | 6660 | YF |
| B724508 | 6661 | PT |
| B724509 | 6662 | PT |
| B724512 | 6663 | PT |
| B724517 | 6664 | PT |
| B724519 | 6665 | PT |
| B724521 | 6666 | PT |
| B724525 | 6667 | PT |
| B724526 | 6668 | PT |
| B724527 | 6669 | PT |
| 8724530 | 6670 | PT, YF |
| B724535 | 6671 | PT |
| B724544 | 6672 | PT |
| B724549 | 6673 | PT |
| B724553 | 6674 | PT |
| B724558 | 6675 | PT |
| B724566 | 6676 | PT |
| B724586 | 6677 | PT |
| B724590 | 6678 | PT |
| B724592 | 6679 | PT, YF |


| Drug_Num | AVS_Num | Virus |
| :---: | :---: | :---: |
| B724596 | 6680 | PT |
| B724607 | 6681 | PT |
| B724610 | 6682 | YF |
| B724618 | 6683 | YF |
| B724627 | 6684 | PT |
| B724633 | 6685 | PT |
| B724642 | 6686 | PT |
| B724644 | 6687 | PT |
| B724652 | 6688 | PT |
| B724654 | 6689 | PT |
| R724657 | 6690 | Pr |
| B724661 | 6691 | PT |
| B724664 | 6692 | PT |
| B724667 | 6693 | PT |
| B724670 | 6250 | PT |
| B724697 | 6251 | PT |
| B724698 | 6252 | PT |
| B724701 | 6253 | YF |
| B724712 | 6254 | PT |
| B724714 | 6255 | PT |
| B724716 | 6256 | PT |
| B724719 | 6257 | PT |
| B724720 | 6258 | PT |
| B724722 | 6259 | PT |
| B724724 | 6694 | PT |
| B724728 | 6695 | PT |
| B724729 | 6696 | PT |
| B124732 | 6697 | PT |
| B724740 | 6261 | PT |
| B724762 | 6262 | PT |
| B724764 | 6263 | PT |
| B724769 | 6264 | PT |
| B724772 | 6698 | YF |
| B724781 | 6265 | PT |
| B724783 | 6699 | PT |
| B724785 | 6700 | PT |
| B724797 | 6266 | PT |
| B724812 | 6701 | YF |
| B724820 | 6268 | PT |
| 8724825 | 6269 | PT |
| B724832 | 6702 | PT |
| B724844 | 6270 | YF |
| B724852 | 6272 | YF |
| B724855 | 6703 | PT |
| B724860 | 6274 | PT |
| B724863 | 6275 | PT, YF |
| B724866 | 6704 | PT |
| B724885 | 6705 | PT |
| B724886 | 6277 | PT |
| 8724898 | 6706 | YF |
| B848989 | 8258 | PT |
| B848990 | 8259 | PT |
| B849035 | 8234 | PT |


| Drug_Num | AVS_Num | Virus |
| :---: | :---: | :---: |
| B849179 | 8236 | PT |
| B849180 | 8237 | PT |
| B849286 | 4276 | YF |
| GRP19380 | 4279 | PT, YF |
| GRP19381 | 4280 | PT, YF |
| GRP19386 | 7320 | PT |
| GRP19396 | 7321 | YF |
| GRP19416 | 7414 | PT |
| GRP19418 | 7415 | PT |
| GRP19423 | 7417 | PT |
| GRP19424 | 7418 | PT |
| GRP19435 | 7424 | PT |

## Table III

## Prescreen Actives (11/1/90-7/5/91)

| Virus | Ctrl. B No. | AVS No, |
| :---: | :---: | :---: |
| PT | 604736-F046 | 11029 |
| PT, YF | 604736-F047 | 11030 |
| PT | 604736-FO56 |  |
| PT, YF | 604736-FO57 | 11031 |
| PT | 604736-FO58 |  |
| PT | 631963-FO10 |  |
| PT | 631963-FO15 | 11032 |
| PT, VEE | 631963-FO16 | 11033 |
| PT | 634131-FO28 |  |
| YF, VEE | 634131-FO31 | 11034 |
| YF, VEE | 634131-FO32 | 11035 |
| PT | 634131-F064 |  |
| PT, YF, VEE | 634131-F065 | 11036 |
| PT, YF, VEE | 634131-F068 | 11037 |
| PT, YF | 642761-FO16 | 11038 |
| PT | 642761-F017 | 11039 |
| PT | 642761-FO18 | 11040 |
| P'T | 644263-F106 | 11041 |
| P'T, VEE | 644263-F107 | 11042 |
| PT | 678018-F243 | 11043 |
| PT, YF | 678018-F244 | 11044 |
| PT. YF | 678018-F245 | 11045 |
| VEE | 678018-F246 | 11046 |
| PT, YF | 706269 | 9213 |
| PT | 706308 |  |
| PT | 709724 |  |
| PT, VEE | 709752 | 9206/9399 |
| VEE | 709761 | 9400 |
| PT | 709763 |  |
| PT, YF,VEE | 710030 | 9207/9214/9407 |
| PT, YF,VEE | 710041 | 9237/9401 |
| PT | 710043 |  |
| PT | 710046 |  |
| PT | 710057 |  |
| vee | 710064 | 9402 |
| vee | 710068 | 9403 |
| VEE | 710072 | 9404 |
| PT | 710100 | 9211 |
| PT | 710110 |  |
| PT | 710124 |  |
| VEE | 710126 | 9405 |


| PT, VEE | 710128 | 9406 |
| :---: | :---: | :---: |
| PT | 710130 |  |
| PT | 710131 |  |
| PT | 710137 |  |
| PT | 710138 |  |
| PT | 710151 |  |
| PT | 710152 |  |
| PT | 710154 |  |
| VEE | 710157 | 9408 |
| PT | 710161 |  |
| PT, VEE | 710162 | 9409 |
| PT | 710174 |  |
| Pr | 710176 |  |
| PT | 710179 |  |
| PT | 710183 |  |
| PT | 710210 |  |
| PT, VEE | 711707 | 9410 |
| VEE | 711710 | 9411 |
| PT, VEE | 711711 | 9412 |
| PT, VEE | 711712 | 9413 |
| YF | 711714 |  |
| PT, VEE | 711715 |  |
| YF,VEE | 711716 |  |
| PT, VEE | 711717 |  |
| YF | 711718 |  |
| YF, VEE | 711719 |  |
| YF | 711720 |  |
| YF | 711722 |  |
| YF | 712291 |  |
| YF | 712292 |  |
| YF | 712295 |  |
| YF | 712296 |  |
| YF | 712299 |  |
| YF | 712300 |  |
| PT | 714994 | 9121 |
| PT | 714997 | 9122 |
| YF | 715001 | 9123 |
| VEE | 715010 | 9124 |
| VEE | 715011 | 9125 |
| vee | 715012 | 9126 |
| PT | 715022 | 9127 |
| PT | 715023 | 9128 |
| PT | 715026 | 9129 |
| PT, VEE | 715060 | 9130 |


| YF | 715062 |  |
| :---: | :---: | :---: |
| YF | 715068 |  |
| PT, YF, VEE | 715070 |  |
| YF | 715074 |  |
| YF | 715075 |  |
| YF | 715078 |  |
| YF | 715082 |  |
| YF | 715089 |  |
| PT | 715091 |  |
| PT, VEE | 715093 |  |
| VEE | 715095 |  |
| PT | 715101 |  |
| VEE | 715111 |  |
| PT, VEE | 715112 |  |
| PT | 715113 |  |
| YF | 715122 |  |
| PT, YF, VEE | 715141 | 11047 |
| VEE | 715160 |  |
| YF | 715180 |  |
| PT | 715186 |  |
| PT | 715234 |  |
| vee | 715284 |  |
| veE | 715627 |  |
| PT | 718257 |  |
| vEE | 718546 |  |
| PT | 718548 |  |
| PT | 718550 |  |
| PT, YF, VEE | 718551 |  |
| PT | 718553 |  |
| PT, VEE | 718574 | 11048 |
| PT, YF | 718577 | 11049 |
| PT | 718580 | 11050 |
| PT | 718582 | 11051 |
| PT | 718583 | 11052 |
| PT | 718586 | 11053 |
| PT | 718587 | 11054 |
| vee | 718588 |  |
| PT | 718595 | 11055 |
| PT | 718598 | 11056 |
| PT, VEE | 718599 | 11057 |
| PT | 718603 | 11058 |
| YF, VEE | 718636 | 11059 |
| VEE | 718640 |  |
| vee | 718642 |  |
| VEE | 718645 |  |
| PT, YF | 718648 | 11060 |
| YF | 718649 | 11061 |
| PT, YF | 718656 | 11062 |
| YF, VEE | 718789 | 11063 |
| YF, VEE | 718799 | 11064 |


| PT, VEE | 718807 | 11065 |
| :---: | :---: | :---: |
| VEE | 718813 | 11066 |
| PT, VEE | 718819 | 11067 |
| PT | 718821 | 11068 |
| VEE | 718825 |  |
| PT, VEE | 718838 | 11069 |
| VEE | 718840 | 11070 |
| PT, VEE | 718841 | 11071 |
| PT | 718842 | 11072 |
| YF | 718843 | 11073 |
| PT | 718849 | 11074 |
| YF | 718860 | 11075 |
| PT | 718862 | 11076 |
| YF | 718876 | 11077 |
| VEE | 718882 | 11078 |
| VEE | 718889 | 11079 |
| VEE | 718917 | 11080 |
| VEE | 718924 | 11081 |
| PT, YF, VEE | 718934 | 11082 |
| PT | 718935 | 11083 |
| VEE | 718942 | 11084 |
| VEE | 718954 | 11085 |
| VEE | 718969 | 11086 |
| VEE | 718978 | 11087 |
| PT, VEE | 718979 | 11088 |
| PT, VEE | 718982 | 11089 |
| PT | 718983 | 11090 |
| PT | 718990 | 11091 |
| PT | 718996 | 11092 |
| vee | 719004 | 11093 |
| PT, VEE | 719006 | 11094 |
| PT, YF, VEE | 719007 | 11095 |
| YF | 719008 | 11096 |
| YF | 719215 | 9131 |
| YF | 719216 | 9132 |
| YF | 719217 | 9133 |
| YF, VEE | 719218 | 9134 |
| YF | 719219 | 9135 |
| YF | 719220 | 9136 |
| YF, VEE | 719221 | 9137 |
| PT, YF | 719222 | 9138 |
| YF | 719224 | 9139 |
| YF | 719225 | 9140 |
| YF | 719226 | 9141 |
| YF | 719228 | 9142 |
| VEE | 719229 | 9143 |
| VEE | 719230 | 9144 |
| YF | 719231 |  |
| PT | 719232 | 9145 |
| PT | 719238 | 9146 |
| YF, VEE | 719240 | 9147 |


