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FOREWORD

Six previous comprehensive TECHNICAL REPORTS have been issued under Contract

N6ori-20, Task Order IX, Project 019 101, with the Office of Naval Research: A Quar-

terly Report for the period 1 June 1947 to 31 August 1947; an Annual Report (in two

parts) for the period from 1 September 1947 to 31 August 1948; a Report (in two parts)

for the period 1 September 1948 to 31 March 1950; a Report (in two parts) for the

period 1 April 1950 to 31 March 1951; and a Report (in two parts) for the period

1 April 1951 to 31 March 1952.

The present Report is being issued in an as yet undetermined number of parts,

published jointly under this Laboratory's contract with the Office of Naval Research

as well as under Contract Number DA-II-022-ORD-1002, ORD Project Number TB2-0001 (505),

with the Office of Ordnance Research. Part One covered roughly the period 1 April

1952 to 31 March 1953 for the contract with the Office of Naval Research, and the

period 24 June 1952 to 23 June 1953 for the contract with the Office of Ordnance

Research. The present Part Two covers roughly the period 1 April 1952 to 30 September

1953 for the former contract, and the period 24 June 1952 to 30 September 1953 for the

latter.

This Part Two contains complete texts of finished articles recently published,

now in press, or shortly to go to press, covering research partly or wholly supported

by one or both of the two contracts. In addition, it contains, as a new and experi-

mental feature, Progress Reports on various activities of the Laboratory, reflecting

the status as of the time of going to press; these Progress Reports, to be included

in future reports as activities and timeliness indicate, replace former sections of

this Foreword entitled "Summary of Papers in Present Report", "Work in Progress", and

"Associated Activities".

For an account of the general program and a survey of the equipment and apparatus

on hand and in use, reference may be made to this TECHNICAL REPORT, 1948-49, Part One,

and 1952-53, Part One, p. x. For a note on the reorganization of these Reports,

reference may be made to this TECHNICAL REPORT, 1952-53, Part One, p. Ix.

vii
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THEORETICAL WORK IN PROGRESS

1. Computation of Molecular Integrals

Work now in progress on the problem of computing molecular integrals is reviewed

in a separate Progress Report on this subject (see p. xiv).

2. Free-Electron Network Model

The free-electron network model for conjugated organic molecules, which had been

proposed in four reseach papers by K. Ruedenberg, C. W. Scherr, and J. R. Platt, has

been further developed. Dr. Ruedenberg has succeeded in showing that this theory is

in essential respects equivalent to the semiempirical LCAO theory most commonly used

for the study of conjugated systems. A further investigation by Mr. Norman S. Ham and

Dr. Ruedenberg has provided a numerical substantiation of the theoretical calculations.

Professor J. R. Platt has investigated more closely the model of 0. Schmidt, i.e.,

the behavior of electrons in a box of the shape of the organic molecule. Although this

box model does not contain any assumption concerning the molecular framework, very

typical properties of the v-electron densities have been found.

The three investigations will be published in subsequent issues of this TECHNICAL

REPORT and of the JOURNAL OF CHEMICAL PHYSICS. Work on these theories is being

continued. In particular, applications to heteroatoms and inclusion of electronic

interaction are being carried out.

3. Ultraviolet Spectra of Aromatic Systems

Extensive analyses have been made and are being continued by Professor Platt on

the wavelength shifts in the ultraviolet spectra of aromatic systems produced by

chemical substitution.. The shifts are a combination of two independent terms, one a

product of the directing power of the substituent with some local property of the

aromatic eigenfunction, and the other a product of the ionization potential of the

substituent with some other local property of the aromatic eigenfunction. These two

terms provide accurate empirical predictions of the wavelength shifts, but their

theoretic interpretation is not yet clear.

IThis TECHNICAL REPORT, 1952-53, pp. 18, 58, 88, and 97-[J. Chem. Phys. 21, 1565,

1582, 1597, and 1413 (1953)].
2 Ber. deut. chem. Ges. 73A, 97 (1940).
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PROGRESS REPORTS

4. Structural Formulas of the Boron Hydrides

Professor Platt has devised a new method for writing the structural formulas of

the boron hydrides, and it will appear shortly.

5. Long-Wavelength Spectra of Polyacetylenes

Studies have been made by Professor Platt on the interpretation of the long-

wavelength spectra of polyacetylenes and will be published shortly. Other molecules

whose spectral interpretations are also being studied include ethylene, the thermo-

chromic dianthrones, and the convex peri-condensed hydrocarbons.

6. Calculations on the First-Row Atoms

Comprehensive calculations on the first-row atoms have been completed, using

single-term Slater wavefunctions for the ls, 2s, and 2p atomic orbitals with arbitrary

effective nuclear charges for the three orbitals. Determined were the best Z-values

and the corresponding energies of the first-row atoms in their neutral, singly ionized,

doubly ionized, and triply ionized states, arising from any distribution of the outer

electrons over 2s and 2p orbitals. These results will form the subject of a paper to

be written in the near future. The calculations were carried out under the direction

of Dr. C. C. J. Roothaan, primarily by Mr. Robert Bonic (until 17 April) and Mrs.

Gudrun Lenkersdorf (since 22 June); smaller portions of the results were obtained by

predoctoral students C. W. Scherr and A. D. McLean.

7. Molecular Complexes and Hyperconjugation

Professor Mulliken has been continuing his studies on molecular complexes and

their spectra, and on hyperconjugation especially in radicals and ions.

Some of the aforementioned activities are being supported under Project NR 019

101 of Contract N6ori-20, Task Order IX, with the Office of Naval Research, others

under Project TB2-0001(505) of Contract DA-II-022-ORD-1002 with the Office of Ordnance

Research.

30 November 1953
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EXPERIMENTAL WORK IN PROGRESS

1. Xenon-Emission Continua

Work now in progress on xenon-emission continua is reviewed in a separate

Progress Report on this subject (see p. xxii).

2. Vacuum Ultraviolet Spectra of Organic Compounds

The last 101 vacuum ultraviolet spectra of organic compounds taken by Klevens,

Platt, and co-workers from 1945 to 1950 have now been reduced and will be published in

a forthcoming issue of this Laboratory's TECHNICAL REPORTS. Plans are being made to

study polarization of transitions in this region by the method of stream double

refraction, using the new photoelectric spectrophotometer which was described in the

last issue of this TECHNICAL REPORT.

3. Naphthalene Vapor

Mr. William L. Lichten, predoctoral student, is constructing apparatus for

studying magnetic and optical properties of a beam of naphthalene vapor in the triplet

state.

4. Molecular Complexes

Dr. Dennis F. Evans (from Lincoln College, Oxford University), Research Associate

on this Laboratory's O0R eontract, is undertaking an experimental program in the field

of molecular complexes. He is planning to continue the study ofpyridine-iodine

complexes begun by Professor C. Reid (see paper in this TECHNICAL REPORT), and is now

studying the near vacuum ultraviolet spectrum of iodine in the vapor state and in

"inert" solvents.

A study of iodine complexes in rigid glasses at liquid-nitrogen temperature, and

in solutions under 2,000 atmospheres pressure, has recently been completed by Mr. Joe

S. Ham. A doctoral dissertation covering this work is nearing completion and will

appear in a subsequent issue of this TECHNICAL REPORT.

These research activities are being supported under Project TB2-0001(505) of Con-

tract DA-lI-022-ORD-1002 with the Office of Ordnance Research.

30 November 1953
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-PROGRESS REPORT ON THE INVESTIGATION OF INTEGRALS BETWEEN SLATER ATOMIC

ORBITALS AND THEIR APPLICATION IN MOLECULAR CALCULATIONS

1. Coulomb Integrals
The 28 Coulomb integrals between the ten basic charge distributions1 arising from

Slater orbitals with quantum numbers 1 and 2 have been evaluated for the argument

values:

= 0.(0.02) 10.0 , {---0.9(0.1) 0.9

The calculations were directed by Assistant Professor C.. C. J. Roothaan and were

carried out on IBM punched-card machines at Iowa State College, Ames, Iowa, after

certain auxiliary functions had been previously computed by hand. The information is

at present stored on punched cards. Aside from a simple factor, each of the 48 conven-

tional Coulomb integrals is a linear combination with simple numerical coefficients of

at most five basic Coulomb integrals; in 27 cases the linear combination comprises only

one term (see reference 1, Eq. (30)). The computation of all required linear combina-

tions is planned for the near future.

It is intended to have tables printed from punched cards by a card-governed elec-

trical typewriter as soon as feasible at the Watson Laboratory of the IBM Corporation

in New York. Such tables should provide a fair copy for photolithographic reproduction

in form of a separate volume in the series of TECHNICAL REPORTS issued by this Labora-

tory.

2. Exchange Integrals

Numerical investigations of the Exchange integrals under the direction of Dr. K.

Ruedenberg were carried out by Mr. Tracy Kinyon, full-time computer, and by Mr. Walter

Jaunzemis, part-time student computer, beginning in April,1952. The possible use of

large-scale electronic digital computers was studied with the assistance of Mr. Philip

Merryman, Research Aid for electronic computing. The investigations had a three-fold

objective:

(1) to test the feasibility of the proposed method 2 and to study the

1 See C. C. J. Roothaan, J. Chem. Phys. 19, 1445 (1951).
2K. Ruedenberg, J. Chem. Py.. 19, 1459 (1951).
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PROGRESS REPORTS

numerical problems involved in its application;

(2) to study the problems connected with tabulation, in particular to

consider the feasibility of satisfactory interpolation;

(3) to study the application of automatic computing machines for the

evaluation of Exchange integrals.

The Exchange integrals, it will be recalled, are expressed as an infinite conver-

gent series:

I = CI(I0 + I1 + 12 + ... )

where C I is a simple factor and each I i is a function of four parameters a, a, 0, and

•. It was decided first to investigate the procedure of evaluating the I Is by means

of the auxiliary functions BM'(P), OM(a,,), i.e'., by the formull
J nn

N N

nn=On=On n nn

where

w (B) = E (U) ,
J=O

[see reference 2, Eqs. (1,16,17, and 19)]. Since the functions OMI(a,,) were expected
nn

to present the most difficult problems, they were considered first. In accordance

with the general recurrence procedure, the following functions were successively

computed:

An (x), GOn(X), 0O0(a,a), ¢0'(a,-).

nn nn
00

Together with the functions ¢00 the following related functions were investigated:
nn

¢* a+&00 n+l & 0+l 0 I*=e 0 _, = 2_ 4l -, =
nn nn nn n! n! nn nn nn

In distinction from the functions ¢00,_ the Tn 's, and the Tn Is have the advantage
nn- R ~

that their orders of magnitude do not increase with increasing values of the indices

n, n. Hence they are more convenient for numerical work than the functions 000, and
. u. . nn

Furthermore, the functions nn' and are more easily interpolated than
nn €00 Al orfntos 00,**

the functions .. All four functions, 0 -, 0 T , and T _, were computed for the
nfd nn nn nn nn

following values of the arguments:

xv



PROGRESS REPORTS

p = 0.2 and r = 0(0.i)1
p =1.0 and = 0(00 1 1;
p = 3.0 and T = 0.5, 0.9
p = 6.0 and T = 0(0.I)1

0= 0, p= 0(0.2)1(0.25)5.5(0.5)7

The computations were carried out for the values n, n = 0(1)10 of the indices and, in

general, for ten significant figures. For the values n, n = 0, 1, 4, 7, graphs were

drawn and difference tables were constructed. Also the functions (n/a)fni, [(n/a) +

(n/&)]'nn' [aln½(l-T)]Pnn' were investigated for interpolation purposes.

No serious difficulties were found in computing these functions or the necessary

auxiliary functions An(x), Gn(x). However, it had to be concluded that in all these

functions interpolation requires a very close mesh of entries, a fact which would lead

to very voluminous tables.

Subsequently the functions A _, -0 , 0Mn_ were computed for the argument values
nn nn nn

p = 0.2 and T = 0, 0.9 ;
p = 1.0 and T = O, 0.9 ;
p = 6.0 and T = 0, 0.9

It was found that, In each step of the recurrence procedure, one to two significant

figures were lost so that the recursion could only be carried out for a limited number

of I and M values. The number of significant figures remaining for different I and M

values are given in the following table:

M = 0 M = 1 M = 2

p 0 1 2 3 4 5 6 1 2 3 4 5 2 3 4

0.2 0.0 9 5-6 1-3 0 4-5 0
0.2 0.0 9 2-5 0
1.0 0.0 9-10 8 6 4-6 1-4 0 6-7 3-5 2-5 0 2-5
1.o 0.9 8-9 3-7 1-6 o 4-6 o
6.0 0.0 8 7 6 5-6 4-5 3-4 2 6-7 5-6 4-5 3-4 2-5 4 3 2
6.0 0.9 9 6-8 3-7 2-6 1-4 0

It was found that the loss of figures increases with increasing T and decreases with

increasing p. For large values of T, the loss becomes more serious with increasing n,

whereas it is fairly independent of n.

Moreover it turned out that, in raising the indices I and M, the last significant

digit slowly moves towards the decimal point, while the total value of the functions

becomes smaller; i.e., one .loses figures "on the left and on the right." Hence the

functions ,M1 for higher values of M and A have fewer significant figures and fewer
nfl
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PROGRESS REPORTS

decimal places than those for lower M and A, from which they were computed.

It was now decided to find out how these results would affect the evaluation of

an Exchange integral as a whole.

For this purpose the functions B MA had to be computed first. The following

procedure was found to be practical: B0  and B 0  were computed by series expansion,

which proved more convenient than the use of explicit formulas. Then B0 M8, BoM7, .

BMO were obtained by descending recursion, and B bM AsB0 Ba by ascending recursion. Actually

the functions

b = [B Jj ½f d.P_(n)(l-2)M/2 e-nJ

proved to be most convenient for numerical work.

After the functions b MA were computed for a number of argument values, the

evaluation of a number of integrals was undertaken. In all cases (16 different inte-

grals were considered) it was found that the loss of decimal places, which occurs in

raising the indices A and M of the 0-functions is not compensated by other factors so

that the 0-fUnctions with highest A-values determine the last significant decimal

place. The number of significant figures in the total integral is less than the

number of significant figures in the largest term.

The integral [1SalSbllSalSb] was furthermore computed for the values:

T= 0, p = 0(.2)3, 1(0.25)5.5
p : 1, = 0(0.1)1

Difference tables were constructed, and it proved to be possible to interpolate this

total integral to five decimal places.

Furthermore the integral [2sa2sb 1 2 2s b] was evaluated for a = a = 1(1)6, P =

O(0.5)a, ( = O(0.5)a in order to obtain an insight in the convergence of the series

which becomes infinite for ý 0 0 and 0 0. The convergence was found to be satis-

factory for all possible values of 0, • (one must have P < a, P_< a). Furthermore the

P-dependence and a-dependence of the integral was studied and graphs were drawn. The

simplest behavior resulted when the integral was divided by C = *(Ca+Cb+ta+Cb) and

when the resulting expression was considered as a function of

p = ½(a+E), T = (a-&)/(a+&), T' = a/I, r" =

Here, as always, it was observed that interpolation proved to be very much easier in

xvii



PROGRESS REPORTS

the total integral than in the auxiliary functions.

In view of the unpleasant information obtained for the 0-functions, it was now

decided to investigate a different method of computing the i!'s, i.e.,a numerical

integration proposed by Dr. Ruedenberg. In this method the functions B MA are computed

as before; IA is then given by the integral

I dx pM(x)(x-l)M/2e-aXAo(px)

X { dx PAM(x)(x2-1)M/2e- A(',x)

where

N A•(PX) E w nn(),
n=O

which follows from Eqs. (1.17), (3.12) of reference 2. The three successive single

integrations were carried out numerically. The method proved to be straightforward,

and no significant figures were lost. Transforming the interval x = (1 -.o) into the

interval x = (1 - 0) and taking steps of 0.0., the integral [2Sa2sb12sa2sb] was found

correct to five decimal places. Since, in a numerical integration of this type, most

of the time is spent calculating the integrand, it was concluded that this method

would be very much facilitated if the following table were available:

(1) An interpolatable table of the BjMA(W

(2) A table of P M(l/t)[(I/t)2-1]M/2 f
M(/t)]2[for t = (.1) (say).

(3) A table of [PAl/)[(t)ll J
Then, for a particular integral, only the functions

e-a/t, e-a/t, wA (l/t), •_A(I/t) (*)

n

would have to be calculated before starting the integration proper. Moreover, in one

molecular problem the same functions of the type (*) will occur in several integrals.

In view of the great complexity of the calculations involved in the Exchange

integrals, the possible use of an electronic digital computer had been investigated

simultaneously. It was concluded that these machines offer the best existing method

of carrying out such complicated computations. It was however realized that the

inordinate loss of significant figures as well as the extreme variations in the order

of magnitude of the intermediate results, both of which are characteristic of the

0-function method, create very unpleasant problems for machine operation, namely

xviii
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scaling and multiple precision. On the other hand, the numerical integration procedure

should be well suited for a machine.

The 0-functions theoretically offer one advantage: they can be tabulated as two-

parameter functions. The numerical integration method on the other hand, furnishes

the total integral in one step; i.e., it yields directly four-parameter functions

which would lead to very voluminous tables and therefore do not seem suitable for tabu-

lation. It was however already mentioned that the 0-functions are difficult to inter-

polate and, therefore, are not ideal for tabulation either. Furthermore, our investi-

gation of electronic computing techniques seems to indicate that future molecular com-

putations may rely rather on subroutines executed within the machine than on printed

interpolatable tables. For these reasons a tabulation of the 0-functions loses a

great deal of its attractiveness.

It was therefore decided to prepare a code for the numerical integration method

for an electronic digital computer in order to learn how well this method would work

on a machine. Although a flow chart for the 0-functions had already been made, it was

decided to wait with the preparation of a code for them. If the numerical integration

by an electronic machine would work out well, and if it should prove to be superior in

simplicity to anything which can be expected from the 0-function method, then, it is

felt, a computation and tabulation of 0-functions is likely to be inadvisable. Rather

it might be preferable to consider the preparation of the following tables:

(1) A. table of total exchange integrals (computed by numerical integration)

for a very wide mesh of entries to serve as a guide for the general behavior of the

integrals;

(2) A closer tabulation for such selected intervals and/or special values

of the arguments as may prove to be very frequently used;

(3) In case one wants to make provision for a facile evaluation without an

electronic computer: a tabulation of the three kinds of simple functions which, as

was outlined before, would make it possible to evaluate (by numerical integration) an

exchange integral by hand without excessive labor.

3. Hybrid Integrals and One-Electron Integrals

The investigation of the hybrid integrals has resulted in a paper entitled "A

Unified Treatment of the Hybrid, Coulomb, and One-Electron Integrals", by K. Rueden-

berg, C. C. J. Roothaa4 and W. Jaunzemis, which appears in this TECHNICAL REPORT.
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A method of dealing with the integrals has been developed which permitted an entirely

general solution of the problem. The treatment is based on a new type of auxiliary

functions, called C , and it has been possible to express the two-center one-

electron integrals as well in terms of these auxiliary functions--with the only excep-

tion of the nuciear attraction integrals of the type I dVXaX'/rb, for which independent

formulas are given. Pilot computations are being started at present. It is antici-

pated that the final calculations will probably be carried out on an electronic digi-

tal computer; they shall furnish tables for one-electron integrals ard tables for the

auxiliary functions occurring in the hybrid integrals.

4. Application of Machine Computing Techniques to Molecular Calculations

In view of the rapid improvements made in the last few years in the reliability

and power of electronic digital computers, it appears to be likely that future mole-

cular calculations will largely be carried out by means of such machines. Since the

techniques which are now being developed in the field of automatic machine computing

will therefore have to be considered in planning future work, a study of this new

field was initiated by Mr. P. Merryman, Dr. K. Ruedenberg, and Dr. C. C. J. Roothaan.

The'possibilities of the new machines have also been recognized by other researchers;

pioneer work is being done in particular by Dr. S. F. Boys, who for several years has

been working with the EDSAC computer in Cambridge, England.

The most immediate consequence is, of course, that calculations whose complexity

makes them forbidding for hand computation are now within the range of possibility.

