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Abstract

During the period of 12/8/2006 - 6/30/2007, we performed the following studies in radar
sensor network:

1. Sense-through-foliage target detection using UWB radar sensor network based on real-
world data;

2. Foliage clutter modeling using UWB radars;

3. Outdoor UWB channel modeling based on field data;

4. Multi-target detection using radar sensor networks (theoretical studies);

5. SVD-QR and graph theory for MIMO channel selection;

6. Image fusion using radar sensor network;

7. Performance analysis of energy detection for cognitive radio wireless networks;

8. Superimposed code based channel assignment in multi-radio multi-channel wireless mesh
networks.

1 Sense-through-Foliage Target Detection using UWB Radar Sen-
sor Network

In [1], we proposed a Discrete-Cosine-Transform (DCT)-based approach for sense-through-foliage
target detection when the echo signal quality is good, and a Radar Sensor Network (RSN) and
DCT-based approach when the echo signal quality is poor. A RAKE structure which can combine
the echos from different cluster-members was proposed for clusterhead in the RSN. We compared
our approach with the ideal case when both echos are available, i.e., echos with target and without
target. We also compared our approach against the scheme in which 2-D image was created via
adding voltages with the appropriate time offset. Simulation results show that our DCT-based
scheme works much better than the existing approach, and our RSN and DCT-based approach can
be used for target detection successfully while even the ideal case fails to do it. In [3], we generalized
the RAKE structure and propose waveform diversity combining and maximum likelihood (ML)-
ATR algorithms for nonfluctuating target as well as fluctuating target. In [4], a differential based
approach was proposed for sense-through-foliage target detection.
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2 Foliage Clutter Modeling Using UWB Radars

In [5], we proved that the amplitude of foliage clutter follows log-logistic model using maximum
likelihood (ML) parameter estimation as well as the root mean square error (RMSE) on PDF curves

between original clutter and statistical model data. We not only investigate log-logistic model, but

compare it with other popular clutter models, namely log-normal, weibull and nakagami. It shows

that log-logistic model not only achieves the smallest standard divination (STD) error on estimated
model parameters, but also the best goodness-of-fit and smallest RMSE for both poor and good

clutter signals.

3 Outdoor UWB Channel Modeling Based on Field Data

In [21, we studied the statistical modeling for outdoor Ultra-WideBand (UWB) channel in rich

scattering and time-varying environment based on extensive data collected using UWB radar. We

validated that UWB echo signals (within a burst) dont hold self-similarity, which means the future

signals cant be forecasted based on the current received signals and channel modeling is necessary
from statistical point of view. In outdoor UWB channel, the multipath contributions arrive at the

receiver are grouped into clusters. The time of arrival of clusters can be modeled as a Poisson arrival

process, while within each cluster, subsequent multipath contributions or rays also arrive according

to a Poisson process. At different field (near field, medium field, and far field), we observe that

the Poisson process parameters are quite different. We also observe that the amplitude of channel

coefficient at each path follows Rician distribution for medium and far field, and its non-stationary

for paths from near field (one of two Rician distributions), and these observations are quite different
with the IEEE indoor UWB channel model and S-V model.

4 Multi-target Detection Using Radar Sensor Networks

In many military and civilian applications, estimating the number of targets in a region of interest

plays a primary role in performing important tasks such as target localization, classification, recog-

nition, tracking, etc. Such an estimation problem is however very challenging since the number

of targets is time-varying, targets state is fluctuating, and many kinds of targets might appear in

the field of interest. In [6], we developped a framework for estimating the number of targets in a

sensing area using Radar Sensor Networks (RSNs): (1) we formulated the multi-target detection

problem; (2) we modelled signals, interference (e.g., clutter, jamming, and interference between

radars), and noise at radar sensors; (3) we proposed a Maximum Likelihood Multi-Target Detec-

tion (MLMTD) algorithm to combine received measurements and estimate the number of targets

present in the sensing area. We evaluated multi-target detection performance using RSNs in terms

of the probability of miss detection PMD and the root mean square error (RMSE). Simulation

results showed that multi-target detection performance of the RSNs is much better than that of
single radar systems.

In [7], we investigated the problem of jointly classifying and identifying multiple targets in radar

sensor networks where the maximum number of categories and the maximum number of targets in

each category are obtained a priori based on statistical data. However, the actual number of targets
in each category and the actual number of target categories being present at any given time are

assumed unknown. It is assumed that a given target belongs to one category and one identification

number. The target signals are modeled as zero-mean complex Gaussian processes. We propose

a joint multi-target identification and classification (JMIC) algorithm for radar surveillance using
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cognitive radars. The existing target categories are first classified and then the targets in each
category are accordingly identified. Simulation results are presented to evaluate the feasibility and
effectiveness of the proposed JMIC algorithm in a query surveillance region.

5 SVD-QR and Graph Theory for MIMO Channel Selection

In [8], we presented Singular-Value Decomposition- QR with Threshold (SVD-QR-T) algorithm to
select a subset of channels in virtual MIMO wireless sensor networks (WSN) in order to reduce
its complexity and cost. SVD-QR-T selects best subset of transmitters while keeping all receivers
active. The threshold is adaptive by means of Fuzzy C-Mean (FCM). Under the constraint of the
same total transmission power, this approach is compared against the case without channel selec-
tion in terms of capacity, bit error rate (BER) and multiplexing gain in the presence of water-filling
as well without. It is shown that in spite of less multiplexing gain, when water-filling is applied,
SVD-QR-T FCM provides lower BER at moderate to high SNR; in case of equal transmission power
allocation, SVD-QR-T FCM achieves higher capacity at low SNR and lower BER. In general, it
provides satisfying performances compared to the case without channel selection but reduced cost
and resource. In [9], we propsed Maximum Spanning Tree Searching (MASTS) algorithm on a basis
of graph theory to select a set of subchannels, which consequently reduce the complexity and cost
of full virtual MIMO while providing network layer connection for all sensors. The performances
are analyzed through Monte Carlo simulation in terms of capacity with/without water-filling, di-
versity gain and multiplexing gain. It is shown that MASTS virtual MIMO can achieve satisfying
performances compared to those of full virtual MIMO.

In [10], the above two approaches were compared against the case without channel selection in
terms of capacity, bit error rate (BER) and multiplexing gain in the presence of water-filling as well
as the circumstance of without water-filling under the same total transmission power constraint.
Despite less multiplexing gain, when water-filling is applied, MASTS achieves higher capacity and
lower BER than virtual MIMO without channel selection at moderate to high SNR while SVD-QR-
T FCM provides the lowest BER at high SNR; in case of no water-filling and equal transmission
power allocation, MASTS still offers the highest capacity at moderate to high SNR but SVD-QR-T
FCM achieves the lowest BER. Both algorithms provide satisfying performances compared to the
case without channel selection but reduced cost and resource.

6 Image Fusion Using Radar Sensor Network

Owning to Rician fading and white gaussian noise, the scattered back image signal of radar sensors
would be distorted to some extend. In [11], we applied two schemes named Equal Gain Combination
(EGC) and Maximal Ration Combination (MRC) respectively for RSN image fusion. Simulation
results show that image fusion by means of MRC can provide much better image quality based on
both minimum mean squared error (MMSE) and the mean of structural similarity (MSSIM) index if
the channel estimation offers satisfying channel side information at receiver (CSIR). However, EGC
itself does not require any channel estimation scheme and thus more simple to implement. In [12],
we considerred cross-layer design for image transmission in wireless sensor networks. We combined
application layer, MAC layer and physical layer together. According to analysis and simulation,
high priority service will achieve better PSTR performance. Low priority service achieve better
performance at the first stage, and it become worse later. The application level QoS is a tradeoff
with the energy consumption between high priority service and low priority service.
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7 Some Other Studies on Non-Radar Sensor Networks

7.1 Performance Analysis of Energy Detection for Cognitive Radio Wireless
Networks

While energy detection has been extensively studied in the past, hidden terminal and exposed node

problems are ignored through assuming that the environment is same for transmitters and receivers.

In [13], this paper, considering hidden terminal and exposed node problems, we make a theoretical

analysis on the performance of commonly used energy detection methods, such as ideal method,

transmitter-independent method and transmitter/receiver-cooperated method, in terms of detec-

tion probability. Corresponding ana- lytical models are provided. Performance theoretical curves

are acquired to compare the characteristics for individual energy detection methods under various

scenarios. Moreover the upper bound for detection probability is achieved and is compared under

various system traffic intensity and sensing capability. From the theoretical results, we found that it

is easy to correctly detection the channel status when primary systems are heavily occupied for ideal

energy detection method and tansmitter/receiver-cooperated energy detection method. Otherwise,

transmitter-independent method is a better scheme to monitor the primary systems. Commonly, in-

creasing the sensitivity of secondary users can upgrade the detection performance. However, in our

analysis, it is not true for transmitter-independent method and transmitter/receriver-cooperated

method under certain situations. We have concluded those special cases in this paper. Therefore,

the theoretical results can supply a reference on the choosing of energy detection method according

to system scenario, such as traffic load, sensing capability, etc.

7.2 Superimposed Code based Channel Assignment in Multi-radio Multi-channel

Wireless Mesh Networks

Motivated by the observation that channel assignment for multiradio multi-channel mesh networks

should support both unicast and local broadcastl, should be interference-aware, and should result

in low overall switching delay, high throughput, and low overhead, in [14], we proposed two flexible

localized channel assignment algorithms based on s-disjunct superimposed codes. These algorithms

support the local broadcast and unicast effectively, and achieve interference-free channel assignment

under certain conditions. In addition, under the primary interference constraints2, the channel

assignment algorithm for unicast can achieve 100% throughput with a simple scheduling algorithm

such as the maximal weight independent set scheduling, and can completely avoid hidden/exposed

terminal problems under certain conditions. Our algorithms make no assumptions on the underlying

network and therefore are applicable to a wide range of MR-MC mesh network settings. We conduct

extensive theoretical performance analysis to verify our design.
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Abstract--In this paper, we propose a Discrete-Cosine- and 3 GHz. Additionally, the fractional bandwidth of the

Transform (DCT)-based approach for sense-through-foliage signal is very large (greater than 0.2). Such radar sensor
target detection when the echo signal quality is good, and has exceptional range resolution that also has an ability
a Radar Sensor Network (RSN) and DCT-based approach
when the echo signal quality is poor. A RAKE structure tO penetrate many common materials (e.g., walls). Law

which can combine the echos from different cluster-members enforcement personnel have used UWB ground penetrat-

is proposed for clusterhead in the RSN. We compared our ing radars (GPRs) for at least a decade. Like the GPR,

approach with the ideal case when both echos are available, sense-through-foliage radar takes advantage of UWB's
I.e., echos with target and without target. We also compared very fine resolution (time gating) and low frequency of

our approach against the scheme in which 2-D image was
created via adding voltages with the appropriate time offset, operation. In the existing works on UWB radar/sensor

Simulation results show that our DCT-based scheme works based target detection, Time Domain Inc has invented

much better than the existing approach, and our RSN UIWB radars, and some algorithms for target detection

and DCT-based approach can be used for target detection were overviewed in [11]; these are mainly based on target
successfully while even the ideal case fails to do it. response signal strength (1-D) and different copies of sig-

nals to construct 2-D features. The Adaptive Polarization-

Difference Imaging (APDI) algorithm and PDI technique

[8][9] were originally developed for optical imaging and

Forests and buildings favor asymmetric threats because in many situations can provide significant enhancements in

the warfighter has a limited sensing capability. Forest and target detection and feature extraction over conventional

buildings provide excellent concealment from observation, methods. In [12], these two techniques were applied to

ambush, and escape, as well as provide secure bases for transient time-domain microwave signals with particular

enemy Command & Control (C2), weapons caches, and applications in through-wall microwave imaging (TWMI).

Improvised Explosive Device (lED)/ Weapon of Mass De- In [10], a chaos-based high-resolution imaging technique

struction (WMD) assembly. These have become "the high was applied to through-the-wall imaging, but no detection

ground" in fourth-generation warfare, providing a signifi- algorithm was presented. In this paper, we are interested

cant strategic advantage. We believe that solving the sense- in investigating more features from sense through foliage

through-foliage target detection will significantly benefit signals and extracting as much information as possible for

sense-through-wall and other subsurface sensing problems. data fusion.

The objective of this paper is to develop measurable The rest of this paper is organized as follows. In Section

advances in improving the understanding of intelligence II, we summarize the measurement and collection of data

for the forest conflict using UWB radar. The key focus of we used in this paper. In Section III, we propose a discrete-

this study is to develop advanced technologies that make cosine-transform (DCT) based approach for sense-through-

foliage transparent, thereby eliminating the safe harbor foliage target detection with good signal quality. In Section

that forest provides to hostile forces and their malicious IV, we propose a radar sensor network (RSN) and DCT-

activities. Sense-through-foliage target detection resulting based approach for sense-through-foliage target detection

from this research will benefit emerging Department of when the signal quality is poor. We conclude this paper

Defense (DoD) net-centric warfare programs. and discuss some future research topics in Section V.

In this paper, we will apply our expertise in signal

processing, data fusion, sensor networks, etc to achieve 11. SENSE-THROUGH-FOLIAGE DATA MEASUREMENT

effective sense-through-foliage technology using ultra- AND COLLECTION

wideband (UWB) radar. UWB radar emissions are at Our work is based on the sense-through-foliage data

a relatively low frequency-typically between 100 MHz collected by Virtual Machines LLC supported by Air



Force [3]. The foliage penetration measurement effort the Barth pulse source was operated at low amplitude
began in August 2005 and continued through December and 35 pulses reflected signal were averaged for each
2005. The measurements were taken on the grounds of collection. Significant pulse-to-pulse variability was noted
Virtual Machines Company in Holliston, Massachusetts. for these collections. The scheme for the sense-through-
Working in August through the fall of 2005, the foliage foliage target detection with "poor" signal quality will
measured included late summer foliage and fall and early be presented in Section IV. Later, good signal quality
winter foliage. Late summer foliage, because of the limited data were collected using higher amplitude pulses and 100
rainfall, involved foliage with decreased water content. pulses reflected signals were averaged for each collection.
Late fall and winter measurements involved largely defo- The scheme for target detection with "good" signal quality
liated but dense forest. will be presented in Section III.

The foliage experiment was constructed on a seven-ton
man lift, which had a total lifting capacity of 450 kg. III. SENSE-THROUGH-FOLIAGE TARGET DETECTION

The limit of the lifting capacity was reached during the WITH GOOD SIGNAL QUALITY: A DCT-BASED

experiment as essentially the entire measuring apparatus APPROACH

was placed on the lift. The principle pieces of equipment
secured on the lift are: Barth pulser, Tektronix model 10

7704 B oscilloscope, dual antenna mounting stand, two
antennas, rack system, IBM laptop, HP signal Generator,

Custom RF switch and power supply and Weather shield 2

(small hut). The target is a trihedral reflector (as shown
in Fig. 1). Throughout this work, a Barth pulse source 1
(Barth Electronics, Inc. model 732 GL) was used. The

pulse generator uses a coaxial reed switch to discharge
a charge line for a very fast rise time pulse outputs. The -1
model 732 pulse generator provides pulses of less than 50
picoseconds (ps) rise time, with amplitude from 150 V to -2
greater than 2 KV into any load impedance through a 50 -3
ohm coaxial line. The generator is capable of producing
pulses with a minimum width of 750 ps and a maximum 2000 4000 Woo W00 10000 120 140 1600
of I microsecond. This output pulse width is determined by Sample Index

charge line length for rectangular pulses, or by capacitors (a)
for l/e decay pulses. _ __0'

-2-
-3

-4
0 2000 4000 6000 8000 10000 12000 14000 16000

Sample Index

Fig. I. The target (a trihedral reflector) is shown on the stand at 300 (b)
feet from the lift.

Fig. 2. Measurement with very good signal quality and 100 pulses
For the data we used in this paper, each sample is average. (a) No target on range, (b) with target on range (target appears

spaced at 50 picosecond interval, and 16,000 samples were at around sample 14,000).
collected for each collection for a total time duration of
0.8 microseconds at a rate of approximately 20 Hz. We In Fig. 2, we plot two collections with good signal
considered two sets of data from this experiment. Initially, quality, one without target on range (Fig. 2a) and the
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other one with target on range (Fig. 2b and target appears (averaged over 35 pulses for each collection), significant
at around sample 14,000). To make it more clear to the pulse-to-pulse variability was noted and the return signal
readers, we provide expanded views of traces (with target) quality is poor. In Figs. 6a and 6b, we plot two collections
from sample 13,001 to 15,000 for the above two collections with poor signal quality. Fig. 6a has no target on range,
in Figs. 3a and 3b. Since there is no target in Fig. 3a, it and Fig. 6b has target at samples around 14,000. We plot
can be treated as the response of foliage clutter. It's quite the echo differences between Figs. 6a and 6b in Fig. 6c.
straightfoward that the target response will be the echo However, it is impossible to identify whether there is any
difference between Fig. 3b and Fig. 3a, which is plotted in target and where there is target based on Fig. 6c. We
Fig. 3c. However, it's impossible to obtain Fig. 3a (clutter observed the DCT-based approach failed to detect target
echo) in practical situation if there is target on range. The based on one collection. Since significant pulse-to-pulse
challenge is how to make target detection based on Fig. variability exists in the echos, this motivate us to explore
3b (with target) or Fig. 3a (no target) only? the spatial and time diversity using Radar Sensor Networks

Observe Fig. 3b, for samples where target appears (RSN).
(around sample 14,000), the sample strength changes much In RSN, the radar sensors are networked together in an
abruptly than that in Fig. 3a, which means echo from ad hoc fashion. They do not rely on a preexisting fixed
target contains more AC values than that without target. infrastructure, such as a wireline backbone network or
Motivated by this, we applied Discrete Cosine Transform a base station. They are self-organizing entities that are
(DCT) to the echos x(iM + n) (n = 0, 1, 2,... , N - 1) deployed on demand in support of various events surveil-
where N is the DCT window length, M is the step size lance, battlefield, disaster relief, search and rescue, etc.
of each DCT window, and i is the window index. Let Scalability concern suggests a hierarchical organization of

x(n, i) = x(iM + n) radar sensor networks with the lowest level in the hierarchy

N-1 being a cluster. As argued in [6] [5] [4] [7], in addition to

X (K, i) = ~ 2x(n, i) cos(21 K) (1) helping with scalability and robustness, aggregating sensor
N nodes into clusters has additional benefits:

then we cumulate the power of AC values (for K > 2) 1) conserving radio resources such as bandwidth;

N-1 2) promoting spatial code reuse and frequency reuse;

P(i) =1 X(Ki)2  (2) 3) simplifying the topology, e.g., when a mobile radar
K=3 changes its location, it is sufficient for only the

nodes in attended clusters to update their topologyFor N = 100 and Ml = 10, we plot the power of AC ifrain

values P(i) versus iM (time domain sample index) in ingothetgene

Figs. 4a and 4b for the above data sets in Figs. 3a and inform ation and,

3b respectively. Observe that in Fig. 4b, the power of AC 5) foncaling tede

values (around sample 14,000) where the target is located from individual nodes.

is non-fluctuating (monotonically increase then decrease).

Although some other samples also have very high AC In RSN, each radar can provide their pulse parameters such
power values, it is very clear that they are quite fluctuating as timing to their clusterhead radar, and the clusterhead
and the power of AC values behave like random noise radar can combine the echos (RF returns) from the target
because generally the clutter has Gaussian distribution in and clutter. In this paper, we propose a RAKE structure for
the frequency domain [2]. combining echos, as illustrated by Fig. 7. The integration

We compared our DCT-based approach to the scheme means time-average for a sample duration T and it's for
proposed in [11]. In [11], 2-D image was created via general case when the echos are not in discrete values. It is
adding voltages with the appropriate time offset. In Figs. 5a quite often assumed that the radar sensor platform will have
and 5b, we plot the 2-D image created based on the above access to Global Positioning Service (GPS) and Inertial
two data sets (from samples 13,800 to 14,200). However, Navigation Unit (INU) timing and navigation data [1]. In
it's not clear which image shows there is target on range. this paper, we assume the radar sensors are synchronized

in RSN. In Fig. 7, the echo, i.e., RF response by the pulse

IV. SENSE-THROUGH-FOLIAGE TARGET DETECTION of each cluster-member sensor, will be combined by the
WITH POOR SIGNAL QUALITY: A SENSOR NETWORK clusterhead using a weighted average, and the weight wi

AND DCT-BASED APPROACH is determined by the power of each echo xi(n) (n is the

As mentioned in Section II, when the Barth pulse source sample index),

was operated at low amplitude and the sample values are E (3)
not obtained based on sufficient pulse response averaging iM__ E,
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and [8] M. P. Rowe, E. N. Pugh, Jr., J. S. Tyo, and N. Engheta, "Polarization-
Ej = var(xi(n)) + [mean(xi(n))] 2  (4) difference imaging: a biologically inspired technique for observation

through scattering media," Optics Letters, Vol. 20, pp. 608-610, 1995.
We ran simulations for M = 30, and plot the power of [9] J. S. Tyo, M. P. Rowe, E. N. Pugh, Jr., N. Engheta, "Target detection

in optically scattering media by polarization difference imaging,"AC values in Figs. 8a and 8b for the two cases (with target Applied Optics, Vol. 35, pp. 1855-1870, 1996.
and without target) respectively. Observe that in Fig. 4b, [10] V. Venkatasubramanian and Henry Leung, "A Novel Chaos-Based
the power of AC values (around sample 14,000) where the High-Resolution Imaging Technique and Its Application to Through-

the-Wall Imaging:' IEEE Signal Proc Letters, Vol. 12, No. 7, Julytarget is located is non-fluctuating (monotonically increase 2005.

then decrease). Although some other samples also have [II] P. Withington , H. Fluhler, and S. Nag , "Enhancing homeland

very high AC power values, it is very clear that they are security with advanced UWB sensors:' IEEE Microwave Magazine,
Sept 2003.

quite fluctuating and the power of AC values behaves like [12] K. M. Yemelyanov, J. A. McVay, N. Engheta, A. Hoorfar, "Adaptive
random noise because generally the clutter has Gaussian Polarization-Difference Imaging Algorithms for Through-the-Wall
distribution in the frequency domain. Microwave Imaging Scenarios," Proc. IEEE AP-S Int. Symposium

and USNC/URSI National Radio Science Meeting, July 3-6, 2005,

V. CONCLUSIONS AND FUTURE WORKS Washington DC, USA.

In this paper, we proposed a DCT-based approach for
sense-through-foliage target detection when the echo signal
quality is good, and a sensor network and DCT-based
approach when the echo signal quality is poor. A RAKE
structure which can combine the echos from different
cluster-members is proposed for clusterhead in the RSN.
We compared our approach with ideal case when both
echos are available, i.e., echos with target and without
target. We also compared our approach against the scheme
in which 2-D image was created via adding voltages with
the appropriate time offset. Simulation results show that
our DCT-based scheme works much better than the existing
approach, and our RSN and DCT-based approach can be
used for target detection successfully while the ideal case
fails to do it. For future works, we will collect more
data with different targets and perform automatic target
recognition besides target detection.
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Abstract--In this paper, we study the statistical modeling ment such as in sense-through-foliage application using
for outdoor Ultra-WideBand (UWB) channel in rich scatter- UWB radar. UWB radar emissions are at a relatively
ing and time-varying environment based on extensive data low frequency-typically between 100 MHz and 3 GHz.
collected using UWB radar. We validate that UWB echo sig-
nals (within a burst) don't hold self-similarity, which means Additionally, the fractional bandwidth of the signal is very
the future signals can't be forecasted based on the current large (greater than 0.2). Such radar sensor has exceptional
received signals and channel modeling is necessary from range resolution that also has an ability to penetrate many
statistical point of view. In outdoor UWB channel, the multi- common materials (e.g., walls). Law enforcement person-
path contributions arrive at the receiver are grouped into nel have used UWB ground penetrating radars (GPRs)
dusters. The time of arrival of clusters can be modeled as a
Poisson arrival process, while within each cluster, subsequent for at least a decade. Like the GPR, sense-through-foliage
multipath contributions or rays also arrive according to a radar takes advantage of UWB's very fine resolution (time
Poisson process. At different field (near field, medium field, gating) and low frequency of operation.
and far field), we observe that the Poisson process parameters The rest of this paper is organized as follows. In Section
are quite different. We also observe that the amplitude of II, we summarize the measurement and collection of data
channel coefficient at each path follows Rician distribution
for medium and far field, and it's non-stationary for paths we used in this paper. In Section III, we demonstrate
from near field (one of two Rician distributions), and these that the UWB reflected signal in foliage environment
observations are quite different with the IEEE indoor UWB does not hold self-similarity, and validate that outdoor
channel model and S-V model. channel modeling is necessary. In Section IV, we give an

overview on indoor UWB channel model. In Section V, we
1. INTRODUCTION AND MOTIVATION present our outdoor UWB channel model in rich scattering

and time-varying environment. We conclude this paper in
In July 2003, the Channel Modeling sub-committee of Section VI.

study group IEEE 802.15.SG3a published the final report
regarding the UWB indoor multipath channel model [4]. It
is a modified version of the indoor Saleh and Valenzuela
(S-V) channel model [6]. The IEEE suggested an initial set Our work is based on the ULWB radar-based sense-
of values for the indoor UWB channel model which has through-foliage data collection by Virtual Machines LLC
range less than 10 meters. However, lots of applications supported by Air Force [2]. The foliage penetration mea-
of UWB are for outdoor activities such as sense-through- surement effort began in August 2005 and continued
foliage target detection. Forests favor asymmetric threats through December 2005. The measurements were taken
because the warfighter has a limited sensing capability, on the grounds of Virtual Machines Company in Holliston,
Forests provide excellent concealment from observation, Massachusetts. Working in August through the fall of 2005,
ambush, and escape, as well as provide secure bases for the foliage measured included late summer foliage and fall
enemy Command & Control (C2), weapons caches, and and early winter foliage. Late summer foliage, because
Improvised Explosive Device (IED)/ Weapon of Mass of the limited rainfall, involved foliage with decreased
Destruction (WMD) assembly. These have become "the water content. Late fall and winter measurements involved
high ground" in fourth-generation warfare, providing a largely defoliated but dense forest, so it's a rich scattering
significant strategic advantage. Unfortunately, no work has environment. Because of wind or different temperature in
been done on the outdoor UWB channel modeling, dense forest, it's also a time-varying environment.

In this paper, we will model the outdoor UWB chan- The UWB radar-based experiment was constructed on
nel model in rich scattering and time-varying environ- a seven-ton man lift, which had a total lifting capacity



of 450 kg. The limit of the lifting capacity was reached 2b (averaged over 35 pulses).
during the experiment as essentially the entire measuring
apparatus was placed on the lift (as shown in Fig. 1). The 2X 1'

principle pieces of equipment secured on the lift are: Barth 1.5

pulser, Tektronix model 7704 B oscilloscope, dual antenna
mounting stand, two antennas, rack system, IBM laptop, 1

HP signal Generator, Custom RF switch and power supply 0.5

and Weather shield (small hut). Throughout this work, a .. .L..
Barth pulse source (Barth Electronics, Inc. model 732 GL) -

was used. The pulse generator uses a coaxial reed switch -o.s

to discharge a charge line for a very fast rise time pulse -
outputs. The model 732 pulse generator provides pulses
of less than 50 picoseconds (ps) rise time, with amplitude 1.5

from 150 V to greater than 2 KV into any load impedance -2
through a 50 ohm coaxial line. The generator is capable -11
of producing pulses with a minimum width of 750 ps and 0 2000 4000 6000 800 10000 1200 1400010Sample Index

a maximum of 1 microsecond. This output pulse width is (a)
determined by charge line length for rectangular pulses, or
by capacitors for lie decay pulses.

-1

-2

-3

"-41
0 2000 4000 6000 8000 10000 12000 14000 16000

Sample Index

(b)

Fig. 2. Transmitted pulse and received echos in one experiment. (a)
- Transmitted pulse. (b) Received echos.

III. SELF-SIMILARITY PROPERTIES OF UWB
REFLECTED SIGNALS

Fig. 1. This figure shows the lift with the experiment. The antennas

are at the far end of the lift from the viewer under the roof that was Recently, it has been observed that ethernet
built to shield the equipment from the elements. This picture was taken video/voice/data traffic have self-similarity [5] [3] [8].
in September with the foliage largely still present. The cables coming
from the lift are a ground cable to an earth ground and one of 4 tethers According to Stallings [7], "Self-similarity is such an
used in windy conditions. important concept that, in a way, it is surprising that

only recently has it been applied to data communications
For the data we used in this paper, each sample is traffic analysis.", and "Since 1993, a number of studies

spaced at 50 picosecond interval, and 16,000 samples were reported in the literature have documented that the pattern

collected for each collection for a total time duration of of data traffic is well modeled by self-similar processes
0.8 microseconds at a rate of approximately 20 Hz. The in a wide variety of real-world networking situations."
Barth pulse source was operated at low amplitude and 35 Such self-similarity is quite common in both natural and
pulses reflected signal were averaged for each collection. human-made phenomena [7] such as the distribution of
Significant pulse-to-pulse variability was noted for these earthquakes, ocean waves, fluctuation of the stock market.
collections. We plot the transmitted pulse (one realization) But the self-similarity of UWB signals has not been
in Fig. 2a) and the received echos in one collection in Fig. studied.
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0F
For a detailed discussion on self-similarity in time-

series, see [81 [7]. Here we briefly present its definition [1]. -0.5

Given a zero-mean, stationary time-series X = (Xt;t =
1,2,3,...), we define the m-aggregated series X(m) = .- "
(X(-); k = 1, 2, 3,... ) by summing the original series X "

over nonoverlapping blocks of size m. Then it's said that > 1.5

X is H-self-similar, if, for all positive m, X (in) has the
same distribution as X rescaled by m/H. That is, -2

Xt •=m- E Xi Vm E N (1)
i=(t-1)m+l -3

If X is H-self-similar, it has the same autocorrelation func-
tion r(k) = E[(Xt -- A)(Xt+k -- A)]/0r

2 as the series X(m) 0.5 1 1.5 2 2.5 3 3.5

for all m, which means that the series is distributionally 0oglO(m)

self-similar: the distribution of the aggregated series is the Fig. 3. The variance-time plot of 10 UWB data collections, which

same as that of the original, demonstrates that UWB reflected signals are not self-similar within each

Self-similar processes can show long-range dependence. collection.

A process with long-range dependence has an autocorre-
lation function r(k) -k-0 as k --+ cc, where 0 < 3 < 1.
The degree of self-similarity can be expressed using Hurst an exponential decay of the amplitude of the clusters,H = -1/2. or elfsimiar eris wih lng- and a different exponential decay for the amplitude of the
parameter H = 1 - 0/2. For self-similar series with long- received pulses within each cluster, as shown in Fig. 5.
range dependence, 1/2 < H < 1. As H -- 1, the degree In the IEEE UWB indoor channel model [41, the cluster
of both self-similarity and long-range depence increases. Inrth was ado or (samel model), t clog-

One method that has been widely used to verify self- approach was adopted (same as S-V model), but a log-similarity is the variance-time plot, which relies on the normal distribution was suggested for characterizing the
slowly decaying variance of a self-similar series. The multi-path gain amplitude, and an additional log-normal
slowlydecayingvariance of aipt againstmona log-log poT, variable was introbuced for representing the fluctuations ofvarian ce of X ( ') is plotted against m on a log-log plot, t e t t l m l i a h g i .B s d s h h s f e c a h i

and a straight line with slope (-,3) greater than -1 is the total multipath gain. Besides, the phase of each path is
indicative of self-similarity, and the parameter H is given assumed to be either 0 or ir with equal probability.
by H = 1 - 3/2. We use this method in this paper. In Path Magnhudw

Fig. 3, we plot the variance of X (i) against m on a
log-log plot for 10 different UWB data collections. From
this figure, it's very clear that the UWB signal does
not has self-similarity because its trace has slope lower
than -1. This conclusion means that we can't use current a-path Irv
received signals to forecast future reflected signals within leclustai

one collection, so channel modeling is very important to
UWB outdoor channel because the charateristics of the
future reflected signal could be known in advance if its
channel can be modelled. Cluster TimE

Fig. 4. An illustration of the channel impulse response in S-V model.IV. INTRODUCTION TO CHANNEL MODELING FOR

INDOOR UWB CHANNEL

In the S-V model [6], the arrival of clusters is modelled V. OUTDOOR UWB CHANNEL MODELING
as a Poisson arrival process with a rate A, while within
each cluster, subsequent multipath contributions or rays
also arrive according to a Poisson process with a rate A We study the outdoor UWB signal propagation in three
(see Fig. 4). In the S-V model, the magnitude of the k-th cases: near field (less than 55m), medium field (55m-
path within the l-th cluster follows a Rayleigh distribution, 85m), and far field (above 85m and up to 120m in this
and the phase of each path is assumed to be a statistically study). In the data collection, each sample is spaced at 50
independent random variable over [0, 27r). Besides, the picosecond interval, so these cases are corresponding to
average Power Decay Profile (PDP) is characterized by samples 1-7333 for near field, samples 7333-11333 for

3



Power Delay e Observe Fig. 6b for medium field, clusters arrive quite

IProflo often. A (1/ns) is around 0.05 (one cluster in every
20ns or 400 samples), and A (l/ns) is around 1 (one

. Opath in every ins or 20 samples).
-. Overall EnvelopG e Observe Fig. 6c for far field, clusters almost always

arrive (because of rich scattering), so A (1/ns) is
Envelopw -. around 0.5 (one cluster in every 2ns or 20 samples),

-I....and A (l/ns) is around 4 (one path in every 2 50 ps
"Ara or 5 samples). Perhaps it's because of rich scattering,

r rivo Ievery path has very similar power level.