| PT, YF | 719241 | 9148 |
| :---: | :---: | :---: |
| PT, YF, VEE | 719242 | 9149 |
| YF, VEE | 719244 | 9150 |
| PT, YF | 719245 | 9151 |
| YF | 719246 | 9152 |
| PT, YF | 719247 | 9153 |
| PT | 719255 | 9154 |
| PT | 719256 | 9155 |
| YF | 719257 | 9156 |
| YF | 719258 | 9157 |
| YF | 719259 | 9158 |
| PT, YF | 719260 | 9159 |
| VEE | 719265 | 9160 |
| VEE | 719266 | 9161 |
| PT, VEE | 719267 | 9162 |
| VEE | 719272 | 9163 |
| YF | 719274 | 9164 |
| VEE | 719278 | 9165 |
| PT, VEE | 720392 | 11097 |
| YF | 720394 | 11098 |
| VEE | 720396 | 11099 |
| PT, VEE | 720398 | 11100 |
| VEE | 720399 | 11101 |
| YF | 720400 | 11102 |
| VEE | 720405 | 11103 |
| PT, YF | 720409 | 11104 |
| YF | 720410 | 11105 |
| YF | 720412 | 11106 |
| YF | 720415 | 11107 |
| PT | 720418 | 11108 |
| YF | 720419 | 11109 |
| PT | 720424 | 11110 |
| YF, VEE | 720425 | 11111/11112 |
| YF, VEE | 720427 | 11113/11114 |
| PT, YF | 720430 | 11115/11116 |
| YF | 720431 | 11117 |
| YF | 720433 | 11118 |
| VEE | 720434 | 11119 |
| VEE | 720435 | 11120 |
| YF | 720436 | 11121 |
| YF | 720443 | 11122 |
| PT, YF | 720445 | 11123 |
| VEE | 720820 | 9166 |
| YF | 720821 | 9167 |
| Pr,VEE | 720825 | 9168 |
| YF | 720828 | 9169 |
| PT | 720832 | 9170 |
| PT, VEE | 720834 | 9171 |
| YF, VEE | 721643 | 9172 |


| YF | 721746 | 9173 |
| :---: | :---: | :---: |
| VEE | 721777 | 9174 |
| YF | 721778 |  |
| PT, YF, VEE | 721781 |  |
| VEE | 721786 | 9175 |
| YF | 722117 | 9184 |
| PT, YF | 722161 | 9185 |
| YF, VEE | 722174 | 9187 |
| YF | 722179 | 9188 |
| VEE | 722184 |  |
| YF | 722186 | 9189 |
| YF | 722190 | 9190 |
| YF | 722194 | 9191 |
| YT | 722210 |  |
| YF | 722215 | 9194 |
| YF | 722229 | 9195 |
| VEE | 722230 | 6625 |
| PT | 722231 |  |
| YF | 722233 | 9196 |
| YF | 722236 | 9198 |
| PT, YF | 722240 |  |
| YF | 722242 | 9199 |
| YF | 722245 | 9201 |
| PT | 72.2246 | 6628 |
| YF | 722248 | 9202 |
| YF | 722278 |  |
| VEE | 722504 | 9205 |
| YF, VEE | 722506 |  |
| PT, YF, VEE | 722508 |  |
| YF, VEE | 722510 |  |
| ft, VEE | 722872 | 9208 |
| PT, YF | 722873 | 9209 |
| YF | 722876 | 9210 |
| PT | 722883 | 7315/9211 |
| YF | 722884 | 9212 |
| PT | 722886 | 7316/9213 |
| PT, VEE | 722889 | 7317/9214 |
| VEE | 722899 | 9216 |
| YF, VEE | 722890 | 9215 |
| PT | 722902 | 8374/9217 |
| VEE | 722905 | 9218 |
| VEE | 722908 | 9219 |
| YF | 722909 |  |
| VEE | 722911 | 9220 |
| VEE | 722914 | 9221 |
| PT, VEE | 722915 | 9222 |
| VEE | 722917 | 9223 |
| ?T,VEE | 722920 |  |
| PT, YF | 722921 |  |
| VEE | 722922 | 9224 |


|  |  |  |
| :--- | :--- | :--- |
| VEE | 722926 | 9225 |
| PT, VEE | 722929 |  |
| VEE | 722931 | 9226 |
| VEE | 722932 | 9227 |
| YF | 722933 | 9228 |
| VEE | 722935 | 9229 |
| PT,VEE | 722936 |  |
| PT,YF | 722937 | 9230 |
| VEE | 722938 |  |
| YF, VEE | 722942 | 9231 |
| VEE | 722944 | 9232 |
| VEE | 722950 | 9233 |
| PT,YF, VEE | 722965 | 9234 |
| VEE | 722976 | 9235 |
| VEE | 722987 | 9236 |
| VEE | 722992 |  |


| YF | 723003 |  |
| :---: | :---: | :---: |
| PT | 723004 |  |
| YF | 723006 |  |
| PT, VEE | 723035 |  |
| PT, YF, VEE | 723047 |  |
| PT, YF | 723169 | 9238 |
| PT | 723172 | 9239 |
| VEE | 723420 | 9240 |
| vee | 723424 | 924.1 |
| VEE | 723425 | 9242 |
| VEE | 723426 | 9243 |
| YF, VEE | 723427 |  |
| PT, YF | 723428 |  |
| VEE | 723429 | 9244 |
| VEE | 723430 | 9245 |
| PT, VEE | 723431 |  |
| VEE | 723432 | 9246 |
| YF | 723435 | 9247 |
| YF | 723436 | 9248 |
| YF | 723438 | 9249 |
| YF | 723441 | 9250 |
| YF | 723444 | 9251 |
| vee | 723448 |  |
| VEE | 723449 | 9252 |
| YF | 723452 | 9253 |
| VEE | 723455 | 9254 |
| VEE | 723457 |  |
| PT, YF | 723459 | 9255 |
| VEE | 723460 |  |
| VEE | 723463 |  |
| VEE | 723465 |  |
| PT | 723466 | 9256 |
| PT, VEE | 723467 | 9257 |
| VEE | 723468 |  |


| PT | 723471 | 9258 |
| :---: | :---: | :---: |
| PT, VEE | 723472 |  |
| PT, VEE | 723473 | 9259 |
| vEE | 723474 |  |
| VEE | 723475 |  |
| Pr | 723477 | 9260 |
| VEE | 723482 |  |
| PT | 723483 | 9261 |
| YF | 723484 | 9262 |
| YF | 723485 | 9263 |
| VEE | 723486 | 9264 |
| vee | 723487 | 9265 |
| PT | 723493 | 9266 |
| YF | 723801 | 9267 |
| VEE | 723802 | 9268 |
| PT, VEE | 723807 | 9269 |
| PT, YF | 723816 |  |
| VEE | 723821 |  |
| YF | 723822 |  |
| YF, VEE | 723826 |  |
| VEE | 723827 |  |
| PT, YF, VEE | 723828 |  |
| PT, VEE | 723829 |  |
| PT | 723830 |  |
| vee | 723831 |  |
| PT, YF, VEE | 723833 |  |
| PT, YF | 723835 |  |
| PT | 723837 |  |
| VEE | 723838 |  |
| VEE | 723839 |  |
| vee | 723840 |  |
| vee. | 723842 |  |
| PT | 723846 |  |
| VEE | 723849 |  |
| PT, YF | 723864 |  |
| YF | 723868 |  |
| YF | 723871 |  |
| PT | 723872 |  |
| YF | 723875 |  |
| PT | 723876 |  |
| PT | 723877 |  |
| PT, YF | 723879 |  |
| YF | 723881 |  |
| PT, VEE | 723882 |  |
| PT, YF, VEE | 723883 |  |
| VFE | 723885 |  |
| VEE | 723886 |  |
| YF | 723887 |  |
| PT | 723898 |  |
| PT, YF | 723900 |  |
| YF | 723903 |  |
| vee | 723904 |  |


| PT, VEE | 723908 |
| :---: | :---: |
| PT, VEE | 723909 |
| PT, VEE | 723910 |
| YF, VEE | 723911 |
| YF, VEE | 723912 |
| VEE | 723915 |
| YF,VEE | 723917 |
| YF | 723918 |
| VEE | 723922 |
| YF | 723932 |
| PT | 723933 |
| PT | 723934 |
| PT, VEE | 723937 |
| VEE | 723939 |
| YF | 723944 |
| PT, VEE | 723946 |
| VEE | 723948 |
| PT, YF | 723949 |
| YF | 723950 |
| VEE | 723951 |
| PT, YF | 723954 |
| PT, YF, VEE | 723957 |
| PT, YF | 723958 |
| VEE | 723959 |
| VEE | 723960 |
| VEE | 723962 |
| VEE | 723963 |
| VEE | 723964 |
| vee | 723965 |
| VEE | 723970 |
| YF | 723972 |
| PT | 723973 |
| PT, VEE | 723975 |
| PT | 723976 |
| PT | 723977 |
| PT | 723979 |
| VEE | 723980 |
| vee | 723983 |
| VEE | 723985 |
| PT | 723989 |
| vee | 723992 |
| YF | 723993 |
| vee | 723994 |
| VEE | 723995 |
| VEE | 723996 |
| vee | 723997 |
| PT | 723998 |
| VEE | 723999 |
| PT, VEE | 724001 |
| PT | 724004 |


| VEE | 724005 |  |
| :---: | :---: | :---: |
| VEE | 724009 |  |
| vee | 724010 |  |
| vee | 724011 |  |
| VEE | 724012 |  |
| VEE | 724015 |  |
| VEE | 724019 |  |
| VEE | 724021 |  |
| PT, YF, VEE | 724025 |  |
| VEE | 724029 |  |
| VEE | 724030 |  |
| vee | 724033 |  |
| VEE | 724035 |  |
| VEE | 724040 |  |
| YF | 724042 |  |
| PT | 724045 |  |
| VEE | 724046 |  |
| ? | 724055 | 11589 |
| PT | 724058 | 11590 |
| ? | 724060 | 11591 |
| YF, VEE | 724062 | 11592 |
| YF | 724063 | 11593 |
| YF | 724067 | 11594 |
| ? | 724069 | 11595 |
| VEE | 724070 | 11596 |
| PT, YF | 724073 | 11597 |
| PT | 724075 | 11598 |
| PT | 724076 | 11599 |
| VEE | 724078 | 11600 |
| PT | 724081 | 11601 |
| YF | 724086 | 11602 |
| VEE | 724087 | 11603 |
| YF | 724091 | 11604 |
| VEE | 724093 | 11605 |
| YF | 724100 | 11606 |
| PT, YF | 724108 | 11607 |
| YF | 724109 | 11608 |
| PT | 724110 | 11609 |
| YF.VEE | 724111 | 11610 |
| YF | 724112 | 11611 |
| PT, VEE | 724113 | 11612 |
| VEE | 724114 | 11613 |
| YF | 724124 | 11614 |
| YF | 724127 | 11615 |
| YF | 724130 | 11616 |
| PT | 724131 | 11617 |
| VEE | 724135 | 11618 |
| PT | 724136 | 11619 |
| YF | 724137 | 11620 |
| PT | 724139 | 11621 |
| PT, YF | 724140 | 11622 |
| PT | 724141 | 11623 |