The most obvious examples are the integrals between the atomic orbitals. It may be

expected that codes can be prepared which will allow the evaluation of an integral of

this kind for a particular set of parameter values in a matter of minutes, so that it

may become possible to obtain a large number of them when required, e.•., if a diatomic

molecular problem is to be solved for many values of the interatomic distance in order

to construct a potential curve. Another important example is the solution of secular

equations of very high order; such equations up to the order forty are now being

solved, and it can be expected that equations of higher order will become soluble, by

automatic methods. This fact will facilitate the superposition of more atomic orbitals

to form molecular orbitals than appeared to be possible until now, and it will also

permit taking into account a greater amount of configurational interaction than was

hitheito feasible.

xx



PROGRESS REPORTS

Another development to be mentioned is the tendency of those working with high-

speed computing machines to rely more on subroutines executed within the machine than

upon interpolatable tables in order to obtain values of complicated as well as simple

functions. It is generally considered more economical to generate these values in the

machine, by a subroutine, whenever required than to store an interpolatable table in

the memory of the machine. This fact seems to indicate that, with such computers, one

will want to solve molecular problems individually and in total; that is, the four

steps of the LCAO procedure (evaluation of the necessary integrals, construction of the

energy matrix elements in terms of the integrals, solution of the eigenvalue equation

of this matrix, computation of certain physical quantities from the eigenvalues and

eigenfunctions) will be combined into one master code which would contain such inter-

mediary steps as the evaluation of integrals in form of subroutines. Boys has already

taken some steps along this path. It must be admitted that total molecular codes will

require a large fast machine memory; but in view of the rapid progress being made at

present; the latter can be expected to become available. In light of the foregoing it

appears then that the calculation of molecular problems will presumably move away from

integral tables and that, instead of such tables, a library of codes required in mole-

cular calculations e.&., codes for integrals, for the construction of matrix elements,

for the solution of secular equations, for the calculation of dipole moments, etc.)

will prove to be the appropriate tool in conjunction with an electronic digital

computer.

Finally it should be pointed out that the high-speed large-scale computing

machines will facilitate the handling and use of numerical wavefunctions, e.a., SCF

atomic orbitals, as contrasted with analytical functions. Indeed, it is likely that

even the execution of numerical Hartree-type SCF calculations for three-dimensional

molecular orbitals will come within range of possibility.

The conclusions presented here are, of course, preliminary in nature and will

undoubtedly give way to more precise formulations as experience with the new computing

machines accumulates.

The research on molecular integrals hereabove described is being supported in

part under Project NR 019 101 of Contract N6ori-20, Task Order IX, with the Office of

Naval Research, and in part under Project R-351-40-4 of Contract AF 18(600)-471 with

the Air Research and Development Command.

30 November 1953 K. Ruedenberg
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PROGRESS REPORT ON XENON EMISSION CONTINUA

Recently Dr. Yoshio Tanaka of the Air Force Cambridge Research Center discovered

a continuous emission in xenon and krypton excited by microwave energy.I This con-

tinuum spreads to the red from the 1,470R xenon resonance line and is quite intense

up to approximately 1,850X.

In the original experiments at the Air Force Laboratory, an electrodeless pyrex

tube was waxed to the slit of a vacuum spectrograph, and xenon was stressed through

the tube at approximately 10mm pressure. Owing to the high cost of xenon, experiments

were conducted at the Air Force Laboratory and also in this Laboratory to produce a

sealed-off tube with a lithium-fluoride or a calcium-fluoride window. Great difficulty

was experienced initially with small amounts of impurities which gave rise to the

intense fourth positive group emission-band system of carbon monoxide overlapping the

continuum. It proved to be possible to remove these impurities by means of a getter

of magnesium-aluminum-barium alloy, and a number of sealed-off tubes were prepared

with various pressures of xenon.

These tubes have apparently limitless life, but their usefulness is reduced to

about 100 hours' operating time by solarization of the lithium-fluoride or calcium-

fluoride windows. The relative intensity of the xenon emission continuum increases

with pressure to a maximum intensity at about 200mm pressure. Above this pressure,

increasing absorption by weak xenon van der Waals'molecules begins to reduce the

intensity. This is in agreement with the work of McLennan and Turnbull 2 on the pres-

sure broadening in absorption of the 1,-470R resonance line. Also, the extent of the

continuum is reduced at the higher pressures, particularly on the short-wavelength

end. The useful range of the emission in 200mm of xenon photographed on the Harrison

21-foot vacuum spectrograph is 1,520 to 1,850R, with a maximum in intensity near

1,6 5 0R.

In the region 1,900-6,00OR, the mercury 2,537R and 2,483X lines appear. At

3,O8OR is a weak and diffuse emission-band system which is favored by a pressure of

190mm, and from 2,400 to 7,OOO is another weak emission continuum with a region of
IY. Tanaka and M. Zelikoff, Bull. Am. Phys. Soc. 28, No. 6, 29 (1953).
2 J. C. McLennan and R. Turnbull, Proc. Roy. Soc. (London) A139, 683 (1933), A129,

266 (1930).
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relatively low emission near 5,300R, and one observable maximum near 4,700R. The

entire region above 3,80O0 is overlapped by many atomic emission lines of xenon. The

intensity of this continuum is at least twenty times weaker than the vacuum ultraviolet

continuum.

The characteristics of the xenon emission are such that it should be possible to

use the vacuum ultraviolet continuum in the third order of a diffraction grating with-

out the use of a disperser. The third order of the continuum would fall from 4, 5 60 to

5,550A where Eastman SWR plates are insensitive, and the second order falling in this

region is very weak. This vacuum ultraviolet continuum has already been used in this

laboratory to photograph the absorption of ethylene, deutero-ethylene, and carbon

dioxide in the first order from 1,520 to 1,850R. These absorption experiments have

shown that the xenon continuum is more suitable for absorption spectroscopy than the

Lyman continuum due to its more even intensity distribution and its ease of production.

The use of the third order of the Harrison 21-foot grating in absorption spectroscopy

is very important since the theoretical resolving power would be tripled, and many

observed bands might then be resolvable.

At present a half-wave dipole antenna is used to couple the microwave energy to

the discharge tube. Since this results in a considerable loss of available power, a

microwave cavity has been constructed in cooperation with Professor Hutchison of the

Department of Chemistry and Mr. Gale Flesher of the Department of Electrical Engi-

neering, Illinois Institute of Technology. This tunable resonance cavity was designed

to resonate in the TM 0  mode of oscillation at 2,464 megacycles per second; it is

cylindrical Iin shape, the discharge tube being located along the axis to coincide with

the maximum electric-field intensity. In its present form, the cavity will resonate

in the TEll 2 mode at one end of the tuning range and in the TMo 1 0 mode on the other

end. Some modifications are still necessary to improve the efficiency of the cavity.

In its final assembly, a crystal detector and a microammeter will be employed to

monitor the power output, and a double stub tuner will be located on the input power

cable to secure satisfactory impedance matching.

The xenon continuum may be somewhat similar to the Hopfield emission continuum

in helium from 584R to I,Q0O0. The latter is due at least in part to a transition

1 + 1 +from a stable excited state Zu+, to the unstable ground state Z g; the excited state

results from a combination of a normal IS atom with an excited P atom. In xenon, a

combination of an excited 3P atom with an unexcited IS atom may result in the formation

xxiii



PROGRESS REPORTS

of a stable excited state, probably 3Zu+, which can combine optically with theof astale xcied tat, prbaby k whih cn cmbin opicaly iththeunstable

ground state, 1Zg+.

The continuum which appears in the 2,400-7,0001 region is very similar to that

produced by a high-voltage condensed discharge in xenon, reported by LaPorte.3 This

continuum as it appears on LaPorte's published plates, extends from 2,90O0 to 6,OOO0

and shows two maxima, one at about 4,70OR and another at about 5,800R. In microwave

excitation, the intensity maximum at 5,80O0 is not observed although there is a region
0

of relatively weak emission near 5,300A, in agreement with LaPorte. It seems possible

that under the microwave-excitation conditions, the long wavelength maximum has been

shifted beyond 7,OOO, which would then be out of the region of measurement. The

diffuse band shaded toward the violet with its head near 3,08o0 is not observed in the

published photographs of LaPorte.

No ultraviolet and visible transitions of molecular xenon have been identified.

It is conceivable that upper states in xenon exist other than that suggested above and

that these can combine with a repulsive lower state in a manner similar to the transi-

tion in the vacuum ultraviolet. It is fairly clear that the long wavelength continua

are not just parts of the tail ,of the vacuum ultraviolet continuum, since maxima of

intensity occur in each, and at widely different positions in the spectrum, namely at

1,650R and at 4,700R.

The aforementioned research is being supported under Project TB2-0001(505) of

Contract DA-11-022-ORD-1002 with the Office of Ordnance Research.

30 November 1953 P.G. Wilkinson

3 M. LaPorte, J. phys. radium 2, 228 (1938), 6, 164 (1945).
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A STUDY OF TWO-CENTER INTEGRALS USEFUL IN CALCULATIONS ON MOLECULAR STRUCTURE.

III. A UNIFIED TREATMENT OF THE HYBRID, COULOMB, AND ONE-ELECTRON INTEGRALSt

Klaus Ruedenberg, C. C. J. Roothaan, and Walter Jaunzemis
Laboratory of Molecular Structure and Spectra

Department of Physics
The University of Chicago

Chicago 37, Illinois

INTRODUCTION

IN RECENT YEARS it has become recognized that in calculations on molecular structure

the exact values of all integrals between atomic orbitals (AO's) must be taken into

account in order to draw meaningful conclusions from the initial assumptions through

detailed calculations. It has further been realized that these integrals require sys-

tematic investigation in order that the present unsatisfactory state in this field

may be clarified. Several studies have therefore been made recently on this subject. 1

In two previous publications, two of us presented a study of all the two-center

integrals between Slater AO's except the so-called hybrid integrals.2,3 Referring

the reader to these papers we shall not repeat the introductory remarks given there.

We shall use certain concepts and results from these papers, quoting reference 2 as

(I) and reference 3 as (II).

The principal object of the present paper is a completely general treatment of

the hybrid integrals

[x'aX"a ixaxb] = dV1 f dV2 X'a (1)X"a (1)(1/rl2)xa(2)Xb(2) , (A.1)

where XaX'aX"a denote three different Slater AO's on atom a, and Xb denotes a Slater

AO on atom b. The Slater AO's used here have the form

(nim) -. (2C)n+4((2n)I]-½rn-le-CrS Im(e,q) , (A.2)

tThis work was assisted by the Office of Naval Research under Task Order IX of Con-

tract N6ori-20 with The University of Chicago.

ISee the bibliography.
2 C. C. J. Roothaan, J. Chem. Phys. 19, 1445 (1951).

3K. Ruedenberg, J. Chem. Phys. , 1459 (1951).
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where SIm(e,T) denotes a normalized, real spherical harmonic [see (I), Eqs. (9,10),

and (II), Eq. (1.3)]. If we use aH, the Bohr radius, as the unit of length, then the

parameter C is defined by

= Z/n , (A.3)

where n is the principal quantum number and Z is the effective nuclear charge. We

propose for the parameter C the name orbital exponent.

Unfortunately there exists some confusion in the literature due to different

choices of the unit of energy. We propose therefore that the symbol [X' X"1 Ixx

always be used to denote the integral on the right-hand side of (A.1), regardless of

which unit of energy is used. From this convention it follows then that the contribu-

tion to the energy matrix corresponding to the integral (A.1) is given by

[( aX Ixaxb] if the energy is expressed in units of e2/a (Hartree and present au-

thors),"and by 2[X'aXSifaXaXb] if the energy is expressed in units of e 2/2aH (Parr,

Brennan and Mulligan). We consider the foregoing convention more satisfactory than
14

the suggestion of Brennan and Mulligan, who make the meaning of the symbol

X' axt alxaXb] dependent upon the choice of energy units.

The orbital exponents of the four orbitals are entirely arbitrary in our discus-

sion, which is therefore wider in scope than the treatments given by Kotani, Amemiya,

14and Simose 5 and by Brennan and Mulligan. A new method is developed which involves

only one type of auxiliary functions. It appears to be simpler than any of those

previously suggested, and from the following exposition it should be a straight-for-

ward matter to apply it to any hybrid integral involving Slater AO's. The explicit

results are given for all hybrid integrals involving ls, 2s, 2p A0's.

It is furthermore shown that the coulomb integrals, overlap integrals, kinetic-

energy integrals, and one type of nuclear-attraction integrals can also be very simply

expressed in terms of the new auxiliary functions, so that a unified treatment of

these five types of integrals has been achieved.

Section I of this paper deals with the hybrid integrals; Section 2 treats in a

general way the integrals of paper. (I), that is, the coulomb integrals and one-

4See (7) in the bibliography.

5 See (8) in the bibliography.
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electron integrals; Sections 3 and 4 provide an analysis of the new auxiliary func-

tions; Section 5 collects some useful facts about the exponential integral and cer-

tain related functions; and finally the bibliography surveys the literature on the

hybrid integrals.

1. HYBRID INTEGRALS

a. Charge Distributions; Classification of the Hybrid Integrals

The Slater AO's which enter (A.1) are functions of coordinates having the ori-

gins a and b, respectively; the orientation of these two coordinate systems is

explained in (I), Eq. (1), and in (II), Eq. (1.4) and Fig. 1. Following the method

employed in (I) and (II) we call

X1a(l)X"a(1) (1.1)

and

Xa (2)Xb (2) (1.2)

the charge distributions occupied by the two electrons. 6

The symmetry group of our two-center problem is the two-dimensional rotation-

reflection group C v. Consequently, it is useful to write the charge distributions

(1.1,2) as linear combinations of certain basic charge distributions, that is, charge

distributions which belong to irreducible representations of C.v; it is also said

that these basic charge distributions are of a particular species (a particular

irreducible representation) and subspecies (classifying the different members within

the same irreducible representation). The species and subspecies determine the de-

pendence of the basic charge distributions on 9, the azimuth around the ab-axis; this

dependence is given in Table I.

The charge distributions (1.1) are products of two Slater AO's on the same cen-

ter a. Convenient basic charge distributions Sa for this case are, as is shown in

(I) (Section: Charge Distributions on Atoms), given by 7

6 Xa(1) is an abbreviation for Xa(xalYalzal), etc.

TIn the case of the hybrid integrals there occurs only one one-center charge distri-

bution, ia; this distribution is characterized by the three integers N,L,M. In

the case of the coulomb integrals, treated in Section 2, there occur two one-

center charge distributions, Ila and %; we shall characterize these distributions
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(2+)/ 1L N+2 N-1l-2ara

[NLM] - [ (2L+l)/4w] j2 (2%a) /(N+L+l)llra • a SL(e a,) (1.3)

where SLM(e,T) denotes a normalized, real spherical harmonic [see (I), Eqs. (10) and

(11)], and where

Ta =(t'a+C"a) (1.4)

is the average orbital exponent of the AO's X'a and X

TABLE I.

DEPENDENCE OF THE BASIC CHARGE DISTRIBUTIONS ON THE AZIMUTH 9

FOR THE DIFFERENT SPECIES AND SUBSPECIES OF V

Species Subspecies Dependence on c

Z- independent of 9

H cosi

T sinq

A cos2T
A

sin2q

Scos3qP

sin3v

The explicit expansions of the charge distributions (1.1) in terms of the basic

charge distributions (1.3) are given in Table II, for all the possible products of the

AO's ls, 2s,2p6, 2pn, 2pF. This table is taken from the more general formulas in

(I), Eqs. (12). It is seen that the basic charge distributions 1S, 2S, 3S, 2PZ, 2PH,

2Pfl, 3PI, 3PH, 3P!, 3DI, 3Dn, 3Dff, 3DA, 3DK are required for this purpose.

It should be stressed that this method of expanding the one-center charge dis-

tributions into basic charge distributions provides the most economical way of

then by NaLa,M and Nb,Lb,M respectively (it is not necessary to write also Ma and

Mb, sinoe the integrals with Ma 0 Mb vanish).
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dealing with integrals involving charge distributions of the type (1.1).8

TABLE II.

EXPANSION OF THE ONE-CENTER CHARGE DISTRIBUTIONS

IN TERMS OF BASIC CHARGE DISTRIBUTIONS

is' alS"a = a 3/2C'a 3/2Ta-3[ lSa]

Is' a2S "a = (r12) C a3/2( "a 512a-l [ 2Sa]

2s, a2s"a = a 5/2C"a5/2Ca-5 (3Sa]

IS a2p( It a [2PZa a

8I1a2Pr"ar = Ca 3/2 CIa5/2a-4 [2PHa]

is, a2p "aJa]

2s' 2ap2' a "[ 3PZa]

2s' a2 p7r"ai = (5/2V_3)•' a5/2"ta5/2T'a-5f [3PlIa]

2s' a2PW'aJ [3P'a]

2p' a2p("a' '[3Sa ]+3[3DZa

aa a a
2p) 'a2PF"a ( 35/2)[3Dfa ]

2p•' a2pP'a (3V/3/2 ) [3D~a
Pa2Pa aa

"2pr' a a 3Sa-(3/2) 3D a]+(3r3-/2)[3DAa]

2!p•I a2PT"a W(3V3/2)[3D~a]

2p:Fla2PF"a( [3Sa]-(3/2)[3DZa]-(3ý3/2)[3DAaI

8 This statement is illustrated by the fact that Barnett and Coulson in their paper

[see (12) in the bibliography], where they used the charge distributions (1.1) di-

rectly, list 90 hybrid integrals as being essentially different; whereas we, using

the basic charge distributions (1.3), find that actually 79 integrals are suffi-

cient. This difference is due in particular to the fact that the six products of
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'i.e charge distributions (1.2) are products of two Slater AO's on different cen-

ters, namely a and b. Convenient basic charge distributions "ab for this case are

given in (Ii), Eqs. (1.5-11) and Table I. Since we consider only the AO's ls, 2s,

2po, 2pwr, 2pF on the centers a and b, an actual decomposition for the zharge distribu-

tions (1.2) in terms of basic charge distributions occurs only for the three products

where both factors are 7r-AO's, as is shown in Table III of this paper. The basic

two-center charge distributions which we shall need are listed in Table IV. They are

expressed in the elliptic (prolate spheroidal) coordinates ý,j,•, and multiplied by

(2R) 2 (ý-n); the inclusion of this factor will later prove useful. The elliptic

coordinates are defined by9

= (ra+rb)/R , n = (ra-rb)/R 9 = 9a b ' (1.5)

so that

ra = R(e+Tj) , rb = ½R(•-T)

racosO =R(l+t) , rbcose =R(I '(1.5')a a b b Rl~~),(.'

rasinea = rbsineb = b R[(2-)(I-1)] ,

where R is the internuclear distance ab.

TABLE III.

EXPANSION OF THE 7r-AO PRODUCT CHARGE DISTRIBUTIONS

IN TERMS OF BASIC CHARGE DISTRIBUTIONS

2Pa2Ppb = a 2 pwbZ + 2Pa 2p7bA

2P;a2P b 2 P a 2P7TbZ - 2Pra2PwbA

2p a2p b = 2p a2pb = 2pl a2p b E

2p AO's can be expressed in terms of five basic charge distributions (see Table II).

Similarly, among the 30 hybrid integrals listed by Brennan and Mulligan [see (7) in
the bibliography), only 24 are independent.

9 This definition coincides with the one given in (I), Eqs. (2) and (3), but differs

from the one given in (II), ]5q. (18), by the sign of n.
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TABLE IV.

THE BASIC TWO-CENTER CHARGE DISTRIBUTIONS 'a

2 ab

10 Z-type distributions:

1a2 b a Cb P

l a 2sb 3/ / /-7~- -,T (e -rI) 2

a b b1~

2sa 2sb (c b 2P

Isa2p6 c 32cr / b 87pe"%llEn

2pý( a s b cal2 Cb 3/ Pb /81 )ee_'l~l(-Tj1 (I+eTI

2sa2(5b ( a52C- 32b4 1137rePePQ(ET e-TI (-ETI
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TABLE IV (continued)

"•ab (JR•) 2( t_• ) ab

6 Tf-type distributions:

replace every w AO in the above list by a F AO, and cosV by sirn.