Thmn Besides, the average PDP can be represented by an ex-
ponential decay of the amplitude of the clusters, and

Fig. 5. An illustration of the double exponential decay of the mean a different exponential decay for the amplitude of the
cluster power and the ray power within clusters in S-V model, received pulses within each cluster, as shown in Fig. 5.

medium field, and samples 11334-16000 for far field. In B. Statistical Distribution of Channel Coefficients

Fig. 6, we plot the power profile of the received echos We also study the statistical distributions of each given
(averaged over 30 collections to eliminate the effect of path. We plot the histogram for some sample values of

random noise and each collection was averaged based the above three cases based on 30 collections and each

on 35 pulses) for the three different cases. Since the collection is averaged over 35 pulses. Near field samples
transmitted pulse (as plotted in Fig. 2a) is a very narrow are based on samples 5001-6000; medium field samples

impulse pulse (like a delta function in time domain), we are based on samples 8001-9000; and far field samples
analyzed the channel property based on the received echos are based on samples 12001-13000. Since the samples are
power profile plotted in Fig. 6, and similar methodology very close (within 7.5m distance), so their path-loss effect
was also used in S-V model studies [6]. can be ignored. For each case, we have 30000 samples,

Observe Fig. 6, multi-path contributions arrive at the and we plot their histogram in Fig. 7.
receiver grouped into clusters. The time of arrival of First, observe Fig. 7c for far field, the histogram can be

clusters can be modeled as a Poisson arrival process with almost perfectly modelled by a non-zero-mean Gaussian
a rate A, while within each cluster, subsequent multipath distribution, which means the amplitude of the channel

contributions or rays also arrive according to a Poisson coefficient follows a Rician distribution,
process with a rate A (see Fig. 4). We define: , X2 +  2 x s

"T = the arrival time of the first path of the l-th pa(x) = T2 exp{0-' 2 2
8  Ia(T-2) x > 0 (3)

cluster;
"* rk,l = the delay of the k-th path within the l-th cluster where s is the mean value of Gaussian and Io(.) is the

relative to the first path arrival time TI; zero order modified Bessel function. This kind of channel

"• A = the cluster arrival rate; is known as Rician fading channel. A Rician channel is

"* A = the ray arrival rate, i.e., the arrival rate of the characterized by two parameters, Rician factor K which is

paths within each cluster, the ratio of the direct path power to that of the multipath,

By definition, we have -roL = T1. The distributions of the i.e., K = s2 /20. 2, and the Doppler spread (or single-

cluster arrival time and the ray arrival time are given by sided fading bandwidth) fd. Similarly, Fig. 7b for medium
field, the histogram can be approximately modelled by

p(TLIT7-1) = Aexp (-A(T7 - T7- 1), I > 0 a non-zero-mean Gaussian distribution, which means the

p('rk,1177(k-),Z) = Aexp (--(Tkl - T'(k- 1 ),l)), k > 0 (2) amplitude of the channel coefficient follows a Rician
distribution. Observe Fig. 7a for near field, the histogram

The above observations are very similar as that for the can be approximately modelled by two non-zero-mean
indoor UWB channel. Specifically, we also observed the Gaussian distributions, which means it's non-stationary,
A and A are quite different for three different cases. and the amplitude of the channel coefficient follows one

* Observe Fig. 6a for near field, A (l/ns) is around 0.02 of two Rician distributions. The above observations are

(one cluster in every 50ns or 1000 samples), and A quite different with the indoor UWB channel model
(l/ns) is around 0.4 (one path in every 2.5ns or 50 (log-normal distribution) and S-V model (Rayleigh

samples). Perhaps it's because some major scatters in distribution). The sign of channel coefficient is either +1
near field (such as tree stems) reflected signals, so or -1, i.e., its phase is either 0 or 7r, which matches the

some paths are quite dominant. IEEE indoor UWB channel model.
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VI. CONCLUSIONS

In this paper, we studied the statistical modeling for 1x

outdoor UWB channel in rich scattering and time-varying
environment based on extensive data collected using UWB 5

radar. We validated that UWB echo signals (within a burst)
don't hold self-similarity, which means the future signals 4

can't be forecasted based on the received signals and chan-
nel modeling is necessary from statistical point of view. In i
outdoor UWB channel, the multi-path contributions arrive 0.
at the receiver are grouped into clusters. The time of 2

arrival of clusters can be modeled as a Poisson arrival
process, while within each cluster, subsequent multipath
contributions or rays also arrive according to a Poisson 1

process. At different field (near field, medium field, and
far field), we observed that the Poisson process parameters 9W 400 45M MW SSW 6000 6500 7Wo 7Wo
are quite different. We also observed that the amplitude of Sae Ix

channel coefficient at each path follows Rician distribution (a)
for medium and far field, and it's non-stationary for paths 3 s I0'

from near field (one of two Rician distributions), and these
observations are quite different with the IEEE indoor UWB 2.5

channel model and S-V model.
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Abstract- Network-enabled Electronic Warfare (NEW) is tages and limitations of network-enabled electronic warfare
to develop modeling and simulation efforts to explore the concepts. The advantages of linking multiple electronic
advantages and limitations of network-enabled electronic support measures (ESM) and electronic attack (EA) assets
warfare concepts. The advantages of linking multiple elec- to me re d elecroni attack bats
tronic support measures (ESM) and electronic attack (EA) to achieve improved capabilities across a networked bat-
assets to achieve improved capabilities across a networked tieforce have yet to be quantified [2]. In this paper, we will
battleforce have yet to be quantified. In this paper, we will use radar sensors as ESM and EA assets to demonstrate
use radar sensors as ESM and EA assets to demonstrate the advantages of NEW in Collaborative Automatic Target
the advantages of NEW in Collaborative Automatic Target Recognition (CATR). The network of radar sensors should
Recognition (CATR). We apply the NEW to CATR via
waveform diversity combining and and propose maximum- operate with multiple goals managed by an intelligent
likehood (ML)-ATR algorithms for nonfluctuating target platform network that can manage the dynamics of each
as well as fluctuating target. Simulation results show that radar to meet the common goals of the platform, rather than
our NEW-CATR performs much better than single sensor- each radar to operate as an independent system. Therefore,
based ATR algorithm for nonfluctuating targets or fluctuating it is significant to perform signal design and processing and
targets. Conclusions are drawn based on our analysis and networking cooperatively within and between platforms of
simulations and future research works on this research topic radaresensors and t oti es. this ne
are discussed. radar sensors and their communication modules. This need

is also testified by recent solicitations from U.S. Office ofIndex Terms :Network-enabled electronic warfare, radar Naval Research [2][3]. For example, in [3], it is stated that

sensor networks, waveform diversity, collaborative automatic

target recognition, maximum-likelihood, interferences. "Algorithms are sought for fused, and or, coherent cross-
platform Radio Frequency (RF) sensing. The focus of this
effort is to improve surveillance utilizing a network, not

I. INTRODUCTION AND MOTIVATION fusion of disparate sensor products. The algorithms should
In current and future military operational environments, be capable of utilizing RF returns from multiple aspects in

such as Global War on Terrorism (GWOT) and Maritime a time-coordinated sensor network." In this paper, we will
Domain Awareness (MDA), warfighters require technolo- study waveform design and diversity algorithms for radar
gies evolved to support information needs regardless of sensor networks. Waveform diversity is the technology that
location and consistent with the users level of command will allow one or more sensors on board a platform to
or responsibility and operational situation. To support automatically change operating parameters, e.g., frequency,
this need, the U.S. Department of Defense (DoD) has gain pattern, and pulse repetition frequency (PRF) to meet
developed the concept of Network Centric Warfare (NCW), the varying environments. It has long been recognized that
defined as "military operations that exploit state-of-the- judicious use of properly designed waveforms, coupled
art information and networking technology to integrate with advanced receiver strategies, is fundamental to fully
widely dispersed human decision makers, situational and utilizing the capacity of the electromagnetic spectrum.
targeting sensors, and forces and weapons into a highly However, it is only relatively recent advances in hard-
adaptive, comprehensive system to achieve unprecedented ware technology that are enabling a much wider range
mission effectiveness" [1]. The goal of electronic warfare of design freedoms to be explored. As a result, there are
is to control the electromagnetic (EM) spectrum by ex- emerging and compelling changes in system requirements
ploiting, disrupting, or denying enemy use of the spectrum such as more efficient spectrum usage, higher sensitivities,
while ensuring its use by friendly forces [2]. greater information content, improved robustness to errors,

Network-enabled Electronic Warfare (NEW) is to de- reduced interference emissions, etc. The combination of
velop modeling and simulation efforts to explore the advan- these is fuelling a worldwide interest in the subject of



waveform design and the use of waveform diversity tech- to helping with scalability and robustness, aggregating
niques. sensor nodes into clusters has additional benefits:

In the existing works on waveform design and selection, 1) conserving radio resources such as bandwidth;
Fitzgerald [8] demonstrated the inappropriateness of selec- 2) promoting spatial code reuse and frequency reuse;
tion of waveform based on measurement quality alone: 3) simplifying the topology, e.g., when a mobile radar
the interaction between the measurement and the track changes its location, it is sufficient for only the
can be indirect, but must be accounted for. Bell [6] used nodes in attended clusters to update their topology
information theory to design radar waveform for the mea- information;
surement of extended radar targets exhibiting resonance 4) reducing the generation and propagation of routing
phenomena. In [5], singularity expansion method was used information; and,
to design some discriminant waveforms such as K-pulse, 5) concealing the details of global network topology
E-pulse, and S-pulse. Sowelam and Tewfik [24] developed from individual nodes.
a signal selection strategy for radar target classification, In RSN, each radar can provide their waveform parameters
and a sequential classification procedure was proposed to such as bi to their clusterhead radar, and the cluster-
minimize the average number of necessary signal trans- head radar can combine the waveforms from its cluster
missions. Intelligent waveform selection was studied in members. In this paper, we propose a RAKE structure
[4][12], but the effect of doppler shift was not considered. for waveform diversity combining, as illustrated by Fig.
In [15], the performance of constant frequency (CF) and 1. According to this structure, the received rl(u,t) is
linear frequency modulated (LFM) waveform fusion from
the standpoint of the whole system was studied, but the
effects of clutter was not considered. In [23], CF and
LFM waveforms were studied for sonar system, but it was
assumed that the sensor is nonintelligent (i.e., waveform I
can't be selected adaptively). All the above studies and
design methods were focused on the waveform design or r,(u,t) X;(t -t,)
selection for a single active radar or sensor. In [21], cross-
correlation properties of two radars are briefly mentioned ýOdt Cmbining

and the binary coded pulses using simulated annealing
[7] are highlighted. However, the cross-correlation of two •
binary sequences such as binary coded pulses (e.g. Barker
sequence) are much easier to study than that of two analog
radar waveforms. In this paper, we will focus on the
waveform diversity and design for radar sensor networks
using constant frequency (CF) pulse waveform.usin costat fequncy CF)pule wvefrm.Fig. 1. Waveform diversity combining by clusterhead in RSN.

The rest of this paper is organized as follows. In Section
II we propose a RAKE structure for waveform diversity How to combine all the Zm's (m = 1, 2, M) are
combining and propose maximum-likelihood (ML) algo- very similar to the diversity combining in communations to
rithms for CATR. In Section II we propose another RAKE combat channel fading, and the combination schemes may
structure for UWB radar diversity combining. In Section be different for different applications. In this paper, we are
IV, we conclude this paper and provide some future works. interested in applying RSN waveform diversity to CATR,

e.g., recognition that the echo on a radar display is that of

II. NEW FOR COLLABORATIVE AUTOMATIC TARGET an aircraft, ship, motor vehicle, bird, person, rain, chaff,

RECOGNITION clear-air turbulence, land clutter, sea clutter, bare montains,
forested areas, meteors, aurora, ionized media, or other nat-

In NEW, the radar sensors are networked together in an ural phenomena via collaborations among different radars.
ad hoc fashion. They do not rely on a preexisting fixed Early radars were "blob" detectors in that they detected
infrastructure, such as a wireline backbone network or the presence of a target and gave its location in range and
a base station. They are self-organizing entities that are angle, and radar began to be more than a blob detector
deployed on demand in support of various events surveil- and could provide recognition of one type of target from
lance, battlefield, disaster relief, search and rescue, etc. another[21]. It is known that small changes in the aspect
Scalability concern suggests a hierarchical organization of angle of complex (multiple scatter) targets can cause major
radar sensor networks with the lowest level in the hierarchy changes in the radar cross section (RCS). This has been
being a cluster. As argued in [14] [10] [9] [17], in addition considered in the past as a means of target recognition,
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and is called fluctuation of radar cross section with aspect pulse-to-pulse decorrelation. The pulse-to-pulse decorre-
angle, but it has not had much success[21]. In this paper, lation implies that each individual pulse results in an
we propose a maximum likelihood collaborative automatic independent value for RCS a.
target recognition (ML-CATR) algorithm for RSN. We will For Swerling 2 model, the RCS Ia(u) I follows Rayleigh
study non-fluctuating target as well as fluctuating target. distribution and its I and Q subchannels follow zero-mean

Gaussian distributions with variance -y92. Assume

A. ML-CATR for Non-fluctuating Targets a(u) = at (u) + jaQ(u) (6)

In some sources, the non-fluctuating target is identified and n(u) = n, (u) + jnQ (u) follows zero-mean complex
as "Swerling 0" or "Swerling 5" model [22]. For non- Gausian distribution with variance ao2 for the I and Q
fluctuating target, the RCS am,(u) is just a constant a subchannels. Z, is a zero-mean Gaussian random variable
for a given target. Noise n(u, r) is a zero-mean Gaussian with variance E 2-y 2 + a 2 for the I and Q subchannels,
random variable for given r, so JZml follows Rician which means ym = Z, follows Rayleigh distribution
distribution because signal Ea(u) is a positive constant with parameter /Ea2 z ± o2

,

Ea for non-fluctuating target. Let Ym = IZm1, then the
probability density function (pdf) of Ym is f = (Y 2 2 (7)

E2,Y2 +±a
2  E 2+7

2 + A 2 ) (2Ay
a"2 = (1) The mean value of Yrn i2 , and variance is

where (4-r)(E2 7Y2 +o 2 ) . The variance of signal is (4-)E
2 72 and

2 . . ~(4-7ra
A = Ea, (2) the variance of noise is 2A2

a 2 is the noise power (with I and Q sub-channel power Let y [Y1) Y , ], then the pdf of y is

a 2/2), and lo(.) is the zero-order modified Bessel function MiL f (Y) = J1 f (YM) (8)
of the first kind. Let y = [Y1,Y2, ,YM], then the pdfof ( =(
y is l

M Assume there are totally N categories and category n

f(Y) = [I f(YM) (3) target has RCS an(u) (with variance -y,2), so the ML-ATR

m=1 algorithm to decide a target category C can be expressed

Our CATR is a multiple-category hypothesis testing as,

problem, i.e., to decide a target category (e.g. aircraft, ship, C = argmax=L1f(y"Y = -) (9)
motor vehicle, bird, etc) based on r1(u,t). Assume there M 2

are totally N categories and category n target has RCS an, = arg maxN= 1  E2,./r2 + ep2 En
so the ML-CATR algorithm to decide a target category C m=H 1
can be expressed as,

N fC. Simulations
C = argmaxn=lf(ylA = Ean) (4)Radar sensor networks will be required to detect a

N 2T (y2 +mE__2)_2Eo___yad range of target classes. Too often, the characteristicsargmaxN=- a2  [ a 2  a 2  objects that are not of interest (e.g., bird) will be

similar to those of threat objects (e.g., missile). Therefore,

new techniques to discriminate threat against undesired
B. ML-CATR for Fluctuating Targets detections (e.g. birds, etc.) are needed. We applied our ML-

Fluctuating target modeling is more realistic in which CATR to this important application, to recognize a target
the target RCS is drawn from either the Rayleigh or from many target classes. We assume that the domain of
chi-square of degree four pdf. The Rayleigh model de- target classes is known a priori (N in Sections Il-A and
scribes the behavior of a complex target consisting of II-B), and that the RSN is confined to work only on the
many scatters, none of which is dominant. The fourth- known domain.
degree chi-square models targets having many scatters For non-fluctuating target recognition, our targets have 5
of similar strength with one dominant scatter. Based on classes with different RCS values, which are summarized
different combinations of pdf and decorrelation character- in Table 1[21]. We applied the ML-CATR algorithms in
istics (scan-to-scan or pulse-to-pulse decorrelation), four Section Il-A (for nonfluctuating target case) to classify
Swerling models are used[19]. In this paper, we will focus an unknown target as one of these 5 target classes. At
on "Swerling 2" model which is Rayleigh distribution with each average SNR value, we ran Monte-Carlo simulations
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TABLE I

for 105 times for each target. The average SNR value RCS VALUES AT MICROWAVE FREQUENCY FOR 5 TARGETS.

is based on the average power from all targets (signal
variance), so the actual SNRs for bird and missile are F Index n Target I RCS71

much lower than the average SNR value. For exam- I Bird 0.01

pie, at the average SNR=16dB, the bird target SNR=- 2 Conventional unmanned winged missile 0.5

33 3 Small single-engine aircraft
1646dB, and missile target SNR-0.8149dB; and at 4 Small flighter aircraf or 4 passenger jet 2

average SNR=20dB, the bird target SNR--29.1646dB, and 5 Large flighter aircraft 6

missile target SNR=4.8149dB. In Fig. 2(a)(b), we plotted
the probability of ATR error in bird and missile recognition
when they are assumed as nonfluctuating targets. Observe

both figures, single radar system can't perform well in both ifens betweenFigs 4a andr4 in Fig. cH v

recognitions, and their probability of ATR error is above iteis impossilettogetebased whether thereiscanyitargetand10%,whih cn'tbe sedfor ealword AR. oweer, where there is target based on Fig. 4c. Since significant
10%, which can't be used for real-world ATR. However, pulse-to-pulse variability exists in the echos, this motivate
the 5-radar RSN and 10-radar RSN can maintain very low us to explore the spatial and time diversity using Radar
ATR errors. In Fig. 2(c), we plotted the average probability Sensor Networks (RSN).

of ATR error for all 5 targets recognition. Since the other In Fig. 5, the echo, i.e., RF response by the pulse

3 targets (different aircrafts) have much higher SNRs, of each cluster-member sensor, will be combined by the

so their ATR error is lower, which makes the average clusterhead using a weighted average, and the weight wi

probability of ATR error lower. is determined by the power of each echo xi(n) (n is the

For fluctuating target recognition, we assume the fluc- sadeterinedo(

tuating targets follow "Swerling 2" model (Rayleigh with sample index),E
pulse-to-pulse decorrelation), and assume the RCS value wi = M (11)

listed in Table I to be the standard deviation (std) -Yn E

of RCS an(u) for target n. We applied the ML-CATR and

algorithm in Section 1I-B (for fluctuating target case) for Ei = var(xi(n)) + [mean(x 2 (n))]2  (12)

target recognition within the 5 targets domain. Similarly we We ran simulations for M = 30, and plot the power of

ran Monte-Carlo simulations at each SNR value. In Fig. AC values in Figs. 6a and 6b for the two cases (with target

3(a)(b)(c), we plot the ATR performance for fluctuating and without target) respectively. Observe that in Fig. 6b,

targets and compared the performances of single radar the power of AC values (around sample 14,000) where the

system, 5-radar RSN, and 10-radar RSN. Observe that target is located is non-fluctuating (monotonically increase

the two RSNs perform much better than the single radar then decrease). Although some other samples also have

system. The ATR error for missile is higher than that of very high AC power values, it is very clear that they are

bird because Rayleigh distribution of missile has lots of quite fluctuating and the power of AC values behaves like

overlap with its neighbor targets (aircrafts). Comparing random noise because generally the clutter has Gaussian

Fig. 2(a)(b)(c) to Fig. 3(a)(b)(c), it is clear that higher distribution in the frequency domain.

SNRs are needed for fluctuating target recognition com-

paring to nonfluctuating target recognition. According to IV. CONCLUSIONS AND FUTURE WORKS

Skolnik[21], radar performance with probability of recog-

nition error (p,) less than 10% is good enough. Our RSN We averstudie d co nsta nequency p e waveform

with waveform-diversity can have probability of ATR error a divErsity irr senor ners. Wemproposeda RAKE structure for waveform diversity combining in
much less than 10% for each target ATR as well as the RSN. As an application example, we applied the waveform
average ATR for all targets. However, the single radar design and diversity to CATR in RSN and proposed ML-system has probability of ATR error much higher than dsg n iest oCT nRNadpooe L
10%. Observe Fig. 3(c), the average probability of ATR CATR algorithms for nonfluctuating target as well as fluc-
error of single-radar is impossible to be less than 10o even tuating target. Simulation results show that RSN using our

waveform diversity-based ML-ATR algorithm performs
at extreme high SNR. Our RSN with waveform diversity much better than single radar system for nonfluctuating
is very promising to be used for real-world ATR. targets and fluctuating targets recognition.

In our future works, we will investigate the CATR when
Ill. SENSE-THROUGH-FOLIAGE TARGET DETECTION multiple targets co-exist in RSN, and the number of targets

USING RADAR SENSOR NETWORK are time-varying. In this paper, we used spatial diversity

In Figs. 4a and 4b, we plot two collections using combining. For multi-target ATR, we will further inves-

UWB radars. Fig. 4a has no target on range, and Fig. 4b tigate spatial-temporal-frequency combining for waveform

has target at samples around 14,000. We plot the echo diversity in RSN.
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Abstract-In this paper, the foliage penetration measurements is the attenuation and scattering from branches and trees,
were taken in Holliston, Massachusetts. When radar echoes are in and thus better penetration through foliage. However,
good quality, the detection of target can be achieved by applying these approaches result in low resolution and low RCS.
our differential based technology on received single UWB radar
waveform. We compared our approach in case of no target as well 2) Millimeter-Wave (MMW) radars are used in [2] [3]
as with target against the scheme in which 2-D image was created and [4]. Results demonstrate the potential for satisfying
via adding voltages with the appropriate time offset. Results show performance but need further investigation.
that our approach can work much better. When radar echoes 3) Relatively low frequency Ultra-wide band (UWB) radars
are in poor condition and single radar is unable to carry out between 100 MHZ and 3 GHz are frequently employed
detection, we employ both Radar Sensor Networks (RSN) and
RAKE structure to combine the echoes from different radar in recent years owning to the characteristics provided
members and successfully detect the target. by their high resolutions as well as the very good

1. INTRODUCTION ability of penetration, such as penetrating walls etc. [5]
[6]. Despite comparatively short detection range, UWB

Detection and identification of military equipment in a signal would have advantages over a narrowband signal
strong clutter background, such as foliage, soil cover or with limited frequency content.
building leads has been a long-standing subject of intensive In this paper, we will apply our expertise in signal process-
study. It is believed that solving the target detection through ing, data fusion, sensor networks, etc to achieve effective
foliage will significantly benefit sense-through-wall and many through-foliage technology using ultra-wideband (UWB) radar
other subsurface sensing problems. However, to this date, the and extracting as much information as possible to improve the
detection of foliage-covered military targets, such as artillery, probability of target detection.
tanks, trucks and other weapons with the required probability The remainder of this paper is organized as follows. In
of detection and false alarm still remains a challenging issue. Section II, we summarize the measurement and collection
This is due to the following facts: of data we used in this paper. In Section III, we propose a

1) Given certain low radar cross section(RCS), scattering differential based approach for through-foliage target detection
from tree trunk and ground reflectivity may overwhelm with good signal quality. In Section IV, we propose a radar
the returned target signals of interest sensor network (RSN) and RAKE structure for through-foliage

2) Very high multiple fading severely corrupt the amplitude target detection when the signal quality is poor. We conclude
and phase of the echoes this paper and discuss some future research topics in Section

3) Even if target is stationery, tree leaves and branches are V.
likely to swing in result of gust, which will generate
doppler shift of clutters. II. THROUGH-FOLIAGE DATA MEASUREMENT AND

Therefore, our main goal is to account for the above effects COLLECTION
and better analyze the "defoliated" signal and thus improve Our work is based on the through-foliage data collected
the probability of target detection, by Virtual Machines LLC supported by Air Force [7]. The

Over the past two decades, experimental and theoretical foliage penetration measurement effort began in August 2005
research have been studied to examine the performance on and continued through December 2005. The measurements
target detection covered by foliage employing imaging radars were taken on the grounds of Virtual Machines Company in
working at following 3 types signals: Holliston, Massachusetts. Working in August through the fall

1) Traditional sinusoidal waveforms at VHF through UHF of 2005, the foliage measured included late summer foliage
bands [1], as the lower is the radar frequency, the lower and fall and early winter foliage. Late summer foliage, because



of the limited rainfall, involved foliage with decreased water III. TARGET DETECTION WITH GOOD SIGNAL QUALITY:

content. Late fall and winter measurements involved largely A DIFFERENTIAL-BASED APPROACH
defoliated but dense forest. In Fig. 2, we plot two collections with good signal quality,

The foliage experiment was constructed on a seven-ton man one without target on range (Fig. 2a) and the other one with
lift, which had a total lifting capacity of 450 kg. The limit target on range (Fig. 2b and target appears at around sample
of the lifting capacity was reached during the experiment 14,000). To make it more clear to the readers, we provide
as essentially the entire measuring apparatus was placed on expanded views of traces (with target) from sample 13,001
the lift. The principle pieces of equipment secured on the to 15,000 for the above two collections in Figs. 3a and 3b.
lift are: Barth pulser, Tektronix model 7704 B oscilloscope, Since there is no target in Fig. 3a, it can be treated as the
dual antenna mounting stand, two antennas, rack system, IBM response of foliage clutter. It's quite straightforward that the
laptop, HP signal Generator, Custom RF switch and power target response will be the echo difference between Fig. 3b
supply and Weather shield (small hut). The target is a trihedral and Fig. 3a, which is plotted in Fig. 3c. However, in practical
reflector (as shown in Fig. 1). Throughout this work, a Barth situation we either obtain Fig. 3a (clutter echo without target)
pulse source (Barth Electronics, Inc. model 732 GL) was used. or Fig. 3b (target on range). The challenge is how to make
The pulse generator uses a coaxial reed switch to discharge target detection based on Fig. 3b (with target) or Fig. 3a (no
a charge line for a very fast rise time pulse outputs. The target) only?
model 732 pulse generator provides pulses of less than 50
picoseconds (ps) rise time, with amplitude from 150 V to _,o"

greater than 2 KV into any load impedance through a 50 ohm
coaxial line. The generator is capable of producing pulses with
a minimum width of 750 ps and a maximum of I microsecond.
This output pulse width is determined by charge line length
for rectangular pulses, or by capacitors for lie decay pulses.

-3

- 0 O 4O0 • no 100 lZ• 4OO 13
0 2M~

(a)

Fig. I. The target (a trihedral reflector) is shown on the stand at 300 feet
from the lift. -2

For the data we used in this paper, each sample is spaced at
50 picosecond interval, and 16,000 samples were collected for _,
each collection for a total time duration of 0.8 microseconds
at a rate of approximately 20 Hz. We considered two sets of (b)
data from this experiment. Initially, the Barth pulse source
was operated at low amplitude and 35 pulses reflected signal Fig. 2. Measurement with very good signal quality and 100 pulses average.

(a) no target on range (b) with target on range (target appears at around samplewere averaged for each collection. Significant pulse-to-pulse 14000)

variability was noted for these collections. The scheme for
the sense-through-foliage target detection with "poor" signal The block diagram of our approach is dawn in Fig.4.
quality will be presented in Section IV. Later, good signal The waveforms in Fig. 2a and 2b imply the synthesized
quality data were collected using higher amplitude pulses and effect of large-scale path loss and small-scale fading and
100 pulses reflected signals were averaged for each collection. multipath scattering. We believe if UWB propagation channel
The scheme for target detection with "good" signal quality will at foliage can be approximately estimated based on received
be presented in Section M. echoes with good quality, we may reduce the "foliage-based"



UWB channel effect on received waveforms and better detect
the target under foliage. However, this channel estimation is an
open problem. For simplicity, we apply the following model

"to defoliate the scene.

fAe-Bx y>
= -Ae-B, otherwise (1)

where ý is the amplitude of estimated clutter echo. x is sample
index. y is the amplitude of original measurement. A and B
are constants. Although it deserves much further study on the

estimation problem, we shall see later that as the target appears
at a relative tail part, this simple estimation is applicable.

Observe Fig. 3b, for samples where target appears (around
-•-,,, ,sample 14,000), the waveform changes much abruptly than

(a) that in Fig. 3a. As differential value represents the changing

rate of a function, it is quite intuitively that the amplitude of
differential value at around sample 14,000 should be large. We

plot the power of clutter-accounted and differentiated echoes
in Fig. 5. It is quite straightforward to see there is no target

"y I''' in Fig. 5a and there is target in Fig. 5b.

I 'I : ".
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Fig. 3. Measurement with good signal quality and 100 pulses integration
(a) Expanded view of traces (no target) from samples 13001 to 15000 (b) i
Expanded view of traces (with target) from samples 13001 to 15000 (c)
Expanded view of traces difference between with and without targets
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Received Radio hlDcio
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Compnsaton " -1the field

We compared our differential based approach to the scheme
Fig. 4. Block diagram of differential based approach for single radar proposed in [8]. In [8], 2-D image was created via adding

voltages with the appropriate time offset. In Figs. 6a and 6b,



X 10e Reoeived
; •~~~adar.t ,I •

1.39 RW a lsed 0i

1.4 w2
1.405,°,o,.e

radar_n Rai

1.415n

1.415 f
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(a)
xlO1

mon goals of the network other than each radar operate sub-
1.385 stantively. As radar sensors are environment dependent [101,

1.30 it may provide better signal quality if different neighboring
radars work collaboratively to perform data fusion. For exam-

1.395 pie, consider a system of two radars. When the signal of either

1.4 radar unfortunately experience a severe fading, if two radars
are spaced sufficiently far apart, it is not likely that both of

1.405 the radars experience deep fade at the same time. By selecting

1,41 better waveform from the two radar waveforms, the data is less
likely to be lost.

In this paper, we assume the radar sensors are synchronized
1.42 1.355 1.39 1.395 1.4 1.405 1.41 1.415 1.42 in RSN. In Fig. 7, the echo, i.e., RF response by the pulse

X10' of each cluster-member sensor, will be combined by the
(b) clusterhead using a weighted average, and the weight wi is

determined by the power of each echo xi (m) (m is the sample
Fig. 6. 2-D image created via adding voltages with the appropriate time index),
offset (a) no target (b) with target in the field EE (2)

we plot the 2-D image created based on the above two data and

sets (from samples 13,800 to 14,200). However, it's not clear Ej = var(xi(m)) + [mean(xd(m))12  (3)
which image shows there is target on range. We ran simulations for n = 35 and plot the power of combined

IV. TARGET DETECTION WITH POOR SIGNAL QUALITY: signal obtained through differential based approach in Fig. 8c.

RADAR SENSOR NETWORK AND DIFFERENTIAL-BASED Compare this figure with Fig. 8a and Fig. 8b, it is quite obvious

APPROACH to see that there is a target around sample 14,000.

As mentioned in Section H, when the Barth pulse source V. CONCLUSION AND FUTURE WORKS
was operated at low amplitude and the sample values are In this paper, we propose a differential-based signal process-
not obtained based on sufficient pulse response averaging ing approach on received UWB Radar waveforms to improve
(averaged over 35 pulses for each collection), significant pulse- through-foliage target detection. The foliage penetration mea-
to-pulse variability was noted and the return signal quality is surements were taken in Holliston, Massachusetts. When radar
poor. Fig. 8a illustrate the received echoes in this situation. echoes are in good quality, the detection of target can be
Even with the application of our proposed differential-based achieved by applying differential-based technology to single
scheme, we can not tell whether there is target or not in radar waveform. We compared our approach in case of no
the range based on Fig. 8b. Since significant pulse-to-pulse target as well as with target against the scheme in which 2-D
variability exists in the echos, this motivate us to explore the image was created via adding voltages with the appropriate
spatial and time diversity using Radar Sensor Networks (RSN). time offset. Results show that our approach can work much

In nature, a network of multiple radar sensors can been better. When radar echoes are in poor condition and single
utilized to combat performance degradation of single radar [9]. radar is unable to carry out detection, we employe both Radar
These radar sensors are managed by an intelligent clusterhead Sensor Networks (RSN) and RAKE structure to combine the
that combines waveform diversity in order to satisfy the com- echoes from different radar members and finally successfully



detect the target. For future works, we will collect more data
with different targets and perform automatic target recognition
besides target detection.
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Abstract

In this paper, we prove that the amplitude of foliage clutter follows log-logistic model

using maximum likelihood (ML) parameter estimation as well as the root mean square error

(RMSE) on PDF curves between original clutter and statistical model data. The measured

clutter data is provided by Air Force Office of Scientific Research (AFOSR). We not only

investigate log-logistic model, but compare it with other popular clutter models, namely

log-normal, weibull and nakagami. It shows that log-logistic model not only achieves the

smallest standard divination (STD) error on estimated model parameters, but also the best

goodness-of-fit and smallest RMSE for both poor and good clutter signals.

Index Terms : foliage clutter, log-logistic, log-normal, weibull, nakagami, goodness-of-fit

1 Introduction and Motivation

Detection and identification of military equipment in a strong clutter background, such as

foliage, soil cover or building leads has been a long-standing subject of intensive study. It

is believed that solving the target detection through foliage will significantly benefit sense-

through-wall and many other subsurface sensing problems. However, to this date, the detec-

tion of foliage-covered military targets, such as artillery, tanks, trucks and other weapons with

the required probability of detection and false alarm still remains a challenging issue. Recent
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investigations on scattering behavior of tree canopies have shown that both signal backscat-

tering and attenuation are significantly influenced by tree architecture [1]. Therefore use the

return signal from foliage to establish the clutter model that accounts for environment effects

is crucial for the sense-through-foliage radar detection.

clutter is a term used to define all unwanted echoes from natural environment [2]. The

nature of clutter may necessarily varies on a basis of different application and radar parameters.

Most previous study have investigated in land clutter and sea clutter intensively and some

conclusions have been reached, such as log-normal, weibull and K-distributions have proved to

be better suited for the clutter than Rayleigh and Rician models in the high resolution radar

systems. Fred [3] did statistical comparisons and found that sea clutter at low grazing angles

and high range resolution is spiky based on the data measured from various sites in Kauai and

Hawaii. David generalized radar clutter model as noncentral chi-square density by allowing the

noncentrality parameter to fluctuate according to the gamma distribution [4]. Furthermore,

Henry et al. used a Neural-Network-based approach to predict sea clutter model [5] [6].

As far as clutter modeling in forest is concerned, it is still of great interest and will be

likely to take some time to reach any agreement. A team of researchers from MIT [7] and U.

S. Army Research Laboratory (ARL) [8] [9] have measured ultrawideband (UWB) backscatter

signals in foliage for different polarizations and frequency ranges. The measurements show that

the foliage clutter is impulsive corrupted with multipath fading, which leads to inaccuracy of

the K-distributions description [10]. The Air Force Office of Scientific Research (AFOSR) has

conducted field measurement experiment concerning foliage penetration radar since 2004 and

led to the sense that metallic targets may be more easily identified with wideband than with

narrowband signals [11].

In this investigation, we will apply ultra-wide band (UWB) radar to model the foliage clut-

ter. UWB radar emissions are at a relatively low frequency-typically between 100 MHz and

3 GHz. Additionally, the fractional bandwidth of the signal is very large (greater than 0.2).

Such radar sensor has exceptional range resolution that also has an ability to penetrate many
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common materials (e.g., walls). Law enforcement personnel have used UWB ground pene-

trating radars (GPRs) for at least a decade. Like the GPR, sense-through-foliage radar takes

advantage of UWB's very fine resolution (time gating) as well as low frequency of operation.

In our present work, we investigate the log-logistic distribution to model foliage clutter and

illustrate the goodness-of-fit to real UWB clutter data conducted by AFOSR. Additionally,

we compare the goodness-of-fit with existing popular models namely log-normal, weibull and

nakagami by means of maximum likelihood estimation (MLE). The result shows that log-

logistic model provides a better fit to the foliage clutter.

The rest of this paper is organized as follows. Section 2 provide a statistical model review

on log-logistic, log-normal, weibull and nakagami distributions and discuss their properties and

applicability as models for foliage clutter. Section 3 summarize the measurement and collection

of clutter data we used in this paper. Section 4 discuss estimation on model parameters and

the goodness-of-fit. Finally, section 5 concludes this paper and describe some future research

topics.

2 Clutter Models

Many radar clutter models have been proposed in terms of distinct statistical distributions,

most of which describe the characteristics of clutter amplitude. Here we discuss the properties

and applicability of log-logistic, log-normal, Weibull and Nakagami statistic models, which are

designated as "curve fit" models in section 4, since they are more likely to provide good fit to

our collections of pragmatic clutter data in general.

2.1 Log-Logistic Model

In spite of intensive application in precipitation and stream-flow data, so far the log-logistic

distribution (LLD) [12] statistical model has never been applied to radar foliage clutter model

to the best our knowledge. The motivation for considering log-logistic model involves a con-
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sideration of how well the model matches our collected foliage clutter statistics and in section

4, we shall prove that this model provides the best curve fit and smaller parameter estimation

error than those of lognormal, Weibull and Nakagami.

Here we apply the two-parameter distribution with parameters p and a, for 3-parameter

Log-Logistic distribution (LLD3), readers may refer to [13]. The PDF for this distribution is

given by

f(x) e x> 0, a >0 (1)
ux(1 + e ý )

where p is scale parameter and a is shape parameter. The mean of the the LLD is

E{x} = elr(1 + o))r(1 - u) (2)

The variance is given by

Var{x} = e21'{r(1 + 2a)r(1 - 2a) - [r(1 + a)r(1 - U)] 2 } (3)

while the moment of order k is

1
E{xk} = ae"B(ka, 1 - ka), k < - (4)

where

B(m, n) = xm--1 (1 - x)n-ldx (5)

This distribution is a special case of Burr's type-XII distribution [14] as well as a special case

of the kappa distribution proposed by Mielke and Jonson [15]. LLD has been applied recently

in hydrological analysis. Lee et al. employed the LLD for frequency analysis of multiyear

drought durations [16], whereas Shoukri et al. employed LLD to analyse extensive Canadian

precipitation data [17], and Narda & Malik used LLD to develop a model of root growth and

water uptake in wheat [18]. This model is intended to be employed on a basis of higher kurtosis

and longer tails, as well as its shape similarity to log-normal and Weibull distributions. PDF

for LLD on a basis of different of y and a are illustrated in Fig. 1.
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2.2 Log-Normal Model

Most previous experimental data have resulted in clutter being modeled using a log-normal

distribution, which is most frequently used when the radar sees land clutter [19] or sea clutter

[20] at low grazing angles (_• 5 degrees) since it has a long tail. However it is reported that

the log-normal model tends to overestimate the dynamic range of the real clutter distribution

in [21]. Furthermore, most previous research apply log-normal model to land and sea clutter,

but how accurately it models foliage clutter requires detailed analysis.

The log-normal distribution [22] is also a two-parameter distribution with parameters A

and a. The PDF for this distribution is given by

1 2,

(X)-x e 2a , x>0,a>0 (6)

where p is the scale parameter and a is the shape parameter. The mean, variance and the

moment of order k are shown below respectively

E{x} = (7)

Var{x} = (e' 2 
- 1)e2p+a 2  (8)

E{xk} = ek k (9)

PDF on a basis of different IL and a for log-normal distribution is shown in Fig. 2.

2.3 Weibull Model

The Weibull distribution, which is named after Waloddi Weibull, can be made to fit clutter

measurements that lie between the Rayleigh and log-normal distribution [23]. It has been

applied to land clutter [241 [25], sea clutter [26] [27] and weather clutter [281. However, in

very spiky sea and foliage clutter, the description of the clutter statistics provided by Weibull

distributions may not always sufficiently accurate [29].
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The Weibull distribution is also a two-parameter distribution with parameters a and b.

The PDF for this distribution is given by

f(x) = ba-bxb-le-(x/a) , x > 0,a >0, b >0 (10)

where b is the shape parameter and a is the scale parameter. The mean, variance and the

moment of order k are shown below respectively

E{x} = aF(1 + (11)

21 2 + F( +2)2(2
Var{x} = a2{(1 + +) - 1 1 (12)

E{xk} = akF(1 + k) (13)

PDF based on different a and b for Weibull distribution is shown in Fig. 3.

2.4 Nakagami Model

Consider the foliage penetration setting, the target returns are from multipath effects corrupted

with fading. As nakagami distribution is used to model scattered fading signals that reach a

receiver by multiple paths, we also apply it to analyze how well it fits the foliage clutter

statistics.

The PDF for Nakagami distribution is given by

,. Iu i (2,u-1) -PX2

f(x) = 2(L - , 1 e x > 0, > 0 (14)

where p is the shape parameter and w is the scale parameter. The mean, variance and the

moment of order k of Nakagami distribution are shown below respectively

E II ('U + ½1(W I
Ejx}= r(+) )()i (15)

Var{x} = w[1 1 - P(± 1))2] (16)

E{xk}= F(/ k+) (U)I (17)

The PDF on a basis of different p and w for Nakagami distribution is illustrated in Fig. 4.
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3 Experiment Setup and Data Collection

Our work is based on the sense-through-foliage data collected by Virtual Machines LLC sup-

ported by Air Force [11]. The foliage penetration measurement effort began in August 2005

and continued through December 2005. The measurements were taken on the grounds of Vir-

tual Machines Company in Holliston, Massachusetts. Working in August through the fall of

2005, the foliage measured included late summer foliage and fall and early winter foliage. Late

summer foliage, because of the limited rainfall, involved foliage with decreased water content.