| PT | 724143 | 11624 |
| :---: | :---: | :---: |
| YF | 724145 | 11625 |
| PT, VEE | 724148 | 11626 |
| PT | 724151 | 11627 |
| PT | 724155 | 11628 |
| VEE | 724163 | 11629 |
| PT | 724164 | 11630 |
| PT, VEE | 724165 | 11631 |
| PT, VEE | 724170 | 11632 |
| PT | 724172 | 11633 |
| VEE | 724173 | 11634 |
| PT, VEE | 724181 | 11635 |
| PT | 724182 | 11636 |
| PT, VEE | 724184 | 11637 |
| PT, YF | 724186 | 11638 |
| PT, YF | 724187 | 11639 |
| PT | 724192 | 11640 |
| VEE | 724194 | 11641 |
| VEE | 724198 | 11642 |
| PT | 724199 | 11643 |
| PT | 724201 | 11644 |
| PT, VEE | 724202 | 11645 |
| VEE | 724203 | 11646 |
| VEE | 724205 | 11647 |
| VEE | 724207 | 11648 |
| PT | 724209 | 11549 |
| Pr, vee | 724210 | 11650 |
| VEE | 724212 | 11651 |
| Yf, vee | 724214 | 11652 |
| YF, VEE | 724215 | 11653 |
| PT | 724216 | 11654 |
| VEE | 724217 | 11655 |
| PT, VEE | 724219 | 11656 |
| YF,VEE | 724220 | 11657 |
| VEE | 724221 | 11658 |
| VEE | 724223 | 11659 |
| VEE | 724224 | 11660 |
| VEE | 724225 | 11661 |
| PT, YF | 724226 | 11662 |
| PT | 724227 | 11663 |
| VEE | 724228 | 11664 |
| PT, YF, VEE | 724230 | 11665 |
| VEE | 724231 | 11666 |
| VEE | 724232 | 11667 |
| VEE | 724233 | 11668 |
| YF | 724238 |  |
| PT, VEE | 724240 |  |
| VEE | 724242 |  |
| YF,VEE | 724243 |  |
| PT | 724244 |  |
| PT | 724247 |  |
| YF | 724248 |  |


| VEE | 724249 |
| :---: | :---: |
| YF | 724251 |
| PT, VEE | 724252 |
| PT, VEE | 724253 |
| VEE | 724254 |
| YF | 724256 |
| VEE | 724257 |
| VEE | 724258 |
| VEE | 724260 |
| YF | 724261 |
| PT, YF | 724266 |
| PT, YF | 724268 |
| YF | 724270 |
| YF | 724271 |
| PT, YF | 724275 |
| YF | 724279 |
| PT | 724280 |
| YF | 724281 |
| PT | 724283 |
| YF | 724287 |
| VEE | 724288 |
| PT, VEE | 724289 |
| YF | 724290 |
| PT | 724291 |
| PT | 724293 |
| YF | 724294 |
| PT | 724296 |
| YF | 724297 |
| YF | 724298 |
| YF | 724299 |
| YF | 724300 |
| PT | 724301 |
| PT | 724303 |
| PT, YF | 724308 |
| PT | 724310 |
| YF | 724312 |
| YF | 724313 |
| YF | 724316 |
| VEE | 724320 |
| PT, YF | 724323 |
| YF,VEE | 724324 |
| YF, VEE | 724327 |
| VEE | 724335 |
| PT, VEE | 724337 |
| YF | 724338 |
| VEE | 724339 |
| PT, VEE | 724340 |
| PT | 724348 |
| PT, YF | 724354 |
| YF | 724355 |
| PT | 724356 |
| YF | 724358 |


| VEE | 724361 |  |
| :---: | :---: | :---: |
| VEE | 724363 |  |
| VEE | 724365 |  |
| VEE | 724366 |  |
| VEE | 724367 |  |
| VEE | 724368 |  |
| YF | 725005 |  |
| YF, VEE | 725006 | 11323 |
| YF,VEE | 725007 | 11324 |
| YF | 725008 | 11325 |
| PT, VEE | 848631 | 9270 |
| PT | 848633 | 9271 |
| PT | 848634 | 9272 |
| PT | 848635 | 9273 |
| PT, VEE | 848649 | 9274 |
| PT | 848650 | 9275 |
| PT, YF, VEE | 848653 | 9276 |
| PT, VEE | 848654 | 9277 |
| PT, VEE | 848656 | 9278 |
| PT | 848657 | 9279 |
| PT | 848659 | 9280 |
| PT | 848660 | 9281 |
| PT | 848662 | 9282 |
| PT | 848663 | 9283 |
| PT, YF | 848669 | 9284 |
| PT, VEE | 848670 | 9285 |
| PT, VEE | 848671 | 9286 |
| PT | 848673 | 9287 |
| PT | 848676 | 9288 |
| PT | 848678 | 9289 |
| PT | 848679 | 9290 |
| PT | 848681 | 9291 |
| PT, VEE | 848691 | 9292 |
| PT, VEE | 848699 | 9293 |
| PT | 848700 | 9294 |
| PT | 848703 | 9295 |
| PT | 848706 | 9296 |
| VEE | 848709 | 9297 |
| PT | 848711 | 9298 |
| PT | 848716 | 9299 |
| PT | 848717 | 9300 |
| PT | 848720 | 9301 |
| vee | 848722 | 9302 |
| PT | 848724 | 9303 |
| PT, VEE | 848725 | 9304 |
| VEE | 848727 | 9305 |
| VEE | 848728 | 9306 |
| PT | 848729 | 9307 |
| VEE | 848730 | 9308 |


| VEE | 848731 | 9309 |
| :---: | :---: | :---: |
| PT | 848732 | 9310 |
| VEE | 848733 | 9311 |
| PT, VEE | 848734 | 9312 |
| VEE | 848735 | 9313 |
| VEE | 848736 | 9314 |
| VEE | 848737 | 2315 |
| PT, VEE | 848738 | 9316 |
| PT | 848739 | 9317 |
| PT, VEE | 848740 | 9318 |
| PT | 848741 | 9319 |
| YF, VEE | 848742 | 9320 |
| PT | 848745 | 9321 |
| PT | 848747 | 9322 |
| PT | 848748 | 9323 |
| PT | 848749 | 9324 |
| PT | 848750 | 9325 |
| PT | 848751 | 9326 |
| PT, YF, VEE | 848752 | 9327 |
| PT, VEE | 848753 | 9328 |
| PT | 848755 | 9329 |
| vee | 848757 | 9330 |
| PT | 848767 | 9331 |
| YF | 848771 | 9332 |
| YF | 848774 | 9333 |
| PT | 848782 | 9334 |
| PT | 848788 | 9335 |
| PT | 848790 | 9336 |
| PT | 848792 | 9337 |
| PT, VEE | 848793 | 9338 |
| PT, YF | 848794 | 9339 |
| PT, YF, VEE | 848795 | 9340 |
| YF, VEE | 848796 | 9341 |
| PT, VEE | 848797 | 9342 |
| VEE | 848798 | 9.343 |
| YF | 848800 | 9344 |
| VEE | 848801 | 9345 |
| PT, VEE | 848804 | $93 / 46$ |
| VEE | 848805 | 9347 |
| VEE | 848808 | 9348 |
| YF, VEE | 848809 | 9349 |
| VEE | 848810 | 9350 |
| PT, VEE | 848811 | 9351 |
| PT, VEE | 848812 |  |
| PT, YF, VEE | 848814 | 9352 |
| Pr | 848816 | 9353 |
| PT | 848838 | 9355 |
| PT, YF, VEE | 848839 | 9356 |
| PT, VEE | 848841 | 9357 |
| PT, VEE | 848843 | 9358 |
| PT, VEe | 848845 | 9359 |
| PT, VEE | 848848 | 9360 |


| PT | 848861 | 9361 |
| :--- | :--- | :--- |
| PT, VEE | 848864 | 9362 |
| PT | 848867 | 9363 |
| VEE | 848869 | 9364 |
| PT,VEE | 848870 | 9365 |
| PT | 848873 | 9366 |
| PT | 848874 | 9367 |
| PT | 848876 | 9368 |
| PT | 848879 | 9369 |
| PT | 848880 | 9370 |
| PT | 848881 | 9371 |
| PT | 848882 | 9372 |
| PT | 848883 | 9373 |
| VEE | 848892 | 9374 |
| PT, VEE | 848893 | 9375 |
| PT,VEE | 848895 | 9376 |
| PT | 848896 | 9377 |
| PT | 848897 | 9378 |
| PT | 848899 | 9379 |
| PT | 848900 | 9380 |
| PT | 848901 | 9381 |
| PT | 848903 | 9382 |
| PT | 848904 | 9383 |
| PT, YF | 848905 | 9384 |
| PT | 848906 | 9385 |
| PT,VEE | 848907 | 9386 |
| PT | 848909 | 9387 |
| PT, VEE | 848911 | 9388 |
| PT | 848913 | 9389 |
| PT, YF | 848914 | 9390 |
| YF | 848916 | 9391 |
| YF | 848917 | 9392 |
| PT | 848920 | 9393 |
| PT | 848921 | 9394 |
| YF | 848924 | 9395 |
| PT | 848926 |  |
|  |  |  |


| YF, VEE | 849188 |
| :--- | :--- |
| PT | 849190 |
| PT,YF,VEE | 849192 |
| VEE | 849195 |
| YF, VEE | 849196 |
| VEE | 849197 |
| PT | 849199 |
| VEE | 849200 |
| VEE | 849201 |
| VEE | 849202 |
| VEE | 849204 |
| VEE | 849206 |
| VEE | 849216 |


| VEE | 849219 |  |
| :---: | :---: | :---: |
| VEE | 849220 |  |
| PT | 849239 | 9397 |
| VEE | 849240 | 9398 |
| PT, YF | 849259 |  |
| PT | 849268 | 11387 |
| VEE | 849269 | 11388 |
| PT, VEE | 849271 | 11389 |
| PT, VEE | 849272 | 11390 |
| PT | 849273 |  |
| PT | 849275 | 11391 |
| PT | 849277 | 11392 |
| $?$ | 849278 | 11393 |
| ? | 849280 | 11394 |
| PT | 849281 | 11395 |
| PT | 849283 | 11396 |
| PT | 849284 | 11397 |
| PT | 849285 | 11398 |
| PT | 849289 | 11399 |
| YF | 849291 |  |
| PT | 849292 | 11400 |
| VEE | 849295 | 11401 |
| PT | 849296 |  |
| PT, VEE | 849297 | 11402 |
| PT, Yf, VEE | 849298 | 11403 |
| PT | 849299 | 11404 |
| YF. VEE | 849300 | 11405 |
| VEE | 849302 | 11406 |
| PT | 849305 |  |
| VEE | 849307 | 11407 |
| vEE | 849308 | 14408 |
| Virus | Ctrl GRP No. | AVS No. |
| PT | 18058 | 11124 |
| PT | 18060 | 11125 |
| PT | 18061 | 11126 |
| YF | 18062 | 11127 |
| PT | 18063 | 11128 |
| YF | 18066 | 11129 |
| YF | 18068 | 11130 |
| PT, VEE | 19457 | 11131 |
| PT, YF, VEE | 19458 | 11132 |
| PT, YF | 19459 | 11133 |
| PT, VEE | 19462 | 11134 |
| PT, YF | 19463 | 11135 |
| YF, VEE | 19464 | 11136 |
| VEE | 19465 | 11137 |
| YF | 19467 | 11138 |