1 A-type distribution:

2Pa 2prbA (a5/2p53/2P b4 /32r)e-p -Tpl (•-•)(t2-I)(I-T2)cos2•

1 E-type distribution:

replace 2Pra 2PbA by 2pTa 2Pb7rb, and cos29 by sin2q.

In Table IV C bnanb are the orbital exponents and principal quantum numbers

of the AO's Xa and Xb. The basic charge distributions are further considered as

functions of the parameters Pa and Pb' defined by

= •aR pb = •bR ; (1.6)

finally, the parameters p and T, occuring in the factor e-Pt-•v , are defined in terms

of Pa and Pb by

P = ½(Pa+Pb) = ½(Ca+tb)R , 1
= (1.7)

T = (Pa-Pb)/(pa+Pb) = (Ca-Cb)/(Ca+Cb),

so that Pa and Pb can also be written in terms of p and T, namely

Pa = (l+T)p I Pb = (1-T)p . (1.7')

Obviously, we may consider the basic charge distributions £ab as either functions of

Pa and Pb' or as functions of p and T. The former choice is more useful for the

mathematical analysis of the hybrid integrals, and will be adhered to throughout this

paper; the latter choice, however, is more useful from the point of view of the numer-

ical tabulation of the auxiliary functions in which we shall express the hybrid
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integrals.

From Table IV it can easily be verified that the basic charge distributions flab

satisfy the general formula

n a+j -n a+j na+nbe-p't9'-P
(i)'tn)b- Ca a b a e

× p•+••-u1+•1-•[(2_1)(1- 2)]q+½M (1.8))
X R_ {nM (1.8)

where q is a non-negative integer, and p(u,v,x,y) is a homogeneous polynomial in u,v,x,

y of the degree na+nb- 2 q-M-l. Actually, in all our cases, due to the rc-triction to

lse 2s, and 2p A0's, p consists of only one term; further q = 0, except for 2 pw a 2plrbZ,

in which case q = 1. The Z-type distributions are independent of T, hence the upper

choice of (1.8) applies with M = 0; for H- and A- (or IT- and E-) type distributions the

upper (lower) choice applies with M = 1 and M = 2, respectively. The validity of Eq.

(1.8) can of course be proven in general; however, since this proof is somewhat lengthy,

though not difficult, we shall omit it here.

By means of the Tables II and III any hybrid integral involving AO's with prin-

cipal quantum numbers 1 and/or 2 can immediately be expressed in terms of a few inte-

grals between basic charge distributions; if fla and ab are the basic charge distri-

butions, then such a basic hybrid integral has the form

[nainab] = J dV1 I dV2 nla(1)nab(2)/rl 2 • (1.9)

So, for instance

[sa Sa la2 b] = a3/ "a5/ -[Sallsa2 6b],
[2p01Pa 2"a 2P~a2P•Tb]= a'a5/2C"a5/2ta-5

× {[3Sal 2Plta2p7rbZ] + [3Sa 2P7a2PfbA]

+ 3[3DZaI2P7ra2P7rbZ] + 3[3DZaI2P7ta2Pp7bA]}

Since the basic charge distributions fa and fiab are classified according to their

species and subspecies with respect to the group C v, we may conclude [see (II),

Theorem II] as follows:

Theorem. The integral [lalslab] vanishes if 1a and nab belong to (i) differ-

ent species, (ii) the same species, but different subspecies. Furthermore, the
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integral is independent of the subspecies.

As a corollary to this theorem we conclude that, in order that the integral

[nalnab] shall not vanish, "a and "ab must both be of the same type (both of M-type,

f-type, if-type, etc.); and that an integral involving IT- (or E-) type distributions

has the same value as the integral involving the corresponding n- (or A-) type distri-

butions.

In our example [1sa 2s"allSa2P6b] we conclude, since 2 Sa and lsa 2 P~b are both

of Z-type, that this integral does not vanish. In our example [2Pd'a2pal 2 2pra2Prb]
a PdaI 2la27b

the integrals between E-type and A-type distributions vanish, so that this integral

reduces to

[2Pda2P5"aI2P7ra2P7tb] = C ,5/21" a/2Ta-5{[3Sa12a2PrbZ] + 3[3D 12Pla2p7rbZ]}

We can now classify the basic hybrid integrals as being of Z-type, f-type, or

A-type. On the other hand, a further classification is suggested according to

whether Qa is S-, P-, or D-type [see Eq. (1.3)], that is, whether 4a is a charge dis-

tribution of (mono)pole, dipole, or quadrupole character. We are thus led to the

classification of the basic hybrid integrals as exhibited in Table V.

TABLE V.

CLASSIFICATION AND ENUMERATION OF THE BASIC HYBRID INTEGRALS

Number of basic Number of basic Number of basic

charge distributions charge distributions hybrid integrals

"na "ab [nalaab]

S P D S P D Total

E 3 2 1 z 10 z 30 20 10 60

2 1 n 6 ri 12 6 18

A 1 A 1 A 1 1

Total 30 32 17 79
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b. First Integration

The integration over the coordinates of electron 1 in Eq. (1.9) leads to the

functions

U a(2) = f dVnaa(1)/r 1 2 , (1.10)

which are the electrostatic potentials of the charge distributions S1a" We substitute

for 1a the general expression (NLM] as given by Eq. (1.3) and for 1/r 1 2 the Laplace

expansion1 0

O= 1 +1)2(.1
i/r12 = [4r/(2+1)(r< m(alllma22) /(r.11)

1=0 m=- m

where r< means the smaller one of ral and ra 2 , and r> the larger one. Carrying out

the integration in the spherical coordinates ral e al,(l, we obtain immediately the

result

UNLM(2) = [4n/(2L+l)l½[2L(2Ca)N+2/(N+L+l)I]SLM(ea 2 ,T 2 )

X J dral (r<L/r>L+l )ralN+e "2earal
0

or

U (2) [4 /(2L+)12L+asLMa 2 , 2 )UL(ra2 ) (1.12)

where
UNL(ra 2 ) = [(2Ta)N+I/(N+L+I)(] L /r>L+l)raN+le-2Taral

a2 dal r<L/>L ~al (.3
0

Carrying out the substitutions

t = ra 1 /ra 2 , s = 2 ara2 , (1.14)

we obtain for (1.13)

UNL(ra 2 ) I [sN+I/(N+L+l)1][ I dte- ttNL+l + dte-stN-L
0 1

or

10Usually the Laplace expansion is given in terms of the complex spherical harmonics

Y m(8,i) [see (II), Eq. (4.18) and ref. 24]; the expansion (1.11) in terms of the

real spherical harmonics SAm(9,c) is readily obtained from this one.
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UN(ra2 ) - [sN+l/(N+L+l)j][(N+L+l)I/,N+L+ 2 - AN+I(,) + AN..L(,)] , (1.15)

where
1 1

An (s) -(nl/sn+l)ea E sk/Al. (1.16)
k-O

We rewrite (1.15) in the form

L-J( 1  a N+LUNL(Par 1 '-~-e-s z uk) ,(l.IT)
k-0

with

uk = 1A/I for 0 k 4 2L ,

uk = (1'A') - (N-L)I/(N+,L+l)1(k-2L-1)' for 2L+l - k N+L(1

Substitution of (!.17) into (1.12) yields the potentials UNLM(2). For all the basic

charge distributions occurring in Table II the results were already derived in (I) and

are given there in Eqs. (33); in order to write these potentials in the present nota-

tion we have to make the substitution 6 = is. The purpose of the present derivati6n

is to establish the general fact that (1.17) and therefore also (1.12) contains nega-

tive powers of ra 2 only in the form

s_ Ll[-e- X (sk/kr)] (1.19)
k=O L+I

which will be essential for our further conclusions. (It may be noted that E wouldk=O
be sufficient in (1.19) to insure that UNLM(2) remains finite for ra 2 = 0.)

In order to prepare the potentials UNLm(2) for the second integration we express

them in the elliptic coordinates t,n,T. We define the new parameter

W'a TaR = ½(C'a+C• a )R (1.20)

so that [see Eqs. (1.5', 14)]

s = . (1.21)

Furthermore we note that the factor SLM in (1.12) can be written

1 1 Concerning the functions A (x), see Section 5a of this paper.
n
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sM(ea2,T2)'-~ sinMea2pL (M)(cOSO a2) cosM 2

I sinMqT2

[(t2-1)(l1n2)]O4(t+n)-MPL(M)[(l+)/(R+n) csnM92 (1.22)

considering Eqs (1.12,17,21,22) we obtain for the potentials UNLM the general relation

= L 2L t~n N+L -
JR(+T+I)UNLM(2) _ FaL(t+n).2L[1 - e E Ukrak(+T,)k]

k=O

Xcp,(+n,l+os[(2-1) -u 2) iMh2 (1.23)
1-sinMq)2

where p'(x,y) is a homogeneous polynomial in x,y of the degree L-M. The inclusion of

the factor (½R)(+ij). in (1.23) will prove useful later.

In Table VI are given the explicit expressions of the type (1.23) for the 10

basic charge distributions which are needed; these expressions are readily obtained

from those given in (I), Eq. (33).

c. Second Integration

The second integration is carried out in elliptic coordinates. The volume element

is given by

dV2 = (R 3 /8)(2-n2 )dtdnd• 2 , (1.24).

so that the basic hybrid integrals have the general form

. 2r 2

[nalnab] = I dt I dn f dT2 [½R(t+n)Ua (2)l[(½R) (E-n)nab(2)] , (1.25)

where the expressions (½R)2( -n)ab(2) and ½R(t+-+)Un (2) are to be taken from Tables

IV and VI, respectively.

Now Una (2) and Pab(2) contain T2 in the form cosM" 2 or sinMT2 : hence the integra-

tion over 92 can be carried out immediately. Since

27r
I dT2 = 27r
0

27r 27r
J d9 2 cosm9 2 = J d 2 sinm• 2 = 0
0 0 (1.26)

27r 21
I d'2cosmV2cosnT2 = I dq 2 sinm( 2sinnt 2 = 7mn
0 0

27r
d9 2cosmq8 2 sinnT2 = 0

14 9



RT3EDEMBERG, ROOTHAAN, AND JAUNZE!IS

TABLE VI.

POTENTIALS OF THE TEN BASIC ONE-CENTER CHARGE DISTRIBUTIONS l

"a J~~R(ýT)

a"

Dinopole Potentials (L 0 )

[isz 1 -eýatn
a +~~ 212ý~~~

[2S ia] j 1 (~~ 2 i- e * 2/)a''+1 ' + (1k/6 )(ýa k+(/)~~(+~l

I3a 1 k=[O 3/ 14 12

(;at2n +) (~~) ]ýo

a1  ~ 2
[2PU~a 1 2 1t. -{ - e~a~ Zi (ýk.(+) (/ (~)

a ~k=O a

Hedupl Potentials2 (L = 2)

[3D11 2 k
[3Ra -a k+ O a 4 4aZ (3a/20)a (e+fl)3 + (1/lJ~40)ýa 5(+T0 )]J

~2 1 (1 i22sin2q
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where m 0 0, n 0 0, we obtain here once more the result already stated on the ground

of group theoretical considerations, namely: in order that the integral [Salnab]

shall not vanish, a and fa must be of the same type (both X-type, U-type, If-type,"a 'ab
etc.); and an integral involving If- (or S-) type distributions has the same value as

the integral involving the corresponding H- (or A-) type distributions. We see further

from (1.26) that the integration over T2 yields 27r for integrals of Z-type, and W for

integrals of H- and A- type.

Substituting the general expressions (1.8) and (1.23) into (1.25) and carrying out

the integration over •2' we obtain for the non-vanishing basic hybrid integrals the

general formula

na+ -na+ -L na+n

[laiab]= Ca Cb Pa Pb

2L -1a (2a+Tj) N+L
dtf dn(t+n)-) [I - e Z UkPk +)]

k=0
X e9•Xn, +,•n +n -• •2-I) (l-n2 )] q+S (1. 27)

where p"(u,v,x,y) is a homogeneous polynomial in u,v,x,y of the degree na+n%+L-2q-2M-l.

Actually, the polynomial p" consists of only one term in all cases except for the

integrals involving the distribution 3 DZa, in which case p" consists of two terms.

For instance, for [2PUai2pca 2pb] we find p" = (1/8)(•-i)(I+•), q = 0, and for

[3DZai2P7 a2P7TbZ] we find p" = (l/8)-)[3(l+q = .

If we now expand the polynomial p" in terms of its four arguments +

I-Eq, then the integral (1.27) can be written as a linear combination with numerical

coefficients of expressions of the type1 2

na+½ -n a+ -L na+nb 1 e-a( (f) N+L - k k
C= a a b Fa Pb I de I dn[l - e Z UkPa (E+Tl)

1 -1 k=0

e T )' (l , (1.28)

where

na+j -na+j
12According to Eq. (1.28), the 76'E's are, apart from the factor Ca Cb

functions of the three parameters a',Pa'Pb. They further depend of course on the set
of indices X,0,7, 6 ,e, but also on the numbers uk, which are determined by L and M.
This dependence of L and M is not indicated by the symbol Ip7"; however, this does

not lead to any difficulties, since 1I,766 is only used as the symbol for an inter-
mediate result, and does not occur in any of the tables designed for' practical use.
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- q+M

•+7+6 - na+nb-L-2q-2M-1

so that

X4•+y+6+2e = na+nb-L- . (1.29')

Obviously p,7,6,e are non-negative integers, whereas X is restricted to the range

-2L 4 X n a +nb-L-2q-2M-, (1.30)

so that in general X ý 0.

We shall deal first with those integrals I Y6e which can be evaluated by a term

by term integration. This is certainly possible if L.= 0, since then Xk > 0; however,

in many cases where X < 0 it is still possible in spite of the singularity of ('+n)

for ý+n = 0, as will be discussed below.

The functions I76 depend on the three parameters •aPaPb It is useful, how-

ever, to consider instead p*aPaPb, as the primary parameters, where P*a is given by

P*a = 2-a+Pa = (C'a+C"a+Ca)R • (1.31)

In analogy to (1.7), we define the secondary parameters p* and T* by

P* = ½(p*a+Pb) = ½(C'a+C"a"aa+ab)R ' 1 (1.32)

• (P*a*Pb)/(P*a+Pb) =('a+ta+ta-b)/( a+'a++(a+b ) 'J

so that

P*a (1+T*)p* I Pb = (1-,*)p* (1.32')

and also

* = P-a , = TP+fa (1.32")

We define further another secondary parameter • by

ý, = (P*a-Pa)/2Pb = Va/Pb = ta/Cb = (C'a++"a)/2 Cb • (1.33)

In view of Eqs. (1.31-33), we may write for the integral (1.28)
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C n na+C -na + -L X+j+y+6+2e+lIk•6€= a •b a Pb

d 1 de - e, ,,N+L
)(fdt f d~j[e-1 P ~~*T ~±~- In. ~~uk"kpbk •nk

1 -1 k=O

x t+ ) (_n)6(.2_i)e(_n2)e (1i34)

Defining now the two-parameter functions

Cca76 (PaPb)'= (-l)P+6+e(½b)'+++2+ d I dnje-P e-'rPY
''~ F I1 -1

x (•+f)a(•-l)•(l+)_ , (1.35)

we may write for (1.34)

I = (- 1 )13+6 +6 2X4+'y+6+2c+l 6ana+½ bna+j -L

N+L •C -y6e€

x [Cx6E(PaPb) - X u(2,,)a X- 4 , (P*aPb)] (1.36)
a•=0

Remembering that each basic hybrid integral is a linear combination of a few functions

-y6 e
I7 , we see that the basic hybrid integrals for which the term by term integration

is possible, have the general form

S ana+ -na+½ -L N+L (1.37)

[lal[ab] = Ca Hb O(PaPb)- ac ICaHa(p*aPb)] Ia,=O

where each function H is a simple linear combination of C-functions with

numerical coefficients.

We return now to the question of the possibility of a term by term integration;

this method is valid provided all the functions C which occur in Eq. (1.36) are

defined by converging integrals as given by (1.35). This is clearly the case if

a _ 0. It is furthermore shown in Section 4 that for a< 0 the integral (1.35) still

converges if

a+y+2e+l a 0 (1.38)

consequently, Eqs. (1.36,37) hold if

X+7+2e+l >_ 0 (1.39)

The basic hybrid integrals for which all the occurring functions I satisfy (1.39)

are said to form the first class; whereas those for which some of the functions X 6

do not satisfy (1.39) belong to the second. class. The validity of the general
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expression (1.37) is therefore proved for the basic hybrid integrals of the first class.

With the help of Tables IV and VI it is easily established that all but three of

our 79 basic hybrid integrals belong to the first class; the three integrals of the

second class are

[3DZaIlSbXb], with Xb = Isb, 2s, 2pb . (1.40)

For these integrals we shall prove that the general expression (1.37) is still valid;

however, in this case the H-functions are not any more simple linear combination of

C-functions with numerical coefficients, but with coefficients depending on Pa and Pb
(or p*a and

Returning to the expression (1.28), we observe that the integral I 6always

converges, regardless of whether its indices satisfy (1.39) or not. Namely in the

integrand the negative powers of e+n occur only in vX[Fa(e+n)], where [see Eq. (1.18)]

x -x -X-l
vO(x) = x (1 - e-x E xk /k!) ; (1.41)

k=O

v >[Ta(+n)] is a well-behaved function. in the entire domain of • and TI, even at the

critical point e÷n = 0, since

Lim v,(x) = Lim x e-X(ex - X xk/kl) = I/(-X)l

x- 0 x- 0 k=0

Obviously, the functions v,(x) are defined for X 4 -1. Making use of Eqs. (1.31,41)

we may write for (1.28)

na+j -na+½ -Lj b X+i3++6+2e+i
XP a 1b Pb

X {Faf fedý I dnv[a(t+T)]e-PT-TPf(•TI) (el+•n)( ((l-eTI

-IN+L CL a 10p t T p T~ + ) +~ ) )-z ua~tP b d I de ye- _tqn(+~~(•nGl•n7l() I(t2-1)e (l-_2T }

(1.42)

We define the three-parameter functions

CXP786 (a'Pa'Pb) = -b

00~~ 1(1.I4 1+))-ý(
S 1 6

this definition is valid for X 4 -1. Making use of Eq. (1.35), we may write for (1.42)
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Ik76e --)y6•2+++6+2e+l Tan a +½b-n a+i-L
be N+L • *

X [CY6 (apaPb) - ua(2K/ cX+uY 6 (p*a,Pb)] (1.44)

Eq. (1.44) is to be used as the starting point for the basic hybrid integrals of the

second class. However, for many integrals of the first class Eq. (1.44) can still be

used, namely as long as these integrals give rise to I-functions with X 4 -1. In these

cases the C-functions can be expressed in terms of' C-functions by means of

ý2ý )"/a!-] C +a,(145
CP a-*aPaPb) = CABY (paPb) - -/ +a (1.45)

[--=0

substitution of (1.45) into (1.44) yields once more (1.36).

We observe now that for the integrals (1.40) the I-functions occur in the combin-

ation

3I 2 6 0  060 with

= 6 = 0 for Xb = b ,
(1.46)

=2,6 = 0 for Xb =2sb,

1= , 6 = 1 for Xb =216b

Now in Section ld the following relation is proved: 13

260_ 060

3 - 0 ab -3,• -P,2  + 6pbIC-2,
-Ic-31 0 1 160 0,6-1,1]

- PaPb C_ 345 + 2pb-C_2 ,P + 6pb-C_ 2,P 6-

I-Pb[1C_ 3, 1 0661 -i2PlC-21 1601 b 1 C0 0,P-II].,

S2±[C_ 3,P
0 61 - PaPb -C2,0 + 2 PbI C-, 1 6 + 6pb-IC-I,O 6 l1l]*

2 061 1 061 1 601 0,6-1,1 06

2p2[2C_.2 , 0  - PaPb IC_1,P + 2 Pb-IC0 10 + 6pb-Co0  + C000 + p

- 4j 3 c*_C ,260 (1.47)

1 3 1n Eq. (1.47), and also for the analysis in the following sections, we have adopted,

unless stated otherwise, the following convention concerning the arguments. (1) The

arguments of the C-functions are always --a'Pa'Pb. (2) The arguments of the C-func-

tions are Pa'Pb, if the symbol C is used, and p*aPb if the symbol C* is used.
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According to Eq. (1..44), the "easy" part of the I-functions in (1.46) yields, combined

with the expression (1.47), an expression of the form (1.37).