Late fall and winter measurements involved largely defoliated but dense forest.

The UWB radar-based experiment was constructed on a seven-ton man lift, which had

a total lifting capacity of 450 kg. The limit of the lifting capacity was reached during the

experiment as essentially the entire measuring apparatus was placed on the lift (as shown in

Fig. 5). The principle pieces of equipment secured on the lift are: Barth pulser, Tektronix

model 7704 B oscilloscope, dual antenna mounting stand, two antennas, rack system, IBM

laptop, HP signal Generator, Custom RF switch and power supply and Weather shield (small

hut). Throughout this work, a Barth pulse source (Barth Electronics, Inc. model 732 GL)

was used. The pulse generator uses a coaxial reed switch to discharge a charge line for a very

fast rise time pulse outputs. The model 732 pulse generator provides pulses of less than 50

picoseconds (ps) rise time, with amplitude from 150 V to greater than 2 KV into any load

impedance through a 50 ohm coaxial line. The generator is capable of producing pulses with

a minimum width of 750 ps and a maximum of 1 microsecond. This output pulse width is

determined by charge line length for rectangular pulses, or by capacitors for 1/e decay pulses.

For the data we used in this paper, each sample is spaced at 50 picosecond interval, and

16,000 samples were collected for each collection for a total time duration of 0.8 microseconds

at a rate of approximately 20 Hz. We considered two sets of data from this experiment.

Initially, the Barth pulse source was operated at low amplitude and 10 pulses reflected clutter

signal were obtained for each collection at the same site but different time, one example of
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transmitted pulse and received backscattering are shown in Fig. 6(a) and (b) respectively.

Significant pulse-to-pulse variability was noted for these collections. Later, echoes with good

signal quality were collected using higher amplitude transmitted pulses, shown in Fig. 6(c).

To make them clearer to readers, we provide expanded views of received traces from sample

10,000 to 12,000 in Fig. 7.

4 Statistical Analysis of the Foliage Clutter Data

4.1 Maximum Likelihood Estimation

On a basis of collected clutter data, we apply Maximum Likelihood Estimation (MLE) ap-

proach to estimate the parameters for log-logistic, log-normal, weibull and nakagami models

respectively. MLE is often used when the sample data are known and parameters of the

underlying probability distribution are to be estimated [31] [32]. It is generalized as follows:

Let yl, Y2, "", YN be N independent samples drawn from a random variable Y with m

parameters 01, 02, "", 0,m, where Oi E 0, then the joint PDF of yl, Y2, "", YN is

LN(YIO) = fYIo(Y1 91,02," ,- m)fyI0(Y2J01,02," , ' m) ."fy10(Yn11, 02," , -Om) (18)

When expressed as the conditional function of Y depends on the parameter 9, the likelihood

function is

N

LN(YIO) =1 fYl (Yk10•0l'92,'" ,Om) (19)
k=1

The maximum likelihood estimate of 01, 02, O 9m is the set of values O1, 92, " Om that

maximize the likelihood function LN(Y19).

As the logarithmic function is monotonically increasing, maximizing LN(Y1•) is equiva-

lent to maximizing ln(LN(YI0)). Hence, it can be shown that a necessary but not sufficient

condition to obtain the ML estimate 9 is to solve the likelihood equation

a ln(LN(Y19)) = 0 (20)
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On a basis of collected clutter radar, we apply MLE to obtain ft and & for log-logistic, / and

Sfor log-normal, & and b for weibull and ft and (D for nakagami respectively, which are shown

in table 1. We also explore the standard deviation (STD) error of each parameter. These

descriptions are also shown in table 1 in the form of e2 , where x denotes different parameter

for each model. As there are 10 data sets for poor clutter signal and 2 for good ones, we also

calculate the average values of estimated parameters and their STD error.

From table 2, we can see STD error for log-logistic and log-normal parameters are less than

0.02 and their estimated parameters vary little from data to data compared to Weibull and

nakagami. It is obvious that log-logistic model provides the smallest STD error and nakagami

the largest. Therefore, in the view of statistics, log-logistic model fits the collected data best

compared to log-normal, weibull and nakagami.

4.2 Goodness-of-fit in curve and RMSE

We may also observe that to what extend does the PDF curve of the statistic model match

that of clutter data by root mean square error (RMSE). Let i (i=1, 2,..- , n) be the sample

index of clutter amplitude, cj is the corresponding PDF value whereas 6i is the PDF value of

the statistical model with estimated parameters by means of MSE. RMSE is obtained through

RMSE n - (ci - 5i)2  (21)
n =1

Here we apply n=101 for each model.

The goodness-of-fit in curve and RMSE of each model for both collected poor and good

clutter signals are illustrated in Fig. 8 and 9 respectively.

Consider the poor signal of clutter, the PDF of absolute amplitude of one-time poor clutter

data is presented by means of histogram bars. In Fig. 8, it can be seen obviously that log-

logistic model with MLE parameters provides best goodness-of-fit compared to other models

since it provides the most suitable kurtosis, slope and tail. As for the maximum PDF value, log-

logistic is about 1 x 10-3, while that of other models are over 1.2 x 10-3. For the slope part which
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connected kurtosis and tail, which is in the range from 0.1 x 104 to 0.5 x 104 in view of x axes,

log-logistic provides the smallest skewness whereas nakagami provides the largest. Observation

of the tails show that log-logistic and log-normal provides very close-valued tails, while the

tail of weibull and nakagami is lager than the collected data. Meanwhile, we obtain that

RMSElog-logistic = 2.5425 x 10-5, RMSElog-normal = 3.2704 X 10-5, RMSEjibull = 3.7234 x 10-5,

RMSEnakagami = 5.4326 x 10-5. This sufficiently shows that log-logistic is more accurate then

log-normal, weibull and nakagami models.

Similarly, in Fig. 9 histogram bars denote the PDF of absolute amplitude of one-time good

clutter data. Compared to Fig. 8, log-logistic and lognormal provides quite similar extend

of goodness-of-fit, weibull is worse since it can not fit well in both kurtosis and tail, while

nakagami is the worst and unacceptable. Also, we obtain RMSEiog-ogistic = 2.739 x 10-5,

RMSEiog-normal = 3.1866 x 10-5, RMSEmeibuii = 3.6361 10-5, RMSEnakagami = 4.4045 X 10-5,

which illustrates that for clutter backscattering with good quality, log-logistic still fits best.

5 Conclusion

On a basis of 2 groups of foliage clutter data using UWB radar, we prove that it is more accurate

to describe foliage clutter using log-logistic statistic model other than log-normal, weibull or

nakagami. Log-normal is also acceptable whereas nakagami provides the worst goodness-of-fit.

Future research will investigate how to design the radar receiver to reduce the false alarm and

improve the probability of detection based on the foliage clutter model we proposed.
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Table 1: Estimated Parameters for Poor Signal

PDF Log-Logistic Log-normal Weibull Nakagami
/5 = 7.24161 ft = 7.0455 a = 2975.33 /5 = 0.177062

data 1 = 1.06483 & = 2.20761 b = 0.594979 D= 9.09663e + 007
CI= 0.0141212 CI = 0.0174527 ea = 41.6157 ep = 0.00150615

= 0.00724181 • = 0.0123415 Eb = 0.00356925 c = 1.70907e + 006
/5 = 6.9716 =t - 6.72573 a = 2285.13 =t - 0.162375

data2 = 1.2126 = 2.33617 b=0.563747 w= 7.4776e + 007
Ej = 0.014747 6/ = 0.0184691 ea = 33.7127 CP = 0.00137422
,= 0.00773723 E, = 0.0130602 Eb = 0.00337485 e€, - 1.46679e + 006

At = 7.00554 ft = 6.76262 a = 2341.52 /5 = 0.164695

data 3 1.10741 & = 2.31258 b = 0.57073 C= 7.46366e + 007
= 0.0145728 E• = 0.0182825 ea = 34.1207 =, = 0.001395

E= 0.0076303 e, = 0.0129283 Lb = 0.00341448 E, = 1.45459e + 006
ft = 7.03055 ft - 6.80711 a = 2395.85 ft = 0.167391

data4 = 1.07858 &=2.25973 b=0.579381 c = 7.4926e + 007
6 = 0.0142027 6p = 0.0178647 c, = 34.4066 CI = 0.0014916
e= 0.00741556 , = 0.0126329 Lb = 0.00345156 e = 1.44727e + 006

ft = 7.16226 ft 6.95712 a = 2806.76 ft = 0.17112
data 5 = 1.10132 & = 2.26592 b = 0.577823 W = 9.03298e + 007

Ej = 0.014605 Ep = 0.0179137 Ea = 40.4226 CIA = 0.00145265
,= 0.00750067 -, = 0.0126675 Cb = 0.00347389 e = 1.72749e + 006

[I = 7.01527 ft = 6.77515 a = 2360.33 ft = 0.165292

data 6 & = 1.10123 & = 2.30286 b - 0.572749 C = 7.50824e + 007
CIA 0.0144902 CI = 0.0182057 c, = 34.2753 E, = 0.00140035

= 0.00758568 E = 0.012874 Lb = 0.00342376 E, = 1.46145e + 006
ft = 7.14523 ft = 6.94201 a = 2753.69 ft = 0.170964

data 7 &=1.09486 &=2.25621 b =0.578948 c = 8.80474e + 007
p= 0.0145132 e = 0.0178369 ea = 39.585 e = 0.00145125

,= 0.00745994 E, = 0.0126132 Lb = 0.00347442 C, - 1.68382e + 006
fA = 6.95411 ft = 6.71591 a = 2250.66 ft = 0.162448

data 8 & = 1.11486 & = 2.31898 b = 0.564989 ý= 7.31436e + 007
C= 0.0146774 E = 0.0183331 La = 33.1387 CA = 0.00137488
,= 0.00768003 , = 0.0129641 Lb = 0.0033763 e= 1.4338e + 006
A = 7.18561 ft=6.9715 a= 2840.72 t= 0.172324

data 9 & = 1.09854 & = 2.27088 b = 0.581219 C= 8.97304e + 007
E,- 0.0145483 P = 0.0179529 La = 40.6593 =, = 0.00146348
,= 0.00749265 e, = 0.0126952 Lb = 0.0034984 E = 1.70923e + 006

= 7.192 ft=6.99196 a= 2869.65 t= 0.173572

data 10 = 1.0866 & = 2.23975 b = 0.584803 c = 9.01631e + 007
e= 0.0144166 A = 0.0177067 E, = 40.837 L, = 0.0014747
,= 0.0073916 e, = 0.0125211 Lb = 0.00351294 E = 1.71142e + 006
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Table 2: Averaged Estimated Parameters for Poor Signal

PDF Log-Logistic Log-normal Weibull Nakagami

A = 7.0904 - = 6.8695 & = 2588 4i = 0.1687
S& = 1.1061 & = 2.2771 b = 0.5769 o= 8.218e + 007

average = 0.0145 EJ = 0.0180 ea = 37.4316 C' = 0.0014

e, = 0.0075 E, = 0.0127 cb = 0.0035 e, = 1.4905e + 006

Table 3: Estimated Parameters for Good Signal

PDF Log-Logistic Log-normal Weibull Nakagami
S= 7.76868 4= 7.79566 = 4901.07 = 0.239587

data 1 & = 0.786511 & = 1.41771 b -0.743223 C o 1.16839e + 008
61 = 0.0107792 = 0.011208 = 55.3011 = 0.00207912
,= 0.00521601 E, = 0.00792559 cb = 0.00434465 E, = 1.88719e + 006

A = 7.78096 4 = 7.8046 a = 4942.48 4 = 0.240593

data 2 = 0.787426 & = 1.41855 b = 0.745233 c= 1.17237e + 008
e= 0.0107917 e, =- 0.0112147 = 55.6114 EJA= 0.00208848
,= 0.0052213 e , 0.00793033 Eb = 0.0043612 e, = 1.88953e + 006

= 7.7748 = 7.7881 a = 4921.8 4=0.2401
S= 0.7870 &= 1.4181 b = 0.7442 c = 1.1704 + 008

average =A = 0.0108 el = 0.0112 E, = 55.4565 =. = 0.0021
E, = 0.0052 e, = 0.0079 5 b = 0.0044 E, = 1.8884 + 006
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Abstract-In many military and civilian applications, esti- tracking. For target detection problem, there are two primary

mating the number of targets in a region of interest plays levels: single target detection and multi-target detection. In the
a primary role in performing important tasks such as target single target scenario, we proposed a diversity scheme in [131
localization, classification, recognition, tracking, etc. Such an
estimation problem is however very challenging since the number to improve detection performance of RSNs in the presence of
of targets is time-varying, targets' state is fluctuating, and many strong interference, especially clutters, and noise. We are now

kinds of targets might appear in the field of interest. In this interested in using RSNs to estimate the number of targets

paper, we develop a framework for estimating the number present in the surveillance area. In practice, multiple moving
of targets in a sensing area using Radar Sensor Networks targets might appear in the sensing area, the number of targets
(RSNs): (1) we formulate the multi-target detection problem;
(2) we model signals, interference (e.g., clutter, jamming, and is time-varying, and targets' state is fluctuating. Therefore, the
interference between radars), and noise at radar sensors; (3) multi-target detection is more challenging and difficult to solve

we propose a Maximum Likelihood Multi-Tiarget Detection (ML- than the single target detection.
MTD) algorithm to combine received measurements and estimate Among the existing work on multi-target detection, Yung
the number of targets present in the sensing area. We evaluate and Mourad [16] used frequency diversity signaling to estimate
multi-target detection performance using RSNs in terms of
the probability of miss detection PMD and the root mean

square error (RMSE). Simulation results show that multi-target the information theoretic criteria to detect the number of

detection performance of the RSNs is much better than that of targets. However, both work only studied the performance of

single radar systems. their proposals for the case of two closely spaced targets. A

performance analysis for a general case was provided in [19]
I. INTRODUCTION AND MOTIVATIONS and [18]. In [15], multiple target detection and estimation

Radar sensor networks (RSNs) are networks of distributed by exploiting the amplitude modulation induced by antenna

radar sensors which collaboratively operate and are deployed scanning was proposed and a sequential hypothesis test was

ubiquitously on airborne, surface, and unmanned vehicles in examined to determine the number of targets. However, all

a large geographical area. Radar sensors have capabilities for above work studied multi-target detection problem using a

radar sensing, signal processing, and wireless communications. single radar. For the sensor network scenario, Wang et al. [ 17]

In RSNs, radar sensors are networked together in an ad-hoc applied Bayesian source number estimation to solve the dis-

fashion, i.e., they do not depend on any preexisting infrastruc- tributed multiple target detection in sensor networks. Based on

ture. In fact, they are self-organizing entities that are deployed their approach, each cluster computed the posterior probability

on demand to perform various tasks such as surveillance, corresponding to each hypothesis on the number of sources

search and rescue, disaster relief, etc. RSNs have advantages and a central processor fused posterior probabilities using

compared to single radar systems in improving the system Bayes' theorem to select the best hypothesis. Their proposal

sensitivity, reducing obscuration effects and vulnerability, and however did not consider Doppler shifts of the targets and was

increasing the detection performance [2], [3]. not suitable for the multi-target detection in RSNs.

An RSN is organized into clusters, which are independently In this paper, we develop a framework for estimating the

controlled and dynamically reconfigured as sensors move, to number of targets in the field of interest using RSNs. At the

observe targets such as tactical weapons, missiles, aircraft, ith sensor, we deploy a receiver with an K element-ULA

ships, etc. in the surveillance area. In a cluster, sensors (Uniform Linear Array) whose spacing between elements is

receive the signals backscattered by targets in the presence di. During the observation time, P pulses are transmitted to

of interference (e.g., clutter, jamming, interference between track targets. The useful signals backscattered from targets

radar sensors), and noise. Then, the observed signals from all include spatial-temporal snapshots of targets and parameters

radar sensors are forwarded to a clusterhead where received representing radar cross section of targets. Then, a RSN-

data set will be combined to perform fundamental tasks such clusterhead collects measurements from all radar sensors and

as detection, localization, identification, classification, and combines them to perform detection procedures. To fuse



received measurements and estimate the unknown number of III. SIGNAL AND INTERFERENCE MODELS
targets in the area of interest, at the RSN-clusterhead, we A. Signal Models
propose a multi-target detection algorithm which is Maximum
Likelihood Multi-Target Detection (ML-MTD) algorithm. We At radar sensor i, we deploy a receiver with an K-element
use the probability of miss detection PMD and the root ULA whose spacing between elements is di. If P pulses are
mean square error (RMSE) as metrics to evaluate multi-target processed in a coherent pulse interval, the snapshot of target m
detection performance using RSN. Simulation results show is a KP x 1 spatial-temporal steering vector with the following

that detection performance of the RSN is much better than form [1], [9]:

that of a single radar system.
The rest of this paper is organized as follows. In Section II, e(Oi., firn) = bt(fim) 0 as(Oir"). (3)

we state our multi-target detection problem. In Section mI, where fir and Oim are the normalized Doppler shift and
we model signals, interference, and noise at radar sensors. In normalized angle for the target m, respectively. The notation
Section IV, we propose an ML-MTD algorithm to estimate ® denotes the Kronecker product, bt(fim) is a P x 1 Doppler
the number of targets present in the sensing field. Multi-target steering vector, and as(Oir") is a K x 1 spatial steering vector.
detection performance of RSN is discussed in Section V while bt(fim) and as(Oim) are defined as follows:
conclusions and open directions are given in Section VI.

II. MULTI-TARGET DETECTION PROBLEM STATEMENT bt(fim) = [1 ej 2 7rfm ... eJ27r(P-1)fi_]T. (4)

In this paper, we address a realistic situation in which the as(Oir") = [1 e- .... e-I2.r(K-1)6.]j. (5)
number of targets to be detected is generally unknown and has where T denotes the transpose operation. Let (kim be an angle
to be estimated. To handle our problem, an RSN consisting of that sensor i observes the mth target, frax,m be the maximum
N radar sensors is deployed. Radar sensors receive signals Doppler frequency for target m, and T, be the pulse duration.
embedded in interference and forward them to a central The normalized angle Oim for target m and the normalized
processor, e.g., a clusterhead to perform detection tasks. At the Doppler shift fire when target m is moving relatively to sensor
RSN-clusterhead, we propose a detection algorithm to estimate platform i are computed as [9]
the number of targets. To support the rest of the paper, we
make some assumptions as follows: di sin Oim

"* Targets evolve along independent trajectories and do not Oim = A, (6)
leave the surveillance area during the entire observation fim = 4 f .... TpOi" (7)
time of P consecutive pulses.

"* Targets are modeled as Swerling II target models whose We now assume that radar sensor i can detect Mi targets
magnitudes fluctuate independently from pulse to pulse during the observation time. The received signal vector zi (u, t)
according to a chi-square probability density function. at sensor i is the superposition of signals reflected from Mi

"* The locations of targets are unknown. Besides, Doppler targets, interference, and noise.
frequencies when targets are moving relatively to radar
platforms are uncertain. M,

"* Observation data or measurements from radar sensors, at zi(u, t) = 1 e(Oi., fim)Cim(U)Smi(t) + Wi,
the RSN-clusterhead, are statistically independent. The m=1
measurements furthermore either originate from true tar- = A(0i, fi)si(u, t) + w:, i = 1,2, ... , N.
gets or clutters. (8)

The estimated number of targets present in the surveillance
area is determined as

. A(Oi, f) = [e(Oil, f l), e(O 2,L 2), ..., e(OMi,, fif)] is
the PK x M, target response matrix. e(Oim, fim) is

{~i rg, m. A(T). ( a spatial-temporal steering vector that models the mth
w e is the estimated number of targets at sensor i and target return at angle Oim and Doppler shift fi,.

where iis a ty estim td n eri in tar e , t seso ible Si (U,t) = [al(u)sli(t),a 2(u )s 2i(t), ... ,aM,(U)SM ,i(t)]T

A(r) is an utility fu~nction derived in IV. Hence, the possible is the Mi x 1 target signal vector with a random variable
number of targets M that RSN can detect is the average value a..(u) that models the radar cross section (RCS) of
of fl, f2, ..., and ?N, i.e., the target m and sni(t) is the waveform reflected from

N target m.
e wi = wri + wji + wi + ni represents the overall

N = r.2 interference and noise: a clutter vector wci, a jamming
vector wji, an interference vector between radar sensors

where 1.] denotes a ceil operation. w8 i, and thermal noise ni.
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Received signals from radar sensors are forwarded to a 2) Jamming: Jamming signals are generated by hostile
central controller, e.g., clusterhead. Then, these received signal interfering signal sources that seek to degrade the performance
vectors zi(u, t) are fused to make estimation operations. Since of radar sensors by mechanisms such as degrading signal-to-
zi (u, t) is a zero-mean Gaussian vector, the probability density interference-plus-noise ratio (SINR) by increasing the noise
function of zi (u, t) can be presented as level, or generating false detections to overwhelm RSNs with

false targets. A model for Nji jamming signals is commonly

fe(zi-(u, 0) -Rz , 1 (9) presented as [1]f~i~~))= (27r)e 1R•.I)I ½' (9)

where R•) is the covariance matrix of zi(u,t), ri is the rank = E)31 (9 i), i = 1,2,...,N. (13)
of Rz~, and [" denotes the determinant of the matrix. 1--

where 31 contains voltage samples of the lth jamming wave-
B. Interference and Noise Models form and aji(O) is the jamming signal waveform at an angle

As pointed out, at the ith radar sensor, the interference vec- 01. The different jamming waveforms are uncorrelated with
tor wi is the sum of clutter wci, jamming wji, and interference each other.
between sensors wi. We apply the waveform design algorithm 3) Thermal Noise: Among noise existing in RSNs, thermal
proposed in [12] to have waveforms at sensors be orthogonal. noise due to ohmic losses at the radar receiver is normally
By doing so, interference between sensors can be canceled, dominant. We model the thermal noise vector ni at radar
i.e., wsi = 0. Following are characteristics and models of sensor i as a complex white Gaussian vector with zero-mean
clutter, jamming, and thermal noise at radar sensor i. and covariance a2. The covariance matrix of noise R,,i

1) Clutter: Clutter generates undesired radar returns that aniI where I is the KP x KP identity matrix.
may interfere with the desired signal. In RSNs, the signal-to- In RSNs, detection performance is largely affected by
clutter ratio (SCR) is often more important than the signal- clutters. So we will consider the disturbance at the ith radar as
to-noise ratio (SNR). The integrated clutter can be generally a sum of thermal noise and clutter. The disturbance covariance
approximated as the sum of Nci clutter patches. For clutter matrix Rwi is given by
patch k, the space-time data vector is modeled as [9]

R, = Elwiw}
Pki = Gkibt(fki)0a8a(Oki) = R.i + Eci(h)Rci. (14)

= GkiUki, k = 1,2, ... , NCi. (10) where Rli and Rri are the covariance matrices of noise and

where Gi is a complex random variable that accounts for the clutter, respectively. Eci(h) is a random variable used to model
amplitude and phase of clutter patch k. Uki = bt(fki) ® the clutter power of the hth range cell. eci(h) often follows
a,(Oki) where bt(fki) and a,(Oki) are temporal vector and Weibull distribution for ground clutter or gamma distribution
spatial vector of clutter patch k, respectively. fki and 0ki are for sea and/or weather clutter [14][21]. In homogeneous en-
the normalized Doppler shift and angle of arrival of the kth vironments, the average clutter power does not depend on h,
clutter patch, respectively. Total clutter vector wi equals to i.e., eci(h) is constant. Therefore, the disturbance covariance

matrix is rewritten as

N,,
W6 = Gkibt(fki)0as(Okf) R(9 = 2

k=1 2 2

N,, = aI Ecac (15)

- Z~iUki. (11) where 02 is the total disturbance power and Mwi is the
k=1 normalized disturbance covariance matrix.

The KP x KP covariance matrix of the clutter Rci at the ith 1 CNR,
radar is given by M wi -CN- + 1+ CNR,+1Mc. (16)

Rti E{w~iw'f} with CNR, = • is the clutter-to-noise power ratio. Then,
No, N,. total interference and noise can be modeled as a complex

- Z Z E{•i")}ukiu,' zero-mean white Gaussian vector with the covariance matrixk=1 j=1 TwiM"', i We, w_ C ar'02iMw,).
'7 MtS n i.e., w

- 2c (12) IV. MAXIMUM LIKELIHOOD MULTI-TARGET DETECTION

where H denotes the Hermitian operation, E{.} denotes the (ML-MTD) ALGORITHM

expectation, and Mci is the normalized covariance matrix, i.e., In this section, we develop an algorithm to detect the
all diagonal entries of Mci are ones. number of targets in the sensing region. We assume that signals
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backscattered from targets and interference are uncorrelated. a log-likelihood function r(r) {r = [1, r2 , ... ,TN]} in (24).
From the signal model in (8), the covariance matrix of received Hence, our mission is to find #i such that F(r) is minimized.

signal zi (u, t) at radar sensor i is given by

R() = E~zi(u,t)zH(u,t)}, rF(r) = -lnf(z(u,t)),
zt N x KP 1

= A(0i, fi)Rs,iAH(9(, f,) + 2 ln(2(r) +- og IR )I+

= + V(17) 1 N

where Rs,i is a Mi x Mi positive definite matrix which + I Z Z'[R Z-. (24)

represents the covariance matrix of the signal si(u,t),a is i=1

the disturbance power, and Mwi is the normalized disturbance Omitting terms that are independent of ri, we find the log-

covariance matrix at radar sensor i. Rs,, and 4r,) are defined: likelihood function P(r).

N N

R,, = E{si(u,t)sH(u,t)} (18) r(T) =--logIR(")I + -_[R•( T )]•• J•. (25)

,Pý`) = A(Oi, fi)Rs,iAH (0i, f) (19) i=1 i=1

The random variables a,,,(u) (i = 1, 2, ... , M) in s(u, t) From [6], [8], and [7], the utility function A(T) takes the form:

models the RCS of the mth target. In [11], Swerling proposed A(-) = r(T) + P(N). (26)
five target models called Swerling models where Swerling V

model is for non-fluctuating targets and Swerling I-IV models where P(N) = p(N)[Tavg(2KP - Tar,,g)] is a bias correction
are for fluctuating targets. In this paper, we focus our studies term or penalty function to make estimate unbiased. r,,g is

on the Swerling II target models. We know that magnitude of an average value of {TrIi = 1,2, ... , N} and p(N) is a penalty
the RCS Ia(u) for Swerling II targets fluctuates independently coefficient which is a constant function of N. For example,
from pulse to pulse according to a chi-square probability p(N) = 1 for the Akaike information criterion (AIC) and
density function with two degree of freedom, i.e., a Rayleigh p(N) = In N for the minimum description length (MDL).
probability density function. Therefore, the RCS of target m A(r) then can be rewritten as
can be modeled as a Gaussian random variables. That is,

N N

am(u) = arm(u) +jaQm(u). (20) A(T) = --logIR,•)l + Zz [R,(r)]-'zx +

where aIm(u) and aQm(U) follow Gaussian distribution with i=1

zero mean and variance p2 /2 for each branch I, Q. + p(N){ravg(2KP - r0 vg)}. (27)

From (17), it follows that the rank of matrix R i T.. Our ML-MTD algorithm to detect the number of targets M

which is equal to the number of targets Mi present in the present in the sensing field now can be expressed as
surveillance region, and the smallest (KP - rT) of its eigen-
values are zero, i.e., the received signal contains interference 1 N

and noise only. Sorting the eigenvalues of R(") in a decreasing M = [ f Z i1. (28)

order, we obtain ,=1

where f = {1, f2, ... , fN } is computed as
I f X2 \- . r_• A-ri+l. (21)

2 = .l= A= + (22) {=1,7,2, ... ,TN} = arg min A(-). (29)
)•i~ = /• i+ = "' =ilP (22) 7"r,'r2,..,7N

Assume that measurements zi (u, t), at the clusterhead, are In practice, sensors can observe the different numbers of
statistically independent complex Gaussian random vectors targets, i.e., T-s may not be equal, since targets might not be

with zero mean. The joint probability density function of these exposed to all sensors. However, for the sake of simplicity, we

random vectors has the form: assume that all radar sensors can observe the same number of
targets, i.e., rl = T2 = ... = TN = 7- and energy backscattered

N from targets is similar at radar sensors. Furthermore, we as-

f(z(u, t)) = f (zi(u, t)), sume that the environment is homogeneous, that is, the average

i=1 clutter power is a constant. These assumptions imply that
N exp{ -zI0 [R('r)] -1} at), = R(-) = R(-) = R(-). For those reasons, our ultimate

2 J Z't . (23) purpose is to evaluate detection performance improvement

,) achievable by exploiting the networking of multiple radar

Basically, we have to estimate fi such that the joint proba- sensors. Under our assumptions, the utility function A(T) can

bility density function f(z(u, t)) is maximized. We now define be simplified as
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A(r) = N log IRV)I+Ntr([R(r)]-VY)+p(N){r(2KP-r)}.
(30)

where tr(.) denotes the trace of a matrix and Y is the sample
covariance matrix of Z1, Z2, ... , ZN.

Y= EzzT (31)
z=1

Based on (30) and (31), we can observe that the utility
function A(r) depends on the number of radar sensors N. Our
ML-MTD algorithm is used to determine any non-negative
integer -r to minimize the utility function A(i") when the
number of radars is changed. Achieved results are analyzed to 1. .. .6 7 9 10 11 12 13 1 15

evaluate the multi-target detection performance in Section V. SINR(dS

(a)
V. MULTI-TARGET DETECTION PERFORMANCE ANALYSIS

We denote the true number of targets appearing in the 05 . ... ,,,
observation area and the number of targets we can estimate 0.58 W

from received signals as M and M, respectively. The proba-
bility of miss detection PMD and the root mean square error 0.4

(RMSE) are used as metrics to evaluate detection performance
of the RSN using our proposed algorithm. We define PMD and 0o35

RMSE as follows:

" PMD is the probability that the estimated number of
targets is smaller than the true number of targets. Suppose o2s
that Wind is the number of estimations in which the esti- I

mated number of targets is smaller than the true number 0.2

of targets and wt is the total number of estimations. PMD

is given as 0.16

PID = P(M < M) 0.1 6 7 a 9 1 1 2 13 14 -
od ,SINR(AI)Wi (32) (b)

W9t

"• RMSE is used to determine the vibration of the estimated Fig. 1: PMD and RMSE vs. Average SINR, M=3

number of targets M around the true number of targets
M.

1 Wt 7) Average Signal-to-Interference-plus-Noise Ratio (SINR)
RMSE = (M - Mg) 2 . (33) refers to average SINR of all radars in RSN. We examine

Wt detection performance of RSN with average SINR in an

To study the MTD performance, we setup parameters for interval [5dB, 15dB].

the RSN and targets as follows. 8) The MDL criterion is used for the penalty function.

1) Spacing di between elements of the K-element ULA at 9) 105 estimations are performed, i.e., wt = 101.

radar sensor i is chosen to be a half of the wavelength We first examine the case in which there are three targets
Ai, i.e., di X. in surveillance region, i.e., M = 3. Single radar system, 4-

2) The pulse duration (Tp) is 1 ms. radar RSN, and 8-radar RSN are employed to detect these
3) The number of elements (K) in ULA is 5. targets. At each average SINR, the estimated number of targets
4) The number of pulses (P) in a coherent pulse interval is compared to the true number of targets to compute PMD

is 4. and RMSE which are drawn in Fig. 1 for this case. After
5) To observe targets, we assume that Oim is a random that, we increase the number of targets into four, i.e., M = 4.

variable which follows a uniform distribution in an Using the same RSNs as the previous case, we can get PMD

interval [-0.5, 0.5]. and RMSE as plotted in Fig. 2. Based on achieved results
6) The maximum Doppler frequencies for targets are simi- in Fig. la and Fig. 2a, we can realize that miss detection

lar, e.g., fma,: = 5000Hz. The normalized Doppler shift probability of 4-radar RSN and 8-radar RSN is much smaller
fire only depends on the random variable Oim. than that of single radar system. This implies that detection

5



10_- _,_ four targets requires average SINR around 4dB higher than
8- fd4. that to detect three targets. This means that we need increase

the transmit power for radar sensors. If the number of sensor
radars is however large, e.g. N = 8, the detection performance
of the RSN does not change much.

Besides the miss detection probability, RMSE is the other
10' - metric to examine the detection performance of the RSN.

RMSE helps us evaluate the variability of the estimated
number of targets around the true number of targets present in
the sensing field. From Fig. lb and Fig. 2b, we note that, to
estimate three or four targets, RMSE of a single radar system is
very high while RMSE of RSNs is reduced tremendously. For
example, at SINR = 9dB, compared to a single radar system,
the 4-radar RSN can reduce RMSE by 31.52% for three target

5 6 7 a a 10 11 12 13 14 15 case and 42.32% for four target case. Moreover, we can see
SINR(dB)

(a) that RMSE is reduced when we increase the number of sensors
and/or average SMNR.

[4 a VI. CONCLUSIONS
0.5- 

W

We investigate a multi-target detection problem in Radar
0.45- Sensor Networks. Signal, interference, and noise models at

radar sensors are presented and analyzed. We also propose
0, -a Maximum Likelihood Multi-Target Detection algorithm to

estimate the possible number of targets in a surveillance area.
om- RSN-clusterhead utilizes our algorithm to combine measure-

ments from radar sensors and make decision. Achieved results
0.3-

show that detection performance of our RSN is much better
0,25 than that of a single radar system in terms of the miss detection

probability and the root mean square error. Besides scenarios
0.a21 presented in our work, one can extend our proposal in several

directions as follows:
0,15 O 10 11 2 13 14 1) For the sake of simplicity, we assumed clutter environ-

(b) ment which affects largely the performance of RSNs
is homogeneous. Multi-target detection therefore can be

Fig. 2: PAID and RMSE vs. Average SINR, M-4 examined when heterogeneous clutter environment is

considered.
2) We only consider target models as small moving point-

performance of 4-radar RSN and 8-radar RSN is improved, like targets. Thus dynamic and state space-based models
For example, to achieve the same PMD = 10% which is good might be further studied.
enough according to Skolnik [4], the average SINR required 3) We only examine the case in which Swerling II target
for 4-radar RSN to detect three targets is about 9dB while the models are present in the sensing area. Naturally, multi-
average SINR required for the single radar system is greater pie target model types can appear during the observation
than 15dB. This means that detection performance gain of the time, so multi-target detection problem when multiple
4-radar RSN is greater than 6dB. In both cases, moreover, target models coexist in the sensing region is worth
the probability of miss detection is vastly reduced when the looking into.

8-radar RSN is used. 4) Our proposal is a primary state for important tasks such

Furthermore, we observe that the higher average SINR, the as target recognition, classification, tracking, etc. A joint

smaller probability of miss detection. The reason is that, at algorithm to combine multi-target detection and one of

high average SINR, radar sensors radiate signals at a high above tasks can be investigated.

power level, so the coverage area of radar sensors is large. ACKNOWLEDGEMENT
However, radiating signals at high power levels is costly. Thus
tradeoff between cost and detection performance is necessary. This work was supported by the U.S. Office of Naval Re-
We also observe that when we increase the number of targets, search (ONR) Young Investigator Program Award under Grant
the detection performance is slightly reduced. For example, N00014-03-1-0466 and ONR Award under Grant N00014-07-
to achieve the same PMD = 10%, the 4-radar RSN to detect 1-0395.
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Abstract- We investigate the problem of jointly classifying and major concerns in radar surveillance applications. Usually,
identifying multiple targets in radar sensor networks where the this task is implemented based on wideband radars or imag-
maximum number of categories and the maximum number of ing radars [11]. In this paper, we address the problem of
targets in each category are obtained a priori based on statistical
data. However, the actual number of targets in each category and MTIC for radar surveillance using cognitive radars. Cognitive
the actual number of target categories being present at any given radars, as presented in [12] and [7], continuously interact
time are assumed unknown. It is assumed that a given target with the environment, intelligently collect data and thereby
belongs to one category and one identification number. The target efficiently adapt to statistical variations in the environment
signals are modeled as zero-mean complex Gaussian processes. in real-time so as to achieve reliable surveillance where the
We propose a joint multi-target identification and classification likelihood of the presence of targets is high. Cognitive radars
(JMIC) algorithm for radar surveillance using cognitive radars.
The existing target categories are first classified and then the are showing promise in home health care, rescue and homeland
targets in each category are accordingly identified. Simulation security applications [7], [10]. Such applications were studied
results are presented to evaluate the feasibility and effectiveness in [12], [10].
of the proposed JMIC algorithm in a query surveillance region. We consider the scenario wherein the total number of targets

K is unknown in a region of interest and a query regarding
to the classification of these targets and the identification of
the targets in each category is inquired. This is the general

The importance of providing multiple target identification surveillance scenario since each target belonging to one dis-
and classification (MTIC) capability for military applications tinct category as in [9] is no longer considered. In this work,
is widely recognized nowadays. When the total number of some targets now share the same target category but possess
targets being present in tactical battlefields is increased, clas- different identification numbers. In order to perform this higher
sifying as well as identifying these targets will become a complexity version of surveillance scenario, we assume that
very challenging task. Measurements received from multiple each given target belongs to one distinct pair of one target
radar sensors should be collected and processed in an efficient category and one identification number. Based on statistical
and robust manner to obtain the most meaningful information data, we then reasonably assume that the maximum number
for identification and classification. Therefore, collaborative of target categories M and the maximum number of targets
processing algorithms at the fusion center are in urgent need N in each category are a priori known parameters. However,
to successfully achieve this ultimate goal. the actual number of existing target categories and the actual

Many algorithms have been suggested to handle the task of number of targets being present in each category at any given
multiple target identification and classification. In [5], a Gaus- time are unknown. It is assumed that there are R cognitive
sian Mixture Model (GMM) classifier was proposed to distinct radar sensors in the query region.
target categories in a semi-structured outdoor environment. Within the above-described framework, we propose a joint
For radar target identification, a multi-feature decision space multi-target identification and classification (JMIC) algorithm
approach was discussed in detail in [3]. Other approaches for radar surveillance. Firstly, the existing target categories are
to the problem of target identification were presented in [1] classified based on M*-ary hypothesis testing where M* =
applying two statistical-based techniques, namely Bayesian 2M. Note that, M* hypotheses correspond to all possibilities
and Dempster-Shafer, to develop radar target identification we may have regarding to the presence or absence of each
algorithms. Distributed multi-class classification with fault- category. Thereafter, based on the result obtained from clas-
tolerance capability was studied in [2]. Collaborative classi- sification specifying which target categories exist, we identify
fication algorithms [6] were applied to single target scenarios targets belonging to each detected category. Targets in a
and then extended to more complex scenarios of multiple category are identified based on their identification numbers or
targets. identification indices. Therefore, N* (N* = 2N - 1) hypotheses

Multiple target identification and classification have become are set up corresponding to all scenarios of presence or absence



of each target identification index. Numerical results based
on simulated data are finally presented to demonstrate the
feasibility and effectiveness of the proposed JMIC algorithm
in a query surveillance region.