| PT | 19469 | 11139 |
| :---: | :---: | :---: |
| PT, VEE | 19470 | 11140 |
| PT, VEE | 19471 | 11141 |
| PT | 19472 | 11142 |
| PT, YF, VEE | 19473 | 11143 |
| PT | 19474 | 11144 |
| YF | 19479 | 11145 |
| PT | 19480 | 11146 |
| PT, VEE | 19481 | 11147/11148 |
| PT, VEE | 19486 | 11149 |
| PT, VEE | 19490 | 11150 |
| PT, VEE | 19491 | 11151 |
| PT | 19492 | 11152 |
| PT | 19493 | 11153 |
| PT, VEE | 19501 | 11154 |
| PT, YF, VEE | 19502 | 11155 |
| PT | 19509 | 11156 |
| PT | 19510 | 11157 |
| PT | 19511 | 11158 |
| PT | 19512 | 11159 |
| YF | 19514 | 11160 |
| PT | 19516 | 11326 |
| PT | 19521 | 11327 |
| ? | 19522 | 11328 |
| ? | 19523 | 11329 |
| vee | 19525 | 11330 |
| FT | 19528 |  |
| PT | 19529 | 11331 |
| PT | 19533 | 11332 |
| Pr | 19538 | 11333 |
| PT | 19539 | 11334 |
| PT | 19541 | 11335 |
| PT | 19544 | 11336 |
| PT | 19545 | 11337 |
| ? | 19550 | 11338 |
| PT | 19573 | 11339 |
| PT | 19574 | 11340 |
| PT | 19576 | 11341 |
| PT | 19578 | 11342 |
| PT | 19579 | 11343 |
| PT | 19583 | 11344 |
| VEE | 19584 | 11345 |
| VEE | 19594 | 11346 |
| VEE | 19598 | 11347 |
| ? | 19599 | 11348 |
| PT | 19601 | 11349 |
| PT, VEE | 19602 | 11350 |
| PT | 19603 | 11351 |


| PT | 19605 | 11352 |
| :---: | :---: | :---: |
| PT | 19608 | 11353 |
| PT | 19610 | 11354 |
| PT | 19611 | 11355 |
| PT | 19612 | 11356 |
| ? | 19619 | 11357 |
| PT, YF | 19621 | 11358 |
| PT | 19622 |  |
| VEE | 19623 | 11359 |
| PT | 19624 |  |
| PT | 19626 |  |
| YF, VEE | 19631 | 11360 |
| VEE | 19634 | 11361 |
| PT, VEE | 19635 | 11362 |
| VEE | 19636 | 11363 |
| PT, VEE | 19640 | 11364 |
| PT, VEE | 19641 |  |
| PT | 19642 |  |
| vee | 19643 | 11365 |
| VEE | 19647 | 11366 |
| PT | 19649 | 11367 |
| ? | 19653 | 11368 |
| VEE | 19655 | 11369 |
| PT | 19657 | 11370 |
| PT, YF | 19664 | 11371 |
| pt, vee | 19670 | 11372 |
| VEE | 19671 | 11373 |
| VEE | 19672 | 11374 |
| PT, YF | 19674 | 11375 |
| PT, YF | 19675 | 11376 |
| PT, YF | 19676 | 11377 |
| PT | 19679 | 11378 |
| ? | 19680 | 11379 |
| PT | 19681 | 11380 |
| PT | 19685 | 11381 |
| PT, VEE | 19686 | 11382 |
| VEE | 19689 |  |
| P'r, VEE | 19691 | 11383 |
| PT | 19692 |  |
| PT | 19695 |  |
| YF | 19696 | 11384 |
| PT | 19698 |  |
| PT, VEE | 19699 |  |
| PT, VEE | 19700 | 11385 |
| PT | 19701 | 11386 |
| PT, YF, VEE | 21188 | 11161 |
| PT, YF | 21189 | 11162 |
| YF | 21190 | 11163 |


| PT, YF | 21191 | 11164 |
| :---: | :---: | :---: |
| PT | 21194 | 11165 |
| PT | 21195 | 11166 |
| PT, VEE | 21197 | 11167 |
| VEE | 21199 | 11168 |
| YF | 21201 | 11169 |
| VEE | 21205 | 11170 |
| PT, YF, VEE | 21207 | 11171 |
| VEE | 21214 | 11172 |
| PT, VEE | 21220 | 11268 |
| PT | 21221 | 11269 |
| PT | 21222 | 11270 |
| PT | 21223 | 11271 |
| PT, VEE | 21224 | 11272 |
| PT, YF | 21225 | 11273 |
| PT, YF, VEE | 21226 | 11274 |
| VEE | 21228 | 11275 |
| PT | 21229 | 11276 |
| PT, YF, VEE | 21232 | 11277 |
| PT,VEE | 21233 | 11278 |
| PT, YF, VEE | 21234 | 11279 |
| YF | 21235 |  |
| PT, YF, VEE | 21235 | 11280 |
| PT, YF | 21238 | 11281 |
| VEE | 21242 | 11282 |
| PT, YF | 21247 | 11283 |
| YF, VEE | 21248 | 11284 |
| YF | 21251 | 11285 |
| PT, VEE | 21253 | 11286 |
| YF, VEE | 21255 | 11287 |
| YF | 21261 | 11288 |
| PT | 21263 | 11289 |
| PT, YF, VEE | 21264 | 11290 |
| PT | 21266 | 11291 |
| PT, VEE | 21267 | 11292 |
| PT | 21268 | 11293 |
| PT, YF, VEE | 21272 | 11294 |
| YF | 21275 | 11295 |
| PT, YF | 21278 | 11296 |
| YF | 21281 | 11431 |
| YF | 21282 | 11297 |
| PT | 21285 | 11298 |
| PT | 21286 | 11299 |
| PT | 21287 | 11300 |
| YF | 21288 | 11301 |
| PT | 21289 | 11302 |
| PT, YF | 21291 | 11303 |
| PT, YF | 21292 | 11304 |
| ? | 21293 | 11305 |
| vee | 21294 | 11306 |


| PT | 21297 | 11307 |
| :---: | :---: | :---: |
| PT, YF | 21301 | 11308 |
| YF,VEE | 21303 | 11309 |
| PT, YF | 21306 | 11310 |
| PT | 21307 | 11311 |
| PT, YF | 21314 | 11312 |
| PT, YF | 21315 | 11313 |
| PT | 21317 | 11314 |
| PT | 21320 | 11315 |
| PT, YF | 21321 | 11316 |
| YF | 21323 | 11317 |
| PT, YF, VEE | 21325 | 11318 |
| VEE | 21326 | 11319 |
| PT | 21328 | 11320 |
| PT | 21329 | 11321 |
| PT | 21330 | 11322 |
| YF | 21668 | 11409 |
| PT | 21669 |  |
| YF | 21671 | 11410 |
| PT, YF, VEE | 21680 | 11411 |
| PT | 21681 |  |
| PT | 21682 |  |
| PT | 21683 |  |
| YF | 21687 | 11412 |
| YF | 21688 |  |
| PT, VEE | 21689 | 11413 |
| PT | 21690 | 11414 |
| veE | 21691 | 11415 |
| PT | 21695 |  |
| YF | 21696 |  |
| VEE | 21693 | 11416 |
| PT | 21700 |  |
| YF | 21703 | 11417 |
| VEE | 21704 | 11418 |
| PT, YF, VEE | 21705 | 11419 |
| PT, VEE | 21706 | 11420 |
| PT, VEE | 21708 | 11421 |
| PT, VEF | 23174 | 11422 |
| PT, VEE | 23175 | 11423 |
| PT | 23176 |  |
| VEE | 23184 | 11424 |
| PT, VEE | 23185 | 11425 |
| PT, VEE | 23186 | 11426 |
| PT | 23187 |  |


|  |  |  |
| :--- | :--- | :--- |
| PT | 23188 | 11427 |
| PT | 23189 | 11428 |
| PT, YF, VEE | 23190 | 11429 |
| PT | 23191 | 11430 |
| YF | 23192 | 11432 |
| YF | 23193 | 11433 |
| YF | 23194 | 11434 |
| YF, VEE | 23195 | 11435 |
| YF | 23198 | 11436 |
| YF | 23199 | 11437 |


| PT YF | 23200 | 11438 |
| :---: | :---: | :---: |
| YF | 23202 | 11439 |
| PT, YF, VEE | 23203 | 11440 |
| PT, YF | 23204 | 11441 |
| PT, VEE | 23206 | 11442 |
| ? | 23207 | 11443 |
| PT, YF, VEE | 23210 | 11444 |
| VEE | 23211 | 11445 |
| PT, YF | 23213 | 11446 |
| YF | 23214 | 11447 |
| VEE | 23216 | 11448 |
| VEE | 23218 | 11449 |
| VEE. | 23221 | 11450 |
| PT, YF | 23222 | 11451 |
| Pr, VEE | 23225 | 11452 |
| PT | 23226 | 11453 |
| PT | 23227 | 11454 |
| VEE | 23229 | 11455 |
| VEE | 23230 | 11456 |
| PT, VEE | 23233 | 11457 |
| VEE | 23234 | 11458 |
| YF, VEE | 23235 | 11459 |
| VEE | 23236 | 11450 |
| vee | 23237 | 11461 |
| PT, VEE | 23238 | 11462 |
| PT, VEE | 23240 | 11463 |
| PT | 23242 | 11464 |
| PT, YF, VEE | 23243 | 11465 |
| VEE | 23244 | 11466 |
| PT, YF, VEE | 23245 | 11467 |
| PT, VEE | 23247 | 11468 |
| YF, VEE | 23248 | 11469 |
| PT, VEE | 23249 | 11470 |
| VEE | 23250 | 11471 |
| PT, VEE | 23252 | 11472 |
| YF, VEE | 23253 | 11473 |
| Pi , VEE | 23254 | 11474 |
| PT, YF, VEE | 23255 | 11475 |
| YF | 23256 | 11476 |
| ? | 23257 | 11477 |


|  |  |  |
| :--- | :--- | :--- |
| YF, VEE | 23258 | 11478 |
| YF | 23260 | 11479 |
| YF, VEE | 23261 | 11480 |
| YF, VEE | 23262 | 11481 |
| YF | 23263 | 11482 |
| YF | 23264 | 11483 |
| PT, VEE | 23265 | 11484 |
| VEE | 23267 | 11485 |
| VEE | 23269 | 11486 |
| PT, YF, VEE | 23270 | 11487 |
| VEE | 23271 | 114889 |
| VEF | 23272 |  |
| VEE | 23273 | 11490 |
| PT | 23274 | 11491 |
| VEE | 23275 | 11493 |
| YF | 23276 | 11494 |
| VEE | 23278 | 11495 |
| PT, VEE | 23279 | 11496 |
| YF | 23280 | 11497 |
| PT, VEE | 23282 | 11498 |
| $?$ | 23283 | 11499 |
| PT,YF,VEE | 23284 | 11500 |
| VEE | 23285 | 11501 |
| PT | 23286 | 11502 |
| PT, YF | 23287 | 11503 |
| VEE | 23288 | 11504 |
| $Y F$ | 23290 | 11505 |
| VEE | 23291 | 11506 |


| VEE | 23306 | 11507 |
| :--- | :--- | :--- |
| PT | 23307 |  |
| PT, VEE | 23308 | 11508 |
| PT | 23311 | 11509 |
| VEE | 23316 | 11510 |
| VEE | 23317 | 11512 |
| VEE | 23318 | 11513 |
| PT | 23319 | 11514 |
| VEE | 23322 | 11515 |
| VEE | 23323 | 11516 |
| VEE | 23325 | 11517 |
| YF | 23326 | 11518 |
| $?$ | 23327 | 11519 |
| ? | 23328 | 11520 |
| VEE | 23329 | 11521 |
| PT | 23330 | 11522 |
| PT, VEE | 23331 | 11523 |
| PT | 23333 | 11524 |
| VEE | 23334 | 11525 |
| PT,VEE | 23335 |  |