The explicit formulas for the H-functions of (1.37) in terms of the C-functions

(1.35) are given in Table VII for all the 79 basic hybrid integrals. The C-functions

themselves will be dealt with in Sections 3 and 4.

At this point we wish to call attention to the fact that we have not dealt with

the integrals of the second class in a general way, but have considered only the

explicit cases arising from the restriction to ls, 2s, and 2p AOts. However, we feel

confident that for all possible cases formulas of the type (1.47) can be found by the

procedure outlined in the next section ld, in particular by appropriate use of the

noteworthy relations (1. 5 4, 5 41). In other words, Eq. (1.47) is probably the first

member of a more general family of relations. Nevertheless, since within the scope

of the present program only three integrals of the second class arose, we did not deem

it worth while to investigate this class in a more general way.

d. Proof of a. (1.47)

I

From the identity

(l+tn) + (l-tn) = 2

follow the relations1 3

Pb c aB + C , , a3 , (1.48)

C,6+IE 0 y+I,66 (1.49)
Pb0 X XP

Similarly, from the identity

(l+en)2 + ( 2-1)(1-T2) = (t+n)2

follows

C = CC y-2,6,e+l + C y2 ,Y-2, e (1.50)

also

(3) The symbol * outside an expression in brackets applies to all the symbols inside

those brackets; that is, not only is every C to be considered as C*, but also p- is
to be considered as P*a"
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TABLE VII

THE 79 HYBRID INTEGRALS IN TERMS OF THE AUXILIARY FUNCTIONS C.P7O'

The last column of this table contains common factors with which the expressions

in terms of C-functiqns have to be multiplied in order to yield the H-functions.

L = 0 , M = 0 : Monopole Integrals

[_alab] HH0  HI H2  of
iSallsais0b] Co0O00 000

[iSallSa2Sb] C0 2 000 C1 2000 2//3

[iSa 2Sa is b] Cll000 C2000 -2H_

[iSa12Sa2sb] C12000 C22000 2/3

[ISails Sb] CoO1  CI1 010 2

[iSa02P0alsb] CoIIO0 CI0I00 -2

[ISa 2Sa2PSb] C1l 0l C2 1010 2/2

[ISa 12Pa2S b] C02100 C1 2 10 0  2/•

[iSa 12Pa2Pdb] Colll 01 CIII0 2

[is a 2Pa2PbZ] C 01001 C1 0 0 1 1

[2Sa Isalsb] 3C0 1 0 4c000 2C1000 -2/3

[2SaI2a2Sb] C0 2
1 0 0  C1 2

1 0 0  2

000 C000 000
[2Sa Sa2Sb 3C1000 C2000 2C00 2/[2Sa IlSa2sb] 3C0 1 0  •C 1 1  2C2 1

0 10  2/3~a ab C02  
1 ~12  2C22  /

000 ~C000 2C000

[2Sa 12Pas ] 30I0 4cII0 2C210 -2/3,1

[2Sa 2Sa2Pb] 3Ci 1  21 31

[2Sa 21a2Sb] 3C 2s 00 0  4C 22
0 0 0  2C 2

00 0  2/9

[2Sal2Sa2Pdb] 3C010 4CI 010 2C 21I0 2/3

[2a~p I ] Cl100 411100 221100 -2/3

00 ~C010 2C 0
[2aI2a2b] C11  21 3101 /V

[2S a 12pa2s b] 3C02
100  4~c12 

100  2C 22 
100  2/3135

(2S a 12pa2pob] 3C01 
110  14c 11 

110  2C 21 
1 10  2/3

[2Sa J2Pna2P7rbZ] 3Co 1
0 0 1  4Cl11

0 0 1  2C2 1
0 0 1  1/3
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TABLE VII (continued)

Ina__ab] H0  H1 H2  H3 of

M3Sa lSalSb] 6C01 000 9Cl 000 6C21 000 2C 31000 1/3

[3Sa ISa2Sb] 6CO02000 9 C1 2 000 6C22000 2C3 2
0 0 0  1/3v3

[3Sa 2SalSb] 6CII 0 0 0  9C21000 6C31000 2C41000 -1/313

[3Sa 12sa2sb] 6C12000 9C22000 6C32000 2C42000 1/9

l, 2Pb 6Co010 90l010 60 010 2C 010 1/3

[3sa la2Pb] 601 11 21 31

[3Sa12p6alSb] 6C0 100 9C11100 6C21100 2C 3100 -1/3
[3Sa2pa b] 6c010 9C 0110 2/303

[3SaI2a2Pb] 611 21 3

Ma12p6a 2s1b] 6C 00 9012100 6022 100 232100 1/3V5

[3Sa12P6a2Pdb] 6c01110 9C01110 6C21110 2C31110 1/3

[3Sa I2P7a2P7rbZ] 6C01 001 600 2C31 001 1/6

L = 1 , M = 0 : Dipole Integrals of Z-.character

[a oab] H0  H1  ,H2  H3  cf

[2PZalsais] C_ 100 2C 100 2C0 100 C 100 -2
[Pa 1a18b] 2,1 -1,1 01 11

100 20 100 20100 01100

[2PZa 12s ais b] 01100 0Cl2l 21 -/ý

2PZa2a2Sb] 0_1,100 2002100 2012100 022100 2/3

110 110 2001110 110 2[2PZa ISa2p(5b C_2,I C _ 2C, CII

200 20 200 20 200 c 200 -2[2P~aI2P~alSb] C_2,I C-1,I C0120 1I

[2Pa12sa 2pIbI Q-l'l 2001110 2C0110 021110 2/Vs

200 20 200 20 200 C 200 2/13[2PZa 1 2P~a2Sb] C_.2,2 C-1,2 20220 C12

2020 2 1 20210 210 2

[2PZaj2P(a2PbIb] C-2,I 2C_-,I 21 010 1l 2

[2PZaI2P7ra2P7bZ] C_2 ,I 1 0 1  2C_-iI 101 2C01101 CI1 1  1
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TABLE VII (continued)

[aalnab] H0  H1  H2  H3 H4 cf

100 100 100 100

[3PYalisalsb] 5C-2,2 100C,1,0 10c01 6C01 2C22 -2/5
[3P~a ISa2Sb] 5C, i 00 C i00 1O01002 61210 2C220 2/5v•

1010100 6c100 2010012salb] 5-2, loc-1,2C2C2/ý[3PZa 2Sal1b]15C1I00
[-1, 1  10001 10011100 6021100 2 0 3 1 100 -2/5v1

[3PZa 2Sa2Sb] 5C- 1 2
1 00 002 10012100 6C22100 2C 32 2/15

[3PalSa2P1b] 5C 110 110 0110 0 110[Pals pb] 5-2,1 IOC-lI, IOoIo 6CIIII 2C 21 2/5

[3P~aI2P~a1Sb] 50 200 200 200 200 200
-2,1 I 01 6011 2021 -2/5

1 0 001 1001111 0 110 110
[3PYal2Sa2Pdb] 5C0l,11 10 21 311262 C_ 200 lo_ 200 lo10C02 C 20 0 C200 253

[3 2Pda2Sb] 5C_2,2 1,2 02 612200 2022 2/5V5210, 21021

[3PZaI2P6a2P6b] 5C02, 210 Oo1210 6CI0210 2C21210 2/5
[3P-a 2P~a2PrbZ] 5C-2,1 IOCII l-o1 001 1 2C21 1 /5

L = 1 , M = 1 : Dipole Integrals of H-character

[__alab] H0  H1  H 2 H3 H4 cf

[2P~allsa 2pTb0 -2,1 20 001 20 001 c 001

[2PlaI2P7talSb] C-2,1001 2C_1,1001 2C01001 CI0001 1

001 001 001 001[2PllaI2P~talSb] C_2,I C-1,2 C1 I[2PHaj2 Sa2Prb] C_l,I 2Col 2CII 021 1/N3

[2PaI2Pa2Sb] C2,2 01 2C_1,20 2C02 C12
[2PIaI2P6a2p7Tb] -2,1 2C1, 101 2C0 101 Cl 101

[22Pla I2p7ra2P5b] C02,1011 20L, 011  2001011 01101 -1

001-2,1 001 2c 01 6C0 001 2 0015C-2, 1'i 00 01 10C01001 6Cii001 2C21001 1/5[3P~aIlSa2Plrb] -C2110l,1

[3Pnala2PafalSb] 5C O, 001 100 001 6C0 001 20 001•-2,1 *-1 ,10o100 1 2211/

001 001 001 602001 203001[3Plaj2P7Ta2Sb] 5C-2,2 100_1,2 02 12 22

5101 1 I0101 101 60 101 20 101

[3PIIaj2Pra2Pdb] 5C-2,1 i OC-I,1 i Oi 6C100i 2C21 1/5

[3naI2Pra2Pdb] 5C.2,�11

159



RUEDENBERGO, ROOTHiAAN, AND JAUNZEMIS

TABLE VII

L = 2 , M = 0 Quadrupole

""I 'alnab] H0 H1  H2
100101 

- 00PB-2 1

[3DZallSalSb] pb -[9PaC_3,1 Pb-1[_18PbC_3,1001 -l[ 001

-18c2,1 100] +1 8 PaC02,1001 +18 PaC0l,l

100 1001

-36c-,20 -3 6 C01]
1001 [18@C-,001 1 001

[3DZallSa28b] Pb-0[9PaC_3,2 Pb-0 0-[-36PBC_2,2

-18 0] +18 PaC2,2001 001
-2,2 +I8PaCI,2

-36C_1,2 ] -36c0100]
011 02

[ aISa2Pbb] Pb -9PaC-3,1 pb[1 8 PbC-3,1 Pb [-36PBC-2,1

10011 011-18C_2,1II0 +1 8 PaC_ 2 ,1 l+18PaC-,1

90 001] -36C_,110 -360 110
-2,1 II 01

0-180 001i'l 01
[-18CII001]7C 2090800020018

[3DZa2sas- 27C_3,2-00-C1,2000 54c 20 02000 54C- 200-18C 000
-2,2 54 1,2 12

27C 3,1200-9C 000 54C 200 18C0 000 54c 200 18C 000
[DDTa 12alsb] 000 54 _2,1 .. 01 _1,1 11

[D P0 270 3310310 110 310 110
[3DZ 2p6a2pd -4,1 - -2,1 54C-3,1 8c- 54c2,1 8C01

-la b3 1 8 540.2,130 01
[3D1aI2Pda1Sb] 27C 300-9C 100 5403300 18c 100 -180 100

2 -4,1 - 2, 54 3,1 2,101

3Dai2Sa2P6b] 27C3,10-9 ,010 54C2,1018C 010 54C 210_I8C 010
a10 11

[3DZa12p6b2sa] 27C -4,2300 _9C 2,2 100 54C _ 300-18c -1,200 54C _2,2300-18C02 100

[3DXai2Ppla2PTbZ] 27C 4,1 9C 1 3,201_ 18C 001 54c _2,1201_18C0 001
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(continued)

Integrals of Z-character

H3 H4 H5 cf

"-36c 001 -18c 0 1
2 0 0  -6c611200 p

-24C11000 +6c21000 +2C31000 1/9,

"-36c0 01 -180 02
2 0 0  200

-24C18 00-6c 0

-24C12000 +6c22000 +2032000 -I/9•5

"-36c 1,1 -18C 01210 -6CI 210
-1,n1l 01111

-24C 010 +6c 010 +2C31010

36C02200 12C2 2
0 0 0  18c 1 2

2 0 0 _6C3 2 000 6C22200-2C0000 1/27

36C01 200-12C2 1 000 180i1 2 0 0 -6C 31000 6C2 1 200_2C41000 -1/9V.5
36C 1,1310-12C01110 18C0 310_6c 2110 6C0 3 1 0 _2C3 1 1/9

36C_1,1300-12C1°100 18CO1300_6C21 100 6C 1 1
3 0 0 _2C3 1 100 -1/9

36C01210-12C21010 18C112106031010 6C2210 -2C 4 1
0 1 0  i/9V

36C_1,2 300-120 100 18C023006C22 100 60 300_2C 100
-12 62 2 21230-232 I/9V•

36CI,1201-12C11001 18C0 1  _6l0001 6Ci12012C31001 1/18
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HH H~ H H

H H H~ H H H n4
O 0 0 0 0 H 0

H) HH H H 0~
H H H 04 H H H
H- H 0- r4 H H H U'I H

C.) C.) C. C.) ri) - C.) H.
At, 0 0 H 04 04 04 C 0

H H H H H H N4
4-4 0 0 0 0 H 0)0*C H H- H- H 04j Hi q-4 0

NdHH H 0 H H 0) H

H i r- H H H H - 04I

~440 0 C 0 0 H0
bO H HQ H~ H C\J HQ 0

H)1 H O 04I H H- 0 H

H4 H H H H H H HH
0~I 0 0 0 0 H d a) 0

H ~ 0 04 rI H -C\J 04 04 4 b 04
H 0) H Hi H H H H H

H

0) H ) H H ) H .H H MP
OD 0 0 00 00 00 H0 OD

HH H H H H4 H HH

H 0H H H 0 H H 0i H~
0 0 0 0C0 H 0l

H H- H- H H H H

H- H H j I H H1 HH

H00 OD 0D 00 00 H0 4
C H Hi H H 04H 0- ~

II H H H 04i H H CM

H 0 0 0 0 H 0

04 H H H H- H~ H 04

H H H H- H~ H 04I

O 0 0 U 0 H) 0

H H H 4 H H4

H . . . CQ C.) C.) C.)

w0 P P. D) 0404o 4
ce H4 Cdl 04 Cdj Nd NCd C

a. d Cl d Cd ad =Cd ad . Cd
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C -Y 6e C 7-,,el'-2,6e

Cx• 6E is Cx/- 2D 6 I + C+2, 0

-X-2/( Y -2,6e XlY-,
- [(2t) - /(-X-2)I]c'op - £(2±)-X- l ),]C*l•Y 2 , 6 e (1.51)

which holds for X < -2, and

C = 0_ 2Y-2,6,e+l + -2 ,6e- C*o- Y-2, - 21C* 1Y-2,6e

S(1.51')
CI, 8E= c.IC-J 2 ,8 ,e+. + C 7-_2,6e _ Jp-2,6e

II

The functions vX(x), defined by Eq. (1.41), have the property

(d/dx)vX(x) = Xv_l(x) , (1.52)

whence

case >~ hencxl~avX~c~: :} -X-lvx i (ac +ro amlyfo (1.53)
()L+')Fa-'V'[Pa( an) -- a n

which suggests partial integration of this factor in (1.43). We consider only the

case e > 0; then the integrated parts vanish for the;boundary values, namely for

=1 in the case of a partial integration with respect to n, or for 1 = I, and of

course also for • = •, in the case of a partial integration with respect to e. Hence

we obtain
0 1

X-1(1= () +P+t+6+2e+l f de d1Vkl[Fa(ý+T)

adding these two equations, and carrying out the indicated differentiations, we obtain

(X+l)Pb = C PaCx+I;py&e + 2eCX+2 , 7+,E + C+2, - + 6C+ +2,07

- [(2ýL) /(-X-2)!-][2eC yOP,6+1,e-l + C03 Y-1,6e + 6C 0P76-1,e],

(1. 5 4)

which holds for X < -2, and

-y6 e C: +8E - 'a0 + + C y, 7+1,E 6- -1+ 6 C 7,6-1,ePbC_2,0 Fa _ 1 OaPl, OP op0 +70 + 0

- 2eC01• y,6+1,e-1 + -0,C"1 6e + C oP.Y,6-1le1 (1 . 541)
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260 060intrso

We turn now to the actual problem of expressing 3C4, -26 in terms of

C-functions. We observe that for both C-functions

X+y+2e+l = -1

This we compare with the condition (1.39). Apparently, if we succeed in converting

3C 0260C 060 into C-functions in which X,7,or e is raised by at least one, then

we can expand this new expression in terms of C-functions using Eq. (1.4 5 ).
260

First, we apply (1.51) to C_4,2 so that

260 060 061 060 6L2C.0 060 - 4ý3C.1 0603-4, C- 2 ,B = 3C4, + 2C_2 ,• - 6.C 6 I±C 6

Next, we apply (1.54) to C_, 06

260 - 0603C_4,• -C2,B06

=-- PaPb C. ,P061 + 2Pb-l(PbC-2,P0 6 0 + C-2 ,P
0 '6 +1,0) + 6Pb'C -2 ,P6-1,

- 2t 2 pb- 1l3PbCo0 0 6 0 + 2CO10,6+1,0 + 6C0•0,6-II]* - 44 3 C* 1060

Finally, making use of Eq. (1.48,49), we obtain

260 - 0603C_4• -C_2,•o6

ab- O, 1C3A061 + -lp 160 + 0,6-1,1-3,B + 2b-102,• + uI@b-10-2, •

- 2p 2 [C 0 6 0 + 2 b 1Co 160 + 6  1b C- 0 ,0 1 -
3 C* 0 6 0  (1.55)

We note that all the C-functions occurring at the right-hand side of Eq. (1.55) satisfy

the condition (1.39). We can therefore now make use of the expansion (1.45). When

this is done, then Pa~b-1 appears as a multiplier of C-functions and C*-functions.

Keeping in mind the desired form (1.37), we substitute for Pa' when it occurs in

connection with the C*-functions

Pa = P*a-2IPb (1.56)

a relation which is readily obtained from Eqs. (1.31,33). We obtain then for (1.55)
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260 060

-1C3,0 061 160 0,6-ii

PaPb- 3, P + 2b-IC-2, 10 + 6pb - lC-2, P

2,L[ -20 061 - a 061 + 2 -lC 160 6 6- -Ic 0,6-1,1
PaPb b2,P Pb -2,P

4p.3(C l1 + 10 ]* (1.57)

If' Eq. (1.50) is now applied to the term with ýL'then Eq. (1.57) becomes identical

with (1.47).

e. Discussion of the general result (1.37)

The general basic hybrid integral (1.9) depends upon the four parameters R,, 'Cb,

a But Eq. (1.37) shows that they can all be very simply formulated in terms of the
a

two-parameter functions HL. Each integral has of course its individual set of N+L+l

functions H so that there exist altogether 336 H-functions for the 79 basic hybrid

integrals. Table VII shows however that each of these 336 H-functions is a very

simple linear combination of a few out of only 122 C-functions. This situation sug-

gests a tabulation of the auxiliary functions C a76E, in particular since these func-

tions are also very useful for other types of integrals, as will be shown in Section

2.

The C-functions will be discussed in Sections 3 and 4. Section 3 deals with

those for which a > 0, and Section 4 with those for which a < 0; it is not surprising

that these two types differ quite radically. In these sections general recurrence

methods are developed for the computation of any C-function. By their means the

explicit formulas are given in Tables XIII, XIV, and XV; they make it possible to

compute spot values of the listed hybrid integrals as long as numerical tables of

the C-functions are not yet available. The course of calculation followed in finding

the explicit formulas is described in Sections 3 and 4.

Special attention should be paid to the limiting case R -. 0, i.e. the centers

a and b coincide, and the hybrid integrals reduce to one-center integrals. It is
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seen from Eqs. (1.6,31) that in this case Pa - 0, Pb 0, P*a - 0. Now each two-para-

meter function C'V66(1 aPb) , and therefore also each function Ha(PaPb), is discon-

tinuous for Pa = Pb = 0, since the numerical value still depends upon the limiting

ratio Pb/Pa; this is more fully discussed at the end of Section 3. However if we

consider pT as the arguments instead of Pa'Pb, then the C-functions are well-behaved

in the entire domain 0 4 p < w, -1 - T 4 1; this is the reason why for numerical tab-

ulation the parameters p,T are more suitable than PaPb, although the latter are more

useful for the analytical derivations in this paper.