The rest of the paper is organized as follows. In section
II, we provide a framework and formulate the multi-target
classification and identification problem in a cognitive radar
network. In section HI, we propose the joint multi-target --,' I

identification and classification algorithm. Simulation results CRS R
are presented in section IV. Finally, section V concludes the CRS 2

paper.
FUSION CENTER

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

The general system architecture for MTIC problem used in
this work is shown in Fig. 1. This architecture accommodates Fig. 1: System architecture for JMIC algorithm
the deployment of R cognitive radar sensors (CRSs). These
sensors will collect and then send all the target signals to the
fusion center. It is assumed that there are K targets in the Since the possibilities for presence or absence of targets are
region of interest. Each target is considered as a point source independent, we have
and target signals are modeled as zero-mean complex Gaussian
processes [9]. All measurements from sensors are combined P(Ho) = P(Vbl = O).P(Vb2j = O)...P(VbMj = 0)
to reduce the impact of target signal variability. At any given = (P11.P12...P1N)(P21.P22...P2N)...(PMl...pPMN)

time, the measurements in distinct cognitive radar sensors are N N N

approximately independent. = P1" 3l P2J... H PMj (2)
We assume that at most M distinct target categories and j=1 j=1 j=1

N targets in each category are present in the surveillance
region in the observation duration. However, the actual existing Similarly, the prior probability of H1 is given by:
number of target categories is unknown. Therefore, we set
up 2 M hypotheses corresponding to all possible scenarios of P(H 1 ) = P {category 1 present}
presence or absence of each target category. We denote these = P(at least one blj = 1; Vb23 = 0; ... ; VbMj = 0)
hypotheses by Hk (k = 0, 1 ..... 2M - 1). Target categories = P(3 one bj= I).P(Vb2j = 0)...P(VbMj = 0)
are denoted by i (i = 1, 2 ... , M) and in each ith category, N N N

targets are identified by the identification indices j (j = 1, 2, = (1 - fi P1j) 11 P2j ... H PMj (3)
S....N). We use the parameter bij E {0, 1} to denote the event j=1 j=1 j=1
in which target of category i, index j is absent or present.
Specifically, Generally, we obtain the prior probability of hypothesis Hk in

Sj 0 if target of category i, index j is absent the form as follows:

1 if target of category i, index j is present M N N

Classification and identification parameters are given in P(Hk) - 1[b0)(1 - 11pij) + (1b- bk)) 1pij] (4)
Table I wherein each row represents one target category and i=1 j=1 j=1
each column represents one target index. The probability of bk)
target of category i, index j being absent P(bij = 0) is where takes the value of 0 when category i is absent,
denoted by pij, i.e., P(bij = 0) = Pij. Hence, the probability otherwise b(k) takes the value of 1 when category i is present
of presence of this target P(bij = 1) is: P(bij = 1) = 1- pij. under hypothesis Hk.

We employ hypothesis H0 for scenario of no category
being present, hypothesis H1 for scenario of category 1 being III. JOINT MULTI-TARGET IDENTIFICATION AND
present,..., and hypothesis H 2 M_ 1 for scenario of all M CLASSIFICATION ALGORITHM

categories being present. We assume that the total number of
targets K in the region of interest is unknown. In the case Joint multi-target identification and classification algorithm
of K = 0, i.e., there is no target in the surveillance region, consists of two steps. In the first step, multiple target classi-
hypothesis H0 is chosen. The prior probability of hypothesis fication is implemented to investigate which target categories
Ho is given by: are present within the entire surveillance region. Then, in the

P(Ho) = P {no category presentl second step, based on classification results, targets in each de-
tected category are identified using identification indices. Our

= P(Vbl, = 0; Vb2j = 0; ... ; VbMj = 0), JMIC algorithm relies on the framework previously presented

for j =1, 2 ... , N (1) in section I.
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TABLE I: Classification and Identification Parameters following form, :

11If Index I [Index 2 [ Index 3 1T..[ Index N= R

Category I bil b12 b13  ... 1N Ak(zl,Z 2, ...,ZR) = -Rlog I EZ zI- I--ztEz1 + log 6 k
Category 2 b2_ _ 22 b T ... b2N=
Category 3 Tb3 _1  b_7 3 32 ... __b3N (12)

I. . . . . . The information about zI is then sent from the lth (I = 1, 2,...,
Category M bM, bM2 bM3 ... bR) cognitive radar sensor to the fusion center. The classifier atCategory M M .the fusion center then makes the final classification decision

in the form:

A. Multiple Target Classification k = arg max Ak(z1,z2, .,Z)

k=O,1,..M -1 '

The M*-ary hypothesis testing problem is given by: Rarg min{Rlog IEz,k[-4-E 1H , Zlk -- log6k)}
Hk:z,=sl+ni, k = 0, 1,...,2M -- 1 (5) kl k

(13)
where z, is a feature vector of dimension D collected by the
lth (1 = 1,2,..., R) cognitive radar sensor. We assume that target From (13), we map the integer value of k to binary value

signals have the same energy, i.e., these signals are modeled as to obtain a category vector c = [cl, C2 . CM] where ci (i

zero-mean complex Gaussian vectors with covariance matrix = 1, 2 ... , M) takes value of 1 corresponding to category i

,,, Thus, being present or takes value of 0 corresponding to category i

M N being absent in the area of interest. The total number of target

si - C.N(O, E ,) where Esk = j E i b E•m categories being present in the surveillance region is given by:

i=l(iEHk) j=1 M

(6) NC= ci (14)
Signals are corrupted by zero-mean complex white Gaussian l
noise.

2 For example, if k = 5, then we get c = [1, 0, 1, 0 ... ,01, i.e.,
nt '-• C.'(0, aI). (7) only categories 1 and 3 are present within the surveillance

Under hypothesis Hk, the probability density function of the region. Therefore, the total number of target categories being

feature vector zi is given by: present Nc is 2.

P(zLIHk) = pk(ZL) B. Multiple Target Identification

1 - HE zil ~ Based on the estimated value k, we realize which target
exp {-zk&I} (8 categories have shown up in the surveillance region. However,

we still have no information about the number of targets
where Ezn, = + aT•I belonging to each category. Therefore, the second step of

We denote P(Hk) by 6k. The decision rule for the multiple the JMIC algorithm is repeatedly applied to each detected

target classifier is therefore given by: category to identify targets in the surveillance region. We aim

k arg maX. Pk (Z1, Z2, .ZR)
6, (9) at searching all the targets using their jth indices. For each

k=l.'M- _1category i, we denote 11 - to represent the hypothesis h (hh,k

Due to the conditional independence of zt, (9) can be ex- = 0, 1 ... , 2N - 1), given category i E S being present under

pressed as: hypothesis Hk. Note that, S is a set of all categories i being
present in hypothesis Hk.

R

k= arg max lpk(zI)6(k (10) S = {i present in Hk} (15)

Since category i is estimated to be present, i.e, at least one
In term of log-likelihood, we have target index j shows up in this category, thus, the scenario

R of no target index of category i being present is eliminated,
A,(Zl,Z2 , ...,ZR) = logf~pk(zL)3k i.e., P(Ho) =0. Thus, we only have N* = 2 N -1 hypotheses

1=1 corresponding to h = 1, 2 ... , N*. We choose H1,k to represent
R the hypothesis of target index 0 1 of category i E S being

= logpk(z1)+ log 6(k (11) present, H1, to represent the hypothesis of target index 02

of category i E S being present ... ,.111,, to represent the

By substituting Pk (zi) from (8) to (11) and omitting constants hypothesis of all targets index 01, 02 .... ;N of category i E

that do not depend on categories, we then obtain Ak in the S being present.

3



TABLE II: Classification and Identification Example Under hypothesis H1 ,, the probability density function of the

Index 1 1 Inefeature vector zI of category i is given by:I aeoyI II 0nd x I tnIx1 0x I tdxIPzHl) = hk()g2 1 1 0 0 1• Ph k )

ategory 2 1 1 0 !
Category 3 1

1 0exp{_(z )H,- } (24)

whereE•E, = E i + or2I"
We have ZI,h 31,h

We denote P(HAIHk) by ai. From (16) and due to the
P(Hk) = P(Hh, Hk) conditional independence of z•, the identification decision rule

= P(HJHk)P(Hk) (16) is hence given by:

R
The conditional probability of hypothesis H', is given by: h = arg max lphf(Z;)a•,k (25)

P(H'IHk) = P {target index 01 category i present} In term of log-likelihood, we have

= P(bil = 1; bi2 = 0; ... ; biN = 0) R

(17) Ai = loglPhk(Z•)at6k

Because the possibilities for presence or absence of targets are ,=1
independent, we have

i w log Ph, (z4) + log ah + log 5k (26)
P(H1IHk) = P(bil = 1).P(bi2 = 0)...P(biN = 0) 1=l

= (1 - Pil).Pz2...PiN (18) By substituting phk(zi) from (24) to (26) and omitting
constants that do not depend on target indices in each category,

Similarly, the conditional probability of hypothesis H2,k is: we have Ai in the following form:

P(H2'Hk) = P {target index t2 category i present} R

= P(bil = 0;bi2 = 1;...;biN = 0) Ak = -Rlogj I -Z.z i- z + loga+ log6I
= P(bil = 0).P(bi 2 = 1)...P(biN = 0) =(27)

= pil.(1 - Pi2)...PAN (19) The information about z' is sent from the Ith cognitive radar
sensor to the fusion center. The identifier at the fusion center

In general, we obtain the conditional probability of hypothesis then makes the final identification decision:
as follows:Hh,k = arg max A'k

N h=1,2,...,N*

P(HAIHk) = 11[b0)(1 - pij) + (1 - ())pj] (20) R
j=1 -0argmin{RlogEi h

1=1

where b! takes the value of 0 when target index j of category - log bk } (28)

itakes the value of 1 when target From (28), we map the integer value of h to binary valueindex j of category i is present under hypothesis Hh, given to obtain a index vector bi = [bi 1,bi 2, ... ,biN] where every

hypothesis He:. component of bi takes the value of 1 or 0. Component Oj
We now set up N* hypotheses: takes value of 1 corresponding to the scenario of target index

Hh z + .. j of category i being present. The total number of targets N,
k:= s' + n', h 1,2, ... , N* (21) in each category i is calculated by:

where z• is collected by lth (I = 1, 2. R) cognitive radar N
sensor regarding to ith category. Target signals of ith category Ni = bi (29)
are given by: j=1

N Following the example previously described in classification
s ,-.CA'(0,E."1), where F."h= Z bjfm step, for i = 1, if h = 7, then we get b, = [1, 1, 1, 0. 0].

j=l(jCHh) Therefore, only targets with indices 1, 2 and 3 of category I
(22) are present within the surveillance region. The total number

Signals are corrupted by zero-mean complex white Gaussian of targets of category 1 being present N, is 3. Repeatedly
noise, implementing this step, for i = 3, if h = 3, we obtain b 3 = [1,

n C(0, nrnI) (23) 1, 0, 0 ... , 0]. So, targets with indices 1 and 2 of category 3

4
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Fig. 3: Surveillance scenario of K = 3Fig. 5: Surveillance scenario of K = 6

are present. The total number of targets of category 3 being
present N 3 is 2. h = 11. The total number of targets of category 3 is 2 ( target

The total number of targets K in the surveillance region is index 01 and 92) corresponding to h = 3.
finally given by: To evaluate the performance of the proposed JMIC algo-

M M N rithm, we conduct a Monte-Carlo simulation of 105 runs. The
K = N = 1: bi (30) probability of error of the proposed JMIC algorithm given in

i=1 j=1 the form of function of signal-to-noise power ratio is shown
in Fig. 2, Fig. 4, and Fig. 6. The scenarios of R = 3, 5In the example, the total number of targets within the surveil- and 10 cognitive radar sensors were used in the simulations.

lance region K is 5. From Fig. 2, we realize that a sufficiently low probability of

IV. SIMULATION RESULTS error can be obtained with a small number of cognitive radar
sensors R = 5 in the surveillance scenario of K = 3 targets

We perform simulations to illustrate the performance of the as shown in Fig. 3. Comparison of probability of error for the
proposed JMIC algorithm. An encounter of unknown K targets different number of cognitive radar sensors in the scenario of
in the region of query was simulated. A set of R cognitive K = 3 targets was shown in Fig. 2. The simulation results
radar sensors was deployed. A cognitive radar sensor may demonstrate our algorithm in the surveillance scenarios of
detect more than one target at any given time. Therefore, K = 6 as described in Fig. 5 and K = 8 as in Fig. 7 are,
a more accurate estimation about target categories and the correspondingly, given in Fig. 4 and Fig. 6. From Fig. 2, Fig. 4
total number of targets being present in each category can and Fig. 6, we also observe that for a given number of targets
be obtained by fusion of several radar sensors. The maximum K in the surveillance region, the performance of JMIC using R
number of categories M = 3 and the maximum number of = 5 or R = 10 radar sensors is better than that using R = 3 radar
targets in each category N = 4 were assumed in this region sensors. Besides, for a given number of R radar sensors, the
of interest. identification and classification performance is reduced when

An example using JMIC for K = 7 targets in the region of we notice an increasing number of targets in the surveillance
interest is given in Table II. We use JMIC algorithm to obtain k region. The probability of JMIC error is inversely proportional
= 7 which specifies that categories 1, 2, 3 are present and thus to signal-to-noise power ratio. At high SNR, the probability
N, = 3. The number of targets of category 1 is 2 (target index of error is rather small. The simulation results validate the
02 and 94) corresponding to h = 10. The number of targets of robustness and effectiveness of our proposed JMIC algorithm.
category 2 is 3 (target index t1, 02, and 94) corresponding to

5
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V. CONCLUSION

We have demonstrated that K targets in a query region
can be classified and identified efficiently by a network of R
cognitive radar sensors using our JMIC algorithm. A computer
simulation with simulated radar data was used to investigate

the accuracy of classification and identification algorithm in
the variations of the target signals in the network. Using JMIC
algorithm, we show that a sufficiently low probability of error
can be achieved with a fairly small number of radar sensors
for a given common number of targets. The unprecedented
desire of knowing not only the number of target categories,
but also the total number of targets in each category in a
surveillance region is making JMIC algorithm an attractive
choice in practice for military applications.

ACKNOWLEDGEMENT

This work was supported by the U.S. Office of Naval Re-

search (ONR) Young Investigator Program Award under Grant
N00014-03-1-0466, and ONR Award under Grant NOOO 14-07-

1-0395.

REFERENCES

[1] Henry Leung and Jiangfeng Wu, "Bayesian and Dempster-Shafer target
identification for radar surveillance", IEEE Trans. on Aerospace and
Electronic Systems, vol. 36, no. 2, pp. 432-447, Apr. 2000.

[2] Tsang-Yi Wang, Y. S. Han, Pramod K. Varshney, and Po-Ning Chen,
"Distributed fault-tolerant classification in wireless sensor networks",
IEEE Journal on Selected Areas in Communications, vol. 23, no. 4 ,
pp. 724-734, Apr. 2005.

[3) J. G. Teti, JR., R. P. Gorman, and W. A. Berger, "A multifeature decision
space approach to radar target identification", IEEE Trans. on Aerospace
and Electronic Systems, vol. 32, no. 1, pp. 480-487, Jan. 1996.

6



SVD-QR-T FCM Approach for Virtual MIMO Channel Selection in Wireless
Sensor Networks

Jing Liang and Qilian Liang, Senior Member, IEEE
Department of Electrical Engineering

University of Texas at Arlington
Arlington, TX 76019-0016 USA

E-mail: jliang@wcn.uta.edu, liang@uta.edu

Abstract while providing similar capacity and performance is chan-
nel selection, or antenna selection.

In this paper, we present Singular-Value Decomposition- The knowledge of channels can be obtained by various
QR with Threshold (SVD-QR-T) algorithm to select a sub- channel estimation techniques, such as reciprocity principle
set of channels in virtual MIMO wireless sensor networks and feedback channel [4]. When channel side information
(WSN) in order to reduce its complexity and cost. SVD- (CSI) is known to transmitters or receivers, antenna selec-
QR-T selects best subset of transmitters while keeping all tion can be applied through subset selection algorithms by
receivers active. The threshold is adaptive by means of switchers either at transmitters or receivers, or jointly work-
Fuzzy C-Mean (FCM). Under the constraint of the same to- ing at both ends. Therefore the best set of channels are se-
tal transmission power, this approach is compared against lected to be active while remaining ones are not employed.
the case without channel selection in terms of capacity, bit These switchers typically cost much less than RF chains so
error rate (BER) and multiplexing gain in the presence of that low-cost and low-complexity can be achieved with the
water-filling as well without. It is shown that in spite of benefits of multiple antennas [5] [6]. This system is illus-
less multiplexing gain, when water-filling is applied, SVD- trated in Fig. 1.
QR-T FCM provides lower BER at moderate to high SNR;
in case of equal transmission power allocation, SVD-QR-T
FCM achieves higher capacity at low SNR and lower BER. M :Sd
In general, it provides satisfying performances compared S !,
to the case without channel selection but reduced cost and
resource.

1 Introduction
Figure 1. system diagram for virtual MIMO

1.1 Channel selection in virtual MIMO channel selection

Virtual multiple-input-multiple-output (MIMO) has Recent years have seen an explosion of interest in MIMO
been studied intensively in recent years in order to improve antenna selection and various criteria have been used:
the energy-efficiency in wireless sensor networks (WSN)
[1 ][2][3]. Constrained by its physical size and limited bat- 1. Capacity Maximization: In the previous work of [7]
tery, individual sensor is allowed to contain only one an- [8] [9], channel capacity is used as the optimality cri-
tenna. Numerical results show that if these individual sen- terion, i.e., antennas that achieve the largest capacity
sors jointly form the MIMO system, tremendous energy will are active. [7] demonstrated that in case of no CSI at
be saved while satisfying the required performance. How- transmitter (CSIT) but receiver (CSIR), close capac-
ever, a natural drawback of virtual MIMO is the increased ity to that of the MIMO system can be achieved as
complexity and the cost of multiple radio frequency (RF) far as the number of selected receivers is no less than
chains. One technique to reduce the complexity and cost the number of transmitters. [8] and [9] considered CSI



at transmitter and proposed an exhaustive search algo- 2 Channel Model
rithm.

Virtual MIMO channel model with Mt transmitters and

2. Minimum Error rate: Apart from maximization of ca- Mr receivers (Mt + Mr sensors) is illustrated in Fig. 2,

pacity based on Shannon theory, [101 derived another where each receiver observes a superposition of the Mt

criteria from the respect of minimum error rate when transmitted signals corrupted by Rayleigh flat fading and
coherent receivers, either maximum likelihood (ML), additive white gaussian noise. Each hji, i = 1, 2,..-, Mt

zero-forcing (ZF) or the minimum mean-square error and j = 1, 2,..., Mr represents the channel gain from

(MMSE) linear receiver is employed, transmitter i to receiver j [12], which is assumed to be
Rayleigh independent and identically distributed (i.i.d.).
The additive noise also has i.i.d entries n ".• C.A/'(O, o2).

3. SNR Maximization: In [11], antenna selection is per-

formed only at the receiver on a basis of largest in-
stantaneous SNR using space-time coding. It is ana- X" hy
lytically shown that full diversity advantage promised

by MIMO can be fully exploited using this criteria as
long as the space-time code employed has full spatial
diversity. X2 Y2

Although there have been dazzling mathematical studies
on antenna selection criteria, practical algorithms of joint 0 0

transmit and receive antenna selection, i.e., channel selec- X", hM

tion is still open and the problem of corresponding perfor-
mance analysis require more investigations.

Figure 2. Graphic channel model for virtual
1.2 Contributions and Organization of MIMO

This Paper

We may denote this virtual MIMO channel graph with
In this paper, under the assumption of quasi-static discrete time model:

Rayleigh fading, we propose a practical algorithm to per-
form channel selection: singular-value decomposition-QR
with threshold (SVD-QR-T) employing Fuzzy C-Mean F 1 hil h 12  "" hlMt X1
(FCM) to virtually provide adaptive threshold. This algo- Y2 h 21  h 22  ... h2Mt X2

rithm selects rt (see section 3) best subset of transmitters I : . : . [
while keeping all receivers active. An example is presented YMr hMr, hMr2 .:. hMrMt XMt
to illustrate each step. Under the constraint of the same total
transmission power, this approach is compared against the n2

case without channel selection in terms of capacity, bit error + (1)
rate (BER) and multiplexing gain. it is shown that in spite of I
less multiplexing gain, when water-filling is applied, SVD- nMr
QR-T FCM provides lower BER at moderate to high SNR;
in case of no water-filling and equal transmission power al- The above equation can be simplified as Y = HX +
location, SVD-QR-T FCM achieves higher capacity at low n, where H is a Mr x Mt independent Rayleigh random
SNR and lower BER. In general, it provides satisfying per- matrix and n denotes random noise.
formances compared to the case without channel selection
but reduced cost and resource. 3 SVD-QR-T Virtual MIMO

We organize the remainder of this paper as follows. In
Section 2, we introduce our virtual MIMO channel model. 3.1 SVD-QR-T in virtual MIMO channel
Section 3 proposes SVD-QR-T FCM algorithm. Section 4 selection
compares the performances of virtual MIMO after channel
selection with those without. Section 5 draws the conclu- SVD has been applied to MIMO channel decomposition
sion and presents future work. in [12], [14], and sensor node selection in [15]. However,



these studies are on theoretical analysis only and no algo- membership grade. This technique was originally intro-

rithm has been proposed on which channels will be physi- duced by Bezdek [16] as an improvement on earlier clus-

cally selected in practice. tering methods. Here we briefly summarize it.
We propose SVD-QR-T as follows: Definition 1 (Fuzzy c-Partition) Let X = X1, X2, Xn

1. Given channel gain matrix H E RMTxMt and r = be any finite set, Vc, be the set of real c x n matrices, and

rank(H) < min(Mt, Mr), determine a numerical es- c be an integer, where 2 < c < n. The Fuzzy c-partition

timate rt of the rank r by calculating the singular value space for X is the set

decomposition Mfc = U E Vnluik E [0, 11 Vi, k; (5)
Hw= UrVT, (2) =U1Vk and 0 ,<I'1uk (V )

where U is an Mr x Mr matrix of orthonormalized whereZi1 Uik = 1 VkandO < • u,, < n Vi. The
eigenvectors of HHT, V is an Mtx Mt matrix of row i of matrix U E Mfc contains values of the ith mem-

orthonormalized eigenvectors of HTH, and E is the bership function, ui, in the fuzzy c-partition U of X.

diagonal matrix E = diag(al, r2, ... , U,, a,.), where The row i of matrix U E Mf, contains values of the ith
ai = O and Ai is the ith eigenvalue of HHT and membership function, ui, in the fuzzy c-partition U of X.

al C 2 > ... > or > 0. aj is the singular value of
H. In many practical cases, or, 0x, "', art are much Definition 2 (Fuzzy c-Means Functionals) [161 Let Jm:

larger than 0 rt+I," , at; thus we may set threshold Mf, x fcP , R+ be

to pick up valuable aj, i = 1,2,'"., at,. and discardn e
those trivial singular values in order to save resource Jm(U,V) E.E (Zik) (dik)2  (6)

but maintain satisfying performance. Sometimes rt k=1 i=1
can be chosen much smaller than the rank r, even 1.
In this paper, we propose to use fuzzy c-means (FCM) where U E Mf, is a fuzzy c-partition of X; v =

to determine rt. Details will be discussed in section (v1, v 2,... , v,) E ZCP, where vi E RP, is the cluster cen-

3.2. ter of prototype ui, 1 < i < c;

2. Partition (dik) 2 = Ilxk -_ Vl2 (7)

SVI1 V12] (3) where I I is any inner product induced norm on 7?P;
V21 V22 weighting exponential m E [1, oo); and, uik is the mem-

where V11 E Rrtxrt, V 12 E Rrtx(Mt-rt), V21 E bership of xk in fuzzy cluster ui. Jm(U,v) represents the

R(Mt-rt)xrt, and V22 E R(Mtrt)x(Mt-rt). distance from any given data point to a cluster weighted by
that point's membership grade.

3. Using QR decomposition with column pivoting, deter-
mine E such that The solutions of

[TVTmin Jm' (U, v) (8)

v11, V2]E = QR, (4) OEMfJ,,,(P

where Q is a unitary matrix, and R E Rrt×Mt forms are least-squared error stationary points of Jm. An infi-

an upper triangular matrix with decreasing diagonal el- nite family of fuzzy clustering algorithms - one for each

ements; and E is the permutation matrix. The positions m E (1, oo) - is obtained using the necessary conditions

of I in the first rt columns of E correspond to the rt for solutions of (8), as summarized in the following:
ordered most-significant transmitters. Theorem 1 [16] Assume I " I I to be an inner product in-

duced norm: fix m E (1, oo), let X have at least c < n3.2 Fuzzy C-Means - Unsupervised Clus- ditntpnsadefethsts(k
terig fr Aaptie Tresolddistinct points, and define the sets (Vk )

tering for Adaptive Threshold

Ik = {ill <i<c;dik=Ilxk-vill=0} (9)
In order to keep the balance between performances and Ik = { 1, 2,..., c} - Ik (10)

cost, we propose FCM clustering approach to divide singu-
lar value (ol, 0 2,. •. , Or,) into two clusters, and thus pro- Then (U, v) E Mf, x RI'P is globally minimalfor J, only

vides virtual adaptive threshold, so the cluster with higher if(O denotes an empty set)

center would remain for active channels. C
FCM clustering is a data clustering technique where each Ik = U• k =. ui = 1 /[E(•-)2/(m-1)] (11)

data point belongs to a cluster to a degree specified by a j=l dk



or where entry 1.0000 at U is the membership that 2.0017
belongs to the cluster with center 2.0010. Therefore,

Ik 0 0 =' Uik = 0 Vi E k and E uik = 1, (12) the cluster with higher center is composed of only
iEl• 2.0017, then 2.0017 is chosen and rt = 1.

and n / 2. Step 2. Obtain VI and V21 from V:
Vi = E(uik)'xk/ E(Uik)m Vi (13)

k=1 k=1 Vil = -0.5856

Bezdek proposed the following iterative method [16] to
minimize Jm(U, v):V21 = -0.6574_ 1

1. Fix c, 2 < c < n; choose any inner product norm 0

metric for RP; and fix m, 1 < m < oo. Initial-
ize U(0 ) E Mfc (e.g., choose its elements randomly Based on [VT1VT1 ] get E by QR:
from the values between 0 and 1). Then at step 1
( = 1, 2,...): [ 0

2. Calculate the c fuzzy cluster centers v~ using(13)and E = 1 0 0
UM). 0 0 1

3. Update U01) using (11) or (12).
As rt = 1, choose the first column of E

4. Compare U00) to U0- 1 ) using a convenient matrix
norm, i.e., if Io( 1 ) - U(- 1)I _< EL stop; otherwise,
return to step 2. E(:,rt)=

3.3 Example of SVD-QR-T with FCM in [ r]

virtual MIMO channel selection

3. Step 3. Analyze E(:, rt), 1 appears on the 2nd row,
We use the following example to illustrate the SVD-QR- and thus the 2nd column of H is selected to construct

T with FCM application in MIMO-WSN channel selection. H8, which is:

1. Step 1. Assume the estimated channel gain is

0 0.7536 0[ 0.6211 0.7536 0.6595 0 0.6596 0

0.5602 0.6596 0.1834 H, = 0 0.2141 0

H 0.2440 0.2141 0.6365 0 0.6021 0

0.8220 0.6021 0.1703 0 0.6049 0

0.2632 0.6049 0.5396
This implies that the channel to be selected are those

By matrix computation, we get: that connect 2nd transmitter and all receivers, i.e.,
transmitter 2 and all the receivers are selected to be ac-
tive while other transmitters are not employed to save

-0.5856 -0.5075 -0.6321 1 their battery.
V = -0.6574 -0.1589 0.7366

-0.4743 0.8469 -0.2406 As we may see, the row index in which 1 appears in E(:
rt) particularly decide which transmitters to be selected, so

with regard to SVD-QR-T, rt x Mr channels are selected to
diag(12) = (2.0017,0.6347,0.2572). Use FCM to di- be active.
vide diag(E) into 2 clusters, we getE2.0010 1 4 Performance Analysis

v= 0.4445

U 1.0000 0.0190 0.0114 ] Due to the randomness of channel gain matrix, we em-U = 0.0000 0.9810 0.9886J ploy Monte Carlo simulations to analyze the performances



on our algorithms in terms of capacity, multiplexing gain capacity of 4x4 virtual MIMO is 4 bps/Hz while it becomes
and bit error rate (BER). Following steps are applied: 3.4 bps/Hz if SVD-QR-T FCM channel selection is applied.

This difference grows up to around 2.2 bps/Hz when SNR
I. Use Jake's Model [19] to randomly generate indepen- reaches 20dB.

dent Mt x M, Rayleigh channels, take their channel
gains at a particular the same time as entries for matrix
H. I -'- //

16 .- S~VD"QR-T FCM/

2. Follow the SVD-QR-T FCM and channel selection al- 7,C

gorithm respectively to select channels. 14

127
3. Obtain eigenvalue Aj, and its rank r, for H,. Note that

Aj, is totally different with Ai of H.

4. Here we assume B = 1Hz. Through 10,000 times 8

Monte Carlo simulations to obtain capacity, BER for 6

QPSK modulation and multiplexing gain with and
without water-filling. 4 ....

4.1 Channel Known At the Transmitter: 0 10 IS 20

Water-Filling

When both of CSIT and CSIR are known, water-filling Figure 3. Capacity of SVD-QR-T FCM vs. vir-
technique can be utilized to optimally allocate power Pi at tual MIMO with water-filling
independent parallel channel i. The sum of capacities on
each of these independent parallel channels is the maximal
capacity of virtual MIMO [12]. This capacity can be ex- Although SVD-QR-T FCM does not seem to provide any
pressed as advantage in the above figure, it offers lower BER than vir-

r B. tual MIMO without channel selection when SNR is higher
C= max ±'Blog2(l+a- Ai) (14) than 7dB, which is shown in Fig. 4. This is because SVD-

E Pi = QR-T FCM chooses the best subset of equivalent parallel
where P is total power constraint for transmitters, r is the channels so that SNR allocated at each parallel is larger than
rank of H and Ai is the eigenvalue of HHT. Since the SNR that of virtual MIMO as P/ar2 grows larger. Here we em-
at the ith channel at full power is SNR, = AjP/a 2, the ploy QPSK modulation with multiplexing but no space-time
capacity (14) can also be given in terms of the power allo- coding (STC). Since no diversity gain is obtained, maximal
cation Pi as multiplexing does exist.

r- Maximal multiplexing gain is the number of equivalent
C = max B"1og 2 (1 + ---SN ) (15) multiple parallel spatial channels [22], and also it is referred

Ep i-1- P to as degrees of freedom to communicate [23], which is re-
lated with the row and column number of H and H,. It

where has been derived in [23] that the maximal multiplexing gain

Pi '/SNRo - 1/SNR, SNR, Ž: SNRo provided by Mr x Mt MIMO is min(Mt, Mr). However,
S 1 SNR SNRo (16) the accurate multiplexing gain is r = rank(H) since it is

P =0 SNR, < SN possible that H is not full rank. As SVD-QR-T FCM select

for some cutoff value SNRo. The final capacity is given as rt transmitters and all receivers, the maximal multiplexing
gain offered by SVD-QR-T FCM is min(rt, Mr). Note that

B SNRi, rt < r < Mr, therefore the accurate multiplexing gain for
S02 (YR) (17) SVD-QR-T FCM is rt. However, this values are applicable

SNRi>.SNRo only for no water-filling. If water-filling are applied, less

The value of SNRo must be found numerically, owning multiplexing gain will be offered as some singular values
to no existence of closed-form solution for continues distri- with SNR lower than SNRO will be cut off.
butions of SNR [21]. This results in Monte Carlo simula- Under the premise that H is full rank, we obtain the mul-
tions to analyze the capacity performances on SVD-QR-T tiplexing gain on SVD-QR-T FCM and virtual MIMO in
FCM, which is illustrated in Fig. 3. It is shown that the Fig. 5.
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Figure 4. BER of SVD-QR-T vs. 4 x 4 virtual Figure 5. Multiplexing gain of SVD-QR-T
MIMO with water-filling FCM vs. virtual MIMO with water-filling at

SNR=20dB

4.2 Channel Unknown At Transmitter:
Uniform Power Allocation

it is not always the case that both CSIT and CSIR are iC

known. In case of only CSIR, water-filling power optimiza- 16 - 4x4,Tu•a CMMOj

tion can not be applied and people simply allocate equal
power to each transmitters, therefore its capacity becomes

r ~12rSNR,
C= BBlog2(1+ (18) 10

z=1

Here we also apply 10,000 time Monte Carlo simulations to
obtain the expectation of capacity for SVD-QR-T FCM and 6

4 x 4 virtual MIMO at different SNR in Fig. 6. It is shown 4-

that SVD-QR-T FCM provides higher capacity than that of
virtual MIMO without channel selection if SNR is less than 0 5 10 15 20

10dB.
The BER performance is illustrated in Fig. 7. We can see

that as SNR increase, BER after SVD-QR-T FCM channel
selection become much lower than that of virtual MIMO. Figure 6. Capacity of SVD-QR-T FCM vs. vir-

In the mean time, Fig. 8 illustrates that virtual MIMO tual MIMO without water-filling
can achieve larger multiplexing gain than that of SVD-QR-
T FCM but that implies more transmitters and RF chains
consumption, which is the same situation as in case of
water-filling. As no-water-filling is used, here multiplexing
gain is not associate with SNR. the detailed approach on performance analysis with Monte

Carlo simulations. We demonstrate that with the same total
5 Conclusions transmission power constraint, SVD-QR-T FCM can offer

higher capacity at low SNR without waterfilling and much
This paper is a preliminary work on virtual MIMO chan- lower BER at high SNR no matter water-filling is applied or

nel selection problem in practice. SVD-QR-T FCM ap- not. Future research tracks might concern the extension of
proach with concrete example is proposed. We not only the proposed algorithm to integrate with space time coding
present the channel selection algorithms, but also provide (STC) so as to further optimize the system performances.
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Abstract-In virtual multiple input multiple output wireless
sensor networks (MIMO-WSN), sensors are likely to be densely I D.....

deployed, which gives rise to the open problem of channel
selection. In respect of cross-layer design, we propse Maximum
Spanning Tree Searching (MASTS) algorithm on a basis of graph
theory to select a set of subchannels, which consequently reduce _ _ _ _ _ _
the complexity and cost of full virtual MIMO while providing
network layer connection for all sensors. The performances are
analyzed through Monte Carlo simulation in terms of capacity Fig. 1. system diagram for virtual MIMO channel selection
with/without water-filling, diversity gain and multiplexing gain.
It is shown that MASTS virtual MIMO can achieve satisfying
performances compared to those of full virtual MIMO.

1) Capacity Maximization: In the previous work of [7] [8]

1. INTRODUCTION AND MOTIVATION [9], channel capacity is used as the optimality criterion,
i.e., antennas that achieve the largest capacity are active.

A. Channel selection in virtual MIMO In [7], it is demonstrated that in case of no CSIT

Virtual multiple-input-multiple-output (MIMO) has been but CSIR, close capacity to that of the full-MIMO

studied intensively in recent years in order to improve system can be achieved as far as the number of selected

the energy-efficiency in wireless sensor networks (WSN) receivers is no less than the number of transmitters. [8]

[1][2][3]. Constrained by its physical size and limited battery, and [9] considered CSIT and proposed an exhaustive

individual sensor is allowed to contain only one antenna. search algorithm.