| PT | 23337 | 11526 |
| :---: | :---: | :---: |
| PT, VEE | 23338 | 11527 |
| PT, YF | 23339 | 11528 |
| VEE | 23342 | 11529 |
| PT, VEE | 23343 | 11530 |
| PT, VEE | 23344 | 11531 |
| PT, YF | 23346 | 11532 |
| ? | 23347 | 11533 |
| YF | 23348 | 11534 |
| YF | 23349 | 11535 |
| YF | 23350 | 11536 |
| ? | 23353 | 11537 |
| PT, VEE | 23354 | 11538 |
| PT | 23355 | 11539 |
| VEE | 23356 | 11540 |
| VEE | 23357 | 11541 |
| YF | 23359 | 11542 |
| VEE | 23361 | 11543 |
| PT | 23363 | 11544 |
| YF | 23364 | 11545 |
| VEE | 23365 | 11546 |
| VEE | 23366 | 11547 |
| VEE | 23369 | 11548 |
| PT, VEE | 23370 | 11549 |
| VEE | 23371 | 11550 |
| PT, YF | 23372 | 11551 |
| VEE | 23374 | 11552 |
| VEE | 23375 | 11553 |
| VEE | 23376 | 11554 |
| PT, VEE | 23377 | 11555 |
| PT | 23378 | 11556 |
| VEE | 23379 | 11557 |
| VEE | 23380 | 11558 |
| VEE | 23382 | 11559 |
| VEE | 23383 | 11560 |
| VEE | 23386 | 11561 |
| VEE | 23387 | 11562 |
| VEE | 23388 | 11563 |
| VEE | 23389 | 11564 |
| VEE | 23391 | 11565 |
| vee | 23392 | 11566 |
| VEE | 23394 | 11567 |
| VEE | 23396 | 11568 |
| VEE | 23397 | 11569 |
| VEE | 23398 | 11570 |
| PT | 23399 |  |


| PT, VEE | 23400 | 11571 |
| :--- | :--- | :--- |
| $?$ | 23401 | 11572 |
| VEE | 23402 | 11573 |
| VEE | 23404 | 11574 |


| PT | 23405 | 11575 |
| :--- | :--- | :--- |
| VEE | 23407 | 11576 |
| PT,YF, VEE | 23408 | 11577 |
| VEE | 23410 | 11578 |
| PT,YF, VEE | 23412 | 11579 |
| PT | 23417 |  |
| VEE | 23418 | 11580 |
| $?$ | 23426 |  |
| PT | 23427 | 11582 |
| PT,VEE | 23428 | 11583 |
| PT,VEE | 23429 | 11584 |
| VEE | 23430 | 11585 |
| $?$ | 23433 | 11586 |
| VEE | 23434 | 11587 |
| PT | 23437 | 11588 |
| PT | 23439 |  |

Table IV
Full Screen Submissions for Grant Period

| ASU No. | Number of Fractions | Virus | AVS No, | Priority |
| :---: | :---: | :---: | :---: | :---: |
| B611679 | $\begin{aligned} & 5 \\ & 8 \\ & 3 \end{aligned}$ | SFS | $\begin{aligned} & 6975-6979 \\ & 9439-9446 \\ & 11181-11183 \end{aligned}$ | High |
| B619208 | 4 |  | 6980-6983 |  |
| B619315 | $\begin{aligned} & 5 \\ & 6 \end{aligned}$ | SFS, VEE, VV | $\begin{aligned} & 6984-6988 \\ & 9447-9452 \end{aligned}$ | High |
| B619467 | $\begin{aligned} & 7 \\ & 1 \end{aligned}$ |  | $\begin{aligned} & 6989-6995 \\ & 6994 \end{aligned}$ |  |
| B624784 | 1 |  | 6000 |  |
| B630654 | 5 |  | 6996-7000 |  |
| B636725 | 7 |  | 7001-7007 |  |
| B662371 | $\begin{aligned} & 6 \\ & 1 \end{aligned}$ |  | $\begin{aligned} & 7008-7013 \\ & 7009 \end{aligned}$ |  |
| B677577 | $\begin{aligned} & 5 \\ & 1 \end{aligned}$ |  | $\begin{aligned} & 7014-7018 \\ & 7017 \end{aligned}$ |  |
| B680433 | 1 |  | 3966 |  |
| B705008 | $\begin{aligned} & 2 \\ & 6 \end{aligned}$ | $\begin{aligned} & \text { HIV } \\ & \text { HIV } \end{aligned}$ | $\begin{aligned} & 8472-8473 \\ & 8480-8485 \end{aligned}$ |  |
| B705028 | 5 | HIV | 8433-8437 | High |
| B706399 | 6 | HIV | 702, 8467-8471 |  |
| B708007 | 2 | HIV | 8460-8461 |  |
| B708116 | 6 | HIV | 8454-8459 |  |
| B708122 | 12 | HIV | 8419-8430 |  |
| B708143 | 12 | HIV | 5426-5437 |  |
| B710052 | 16 | HIV | 8438-8453 |  |
| B711932 | 2 | HIV | 8465-8466 |  |
| B712294 | 2 | HIV | 8431-8432 |  |


| ASU No. | Number of Fractions | Virus | AVS No, | Priority |
| :---: | :---: | :---: | :---: | :---: |
| B712550 | 1 | HIV | 703 |  |
|  | 8 | VEE, YF | 8343-8350 |  |
| B715449 | 13 | HIV | 8486-8498 |  |
| B716543 | 3 | HIV | 8462-8464 |  |
| B721116 | 5 | Dengue, JE, YF | 6579-6583 |  |
|  | 3 | HIV |  |  |
| B721160 | 5 | VEE | 6733-6737 |  |
| B721557 | 4 | HIV | 8474-8477 |  |
| B721562 | 2 | HIV | 8478-8479 |  |
| B723123 | 5 | YF | 9453-9457 | High |
| B723344 | 14 | JE | 6738-6751 |  |
| B724441 | 2 | SFS | 8351-8352 |  |
| B724957 | 3 | RNA |  |  |
| B805951 | 5 |  | 7019-7023 |  |
| B818539 | 5 |  | 7024-7028 |  |
| B827298 | 5 |  | 7029-7033 | High |
|  | 5 |  | 11184-11188 |  |
|  | 1 |  | 7031 |  |
| B832245 | 5 |  | 7034-7038 |  |
| B832248 | 5 |  | 7039-7043 |  |
| B833909 | 9 |  | 7044-7052 |  |
|  | 1 |  | 7048 |  |
| B835741 | 6 |  | 7053-7058 |  |
| B836710 | 6 |  | 7059-7064 |  |
| B836749 | 7 |  | 7065-7071 | High |
|  | 3 | YF | 9458-9460 |  |
|  | 1 |  |  |  |
| B841474 | 4 |  | 7072-7075 |  |
| B842649 | 7 |  | 7076-7082 |  |


|  | Number of <br> ASU No, | Virustions | AVS No. |
| :--- | :---: | :--- | :--- |$\quad$ Priority

# Table $V$ <br> Special Sample Submissions for Grant Period 

| Sample | Weight | AVS No. |
| :---: | :---: | :---: |
| Lycorine | 2 gm. | 2563 |
| Pancratistatin | $\begin{array}{r} 114.9 \mathrm{mg} . \\ 41.8 \mathrm{mg} . \\ 200 \mathrm{mg} . \end{array}$ | 361 |
| Crude extract with Pancratistatin | 1.56 gm. |  |
| TRK-BS-1-10 |  | 5787-5796 |
| TRK-BS-5 |  | 5791 |
| TRK-BS-8 |  | 5794 |
| TRK-BS-13 |  | 5797 |
| Trichosanthin (GLQ 223) |  | 5999 |
| Narciclasine | 4.09 gm . | 2812 |
| Isonarciclasine | $\begin{array}{r} 200 \mathrm{mg} . \\ 1.58 \mathrm{gm} . \end{array}$ | 4223 |
| cis-Dihydronarciclasine | $\begin{aligned} & 200 \mathrm{mg} . \\ & 2.0 \mathrm{gm} . \end{aligned}$ | 4590 |
| trans-Dihydronarciclasine | $\begin{array}{r} 50 \mathrm{mg} . \\ 20 \mathrm{mg} . \\ 200 \mathrm{mg} . \end{array}$ | 4591 |
| Balanitin 4-7 (B816351) |  | 6001-6004 |
| cis-Dihydro-7-deoxynarciclasine | $\begin{aligned} & 40.1 \mathrm{mg} . \\ & 200 \mathrm{mg} . \end{aligned}$ | 4592 |
| Streptimidone | 2.068 gm. | 4796 |
| trans-Dihydro-7-deoxynarciclasine | $\begin{array}{r} 18.6 \mathrm{mg} . \\ 10.1 \mathrm{mg} . \\ 100 \mathrm{mg} . \end{array}$ | 4609 |
| iso-7-Deoxynarciclasine | 43.7 mg . | 4527 |
| Justicidin B | $\begin{aligned} & 2.0 \mathrm{gm} . \\ & 2.0 \mathrm{gm} . \end{aligned}$ | 346 |
| GRP-B3-5B |  | 4742 |
| GRP-B5-5F |  | 4747 |


| Sample Weight | AVS No, |
| :---: | :---: |
| GRP-B45-1C | 6789 |
| GRP-B45-3A | 6790 |
| GRP-18072 DiMeVal-Val-MeVal-Pro (a synthetic) |  |
| GRP-18073 Dolapyrrolidone (a synthetic) |  |
| GRP-18074 (a synthetic) |  |
| GRP-18056 (a synthetic) | 6793 |
| GRP-18075 (a synthetic) |  |
| GRP-18076 (a synthetic) |  |
| GRP-18077 (a synthetic) |  |
| GRP-18078 (a synthetic) |  |
| GRP-18079 (a synthetic) |  |
| GRP-18080 (a synthetic) |  |
| GRP-22906 (a microorganism) | 6791 |
| GRP-23148 (a plant) | 6792 |
| SB-D-45E | 4102 |
| B631963 - K084 (NSC 374923) | 2793 |
| Dolastatin 15 (1 segment and 3 units) |  |
| Dolastatin 15 |  |
| Bryostatin $1 \quad 10 \times 100 \mu \mathrm{~g}$ | 2712 |
| Dolastatin 10 ( $10 \times 100 \mu \mathrm{~g}$ | 2715 |
| Stylotellin 1 (B722095) |  |

## SEMI-SMETHETIC APPROACHES TO PANCRATISTATIN




Narciclasine-3.4-acetonide
To a solution of narciclasine ( $1.0 \mathrm{~g}, 3.25 \mathrm{mmol}$ ) in dimethylformanide (5 mL ) and dimethoxypropane ( 5 ml ) was added p -toluene sulfonfc acid ( 100 mg ). The solution was atirred at roon comperature overnight. Acetonide precipicated our of solution. Pyridine ( 1 mL ) and wacer ( 50 ml ) was added and the mixcure was stirred at room temperature for 30 minutes. The precipitate was collected by filcracion, washed with wacer and dried at $64^{\circ} \mathrm{C}$ over $\mathrm{P}_{2} \mathrm{O}_{5}$ under high vacuum to give as an amorphous powder, narciclasine-3.4-acetonide (1.05 g, 92.98), mp. 275.7\%. IR (NaCl) $\nu_{\text {max }}$ 3500, 3150, 1637, 1625, 1596, 1464, 1437, 1337. 1201. 1079. 1038. $1019 \mathrm{Cm}^{-2}$, ${ }^{1} \mathrm{HNOR} \delta\left(\mathrm{CDCl}_{3}\right) 1.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.53(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}$ ) , 2.47 (d, J $\left.=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OH}\right), 4.10-4.13(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3.4 .4 \mathrm{a}), 4.39$ (dd, J $=$ 6.7. $4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 6.05 (ABq, J $-1.2 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{O}-$ ), 6.21 (brs, 1 H , $\mathrm{NH}), 6.32$ (dd, J $-3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), $6.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-10), 9.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.