The values of the hybrid integrals for R - 0 must of course be in agreement with

the formulas given in (I), Eqs. (34b), which were obtained as the limiting case for

the coulomb integrals. In making this comparison, the following points should be kept

in mind:

(1) The one-center charge distributions Limi ab of the hybrid integrals should be
R-+ 0

expanded in terms of the basic one-center charge distributions Li'mb of the coulomb

integrals. This expansion is done by means of (I), Eqs. (27). The parameter '

occurring in those equations has precisely the same meaning which it has in this paper

for the hybrid integrals.

(2) The one-center integrals between basic one-center charge distributions are given

by (I), Eqs. (34b). Let us denote the parameters C and T occurring in those equations

by Z and ý, as we have also done in Section 2 of this paper. By means of the following

equations we can now carry out the transition from the hybrid integral parameters

CatbTv*,•t to the coulomb integral parameters ,

Ca (l+')(l-•),

(1.58)

(l-r*) = ½(L-i)

As an example, we shall carry out the indicated comparison for Lim[lSai2pda2pdb]
R-0 a aO

From (I), Eqs. (27,34b) we find
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Lim(iSaI2p6a2P~b] = (1- 2)5/2Lim{[ISal3Sb] + 3[lSaI3DTb]}
R-O R-O

=(1/32)(1-T 5/(T 2(14-7ý- +33-).

On the other hand, using Eqs. (1.37,58) and Tables VII and XV, we find

Lim[Igal2pda2P b =b] 2(l+T)5/2(lIT)-3/2(l-ý)Lim[C(ClO-C* 01
10-c*I 110

RR0 R- 0

= (1--215/2(1-J1[-(1/32)(l-)) 4 -(1/32)(l-j)4(l+j11

=(I/32)(i-T2)5/2(i-%2)( 14-_7ý-j2+3ý3-j4 )C.

In this fashion, we compared all the hybrid integrals for R - 0 with the results of

(I), and found agreement throughout.

167



RUEDENBERG, ROOTHAAN, AND JAUNZEMIS

2. COULOMB INTEGRALS AND ONE-ELECTRON INTEGRALS

a. Coulomb Integrals

In paper (I) it is shown in detail [see (I), Eq. (30)] how the general coulomb

integral

[X'aX"aIX'bX"b] adV1 I dV2 X'a(l)Xwfa(l)(I/rl2)Xta(2)Xfb(2) (2.1)

can be expressed in terms of the basic coulomb integrals

["al]= dV1 I dV2 "a(l)(1/r 12 ).%(2) , (2.2)

where .Sa and nb denote basic charge distributions on a and b of the type (1.3),

namely
7

!a [NaLaM] = [(2La+l)/41t]][2La(2Za)a/(Na+La+l)I]

Na-I -l2 ara
xr a e SLaM(Oap)

L Nb+ 2  (2.3)

b= [NbLM] = [(2b+l)/4i7r[2 (2Zb) /(Nb+Lb+l)I]

Nb-l -2tbrb
x rb e NM(ebp) J

with

a= E( •a

Zb i(C'b+C"b)"

Since the basic coulomb integral (2.2) differs from the basic hybrid integral

(1.9) only in the appearance of the charge distribution O% in lieu of the charge

distribution Pab' it follows immediately that the integral (2.2) can be written in the

form
[nl.] d 1 27r

r = I dt I d J d R(+)UQ (2)][(½R)2 (•j-r)S'b(2)] , (2.5)
1 -1 0 a

which is analogous to Eq. (1.25). In Eq. (2.5) the potential is precisely the same as

in Eq. (1.25), namely the potential for which Eq. (1.23) gives the general expression

and Table VI furnishes the particular expressions in specific cases.

In order to be able to perform the integration (2.5) we must express the distri-

butions nb in elliptic coordinates. The resulting expressions are given in Table VIII

168



TWO-CENTER INTEGRALS. III

for all those basic charge distributions fb which are needed.

TABLE VIII

THE BASIC ONE-CENTER CHARGE DISTRIBUTIONS ab

"" (jR) 2 (r-)

6 Z-type Distributions:

is b (Zb /w)pb 'e Pb(b-n)

3 Pb(- •n) _T)2
2S b (Zb/12,n) b e (-

3S b (Zb /48w )ýb e- ( ý-TI•-)3

2PZb (/8 e)pb3e- - )(l- )

3D ~ (Z b b~i
3P•b (Zb /40w)Pb 4e-Pb(e-n)(e-n)2(l-•n)

3D•b (Zb/144g•)pb 4e-Pb(e-n) (e-T)3(l-_•T)2-(e-n)2]

3 H-type Distributions:

2PI1b (Zb/8n)Pb3e-Pb( -n) !

4 ( 2-n)[(e2-T3P~b (Zb /407rP e _)[(2-)(1-n2)1½cosq)

3Dnb (•/24-17) Pb 4e-b •(-)(-)(21( -1]cosq)

3 fl-type Distributions:

Replace H by T in the above listed charge distributions, and cosw by sinq.

1 A-type Distribution:

3DAb (Zb/48v3Týb 4e-Pb(eb)-l(-n l )(-l1-n2 )cos21p

1 E-type Distribution:

Replace A by $ in the above listed charge distribution, and cos29 by sin2q.
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From this table, which is analogous to Table IV for the distributions flah' it is seen

that the nb's satisfy the general formula

2(t~~jjb Nb~l2_l)j_,2] M cosM p,R(-) = Nb+le b 2 - 2 ) sM , (2.6)

where p'"(x,y.) is a homogeneous polynomial in x,y of the degree Nb-M, and ýb is

defined by

ýb = R~b = ½(vb+C"b)R " (2.7)

It is not difficult to verify that the relation (2.6) is generally valid.

In order that the integral [aialb] does not vanish, both charge distributions,

"a and "b, must belong to the same species and subspecies of C v [see (I)]. In such a

case we obtain, by substituting (1.23) and (2.6) into (2.5) and carrying out the inte-

gration over T, the general form

"La Nb+l 0 1 -2L (•+T)Na+La
[a {b I dt dn(t+n) a[, - e Z UPak(•+)ka

k=O
X e •+••-•,i+•i-•)[(2-I)(i-n2)]M 28

where p""(u,v,x,y) is a polynomial in u,v,x,y of the degree Nb+La- 2 M. If this poly-

nomial is expressed in terms of the four arguments + then the integral

(2.5) can be written as a linear combination with numerical coefficients, of expres-

sions of the type

-La Nb+l 1 - (ý+n) Na+La k kIAB6G= •~a (2 b) di dIS dn[l - e Ea kf0 Ua(t+n)kI

1 -1 k=O
x e"•b(•n) (t+Tl) ( -)B +• )(1 • ) ( -) ( - ) , (2.9)

where

Sba(2.10)),+•+y+6 =Nb-La-2M,

so that

N+P+y+6+2e.= Nb-La (2.10')

Obviously D,,y,5,e are integers ; O, whereas X is restricted to the range
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- 2La 4 X r Nb -La- 2M (2.11)

so that in general b (at.

The integrals , defined by (2.9), are analogous to the integrals I

defined by (1.28i. As a matter of fact, !,,76E is obtained from I.,76e by replacingna+• -na+the factor -a •b by •b and furthermore changing consistently all other para-

meters and indices in the following manner:

Pa - Pa 0, Pb ý2b J (2.12)
na+%b -Nb+l , N -Na , L •La J

Again, we shall deal first with the integrals 1 766 which can be evaluated by a

term by term integration. In section 1 we introduced p*a, Pa'pb as parameters for

I instead of paPaPb Keeping in mind Eq. (1.31) and the parameter changes

(2.12), we see that by the same token the integrals I ,6c should be considered as

functions of 2ýa,O,2ýb. Furthermore, we define the secondary parameters • and i by

S= ½(Pa+Pb) = 1(C'a+C"a+t'b+C"b)R ' 1
b(2.13)

(a-b ) /(pa+ýb) =('a+ "a-'b-"b )/('a+ "a'b+C b) J
so that

Pa = (l+)p I' Pb = (1-i)• (2.13')

We define further a parameter i, analogous to iL of (1.33), by

ý = Pa/2ýb = Za/2Zb = ('a+C"a )/2(t'b+."b) (2.14)

From Eqs. (1.31,32,33) and (2.13,14) it is clear that, if we extend the parameter

change (2.12) to the parameters p*aypP¶9p*,¶*,P of section 1, we obtain

P*a 2Pal P -a Pb p p* - 2

S(2.15)
T -i - , •r* -. , Ii -4• . J

In view of Eqs. (2.13,14), we find for the integral (2.9), in analogy to (1.34)
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%076 -La(2 )X+P+7+6+2e+lIX•7 V =b 2Pb

0 1 - (t-n) -2pE-2pýn Na+La
x I dtj dn[e eb 1- e ukýk (2b)k(ý+)k]

k=0
X (ý+n)x(-)~+n7l•)(21€ln) (2.16)

If we make use now of the two-parameter C-functions (1.35), we may write for (2.16)

%P 76c = (_l)P+6+ 2 X+p+7+6+2e+l •b-La

Na+La

X [Cxp 6 e(O,2 b) - z ua(2i) CX~,,al 7(2Pa,2pb)] , (2.17)
a=0

and consequently the basic coulomb integrals for which the term by term integration is

possible, have the general form

_-La Na+La

['Sal'b] = b [H0(0,2ýb) - Z ýaHa(2Pa,2ýb)] , (2.18)
a=0

where each function Ha is a simple linear combination of C-functions with numerical

coefficients. The term by term integration of the integrals I 66 is valid if the

condition (1.39) is satisfied. Accordingly, the basic coulomb integrals are also to be

divided into integrals of the first class and integrals of the second class. It is

easily seen from Tables VI and VIII that the second class consists of the integrals

involving the charge distribution 3DZa. Indeed, Eq. (1.47) now has a considerably

simpler form since, according to Eq. (2.12), one must put Pa = 0 in Eq. (1.55). Conse-

quently, the seven C-functions with Y6E = 061 are eliminated from Eq. (1.57), and the

corresponding changes must be made in Eq. (1.47).

The coulomb integrals have the convenient property that it is arbitrary which one

of the charge distributions is to be considered as aa (i.e., as forming the potential

US a), and which one is to be considered as %b (I.e., acting as charge distribution in

the field of the potential). For instance, the integral between 3S and 3DZ on two

centers can be evaluated as [3SaI3DZb] or as [3DZaI3Sb]. Accordingly, for each basic

coulomb integral there are two possible expansions of the type (2.18) with two dif-

ferent sets of H-functions. In Table IX, which gives the explicit expressions of the

H-functiong in terms of C-functions for all the 28 basic coulomb integrals, only one

expansion is given for each integral, namely always the simpler one. In particular,

application of Eq. (1.47) is avoided wherever possible; this was always feasible,

except for the integral (3DZaI3DZb].
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TABLE IX

THE 28 COULOMB INTEGRALS IN TERMS OF THE AUXTLIARY FUNCTIONS C a43

The last column of this table contains common faccors with which the expressions

in terms of C-functions have to be multiplied in order to yield the H-functions.

L = 0 , M = 0 : Monopole Integrals

[_a_ Ib] H0  HI H2  H3 H4  H5  cA

[isalS b] Col000 I000 -1/2

000 000[lSaj2Sb], C02 C12 1/6

[iSa13Sb] C0 3 00 C1 000 -1/24

[iSa12PZb] C0101 110cl 1/4

[iSa13PZb] C0 2
0 1 0  C1

01 0  -1/20

[isaI3DZb] 3C01020 3C1 020 -1/72

-C 000 -C 000
03 C1 3

000 4C000 2C00011[2SaI2Sb] 3C0 2  
1 C1 2  2C2 2  1/18

(2Sa 3Sb] 3C 0 3
00 4C 1 3

0 0 0  2C2 3
0 0 0  -1/72

[2Sa 2PZb] 3Co 1
0 1 0  4C11rnl 2C2 1

0 1 0  1/12

[2SaI3PZb] 3C0 2
0 1 0  4C1 2

0 1 0  2C2 2
0 1 0  -1/60

020 1C020 6C020(2Sa 3DLb] 9C0 1  12C 6c21 -1/216

-3C0000 -4C1000 -2C3000

03 13 23

6C0 3
0 0 0  9C1 3 0 0 0  6C2 3

0 0 0  2C3 3
0 0 0  -1/144

[3SaI2P~b] 6C0 1
0 1 0  9CII 0 1 0  6C2 1

0 1 0  2C31
0 1 0  1/24

[3S 3b 6C0 2  9C 0  6C2 2  2C -1/1
12 10 01002 C 010 010/12

[aI3D] 18Co,020 27CI 0 2 0  18c 020 6C31 020 -1/432

-603000 09 01 3 000 -6C2 3
0 00 -2C3 3

0 0 0
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TABLE IX

L= , M =0 : Dipole

[ aab] H0  HI H2

I2Pa C-2110 2C0 110 2C0 1 10[Pal2P~b] _2,1 110
-110

110 2C 110 2C0 2 110
[2PZaI3PZb] C-12C

120 ~12012
[2PZal3DZb] 3C 120 6C_1,1 6C0120

_C23100 -2C_1,300 -2C3100

110 100 110 10023

[3PZal3PZb] 5C2,2 -1,2 110

[3P~aI3DZb] 15C_2 1120 30C- 120 30C 0 1
1 2 0

-5C-2,3100 -10C_ 1,3100 -OC103100

L = 1 , M = 1 : Dipole

H0  H1  H2

001 20 001 001[2PIIa2PHCb] C__, 01,1

001 2C 001 2C02001
[2Pfal3PHb] _2,2 02

[2PHaI3DTIb] C 011 2C_01 1 2C0011

001 10C 1 2
0 0 1  10002001[3Pnal3P'b] 5C 2,2 1 20

[3fa3I 0011 100 i~011 10001011[3P~lal3DHb] 5C_2,Ic-lo

L = 2 , M = 0 : Quadrupole

_ I_ ] H0  HI H2

120 120 36Pb-lI 3C0120
[3D~al3D~b] 18Pb 2,1

S+3 011 +3C0011+3-2,1 -_,1 01
100 -] lOO]031]

-C_ 2 , 3  -c_1,3 ] -Co3100
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(continued)

Integrals of Z-character

H3  H4  H5 cf

C1l
1 1 0  1/4

110C1 2  -1/20

120

3C1l120 -1/72

-o1120-13

6c 1 2
1 1 0  2C2 2 110 -1/100

18C1 1
1 2 0  6C2 1

1 2 0  -1/360

-6c13 100 -2C23100

Integrals of f-character

H3  H4  H5  cf

Cll001 1/8

C1 200 1  -1/4o

011
Cll1 1  -1/24V/•

6c12001 2C2 2 001 -1/200

6CC111 2C2 1
0 1 1  -1/120vr3"

Integral of X-character

H3  H4  H5 cf

24[ 3CI! 0 2 0  6[-3C2 1
0 2 0  2[-3C3 1

0 2 0  -1/1296

000] 000 000

-13 ]+23 33

+9C 0 1
220  +9Ci1220

-3Co32°0] -3C 13200]
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4.)

H 0 to
H0 0 - 0

H 0 0) 1

H~~ H co- 0
~~C C.) H . .

4JC' 0. 0

H~ C\Jý

4JH -p H
) 0 0. _-r 0

E ~~ Cd .*

'1 0 0. .0 ~ l Cd
H0 )0.0

0 H 0 H- -HV

H r- 0H C

V cd KN I Cd n 4-3~ q -
0) $ý 0 ;.) w 0 . Cd H

0)r- H 0) P4 cad,

H H (\j -P '
0 02IH

4. ) H 0) cli 0)1 a . 0 )
H- H H 0 r.I 0 cd >d

0H 00 4-) ,4 C 4
H- 4.2 +4-

-ý r~d 0) 0
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CJ 02

H- 0T

0Q 0 0 t- Cd

020

02 02

Cd ýc Cd r

0) CL.

0)400
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It should be noted that 66 C-functions are needed in order to express the 28

coulomb integrals. This situation compares unfavorably with the case of the hybrid

integrals where we had 122 C-functions for 79 integrals. Since the coulomb integral

expansions of Table IX and the hybrid integral expansions of Table VII have 35 C-

functions in common, the total number of C-functions occurring in Tables VII and IX is

153. This state of affairs is shown in Table X. Explicit expressions for all the
14

necessary C-functions are listed in Tables XIII, XIV, XV.

TABLE X

NUMBER OF C-FUNCTIONS USED FOR THE HYBRID

AND COULOMB INTEGRALS

79 hybrid 28 coulomb hybrid and coulomb
integrals integrals integrals together

a 0 63 44 88

a < 0 59 22 65

Total 122 66 153

If the explicit formulas for the C-functions, as given in Tables XIII, XIV, and

XV, are substituted into the expansions in terms of C-functions as given in Table IX,

then we must of course obtain the formulas which were given in (I), Eqs. (34, 34a,

34b). This is indeed the case. In order to make the transition, we observe that our

present parameters PaPbP,T, defined by Eqs. (1.20) and (2.7,13), were designated in

(I) by paPb'p,• Furthermore, according to Eq. (2.14) we must replace • by

Ii=p/2b (l-)/lr)=[(+i/ -i], (2.19)

where

S= ½(i+l/i) ; (2.20)

this parameter _ was designated in (I) by K. It is to be noted that the exponential

integral functions, which occur in the C-functions for a < 0, do not occur in the

explicit formulas (34, 34a, 34b) of (I). Indeed, if the indicated transition iscarried

114Tables XIII, XIV, and XV (as well as Table XII) will be found at the end of Section

5, preceding the Bibliography.
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out, then the exponential integral functions are found to cancel out in the final

results.

We wish to mention that the formulas (34, 34a, 34b) of (I) have all been rechecked

by the present method, which is somewhat different from the method employed in (I).

Besides a few misprints, only one error was found; all corrections have been previously

reported.15

b. One-Electron Integrals Expressible in Terms of C-Functions

If the overlap integrals [see (I), Eq. (4)]

(XalXb) = f dVXaXb (2.21)

are expressed in elliptic coordinates, it is seen at once that they are linear combi-

nations of C-functions with a • 0. In paper (I) it was furthermore shown that the

nuclear-attraction integrals [See (I), Eq. (6)]

(Xall/ralXb) = f dVXa(i/ra)Xb , (2.22)

and the kinetic-energy integrals [See (I), Eq. (5)]

(Xal-iAiXb) = - 1 dVXaAXb (2.23)

can be expressed in terms of overlap integrals [See (I), Eqs. (22, 23)]. Hence these

integrals are also expressible in terms of C-functions with a ) 0. It is also useful

to introduce the parameter

V = (a/Cb = pa/Pb = (l+¶)/(I-T) (2.24)

In Tables XI, XIa, and XIb are listed the expansions in terms of C-functions for the

overlap integrals (2.21), the nuclear-attraction integrals (2.22), and the kinetic-

energy integrals (2.23), respectively. It may be noted that Table XI does not contain

overlap integrals involving Os and lp AO0s, as did Eqs. (2.5) of (I); their function

has been taken over by appropriate C-functions.

c. Nuclear-Attraction Integrals not Expressible in Terms of C-Functions

The nuclear-attraction integrals (see (I), Eq. (7)]

[aIXbX'b! = (Xbil/raiX'b) J dVXb(i/ra)X'b (2.25)

can be expressed in terms of the basic integrals

1THIS TECHNICAL REPORT, 1951-52, Part Two, Paper 10; 1952-53, P. 101.
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TABLE XI

THE ONE-ELECTRON INTEGRALS (XaIMlXb) IN TERMS OF THE AUXILIARY FUNCTIONS CapY6

(a) overlap Integrals (b) Nuclear-Attraction Integrals

(lSallSb) = -2v3/2 C11000 (iS aI/r alsb) 1-2av1/2 c01000

(lSa32Sb) = (2!v•)v3/2C1 2 000 (1Sajl/raI2Sb) = (2/V•)(avl/2CO 2 000
(2ias2sb) = (2/3)v C2 2  (2sa 1 1/ralSb) = (2/ý/_)CaV C10

(iSa2Ps _) 1 2v 3/'2CII010 (2s ji/raI2Sb) = (2/3)CaV3/2C 1 2 000

"(2Saf2P~b) = (2/v/)v5/2C2 1 010 (ISaIl/ral2Pa b) = 21avl/2c01010

(2Pa2Pb) = 15/2 (2010 Il = 2•aV3/2C 100

(2pisa12p6 b) = v5CII (2sa11/ra12Psb) = (2/3)CaV C12

12pd 5/2 110(2p5 j/r -2 3/2 C 100
(2P() va/ral2sb) =(2/Cv)VC

(2Pdarl/raj2P=b) = 20av3/2/02110

(2P5ail/ra12Psb) = (aV 3/2C0001

(c) Kinetic-Energy Integrals

(iSaj-½AllSb) = -a2l/2 (2C 0 1
0 OO-vC3 1

0 0 0 )

(ISaIl-½AI2Sb) = (I/vI•)Ca2vl/2(2Co 20OO-~vCl 2 000)

(2SaIl-½AI2sb) = (i/3)a2vl/2(Co 0 0 0 -4vC12000+ 2 2000

(iSa -½AI2P~b) = •a2vl/2(2Ool010-vCllO1O)

1 20 01/r 12pO 2 Ol

(2saI-l2P6b) = -(1/V3)2v12(2C01 01-a ell +v 6 2 1O 1)

23/22 110 11

(2P(aIa1½AI2Pdb) =a

2 31/2 001 001

(2Ptal-½AI2ptb) = 2)V/2 (4C 100VC llOO10
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[aI%] - J dV /ra (2.26)

as was shown in (I), Eqs. (28). It was further shown in (I) that the integral [aSI]

vanishes unless a is of Z-type, and that the integrals [aINLOb] are intimately con-

nected with potentials U [see (I), Eq. (32)]. Since the difference in notation of

(I) and the present paper may become somewhat confusing at this point, we shall show

this connection here once more. Instead of [al%] we shall first evaluate [nalb],

and make the proper change a ;db in the final result. Now [fajb] is Just the potential

U~ (2), as given by (1.10), evaluated at the point b, i.e., ra 2  R, ea 2 = 0. Since
"a

SLM(O,q) - [(2L+l)/4fr]16M0 , we find from Eqs. (1.12,17)
L~lz 6L-l~i N+L

[NLMa b] = 2+-L-I( e-6 k 6M
k=O

where (5 2 2aR, and u. is defined by (1.18). Exchanging now a and b, and putting

2 bR = 2pb [see Eq. (2.7)], we find the general result

[alN~b b~bL-1 [ e2Pb N+L
[aINLMb] = VbL [I - e b uk(2Pb)K] MO. (2.27)

k=0

The explicit expressions for Eq. (2.27), which arise from AO's with the principal

quantum numbers 1 and 2, were already given in (I), Eqs. (31); the parameters Z and

p of those equations are here designated by •b and ,b' respectively.