Numerical results show that if these individual sensors jointly 2) Minimum Error rate: Apart from maximization of ca-

form the MIMO system, tremendous energy will be saved pacity based on Shannon theory, [10] derived another

while satisfying the required performance. However, a natural criteria from the respect of minimum error rate when

drawback of virtual MIMO is the increased complexity and the coherent receivers, either maximum likelihood (ML),

cost of multiple radio frequency (RF) chains. One technique zero-forcing (ZF) or the minimum mean-square error

to reduce the complexity and cost while providing similar (MMSE) linear receiver is employed.

performances is antenna selection, or channel selection. The 3) Cross-layer optimal scheduling: Besides physical layer,

latter is joint antenna selection at both transmitter and receiver some related works have adopted graph theory ap-

and requires channel side information at both transmitter proach to consider cross-layer design. [11] performed

(CSIT) and receiver (CSIR). the optimal antenna assignment for spatial multiplex-

The knowledge of channels can be obtained by various ing by Hungarian algorithm using weighted bipartite

channel estimation techniques, such as reciprocity principle matching graph, and [12] took into account users' QoS

and feedback channel [4]. When CSIR or CSIR is obtained, requirement with clique-searching algorithm for antenna

antenna selection can be applied through subset selection selection.

algorithms by switchers either at transmitters or receivers, Although there have been dazzling mathematical studies

or jointly working at both ends. Therefore the best set of on antenna selection criteria, practical algorithms of channel

channels are selected to be active while remaining ones are not selection require more investigations and the problem of

employed. These switchers typically cost much less than RF corresponding performance analysis is still open [13] .
chains so that low-cost and low-complexity can be achieved
with the benefits of multiple antennas [5] [6]. This system is B. Contributions and Organization of This Paper

illustrated in Fig. 1. In this paper, under the assumption of quasi-static channels

Recent years have seen an explosion of interest in MIMO and both CSIT and CSIR, we propose Maximum Spanning

antenna selection and various criteria have been used: Tree Searching (MASTS) algorithm on a basis of Kruskal's



theory [14] to perform channel selection, which potentially with sensors and transmission channels forming vertex set and
provide a path connecting all sensors. Concrete example is edge set respectively, hji denoting edge weight. This gives
presented to illustrate each step. We not only employ graph rise to the graph theoretical approach to virtual MIMO study.
theory into virtual MIMO study in view of cross-layer de- However, the integration of graph theory into communication
sign, but analyze its performance by means of Monte Carlo systems is still neonatal and deserves more attention and
simulations, which is an efficient approach to illustrate the development.
tendency of results in practice. We employ 10000 times of Our purpose is to replace H with an approximate matrix if
Monte Carlo simulation to estimate capacity, diversity gain, with lower dimensions but satisfying performances and basic
and multiplexing gain. The result shows that at high SNR, network layer connections.
MASTS can achieve higher capacity than that of full virtual
MIMO. III. MASTS VIRTUAL MIMO

We organize the remainder of this paper as follows. In
Section II, we introduce virtual MIMO channel model. Section
mI proposes MASTS algorithm step by step. Section IV As mentioned in section II, we may use a graph of vertices

compares the performances of MASTS with that of full virtual and edges to represent the virtual MIMO communication

MIMO and Section V draws the conclusion, scenario. From this aspect, essentially channel selection is
to remove some of vertices and edges while keep those

II. CHANNEL MODEL remaining. Spanning tree [16] suggests such an algorithm that
in an arbitrary graph, all the vertices are connected with the

Based on CSIT and CSIR, the estimated virtual MIMO minimum necessary edges, i.e., there is no isolated vertices
channel model with Mt transmitters and M, receivers (Mt + under the condition of the least possible edge number. For
Mr sensors) is illustrated in Fig. 2, where each receiver example, when Mt = 3 and Mr = 5, some of the possible
observes a superposition of the Mt transmitted signals cor- spanning trees are drawn in Fig. 3.
rupted by flat fading and additive white gaussian noise. Each
hji, i = 1,2.. , Mr and j = 1,2 -. , Mt represents the
transmission channel gain from transmitter i to receiver j
[15], which is assumed to be independent and identically
distributed (i.i.d.). The additive noise also has i.i.d entries
nj ~CK(0, a2 ).

Fig. 3. Examples of spanning trees for 5 x 3 MIMO

X2* 2 In general, MASTS algorithm is to compute a spanning
* *, tree with the maximum sum of weight of edge, i.e., to
*• , select the maximum sum of channel gain while realizing

the connectivity of all the sensors on a basis of maximum
spanning tree algorithm. Our contribution is to apply the graph
theoretical concept on maximum spanning tree into virtual

Fig. 2. Channel Graph for v l MIMO MIMO channel selection and program the algorithm.
Note that for an arbitrary graph of n vertices, its spanning

We may denote this virtual MIMO channels with discrete tree is of n vertices and n - 1 edges [16]. Since there are

time model: Mt + Mr vertices, the number of edges to be selected by
MASTS algorithm is a fixed Mt + Mr - 1, which means

Y1 h1l h 12 -. hlMt X1 niIMASTS always chooses Mt + Mr - 1 channels.

Y 2 h 21  h 22 ... h2Mt X2 n 2 B, MASTS in virtual MIMO channel selection
S = : : MASTS algorithm is:

YM [ hMjr hMr2 hMrMt XMt nM[ r 11) Step 1: Select 3 edges with the largest weight at first
(1) (including their vertices).

We may simplify the above equation as Y = HX+n, where 2) Step 2: Enlarge the subgraph by edges with large weight
H is a Mr x Mt independent zero mean random matrix and in decreasing manner and make sure no cycles are
n denotes random noise. formed.

From the respect of graph theory, Fig. 2 is a connected 3) Step 3: Continue Step 2 until the edge number of
graph [16], i.e., there is an edge connecting any two vertex enlarged subgraph is equal to Mt + Mr - 1. This final



X, Y.Any four entries with index (i~j) (i~q) (pj) (p~q), where i, p !5
Mr, i : p;j,q • Mt, j 3 qform a cycle. If any three have
been selected, the remaining one should be eliminated.

Based on this criteria, we continuously select entries as
shown in Fig. 4 (d) (e) (f) and matrix Hd He Hf. As we

Y.A•,vr, 'only have to select 3+5-1=7 edges. Edges in graph (f)
represented by none-zero entries in matrix H are the channels

x (a , ( (c) finally selected.(a) (b) (c)

0.6211 (0.7536) (0.6595)
70.5602 (0.6596) 0

Hd = 0.2440 0.2141x (0.6365)
(0.8220) 0.6021 0.1703

S0.2632 0.6049 0.5396

(0.6211) (0.7536) (0.6595)
0.5602x (0.6596) 0

He = 0.2440x 0 (0.6365)
(d) (e) M (0.8220) 0.6021x 0.1703x

0.2632 0.6049 0.5396
Fig. 4. MASTS algorithm

0.6211 0.7536 0.6595

subgraph is the spanning tree with the maximum sum = 0 0.6566 6

of weight. 0.8220 0 0

As virtual MIMO graph contains the same information as 0 0.6049 0
that of channel gain matrix H, we illustrate MASTS algorithm
by matrix entry selection procedure using Fig. 4 and matrixHb H HdHe •I.IV. PERFORMANCE ANALYSIS
Hb H, Hd H, H.

Fig. 4 (a) is the original virtual MIMO graph. Fig. 4 (b) A. Capacity
shows the subgraph with 3 largest weight. These edges are
denoted by () in matrix Hb. This is Step 1. When the channel matrix H / IH is known at both transmit-

ters and receivers, water-filling technique can be utilized to
0.6211 (0.7536) 0.6595 optimally allocate power Pi at independent parallel channel i.
0.5602 (0.6596) 0.1834 The sum of capacities on each of these independent parallel

Hb = 0.2440 0.2141 0.6365 channels is the maximal capacity of virtual MIMO [15]. The
(0.8220) 0.6021 0.1703 capacity on full virtual MIMO can be expressed as
0.2632 0.6049 0.5396J

Note that among the selected 3 entries, 0.8220 have the CP= max -Blog 2 (1+ -- Ai)(C= axI:I09(1 'Aj (2)
different row index either with 0.7536 or 0.6595, so enlarging E P<P i=1,0

this subgraph with any of the remaining edges will absolutely where P is total power constraint for transmitters, r is the rank
not form a cycle. T

Thus, the second step starts with selecting the edge with the of H and Ai is the eigenvalue of HHT, Since the SNR at the

fourth largest weight, which is shown in Fig. 4 (c) and Matrix ith channel at full power is SNR, = AP/u2 , the capacity

H,. (2) can also be given in terms of the power allocation Pi as

0.6211 (0.7536) (0.6595) 1)
0.5602 (0.6596) 0.1834x E2 P.!-P i=

H , = 0.2440 0.2141 0.6365 0 2 5re
(0.8220) 0.6021 0.1703 where
0.2632 0.6049 0.5396 .Pi f 1/SNRo - 1/SNR, SN?, Ž_ SNRo

Note that after selection of entry 0.6595, the entry 0.1834 P -T , 0 SNR, < SNRo (4)

will no longer be selected, or there is going to form a cycle for some cutoff value SNRo. The final capacity is given as
X 2Y1X 3Y2, so we note the entry 0.1834 with "x" and use
dash line to represent the unavailability of corresponding edge C = B log 2 (- -) (5)
in Fig. 4(c). This implies following criteria: SNRi>SNRo SN-0



The value of SNRO must be found numerically, owning to In general, based our assumption of independent fading chan-
no existence of closed-form solution for continues distributions nel model, if finally M channels are selected, the maximal
of SNR [23]. This results in Monte Carlo simulation to analyze diversity gain provided is M. Since MASTS select Mt+M, - 1
the capacity performance on MASTS virtual MIMO. We take channels, its maximal diversity gain is Mt + Mr - 1, compared
following steps to do each experiment: to that of MtMr on full virtual MIMO. Therefore, MASTS

1) For simplicity, we apply Matlab "rand" to generate can not provide as much as full virtual MIMO on maximal
channel gain matrix H. diversity gain. This is illustrated in Fig. 6.

2) Follow the MASTS channel selection algorithm to ob-
tain the new channel gain matrix .40

3) Employ "svd" to obtain A, and its rank f for Hi. Note MASTS

that A, is different with Ai of H.
4) Use water-filling power allocation to find out the cutoff

value SNRO and the resulting capacity for MASTS 325

virtual MIMO based on (3) (4) and (5). Here we assume 120

B = 1Hz. 15

30

-e-Full virtual MIMO witlh waler-filling 1

MASTS wlth water-flling
25 Full virtual MIMO without water-filling 5.. - ---

MASTS without water-fill /_______________________
2 25 3 3.5 4 45 5 5,5 6

120, 

Mt Mr

15 , Fig. 6. Maximal diversity comparison

S.0" If BPSK and maximal ratio combining (MRC) are employed
".AK at maximal diversity gain, then the bit error rate (BER) is [25]

5_L- l

Pb (-•2 k (7)

5 10 15 20 25 30 k=0

SNR (d8)where

Fig. 5. Capacity for full /MASTS 4 x 4 virtual MIMO P' --- (8)o•
_P

Due to the randomness, 10000 times Monte Carlo simu- and L is the diversity gain. Based on (7) (8), we get Fig. 7
lation are applied to obtain the expectation of capacity for for 2 x 2 virtual MIMO.
both MASTS and full 4 x 4 virtual MIMO at different SNR,
which are plotted in Fig. 5. It shows when SNR is larger 10"
than 8dB, MASTS achieves larger capacity than that of full
virtual MIMO. This is because the same total power have been
optimally allocated to the best set of channels in spite of less
channel number.

Sometimes in order to reduce the cost and complexity, in-
stead of using water-filling power optimization, people simply
allocate equal power to each transmitters. In that case, the
capacity becomes "

SSNP, (6)
C= Y 1log 2(1±+ - (6)M

v= 10 2 4 6 8 I0
SNR 1d61

Here we also apply 10000 time Monte Carlo simulation to

obtain the expectation of capacities, which are also plotted
in Fig. 5. It shows when SNR is larger than 5dB, MASTS Fig. 7. BER for Full/MASTS 2 x 2 virtual MIMO
achieves larger capacity than that of full virtual MIMO. Normally, in order to increase the data rate, different trans-
B. Diversity Gain and Multiplexing Gain mitters simultaneously transmit different symbols, so in this

Intuitively, diversity gain corresponds to the number of case diversity for full and MASTS virtual MIMO are M, and
independently faded paths that a symbol passes through [24]. (Mt + Mr - 1)/Mt respectively.
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Abstract

In this paper, we present two practical algorithms to select a subset of channels in virtual

MIMO wireless sensor networks (WSN) in order to reduce its complexity and cost. One is

Singular-Value Decomposition-QR with Threshold (SVD-QR-T) approach that select best sub-

set of transmitters while keeping all receivers active. The threshold is adaptive by means of

Fuzzy C-Mean (FCM). The other is Maximum Spanning Tree Searching (MASTS) algorithm

on a basis of graph theory in respect of cross-layer design, which potentially provides a path

connecting all sensors that benefits routing and QoS of networks. The MASTS algorithm keeps

all sensors active but selects Mt + Mr - 1 subchannels, where Mt and M, are the number of

transmitters and receivers respectively. These two approaches are compared against the case

without channel selection in terms of capacity, bit error rate (BER) and multiplexing gain in

the presence of water-filling as well as the circumstance of without water-filling under the same

total transmission power constraint. Despite less multiplexing gain, when water-filling is ap-

plied, MASTS achieves higher capacity and lower BER than virtual MIMO without channel

selection at moderate to high SNR while SVD-QR-T FCM provides the lowest BER at high

SNR; in case of no water-filling and equal transmission power allocation, MASTS still offers the

highest capacity at moderate to high SNR but SVD-QR-T FCM achieves the lowest BER. Both

algorithms provide satisfying performances compared to the case without channel selection but

reduced cost and resource.



Index Terms : SVD-QR, FCM, maximal spanning tree, channel selection, antenna selection,

virtual MIMO, wireless sensor networks (WSN).

1 Introduction

1.1 Channel selection in virtual MIMO

Virtual multiple-input-multiple-output (MIMO) has been studied intensively in recent years in

order to improve the energy-efficiency in wireless sensor networks (WSN) [1][2][3]. Constrained

by its physical size and limited battery, individual sensor is allowed to contain only one antenna.

Numerical results show that if these individual sensors jointly form the MIMO system, tremendous

energy will be saved while satisfying the required performance. However, a natural drawback of

virtual MIMO is the increased complexity and the cost of multiple radio frequency (RF) chains.

One technique to reduce the complexity and cost while providing similar capacity and performance

is channel selection, or antenna selection.

The knowledge of channels can be obtained by various channel estimation techniques, such as

reciprocity principle and feedback channel [4]. When channel side information (CSI) is known to

transmitters or receivers, antenna selection can be applied through subset selection algorithms by

switchers either at transmitters or receivers, or jointly working at both ends. Therefore the best

set of channels are selected to be active while remaining ones are not employed. These switchers

typically cost much less than RF chains so that low-cost and low-complexity can be achieved with

the benefits of multiple antennas [5] [6]. This system is illustrated in Fig. 1.

Recent years have seen an explosion of interest in MIMO antenna selection and various criteria

have been used:

1. Capacity Maximization: In the previous work of [7] [8] [91, channel capacity is used as the

optimality criterion, i.e., antennas that achieve the largest capacity are active. [7] demon-

strated that in case of no CSI at transmitter (CSIT) but receiver (CSIR), close capacity to

that of the MIMO system can be achieved as far as the number of selected receivers is no less

than the number of transmitters. [8] and [9] considered CSI at transmitter and proposed an
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exhaustive search algorithm.

2. Minimum Error rate: Apart from maximization of capacity based on Shannon theory, [10]

derived another criteria from the respect of minimum error rate when coherent receivers, either

maximum likelihood (ML), zero-forcing (ZF) or the minimum mean-square error (MMSE)

linear receiver is employed.

3. SNR Maximization: In [111, antenna selection is performed only at the receiver on a basis

of largest instantaneous SNR using space-time coding. It is analytically shown that full

diversity advantage promised by MIMO can be fully exploited using this criteria as long as

the space-time code employed has full spatial diversity.

4. Cross-layer optimal scheduling: Besides physical layer, some related works have adopted

graph theory approach to consider cross-layer design. [12] performed the optimal antenna

assignment for spatial multiplexing by Hungarian algorithm using weighted bipartite matching

graph, and [13] took into account users' QoS requirement with clique-searching algorithm for

antenna selection.

Although there have been dazzling mathematical studies on antenna selection criteria, practical

algorithms of joint transmit and receive antenna selection, i.e., channel selection is still open and

the problem of corresponding performance analysis require more investigations.

1.2 Contributions and Organization of This Paper

In this paper, under the assumption of quasi-static Rayleigh fading, we propose two practical

algorithms to perform channel selection. One is singular-value decomposition-QR with threshold

(SVD-QR-T) employing Fuzzy C-Mean (FCM) to virtually provide adaptive threshold ; the other

approach is Maximum Spanning Tree Searching (MASTS) algorithm on a basis of Kruskal's theory

[14] in respect of graph theory, which potentially offers route connectivity of all sensors for network

layer. The former is pure physical design, which selects rt (see section 3) best subset of transmitters

while keeping all receivers active. The latter is a cross-layer method, which selects Mt + Mr - 1

subset of channels while keeping all transmitters and receivers active. Examples are presented to
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illustrate each step. Their performances are estimated in terms of capacity, BER and multiplexing

gain by means of Monte Carlo simulations, which is an efficient approach to illustrate the tendency

of practical results. In general, it is shown that in spite of less multiplexing gain, when water-filling

is applied, MASTS achieves higher capacity and lower BER than virtual MIMO without channel

selection at moderate to high SNR while SVD-QR-T FCM provides the lowest BER at high SNR;

in case of no water-filling and equal transmission power allocation, MASTS still offers the highest

capacity at moderate to high SNR but SVD-QR-T FCM achieves the lowest BER. Both algorithms

provide satisfying performances compared to the case without channel selection but reduced cost

and resource.

We organize the remainder of this paper as follows. In Section 2, we introduce virtual MIMO

channel model in respect of matrix as well as graph theory. Section 3 and 4 propose SVD-QR-

T FCM and MASTS algorithms respectively. Section 5 compares the performance of these two

algorithms with virtual MIMO and Section 6 draws the conclusion and presents future work.

2 Channel Model

Virtual MIMO channel model with Mt transmitters and Mr receivers (Mt+Mr sensors) is illustrated

in Fig. 2, where each receiver observes a superposition of the Mt transmitted signals corrupted

by Rayleigh flat fading and additive white gaussian noise. Each hji, i = 1, 2, ... , Mt and j =

1, 2,... , Mr represents the channel gain from transmitter i to receiver j [15], which is assumed to

be Rayleigh independent and identically distributed (i.i.d.). The additive noise also has i.i.d entries

nj , OC (O, a 2).

We may denote this virtual MIMO channel graph with discrete time model:

Y1 hil h 12  hlMt Xl n

Y2 h 2 1  h 2 2  ... h2Mt X 2  n2

YMr hMrl hMr2 hMrMt XMt flMr

The above equation can be simplified as Y = HX + n, where H is a Mr x Mt independent
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Rayleigh random matrix and n denotes random noise.

From the respect of graph theory, Fig. 2 is a connected graph [16], i.e., there is a path connecting

any two sensors with antennas and channels making up vertex set and edge set respectively while

hji denotes edge weight. This gives rise to the graph theoretical approach on virtual MIMO study.

However, integration of graph theory into wireless communication systems is still neonatal and

deserves much more attention and development.

3 SVD-QR-T Virtual MIMO

3.1 SVD-QR-T in virtual MIMO channel selection

SVD has been applied to MIMO channel decomposition in [15], [17], and sensor node selection in

[181. However, these studies are on theoretical analysis only and no algorithm has been proposed

on which channels will be physically selected in practice.

We propose SVD-QR-T as follows:

1. Given channel gain matrix H E RMrxMt and r = rank(H) < min(Mt, Mr), determine a

numerical estimate rt of the rank r by calculating the singular value decomposition

H =UFVT, (2)

where U is an Mr x Mr matrix of orthonormalized eigenvectors of HHT, V is an Mt x

Mt matrix of orthonormalized eigenvectors of HTH , and E is the diagonal matrix E =

diag(Orl, 62,... , ai, Mr), where a, = V)A and Ai is the ith eigenvalue of HHT and al > a2 >

... >_ 7r > 0. ai is the singular value of H. In many practical cases, or, a,, ... , Iart are much

larger than Orrt+1,. • • , ar; thus we may set threshold to pick up valuable ai, i = 1, 2,... , art

and discard those trivial singular values in order to save resource but maintain satisfying

performance. Sometimes rt can be chosen much smaller than the rank r, even 1. In this

paper, we propose to use fuzzy c-means (FCM) to determine rt. Details will be discussed in

section 3.2.
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2. Partition

V 1 1 V 12
v = (3)

V 2 1 V 2 2 I

where Vil E Rrt"rt, V 12 E Rrtx(Mt-rt), V 21 E R(Mt-rt)xrt, and V 22 E R(Mt-rt)x(Mt-rt).

3. Using QR decomposition with column pivoting, determine E such that

[vvT1]E = QR, (4)

where Q is a unitary matrix, and R E RrtxMt forms an upper triangular matrix with de-

creasing diagonal elements; and E is the permutation matrix. The positions of 1 in the first

rt columns of E correspond to the rt ordered most-significant transmitters.

3.2 Fuzzy C-Means - Unsupervised Clustering for Adaptive Threshold

In order to keep the balance between performances and cost, we propose FCM clustering approach to

divide singular value (al, a2, .. . , 0'r) into two clusters, and thus provides virtual adaptive threshold,

so the cluster with higher center would remain for active channels.

FCM clustering is a data clustering technique where each data point belongs to a cluster to a

degree specified by a membership grade. This technique was originally introduced by Bezdek [19]

as an improvement on earlier clustering methods. Here we briefly summarize it.

Definition 1 (Fuzzy c-Partition) Let X = X1 , X2,-.. , xn be any finite set, Vcn be the set of real

c x n matrices, and c be an integer, where 2 < c < n. The Fuzzy c-partition space for X is the set

C n

Mfc = U E VcIuik E [0, 1] Vi, k; where uik = l VkandO < E-uik < n Vi (5)
i=1 k=1

The row i of matrix U E Mfc contains values of the ith membership function, ui, in the fuzzy

c-partition U of X.

Definition 2 (Fuzzy c-Means Functionals) [19] Let Jm : Mfc x icp __. R+ be

n C

Jm(U, v) = E -(Uik)m(dik) 2  (6)
k=1 i=1
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where U E Mfc is a fuzzy c-partition of X; v = (v1,v 2 ,... ,vc) E 1?cP, where vi E 1?P, is the

cluster center of prototype ui, 1 < i < c;

(dik) 2 
= Ilxk - Vl1 (7)

where is any inner product induced norm on RZP; weighting exponential m E [1, oo); and, Uik

is the membership of xk in fuzzy cluster uj. Jm(U, v) represents the distance from any given data

point to a cluster weighted by that point's membership grade.

The solutions of
min Jnm(U, V) (8)

UEM1 ,,vEPZIP

are least-squared error stationary points of Jm. An infinite family of fuzzy clustering algorithms

- one for each m E (1, cc) - is obtained using the necessary conditions for solutions of (8), as

summarized in the following:

Theorem 1 [19] Assume II"I I to be an inner product induced norm: fix m E (1, oo), let X have at

least c < n distinct points, and define the sets (Vk)

Ik = {ill <i<c;dik= Ilxk-vill =0} (9)

lk = {1,2,... ,c}-Ik (10)

Then (U, v) E x TZcP is globally minimal for Jm only if (0 denotes an empty set)

Ik= O :Uik = 1/[ E .1)2/m-l] (11)
-- j=l djk

or

Ik #:¢=* Uik =OViEl kand Zuik=l (12)
iEIk

and
n n

vi = Z(Uik)mxk/ >(Uik)m Vi (13)
k=1 k=1

Bezdek proposed the following iterative method [19] to minimize Jm(U, v):

1. Fix c, 2 < c < n; choose any inner product norm metric for 1ZP; and fix m, 1 _< m < cc.

Initialize U(°) E Mf, (e.g., choose its elements randomly from the values between 0 and 1).

Then at stepl (1 = 1,2,...):
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(y)

2. Calculate the c fuzzy cluster centers v) using (13) and U('.

3. Update U(1 using (11) or (12).

4. Compare U() to U0-1) using a convenient matrix norm, i.e., if IIU(') - U(C- 1)Il _• EL stop;

otherwise, return to step 2.

3.3 Example of SVD-QR-T with FCM in virtual MIMO channel selection

We use the following example to illustrate the SVD-QR-T with FCM application in MIMO-WSN

channel selection.

1. Step 1. Assume the estimated channel gain is

0.6211 0.7536 0.6595

0.5602 0.6596 0.1834

H= 0.2440 0.2141 0.6365

0.8220 0.6021 0.1703

0.2632 0.6049 0.5396

By matrix computation, we get:

-0.5856 -0.5075 -0.6321

V -0.6574 -0.1589 0.7366

-0.4743 0.8469 -0.2406

diag(E) = (2.0017,0.6347,0.2572). Use FCM to divide diag(E) into 2 clusters, we get

2.0010

0.4445

1.0000 0.0190 0.0114U =I

0.0000 0.9810 0.9886

where entry 1.0000 at U is the membership that 2.0017 belongs to the cluster with center

2.0010. Therefore, the cluster with higher center is composed of only 2.0017, then 2.0017 is
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chosen and rt = 1.

2. Step 2. Obtain V11 and V 2 1 from V:

Vil = -0.5856

-0.6574
-0.4743

Based on [VT1VT get E by QR:

0 1 0

E= 1 0 0

P 0 1j

As rt = 1, choose the first column of E

0

E(:, rt) = 1

0

3. Step 3. Analyze E(:, rt), 1 appears on the 2nd row, and thus the 2nd column of H is selected

to construct H3 , which is:

0 0.7536 0

0 0.6596 0

H.= 0 0.2141 0

0 0.6021 0

0 0.6049 0

This implies that the channel to be selected are those that connect 2nd transmitter and

all receivers, i.e., transmitter 2 and all the receivers are selected to be active while other

transmitters are not employed to save their battery.
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As we may see, the row index in which 1 appears in E(:, rt) particularly decide which transmit-

ters to be selected, so with regard to SVD-QR-T, rt x Mr channels are selected to be active.

4 MASTS virtual MIMO

4.1 MASTS

As mentioned in Section 2, we may use a graph of vertices and edges to represent the virtual MIMO

communication scenario. From this aspect, essentially channel selection is to remove some of edges

while keep those remaining. However, global connectivity is usually required for WSN [20][211.

Spanning tree [161 suggests such an algorithm that in an arbitrary graph, all the vertices are

connected with the minimum necessary edges, i.e., there is no isolated vertice under the condition

of the least possible edge number. For example, when Mt = 3 and Mr = 5, some of the possible

spanning trees are drawn in Fig. 3.

Note that for an arbitrary graph of n vertices, its spanning tree is of n vertices and n - 1 edges

[161. Since there are Mt + Mr vertices, the number of edges to be selected by MASTS algorithm

is a fixed Mt + Mr - 1, which means MASTS always chooses Mt + Mr - 1 channels.

Given Mt and Mr, the ways to construct a spanning tree (not necessarily with maximum sum

of weight) is MtMr-i x MrMt-. We prove this conclusion by Matrix 'free Theorem [161 as follows:

1. Adjacency matrix of virtual MIMO graph shown in Fig. 2 is

Xl X 2 ... XMt Y1 Y2 ."' YMr

X 1  0 0 ... 0 1 1 ... 1

X2  0 0 ... 0 1 1 ... 1

XMt 0 0 ... 0 1 1 ... 1

Y1  1 1 ... 1 0 0 ... 1

Y2  1 1... 1 0 0 ... 1

YMr 1 1 "" 1 0 0 ... 0
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2. Degree matrix of the above MIMO graph is:

Xl X 2 ... XMt Y1 Y2 ... YMr

X1 Mr 0 ... 0 0 0 ... 0

X2 0 Mr ... 0 0 0 ... 0

XMt 0 0 ... Mr 0 0 ... 0

Y, 0 0 ... 0 Mt 0 ... 0

Y2 0 0 ... 0 0 Mt ... 0

YMr 0 0 ... 0 0 0 ... Mt

3. Degree matrix minus adjacency matrix, we get matrix D which is:

Mr 0 .. 0 -1 -1 -1

0 Mr ... 0 -1 -1 -1

0 0 ... Mr -1 -1 -.. 1
D = (14)

-1 -1 ...- 1 Mt 0 ... 0

-1 -1 ...- 1 0 Mt ... 0

-1 -1 ...- 1 0 0 ... Mt

4. Delete both an arbitrary row and an arbitrary column of D and take the determinant of

remaining matrix, the result comes to MtMr-1 x MrMt-1, which is the number of ways to

form a spanning tree on a basis of MIMO graph.

In general, MASTS algorithm is to compute a spanning tree with the maximum sum of weight

of edge, i.e., to select the maximum sum of channel gain while realizing the connectivity of all

the sensors. Our contributions mainly lie in applying the graph theoretical concept on maximum

spanning tree into virtual MIMO channel selection and program the algorithm.

11



MASTS algorithm is:

1. Step 1: Select 3 edges with the highest weight including their vertices at first.

2. Step 2: Enlarge the subgraph by edges with high weight in decreasing manner and make sure

no cycles are formed.

3. Step 3: Continue step 2 until the edge number of enlarged subgraph is equal to Mt + Mr - 1.

This final subgraph is the spanning tree with the maximum sum of weight.

4.2 Example of MASTS in virtual MIMO channel selection

As virtual MIMO graph contains the same information as that of channel gain matrix H, we

illustrate MASTS algorithm by matrix entry selection procedure using Fig. 4 and matrix Hb H,

Hd He H9.

Fig. 4 (a) is the original virtual MIMO graph. Here we assume H is the same as that in

SVD-QR example. Fig. 4 (b) shows the subgraph with 3 highest weight. These edges are denoted

by () in matrix Hb. This is the step 1.

0.6211 (0.7536) 0.6595

0.5602 (0.6596) 0.1834

Hb = 0.2440 0.2141 0.6365

(0.8220) 0.6021 0.1703

0.2632 0.6049 0.5396

Note that among the selected 3 entries, 0.8220 have the different row index either with 0.7536

or 0.6595, so enlarging this subgraph with any of the remaining edges will absolutely not form a

cycle.

Thus, the second step starts with selecting the edge with the fourth highest weight, which is

shown in Fig. 4 (c) and Matrix H,.
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0.6211 (0.7536) (0.6595)

0.5602 (0.6596) 0.1834x

,= 0.2440 0.2141 0.6365

(0.8220) 0.6021 0.1703

0.2632 0.6049 0.5396

Note that after selection of entry 0.6595, the entry 0.1834 will no longer be selected, or there

is going to form a cycle X 2 YIX 3Y2 , so we note the entry 0.1834 with "x" and use dash line to

represent the unavailability of corresponding edge in Fig. 4(c). This implies following criteria:

Criteria Any four entries with index (ij) (i,q) (p,j) (p,q), where i,p !_ Mr, i 54 p;j, q • Mt,

j 5 q form a cycle. If any three have been selected, the remaining one should be eliminated.

Based on this condition, we continually select entries as shown in Fig. 4 (d) (e) (f) and matrix

Hd He Hf. As we only have to select 3 + 5 - 1 = 7 edges, edges in graph (f) represented by

none-zero entries in matrix H9 are the channels finally selected.

0.6211 (0.7536) (0.6595)

0.5602 (0.6596) 0

Hd= 0.2440 0.2141x (0.6365)

(0.8220) 0.6021 0.1703

0.2632 0.6049 0.5396

(0.6211) (0.7536) (0.6595)

0.5602x (0.6596) 0

He = 0.2440x 0 (0.6365)

(0.8220) 0.6021x 0.1703x

0.2632 0.6049 0.5396
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0.6211 0.7536 0.6595

0 0.6596 0

H9 - 0 0 0.6365

0.8220 0 0

0 0.6049 0
It is worth mentioning that Hg obtained through MASTS is different from H, derived by

SVD-QR-T. We shall analyze their performances in the next section.

5 Performance Analysis

Due to the randomness of channel gain matrix, we employ Monte Carlo simulations to analyze the

performances on our algorithms in terms of capacity, multiplexing gain and bit error rate (BER).

Following steps are applied:

1. Use Jake's Model [221 to randomly generate independent Mt x Mr Rayleigh channels, take

their channel gains at a particular the same time as entries for matrix H.

2. Follow the SVD-QR-T FCM and MASTS channel selection algorithms respectively to select

channels.

3. Obtain eigenvalue A\, and its rank r, for H,. Note that A18 is totally different with Ai of H.

Similarly, we can obtain Aig, rg for Hg.

4. Here we assume B = 1Hz. Through 10,000 times Monte Carlo simulations to obtain capacity,

BER for QPSK modulation and multiplexing gain with and without water-filling.

5.1 Channel Known At the Transmitter: Water-Filling

When both of CSIT and CSIR are known, water-filling technique can be utilized to optimally allo-

cate power Pi at independent parallel channel i. The sum of capacities on each of these independent

parallel channels is the maximal capacity of virtual MIMO [15]. This capacity can be expressed as
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C= max EBlog2(1+ i) (15)
E P<-P i=1

where P is total power constraint for transmitters, r is the rank of H and Ai is the eigenvalue of

HHT. Since the SNR at the ith channel at full power is SNRP = A\P/r 2 , the capacity (15) can

also be given in terms of the power allocation Pi as

C = max E B log 2 (1 + SNRi) (16)

where

pi 1/SNRo - 1/SNR, SNR, > SNRo (17)

P 0 SNR, < SNRo

for some cutoff value SNRO. The final capacity is given as

C = E B 10g2 ( S--N-R, (18)

SNR,>_SNRo

The value of SNRO must be found numerically, owning to no existence of closed-form solution

for continues distributions of SNR [24]. This results in Monte Carlo simulations to analyze the

capacity performances on SVD-QR-T FCM and MASTS virtual MIMO, which is illustrated in Fig.

5. When SNR is lower than 5dB, SVD-QR-T FCM provides larger capacity than that of MASTS.

However, MASTS grow larger than virtual MIMO when SNR reaches around 8.5 dB. It clearly

shows that MASTS can offer the largest capacity at high SNR, due to the feature on singular value

of H9 . We shall illustrate it using following example:

Suppose

0.7733 1.3614 1.2254 0.3695

0.6867 0.2879 1.2014 1.7755
H =

1.2381 0.5776 1.5719 0.2469

0.6749 1.4501 0.4248 0.6060

We can get A = [13.4770 2.0235 1.1696 0.0743]; \g = [7.7490 3.7149 2.3701 0.2236]; A8 =

[10.6485 2.0002 1.0406]. With the increase of P/ao2 , MASTS capacity in (18) will increase faster

then that of virtual MIMO without channel selection.
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Although SVD-QR-T FCM does not seem to provide any advantage in the above figure, it offers

lower BER than virtual MIMO without channel selection when SNR is higher than about 7dB as

well as lowest BER after SNR grows to 13dB, which is shown in Fig. 6. This is because SVD-QR-T

FCM chooses the best subset of equivalent parallel channels so that SNR allocated at each parallel

is larger than that of MASTS and virtual MIMO as P/a 2 grows larger. Here we employ QPSK

modulation with multiplexing but no space-time coding (STC). Since no diversity gain is obtained,

maximal multiplexing does exist.

Maximal multiplexing gain is the number of equivalent multiple parallel spatial channels [25],

and also it is referred to as degrees of freedom to communicate [26], which is related with the row

and column number of H, H8 and H9 . It has been derived in [26] that the maximal multiplexing

gain provided by Mr x Mt MIMO is min(Mt, Mr). However, the accurate multiplexing gain is

r = rank(H) since it is possible that H is not full rank. As SVD-QR-T FCM select rt transmitters

and all receivers, the maximal multiplexing gain offered by SVD-QR-T FCM is min(rt, Mr). Note

that rt < r < Mr, therefore the accurate multiplexing gain for SVD-QR-T FCM is rt. Concerning

MASTS, all transmitters and receivers are active and the maximal multiplexing gain is rank(H.).

However, these values are applicable only for no water-filling. If water-filling are applied, less

multiplexing gain will be offered as some singular values with SNR lower than SNRo will be cut

off.

Under the premise that H is full rank, we obtain the multiplexing gain on SVD-QR-T FCM

and MASTS in Fig. 7 and Fig. 8 respectively. When Mt = Mr = 10, multiplexing gain for SVD-

QR-T FCM and MASTS are 3.5 and 4 respectively if SNR is 0dB while they grow to 5 and 8.2 if

SNR becomes 20dB. Note that although along the increase of SNR, the multiplexing gain of both

algorithms will grow larger, this characteristic is more obvious for MASTS.

Fig. 5,-,8 implies that MASTS generally outweighs SVD-QR-T FCM on performances under the

circumstances of water-filling, nevertheless it is worth mentioning that less multiplexing gain implies

less transmitters are applied for SVD-QR-T FCM, so less resource are consumed. As for MASTS,

it always employs all transmitters and receivers, which cost more resource than SVD-QR-T FCM.
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5.2 Channel Unknown At Transmitter: Uniform Power Allocation

it is not always the case that both CSIT and CSIR are known. In case of only CSIR, water-filling

power optimization can not be applied and people simply allocate equal power to each transmitters,

therefore its capacity becomes
rSNP)

C = B Blg 2 (1 M+ (19)
i=1M

Here we also apply 10,000 time Monte Carlo simulations to obtain the expectation of capacity for

SVD-QR-T FCM / MASTS and 4 x 4 virtual MIMO at different SNR in Fig. 9.