2.7-D1-( (tert-butyldinethyl)-silyloxy)-marciclasine-3.4-scetonide

Diseoprepylechyl caine ( $1.8 \mathrm{El}, 10.35 \mathrm{mmol}$ ) was added (under argon) to a heated ( $60^{\circ} \mathrm{C}$ ) solution of narciciasine 3.4 -acetonide ( $800 \mathrm{mg}, 2.3 \mathrm{~mol}$ ) in dimethylformalde ( 8 ml ) followed by cert-butyldimethylailyl chloride ( 1.04 g. 6.9 mol ). The reaulting raddish solution was scirred at room tomperature overnight and monitered by ILC (hexane: acetone, 4:1). After completion, water ( 50 ml ) was added and the viscous mixture was poured into ether ( 450 mL ). The echereal solucion wes washed wich 10 aqueous citric acid ( 50 mL ), water ( $2 \times$ 100 mb ). dried and evaporated undar reduced pressure to give a gua which was
cryscallized from thanol to afford colorless flakes of diailyloxy derivative (1.2 g, 90.5t), mp. 207-9 ${ }^{\circ} \mathrm{C}$. $[a]_{0}^{30}+61.2^{\circ}$. (c. 2.5. $\mathrm{CHCl}_{3}$ ). IR ( NaCl ) $\mathrm{v}_{\text {max }}$ 3250, 2952, 2930, 2857, 1676, 1480, 1381, 1362, 112, 1057, 837 cm ${ }^{-1}$, HNMR $\delta$ ( $\mathrm{CDCl}_{3}$ ) $0.148,0.152\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 0.219,0.225\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 0.945$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.335\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.467\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.969-4.019(\mathrm{~m}, 2 \mathrm{H}$, $2 x C H$ ). 4.065 (dd, J $=7.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ ) 4.305 (quine, J $-2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ ). 5.902 (brs, $1 H, N H$ ), $5.967\left(d, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 20 \mathrm{CH}_{2} \mathrm{O}\right), 5.984$ (d, J -1.2 $\mathrm{Hz}, 1 \mathrm{H}, 1 / 20 \mathrm{CH}_{2} \mathrm{O}$ ) , 6.153 (brt, J $-2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ). 6.799 (s, $1 \mathrm{H}, \mathrm{H}-10$ ).

1.10b-(a)-and-( $\beta$ )-Epoxy-2.7-d1-[(tert-butyldinethyl)silyloxy]-narciclasina-3.4-aceconide

To a stirred solution of 2.7-di-[(tert-butyldimathyl)-silyloxy]-narciclasine-3.4-acetonide ( 240 mg . 0.42 mool ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10 mL ) was added 0.2 M phosphate ( pH 8.0 ) buffer ( 20 ml , prepared from $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ ). The biphesic mixcure was cooled $\mathrm{co} 0^{\circ} \mathrm{C}$ and m-chloroperbenzoic acid ( $215 \mathrm{mg}, 1.2$ mol) was added and the mixcure was gtirred 20 min . ac $0^{\circ} \mathrm{C}$ and chen 4 hrs . at room temperature. The reaction was cerafully monitored (TLC, hexane:acetone, 17:3) and upon complecion $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ was added. The organic phase was separated and washad with 5 s aqueous sodium chlosulfate ( $2 \times 25 \mathrm{~mL}$ ). water ( 25 mL ). 5t aqueous sodium carbonate ( $3 \times 25 \mathrm{~mL}$ ), water ( 25 mL ), driad $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. and evaporated undar reduced pressure co produce a colorless pouder. Chromacography (VLC) on neutral $\mathrm{SiO}_{2}$ and elution with hexane-acetone (95:5) gave an inseparable inixture ( $\alpha: \beta$, lhand of hydrogenolyzed product) of epoxides. (205 mg, 83.3: combined yield). ap. $196-9^{\circ} \mathrm{C},[a]_{\mathrm{D}}{ }^{20}+97.1^{\circ}$ (c, 1.05, CHC1s). IR (NaC1) Year 3350, 2953. 2930, 1680, 1473, 1361, 1344, 1252, 1106, 1063, 1034, 839, $777 \mathrm{~cm}^{-1}, \mathrm{H}_{\text {H2LR }}\left(\mathrm{CDCl}_{3}\right) 0.155\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.215$, 0.242 (s, 3 H each, $\mathrm{SiCH}_{3}$ ), $0.950\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.007\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
 J-8.0Hz, 1H), 4.258-4.266 (m, 3H), 5.763 (brs, 1H, NH), 5.972 (d, 1H, J $1.6 \mathrm{~Hz}, 2 \mathrm{H}, 1 / 20 \mathrm{CH}_{2} \mathrm{O}$ ) . $6.014\left(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OHH}_{2} \mathrm{O}\right.$ ). 7.294 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-$ 20). EIMS ( $\mathrm{m} / 2$ ) 591 (28). 576 (10), 534 (100). 518 (4). 476 (10), 430 (10). 344 (4), 326 (6).

(major product)
la and $1 \beta$-Hydroxy-2,7-di-[(tert-butyldimethyl)silyloxy]-10b, 4a-cis and trans-dihydro-narciclasine-3.4-acetonide

To a solution of epoxide mixture (see above) ( $100 \mathrm{mg}, 0.17 \mathrm{mmol}$ ) in mechanol:echylacetate ( $1: 3,20 \mathrm{~mL}$ ) was added 10 s palladium supported on carbon ( 100 mg ). The reacrion mixture was evacuated and flushed with hydrogen ( $5 x$ ) and then hydrogenated at amblent cemperature and pressure for 1 hr using a hydrogen filled balloon. The catalyst was removed by filcration and the filtrate concencrated to dryness to give a powder ( 97 mg ), purified on PLC ( $\mathrm{SiO}_{2}$, hexane:ethylacetate, $4: 1$ ) to give a mixture ( $1: 17$, ${ }^{2}$ HNMR analysis) of 18, 1Oba and la, 10b $\beta$ alcohols ( $80 \mathrm{mg}, 808$, found to lose the phenolic silyl group in solucion), es an amorphous powder fron acetone-hexane, mp 116-9•, (a) ${ }_{0}^{30}+7.5^{\circ}\left(\mathrm{c}, 0.55, \mathrm{CHCl}_{3}\right)$, IR ( NaCl ) $\nu_{\text {ana }} 3250$. 2952, 2929, 1675, 1473. 1382, 1360, 1250, 1220, 1111, 1069, 1042, $839 \mathrm{~cm}^{-1}$, ${ }^{1}$ HNMR of major product (la-hydroxy isomer). $\delta\left(\mathrm{CDCl}_{3}\right) 0.096,0.158$ ( $\mathrm{s}, 3 \mathrm{H}$ each, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.231$ (s. $\left.6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.403\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.531\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.310$ (brs, $1 \mathrm{H}, \mathrm{OH}$ ). 2.926 (brs, $1 \mathrm{H}, \mathrm{H}-10 \mathrm{~b}$ ), 3.745 (dd, J $-7.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ) , 3.828 (brs, 1 H , $\mathrm{H}-4 \mathrm{a}), 4.109(\mathrm{dd}, \mathrm{J}=5.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.196$ (d, J $=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 4.217 (dd, J = 7.3, $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ). 5.115 (brs. $2 \mathrm{H}, \mathrm{NH}$ ), 5.930 (d, J -1.3 $\mathrm{Hz}, 1 \mathrm{H}, 1 / 20 \mathrm{CH}_{2} \mathrm{O}$ ), $5.993\left(\mathrm{~d}, \mathrm{~J}-1.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 20 \mathrm{CH}_{2} \mathrm{O}\right), 6.415(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-10)$.

(asjor product)
1a,2 $\alpha, 3 \beta, 4 \beta, 7$-pentacetyl-10b, 4e-cis-dihydro-narciclasine (la,10b $\beta$ isopencratiseacin penteacetate) and Pancratistatin pentaceotate

To acooled ( $0^{\circ} \mathrm{C}$ ) solution of the mixture of silylether (see above, 15 mg. 0.025 maol ) in methenol ( 2 mL ) and water ( 0.5 ml ) was addod acetic acid ( 0.5 ml ) and trifluroacecic acid ( 0.5 m ). The solucion was stirred ac $0^{\circ} \mathrm{C}$ for

2 hrs and then stored in a refrigerator overnight. Solventa were removed under reduced pressure and the resulting product was dried under high vacuum over phosphorous pentoxide for 4 hrs . The product was then acetylared using pyridine ( 0.5 mi ) and acetic anhydride ( 0.5 mL ) at roon temperature overnight followed by heating at $60^{\circ} \mathrm{C}$ for 1 hr . The reaction mixture was quenched with methanol and the volatile materials were evaporated through azeotropic distillation wich mechanol and cyclohexane. Product was found to be a (1:9) mixture of pancratistacin pentancetate (decected only by NMR spectrim of the mixcure) and la, lob $\beta$-isopancratistatin pentaacetate. The products ware separated on a coluan of ailica gel by elucion with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ : $\mathrm{CH}_{3} \mathrm{OH}_{1} 99: 1$ to give 9.0 mg of an amorphous powder from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane of $1 \alpha, 2 \alpha, 3 \beta, 4 \beta, 7$-pantaaceryl-10b,4a-cis-dihydro-narciclasine, mp.165-9•, [a] ${ }^{30}+135\left(c, 0.2, \mathrm{CHCl}_{3}\right)$, IR
 $\mathrm{Ca}^{-1}{ }^{1}{ }^{H} \mathrm{HNMR}^{\prime}\left(\mathrm{CDCl}_{3}\right)$ essignment besed on ${ }^{2} \mathrm{H}$, ${ }^{1} \mathrm{H}$-COSY spectra, 1.893, 1.979, 2.027, 2.166, 2.351 (each $\mathrm{g}, 3 \mathrm{H}$ each, $5 \times 0 \mathrm{OCH}_{3}$ ). $3.305(\mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1 \mathrm{Ob}$ ) , 3.933 ( $\mathrm{t}, \mathrm{J}-2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$ ), 5.405 (dd, J $=10.7,3.2 \mathrm{~Hz}, \mathrm{lH}, \mathrm{H}-$ 2). 5.460 (brs, $1 \mathrm{H}, \mathrm{NH}$ ). 5.470 (dd, J $-10.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 5.488 (brs, $1 \mathrm{H}, \mathrm{H}-4$ ) , 5.532 ( $\mathrm{t}, \mathrm{J}-3.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ ), $6.068\left(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 20 \mathrm{CH}_{2} \mathrm{O}\right.$ ), 6.085 (d, J $\left.=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 20 \mathrm{CH}_{2} \mathrm{O}\right) .6 .626(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-10)$, the chemical shift for NH shifted downfield ac $\delta 5.590$ in dilute solutions (ca. $1.5 \mathrm{mg} / 0.5 \mathrm{~mL}$ ). Cls reletionship of the protons at $\mathrm{H}-4 \mathrm{a}, \mathrm{H}-1 \mathrm{Ob}$ and $\mathrm{H}-1$ established by NOE measuremerc. Thus strong NOE's were observed becween H-10b, H-1, H-2, H-10, H4a, and H-4a also gave NOE enhancement to NH). The NOE's also establishes proof for the chair conformation of ring $C$.