In the present derivation of the connection between the potentials U~a and the

integrals [ala], the integrals were derived from the potentials, whereas in (I) the

potentials were derived from the integrals.
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3. THE FUNCTIONS Cap-y8e FOR a 0

a. General Remarks

The functions Cap76e(papb) were defined by Eq. (1.35), namely

C 8766 (PaPb) - (-I)P+6+e (iPb)a++7+6 +2e+l i de_ dqe- -tp1r

x (+u(-)(+n)(-n(•-)(-) ,(3.1)

with

P (Pa+Pb) a-Pb)/(Pa+Pb) . (3.2)

For a > 0 we can express Cap76 (paPb) in terms of the functions An(P) and Bn(rp)

(see Section 5a), by first multiplying out the polynomial in t and n before inte-

grating. A more elegant access to the functions CY 876E(paPb) for a t 0 is provided

by the following system of recurrence formulas.

b. Recurrence Relations for C 000

We observe that

CaOOO(PaPb) = Pb + d• J d , (3.3)S1 --i

where

•)a = /laPa 1 2b = 6/4)b (3 ".4)

Carrying out the integration we obtain for (3.3)

Co000(PaPb) -= 2 ( -1 )a+lpb a++lpaaab (e-Pa-e -Pb )/(Pa2_pb2) (325)

By virtue of the identity

.)a. _b(Pae-Pb) = a pi 22

a % I ( e _e ); . (( ) ( a b J a b 2
1=0 J=O iJ a6jP P

x [ •a'i bJ (e'Pa-e-Pb)/(Pa2-Pb2)] (3.6)

we find the recurrence relation16

16For a 4 1 and P 4 1 there occui in Eq. (3.7) C-functions with negative indices with

vanishing coefficients. Such terms should simply be omitted, which is easily seen

to be correct by applying Eq. (3.6) to these special cases.
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C 000 (K-1) l){aPaPb-I
1 cal, 0 0 0 + PCa,pI

- a(d-l)ca•2, 000 + ½•(P-l)ca,_ 2 c000

- b+P-l[ 6 POe-Pa - 6 0 o(-l)Re-Pb]) (3.7)

where

S= [v(1T) = p2+b2)/(a2-p2)I 2 2 /b" 2 a (3.8)

For the three simplest cases Eq. (3.7) yields

C 000= _(Kl)Pb-1 (ePa _e-b) 1

Cl 0
0 0 0 = (C-I l)(PaPb- 1 C000 0 0 - e-Pa) (3.9)

000000 - e-)b) .

We make use of Eqs. (3.9) to derive the following relations, which we shall need in

Section 4:

Co000 - 000 -Pa -Pb)

(3.10)0 0 0 = ( _l)(pbe -Pa -Pb

PbC010 0 0 - 10  b- (Paa1-Pbe) (1

c. Recurrence Relations for the Upper Index Triple
The following recurrence formulas serve to obtain the functions C for which

the upper indices are different from zero. Each of these formulas corresponds to an

identity in • and n. Thus the identities

1 • *n = 1 • *[(•+1)2 (e-) 2]

(2_1)(1-n2) = -1 + ½[(•+n)2 + (enn - (l/l6)[(+n)2 _ (•_n)2]2

(l+•rj)(1-•) = 1 - (l/l6)[(t+n)2 - (q-n)2]

1 + { + 1 - = 2

(•2_1)(1-T2) - (I+eu)(1-•) = -2 + 1[(e+T)2 + (en)2]

(2-1)(l-,2) + (ljn) 2  2
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(,+n)2 + (1-•n)2 + 2(l+•t)(1-•t) =

yield the following recurrence relations, respectively:

2Ca ap9+16 = Pb"'Ca66 + Pb-1 (C+2, Ye-Ca,+2E) , (3.11)
76+I,e _PC 'Y66 b 6€C 7

2C ap, +l b = + (C a+2, - a,3+2 ) (3.12)

= Pb2C p-6 - 2 ( C+2,1 +Ca+2
(C € _2 7C+C 'Y

Pb -(C+4, -2a+2,P+2 a•C,+4 (3.13)

- 7+1,+1,ea+ _b a bP a+4, c- +2,P+2 T+a,p+4k ,) (3.14)

C • '+1,66 - 047,6+ I,e -16E
- c43 PbC , (3.15)

76,2e+1 2 6 yy,6+1 (3 .16
2(a - Cz+ ' _) = Pb•Ca Ca+2, - ,+ (3.16)

cy+2,6e- _ C 6 ,+l = C +2,Y6 , (3.17)

-cj7 Y6  = CaP+ 2 Y (3.18)

Cc y+2, 6 e + C 7, 6 +2,e _ 2C- Y+1,6+1,6 2 C -56E (3.19)

The Eqs. (3.11,12,13) permit us to raise each of the three upper indices inde-

pendently; Eq. (3.14) permits us to raise 7 and 6 simultaneously. The Eqs. (3.15-18)

serve to transfer raised units between the various upper indices. So Eq. (3.15) con-

verts one raised unit of 7 into one raised unit of 6, and vice versa; Eq. (3.16)

converts one raised unit of e into one raised unit of 7 plus one raised unit of 6, and

vice versa; and Eqs. (3.17,18) convert one raised unit of e into two raised units of

yor 6, and vice versa. Finally, Eq. (3.19) may be useful as a check.

The Eqs. (3.11-19) are of course not the only possible recurrence relations for

raising the upper indices; they are however rather simple relations, particularly

Eqs. (3.15,17,18).

Fig. 1 represents in diagrammatic form a possible scheme for successively raising

the upper indices, and at the same time checking the obtained results. The scheme

was constructed using mostly the particularly simple relations (3.15,17,18). It

appears to be useful to group together the C-functions which have the same upper
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Equation Numbers 5y6E E +6 +2E

00 0

(3.11)

(3.12)

001 1

J2

(3.15)

101 Oi01

(3.17) 022

- 021
(3.18)

Fig. 1. A Possible Scheme for Raising the Upper Indices
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index sum y+ 6 +2e; such a group is then conveniently subdivided according to the dif-

ferent values of e. In order to calculate C-functions with the same upper index sum,

say n, from each other, we need also C-functions of the group n-1 if Eq. (3.15) is

used, and n-2 if Eq. (3.17) or (3.18) is used. Finally, it should *be noted that

parallel arrows in Fig. 1 represent the same equation; this also applies to arrows

which are not drawn in Fig. 1, e.&.,an arrow from 310 to 111 would represent Eq.

(3.17). Another set of parallel arrows which is not shown at all in Fig. 1 is a set

of vertical arrows representing Eq. (3.16), e.&., from 310 to 201.

In the last analysis the methods described for raising the upper indices amount

of course to making the decomposition

( • )( -u 6 (t 2-1) e(l-_T)2 ),E l aij ,6•(e+n)i(t-n)j,

ij

where the coefficients aij are constants. But the described systematic arrangement

of successive steps appears more convenient.

d. The Total Recurrence Procedure

From the foregoing it appears that two units of the lower index sum a+P are con-

sumed in order to raise the upper index sum 7+6+2e by one unit. Now from Tables VII,

IX,and XI it is seen that the maximum value of the upper index sum is 4, and that this

occurs for the index pairs (a,p) = (0,1) and (a,P) = (1,1). Furthermore, it is seen

that the maximum value of "lower sum, plus two times upper sum" is 10. For the cal-

culation of the needed C-functions we therefore used the following scheme (see Fig. 2).

First the functions C p0 0 0 (i.e.,upper sum = 0) were calculated by means of Eq. (3.7)

for all index pairs a,P which are entered in Fig. 2. Then, in subsequent steps, the

C-functions with upper sum = 1, 2, 3, 4 were calculated by means of Eqs. (3.11-19) for

all the index pairs a,P situated above and to the left of the lines marked 1, 2, 3, 4,

respectively, in Fig. 2. In this manner explicit formulas were calculated for the

260 C-functions with a i 0 which are listed in Table XIIa. They were needed in order

to establish the 88 among them which appear in Tables VII, IX, and XI. The explicit

formulas for these 88 are given in Table XIII. Formulas for the 172 others can be

made available upon demand.

e. The Limiting Cases p = 0 and T = 0

For p = 0 and T = 0 the formulas of Table XIII cannot be employed directly for

numerical computations. Tables XIV and XV give the formulas for the functions C

for these two limiting cases. All these formulas were calculated in two ways. The
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00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19
40

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37
3 40 41 42 43 /44 45

50 51 52 53J 54 55

2

1f

60 61 62 63

70 71 72 73

80 81

90 91

Fig. 2. List of Lower Indices a,p Occurring in the Course

of the Recurrence Procedure Represented in Fig. 1

first way consisted in calculating the limits of the expressions given in Table XIII

by expanding the exponentials. The second way for the case T = 0 was the method

and Bn( Tp) = Bn(0) = [1 + (_l)n]/(n+l). For the case p = 0 the second way was the

direct integration, leading to the general result

Lim C ap'"(paPb) = c +,6(-l)0+r(a+3-+6+2,E)[ (3.20)

where the constants Cwe are defined by
1

C -l dt(l-t 2 •)t (3.21)

Cw = ~22 +lciw!(w+ )/(w)!(w+2e+l)!(32)

for w even, and

Cw= 0 (3.21")

for w odd.

To prove Eq. (3.20) we substitute Pb = (1-¶)p in (3.1) and multiply pa+7+6+2c+I

into the integrand. Putting pE = x we then obtain
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K
t 1

C,1 •'
8  (-I)•+&+E[½(I-r)]a+a+Y+ 6 +2E+l f dx f dne-x-TPY

•,p -1

×(x+ n)a(x-Pq)O(P+xn),(P-xn)6(x2-p2)e(,-n2)e

so that, letting p-O,

Lim CaY85  = (- ) +e[(I•T)] a+0+Y+ 6 +2e+1 f dxe-xxa+o+y+ 6 +2E

x f dn(1-n2•n+• (3.22)
-1

whence (3.20). It may be noted that it is the factor pb+in (3.1) which

keeps the functions C ap finite for p-.O.

The agreement obtained by using two different methods for calculating the limiting

cases is a further check on the derivations of the explicit formulas for the general

case.

We can also see now why for a numerical tabulation of the C-functions we should

use the parameters p,' rather than Pa'Pb Namely the function C (aPb) is

discontinuous at the point Pa = Pb = 0 in the pa,Pb-plane; but, considered as a

function of p and T, C 6 is well-behaved for the entire range 0 • p < ,
-113

-l87
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4. .THE FUNCTIONS C.0 FOR a < 0

a. Condition for Convergence

The definition of the functions C by the integral (3.1) shows that for a < 0Ta43

the integrand becomes infinite at the point 1 = 1, n - -1, so that the question arises

as to whether or not the integration extending to this critical point in the t,n-plane

yields a finite result. It will be shown that the condition for convergence, which

limits the possible negative values of a, is

a+7+2E+l P 0 . (4.1)

This result was already used in Sections 1 and 2; the relation (4.1) is identical with

(1.38).

To derive the condition (4.1), we divide the area of integration in the t,n-plane

into the areas I and II as shown in Fig. 3. For the area I we introduce polar

T1

I II

Fig. 3. Area of Integration.

coordinates r,T:

E-1 - rcosi , n+l = rsinT , (4.2)

so that the integral (3.1) becomes

SC+y+6+2e+l 2 a+y+2e+l d er(pcs+psin)C• 6E(Pa,Pb) - (-l)0+6+ C {e++dePb r dr
0 0

X(cosV+sinT) (2+rcosT-rsinV)ý(-cosT+sin•+rcos~sinq)7

" (2+rcosT-rsin•-r2cospsiny) [cosysinq(2+rcos9)(2+rsin9)] 6

+ 1 dt e-P -TPq
_( ¢• ( i )

X(+)(-)(+n)(-)(e-)1-)}• (4.3)

It is easily seen that the second integral in (4.3) is always convergent. To investi-

gate the convergence of the first integral, we expand the integrand in a power series
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with respect to r; this yields for the first integral

2 r+7+2e+l 7 )z k
I dr r d (cosy+sinV) Z r Pk(PaPbcOS, l9nT) (4.I4)
0 0 k=O

where each pk(u,v,xy) is a polynomial in u,v,x,y. Clearly, the infinite series in

(4.4) is uniformly convergent; hence a sufficient condition for the convergence of

(4.4) is that the integrals

2 ++ +k
f dr ray+ 2 l and J dg(cos,+sinr) pk(pa,Pb,Ccos,sin")
0 0

converge for all values of k. Now

costp+sinv = r2cos(9-tw) > 0 for 0 4 T 4 17r

hence (cosq+sinq)a introduces no singularity inspite of a < 0, and consequently all

the integrals over T converge. On the other hand, the integrals over r converge if

a+y+2e+l >- 0

so that (4.1) is indeed a sufficient condition for convergence.

It is conceivable that the expression (4.4) might still be convergent if

the condition (14.1) is violated. Namely, if we evaluate pO(Pa,Pb,cosV,sinq, we

find

(cos,+sinq)PPpo(aPb ,Icos,sinV) = (-l)72P+6+C+½(a+7) cosca(W+147r)cosy(9-•ir)sin2,

The functiorncos("+-7+), cos(q-tw), and sin2y are plotted in Fig. 4. From these plots

it is obvious that

t dg(cos+sin)po(pa,pb ,sin){: 0 even,

0 y ,coP, n• 0 , odd.

Consequently, if y is odd, the expression (4.4) might still yield a fxnite result if

a+,y+2e+2 = 0

But in that case the integral (4.3) is at most conditionally convergent, i.e. it

depends on how we reach the point e = 1, q = -1 in the b-plane whether the integral

(-.3) converges at all and/or what numerical value will result. Moreover, when we

attempted, in a few simple cases, to use the relation
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coos(V n

0 sin2i

coo s(T +*r)

Fig. 4. The functions cos(9 + vir), cos(9 - t7r), and sin2g.

Cal,7Y 6 6(PaPb) = P-l I dt C Ye66(tPb) (4.5)
Pa

which follows from the definition (3.1), in order to lower the index a beyond the value

consistent with the condition (4.1), the right-hand side of Eq. (4.5) was found to be

divergent. It was therefore considered inadvisable to pursue further the problems

connected with those C-functions which have a+-y+2E < 0, in particular since we were

successful in Sections 1 and 2 in expressing all hybrid and coulomb integrals in terms

of C-functions satisfying the condition (4.1), which are regularly convergent.

In the following subsections we shall show that the latter type of C-functions

(with a < 0) can all be expressed by the general formula

CaY8 E66(paPb) = Da7Y8E(PaPb) + EacY 6 E (PaPb)F(PaPb)

+ (-1)7+6E c1O'8 (-pa,-Pb)G(PaPb) , (4.6)

or, suppressing the explicit arguments,

C CO ' = DaS-y + E G75•F + :9 CO , (4.6')

where

2aj3uY64(PaPb) = (-1)7+6Eca7•E(-Pa,-Pb) . (4.7)

The functions DaW36 E have a structure very similar to the C-functions with a > 0; each

function E C6E consists of a finite series of powers (positive, zero, or negative) of
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Pa and Pb' multiplied by ePb; finally, the functions F and G, which do not depend upon

the indices a,P,7,6,e, are expressible in terms of exponential integrals and loga-

rithms.

b. The Functions C_ ,P0

We start from Eq. (4.5) for a = y = e = = 0, yielding

C 00 TPa'Pb) =b I dt Co0 0 00(tPb) ; (4.8)
Pa

substituting ffor C0 0 0 the expression (3.5) we find

C_lO000(PaPb) = Pb-I dt(e-t-ePb )[(t+Pb)-I- (t-Pb)-I]
Pa

= ePbpb- 7 dt e-tt-I - ePbb I dt[(e-t - (t+2Pb)],

Pa +Pb Pa-Pb

or

C_l,O00 0 (Pa'Pb) = AO(Pb)F(PaPb) + AO(-Pb)G(PaPb) , (4.9)

where the function A0 is defined by Eqs. (5.1,2) and

G(Pa'Pb) f dt e-tt
Pa+Pb (.0

F(PaPb) I dt [(e-tl)t- + (t+2Pb)-]Pa-Pb

Note that F and G are well-behaved functions of both arguments except for Pa = Pb = 0

for that special case the value of C_ ,O000 if found by the limiting process Pa - 0 1

Pb - 0 . The functions F and G can be expressed in terms of exponential integrals and

logarithms [see Section 5], namely

G(Pa'Pb) = Ei(-Pa-Pb) 1

F(PaPb) = Ei(-Pa+Pb) - logIPa-PbI + log(pa+pb) •

For the derivatives aF and VG we find from Eqs. (4.11; 5.14)., or also directly from

Eqs. (4.10):

oG(PaPb) = ePaPb (Pa+P (.12)

- ra+ b -i J)(.12
6F(PaPb) = - e (Pa-Pb) + (Pa+Pb + (Pa-Pb)-I

O000i q 891)w rce
Having obtained an explicit expression for C_ 0  in Eqs. (4.9,10), we proceed

000now to the functions C_ We shall repeatedly make use of the following relation,
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which follows immediately from the def~inition (3.1):

aPb-0-•- '--6-2e-l~a G -y6e = ab~pb-a- ' --7-6-2e-l-Cy,6e 4.3

P aP11bCCzP (4-13)

Eq. (4.13) permits us to calculate C 000 by successive differentiations of CI 00

namely, putting a = -1, P' = y = 6 = = Owe obtain
-C 000 GC10000(.4

b-C, = . (4.14)