It is shown that SVD-QR-T FCM provides higher capacity than that of virtual MIMO without

channel selection if SNR is less than 10dB and higher capacity than that of MASTS if SNR is less

than 2.5dB. MASTS outweighs virtual MIMO without channel selection in capacity from 0dB and

this advantage is more obvious along the increase of SNR.

However, MASTS can not provide better performance in BER while SVD-QR-T FCM performs

best, which is illustrated in Fig. 10. This is because SNR allocated at each equivalent parallel

channel by means of SVD-QR-T FCM is larger than that of MASTS and virtual MIMO from 0dB.

In the mean time, Fig. 11 illustrates that MASTS can achieve larger multiplexing gain than

that of SVD-QR-T FCM but that means more resource consumption, which is the same situation

as in case of water-filling. As no-water-filling is used, here multiplexing gain is not associate SNR.

6 Conclusions

This paper is a preliminary work on virtual MIMO channel selection problem in practice. Two

approaches with concrete examples are proposed from respect of pure physical design and cross-layer

consideration respectively. We not only present the channel selection algorithms, but also provide

the detailed approach on performance analysis with Monte Carlo simulations. We demonstrate

that with the same total transmission power constraint, MASTS can offer highest capacity ( either

with water-filling or without ) than that of virtual MIMO while SVD-QR-T FCM can provide best

BER performance. Future research tracks might concern the extension of the proposed algorithm

to integrate with space time coding (STC) so as to further optimize the system performances.
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Abstract-Owning to Rician fading and white gaussian noise, In this paper, we apply two schemes named Equal Gain
the scattered back image signal of radar sensors would be Combination (EGC) and Maximal Ratio Combination (MRC)
distorted to some extend. In this paper, we apply two schemes respectively for RSN image fusion. Simulation results show
named Equal Gain Combination (EGC) and Maximal Ration t vy r image fusion Simulan resul h
Combination (MRC) respectively for RSN image fusion. Simula- that image fusion by means of MRC can provide much
tion results show that image fusion by means of MRC can provide better image quality based on both minimum mean squared
much better image quality based on both minimum mean squared error (MMSE) and the mean of structural similarity (MSSIM)
error (MMSE) and the mean of structural similarity (MSSIM) index if the channel estimation offers satisfying channel side
index if the channel estimation offers satisfying channel side information at receiver (CSIR). However, EGC itself does not
information at receiver (CSIR). However, EGC itself does not
require any channel estimation scheme and thus more simple to require any channel estimation scheme and thus more simple

implement, to implement.
The remainder of this paper will be organized as follows:

1. INTRODUCTION Section II describes EGC and MRC image fusion schemes
respectively. Section mI shows image fusion result and Section

Enhancing homeland security demands challenging accu- IV draws conclusion and future work.
racy to detect unauthorized intrusion. For some applications,
information provided by single radar may be imprecise or II. THEORY OF OPERATION

incomplete [1] [2]. A network of multiple radar sensors can Radar operates by radiating energy into space and detecting
been utilized to combat performance degradation of single echo signals reflected back from a target [12]. When the
radar [3]. By employing Radar Sensor Networks (RSN), we non-fluctuating target is constructed from many independently
are able to protect critical infrastructure from terrorist activities positioned scatterers, the probability density function (PDF)
[4]. of its radar cross section (RCS) can usually be described by

Image fusion on RSN is that radars are managed by an Rician PDF [ 13] and thus the channel through which the signal
intelligent clusterhead which combines image diversity in is scattered back is usually described by corruption of Rician
order to satisfy the common goals of the network other than fading.
each radar operates independently. As radar sensors are environment dependent [14], it may

There have been intensive study on radar image fusion, provide better image quality if different neighboring radars
which can be mainly categorized into 3 applications. The work collaboratively to perform image fusion. For example,
first application uses a pair of antennas to obtain an elevation consider a system of two radars. When the signal of either
map of the observed scene to resolve the problem of Syn- radar unfortunately experience a severe fading, if two radars
thetic Aperture Radar (SAR) Interferometry [5]; the second are spaced sufficiently far apart, it is not likely that both of
considers fusion of multisensor images of the same site at the radars experience deep fade at the same time. By selecting
different time by means of neural networks [6] [7]; the third better image pixel from the two radar image candidates, it is
refers to a processor to fuse multifrequency, multipolarization unlikely that the image information will be lost as much as that
and multiresolution images on a basis of wavelet transform of single radar image. Fig. 1 illustrates this scenario. The solid
and multiscale Kalman filter [8] [9]. However, to this date, line represents the transmitted signal of radar member while
the concept of RSN have rarely been employed during the the dash line represents the echo signal which is corrupted
exiting research on radar image fusion. Instead, attention has with Rician fading and noise.
been mainly given to image fusion on the same single radar. Fig. 2 shows the diagram of image fusion we have ap-
Furthermore, in the previous studies, image processing and plied to RSN. As the fine details that accurately describes
physical layer characteristics are usually studied mutually target is critical for reliable detection and classification of
independently to each other. The joint study on both fields targets, before image fusion, the processing for resolution
demands further exploration besides joint source-channel cod- enhancement is required [15]. R1, R2 , ... , R.. represent pixel
ing [10] [11]. matrices of images obtained from radar sensor 1, radar sensor



2, ... , sensor n respectively, a,, a2, ... , a,, is pixel weighting requires knowledge of time-varying Rician channel fading on

employed by image fusion. The main purpose of EGC and each radar, i.e., channel side information at receiver (CSIR)

MRC image fusion schemes is to coherently combine the is necessary. CSIR can be obtained through various channel

independent faded images so that the effects of fading and estimation techniques, which are out of the scope of this paper.

noise are mitigated. However, EGC does not have this requirement and thus is more
simple to be implemented.

radar i III. SIMULATIONFý
(a) Original Object (b) Only after Rician fading

- target A (c) Only after noise (d) After Rician fading and noise

radar 1 radar N

Fig. !. Radar Sensor Network (RSN)

Image Processing 1 Fig. 3. radar images illustration: (a) Original Object. (b) Only corrupted
Sfor Resolution by Rician fading without noise, (c) Only corrupted by noise without Rician
Enhancement fading, (d) Corrupted by both Rician fading and noise

Output oatgnai Object Image of radwi
Image Processing E

for Resolution X
Sensor n Enhancement

an

Fig. 2. Diagram of Image Fusion for RSN

EGC is a simple technique which co-phases the image Image of radar2 After EGC

signals on each radar sensor and then combines them using
equal weighting, therefore each a,, a2, " an equals to the
same 1. The pixel matrix after EGC image fusion is

R___ =(R+R2+.+___)/n (1)

In this case, the output equals to the average of each radar
image.

In MRC, the output image is a weighted sum of all radars,

the pixel matrix after MRC image fusion is

Rf (= ,= 1 aiR,) 2  (2) Fig. 4. EGC image fusion: (a) Original Object, (b) image obtained by radar

En asensor 1, (c) image obtained by radar sensor 2, (d) image obtained by means-- I=a of EGC

We can find ai that maximize Rf by taking partial deriv-

atives of (2) or employing the Ca-uchy-Schwartz inequality For simplicity, we assume the RSN consist of 2 radars. Of

[16]. The optimal weights yields a? = R,2 . This implies that course, the situation of larger number of radar members can

radar with good image quality should be weighted more. MRC be easily extended from this simple case. Jake's Model [17] is



OdinIal Object Image of radari Ordgt Object Image of radar1

Image of radar2 After MRC Image of radar2 After EGC

Fig. 5. MRC image fusion: (a) Original Object, (b) image obtained by radar Fig. 6. EGC image fusion: (a) Original Object, (b) image obtained by radar
sensor 1, (c)image obtained by radar sensor 2, (d) image obtained by means sensor 1, (c) image obtained by radar sensor 2, (d) image obtained by means
of MRC with poorer channel estimation of EGC

Orin Object Image of rands1
applied to generate Rician fading channel by means of Matlab.
As mentioned before, EGC is simply average all images, so no
channel estimation technique is required by EGC. However,
MRC is on a basis of CSI and thus different channel estimation
performance would result in different quality of image fusion.
we employ block phase estimation (BPE) raised by Viterbi
[18] to estimate Rician channel. This estimation is only used
in MRC simulation.

Fig. 3 illustrate image distortion result from Rician fading Image of radar2 After MRC

and white gaussian noise. Fig. (a) is the image of the original
object. Fig. (b) is the image corrupted only by Rician fading
channels without white gaussian noise. Fig. (c) is the image
corrupted only by noise without rician fading. (d) is the image
corrupted by both Rician fading and noise, which is practical,
as in the real world, fading and noise always coexist. Note
that if fading and noise become more inclement, the quality
of image can be drastically reduced.

Fig. 4 illustrates the EGC image fusion result compared
with the original object and images obtained by independentsensors. Fig (b) and (c) are images obtained by radar sensor 1 Fig. 7. MRC image fusion: (a) Original Object, (b) image obtained by radarsensor 1, (c)image obtained by radar sensor 2, (d) image obtained by means
and sensor 2 respectively, both are corrupted by white gaussian of MRC with better channel estimation
noise and Rician fading with different fading factor K = 10
and K = 5, doppler shift fd = 100Hz and fd = 200Hz and
variance of noise = 0.04 (double size). It is shown that quality 0.9979, 0.9972 and 0.9988. All MMSE and MSSIM employ
of EGC infused image (d) is better than both (b) and (c), this "double" size. Both MMSE and MSSIM illustrate that the
can be particularly analyzed through the jacket of cameraman. image obtained through EGC offers better quality then that
However, the improvement on background is not easy to tell obtained by independent member.
by human eyes. The Minimum Mean Squared Error (MMSE) Similarly, MRC image fusion result is shown in Fig. 5. Fig
of image (b) and (c) are 0.0541 and 0.0706 respectively, while (b) and (c) are the same images in Fig. 4 (b) and (c). Fig. 5
the MMSE of EGC fused image is 0.0316. Besides MMSE, (d) is the fused image obtained by means of MRC when the
we also calculate the mean of structural similarity (MSSIM) performance of channel estimation is bad. Due to the large
index [19] by comparing (b)(c)(d) with (a) respectively and get error in the channel knowledge, we can see that MRC could



not provide good quality of fused image, even the fused image [13] N. Levanon, Radar Principles, New York, Wiley, 1988.

look worse than (b) and (c) to some extend in this case. The [14] R. A. Johnson and E. L. Titlebaum, "Range Doppler Uncoupling in the
Doppler Tolerant Bat Signal", Proc. of IEEE Ultrasonics Symposium,

MMSE and MSSIM of (d) is 0.0406 and 0.9984 respectively, New York, pp.64-67, 1972.
compared to 0.0316 and 0.9988 of EGC. [15] M. K. Sundareshan and S. Bhatacharjee, "Super-Resolution of Tractical

Under the condition that the performance of channel es- Surveillance and Tracking Data for Fusion of Images" Data fusion for Sit-
uation Monitoring, Incident Detection, Alert and Response Management

timation is good, we obtain a new group of images in Fig. pp.448-463, JOS Press 2005
6 and 7 with the same fading factor, doppler shift and [16] A. Goldsmith, Wireless Communications, Cambridge University Press,
variance of noise. Note that Fig. 6 is different with Fig. 4. NJ 2001.

[17] G. Stuiber, Mobile Communications, 2nd ed., Kluwer Academic
Although channel estimation would not result in the difference Publishers, 2001

between performances of EGC, as EGC itself does not require [18] A. J. Viterbi and A. M. Viterbi "Nonlinear Estimation of PSK-Modulated
any knowledge of channel, for better comparison, Fig. 6 is Carrier Phase with Application to Burst Digital Transmission" IEEE

Transcations on Information Theory no.4, pp. 543-551, July 1983
generated in the way that (b) an (c) are the same as those [19] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image
in Fig. 7 with MMSE 0.0510 and 0.0691, MSSIM 0.998 and quality assessment: From error visibility to structural simalrity" IEEE
0.9973. MMSE of Fig. 6 (d) and Fig. 7 (d) are 0.0298 and Transactions on Image Processing vol.13, no.4, pp. 600-612, April, 2004

0.0153 respectively while their MSSIM are 0.9988 and 0.9994.
These values further illustrate that MRC under good channel
estimation can definitely offer better quality of fused image
than that of EGC.

IV. CONCLUSION AND FUTURE WORKS

This paper is a preliminary work on image fusion on RSN.
We applied EGC and MRC to fuse images and the result shows
that both EGC and MRC are capable of offering better image
quality than that of single radar.
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Abstract--Wireless sensor networks need to support proposes a minimum energy routing scheme, which
image traffic. However, existing wireless sensor networks consider the energy consumption for data packets
provide only limited quality of service (QoS) for image as well as control packets of routing and multi-
application. Hence, We could consider cross-layer design pie access. In [7], Sichitiu proposes a cross-layer
for image transmission In wireless sensor networks. We
combine application layer, MAC layer and physical layer scheduling method. Through combining network
together. According to analysis and simulation, high pri- layer and MAC layer, a deterministic, schedule-
ority service will achieve better PSTR performance. Low based energy conservation scheme is proposed. This
priority service achieve better performance at the first scheme drives its power efficiency from eliminating
stage, and it become worse later. The application level idle listening and collisions.
QoS is a tradeoff with the energy consumption between
high priority service and low priority service. In our paper, we propose a cross-layer design

I. INTRODUCTION to combine the application layer, MAC layer and
The demand for image transmission in wireless physical layer together. We use image as traffic and

sensor networks is growing in a rapid speed. A strict SPIHT (Set Partitioning in Hierarchical Trees) is the
layered design is not flexible enough to cope with image-compressed algorithm in application layer. In
the dynamics of the wireless sensor networks [1]. MAC layer and physical layer, we select MAC layer
To enhance the QoS(Quality of Service) for mul- retransmission times and AMC (adaptive modula-
timedia transmission, we consider the cross-layer tion and coding) as the cross-layer design param-
design. Cross-layer design could introduce the layer eters. For WSNs, the energy is critical parameters.
interdependencies to optimize overall network per- We will also consider the energy consumption in
formance. different designs.

Lots of previous works have focused on cross-
layer design for QoS provision. Liu [2] combine We use peak signal to noise ratio (PSNR) and
the AMC at physical layer and ARQ at the data Structural Similarity(SSIM) [8] to evaluate the
link layer. Ahn [3] use the info from MAC layer application-level QoS for the cross-layer design. We
to do rate control at network layer for supporting also use packet successful transmission ratio, aver-
real-time and best effort traffic. Akan [4] propose a age delay to evaluate the communcation systems.
new adaptive transport layer suite including adaptive Remaining energy is used to evaluate the energy
transport protocol and adaptive rate control protocol consumption.
based on the lower layer information.

Some works related to energy efficiency have The remainder of this paper is structured as fol-
been reported. Banbos proposes a power-controlled lowing. In section II, we introduce the preliminaries.
multiple access schemes in [5]. This protocol reveals In section III, we make an overview of cross-layer
the trade-off of the transmitter power cost and back- design. Simulation and analysis are in section IV.
log/delay cost in power control schemes. Zhu [6] We make conclusion in section V.



II. PRELIMINARIES A mobile node will retransmit the data packet

A. IEEE 802.11a OFDM PHY when finding failing transmission. Retransmission
of a signal packet can achieve a certain probabilityThe physical layer is the interface between the of delivery. There is a relationship between the

wireless medium and the MAC [9]. The principle probability of delivery p and retransmission times

of OFDM is to divide a high-speed binary signal n:

to be transmitted over a number of low data-rate 1
subcarriers. A key feature of the IEEE 802.11 a n 1.45n p
PHY is to provide 8 PHY modes with different The IEEE 802.11 standard requires that the trans-
modulation schemes and coding rates, making the mitter's MAC discard a data frame after certain
idea of link adaptation feasible and important, as number of unsuccessful transmission attempts. Ac-
listed in Table I. BPSK, QPSK, 16-QAM and 64-QAMted inTarebe spt mouato schemes. TheQAM and cording to the requirement of probability of delivery,

we choose the minimum number of retransmission.
OFDM provides a data transmission rates from 6 to The advantage is we can save energy through avoid-
54MBPS. The higher code rates of 2/3 and 3/4 are ing unnecessary retransmission, and ensure proba-
obtained by puncturing the original rate 1/2 code. bility of delivery.

TABLE I

EIGHT PHY MODES OF THE IEEE802.1 1A PHY C. Application Layer

Mode_ Modulatio Bps Set Partitioning in Hierarchical Trees (SPIHT) is

I BPSK 1/2 6Mbps 3 an image compression algorithm that exploits the
2 BPSK 3/4 9Mbps 4.5 inherent similarities across subbands in a wavelet
3 QPSK 1/2 12Mbps 6 decomposition of an image. The algorithm codes
4 QPSK 3/4 18Mbps 9 the most important (in the sense of MSE reduction)
5 16 - QAM 1/2 24Mbps 12
6 16 - QAM 3/4 36Mbps 18 wavelet transform coefficients in priority, so we
7 64 - QAM 2/3 48Mbps 24 could apply service differential in application layer.
8 64 - QAM 3/4 54Mbps 1 27

D. Energy
A mobile node consumes significant energy when

B. IEEE 802.11 MAC it transmits or receives a packet. But we will not

The 802.11 MAC uses Carrier-Sense Multiple consider the energy consumed when the mobile

Access with Collision Avoidance (CSMA/CA) to node is idle.

achieve automatic medium sharing between com- The distance between two nodes are variable in
patible stations. In CSMA/CA, a station senses the the mobile ad hoc networks and the power loss
wireless medium to determine if it is idle before it model is used. To send the packet, the sender
starts transmission. If the medium appears to be idle, consumes [10],
the transmission may proceed, else the station will Ptx = Pelc + ffs" d2 (2)
wait until the end of the in-progress transmission. A
station will ensure that the medium has been idle for and to receive the packet, the receiver consumes,
the specified inter-frame interval before attempting PrX = Pejec (3)
to transmit.

Besides carrier sense and RTS/CTS mechanism, where Pelec represents the power that is necessary

an acknowledgment (ACK) frame will be sent by for digital processing, modulation, and Ef , repre-

the receiver upon successful reception of a data sents the power dissipated in the amplifier for the

frame. Only after receiving an ACK frame correctly, free space distance d transmission.

the transmitter assumes successful delivery of the A joint characteristic of most application sce-
corresponding data frame. The sequence for a data narios of mobile ad hoc networks is that mobile
transmission is: RTS-CTS-DATA-ACK. nodes only have a limited energy supply which
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might not even be rechargeable, hence they have can be treated as a wide-sense stationary complex
to be energy-efficient as possible. Transmitter power Gaussian random process, and g,(t) and gQ(t) are
control allows interfering communication links shar- Gaussian random processes with non-zero means
ing the same channel to achieve their required QoS mi(t) and mQ(t), respectively; and they have same
levels, minimizing the needed power, mitigating the variance oa, then the magnitude of the received
channel interference, and maximizing the network complex envelop has a Rician distribution,
user/link capacity. x x 2 + 2 "'>s"

E. Delay P exp 2o.2 T2 0

The packet transmission delay between the mo- where
bile nodes includes three parts: the wireless channel S2 = m2(t) + mQ(t) (8)
transmission delay, the Physical/MAC layer trans- and Io(.) is the zero order modified Bessel function.
mission delay, and the queuing delay [11]. This kind of channel is known as Rician fading

Defining D as the distance between two nodes channel. A Rician channel is characterized by two
and C as the light speed, the wireless channel parameters, Rician factor K which is the ratio of
transmission delay as: the direct path power to that of the multipath, i.e.,

D K = s2/20 2, and the Doppler spread (or single-
Delaych = - (4) sided fading bandwidth) fd. We simulate the Rician

fading using a direct path added by a Rayleigh
The Physical/MAC layer transmission delay will fading generator. The Rayleigh fade generator is

be decided by interaction of the transmitter and based on Jakes' model [12] in which an ensem-
the receive channel, the node density and the node ble of sinusoidal waveforms are added together to
traffic intensity etc. simulate the coherent sum of scattered rays with

The queuing delay is decided by the mobile node Doppler spread fd arriving from different directions
I/O system-processing rate, the subqueue length in to the receiver. The amplitude of the Rayleigh fade
the node. generator is controlled by the Rician factor K.

BPSK, QPSK, 16-QAM and 64-QAM are the
F. Node Mobility and Channel Fading supported modulation schemes for IEEE 802.11 a

Mobility of a mobile node generates a doppler OFDM physical layer. We can show their perfor-
shift, which is a key parameter of fading channel. mance curves with Rician fading in Fig.1.
The doppler shift is

fd f-ý(5
C

where v is the ground speed of a mobile node, c is
the speed of light (3 x 108 m/s), and f, is the carrier.
In our simulation, we used the carrier is 6GHz. For
reference, if a node moves with speed lOm/s, the
doppler shift is 200Hz.

We model channel fading in ad hoc networks
as Rician fading. Rician fading occurs when there
is a strong specular (direct path or line of sight
component) signal in addition to the scatter (multi-
path) components. For example, in communication Fig. 1. Modulation Curves with Rician Fading

between two infraed sensors, there exist a direct After we introduce the channel coding and node
path. The channel gain, mobility into the modulation schemes, the mudual-

g(t) = g1 (t) + jgQ(t) (6) tion curves will change a lot. For the same SNR,
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channel coding will improve the BER performance frame loss ratio, however small retransmission times
and the mobility will degrade the BER performance. will decrease delay and energy consumption.

In the 802.11 A protocol, eight AMC modes are
G. One-step Markov Path Model used in physical layer. We set small mode number

The mobile nodes are roaming independently for high priority service. This is also a tradeoff.

with variable ground speed. The mobility model Small mode number, good BER performance, large

is called one-step Markov path model [13]. The delay. On the contrast, large mode number, high

probability of moving in the same direction as the speed, cost less energy to overcome interference and

previous move is higher than other directions in this noise.

model, which means this model has memory. Fig.2 IV. SIMULATION

shows the probability of the six directions.
We implemented the SPIHT using Matlab, and

-, I -implemented communication system using the OP-
NET modeler. The simulation region was 300x 300

. . meters. There were 9 mobile nodes in the simulation
model, and the nodes were roaming independently
with variable ground speed between 1 to 10 meters
per second. The mobility model was called one-step
Markov path model. The movement would change
the distance between mobile nodes.

Fig. 2. One-step Markov Path Model Table II showed simualtion parameters setting in
application layer. We could see there is no cross-

III. OVERVIEW OF CROSS-LAYER DESIGN layer design in case 1 and case 4. In case 2 and case

In our cross-layer design, we consider three lay- 3, we applied cross-layer design and we divided the

ers: application layer, MAC layer and Physical layer. data into different portion for high priority service

Fig.3 shows the structure of this design. and low priority service.

TABLE I1

DESIGN CASES

Design HighPriority LowPriority Total
Image Application MAC; Retransmission Times 1 26199 0 26199

SPIHT PHY: AM4C
2 20000 6199 26199
3 4000 22199 26199

Fig. 3. Structure of Cross-layer design 4 0 26199 26199

As we know, SPIHT codes the most important Table Ill showed simulation parameters settings
wavelet transform coefficients in priority, and put in T ab e sho simulan eters sonsthem in the front of the coded data. We couldi MAC layer, physical layer and energy consump-

themin te font f te coed dta.We culdtion. Retransmission times is the maxium. retrans-
apply service differential in application layer. We mission times i s thei r
divide the data into two priorities and the service mission times in MAC layer.
differentiation aims at improving the service of TABLE III

high-priority classes. We set the first part of data as PARAMETERS SETTING

high priority and the remaining data as low priority.
For the MAC layer, the maximum retransmission _______________________ AMC_ Power

times will manage the frame loss ratio and the HighPriority 1i8 1 0.20

energy consumption. We set large number for high LowPriority 3 8 0.10

priority service and small number for low priority
service. Large retransmission times will decrease



1) Packet Successful Transmission Ratio: Be- 0.03

cause we increased the maximum retransmission - /.

time and transmitted power to overcome noise and 2/.o-

interference, we could achieve better performance 0.on -
in packet successful transmission ratio for high pri- I
ority. Simulation result in fig.4 showed high priority , 0.026°

design could have better PSTR performance. Fig.4 0.024

also showed if we selected large portion of data
as high priority, we could achieve better PSTR /.02

performance. Comparing design 2 with 3, the PSTR 0o. ' 1 030 0 15 20 25 30 30 40 40

performance in design 2 was up to 25.4% larger. •k ' Tim

Fig. 5. Average Delay

0.9

0 high priority service, it would cost more energy than
OS "low priority service. For low priority service, they

J will cost less energy because it was less important
according to SPIHT image compressed algorithm.

0.6 Simulation result in Fig.6 matched our analysis.

0.5 There was a tradoff between the QoS performance
-r- O and the energy efficiency.

0.40 5 10 15 20 25 30 35 40 45
54,4.1n. TWn

40

Fig. 4. Packet Successful Transmission Ratio 35

2) Average Delay: For the image transmission, 30

the delay/time jitter was not important. We used the 25

average delay to evaluate the delay performance. K 1
was the received packets number. 15

kdaverage k(9) 10v-D~

According to analysis, small retransmission times 0o , 10 20 30 35 40 45

would decrease delay. Fig.5 showed the delay per-
formance of the high priority was worse than that Fig. 6. Remaining Energy

of low priority at the first stage. However the delay
performance of high priority would be better than 4) Image Quality: PSTR could only indicate
that of low priority when the the communication packet level QoS. Application level QoS was more
model finished transmitting the whole image. This important in case of image transmission. We use 0.1
was because low priority had low PSTR and it as the SPIHT compressed ratio. According to our
ruined its delay performance. As showed in fig.5., analysis, we knew that high priority service would
we conclued that desin 2 achieve the best delay per- achievce better QoS quality for both application
formance, which meant the portion of high priority level and packet level. The simulation result was
data was large than that of low priority data could same as the analysis. We listed the PSTR and SSIM
achieve the best delay performance. index for four designs in table IV. It was interesting

3) Energy Efficiency: It was not convenient to that the application QoS was exactly a tradeoff with
recharge the battery, so the energy efficiency was ex- the energy consumption.
tremely important for wireless sensor networks. For Fig.7 showed the images for four designs. Design



TABLE IVMABE QAIV and it become worse later. The application level QoS
is a tradeoff with the energy consumption between

Design PSNR SSIM high priority service and low priority service.
1 29.31 0.8027
2 27.75 0.7683 ACKNOWLEDGMENT
3 23.08 0.6007 This work was supported by the U.S. Office ofNaval Research (ONR) Young Investigator Award

under Grant N00014-03-1-0466.
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Abstract

While energy detection has been extensively studied in the past, hidden terminal and exposed node

problems are ignored through assuming that the environment is same for transmitters and receivers. In

this paper, considering hidden terminal and exposed node problems, we make a theoretical analysis on the

performance of commonly used energy detection methods, such as ideal method, transmitter-independent

method and transmitter/receiver-cooperated method, in terms of detection probability. Corresponding ana-

lytical models are provided. Performance theoretical curves are acquired to compare the characteristics for

individual energy detection methods under various scenarios. Moreover the upper bound for detection prob-

ability is achieved and is compared under various system traffic intensity and sensing capability. From the

theoretical results, we found that it is easy to correctly detection the channel status when primary systems

are heavily occupied for ideal energy detection method and tansmitter/receiver-cooperated energy detection

method. Otherwise, transmitter-independent method is a better scheme to monitor the primary systems.

Commonly, increasing the sensitivity of secondary users can upgrade the detection performance. However, in

our analysis, it is not true for transmitter-independent method and transmitter/receriver-cooperated method

under certain situations. We have concluded those special cases in this paper. Therefore, the theoretical

results can supply a reference on the choosing of energy detection method according to system scenario, such

as traffic load, sensing capability, etc..

1 Introduction

Today's wireless networks are regulated by a fixed spectrum assignment policy, i.e. the spectrum is regulated by

governmental agencies and is assigned to license holder or services on a long term basis for larger geographical

regions. In addition, according to Federal Communications Commission (FCC)[1], temporal and geographical

variations in the utilization of the assigned spectrum range from 15% to 85%. Although the fixed spectrum

assignment policy generally served well in the past, there is a dramatic increase in the access to the limited

spectrum for mobile services in the recent years. By adapting radios' operating characteristics to the real-time

conditions of the environment, CR enable flexible, efficient and reliable spectrum use. Hence, CRs (secondary

users) have the potential to utilize a large amount of unused spectrum in an intelligent way while not interfering

with other legacy license holders (primary users) in frequency bands already licensed for specific users.

1



In order to ensure cognitive radio network (CRN), which is consisting of CRs, working smoothly, one of

important requirements is to sense the spectrum holes successfully. The most efficient detection method is to

detect the primary users that are receiving data within the communication range of an secondary user. In

reality, however, it is difficult for a CR to have a direct measurement of a channel between a primary receiver

and a primary transmitter. Thus, the most recent work focuses on primary transmitter detection based on

local observations of secondary users. Generally, the spectrum sensing techniques can be classified into matched

filter[2], energy detector and cyclostationary feature detector[3].

One common method for detection of unknown signals is energy detection, which measures the energy in

the received waveform over an observation time window [4] [5]. In [6], energy detection of unknown deterministic

signals are studied. Detection performance in terms of detection probability and false alarm probability is for-

mulated. In [7] and [8], multiband/wavelet approach and blind adaptive minimum output energy detection were

proposed for capturing the AM-FM components of modulated signals immersed in noise and for DS/CDMA[9]

over multipath fading channel separately. Performance of energy detection under channel randomness has been

considered in [10] and [11]. In order to improve spectrum sensing, several authors have recently proposed collab-

oration among secondary users[12] [13]. A group of unlicensed deices were exploited for spectrum sensing, which

leads to more efficient spectrum utilization from a system-level point of view while decreasing computational

complexity of detection algorithms at individual nodes.

However energy detection has been extensively studied in the past, hidden terminal and exposed node

problems are ignored through assuming that the environment is same for transmitters and receivers. While this

assumption does not always held, especially in high node-density scenarios. In this paper, considering hidden ter-

minal and exposed node problems, we make a theoretical analysis on the performance of energy detection in terms

of detection probability. An analytical model is provided for ideal energy detection, transmitter-independent

energy detection for CSMA[14] /ALOHA[15] /Schedule-based systems and transmitter/receiver-cooperated en-

ergy detection. Theoretical curves are acquired to compare the characteristics for individual energy detection

methods under various situations. Moreover the upper bound for detection probability is achieved and compared

under various system traffic and sensing error. The theoretical results we acquired can supply a reference on

the method selection.

The remainder of this paper is organized as follows. In Section 2, we summarize motivations for our work.

We summary all definitions used through this paper in Section 3. Section 4 and Section 5 describe our theoretical

analysis on different energy detection methods. Simulation results are given in Section 6. Section 7 concludes

this paper.

2 Our Motivations

Two nodes are said to be hidden from one another (out of signal range) when both attempt to send information

to the same receiving node, resulting in a collision of data at the receiver node. On the other hand, overhearing

a data transmission from neighboring nodes can inhibit one node from transmitting to other noes. Those are

very well-known hidden terminal problem and exposed node problem for contention-based MAC protocols[16].

Hidden terminal problem causes failure communication with collision, while exposed node problem decreases

frequency utilization due to unnecessarily blocking some communications. RTS-CTS method is one of the

most popular solutions to the hidden terminal problem, such as in IEEE80.2.11[17]. In CRNs, hidden terminal
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problem and exposed node problem also should be considered for energy detection, since the strength of received

signal is various at transmitter side and receiver side for CRs. To the best of our knowledge, it is the first paper

to study the influence of hidden and exposed problems on energy detection capability.

2.1 Hidden Terminal Problem

As shown in Fig. 1, in a primary system there are two primary users (PUs) A and B. When communication

is processing between A and B, there are two secondary users (SUs) C and D appeared in the same region.

According to most of existing energy detection methods, before deciding working spectrum, C will sense spectrum

hole around it. Since C is hidden from A, C cannot detect the transmission between A and B, then C will decide

to pick up the same spectrum band to process communication to D, which will destroy the communication

between A and B as shown in Fig. 1(a). This is the hidden terminal problem for energy detection in CRNs.

This hidden problem breaks one of the most important rules for CRNs: the SUs should not generate unacceptable

interference to PUs.

.2

2 02_

(a) (b)

Figure 1: (a)The illustration of hidden terminal problem and (b) The illustration of exposed node problem

2.2 Exposed Node Problem

As shown in Fig. 1(b), in a primary system there are two PUs A and B. When communication is processing

between A and B, there are two SUs C and D appeared in the same region. According to most of existing

energy detection methods, before deciding working spectrum, secondary user C will sense spectrum hole around

it. Since C is exposed to A, C will detect the transmission between A and B, then C will decide to block

its transmission or pick up different spectrum band to process communication to D, even though in fact the

communication between C and D on the same frequency band won't cause any interference to primary receiver

B. This is the exposed node problem for energy detection in CRNs. This exposed problem breaks another most

important rules for CRNs: in order to enhance the spectrum utilization, CRNs allow more SUs to work on

spectrum holes of primary systems.

3 Main Definitions

We classify the frequency band/channel state into three categories:

* Idle: When both secondary transmitter and receiver do not sense any signal, we claim the channel is idle.

In this case, secondary communication pair can utilize the channel for communications.
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Busy: Once a secondary transmitter senses the beacon from a primary receiver and/or a secondary

receiver senses the beacon from a primary transmitter, we claim a channel is busy. In this case, secondary

communication pair should not utilize the busy channel for communications, since their communication

might destroy primary users' or be destroyed by primary users'. itemFake Busy: Just a secondary

transmitter senses the beacon from a primary transmitter and/or a secondary receiver senses the beacon

from a primary receiver, we claim the channel is fake busy. In this case, secondary communication pair

still can utilize the channel for communication, since there is no any unacceptable interference among

them.

Generally, network topology, traffic type and communication capability of primary user system determine

channel state. In this paper, we exploit Pid, Pbs and Pfd to express the chance of channel state might be at

certain point of time. They are always satisfy Pid + Pbs + Pf d = 1. The definitions are:

"* Pid is the probability of a channel being Idle;

"* Pbs is the probability of a channel being Busy; and

"* Pfd is the probability of a channel being Fake Busy.

During energy detection, the sensed signal can come from primary transmitters and, for some cases, primary

receivers, which is not determined. We use Pt, and p,,, to stand the probability that the sensed signal coming

from primary transmitters and from primary receivers.

The sensing probabilities are defined as:

P{no signal sensed I no signal exsiting} = P0o;

P{signal sensed I signal exsiting} = P11;

PIno signal sensed I signal exsiting} = P10 ; and

P{signal sensed I no signal exsiting} = Pa1.

Studies in [6][10][11] showed that the detection probability and false alarm probability were the functions of

signal-to-noise ratio (SNR, -y). Hence we note those sensing probabilities as Poo(,y), P01 (-y), Plo(-y) and PI' ('y).

The probability of correct decision (Pad) is the probability that a SU makes a correct decision on utilizing or

not utilizing a particular frequency band when sensing a particular frequency band is Idle/Fake Busy or Busy,

defined as:

Pcd = P{communication is blocked I channel is Busy}P{channel is Busy}

+ P{communication is processed I channel is Idle/Fake Busy}P{channel is Idle/Fake Busy} (1)

4 Generic Environment for Secondary Transmitter and Receiver

While energy detection has been extensively studied in the past, hidden terminal and exposed node problems

are ignored through assuming that the environment is often same for transmitters and receivers. However, this

assumption can not always hold in the real world. In this section, we use the generic model, in which the signal

sensed by secondary transmitters (STs) might not be identical for secondary receivers (SRs). Moreover, in real
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world, there is always error for signal sensing, i.e., 0 < Poo, P1, Pol, P10 < 1. In this case, for real system design,

we evaluate the performance in terms of detection probability for ideal energy detection method, transmitter-

independent energy detection method and transmitter/receiver-cooperated energy detection method.

4.1 Ideal Energy Detection

In this case, the primary transmitter (PT) and primary receiver (PR) have the capability to send out special

messages such as beacons to indicate they are doing communications. Moreover, for energy detection, not only

ST but also SR participate sensing task. Based on the detection results both from STs and SRs, the secondary

communication pairs decide their working frequency bands.

We define a 2 x 2 matrix (S = s 2) to express the detection results for secondary communication
Stl St2J

pairs. s., and sr2 are the detection results referring to PR and PT individually at the SR side. Similarly, st,

and st2 are the detection results referring to PT and PR individually at the ST side. The value for sr1, Sr2, Stl

and st2 can be 1 or 0 based on signals detected or not. There are totally 16 statuses for S (See Table 1). Note

that the signal strength st, and the signal strength sr2 reflect the hidden problem degree and exposed problem

degree individually. Therefore, combining the detection at STs and SRs, the detection errors caused by hidden

problem and exposed problem can be solved successfully at the same time.

Table 1: Channel state classification according to S for ideal energy detection

Channel State S

00

0 0

0 0 10 1
Fake Busy

Busy

0 1 0 1 0 1

0 1 1 0 1 1

1 0 1 0 1 1

1 0 1 1 0 0

1 1 1 1 1 1

0 1 1 0 1 1

Based on the definition on detection probability (Pad), we derive (2) as following:

Pcd = (Pid + Pfb.)POO()'r2)POO(-'ft1) + 1 PbsLPO1 (Ytl) + P01(7,2) + P10(-Yr2)P11Q-Ytl)

+ Pll('Yr 2 )Pl0 ('tl) - 3pll("yr2)POO(y'tl) + 3Pll (r2)Pll(Ytl) + 3PllQ(r2)Pll("Ytl)I (2)

Note that:
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"* Even though PT, PR, ST and SR participate spectrum sensing, incorrect decision is still possible that for

sensing errors of STs and SRs.