(major product)

## La-Isopancratistarin

Palladium/carbon (108, 80 mg ) was added to the epoxide mixture deacribed above ( $80 \mathrm{mg}, 0.14 \mathrm{mal}$ ) in anhydrous THF ( 45 mL ) and the hydrogenolysis was performed as described in the previous experiment for 8 hre. The filcrace obcalned afcer removal of the cacalyst was concentrated to dryness to give a 2:1 mixcure of crans:cis dihydro product, by 'HNMR analysis. The products were separaced on PLC (hexane-acecone ( $17: 3$ ) to give trans dihydro product (42 mg. 52.34 ) and cis dihydro product ( $20 \mathrm{mg}, 24.88$ ), identical (HNMR and TLC) with che cis product obcained in che previous hydrogenolysis reaction. Slightly impure erans dihydro produce was obeained as an amorphois powder fros acetone-hexana; ${ }^{1}$ Himl $6\left(\mathrm{CDCl}_{3}\right)$ of major product: $0.104,0.138,0.190,0.199$ (each a, 3 H each, $\left.2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.902,0.971$ (each s, 9 H each, $\left.2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),:$ 1.312, 1.433 (each s, 3 H each, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.814$ (dd, J $=14.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 10b). 3.085 (d, J $-3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}) .3 .457(\mathrm{dd}, \mathrm{J}=14.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~A})$, 3.866 (dd, J $-7.2,5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ). $4.055(\mathrm{~m}, ~ 1 \mathrm{H}, \mathrm{H}-1), 4.207(\mathrm{t}, \mathrm{J}-8.5$
$\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-3,4$ ), 5.696 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 5.910\left(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 20 \mathrm{CH}_{2} \mathrm{O}\right), 5.950$ (d, J $=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 20 \mathrm{CH}_{2} \mathrm{O}$ ), 6.998 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-10$ ).


To a cooled ( $0^{\circ} \mathrm{C}$ ) solution of trans product ( 25 mg 0.042 mmol ) in THF: $\mathrm{CH}_{3} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O}$ ( $1.5: 2: 1,4.5 \mathrm{~mL}$ ) was added acetic acid ( 0.5 mL ) and triflworoacetic acid ( 1.0 mL ) and stirred at the same temperature for 1 hr. After storing overnight in the refrigerator, the reaction was not complete and required hearing to $40^{\circ} \mathrm{C}$ for 8 hrs. Solventa were removed under reduced pressure and the product was purified by flash chromatography on silica gel. The product, la-isopancracistacin (11.1 mg. 818), eluted with a $9: 1$ mixtura of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}$ and was obtalned as an amorphous powder, mp. 325-7, IR ( KBr ) yan 3500-3300. 1679. 1470, 1337, 1285, 1210, 1141, 1089, 1064, 802, $725 \mathrm{~cm}^{-1}$, ${ }^{1}$ HNKR (DKSO $-d_{8}+\mathrm{D}_{2} \mathrm{O}$ ) 2.80 (dd, $10.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{~b}$ ), 3.31 (dd, J $=13.2$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 3.76(\mathrm{~m}, 2 \mathrm{H}) .3 .81(\mathrm{c}, \mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (brs, 2 H ). 5.97. 6.00 (only two AB lines visible, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$ ), 7.27 (s. $1 \mathrm{H}, \mathrm{H}-10$ ).


1a.2e,3A,4ק,7-Pontacatyl Lsopancratistacin
la-Isopancracisatin ( 2.7 mg ) was treated with acetic anhydride ( 0.2 mL ) in pyridine ( 0.2 ml ) at $50^{\circ} \mathrm{C}$ for 2 hre. The mixture. quenched with mochanol. was raduced to dryness under a nicrogen strean. Product was chromatographed on a coluan of sillca eol and eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}$ (49:1) to give an amorphoue powder of la-isopancracistatin pencascatace ( $3.4 \mathrm{mg}, 76.58$ ). mp. 146-8. IR (NaCl) $V_{\text {man }} 3350,2930,2850,1755,1676,1482,1370,1248,1226$, 1176, 1084. 1059, $1033 \mathrm{~cm}^{-1}$, ${ }^{1} \mathrm{HNRR} \delta\left(\mathrm{CDCl}_{3}\right) 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) .2 .09(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{COCH}_{3}$ ) , $2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}_{3} \mathrm{COCH}_{3}\right), 3.44$ ( t , $\mathrm{J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{~b}), 3.84(\mathrm{t}, \mathrm{J}-11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 5.25(\mathrm{dd}, \mathrm{J}=10.8$,
$3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.42(\mathrm{dd}, \mathrm{J}=11.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.44(\mathrm{t}, \mathrm{J}-3.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1$ ), $5.53(\mathrm{E}, \mathrm{J}=3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.06\left(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{O}\right)$, 6.07 ( $\mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{O}$ ), 6.54 (s, $1 \mathrm{H}, \mathrm{H}-10$ ), apectrum was aseigned on the basis of 2 D -COSY, and the stereachemistry by NOEDS data.


1a-Hydraxy-2-[ (tert-butyldimathy1)silyloxy]-10b, 4a-cis and trans-1sopancraciatatin-3,4-acatonide and la-hydroxy-2-[(tert-butyldimethyl)silyloxyl- $\Delta(10 \mathrm{~b}, 4 \mathrm{~m})$-isopancratiatatin-3,4-acetonide

The silyloxy epoxide mixture ( 150 mg ) was dissolved in THF ( 10 mL ) and hydrogenolyzed using hydrogen-10ะ Pd/C (50 mg) as described. Chromacography on a aillca gel column and alution with hexane-acecone (7:3) gave 7-
deailylated products (interestingly desilation was occurring during the hydrogenolysis reaction as cryscallized epoxida was free of benzoic acid by NMR Crans:cis: $\Delta(10 b, 4 a)$ in che ratio of (5:3:5). The 10b, 4a trans product (50 mg. 38t), crystallized from mechanol as shining flakes, mp. 274-5; IR (NaCl) $V_{\text {max }} 3530$, 3360, 2952, 2939. 1678, 1466, 1373, 1361, 1345, 1260, 1230, 1085. $1071 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NHR $\delta\left(\mathrm{CDCl}_{3}\right) 0.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.18(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}), 0.94$ ( s, 9H, $\operatorname{SiC}\left(\mathrm{CH}_{3}\right), 1.37$ ( $\mathrm{E}, 3 \mathrm{H}_{1} \mathrm{CH}_{3}$ ), 1.48 ( $\mathrm{E}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 2.90 (dd, J $=14.3,6.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{Ob}$ ) , 3.13 (d, J $-2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), 3.57 (dd, J $=14.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4 \mathrm{e}$ ), 3.92 (dd, $J=6.8,5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ). 4.23 (ddd, J $=7.4,4.6,2.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1$ ) $.4 .25(\mathrm{C}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.29(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.03$ (ABq, J $-3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$ ), 6.04 (brs, $2 \mathrm{H}, \mathrm{NH}$ ) 6.93 (s, $2 \mathrm{H}, \mathrm{H}-10$ ) . 12.48 ( $s, 1 \mathrm{H}$, ArOH), (assignment was made on the basis of a 2 D -COSY analysis and stereochamical assignment was accomplished by NOEDS measurement).


Continued eluc!on of the colunn with the same solvent gave a mixture of als and $206,4 \mathrm{a}$ ( $(4)$ product. The ais product could not be separated
but crystallization of the mixture from methanol yielded pure 10b, 4a ( $\Delta$ ) olafinic product (55 mg, 41.48). recrystallized from methanol as flakes, mp. 266-8: IR (NaCl) v $V_{\text {max }} 3535$ (brs). 2989. 2959. 2931, 2897, 2857, 1677, 1625. 1485, 1422, 1373. 1253. 1215, 1117. 1086, $1036 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NNR $\delta\left(\mathrm{CDCl}_{3}\right) 0.17$ (8, $3 \mathrm{H}, \mathrm{SiCH}), 0.21(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}), 0.97\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right), 1.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.50\right.$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ) , $2.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}$ ), 3.86 (dd, $\mathrm{J}=7.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.50 ( t , $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.76(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.11(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4), 6.10\left(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 20 \mathrm{CH}_{2} \mathrm{O}\right), 6.11\left(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 20 \mathrm{CH}_{2} \mathrm{O}\right)$, $6.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-10), 9.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 12.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. Assignment is based on 2D-COSY spectrum and stereochenistry was determined by NOEDS measurement. Hydrogenolysis of the silyloxy epoxide nixture on a scale better than the one reported here in different solventa (ethyl acetate, mixture of echyl acetate and methanol) produced similar products. Hydrogenolysis in methanol mostly produced che $\Delta(10 \mathrm{~b}, 4 \mathrm{a})$ product.


## 2,7-Discetoxy-narciclesine-3,4-aceconide

Acetonide was prepared from narciclasine ( 1 g ) as described before and all the solvents were evaporaced under reduced pressure to give a crude product which was acetylated wich acetic anhydride ( 3 mL ) - pyridine ( 3 mL ) at $60^{\circ} \mathrm{C}$ for 6 hrs . Solvents ware evaporated under reduced pressure after addition of methanol and then chromacographed on ailica gel column and eluted with hexane-ethyl acetate-methylene chloride ( $3: 1: 2$ ) to give pure diacetate $(1.2 \mathrm{~g}$. 85.48) as an amorphous powdar from acetone-haxanc, mp. $130-33{ }^{\circ} \mathrm{C}$; IR ( NaCl ) $V_{\text {aex }} 3350$, 1775, 1745, 1671, 1482, 1373, 1233, 1210, 1177, 1081, 1031 cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR $6\left(\mathrm{CDCl}_{3}\right) 1.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.39$ (s. 3H, $\left.\mathrm{COCH}_{3}\right), 4.12$ (dd, J $-7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 4.16 (brs, $1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$ ). 4.31 (dd, J $=7.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.39$ (dd, J $=4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 6.02 (brs, $2 \mathrm{H}, \mathrm{NH}$ ), 6.09 (brs, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$ ), 6.12 (c, J $=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 6.98 ( s , 1H, H-10).


1,10b-(a)-Epoxy-2,7-diacetoxy-narciclesina-3,4-acetonide
To a solucion of narciclasine acetonide diacecate ( $1.0 \mathrm{~g}, 2.32 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL}$ ) was added 0.2 M soadium phosphate buffer ( $\mathrm{pH} 8,60 \mathrm{~mL}$ ) followed by m-chloroperbenzolc acid ( $1.4 \mathrm{~g}, 3.5$ nolar equivalent). The reaction mixture was atirred at roon temperature overnight and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{ml})$ was added and the orgenic layer was seperated, washed with st solucion of sodium thiosulfate ( $3 \times 200 \mathrm{~mL}$ ). 5 s solucion of godime carbonate ( $3 \times 200 \mathrm{~mL}$ ), water ( $2 \times 100 \mathrm{~mL}$ ) , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporaced to give almost pure epoxide as a powder, crystallized from acetone-hexane ( $700 \mathrm{mg}, 67.58$ ) as amorphous granules, mp. 231-232 ${ }^{\circ} \mathrm{C}$; IR ( NaCl ) $\mathrm{L}_{\text {max }}$ 3370, 1792, 1749, 1682, 1500, 1365,
 $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 4.00(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} \cdot$ 4a). 4.03 (s, $1 \mathrm{H}, \mathrm{H}-1$ ), 4.27 (apparent $\mathrm{t}, \mathrm{J}-8.1 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{H}-3$ ), 4.38 (dd, J = $7.9,6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 5.33(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.82$ (brs, $1 \mathrm{H}, \mathrm{NH}$ ), 6.07 (ABq, J $\left.=1.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.43(\mathrm{~s}, \mathbf{2 H}, \mathrm{H}-10)$.