If we substitute in Eq. (4.14) for C 1,0
00 the expression (4.9), we see that, because

of Eqs. (4.12;5.1) the result may be written in the form

P-_ 000 = A (-Pb)G + (_l)A p(Pb)F + pb-D_l,00 (4.15)

where the functions D_ lP 000 (PaPb) do not contain any exponential integrals or loga-
000

rithms. Hence we have proved the validity of Eq. (4.6) for the functions CIP ,

namely

000

the functions E_ 00 are actually only functions of Pb' and are given by1ooo

E_IB (pa,Pb) = (-pb)PAs(pb) (4.17)

We observe that Eq. (4.9) implies that

000D_1,0 0 (4.18)
000

we shall now proceed to find a recurrence scheme for the functions D_, 0  We start

with the relation

Pb C 1,P++�+ 2 _) 1 l 0--

-P-2 000 000 - 000 000
=b [D_ I,b+20+(+2)D_ ] - 000][D~l, D

+ (A +2 (-Pb )+(P+2)Pb- A+ 1(-Pbb )-Ap (-Pb) -PPb-1Ap-1( -Pb)]G

+ (-l)P[A +2 (pb)-(P+2)pb- 1 A +l(pb)-Ap(Pb)+Ppb- 1Apl(Pb)]F , (4.19)

which follows directly from Eq. (4.15) and holds for P 1 0. The linear combination

of the C-functions in (4.19) is chosen so that the coefficients of the functions F
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and G on the right-hand side vanish; this follows from the recurrence relation for the

functions A (x), Eq. (5.7). Making use of Eq. (4.14), we may write then for (4.19)

PbI '02[D_.1,0+2 OOO+(P+2)D-l, +lO000 - Pb-[D_ 1,P O00jD_ 1,11 000

2 [ . P+2C+2 )Pb- 6bP+l-•'P-Pb-l~oP-l1]C_1,O°° (4.20)

The right-hand side of Eq. (4.20) can be further simplified by making use of the

general relation

Pb-l apb - ab + APb'la "l, (4.21)

so that

-P-"2 [D I,+000+(0+2)D I,+000] - Pb 0[-I 00+13D- 000
Pb _1,02 -10+ -b 1,3 11

= Pb -l )PbCl,000. (4.22)

It is now possible to express the right-hand side of Eq. (4.22) in terms of C-functions

with a P 0. First we convert (b2-1)PbC1,0000 in the following manner. We insert

C.IO as given by Eq. (4.9) and observe that (ab-l)e~b = egb• , (a+l)e-Pb e-N'

so that

-_O ( -2_e) (ebG+e F)

Pb P
, - (2+l)e a:G + (6b-l)e bF

= b(-e baG+e-Pb bF) - egbNG - e-b bF

taking abF and abG from Eq. (4.12), and making use of Eqs. (3.8,10), we find

000 -r, Pa -Pb )/2. 2)] 2 Pae p bu2 2)
( _2 -1)PbC-1,0 = bL[-2Pa(e--e-._ )/(Pa -Pb + 2 (Pbae-ga-e-Pb )/(Pa -Pb

-1 000 p 2C 000 ~ 1  000.
bPaPb-C 0 00 + agb 01 - 9b'10

finally, using Eq. (4.13), this reduces to

(ab 2_)PbC1,0O = 2PaPb- 2 Col 0 0 0 - Pb CO000 (4.23)

We apply now the operator Pb'bV to Eq. (4.23), and make use of Eqs. (4.13,21):
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b-P 000 - 1 o 000Pb _1 )PbC-I,0 0 0 0 = 2PaPb-b PbC01 01 Pb -b -b 10

= 2PaPb-l1 6b- 2 C010 0 0 _ ( +Pb-lab-l)Pb-2Clo 000

000 -0 -- 2 (C 000+ 000) (4.24)
=2p aPb P 3CoP+1 - b 10 -P•i,P-i (.•

substituting this result into Eq. (4.22), we obtain the recurrence relation

DIP+2 + (P+2)DI,'+I - Pb2(D_I,0+PDiPi)

2 -1 000 -C000 - ClP1000 (.52PaPb-Co,•+ - - (4.25)

In order to calculate the functions D 000 from Eq. (4.25), we need, aside from the

C-functions on the right-hand side, which were dealt with in Section 3, also the

000 and 000starting functions D_,O D_ The former is given by Eq. (4.18); the lat-

ter we obtain by direct application of Eq. (4.14):

000 000 ePbe-PbF)C ( bC, 0 0  bbb~-e G+e bF)1-,1 =PbA -1,0 =Pb'bPb-1

or

000 P P
-1,1 = -e bG + e 6bF

in view of Eqs. (4.12; 3.8,10) this reduces to

000 -lCo0000
f.1,1  = PaPb l~00000, =P~ (4.26)

The recurrence relation (4.25) enables us to express each D-function in terms of

three D-functions with a lower index P and C-functions known from Section 3. However,

we can carry out this recurrence scheme in two steps, each step by itself being simpler

than Eq. (4.25). Namely if we define a new set of auxiliary functions D (PaPb) by

D00 D0+ P (4.27)

then we may write for Eq. (4.25)

DP+ 2 - pb2 D = 2PaPb-iCO,+ 0 0 0  C 000 000 (4.28)

We can now use Eq. (4.28) as a recurrence relation to calculate the functions D

For that purpose we still need the starting functions Do and DI; they follow from
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Eq. (4.27) for p3 0 and 0 1, respectively, and Eqs. (4.18,26), namely

Do = 0

1 0 (4.29)
Dl = PaPb-IC00 0(2

Once the functions DP are found from Eqs. (4.28,29), we can then use Eq. (4.27) as a

recurrence relation to calculate the functions D_ 000 no starting D-functions are

needed in this case. If desired, we can also use instead of Eq. (4.27) the following

explicit expression of D-functions in terms of D-functions:

000

D= z (-l)-k(p!/k!)Dk , (4.30)
k=O

which follows easily from Eq. (4.27).

Which one of the two alternative recurrence schemes is to be used for calculating

the functions D_, 000 -- the direct scheme of Eqs. (4.18,25,26) or the scheme employing

the auxiliary functions D, -- is of course a matter of taste. The first method has the

advantage of directness, whereas the second method consists of more, but simpler,

steps.

c. Raising of the Upper Indices and Lowering of the Index a

In order to raise the upper indices we can directly use the methods developed in

Section 3c, since the derivations in that section are completely independent of whether

* is positive, zero, or negative.

Actually the application of those methods are more economical for a < 0 than for

S > 0. Consider for example Eq. (3.11). If a > 0 one has first to raise a (and P) by

two additional units before 7 can be raised by one unit. However, if a < -2, the sit-

uation is more pleasant: here a+2 corresponds to a previous step on the recurrence

ladder which starts with a = -1 and proceeds to a = -2, -3, -4, ... ; therefore it is

not necessary to make a detour via a-values which are not actually needed.

The situation with respect to P on the other hand is of course unchanged, and

since C-functions with 0 = 1 and y+6+2e = 4 are finally needed, it is necessary to

000start with the set C-I,B , where • = 0, 1, 2, ... 9. This case is indeed simpler

than the one for the case a > 0: there we had to start with the set C 000 where a

and 0 assumed the values 0, 1, 2, ... 9.

In Fig. 5 the different pyramids represent different negative values of a; due to

the restriction (4.1) they become progressively smaller for decreasing a. The arrows
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within each pyramid represent App1natnons of ^ formulas nt onneo-

tions between different pyramids are indicated by curved arrows, corresponding to for-

mulas for lowering a which we shall now derive.

We start with the case a < -1, e > 1. From the identities

(a+i) (ý+Tl)a (••(+,)a+l ••)(+) (4.31)

we obtain by partial integration with respect to • and n

( 7l~6 E -(-) P)a+P+^+6+2e+l do 1 a+l
(a+I,)C apy• = d•IP++(T~ dn(ý+n)c~

x •/ e-OpP(-P _)•(I+ ) _I I (4.32)

since the integrated parts vanish for e > 1. Adding the two Eqs. (4.32) and performing

the indicated differentiations, we obtain

(u IyB 6 E 'Y6 -Y-I,6 _ 6e 7 ,'6-I,• 'Y,6+I, e-I
(a+=)PbCa = PaCa+IY - Yca+2 , - 6Ca+2 ,- 2ECa+2 , l .( 4 .33)

Eq. (4.33) lowers a if e > 1 and is represented in Fig. 5 by solid curved ai'rows.

Turning now to the case e = 0, we observe first that if 7 ;. 2 we do not need a

direct formula for lowering a. Namely by virtue of Eq. (3.17) we may write

C a Y = C a -2,6 + C a+ 7 - 2
, 6 0  (4.34)

and Eq. (4.33) may now be applied to the first term on the right-hand side of Eq.

(4.34). Next we note that if e'= 0, a < -3, the condition (4.1) yields Y > 2. Hence

the only case we still have to deal with separately is a = -2, e = 0, y 4 1; because

of the condition (4.1) this narrows down to 7 = 1. We shall deal with this case by

deriving a special formula for C-2 P1 00 ; after that the index 6 can always be raised

in single steps by means of Eq. (3.12), or in double steps by means of Eq. (3.18).
lO00

We derive first a formula for C_ We perform again partial integrations as

in the derivation of Eq. (4.33); however, due to e = 0, we obtain now additional terms,

since the integrated parts do not vanish
100= PT1+00 11 P-P'1e)

_2 , 10 0 = d de - + { d•-{ d((•+n)- 1 (P/T)e-P-P(l+•) ' 1 (4.35)

_ O -2 de e-Pe(e"P+e'P)+ { d,_ dn(e+n)l(8/,)eP'-PT(l+,i) .

We add the two Eqs. (4.35), perform the indicated differentiations, and evaluate the

single integrals; the result is
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0_2,o0 = - 2(p a Pa-pbe-Pb)/(Pa2-Pb2) _ PaPb-Cl,0 1 0 0 + Pb-C 0 0  ;

by virtue of Eqs. (3.8,10) we may write for this

C_2 , 0
1 0 0  PaPb-IC_l,0 - Pb-C0000 Pb- 1Co1 000 + PaPb-2CIO000 (4.36)

We can now easily proceed to C_2,P1 by applying to Eq. (4.36) the operator

Pb ab', yielding [see Eqs. (4.13,21)]

PbC_ 2,P100 = a_l, 100 - (P+l)C O000 - C0,P+1 0 PaPb- 1 Cl 000  (4.37)

This equation is represented in Fig. 5 by the dashed curved arrow.

Finally we must show that all the C-functions with a < 0 have the form (4.6).

Since we saw already that C_ 100O had that form, we only have to show that the form

(4.6) is preserved when the upper indices are raised or a is lowered. These proofs are

very simple; as an example we show it for Eq. (4.33) with a = -2:

Se C 7-l, 6 e 6 y,-, + 2eC 7,6+i,e-l
PbC_2,P• = -aCl, + 7C0 + Co

7Y6E
Now, by assumption, the form (4.6') holds for CIG , so that

PbC_2,pY = paDlP + C0PYle + 6C O,6le + 2 eC0 P

-PaEI,•7F - PaEI•,PG

hence C_2,P also has the form (4.6'), and specifically

76C+ C6 Y16c ,+,-PbD_2 ,• = -al, + 0-I + 6C007T6-IC + 2eC0

E_ 76e E 'y6r
bE_2,P Pa El,

It is also clear now how any one of the recurrence relations (3.11-19; 4.33,37)

yields a recurrence relation for the D- and E-functions. Namely such a relation for

the D-(E-)functions is obtained from the corresponding relation for the C-functions by

changing the C-functions with negative a's into D-(E-)functions, and retaining (omit-

ting) the C-functions with non-negative a's.

d. The Limiting Cases p = 0 and T = 0

For the same reason as in Section 3d special formulas have to be given for the

functions C4376e (a < 0) if p - 0 or T 0. They were again derived in two different

ways (see below).
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Consider first the case p = 0. The first method was the expansion of the expo-

nentials and exponential integrals (see Section 5b) and subsequent passage to the
76 e

limit p = 0 in the general formulas. It should be mentioned that the parts DU6 and

E ay 6 eF+2 a43'eG each become infinite for p -. 0; only their sum remains finite. The

second method was the application of Eq. (3.20). It has to be noted that the only

condition for the validity of Eq. (3.20) is

a+P+7+6+2e >_ , (4.38)

as Eq. (3.22) shows. Now, since the volume element always contributes the factor •-i,

we have always P , 1, and this fact in conjunction with the condition (4.1) yields

a+P+7+2E > 0 , (4.39)

so that the condition (4.38) is always satisfied and Eq. (3.20) applies also if a < 0.

In the case T = 0 the first method was again the expansion of exponentials and

exponential integrals in the general formulas. The second method was as follows:

First, by expansion, we calculated E_1 ,ý0  F+RE1 1P0 G and Dfor Pa = b = p. Next,

we calculated D and subsequently D_l,0 by means of the recurrence relations (4.27,28)

(depending now only on p). Finally, we calculated C using Eqs. (3.11-19) and

(4.33,37) (again depending only on p).

The agreement of the results obtained by the two different methods constituted a

further check of the derived formulas. A final check was the agreement found by

putting p = 0 in the formulas for T = 0, and T = 0 in the formulas for p = 0.

By means of the methods described in Section 4b, c, and d, explicit formulas were

calculated for the 84 C-functions listed in Table XIIb. They were needed in order to

establish the 65 among them appearing in Tables VII and IX. The formulas for the

latter are given in Tables XIII, XIV, and XV. In addition, these tables also contain
000

the seven functions CI,0 (P = 3,4,5,6,7,8,9). The latter have rather long expres-

sions, and their derivation is lengthy; since they form the "basis" from which all

other C-functions with a < 0 are rather easily obtained, their inclusion was considered

useful. Formulas for C-functions contained in Table XIIb, but not in Tables XIII, XIV,

and XV, can be made available upon demand.
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5. THE EXPONENTIAL INTEGRAL AND RELATED FUNCTIONS
a. The Functions A 1A\ /X%

An%•A, ) Bn4

For convenience some properties of the well-known functions 1 7 An(x), Bn(x) are

here collected. They may be defined by the formulas

An(x) - (-d/dx)n(e-X/x) f { a e Xtt , (5.1)

(n+l1 -x n(_l)IAn(-x) - (-d/dx)n(eX/x) = dt e-Xtn , (5.2)
Bn(X) - (-d/dx)n[(ex-e-X)/xl ] {d e-Xttn , .3

whence

Bn(X) = (-l)n+lAn(-x) - An(x) (5.4)

The definitions of An(X) and A (-x) by means of the integrals are only valid for x > 0.n n
From the definitions (5.1-3) follow the recurrence relations

An+l(x) = (-d/dX)An(X) • (5.5)

Bn+1 (X) = (-d/dX)Bn(X) , (5.6)

XA(X) = nAnl(X) + e-X (5.7)

xBn(x) - nnl(X) - e-x + (-l)nex (5.8)

and the explici f formulas

An(x) = (nh/xn+l)e-x Z (xk/kl) , (5.9)
k=O

Bn(x) = 2(n!/xn+l)[sinhx e (xk/n!) - (xk/k!)] , (5.10)
k=O k=l

where Ze sums only the terms with even k, and Z° the termis with odd k.
k k

The functions An(x) of Eq. (5.1) have a simple connection with the r-functionnw

r(n+l) dettn - nI (5.11)

and the incomplete r-functionl8

17See, e.aj., (I), Eq. (24) and (II), Eqs. (3.15,18) and (2.27,28).
18See, e.X., E. Jahnke and F. Emde, Tables of Functions (Dover: New York, 1945), p. 25.
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r(n+l,x) - dt e tn, (5.12)

namely:

r(n+l) - r(n+l,x) + xn+lAn(x) (53)

b. The Exponential Integral

The exponential integral Ei(z) is the analytic function in the complex plane

defined by 1 9

(d/dz)Ei(z) = eZz-, (5.14)

Ei(-m+Oi) = 0 , (5.15)

whence

Ei(z) = z dt et- (5.16)

For z = 0 the integral has a logarithmic singularity; therefore the complex plane is

slit along the positive real axis from zero to infinity, and the principal value of

Ei(z) is defined by (5.16) if the path of integration from (--+Oi) to z does not cross

the positive real axis. There seems to be no established convention for the definition

of the principal value of Ei(z) on the positive real axis. For the present analysis

it is advantageous to let the positive real axis belong to the upper right quarter

plane.

Expanding the exponential in (5.16) and integrating term by term one obtains

Ei(z) = K + logz + zn!n , (5.17)

n=l

since the convergence of the series (5.17) is obvious (the series converges more

strongly than the exponential series); The value of the integration constant K depends

on whether z is located in the upper or lower half of the complex plane; this is due to

the fact that in the definition of Ei(z) it is customary to adopt a cut along the posi-

tive real axis, whereas for logz one adopts a cut along the negative real axis. It

should further be noted that for logz the negative real axis belongs by definition to

the upper left quarter plane; for this reason it was convenient to include for Ei(z)

19see reference 18, p. 1.
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the positive real axis in the upper right quarter plane. We shall now evaluate the

constant K. From Eq. (5.17 follows

K = Lirm [Ei(z)-logz] = Lira ( I dC e -I dI C (5.18)z-* 0Z--4 -Do 1

We adopt the paths of integration indicated in Fig. 6; they comply with the conventions

discussed above. We then obtain for the constant K

z

z- 1

ez z-1

z

z
a b

Fig. 6. Paths of integration for the evaluation of K: a) Im(z) >- 0; b) Im(z) < 0.

-1 z -d
K d ec I 1 + Lim I dC(eC-l)C-I - 1

-w z-O -1 100 - 1 1t t1 _- -1

dt e-tt + I dt(l-e-t)t d -
1 0 1

The last integral is different according to whether Im(z) >- 0 or Im(z) < 0, and yields

*7ri, respectively; hence

K C - •i if Im(z) > 0 ' (5.19)
C + ni if IM(z) < 0 ,

where

C = - t tl dt(l-e (5.20)

0

is Euler's constant.

For real x Eqs. (5.17,19) yield

Ei(x) = C + logjxl + E xn/nIn , x < 0, (5.21)
n=l

Ei(x*Oi) = C + logx + xn/nn i, x > 0; (5.21')
n=l

by definition:
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Ei(x+Oi) = Ei(x) , x > 0 . (5.22)

It is now useful to define a new real function EJ(x) by means of

ET(x) = ½[Ei(x+Oi) + Ei(x-Oi)] ; (5.23)

in view of Eqs. (5.21-23) we obtain

RT(x) = Ei(x) , x <0, (5.24)

T(x) = Ei(x) + i , x > o, (5.24')

and explicitly

RI(x) = C + logjxi + E xn/nin , (5.25)

n=l

which holds for positive and negative values of x. EI(x) is a function different from

Ei(x); it is only defined on the real axis and is not an analytical function in the

complex plane. Its importance is based on the fact that it is also given by the inte-

gral
x ett_ • _tt_lPT(x) = dt et = - dt et , (5.26)

if this integral is interpreted for positive values of x by its principal value. This

is easily verified by integrating eZz-l along the path indicated in Fig. 7; this yields

Fig. 7. Path of integration for the relation
between Ei(x) and I1(x)
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for x> 0

Ei(x) = Lim (I dt et/t + I dt e/t) - ni

or, because of Eq. (5.24'),
-EX

nm(x) =Lim ( dt et/t + X dt et/t) (5.27)
6-40 -• e

For negative values of x, Eq. (4.26) is obvious in view of Eqs. (5.16,24).