"* Although both ST and SR implement energy detection according to messages exchanged between PTs

and PRs, detection performance in terms of detection probability Pcd has nothing with p(-iyl) and p(-Yt2).

That is, only the detection capability referring to PRs of STs, and detection capability referring to PTs of

SRs together determines the performance of this ideal energy detection method. This implies that, during

detection, to ensure the detection performance the STs only need to monitor the signal from PRs, and the

STs need to monitor the signal from PTs. Consequently, the overhead brought by energy detection for

STs and STs in CRNs can be safely reduced through making STs/SRs ignore the signal from PTs/PRs.

"* Moreover, assuming CRs can correctly detect whether there is transmission processing around them on a

particular frequency band, i.e., poo = 1, Pl1 = 1, Po0 = 0 and Plo = 0. In this case according to (2), we

have Pcd = 1, which are consisting with our above analysis. For this reason, this ideal energy detection

method is an optimal detection way for CRNs.

However, it is too good to be true in real world since overhead caused by transmitting beacons both form

primary transmitters and receivers is too heavy to be acceptable or feasible for some systems that utilize certain

MAC methods, in which there is no confirmation/response from receivers during data transmission process.

4.2 Transmitter-Independent Energy Detection

In transmitter-independent energy detection method, only STs processes spectrum sensing task. Therefore, the

matrix S is reduced into a scalar whose value can be 0 or 1. When a ST senses there is no primary communication

pairs doing communication, i.e., S = 0, it will decide to use this channel for its communication, otherwise it

will not. Generally, there are two categories of primary system based on whether there is confirmation/response

from primary receivers. In CSMA/CA primary systems, since besides RTS control packets and data packets

transmitted by PTs, another control packets - CTS and ACK are transmitted by PRs[17]. The decision can be

done according to the detection with PTs or PRs, in this case, Pcd is modified as follows.

Pcd = Ptr{PidP00(-/t2) + 1!Pfbs[Poo(Yt2) + 2p100(2)] + 1 PbsPll(Yt2)}
2

+ Prx{(Pid ±rPfbs)POO('Yt1) 2 "PbsP11(-Yt1)} (3)

Compared with ideal energy detection methods, follows are observed:

"* Pcd is not only the functions of p-,, 1, but also the functions of P7Y2 when the detected signal coming from

PTs.

"• Assuming CRs can correctly detect whether there is transmission processing around them on a particular

frequency band, i.e., Poo = 1, pll = 1, pol = 0 and pl0 = 0. In this specific case, Pe1 = pU(pid + 13Pfb. +

lPbs) +Prx(Pid + Pfbs + 2Pbs). Since it always has Pt. +Prx = 1 hold, the upper bound of Pcd is given in

(4). It is achieved when the detected signals all come from PRs, i.e., Ptx = 0 and Prx = 1.

Pcd,max = Pid + Pfbs + 2 Pbs (4)
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"* Even though only STs are exploited for energy detection in CSMA/CA-based primary system, it can be an

optimal energy detection method when channel status only be Idle or Fake Busy. That is, when Pbs = 0,

Pda. -= 1. Otherwise, the performance of transmitter-independent energy detection methods is always

3Pbs worse than the ideal energy detection methods.

"* For other primary systems, such as TDMA systems, CSMA systems and ALOHA systems, in which there

is no response/confirmation from receivers during data transmission processes, i.e., Ptx = 1 and prx = 0.

In this case, there is

Pcd,max = Pid + 1Pfbs + 1bs (5)

Comparing (5) with (4), note that if more signal from PRs can be detected by STs, better detection

performance can be achieved under same system scenario, i.e., same Pid, Pfbs, Pbs.

4.3 Transmitter/Receiver-Cooperated Energy Detection

Considering the spectrum environment sensed by receiver and transmitter due to different location of them,

receiver aiding spectrum sensing method is one of feasible mechanisms to improve the detection performance.

Consequently, the detection matrix S is changed into (0 , 0), (1) and . Only ST doing0 1 01

frequency sensing, it is impossible to identify the channel is Busy or Fake Busy when S = / .
1 0

Hence, there are two alternative ways to infer the channel state. One is claiming the channel is Idle when

S= , claiming the channel is Fake Busy when S= ( ), ( 1)and( 1) (See Table 2).
0 )11 0 1

Table 2: Channel state classification according to S for transmitter/receiver-cooperated method

Channel State S

Idle
0

0 1 1
Busy 1

Then, the Pcd is calculated through

Pod = Ptr{PidPOO(-7r2)Poo("Yt2) + -Pfbs[POO(Yr2)Poo(-Yt2) + 2poo(Yr2)P1OQ("t2)]
1

"- 1Pbs.)ll(-Yt2) + 
4

P1l(•Yr2) + 2plO('Y,2)PO1(Yt2) + 2plO("yr2)Pll(Yt2) +"PO1(1r2)
6

"+ Poo(7,-2)Pol( Yt2)]} + P,.{PidPOO(/Yr1)POO(Yti) + 1 Pfbs[POO("Yri)Pao(QYti)

"- 2plO(Yrl)POO(Yt1)] + 1 Pbs[4Pll(-Ytl) -Pll(TYrl) + 2po(ifrl)pjo(-ytt)

"- 2pil(•'yj)plo(yti) + plo(-yjl)pol(-ytl)]} (6)
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The other is One is claiming the channel is Idle when S = (0 claiming the channel is Fake Busy when

s=( ,( )and claiming the channel is Busy when S= (1' )i/( 0 ) and ( Se1)be )1 0 0 1 1
Table 3: channel state classification according to S for transmitter/receiver-cooperated method

Channel State S

Idle
0

0 1

Fake Busy /
1 0

1 0 1
Busy /

(0 1 1

In this case, the Pcd is calculated through

Pcd = Pt.{Pid[POO(-Yr2)Po00(7t2) + POO(-Yr2)P01(7ft2)1 + 5Pfbs[Po0(Qr2)Po0(aYt2)
1 2

+ 2poo(7f,2)] + 1Pbs[2Pll(Y,2) -PO1(-r2)]} +Pr,{Pid[•00("Yrl)POo("Ytl)
3 1 1 2

+ Poi(y0-)POO(7tl)] + "Pfbs[pOO(7r1)POO("/t) + 2poo(yti) + -Pbs[2P11('ytl)

+ pa1(ytl)]} (7)

Follows are discussed based above formulas:

"* Compared with transmitter-independent energy detection methods, since both STs and SRs participate

the detection process, the detection performance is same whatever the detection is based on the signal

from PTs or PRs. It is a good news for CRNs that are coexisting with primary systems, in which no

response/confirmation from PRs during data transmission processes.

"* Assuming CRs can correctly detect whether there is transmission processing around them on a particular

frequency band, i.e., p00 = 1, pll = 1, pol = 0 and Pl0 = 0. In this specific case, the upper bound for

detection probability is:

1 5Pcdma. = Pid + 1Pybs + "Pbs (8)

and

2
Pcd, max = Pid + Pf bs + " Pbs (9)

Note that when Pbs < 4pfbs, the performance of treating ( as Fake Busy is worse than treating

)as Busy.
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"* Using transmitter/receiver-cooperated energy detection methods, it can acquire better performance for

TDMA primary systems, ALOHA systems and CSMA systems. However, for CSMA/CA systems, the

transmitter/receiver-cooperated energy detection method treating as Busy achieves better perfor-1

mance when pt, Ž! 4fb.-Pb. , and treating ( )as Fake Busy can always achieve better performance.-- 4pfb.Pb. 1

"* Even though only PTs and PRs are exploited for energy detection, it can be an optimal energy detection

method when channel status only be Idle or Fake Busy. That is, when Pbs = 0, Pcd,ma. = 1. Otherwise,

the performance is always NPbs worse than the one of ideal energy detection method.

5 Identical Environment for Secondary Transmitter and Receiver

Scenario

When the environment for secondary transmitters and receivers are same. In this case, all possible values for S

are shown in Table 4. We will obtain Pcd for various energy detection methods separately.

Table 4: channel state classification according to S for ideal method

Channel State S

Idle
0 0

Busy,,• 0 1 10 11

5.1 Ideal Energy Detection

Since the situation for STs and SRs is same, it is validate to make correct decision only according to the detection

by STs or SRs. Moreover, for ideal energy detection, PTs and PRs have the capability to send message out,

which can be detected by secondary users. In this case, the detection probability Pcd is as follows.

Pcd = PidPoo(Y1)Poo(%2) + 1 Pbs[PO1("1) +Pll(7Y) +PO1(?Y2) + POO(1)P11(Y2)

+ P10("Y1)Pll(Y2) +Pll(-Yl)POO(Y2)] (10)

p., is the detect probability according to the signal from PRs, and p., 2 is the detect probability according

to the signal from PTs. Compared with ideal energy detection performance in generic environment, i.e., the

situation for SlIs might not be identical with the one for STs, they are same when there are only Busy or Ideal

status existed for channel (i.e., Pfbs = 0) and the detection results at SRs are same as the one at STs (i.e.,

P(Yr2) = P(-y2) and p(yti) = p(yi)).
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5.2 Transmitter-Independent Energy Detection

When the environment is same for STs and SRs, using the transmitter-independent detection method the

detection performance is as following:

Pcd = Ptx{PidPOO("Y2) + 5PbS[2p11("/2) +po1(y2)]} +Pr{PidPoo(-yl)

+ -Pbs[2pll(^y1) +-po(yi)]} (11)

Following characteristics are observed:

"* When the situations for STs and SRs are identical, the upper bound of detection performance is same. It

is PMd .... = Pid + 2pbs.

" Since the situations at STs and SRs are same, it is unnecessary to exploit both secondary transmitter

and receiver for better detection performance for CRNs. Therefore, for the special case that there is

identical environment for STs and SRs, traditional energy detection method - transmitter-independent

energy detection - is an optimal choice.

" Since the situations at STs and SRs are same, obviously, detection probability can be enhanced. However,

compared with the performance in generic environment, the upper bound is same as the ones when only

monitoring PRs' signals for energy detection, but always better than the ones when only monitoring PTs'

signals. It inspired us that some wrong detections are generated for the difference between STs and SRs.

That is, in that case, traditional transmitter-independent energy detection is not the best choice. If more

signal from PRs can be detected by STs, even for different situation for STs and SRs, better detection

performance can be achieved.

6 Simulation and Performance Analysis

6.1 Surface of detection probability Pd for ideal energy detection

Assuming STs and SRs own same sensing capability, that is, p0o('yr2) = Pll(yr2) and Poo(yti) = Pll(-Yti).

Moreover, P1o(7r2) = P01(-Yr2) = 1 - POO(-Y2) and plo(•'tl) = pol(-yti) = 1 - Poo('ytl). Based on (2) and (10),

Fig.2 shows the surfaces for Pd under various combinations of traffic load intensity Pbs, sensing capability of

STs/SRs P(Yr2)/P(7tl). Here, the range for P(-Yr2) and p(ytt) is [0.5 0.6 0.7 0.8 0.9 1.0], as well as the candidates

for Pbs are [0.0 0.3 0.5 0.8 1.0]. In those two figures, with Pbs the maximum value and minimal value of P.d are

shown for each surface. Note that:

" Fixing the traffic intensity of primary systems (i.e., fixing Pbs), with the increase of signal detection

capability for STs/SRs (i.e., increasing P(Qr2)/P(1t1)) there is higher chance to make correct decision for

secondary users. It inspire us that enhance the detection capability for secondary users can reduce the

interference to primary systems and increase the frequency utilization.

" Fixing the signal detection capability of STs/SRs (i.e., fixing the value for p(-tr2)/P(Ytl)), when primary

system is more often being truly busy (i.e., with higher value for Pbs) there is higher chance to make

correct decision for secondary users. That is, it is more easy for secondary users to successfully monitor
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(a) (b)

Figure 2: Detection probability Pcd for ideal energy detection method for (a) generic environment for secondary

transmitters/receivers scenario and (b) identical environment for secondary transmitters/receivers scenario.

the primary system, which is busy exchanging information. Otherwise, more error will be made for

detection.

*Identical environment for STs and SRs can improve the detection performance for CRNs even under same

situation, such as same Pbs, P(TYr2) and P(-yti), since there is no chance for channel being Fake Busy.

Therefore, the improvement due to identical environment is reduced when the detection error caused by

exposed node problem is less (i.e., less chance for channel being Fake Busy). For example, when pb3 = 0.0,

the minimal successful detection probability is same as 0.25 for generic scenario and identical scenario,

while when Pbs = 1.0, the minimal successful detection probability for identical environment is 44.44%
0o.7s-o.167 = 44.44%) higher than the one for generic environment.

6.2 Surface of detection probability Pod for transmitter-independent energy de-

tection method

Assuming there is same sensing probability for STs, that is, poa(•/tl) = pil(y/tl) and pio('yti) = po1(m/t) =

1 - p00(/tl). When sensed signal comes from primary transmitters and receivers both, we assume the sensing

probability at STs is same. Here, the range for P(ytl) is [0.5 0.6 0.7 0.8 0.9 1.0], as well as the candidates for

Pbs are [0.0 0.3 0.5 0.81.

According to (3), Fig.3 shows the surfaces for Pcd under various combinations of traffic load intensity pbs,

Pfbs and sensing capability of secondary transmitter p(Ytl) when sensed signal come from PTs or PRs. In above

two figures, with Pbs, the maximum value and minimal value for Pcd are shown for each surface. Note that

* From Fig. 3(a), compared with ideal energy detection method, the more the chance for channel being

truly occupied by primary users is, the more the detection error becomes both for generic and identical

scenarios. It inspires us that the behavior of primary systems, in which the channel is less often occupied,

can be more easy to be monitored by secondary systems only through STs.

*Also from Fig. 3(a), since the channel status can not be accurately monitored only by STs, the chance for

channel being Fake Busy directly impacts on the detection performance. Fixing the chance for channel

being truly busy, the chance for STs to successfully detect the channel status is decreased with the detection

error introduced by exposed node problem becoming bigger (i.e., higher value for P1 bs). While, in this
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(a) (b)

Figure 3: Detection Probability of Pcd for Transmitter Independent Energy Detection when Sensed Signal from

(a) Primary Transmitter only and (b) Primary Transmitter or Receiver

case, the detection performance can be improved through enhance the sensing capability for STs (i.e.,

higher value for P(7t2)).

" When sensed signal comes from PTs or PRs (See Fig. 3(b)), it is a negative influence of sensing capability

for STs on the detection performance.

" From Fig. 3(b), if more sensed signal comes from PRs, the performance for transmitter-independent

detection method can be improved when fixing channel status. Moreover the influence degree of Pt, on

Pcd is changed with the chance for channel being Fake Busy. That is, the more the chance for channel

being Fake Busy, the less the improvement on detection performance caused by more sensed signal coming

from PRs. Even more, this positive impact becomes a negative impact when p., and Pfbs locate in a

certain range. The turning points are: p(-y) _> 0.9 when Pfbs = 1.0, p(y) Ž_ 0.95 when Pfb1 = 0.9 and

p(y) = 1.0 when Pfbs = 0.8.

6.3 Surface of detection probability Pd for transmitter/receiver-cooperated en-

ergy detection

Assuming there is same sensing probability for secondary transmitters and receivers, that is, POO (4t2) = pll (t2)

and POO(r2) = Pll(7,2). Moreover, P10("Wt2) = PO1(-Yt2) = 1 - PO0(7yt2) and PO("/r2) = PO1("r2) = 1 - POO(Yr2).

When sensed signal comes from PRs and PTs both, we assume the sensing probability at STs is same. Here,

the range for p(yti) is [0.5 0.6 0.7 0.8 0.9 1.0], as well as the candidates for Pbs are [0.0 0.3 0.5 0.8].

Based on (6), Fig. 4, Fig. 5, Fig. 6 and Fig. 7 show the surfaces for P~d under various combinations of traffic

load intensity Pbs, Pfb, and sensing capability of STs/SRs P(-Yt2)/P(-Y2) when sensed signal come from PTs/PRs.

Note that

e Similarly with ideal energy detection method, the more the chance for channel being truly occupied by

primary users is, the less the detection error becomes both for generic and identical scenarios. It inspires

us that the behavior of primary systems, in which the channel is more often occupied, can be more easy

to be monitored by secondary systems both through STs and SRs.
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(a) (b) (c)

Figure 4: In Generic Scenario, Detection Probability Of Pcd for Transmitter/Receiver-Cooperated Energy De-

tection for (a) P1 b, 0.0, (b) Pfbs = 0.3 and (c) Pfbs = 0.5

00,j

(a) (b) (c)

Figure 5: In Generic Scenario, Detection Probability Of Pcd for Transmitter/Receiver-Cooperated Energy De-

tection for (a) .Pfb, = 0.6, (b) Pfb, = 0.8 and (C) PJ.b. = 1.0

"* Fixing the chance for channel being Busy and Fake Busy, the chance for secondary users to successfully

detect the channel status is enhanced for utilizing more sensitive STs (i.e., higher value for P(-Yt2)).

"* There is a watershed for the influence of sensing capacity of SRs on detection performance when the

environment for STs and SRs is not identical. When Pfb, < 0.5, the detection performance can be

improved through using more sensitive receivers, otherwise when Pfb., 0.5, less sensitive receivers should

be exploited to reduce detection errors. However, this watershed is disappeared when identical environment

for STs and SRs.

"* Both using STs and SRs for detection, it is still impossible to accurately monitor the operation for

(a) (b) (c)

Figure 6: In Identical Scenario, Detection Probability of Ped for Transmitter/Receiver-Cooperated Energy

Detection for (a) Pfb, = 0.0, (b) Pfbs = 0.3 and (c) Pfbs = 0.5
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(a) (b) (c)

Figure 7: In Identical Scenario, Detection Probability of Pda for Transmitter/Receiver-Cooperated Energy

Detection for (a) Pfb8 = 0.6, (b) Pfb8 = 0.8 and (c) Pfbs = 1.0

primary users for exposed node problem and hidden terminal problem. Identical environment for secondary

transmitters and receivers can improve the detection performance

7 Conclusions

While energy detection has been extensively studied in the past, hidden terminal and exposed node prob-

lems are ignored through assuming that the environment is same for transmitters and receivers. In this

paper, considering hidden terminal and exposed node problems, we make a theoretical analysis on the per-

formance of commonly used energy detection methods, such as ideal method, transmitter-independent method

and transmitter/receiver-cooperated method, in terms of detection probability. Corresponding analytical models

are provided. Performance theoretical curves are acquired to compare the characteristics for individual energy

detection methods under various scenarios. Moreover the upper bound for detection probability is achieved

and is compared under various system traffic intensity and sensing capability. From the theoretical results,

we found that it is easy to correctly detection the channel status when primary systems are heavily occupied

for ideal energy detection method and tansmitter/receiver-cooperated energy detection method. Otherwise,

transmitter-independent method is a better scheme to monitor the primary systems. Commonly, increasing the

sensitivity of secondary users can upgrade the detection performance. However, in our analysis, it is not true

for transmitter-independent method and transmitter/receriver-cooperated method under certain situations. We

have concluded those special cases in this paper. Therefore, the theoretical results can supply a reference on

the choosing of energy detection method according to system scenario, such as traffic load, sensing capability,

etc..
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ABSTRACT With recent advances in wireless technology, the utilization of

Motivated by the observation that channel assignment for multi- multiple radios as well as non-overlapping channels provides an

radio multi-channel mesh networks should support both unicast opportunity to reduce interference and increase network capacity.

and local broadcast', should be interference-aware, and should re- Equipped with multiple radios, nodes can communicate with multi-

suit in low overall switching delay, high throughput, and low over- pie neighbors simultaneously over different channels, and thus can

head, we propose two flexible localized channel assignment algo- significantly improve the network performance by exploring con-

rithms based on s-disjunct superimposed codes. These algorithms current transmissions [I].

support the local broadcast and unicast effectively, and achieve In a multi-radio multi-channel (MR-MC) mesh network, a key

interference-free channel assignment under certain conditions. In challenging problem for capacity optimization is channel assign-

addition, under the primary interference constraints2, the channel ment. Since practically the number of radios at each node is always

assignment algorithm for unicast can achieve 100% throughput with much smaller compared to that of orthogonal channels due to rea-

a simple scheduling algorithm such as the maximal weight indepen- sons such as cost and small form factors, it may be prohibitive to

dent set scheduling, and can completely avoid hidden/exposed ter- assign one fixed channel to each radio. In other words, a radio may

minal problems under certain conditions. Our algorithms make no need to switch to different channels as time goes for better per-

assumptions on the underlying network and therefore are applica- formance. This radio constraint makes the channel assignment in

ble to a wide range of MR-MC mesh network settings. We conduct MR-MC mesh networks much harder. In this paper, we propose

extensive theoretical performance analysis to verify our design. two channel assignment algorithms for interference mitigation and
throughput maximization. Our research is motivated by the follow-

Categories and Subject Descriptors ing observations.

C.2.1 [Network Architecture and Design]: Wireless Communi- 9 Current channel assignment approaches lack a support to lo-

cation cal broadcast in MR-MC mesh networks. As neighboring
nodes tend to use different channels for transmissions, the
broadcast packet has to be separately transmitted by the sender

General Terms on multiple channels. Thus, broadcast can be more expensive

Algorithms, Design than that in single-radio single-channel (SR-SC) networks.

* A number of current channel assignment approaches rely
Keywords heavily on solving complex optimization problems, which

Multi-radio multi-channel wireless mesh networks, interference, might be impractical for many MR-MC mesh network see-

channel assignment, superimposed codes narios. In addition, techniques based on default radio/channel
degrade network throughput when the number of radios is

1. INTRODUCTION much smaller than that of channels.

' A broadcast to be heard by all immediate neighbors. * Channel switching delay is an important parameter that should
2 Under the primary interference constraints, each radio can talk be counted in channel assignment. Since the number of ra-

with at most one single neighbor at any instant of time. Namely the dios per node is usually much smaller than that of orthogo-

set of active links supported the same channel at any point of time nal channels, allowing a radio switch among the full range

is a matching. of channels results in higher overall delay since the radio
may switch back and forth frequently when multiple differ-
ent flows traverse the same node simultaneously.

Permission to make digital or hard copies of all or part of this work for * CSMA/CA is believed to be inadequate to meet the high traf-

personal or classroom use is granted without fee provided that copies are fic demand in mesh networks [2]. Any channel assignment
not made or distributed for profit or commercial advantage and that copies that requires RTS/CTS for channel reservation is unfavored
boar this notice and the full citation on the first page. To copy otherwise, to due to the high overhead. Since co-channel interference is
republish, to post on servers or to redistribute to lists, requires prior specific one of the major reasons for capacity degradation in MR-
permission and/or a fee. MC mesh networks, interference-aware channel assignment
MobiCom '07, September 9-14,2007, Montr6al, Quebcc, Canada. fo thruhtwoptim tioncshold re sht.

Copyright 2007 ACM 978-1-59593-681-3/07/0009 ...$5.00. for throughput optimization should be sought.



In this paper, we propose two channel assignment algorithms In Kyasanur and Vaidya [9], the multiple radios at each node
based on s-disjunct superimposed codes. The basic idea is sketched are divided into two groups, with one assigned fixed channels for
as follows. For each node, all available orthogonal channels are packet reception and ensuring connectivity, and the other assigned
labelled as either primary or secondary via a binary channel code- switchable channels for capacity increase. This multiple channel
word. This labelling is controlled by an s-disjunct superimposed management actually handles the channel allocation at the receiver
(s, 1, N)-code. The codeword of the transmitting node, together side. Each switchable radio switches to the fixed channel of the
with those of the interferers, determine the channel. Note that destination radio when data transmission needs to be launched. For
primary channels are always preferred during channel assignment. fixed channel assignment, a node selects random channels for its
Our analysis indicates that by exploring the s-disjunct property of fixed interfaces initially. To balance the utilization of all channels,
the (s, 1, N)-code, it is possible to achieve interference-free chan- nodes collect two-hop neighborhood information and change their
nel assignment for both unicast and broadcast. Comparing with fixed channels accordingly. Obviously this fixed channel assign-
the related literature in Section 2, we have identified the following ment takes time to converge. In addition, the number of switchable
unique contributions of our paper. channels is relatively large when the number of radios per node is

small, which may cause a large overall switching delay when the
"* We have designed two localized simple algorithms that can node has to switch back and forth in order to simultaneously relay

effectively support both local broadcast and unicast. Un- multiple flows to different neighbors. Furthermore, the receiver-
der certain conditions, interference-free broadcast and uni- based channel assignment does not support broadcast efficiently
cast can be achieved, and each broadcast packet has to be transmitted separately on one

"of the fixed channels for each neighbor. Our work differs in that
u Since our algorithms assign channels to transmitters for both we consider transmitter channel assignment, which is expected to
unicast and broadcast, and because the channels are selected incur low overall switching delay and can trivially support efficient
from a small subset of primary channels whenever possible, broadcast.
our algorithms can effectively decrease the overall switching A common default channel is introduced in [10-14] to handle
duela cau the osrgedifferencillatioen ostchingmbs b rac o and fthe network partition caused by dynamic channel assignment, and
dhannelae dto facilitate channel negotiation for data communications. To as-
channels, sign channels to the interfaces other than the default radio, [10]

"* With a very simple scheduling algorithm, our channel as- presents a localized greedy heuristic based on an interference cost

signment for unicast is proved to be able to achieve 100% function defined for pairs of channels. Refs. [11, 12] consider the

throughput under the primary interference constraints. We mesh networks with main traffic flowing to and from a gateway,

also identifies the conditions when hidden and exposed ter- which is also in charge of the channel computation. In their chan-

minal problems are completely avoided with our channel as- nel assignment to a non-default radio, nodes closer to the gateway

signment. and/or bearing higher traffic load get a better quality channel. In
DCA [14], the default channel is used as a control channel. For

"* We have conducted extensive theoretical performance analy- each node, one of the radios stays on the control channel for ex-

sis to verify our algorithm design. In addition, our algorithms changing control messages, and other radios dynamically switch to

are localized, and have low computation and communication the data channels for transmission. In this case, the utilization of

overheads, the control channel could be small even though the data channels
can be fully utilized. A multi-channel MAC is proposed in [13]

"* Our algorithms support dynamic, static, and adaptive chan- for single-radio networks. This MAC protocol requires all nodes to
nel assignment without requesting any complex scheduling meet at the common channel periodically to negotiate the channels
and/or channel coordination. These algorithms make no as- for data communication.
sumptions on the underlying network settings such as traffic The default channel does not have to be the same for all nodes in
patterns and MAC/routing protocols. Therefore they are ap- the network. In [ 15], each node fixes one radio on some channel but
plicable to a wide range of mesh networks. different nodes possibly use different fixed channels. This channel

assignment actually fixes the reception channel for each node, and
The rest of the paper is organized as follows: Section 2 dis- therefore the remaining radios of the node dynamically switch to

cusses the related work in channel assignment for MR-MC mesh its neighbors' fixed channels for data transmission. The same idea
networks. In Section 3, we present our network model and assump- is adopted in [9]. In SSCH [16], radios switch among channels
tions. Section 4 introduces the s-disjunct superimposed code and following some pseudo-random sequences such that neighboring
links it to the problem of channel assignment in MR-MC mesh net- nodes meet periodically at a common channel. This approach is
works. In Section 5, we present our channel assignment algorithms simple but it requires clock synchronization.
for both unicast and broadcast, and analyze their performance the- Compared to the works mentioned above, our work does not re-
oretically. In Section 6, we discuss a number of related issues. quire any special radio. We consider the channel assignment to all
Section 7 summarizes the work and concludes the paper. radios in a static fashion. In addition, our channel assignment al-

gorithms are localized and are designed for a mesh network with a

2. RELATED WORK more general peer-to-peer traffic pattern.
Another important category of related work is code assignmentIn this section, we survey the most related research in channel fo hide temnlitreec vidnei DApce

assignment for MR-MC mesh networks. for hidden terminal interference avoidance in CDMA packet ra-

The benefits of using multiple radios and channels have been the- dio networks. Bertossi and Bonuccelli [17] presents a centralized

oretically studied in [ 1,3-5] by jointly considering routing, schedul- greedy algorithm to assign CDMA codes to vertices such that every

ing, and channel assignment. Load-aware channel assignment is pair of nodes at two-hop distance is assigned with a couple of dif-

studied in [6,7]. Marina and Das jointly consider channel assign- ferent codes and the number of orthogonal codes utilized is mini-

ment and topology control in [8]. mized. This is a NP-Complete problem, and therefore the proposed



algorithm is an approximate heuristic. The distributed implemen- can be relaxed when the cellular grid architecture is introduced for
tation of the algorithm, which results in a high overhead, is also salability considerations.
proposed in [17]. The same code assignment problem is consid- In our study, the network is modelled by a directed graph G(V, E),
ered in [18] too, where a distributed heuristic is proposed. Note where V is the set of nodes, and E is the set of directed links. A
that to ensure hidden terminal interference-free communications, channel code, denoted by a N x IVI binary matrix C, is associated
different codes should be assigned to every pair of nodes that are with G. Therefore sometime G is denoted by G(V, E, C). Each
two-hop away. Our work differs from [17, 18] in that we intend column of C represents a channel codeword pertaining to a node in
to assign channels to nodes with an objective of interference-free the network. For example, the uth column is the channel codeword
unicast and broadcast to their immediate neighbors. In addition, cu for node u. The purpose of this paper is to assign channels to
the number of available orthogonal channels in our study is much a node u based on a and the channel codewords of its interfer-
smaller than that of the CDMA codes in a packet radio network. ers in order to mitigate co-channel interference for network capac-
Furthermore, our localized algorithms are much simpler and results ity maximization, an optimization problem requiring the joint con-
in much lower overhead. sideration of routing, channel assignment, and packet scheduling.

Our work focuses on channel assignment for general MR-MC Nevertheless, we focus on channel assignment in this paper, and
mesh networks. Each node is associated with a binary channel propose to study joint routing and scheduling based on our channel
codeword, and computes its channels based on the codewords of assignment as a future research.
the interferers. The algorithms involved are simple, has very low We assume that a DATA packet sending from u to v is acknowl-
computation and communication overheads, and can support both edged with an ACK message from v to u. Therefore even though
unicast and local broadcast effectively, we use a directed graph to model the network, only bidirectional

links are considered. A directed link from node u to v is denoted

3. NETWORK MODEL by (u -- v). In addition, we use N, (u) and N 2 (u) to represent the

In this section, we introduce the underlying network model, as- sets of neighbors of u within one-hop and two-hop away. We have

sumptions, and terminologies employed in the paper. u V Ni(u) andu V N 2 (u).

3.1 Basics 3.2 Interference Model

We consider a stationary multi-radio multi-channel (MR-MC) For any node u E V, denoted by AN(u) the set of interferers of

wireless mesh network with IVI nodes. There exist N orthogonal u. A node v E V is an interferer of u if v's transmission inter-

(non-overlapping) frequency channels labelled by ki, k2 ,... , kN. feres with u's transmission. Therefore when two-way handshake

Each node is equipped with Q radio interfaces. In our considera- (DATA-ACK) is adopted for successful packet delivery, the inter-

tion, Q < N. This is a practical assumption since the number of ferers for the unicast from u to v include N 1 (u) and N 1 (v). For a

radios per node is constrained by cost and form factors. For ex- local broadcast by u, the interferers include all nodes in N2(u).

ample, in an IEEE 802.11a based mesh network, each node may
have 2 or 3 radios but the number of orthogonal channels is 12. 4. LINKING SUPERIMPOSED CODES
We assume that the footprint of a radio is a disk resulting from an WITH MR-MC NETWORKS
omni-directional antenna. In addition, we assume that each radio
supports the same set of non-overlapping channels. Note that the In this section, we first give a brief introduction on superimposednumber of radios equipped on each mesh node could be different, codes. Then we link the superimposed (s, 1, N)-code, also called

numbr o raios quipedon ach eshnod cold b difernt. the s-disjunct code, to channel assignment in MR-MC mesh net-
For each node, the N available orthogonal channels are divided theks-

into two categories: primary channels and secondary channels. A
binary column vector c of length N, called a channel codeword, 4.1 Superimposed codes
is associated with each node u to label its channels, with a value
I representing a primary channel and a value 0 secondary. For Superimposed codes were introduced by Kautz and Singleton
example, c_• = (1, 0, 0, 1, 0,0,0, 1, 0, 1,0,0)' means that channels [19] in 1964. Since then, they have been extensively studied and
ki, k4 , k8 , and kio are primary to u, and k2 , k 3 , k5, k6 , k7 , k9, applied to various fields, such as multi-access communications [20],
k11 and k 12 are secondary to u for a network that can support 12 [21], cryptography [22], pattern matching [23], circuit complex-
orthogonal channels. Note that partitioning the channels into two ity [24], and many other areas of computer science. For conve-
sets can facilitate our algorithm design. Intuitively, a node should nience, we first introduce the basic definitions and properties of
favor a channel that is secondary to all its interferers. Therefore for superimposed codes.
each node, the number of primary channels should be smaller than Let N, t, s, and L be integers such that 1 < s < t, 1 < L <
that of the secondary. t - s, and N > 1. Given a N x t binary matrix X-, denote the ith

We require that for any two channel codewords cj. and c6, there column ofX by X(i), where X(i) = (xi (i), x2(i),... , XN (i))'.

exist at least two channels kx and k 2 such that ki is primary to u but We call X(i) a codeword i of X' with a length N. In other words,

secondary to v, and k2 is secondary to u but primary to v. In other X' is a binary code with each column corresponding to a codeword.

words, we can always find out a channel that is primary to one node Let w and \ be defined as:

and secondary to another node when the two corresponding chan- N

nel codewords are different. For simplicity, we assume all nodes wi = E Xk(i), (I)
have the same number of primary channels. Let this number be w. k=1

Then the number of channel codewords satisfying the above con- t

dition is (N) for N available orthogonal channels, which reaches Aj = E xj(k). (2)

its maximum when w = N. For example, when N = 12, there k=1

are 66, 495, and 924 available channel codewords for w = 2, 4,6 Therefore w and A are called the column weight and row weight of
respectively. We assume that the channel codewords assigned to ,X, respectively. We have wm,,. = min= 1 Wi, Wmoax = max.=1 wi,
each node is unique. As explained in Section 6, this assumption Am,,, = minj 1 Aj, and A..x = rmax 1= Aj. Note that wi and



1 0 0 0 1 0 0 0 0 0 1 0 1 which can cover all other codewords in X, contradicting to the fact
1 1 0 0 0 1 0 0 0 0 0 1 0 that X is a superimposed s-disjunct code. 0
0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 1 1 0 0 0 1 0 0 0 0 0 4.2 Superimposed (s, 1, N)-codes and Channel
0 1 0 1 1 0 0 0 1 0 0 0 0 Assignment inMR-MC Networks
0 o 0 1 0 1 1 0 0 0 1 0 0 As elaborated in Subsection 3.1, an MR-MC network is mod-0 0 0 1 0 1 1 0 0 0 1 0 elled by a directed graph G(V, E, C), where C is the corresponding0 0 0 0 1 00 01 0channel code. For any given node u E V, 6~u E C3 is a binary vec-
1 0 0 0 0 0 1 0 1 0 0 0 1 tor with each element corresponding to a channel and its 1/0 valueo 1 0 0 0 0 0 1 0 1 1 0 0 representing this channel being a primary channel or a secondaryo0 1 0 0 0 0 0 1 0 1 1 0 0channel of node u. This observation helps us to build a direct map-0 0 0 1 0 0 0 0 0 1 0 1 1 ping between a superimposed s-disjunct code AX (represented by a

N x t matrix), and the channel code C of a network G: N represents

Figure 1: An example of a superimposed (3, 1, 13)-code of size the number of available orthogonal channels, and each codeword of

13 A' indicates a possible channel codeword to a node in G. Then the
column weight wi of X represents the number of primary channels
a node i has, and the row weight Aj represents the number of nodes
that take channel k. as a primary channel.

Aj record the number of l's in column i and in row j of X, respec- In this paper, we will design algorithms for channel assignment
tively. Hence w.,. and w,... are the minimum and the maximum based on superimposed codes. This research is motivated by the
column weights of A', respectively; and An, and \-,,., are the following observation: if the channel code C of a network G is a
minimum and the maximum row weights of X, respectively, superimposed s-disjunct code X, the nice s-disjunct property of X

The Boolean sum can be applied to derive the conditions for interference-free channel
assignment.

= V X(i) = X(1) V X(2) V-- V X(s) Therefore we assume that the channel code C of network G is an
i=l s-disjunct superimposed code. From now on, we will use X to rep-

resent the channel code. We require that each node gets a unique
of codewords X(1), X(2), (Y, , X(a) is the binary codeword Y = codeword from X before participating in the network. In our algo-
(y', y2," • ,IJN)' such that rithms, codewords from one-hop or two-hop neighbors are required

f 0, if xj(1) = xj(2) ..... xj(s) = 0, for channel computation. A natural question is: how to obtain the

= 1= 1, otherwise, codewords from neighboring nodes before channel assignment is
complete? In this study, we assume that each node broadcasts its

for j = 1, 2,. . , N. We say that a binary codeword Y covers a channel codeword once on each of its primary channels, or on all
binary codeword Z if the Boolean sum Y V Z = Y. channels, to inform the neighbors of its codewords.