7-deosynarciclasina

iso-7-deoxynarciclasine

trans-dihydro-7-
-deoxynarciclasine
cis-dihydre-7-deoxynarciclasine

Hydrogamation of 7-daoxynaraiciaging. A solution of 7-dsoxynarciclasine (1.02 g. 3.4 maol) in methanol-ethanol ( $400 \mathrm{ml}, 1: 1$ ) was degassed with nitrogen, platinus oxide ( 57 mg ) was carefully added and the resulting aixture was hydrogemated at ambiont temperature and pressure for 24 hrs . The reaction mixture wes filtered through celite and concentrated in yacuo to afford crude ise-7-deoxymarciclesine ( 150 mg, dark brown solid) which crystallized from pyridine-haxane as a powder ( $100 \mathrm{mg}, 9.8 \mathrm{y}$ yield). Identity with earlier sample of the compound was confirmed by mp and nar." The mother liquor concained cis and srans-dihydro-7-deoxymarciclasine.

cis and crans-dihydronarcichasine triacetate. The crystallization residue from 1so-7-deoxynarciclasine (see above) was concentrated to dryness and created with acetic anhydrida ( 7 ml ) and pyridina ( 10 ml ) at $60^{\circ}$ for 6 hrs. Mechanol was added and the resulting solution was concentrated to dryness. The ixture was flash chromatographed over silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ : MeOH (99.40.6 ) cwice to furnish trans-dihydro-7-deoxymarciclasine ( $112 \mathrm{mg}, 7.68$ yield) and cis-dihydro-7-deoxynarciclasine ( $752 \mathrm{mg}, 51.2 \mathrm{y}$ yield). Identity with earlier sample of the compound was confirmed by mp and nmr.


Trant-dihydro-7-deorymareiclasina. To a solution of the triacetate (112 mg) in methanol ( 20 ml ) was added a saturated solution of barium hydroxide ( 6 mi ). After heating for 15 min . at $100^{\circ} \mathrm{C}$, the mixture was cooled, saturated with solid $\mathrm{CO}_{2}$, stirred at rooe temperature overnight and filtered. The filtrate was evaporated to dryness and the product was crystallized from methanol to give frans-dihydro-7-deoxynarciclasine ( 51 mg , 65 s yield). Identity with carlier sample of the compound was confirmed by mp and nar.

alladihydro-7-deoymaraicharing. To a solution of the triacetate (750 mg) in methanol ( 80 ml ) was addad potasain carbonate ( 300 mg ). The mixture was atirred at roon temperature for 2 hra , then filtered through a column of Sephadex LH-20. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ (3:2) removed the product from the coluan. Crystallization from acetona-MeOH afforded cis-dihydro-7deoxymarciclasine as crystals ( 419 mg , 80\% yield). Identity with earlier sample of the compound was confirmed by mp and nor.


[^0]:    'For Part 161, see P.M. Blumberg and G.R. Pertir in BBA Reviews on Cancer, in preparation.

[^1]:    (1) For the preceding paper, see: Pettit, G. R.; Singh, S. B.; Hogan, F.; Burkett, D. J. Med. Chem. In prom.
    (2) (e) Potit, G. R.; Slayh, S. B.; Niven, M. L.; Hamel, E.; Schmidt. d. M. J. Nat. Prod. 1207, 50, 119. (b) Pettit, G. R.; Singh, S. B. Can. J. Chem. 1507, 65, 23:0. (c) Pettit, G. R; Singh, 8. B.; Niven, M. L.; Schmidt, J. M. Can. J. Chem. 1806, 68, 408. (d) Pettit, G. R.; Singh, S. B.: Schanidt, J. M.; Niven, M. Li; Hemel, E; Lin, C. M. J. Nat. Prod. 18es, 51, 517. (e) Lin, C. M.; Singh, S. B; Chu, P. S.; Dempcy, R. O.; Schmidt, J. M.; Pottit, G. R.; Memel, E Mol. Pharmeol. 1908, 34, 200. (f) Pettit, G. R.; Singh, S. B.; Lin, C. M.; Hamel, E.; Alberte, D.; Garcia-Kendall,
    D. Experientia 1000, 46, 209.
    (3) Pettit, G. R.; Singh, S. B.; Niven, M. L. J. Am. Chem. Soc. 1988, 110. 8639.

[^2]:    (6) (a) Summers, M. F.; Marzilli, L. G.; Bax, A. J. Am. Chem. Soc. 1986, 108, 4285. (b) Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093. (c) Bax, A.; Aszalos, A.; Dinya, Z; Sudo, K. J. Am. Chem. Soc. 1886, 108, 8056.
    (7) Kupchan, S. M.; Maruyama, M. J. Org. Chem. 1971, 36, 1187.
    (8) Suzuki, H.; Fuchita, T.; Iwasa, A.; Mishina, T. Synthesis 1878, 905.

[^3]:    'For Part 177 see Pertit and Schaufelberger (1)
    Deceased March 25, 1981

[^4]:    'Atomic coordinates for these structures have been deposited with the Cambridge Crystallographic Data Centre and can be obrained on request from Dr. Olga Kennard. University Chemical Laboratory. Lenstheld Road, Cambridge CB2 I EW, UK.

[^5]:    1. G.R. Perrit and D.E. Schaufelberger, J. Nat. Prod. 51, 1104 (1988).
    2. J.B. Harborne and C.A. Williams, in: "The Biology and Chemistry of the Compositae." Ed. by V.H. Heywood, J.B. Harborne, and B.L. Turner, Academic Press, London, 1977, p. 505.
    3. H. Robinson, F. Bohimann, and R.M. King, Pbotolugia. 46. +21(1980).
    t. G.R. Perert, Y' Kamano, R. Aoyagı, C.L. Herald, D.L. Doubek. J. M. Schmadr, and J J Rudive. Tetrabedron. 41.985 (1985).
    5 L.E. Tully. M.S. Carson. and T.B.H. M. Murry. Tetrabedron Lett. . 28, 5925 (1987).
    4. H.J. Woerdenbag. W. Lemstra. H. Hendracks. Th. M. Malingre, and A. W. T. Kunings, Planta Hed. 53. i18 (1987).
    5. P S. Kalsi. S. Khurana, and K.K. Talwar, Pbytokemistry. 24. 103 (1985).
    6. R.W. Doskotch, J.H. Wilton, F.M. Harraz, E.H. Fairchild, Chin-Teh Huang, and F.S. El-Feraly. J. Nut. Prod.. 46. 923(1983).
    7. J. Borges-del-Castillo, M.T. Manresa-Ferrero, F. Rodriguez-Luis, P. Vazquez-Bueno. M.P. Gupta, and P. Joseph-Nathan, J. Nat. Prod.. 45, 762 (1982).
    8. P. W. Le Quesne, M.D. Menachery, M.P. Pastore, C.J. K.lly, T.F. Brennan. K. D. Onan. R.F. Raffauf, and C.M. Weeks.J. Org. Chem. . 47. 1519(1982).
    9. K. Watanabe, N Ohno, H. Yoshoka, J. Gershenzon, and T.J. Mabry. Phyrobemerm, 21. - (o) (1982).
    10. J. W. Klimash and N. H. Fischer, Phytu.hemistry. 20, 840 (1981).
    11. O. Spring, K. Albert, and W. Gradmann, Phytahemestr. 20. 1883 (1981).
    12. I.H. Hall, C.D. Starnes Jr., K.H. Lee, and T.G. Waddell. J. Phorm. Sit., 69. 537 (1980).
    13. P.L. Cowall, J.M. Cassady, C.-J. Chang, and J.F. Kozlowski, J. Org. Chem. . 46, 1108 (1981).
    14. K.H. Lee, T. Ibuka, H. Furukawa, M. Kozuka, R.-Y. Wu, I.H. Hall, and H.-C. Huang. J. Pharm. Sci.. 68, 1050(1980).
    15. P.S. Manchand and J.F. Blount. J. Org. Chew. 43, 4352 (1978).
    16. A.T. McPhail and K.D. Onan, J. Chem. Sin.. Perken Trans. 2. 1798 (1975).
    17. F. Bohlmann, C. Zdero, H. Robinson, and R.M. King, Pbytoibemestry. 21. 1087 (1982).
    18. F. Bohlmann, C. Zdero. H. Robinson, and R.M. King, Phyıkhemistry. 21. 685 (1982).
[^6]:    'For Part 106. see Nassimbent at al. (1).
    Osaka College of Pharmacy. Osaka 580 . Japan.

[^7]:    'For part 194, see Drexler er al. (1).

[^8]:    'For contribution 167 refer to ref. 1.
    ${ }^{2}$ Author to whom correspondence may be addressed.
    ${ }^{3}$ Department of Chemistry. University of Arizona. Tucson, AZ 85721. U.S.A.
    ${ }^{4}$ National Museum of Natual History. Smithsonian Institution. Washingtun, DC 20560, U.S. A.
    ${ }^{9}$ Revision received March 27. 1990.
    ${ }^{6}$ By comparison with authentic specimens provided by Dr. I. Kitagawa (see ref. 6).
    Printed in Canada imprime als Canada

[^9]:    ${ }^{7}$ Interestingly, hymenialdisine was previously active in the KB cell line, but inactive employing the P388 leukemia: of. ref. 5. Perhaps the initial negative results were due to the sparingly soluble properties of this pyrrologuanidine.

[^10]:    ${ }^{8}$ Tables of observed and calculated structure factor amplitudes. calculated hydrogen coordinates, isotropic temperature factors, bond lengths and angles, torsion angles, and a packing diagram may be purchased from the Depository of Unpublished Data, CISTI. National Research Council of Canada. Ottawa, Ont., Canada K1A 0S2.
    Tables of positional parameters and bond distances have also been deposited with the Cambridge Crystallographic Data Centre, and can be obtained on request from The Director, Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW, U.K.

[^11]:    ${ }^{1}$ For Part 176, see Kamano of al. (1).

[^12]:    1. Y. Kamano, G.R. Pertit, D.E. Schaufelberger, C. L. Herald, P. Blumberg, and W. S. May, J. Liq. Chromatogr. 12. 553 (1989).
    2. G.R. Pettit, G.M. Cragg, M.I. Suffness, D. Gust, F.E. Boettner, M. Williams, J. M. Schmidt, and P.D. Ellis, J. Org. Chem.. 49, 4258 (1984).
    3. G.R. Pertit, G.M. Cragg, and M. Suffness, J. Org. Chem. 50. 5060 (1985).
    4. G.R. Pettir and D.E. Schaufelberger, J. Nat. Prod. 51, 1104 (1988).
    5. P. Satyanarayana, P. Subrahmanyam, K.N. Viswanatham, and R.S. Ward, J. Nat. Prod.. 51, 44 (1988).