Superimposed code (SC): A N x t binary matrix X is called a
superimposed code of length N, size t, strength s, and listsize < 5. CHANNEL ASSIGNMENT BASED ON
L - 1 if the Boolean sum of any s-subset 3 of the codewords of X SUPERIMPOSED CODES
covers no more than L - 1 codewords that are not components of In this section, we first propose a generic channel assignment
the s-subset. This code is also called a (s, L, N)-code of size t. algorithm for MR-MC mesh networks. The generic algorithm as-
Fig. I shows an example of a superimposed (3, 1, 13)-code of size signs channels to nodes instead of links. This can facilitate channel
13. selection for broadcast traffic. Then we propose an algorithm for

s-disjunct Code: A binary matrix X is called an s-disjunct code link channel assignment targeting the unicast traffic. We also ana-

if and only if it has the property that the Boolean sum of any s lyze the performances of both algorithms in detail.

codewords in X does not cover any codeword not in that set of s 5.1 The Generic Channel Assignment
codewords. Algorithm

Based on the definitions, a superimposed (s, 1, N)-code is a Let G be an MR-MC wireless mesh network with N available
s-disjunct code. Taking the (3,1,13)-code shown in Fig. I as orthogonal channels, and A' be the superimposed (s, 1, N)-code
an example, the Boolean sum of the first 3 codewords of X is for its channel assignment. For any node u in G, a unique code-
X(1) V X(2) V X(3) = (1, 1,1,1,1,1,0,0,0,1,1, 1,0)', which word X(u) E X is associated with u indicating u's primary and
doesn't cover any other codeword of X but themselves, secondary channel sets. Denote by .A(u) the set of interferers of

According to the s-disjunct characteristic of the superimposed u. Algorithm I is a generic one that computes a set of channels for
(s, 1, N)-code, we can derive the following important property: node u's transmissions.

Intuitively, u should choose only those channels not being used
LEMMA 4.1. Given an (s, 1, N) superimposed code X,for any by any of its interferers from its primary channel set. If none of

s-subset of the codewords of X, there exists at least one row at these primary channels is available, u should choose the secondary
which all codewords in the s-subset contains the value 0. channels that are not primary to any of the nodes in .1(u), the set

PROOF. For contradiction we assume that there is no row at of interferers of u. Since all nodes intend to utilize their primary

which all codewords in the s-subset contain a common value 0. channels whenever possible, choosing a channel that is secondary
Then the Boolean sum of the s codewords equals (1, 1,.. . , 01), to all interferers is a reasonable choice. If u can not find out a

channel that is secondary to all interferers, it picks up the primary
3An s-subset is a subset of s codewords. channels that are primary to the least number of nodes in .1(u).



These primary channels have the smallest row weight in X(Af(u)), in that it can support both static and dynamic channel assignments.
the set of codewords of K/(u). Let CH(u) be the set of channels Note that the channels determined by Algorithm I can be used
assigned to u. for both unicast and local broadcast simultaneously. Since Algo-

rithm I intends to pick up channels that may not be used by the
Algorithm 1 Channel Assignment for Node u interferers based on the local knowledge, it is superior in support-

Input: Codewords X(u) and X(.N(u)). ing local broadcast compared to existing research (Section 2). We
Output: CH(u), the set of channels assigned to u. plan to conduct extensive simulations to study the performance of

Algorithm I when utilized to support broadcast in MR-MC mesh
I : function CH(u)=ChannelSelect(X(u), X(A/(u))) networks.
2: CHI(u) - Channels(BoolSum(X (Af(u) U {u})) E

BootSum(X(ea(u)))) >a Find the set of primary channels Example: Take the superimposed 3-disjunct code X in Fig. I as an
3: If CH cn(u) tl 0 then example. Given a node u and AP(u) = {v, w, y}. Let X(u) =

4: CH(u) - CHI (u) X(1). If X(v) = X(2), X(w) = X(3), and X(y) = X(4),
5: else Algorithm I yields CH 1 (u) = {1, 10}, which means that chan-
6: CH2(u) - Channels(BoolSum( (.'((u) U {u}))) I> nels I and 10 can be assigned to u. In this case, u picks up its

Find the set of secondary channels that are secondary to primary channels. Since both channels are primary to u, based
all nodes in .N(u). on Lemma 5.1, the transmission from u will not interfere with

7: if CH2(u) i4 0 then8: CH(u) - UH 2 (u) any other on-going traffic, lfHAi(u) = {v, w, y, z}, and X(v) =
9: else X(3), X(w) = X(10), X(y) = X(12), and X(z) = (13), no

10: CH3e(u) - Select Channelsl(X(u)) with the smallest primary channels of u can be assigned to u but u can get chan-

row weight in X(Af(u)) > Select the primary nels {5, 7} that are secondary to all nodes in P1(u) U {u}. When
channels with the least row weight in Ar(u). .A(u) = {v,w,y,z}, and X(v) = X(4), X(w) = X(10),

12: CH(u) - CH3(u) X(y) = X(12), and X(z) = X(13), no channel that is secondary
12: end If
13: end If to all nodes in .1(u) can be assigned to u. Therefore u picks up
14: end function channels from its primary channel set {1, 2, 4, 10} since all of them

have the same row weight of I in Af(u).

The basic idea for Algorithm I can be sketched below. Given 5.1.1 Conditions for Interference-Free Channel
X(u) and X(Af(u)), the Boolean sum of X(.1(u)) and X(PA(u) Assignment
U{X(u)}) are first computed. Then the algorithm computes CHI(u), In this subsection, we study the conditions for interference-free
the set of u's primary channels that are secondary to all nodes in channel assignment based on Algorithm 1. Note that Algorithm I
P1(u). If CHI(u) 4 0, assign CHI(u) to u; Otherwise, check does not require a node u to collect the codewords of all interfer-
CH 2 (u), the set of channels that are secondary to all nodes in ers. If u knows nothing about its neighborhood, one of its primary
P1(u) U {u}. If CH2(u) 5 0, assign CH2(u) to u; otherwise, channels will be picked for transmission. However, if.P(u) is the
assign CH3 (u), the set of primary channels whose corresponding complete set of interferers of node u, interference-free channel as-
row weights in the set X(.1(u)) are minimum, to u. signment is possible. In the following, we will first study the two

Note that the set of primary channels of u are those favored by u. scenarios when the channels assigned to u based on Algorithm I do
Therefore, CH,(u) contains the channels favored by u only, and not conflict with those of any other node in P1(u). Then we study
CH 3 (u) is the set of channels favored by u and the least number of the conditions when interference-free communication in the whole
interferers of u. For CH2 (u), since it contains the set of channels network can be achieved. For simplicity, we assume that each node
nobody likes to utilize in u's interference range, u should take this u in the network is equipped with two radios: one for transmission
advantage. These channel assignment criterions reflect our design and one for reception. The results can be generalized to the case of
principle: a node always selects a channel that causes the least more than two radios.
interference to its neighborhood.

Also note that Algorithm I is a localized one with each node u LEMMA 5.1. If CHI (u) - 0, node u does not interfere with
running a copy and making its channel assignment independently, any other node in Af(u).
We will prove in Lemma 5.1 that if there is an unused channel in PROOF. When CHI(u) # 0, node u picks up channels from
CHI (u) for a radio r of u, r's transmission is guaranteed to be CH 1 (u), a subset of u's primary channel set, for transmission.
interference free. CHI (u) contains channels that are primary to u but secondary

Since each node may be equipped with multiple radios, the chan- to all nodes in AP(u). For Vv E P1(u), v can't use any channel
nels in CHI (u) may not be enough. In this case, assign all chan- from CH 1 (u) based on Algorithm I since v is assigned with ei-
nels from CHI(u) first, then use the channels from CH 2 (u), and ther its own primary channels (from CHI(v) or CH3(v)), which
then from CH3(u). can't be in CHi(u), or channels that are secondary to all interfer-

Remarks: Algorithm I is a generic one that takes the codewords of ers in P(v) (CH2(v)), which are secondary to u too since u E

u and its interferers as inputs. Therefore, Algorithm I does not rely AP(v). 0

on any interference model, as long as the set of u's interferers can Note that based on Lemma 5.1, if P'(u) is the complete set
be defined. Additionally, since Algorithm I assigns channels to the of interferers of node u, u's transmissions on the channels from
node, or the transmitters of the node, Algorithm I is a static channel CHI (u) do not cause any interference to other on-going traffic.
allocation method. If roles of radios (the role of transmission or
reception) are fixed, Algorithm I can help to decrease the number THEOREM 5.1. IfCHI(u) # 0 holdsfor Vu E V and P1(u)

of channel switchings significantly compared to dynamic channel is the complete set of interferers of u in the network G(V, E), the
assignment. However, Algorithm I is dynamic when the set of channel assignment based on Algorithm I guarantees interference
interferers are collected on-line. Therefore, Algorithm 1 is flexible free communications in the network.



PROOF. The theorem holds from Lemma 5.1. El interference model, .N(u) = N 2 (u). We have
P1  = p(Cn,(u) $ 0), (3)

Theorems 5.1 indicates that if each node can compute a pri-

mary channel that is secondary to all its interferers based on Al- P2  = p(CH2 (u) $ 0, CHi (u) = 0,

gorithm 1, interference-free communications in the whole network CHd(v,) 6 0, Vvi E P1(u))

can be achieved. In the following, we identify another scenario to = p(CH2 (u) : 0, CHi(u) = 0)-
accomplish interference-free transmission. p(CHn (vi) 5 0, Vvi E .N(u))

= p(CH2 (u) $ 0, CHi(u) = )

LEMMA 5.2. Given a node u with CH1 (u) = 0 and CH 2 (u) = I ,( (6)I

0, ifCHn (vi) $ 0 holds for all its interferers vi, v2, - .- , viAr(u,)1 , p(CHi (v,) $0) (4)

node u's transmissions do not interfere with any other node in

Af(u). i=1
The last two equalities hold because the channel codeword for each

PROOF. Since CH 1 (u) = 0 and CH 2 (u) 5 0, the set of chan- node is randomly and independently assigned. Based on Eq. (3) and
nels assigned to u contains u's secondary channels that are sec- (4), to compute PI and P2 , we need to first compute the probability
ondary to all other nodes in Af(u). If CHI (vi) $ 0 holds for that CHI (u) 5 0 for Vu E V, and the probability that CHI (u) =
all its interferers vi, v2, . •- , VAg(,)I in A.(u), the set of channels 0 and CH 2(u) $ 0 hold simultaneously.
assigned to vi for i = 1, 2, ... , IAf(u)I include vi's primary chan- Let m be the number of rows in BoolSum(X(Af(u))) with a
nels only. Therefore, u's and its interferers' transmission channels value 0. Given the condition CH, (u) 5 0 or CH 2 (u) $ 0, it
do not overlap, and thus u's transmissions do not interfere with its implies that m > 0. Denote these m rows by row,, rOW2, • .,
interferers, and are not interfered by its interferers. El rowm. Let A,,ax be the maximum row weight among rowl, row2,

- " ", row.. We have t - s' - ŽA- >_

Note that Theorem 5.1 does not place any restrictions on the size Note that the boolean sum BoolSum(X(.A((u))) can cover a

of the interferer set for any node. In the following, we prove that codeword X(v) in the set X \ X(A1(u)) iff X(v) has a value 0 at

when s > JA(u)I holds for Vu E V in the network G(V, E), all the m rows rowl, row2,... , row,,. Therefore, the probability

interference-free communication is guaranteed. that the boolean sum of X(.N(u)) covers an arbitrary codeword
X(v) in X \ X(AP(u)) is

THEOREM 5.2. Ifs > I.N(u)I and .N(u) is the complete set of M I - s' - A,...
interferers ofu for Vu in G, the channel assignment based on Al- Pcover.m>o = 11 [ 'I - s
gorithm I guarantees interference free communications in the net- i=1

"work _ Arow.
H= [(1 I- s' (5)

PROOF. Since X is an s-disjunct code, BoolSum(X(Af(u))) i=1
does not cover X(u), which means that there exists at least one Thus the probability that the boolean sum of X(Af(u)) does not
row in X at which X(u) has the value I and all X(Af(u)) have the cover any arbitrary codeword X(v) in the set X \ X(A1(u)) is
value 0 (see Lemma 4. 1). Therefore condition CH 1 (u) 6 0 holds.
Based on Theorem 5.1, the claim holds. El Pu ..co..rm>0 = 1 -- Pcove,,m>O

Theorem 5.2 reports another condition for interference-free com- = 1A-(i r7').i (6)

munications in the whole network based on Algorithm 1. In other i=1

words, ifs upper-bounds the cardinality of the complete interferer Based on the above analysis, we conclude that a good super-
set of each node in the network, interference-free communications imposed code for our channel assignment should have a larger s
can be achieved. This condition sounds very rigorous. However, and larger row weights A since the higher the probability Puncovr,
for a stationary multi-radio multi-channel mesh network where the the less interference our channel assignment causes. Methods of
mesh routers can be carefully placed, the set of interferers could constructing superimposed (s, L, N)-codes have been extensively
be small to provide sufficient coverage. In this scenario, channel studied in [21] [23] [25] [26] [27] [28] [29] [30]. Ref. [31] reports
assignment based on Algorithm I yields an interference-free net- some optimal designs to construct an s-disjunct code with different
work. N, s, t.

Let p(m > 01.(u)) denote the probability that there exists at

5.1.2 Probabilities for interference-Free Channel least one row with a value 0 in BoolSum(X(Af(u))). Assuming
Assignment that each codeword in X is independent, we have

Note that Lemma 5.1 and Lemma 5.2 report two conditions to p(m > 01Af(u)) = 1 - p(m = 0I1A(u))
achieve interference-free communications with no restrictions on N
the size ofPA(u). In this subsection, we conduct further analysis = 11- (1 -. ) (7)
to derive the probabilities for interference-free channel assignment =1
when PA1(u) I > s based on Algorithm I. In other words, we will
study the probability that a node u can find out a channel to achieve Therefore the probability that CH1 (u) $ 0 is

interference-free communication in its local neighborhood when p(CHi(u) $ 0) = p(m> 01(u)) " ....... Im>o (8)
a' > s, where s' = IP1(u)1.

Let P1 be the probability that Lemma 5.1 holds for some node Now let's compute the probability that both CHI (u) = 0 and

u, and P2 be the probability that Lemma 5.2 holds. Let P1(u) CH 2 (u) $ 0 hold. Based on the definition of m, CH2 (u) 6 0
be the complete set of interferers of node u. Under the protocol and CHI (u) = 0 hold iffthe Boolean sum BoolSum(X(Af(u)))



covers the codeword X(u) and m > 0. According to Eq.(5), the 5.3 Channel Assignment for Unicast Traffic
probability that node u can find a secondary channel for communi- In this section, we consider the channel assignment for the uni-
cation is cast traffic from node u to node v, where u and v reside in each

other's transmission range. In our consideration, it is u's responsi-
p(CH2 (u) # 0, CHi(u) = 0) = p(m > 0.I'(u)). •bility to compute the channel for the link (u -- v). For simplicity,

Pco.,,erir>o (9) we use N(u) to denote N, (u), the one-hop immediate neighbor
set of u. We have u E N(v) and v E N(u).

For completeness, we provide the probability that a channel from A simple idea would be to plug-in X(u) and X(N(v)) U {X(v)}
CH 3 (u) is picked. Note that both CH 1 (u) = 0 and CH 2 (u) = 0 into Algorithm 1 to compute a channel for (u -- v). However,
hold iff the boolean sum BoolSum(X(Ar(u))) covers the code- since X(N(u)) is available to u too, it is reasonable to use both
word X(u) and X(u) cannot have a value 0 at any row of the m X(N(u)) and X(N(v)) for (u --+ v) channel assignment. This
rows, namely m = 0. According to Eq.(7), the probability that is our motivation for designing Algorithm 2 for the unicast traf-
CHI(u) = 0 and CH 2 (u) = 0 is fic from u to v. Note that in Algorithm 2 we consider N(u) and

p(CHI(u)=,CH2 (U) =O) P(M= OI((U)) N(v) instead of N2 (u) and N 2 (v) as the interferers for the uni-
p (cast traffic from u to v. We will prove that the channel codewords

N (t7i) (1) from one-hop neighbors of both the sender and the receiver suffice
= fJ(1- (10) for Algorithm 2 to achiever 100% throughput with a very simple

scheduling algorithm.

The probability that P2 holds and the probabilities that u picks
up a channel from CHI (u), CH 2 (u), and CH 3 (u) with respect to Algorithm 2 Channel Assignment for unicast from u to v

s' for the superimposed (3, 1, 13)-code of size 13 (Fig. 1) are illus- Input: Codewords X (N(u)), and X,(N(v))
trated in Fig. 2. Notice that when s' < s, Algorithm I guarantees Output: CH(u - v), a channel to the link from u to v.

to choose a channel from CH 1 (u) is I. 1: function CH(u - v)=UnlcastChannelSelect(X(N(u)),

X(N(v)))
2: CHI(u) *- SelectAChannel(BoolSum(X(N(v) U {v})) @

3: BoolSum(X(N(v) U {v} \ {u}))) t> Find a primary
channel that is secondary to all nodes in N(v) U {v} \ {u}.

O's"a 3: IfCHI(u) # 0 then
-G... P(,Mo#,) ' 4: CH (u --- v) *-- CHI (u)
__9_"' 5: else, +-- P(04,(ý6. cNý.) . s) %6: CH2 (u) - SelectAChannel(BoolSum(X(N(u) U {u}))

0'. ,A BooiSum(X(N(v))) ) c> Find a secondary channel
A,,, - .. that is secondary to all nodes in N(u) U {u} but primary

.. - :'- -to at least one node in N(v).
°- . totla7: ifsCH2 o 0 then

0- ... 8: CH(u - v) - CH2(u)

21 9: else
Ods 10: CH3 (u) - SelectAChannel(X(u) A X(v)) I>

Select a channel that is primary to u and secondary to
hV.

Figure 2: The probabilities that u picks up a channel from 11: CH(u -- v) - CH3(u)
CHI(u), CH 2 (u), and CH3(u), respectively, and the proba- 12: end if
bility that P2 holds. Here s = 3, t = N = 13. 13: end if

14: end function

5.2 Channel Assignment for Broadcast The basic idea for Algorithm 2 is sketched below. Node u, the

Traffic unicast source, first computes a channel that is primary to u but

When a channel for broadcast is needed, we can apply Algo- secondary to all nodes in N(v)Ul{v}\{u}. In this case, the channel
rithm I directly. Let u be any node in a network G(V, E). Let selected corresponds to a row with a value I in X(u) and all O's in

N/(u) be the set of interferers of u. In the topology interference X(N(v) U {v} \ {u}). If this primary channel does not exist, u

model, K(u) contains all two-hop neighbors of u, i. e. Pf(u) = computes a channel that is secondary to all nodes in N(u) U {u}

N2 (u). Let X(u) and X(N 2 (u)) be the codewords of u and its butprimary toat least one node in N(v). Iffails again, upicks upa

interferers. For broadcast channel assignment at node u the inputs primary channel that is secondary to v. As shown in Theorem 5.6,

to Algorithm I are X(u) and X(N 2 (u)). this channel selection criteria intends to minimize interference and

Note that Algorithm I does not care whether P!(u) is a complete accordingly maximize throughput.
set of interferers or not. However, if P(u) is the complete set of The design motivation for Algorithm 2 is stated as follows. A

interferers of u, and JM(u)I < s holds for Vu E V, broadcast does node should utilize its primary channels if possible; Otherwise, it

not cause any interference (see Theorem 5.2). should choose a secondary channel that is secondary to all nodes

In reality, broadcast and unicast coexist. However, broadcast is in its closed neighborhood, but not secondary to all nodes in the

inferior to unicast, as assumed by IEEE 802.11 standard. There- receiver's neighborhood, since otherwise, the receiver may choose

fore, when applying Algorithm I for broadcast channel assignment, the same channel for its own unicast, causing interference.

u selects an unused channel in CHI (u) 5 0 first. If fails, u picks Note that each node u runs a copy of Algorithm 2 to compute a

up an unused channel in CH 2 (u) 5 0. If no channels in CHi(u) channel k for the unicast link (u --* v), where v E N(u). There-

and CH 2 (u) is available for u's broadcast, u picks up an unused fore Algorithm 2 is a localized transmitter-oriented channel assign-

primary channel from CH3 (u). ment algorithm.



5.3.1 Interference Analysis secondary to x since x E N(v). Therefore the unicasts from u tov

An interesting problem is whether Algorithm 2 can compute an and from x to y do not interfere since they use different channels.

interference-free channel for u's transmission to v. Note that there Note that any node w in N(u) but not in N(v) may choose the

are two different kinds of interferences for the unicast traffic: the same channel as that of u for unicast. But this unicast does not

direct interference caused by immediate neighbors and the indirect cause interference at v since v is out of w's transmission range. El
interference caused by the neighbors of the receiver. The first one
results in the exposed terminal problem while the second one results THEOREM 5.4. Let v and u be any pair of immediate neigh-

in the hidden terminal problem. bors in the network G(V, E). If IN(w)I <_ s holds for Vw E V,

The hidden and exposed terminal problems are well-known phe- Algorithm 2 yields exposed terminal interference-free channel as-

nomenons in wireless networks due to the broadcast nature of the signmentfor the unicast traffic from v to u.

wireless media. For example, in Fig. 3, when node u is transmit- PROOF. Let x be any exposed terminal to the unicast from v to
ting data to node v, the hidden terminal problem occurs when node u, as shown in Fig. 4. Let y be the destination of the unicast traffic
x, which is unaware of the ongoing transmission, attempts to trans- from x. We have x E N(v), x ý N(u), and y 0 N(v) U N(u).
mit, thus causing collision at node v. In Fig. 4, when node v is Thus the ACK from y to x does not reach v. For the same reason,
transmitting data to node u, the exposed terminal problem occurs the ACK from u to v does not reach x. Therefore, no matter which
when node x, which is aware of the ongoing transmission, refrains channels the links (u --* v) and (y -- x) receive from Algorithm 2,
to communicate with y, thus causing degraded network throughput. the two ACKs do not collide at v and x.

Since v and y are hidden with respect to x, based on Theo-
rem 5.3,v and y choose different channels when IN(w) _ s holds
"for Vw E V in the network. Therefore, the ACK from y to x and

R ""the data from v to u do not collide at x. For the same reason, the
S- xACK from u to v and the data from x to y do not collide at v.

Li V/ X
Based on this analysis, Algorithm 2 yields exposed terminal-free

channel assignment. El

Note that Theorems 5.3 and 5.4 hold when IN(w)l < s for
Figure 3: The hidden terminal problem in wireless networks. Vw E V for a network G(V, E). Assuming no interference caused

by broadcast traffic (see Subsection 5.2), these two theorems indi-
cate that Algorithm 2 yields interference-free communications in

..the network G when the maximum node degree (the number of
one-hop neighbors) is < s.

-" • • ] • THEOREM 5.5. IfIN(w)l < sforVw E V holdsfor a network
u V X

"G(V, E), Algorithm 2 yields interference-free communications in
G.

PROOF. Proof follows from Theorems 5.3 and 5.4. El

Figure 4: The exposed terminal problem in wireless networks. 5.3.2 Throughput Analysis

In the following we prove that when the number of immediate It is interesting to observe that the induced graph of the edges

neighbors of any node in the network is upper-bounded by s, the being assigned the same channel via Algorithm 2 is a forest. Re-

hidden/exposed problems can be solved and the network commu- cent research [32,33] indicates that with a simple scheduling algo-

nication is free of interference. Note that in the following analysis, rithm (maximal weight independent set scheduling), a tree graph

we assume that there is no broadcast traffic that can potentially in- can achieve 100% throughput under the primary interference con-

terfere with the unicast traffic. straints. This result can be applied to analyze the achievable through-
put via Algorithm 2.

THEOREM 5.3. Let u and v be any pair of immediate neigh- Let's study Algorithm 2 again. It has the following nice feature:
bors in the network G(V, E). If fN(w)l < s holds for Vw E V,
Algorithm 2 yields hidden terminal interference-free channel as- LEMMA 5.3. Let (w -- u) and (u --* v) be two adjacent edges
signment for the unicast traffic from u to v. in G(V, E). Assume ki is the channel assigned to (w -* u) and

PROOF. Let x be any hidden terminal, as shown in Fig. 3. We k2 is the channel to (u - v) by Algorithm 2. We have ki 5 k2 .

have x E N(v). Since IN(v)l < s, IN(v) U {v} \ {u}I < s. PROOF. Channels ki and k2 are computed by w and u respec-
Therefore the Boolean sum of all codewords owned by N(v) U tively. If CHI (w) 4 0, k1 E CH 1 (w). Therefore k1 is primary to
{v} \ {u} does not cover the codeword of u due to the s-disjunct w but secondary to N(u) U {u} \ {w}. In this case, since ki is sec-
property of the superimposed code X used for channel assignment. ondary to u, ki 0 CHI (u) and ki ý CH3 (u). Also because ki
Thus CHI (u) j 0 holds in Algorithm 2 and u can choose one of is primary to w, ki can not be in CH 2 (u) since w E N(u) and all
its primary channels that are secondary to all nodes in N(v) U {v} \ channels in CH2(u) are secondary to N(u) U {u}. Thus channel
{u}. Let k be the channel selected by u for the unicast from u to v. k, can not be selected by u for the edge (u - v) if ki E CHI (w).

We claim that it is impossible for any node x E N(v) U {v} \ {u} If CH 1 (w) = 0 and CH 2 (w) $ 0, k1 is selected from CH 2 (w)
to choose k for unicast based on Algorithm 2. Assume x needs a by w, which means that k, is secondary to all nodes in N(w)U {w}
channel to unicast to y. Since IN(y)I <_ s, CH1(x) # 0. There- but primary to at least one node in N(u). Therefore k, can not be
fore x will choose one of its primary channels that are secondary to in CH 2 (u) since it contains channels secondary to all nodes in
all nodes in N(y)U{y}\{x} based on Algorithm2. However, kis N(u) U{u}. ki V CHI(u) andki 0 CH 3 (u) hold too since ki



is secondary to u as u E N(w). Therefore channel k, can not be Therefore we have
selected for the edge (u -- v) if ki E CH 2 (w). THEOREM 5.6. There exists a simple scheduling algorithm such

If ki is selected from CH 3 (w), ki is primary to w and secondary that Algorithm 2 yields 100% throughput.
to u, therefore k, V CHI(u) and ki ý CHa(u). We claim that
ki ý CH 2 (u) too since otherwise k, would be secondary to w PROOF. Proof follows from Lemma 5.4 and Lemma 5.5. 0
because w E N(u) and all channels in CH 2(u) are secondary to Brzezinski, Zussman, and Modiano [32] presents multiple algo-
the nodes in N(u) U {U}* .rithms based on matroid intersection to partition the network into

Therefor the channel k, assigned to the link (w -- u) by Al- subnetworks with large capacity regions to maximize the through-
gorithm 2 could not be assigned to the link (u -* v). We have put of each of the subnetwork. Algorithm 2, which is much simpler,
ki 54 k2 . 1- maximizes the throughput if each node has a unique channel code-

Note that the proof of Lemma 5.3 utilizes the fact that CH 3 is al- words satisfying the condition elaborated in Section 3.1.

ways non-empty. This is guaranteed by the following requirement 5.3.3 Simulation Study
on the channel codewords: for any two channel codewords X(u) In this subsection, we conduct simulation to evaluate Algorithm 2
and X(v), there exists two channels k, and k2 such that k, is pri- in terms of channel utilization and usage fairness. Our goal is to in-
mary to u and secondary to v, and k2 is primary to v and secondary vestigate: 1. the number of concurrent transmissions; 2. the chan-
to u. nel usage fairness.

COROLLARY 5.1. Let k, and k2 be the channels assigned to In the simulation we have considered an area of a 100 x 100

the edges (u -* v) and (v -- u), respectively, by Algorithm 2. square units with 13 randomly deployed nodes. The simulation

Then ki # k 2. settings are listed as follows:

PROOF. Claim follows from Lemma 5.3. El 9 All simulation results are averaged over 100 different topolo-
gies.

Corollary 5.1 indicates that the channels used for DATA and for o The number of available channels in the network is set to
ACK are always different. Lemma 5.3 indicates that two adjacent N = 13.
links can transmit DATA or ACK concurrently. Therefore, a mul-
tihop path can achieve maximum throughput in MR-MC networks * The superimposed (3,1,13)-code X, as shown in Fig. I, is

since all nodes can transmit simultaneously without causing any applied in the simulation.
collision. 9 Each node randomly picks a unique codeword from X as its

Let Gk(V, Ek) be the induced graph containing all edges receiv- channel codeword.
ing channel k based on Algorithm 2. We have

e The average node degree is denoted by d, where d varies
LEMMA 5.4. For Vk E C, where C is the set of orthogonal from 2 to 6.

channels, Gk is a forest.
o The number of radios equipped by each node is denoted by

PROOF. For contradiction we assume that Gk is not a forest. In Q, where Q E 12, 4, 6, 8, 10,12}. Q varies under different
other words, Gk contains a circle 0. Consider any two adjacent topologies.
edges (w -* u) and (u -- v) in 0. Based on Lemma 5.3, the
channels assigned to (w - u) and (u -4 v) must be different. Note that the number of channels utilized by a node can be mena-

Therefore only one of them can appear in Gk. A contradiction to sured by the number of concurrent transmissions supported by that

the assumption that (w -* u) and (u - v) both appear in Gk. node. Therefore for an arbitrary node u, we denote its channel uti-
Thus no circle 0 exists in Gk. El lization by the number of supported concurrent transmissions.

Fig. 5 describes the relationship among the number of concurrent

Lemma 5.3 indicates that each tree in Gk has a star-shaped topol- transmissions supported by each node, the average node degree d,
ogy4 , and the number of concurrent transmissions supported equals and the number of radios Q. For each settings of d and Q, the re-
the total number of stars in all Gk. suIts are averaged on all the nodes in the network over 100 different

topologies. As shown in Fig. 5, when the number of radios is fixed
COROLLARY 5.2. Each tree in Gk is a star in the network, the smaller the average node degree, the larger the

PROOF. Proof follows from that of Lemma 5.3. r] number of concurrent transmissions supported by each node. This
is because the smaller the average node degree, the less number of

COROLLARY 5.3. The number of concurrent transmissions sup- interferers a node may have, namely the more number of channels
ported by the network equals the total number of stars in all Gkfor available for concurrent transmissions.all k tE C. When the average node degree is fixed, the larger the number of

radios, the more the number of concurrent transmissions supported
PROOF. Since each star topology can support only one unicast by each node. This result is intuitive since the number of concurrent

at any time, claim follows. 0l transmissions is bounded by the number of radios in the network.

Comparing the six curves in Fig. 5, we find that the smaller the
Brzezinski, Zussman, and Modiano [32] has proved the follow- number of radios, the smaller the number of concurrent transmis-

ing lemma: sions supported by each node. We also find that when d < s and Q
is fixed, the number of concurrent transmissions supported by eachLEMMA 5.5. A maximal weight independent set scheduling al- nd ece t aiuta sQ

gorihm chives 00%thrughptfo a ree etwrk.node reaches its maximum, that is Q.
gorithm achieves 100% throughput for a tree network. Fairness in channel usage is another important issue in wireless
4 Since we consider directed links, this topology actually is a star- networks. Note that in our simulation study, the channel assign-
shaped DAG (Directed Acyclic Graph). ment matrix X has a constant column weight, which means that



,__terference free communications are possible. However, if the chan-
2 1.ft.nel codewords form an s-disjunct code, Algorithms I and 2 can

compute a channel for better interference mitigation. In addition,
IC- - -.. . 0the larger the s, the better the performance.

Both algorithms can be uploaded to the same node for broadcast
and unicast channel computation. However, broadcast may be infe-
rior to unicast, as in IEEE 802. 11 standard. In this case, a channel

-- has a higher priority to be assigned for unicast. If the probability of
a channel being primary or secondary is the same for all nodes, the
channel usage is fair.

Note that even though we assume the frequency channels in our
discussion, both algorithms work with any kind of orthogonal chan-

A-P No 0 6 nels: time slots, orthogonal codes, etc., as long as the channels
can be labelled by a binary string indicating their primary and sec-

Figure 5: The average number of concurrent transmissions ondary roles to each node.

supported by each node. 6.2 Superimposed Codes
The s-disjunct property elaborated in Lemma 4.1 plays a signif-

each node in the network has the same numbers of primary chan- icant role in interference-free channel assignment. It is clear that
nels and secondary channels. Since the channel codeword is picked the strength s should be strong and the size t should be large for a
randomly and independently for each node, intuitively the channel superimposed code X of length N to be applicable to a MR-MC
usage should be fair. This has been validated by our simulation network with N available orthogonal channels. Given N, comput-
result reported in Fig. 6. ing a satisfiable superimposed s-disjunct code is non-trivial. As

reported by D'yachkov and Rykov in [3 1], the following relation-
ship of N, t, s, and AmX. holds.

20

to LEMMA 6.1. Lett > Ama. > s > 1 and N > 1 be integers.

Is 1. For any superimposed (s, 1, N)-code of length N, size t, and
14 maximum row weight Amox:
12

1,0 • N > rsI)

6 2. If Am.. > s + 2, (s + 1)t = Amo,,N, and there exists
a superimposed (s, 1, N)-code X with size t and maximum

2 row weight AX.., then
2 4 a 6 S 10 12

2- 4 °* Code X has a constant column weight w = s + 1. and
a constant row weight A = A ... and the maximal dot

Figure 6: The channel usage of each channel when average product of any two codewords in X is 1.
node degree Is 3. e The following inequality holds true:

'A_ A(A-1) < t (12)
6. DISCUSSION s+1

Note that for a superimposed (s, 1, N)-code, the upper bound
6.1 Strength of Algorithms 1 and 2 of s is limited by N. Therefore s cannot be a large number if the

Note that Algorithms I and 2 are both localized. They re- number of available channels N in the network is small. However,
quire the availability of the channel codewords from one or two-hop this should not be a restriction on the application of superimposed
neighborhood, which results in low communication overhead since codes in IEEE 802.16e based stationary MR-MC wireless mesh
the binary codewords are short. In addition, both algorithms have networks. The OFDMA technique in IEEE 802.16e [34] [35] al-
low computation overhead since only simple Boolean algebraic is lows bandwidth to be divided into many lower-speed sub-channels
involved. to increase resistance to multi-path interference. Typically a large

Algorithm I is generic. It is suitable for both unicast and broad- number of non-overlapping orthogonal sub-channels are available
cast traffic. As long as the codewords of the set of interferers are for simultaneous transmissions. Therefore in this case, s can be
available, an interference-aware channel can be computed. Under large since N is large.
certain conditions, this channel causes no interference. However, the non-overlapping channels in 802.11 standards are

The underlying design principle for unicast channel assignment limited (3 non-overlapping channels in IEEE 802.1lb/g; 12 non-
(Algorithm 2) is the same as that of Algorithm 1: a node always overlapping channels in original IEEE 802.1 la). Therefore a in
selects a channel that causes the least interference to its neighbor- 802.11-based wireless mesh networks is limited to some small num-
hood based on its current knowledge. With a simple scheduling ber, which may affect the effectiveness of channel assignment.
algorithm, Algorithm 2 can achieve 100% throughput. A good news is that it is very likely that we still have disjunct

Neither of the two algorithms relies on the s-disjunct superim- property with more than s codewords. Let's introduce the definition
posed code, which is introduced to identify the scenarios when in- for a-almost s-disjunct code proposed in [29] [36]: A binary matrix



is a-almost s-disjunct iffor any randomly selected set ofs columns, maximization. Furthermore, we will explore the impact of channel
the probability that they cover no other column is at least a. In codeword on the performance of channel assignment based on our
(29], authors proposed a study on a 3-disjunct superimposed code algorithms.
of size 30, where the number of codewords is much larger than
s. The results indicate that this superimposed code is 0.95-almost 7. CONCLUSION
15 disjunct, and 0.6-almost 30 disjunct. This study tells us that a
less powerful s-disjunct superimposed code could work well in our In this paper, we have designed two localized channel assign-

channel assignment. ment algorithms based on s-disjunct superimposed codes for multi-
radio multi-channel wireless mesh networks. Our algorithms can

6.3 Scalability Considerations effectively support channel allocation for both unicast and local

In superimposed codes, although t increases superlinearly corn- broadcast since channels are pertained to transmitters instead of

pared to N [31], it is still a bounded number. Therefore, when links even though the interferers at the destination affects channel

applying a superimposed code in a MR-MC network, the network selection. The selected channels are expected to cause low overall

size is restricted because a superimposed code can only accommo- switching delay and low interference to the local neighborhood. In

date at most t nodes. To overcome this problem, we propose the addition, we have identified the conditions when interference-free

following scalability enhancement. channel assignment can be achieved and when hidden/exposed ter-

As shown in Fig. 7, we map the network by cellular grids (regular minal problems can be avoided. For unicast, our algorithm results

hexagonal grids). The side length of each grid is Rm.x, where in 100% network throughput with a simple scheduling algorithm.

R.o. is the maximum interference range a node can have in the Since we do not make any assumptions on the underlying network

network. Since the chromatic number of face coloring of such a settings such as traffic patterns and MAC/routing protocols, our

graph is 3, the cellular grids of the network can be easily classified channel assignment algorithms are applicable to a wide range of

into 3 categories denoted by A, B, and C. MR-MC mesh networks.
Given a superimposed (s, 1, N)-code X, we evenly divide X

into 3 subsets: tA, tB and tc. Each subset exclusively contains 8. ACKNOWLEDGMENTS
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