The exponential integral which occurs in Section 4 actually is the function EI(x)

in all instances. However, since numerical tables 2 2 mostly use the notation Ei(x) for

the function EY(x), we have also written Ei(x) instead of ET(x) in Section 4.

c. Connections Between the Functions An (x) and the Exponential Integral

From Eqs. (5.2,14,26) follows

- (-d/dx)n+iEi(-x) =- (-d/dx)n+IRT(-x)

- (-d/dx)n(e-Xx-l) = An(X) W (5.28)

Now the generalized exponential integrals En(X) are defined by 2 0

E0 (x) = e-Xxl- , El(x) = - Ei(-x) , 1
1 n-2 

J (5.29)
(n-l)IEn(x) = (x)n-El(X) + e-X k (n-2-k)1(-x)k , n • 2k=O

From Eqs. (5.29) follows the differential relation

(-d/dX)En(X) En_(x) , n P 1 , (5.30)

and the recurrence formula

(n-l)En(X) = e-x - nl(X) , n > 1 ; (5.31)

if we eliminate En_l(x) from Eqs. (5.30,31) we find the second differential relation

(_d/dx)[En(X)x -n+] e-Xx-, 0 21 (5.32)

2 0See: G. Placzek, "The Functions En(X)", and J. Lecaine, "Integrals Involving the

Functions E (x)", edited by the National Research Council of Canada, NRC No. 1547 and
n

No. 1553. Our definitions are those used by the Canadian authors.
2 1 Although Eq. (5.32) has been established by this derivation only for n • 1, it is

easily verified that it still holds for n = 0.
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If Eq. (5.28) is rewritten as

An(x) = (-d/dx)n+lEl(X) - (-d/dx)nEO(X) (5.33)

it becomes apparent tnat the functionF

... En(x)...E 2 (x), El(x), E0 (x) = A0 (x), AI(x), A2 (x), ... An(x)...

form one sequence in the sense that the operation -d/dx applied to any member of the

sequence produces the next member to the right.

The relations (5.32) suggest that it should be possible to express the functions

C •76E for a < 0 by means of the functions El, E2 , ... , Elja. Although this was found

to be true, this procedure proved to be less simple than the one described in Section

4.

d. Numerical Computation of the Function ET(x)

Several methods are available for the computation of the exponential integral in

cases where the available Tables 2 2 are not sufficient.

(1) Computation by means of the expansion (5.25). This method is particularly easy for

small values of lxi, but it is also feasible for larger values of lxI.
(2) For very large values of JxJ the asymptotic expansion2 3

ET(x) = (eXx-1) (l+xl+2x 2 +31x 3 + ... ) (5.34)

can be used. However it cannot give even 10 significant figures for x £< 20.

(3) A new method of computation was found convenient in conjunction with the functions

An(X). By virtue of Eq. (5.28) one has the Taylor expansion

nT(x+h) = IT(x) - Z (hk/k!)Akl(-x) , (5.35)
k=l

which is useful in the intermediate region where the expansion discussed under (1)

converges but slowly and the expansion mentioned under (2) does not yield enough

significant figures.

This method proved particularly convenient in conjunction with Kotani's

22Tables of Sine, Cosine, and Exponential Integral, National Bureau of Standards
(N. Y. M. T. P., 1940); Mathematical Tables of the British Association for the
Advancement of Science (London, 1931), Vol. 1, p. 31.

233ee, e.g., E. T. Whittacker and 0. N. Watson, Modern Analysis (Cambridge University

Press, 1946), p. 150.
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tables,2 4 which give values of the functions Ei(-x) and An (x) for x-values up to 24

in steps of 1.0 or closer. Thus 2t(-x) was easily obtained for any argument value

> 15, where no tables exist and where the asymptotic expansion was found to be in-

adequate. For 10 < x < 15 this method was preferred to the use of Everett inter-
22

polation in the British Tables, since the available tables of Everett coefficients

did not have close enough entries. Finally the method was also used with ease for

x < 10 in order to obtain more significant figures than present tables 2 2 provide.

The computation of ET(x) for x > 0 by means of Eq. (5.35) requires the func-

tion An(-x). By virtue of Eq. (5.4) the latter can be constructed from the func-

tions An(x) and Bn(x), which are contained in Kotani's tables.

(4) Another method for computing exponential integrals has been used by Kotani; 2 4

namely the expansion

-Ei[-(x+h)] = - •T(-x) + e-x E (-x)n-Kn(h) , (5.36)
n=0

where

Kn(h) = ni - hn+lAn(h) (5.37)

Eq. (5.37) follows from

x+h et-

-ZT(-x-h) + ET(-x) = - dt et

x
_xh e-t x)-I e- (_x)_n-l h dte-t tn

= - e I dt eI(x+t - ex dt
0 n=O 0

and Eqs. (5.11,12,13). The functions Kn(h) defined by Eq. (5.37) satisfy the re-

currence relation

Kn(h) nKnl(h) - hne-h,

e I(5.38)
Ko0(h) 1 - e-h

(5) Approximations of the exponential integral by rational functions (quotients of two

polynomials) have been given by Hastings. 2 5

2JSee (I), Section 5, for a description of these useful tables.

25C. Hastings, Approximations in Numerical Analysis (The Rand Corporation, Los

Angeles).
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TABLE XIV

EXPLICIT FORMULAS FOR C-FUNCTIONS IN THE CASE p 0 0, T 0

Note: C-functions with negative a are obtained from the corresponding D- and E-func-

tions listed in the table according to Eqs. (14.6,11)ý.
Functions with 7+6+2e = 0

(1) 0,76c =1,000 -1 4 a 4 14

D_-1,1

C1
0 0 0

=

Col 0 00 = ,1/)l/peP

C 000 = -(/)(/)+16p]

31 00 =-(3/2)+(3/2)p+(3/4)p2+(1/14)p3+(1/20)p
14 ]

C14 1
00 0 - -[(15/14)+(15/14)p+2p2+ (3/14)p3+(1/5)p 4 +(1130)p51e-P

(2) 0,-16 2,000 -1 4 a 4 14

D_ 000 =-(/)(/)~--1,2 =

E -1,2 00= p-1 (2+2p+p2 )e-P

C0 2
0 00 = [ (1/2)+(1/2)p+(1/3)p]e-P

C1 2
0 0 0 - [(3/14)+(3/14)p+(1/3 )p2+( 1/12)p3 ]e-P

C2 2
0 0 0 -[(3/2)+(3/2)p+(2/3 )p2+( 1/6)p3+( 1130 )p1 ]e-P

C32
0 0 0 - (15/14)..(15/4)p+(7/14)p l2p+11) 1+(1160)p5e

C200- ((45/4.)+(145/14)p4.(11/2)p2+(7/14)p3+(2/5)p 4+(1/15)p 5+(1/105)p6 ]e-P

(3) P,,yk 3,000 ; -1 a 3

D_ 000 = [(23/2)+(11/2)p+(11/6 )P2le-P

E_1,000 a -p-1 (6+6p.Sp2p3 )-

2140
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TABLE XIV (continued)

C 03
00  - [(3/I&)+(3/4)p+(1/2)p +(1/Jf)p 3]'

1300- [(3/2)+(3/2)p+(3/J4)p2+(1/J&)p +(1/20)p
4 ]e-P

C200 -[(15/4)+(15/4)p+(7/J4)p2+(1/2)p3+(1/1O)p4+(1/60)pSle-P

-3 0 -[ (45/4-)(45/4/J)p+(21/4 )p2+(3/2)p3+ (3/10)p 4+(1/20)p5+(1/140)p6le-P

(4) a,y6e =-1,000 4 049

D-1 '0 -[(18q/4)+(q3/4)P+(5q/6 )p2+ (25/12)p3 ]e"ý

E-1,4 00 -(24+24p+12p2 +4p3+p 4 )e-P

D_1,5 000=[472+272p(2/2 191)3(3/0pl-

E~ ~ 000 1(120+120p+60'p 2+20P3+54 +P)e-P

00 E(5745/4)+(2865/4)p+(1267/4)02 3p (6/) 4 +U92)5]-P

-_1,.600 = p (2+0p3p+120P3+30p +6p5 +p )eP

D_ ,700- [(40275/4)+(20115/4)p+(8923/4)p 2 +(1109/2)p
3+(1259/10)p 4+(403/20)p5

+(363/140)p ]e-P

00 -17 1(5040+5o4op+252Op2 +840p3+20 4 +42p5 +7p 6 +7)e-P

D_1.8 0 -( (6448o5/8)+(3222J45/8)P+(71555/4)p +(35695/8)p +(20~429/20)p +(3359/20)pS

+( 1767/70)P 6+(761/280)p~]e-P

000 -12 2
E-1,.8 = p 1(40320+Jf0320p+20l60 +62p+60 36p+6 8 p)-

D 000 -[(1451205/2)+(725445/2)p+( 1289265/8)p 2+(322005/8)p3 +(1369627/40)p 
4

9_19 000 .._p-1 (362880+36288op+1814.40p 246O*8OP3+1512Op 4+3024p5 +504p 
6+72p7+9p 8 +p9)e-P
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RUEDENBERG, RO0THAAN, AND JATJNZEMIS

TABLE XIV (continued)

Functions with ýy+'5+2e I

(5) P,,y~e =1,100 3 -2 a 3

D 2 , 1 0 = p -1(6+3p)e-P

E-21 00= _-p2 ( 3+3p+p 2 )e-P

D_ 100 = 1 r6+3p+(12 \ 2 ]e-P
-1,1 ~ p &~ ,

E_11 10= P-2 (3+3p+p2 )e-P

C0 1
100 

=- [(116)p+(116)pie-P

C1
100  23-

"C2 1 -[(1/2)p+(1/2)p+13/60)p3+(1/20)p ]e-P

C 31
100 

=[(5/4)P+(5/4 )p2+ (3/5)p 3+(11/6o)p 4+(1/30)p5]e-P

(6) P,-yb 2,100 ; -2 <- a 3

D_ (o~* p 1 2i+12p+(7/2)p2]le-2,2

E., 100 p -2 (12+12p+5P 2 +p3 )e-P

D o ~L4+12p+(10/3)p+113)p )e-P

E_ 100 -P.-2 ( 12+12p+5p2+p3 )e-P

C10= [(1/12)p+(1/12)p 1/12)p3 ]e-P

C2
100

C 3 2
1 0 0 = [(5/2)p+(5/2)p2+ (23/20)p3+(19/60)p 4 +(5/84)p5 +(1/105)p 6 le-P

(7) P,-Y6e = 3,100 ; -2 a52

D_2,3 10= p- [2+60+ (125/6p2+(23/)p~le-

10 -P-2(60+60p+27p2+7 4p )P

2~42



TWO-CENTER INTEGRALS. III

TABLE XIV (continued)

D_ 13100= _p- 1Ll12O+6Op+(2J47/l2)p 2+(4f3/l2)p3+(l/4f)p 4]e-P

1,10 -P_ (60+60p+27p2 +7p3+p4 )e-P

C03
0 lo -[(l/20)p13+(l/2O)p ]e-P

C 131
00 = -[(1/4~)p+(1/J4)p2+( 3/20)p3 +(1/15)P 4 (1/6o)p5Ie-P

(8) P,y86e = 1,010 -1 4 a 4

DI~ 01 _- 1 [6+3p+(3/2)p2]e-P

ol P _ (3+3p+2p 2+p3 )e -P

Co01
0 10 = [(1/3)p+(1/3 )P2 ]e-P

C11 
0 10 = [(1/4)p+(1/1!)p2+( 1/12)p3 ]e-P

21010 = [(1/4f)p+(1/4 )p2+ (7/60)p3+( 1/30)p 4le-P

C31 
0 10 = [(1/4)p+(1/4 )p2+ (3/20)p3+( 1/15)p 4+(1/60)p5]e-P

C4 01 [ (1/10)p 3+(1L/1O)p 
4+(3/70)p 5+(Vl105)p 6le-P

(9) P,yj6e = 2,010 ; 0 4 a 4 3

C02 00= -[(5/12)p+(5/12 )p
2+( 1/Jjp3 ]e-P

C12 
0 10 =- [f(1/2)p+(1/2)p2 +(13/60)p3+(1/20)p 4Ie-P

C2 2
0 10 = -[(3/4)p+(3/4 )p2+( 1/3)p 3+(1/12)p 4 (1/60)p5Ie-P

C32
0 10 = -[(5/4~)p+(.5/J4)p

2+ (3/5 )p
3+(11/60)p4 %(17/420)p5+(1/1i40)p 6 ]e-P

Functions with 7y+6+2e - 2

(10) P,-y6e =1,200 ; -3 4 a 4 2

D_31 00= P_ (2i4+12p+3p2 )e-P

20 -p - '(12+12p+5p 2+p3)e-P
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RUEDENBEG, ROOTHAAN, AND JAUNZNEKIS

TABLE XIV (continued)

D_2 ,1 
2 0 0 =__ - 2 [60+30p+(15/2 )p2+( 1/2)p']e-P

R-2,1 
20 0 = 2p-3(15+15p+6p2+p3 )e-P

D 200= p -a60+30p+(J43/6 )p2+( 1/6)p3_(1/6)p4 ]e-P

200,=1 -2p3(15+15p+6 P2+p3)e-P

=00-[I(1/4)+( 1/4)p+(1/6 )p2+( 1/12)p3e

c1200 = [(1/2)+(1/2)P+(7/20)p2+(116)3+( 420)k-P

C2 20 -(5/4)+(5/4 )p+(9/10)p2+ (29/60)p3+(1/6)p4 +(1/30)p5]e&P

(11) ,ye=2,200 ; -3 4 a 4 2

D_3 ,2
2 0 0 -= _-p2 156+78p+(J49/2)p2 +(7/2)p 3 ]e-P

E3,2 
20 0 = p-3(78+78p+34p2+8p3+p

4 )e-P

D_2, - p0 = -2 ( 360+180p+(337/6)p2+ (49/6)p3+( 1/3)p 4le-P

E-2,2200 = 2-(9+0+9293p )e-P

-22 2 31 45p+ 6 -pn112pl

D 200 --
-1, _ 2p3 (90+90P+39p2+9p +p4 )e

200 -32 3

=[(1/2)+(1/2)p+(7/30)p+1/15)p3+(1/30)p ]e-P

C1
200 

=[(5/4)+(5/4)p+(13/20 )p2+ 7 30)3 (1 ) 4 +(1/60)p5ie-P

22 [(5J)(5J)+2/0p1 7/20)p +(53/210)p +(11/210)p +(1/105)p]e

(12) P,-Y6e = 3,200 ; 0 4 a 4 1

= 03 20 (5/Jf)+( 5/4)p+(11/20)p2+ (2/15)p3 +(1/30)p 4 +(1/6O)p~]e-P

-1 0 -[ (15/4)+(1.5/4)p+(7/i&)p2+( 1/2)p3+(4/35)p 4+(13/420)p5+(1/14o)p6 Je-P
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TWO-CENTER INTEGRALS. III

TABLE XIV (continued)

(13) A,,y8 = 1,110 j -2 a 3

110. _-J[6o+3oA+(27/2)p +(7/2)p ]eP

B' E, 1 10 w p3 ~(30+30p+15P 2+5p 3+p 4)e-P
-2,1

E_ 110= _p-3(3o+3op+1Sp2 +p3+p4 )e'P

C 11
0 = _[(1/2)+(1/2-)p+(1/12)p3](/15P~~13~ 4 e

01

C2 1 10 = _[12+12p(10p2 11 p_(/0p4l-

C21110 - -[54+5/)+(/ fp_(/0p_12~p4 16~~e

(14I) P,yt~e = 2,110 ; -2 _< a 4 2

D 110 , -2 [360+180p+(481/6)p2+(121/6)p3+(23/6)p 4 ]e-P

E-2 ,2
1 1 0 , _-p3(180+180p+9Op2 +30p3+7p 4 +p 5)e-P

E-12 10= p 3(18D+18op+90P2 +30P3+7p 4+p 5)e-P

C0 2 
110 - [(1/2)+(1/2)p+(3/20)p2-(1/60)p3_(1/20)p4 ]e-P

C12 10 - [(5/4)+(5/4)p+(2/5 )p2_ (1/60)p-3 -(1/20")p 4_(1/60)p5]e-P

(15) P,yOe = 1,020 ; 0 4 a 4 3

C0020 -11)+14p(3 2+ /)]EP

c11 "' 0  -[~(1/2)+(1/2)p+(7/20 )p2+(11l/60)p3+(1/2O)p 4le-P

C21 
020  - .. (5/I4)+(5/Jf)p+(13/20)p2+(7/2o)p3+( 1/15)p 4+(1/60)p5]e-P

c31 
020 -[ (15/4)+(15/4)p+(7/4 )p2+(1/2)p3+(4/35)p 4+(13/if20 )p5+(1/1J40)p 

6 ]e-P
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RUEDENBERO, ROOTHAAN, AND JAUNZEMIS

TAKLE XrV (continued)

(16) 13,y6c 1,001 1 3~a 3

D_3,1 01=p-2 (24+12p+2p2)e-P

E 0011 = -- 2 -

_2 ,1
0  = - (60+30p+7p 2)e~

E 2 1
0 1  2p3(15+15P+6p+)e

D_ 001= P,-2 [60+30p+(23/3)p 2 +(2/3)p 3 ]e&P

Eý o - 2p3 (15+15p+6p+ )e

00001 = [(1/2)+(1/2)p+(1/6 )P2]e-P

C 01  = [1+p+(2/5 )p2 +( 1/15)P 3 ]

0 21 00- [(5/2 )+(5/2 )p+(11l/l0)p2+ (4/15 Vp3+(1130)p 4 Je-P

C31
00 1 

=[( 15/2 )+(15/2 )p+(7 /2 )p 2+p3+(13/70)p 4+( 2/1O5')p5]e-P

(17) P,7 = 2,001 1 -3 £ a 4 2

D_ ,201 -p2 (156+78P +21P2 +2p3 )e-P

E_ 001 2p-3 (39+39p+16 p2 +3p3 )e-P

00 -2[3 6 +lS0p+(16 7/3 ) 
2 +(2 3/3 )p

3 ]&-P

E 2001 -2p-3(90+90p+39p2+9p3+p4 )e-P

E 001 -32 2 3 4

-_1,2 =P 2p '0+980p+39p +9p +(1/) )e/2P e-

001 - 392934

C1 , 2  - e]ei

C1001 = -(/)(/ P(ll~2 41)3(/0P4l-

C002 -H 15/2)+(l5/2)p+(17/5)p 2+(9/l0)p 3+(31/210)p 4+(1/70)p
51e-P
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TWO-CENTER INTEGRALS. III

TABLE XIV (continued)

Functions with y+6+2e= 3

(18) P,76e = 1,300 ; -4 4 a 4 1

D_ 300= p3[120+i60p+(62/3 )p2+( 11/3 )p3 ]e-P

-_4,1 30 P 4 (6o+60p+27P 2+7P 3+p 4 )e-P

D_3,1 30= -P3 3[540+270p+84p2+12p3+(1!.2)p 4 ]e-P

-_3,1 30=p-4(90+90p+s3 9p2+9p3+p 4 )e-P

D_21 00= P_3 [1260+630p +190P2 +25p3+(1/2 )p4 _ (1/6)p5 Ie-P

E_ ,130 =-6p-4 (105+105p+45p2+lOp3+p 4)e-P

E_1 ,1
3 0 0 -= 6p-4 (105+105P+45p 2+10p3 +p 4 )e-P

001 300 = - ((3110)p+(3110 )p2+ (3/20)p3 +(1,/20)p 4le-P

C11 
30 0 = -[(3/4)p+(3/4 )p2+ (2/5)p 3+(3/20)p 4 +(1130)p 51e1'

(19) p,,y6E = 2,300 ; -4 _< a _< 1

D_ 4,2 300 = _p_3 [1140+570p+(5&98/3 )p2 +( 109/3 )p3+(25/6)p4 le.P

E_ 300 =-4 82 6p+p4+5eP-4,2 =p (570+570P+258p+8
3 1p+~e

D 300 ~-3 4500+2 250P+76 6p 2133p3+13P
4+(1/)P5]P

E -3,2 30= -3p-4 (750+750p+336p P2.+86p3 +13p 4+p5 )e-P

D_2 ,2
3 0 0 = -p-3 [ 10080+504op +17O~P2 +29oP 3~+( 107/4)p 4 +(5/12)p5- (1/l2)p 6 ]&eP

E -2,2 300 = 6p-4 (840+840p+3775p2 +95p 3 +14~p4 +p5)e-P

D_1 ,2 
3 0 0 = P_ 3 [10080+5040p+1700P2 +290P3+ (539/20)p 4+(37/60)p5+(1/6O)p 6 +(1/30)p~]e-P'

E_,230 =- 6p-4 (840*+840p+375p2+95p 3+14p 4+p 5)e-P

C0 0 [(9/2O)p+(9/20)'p2 +(1/5)p3+(1/2O)p 4 (1/60)p~]e-P
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RUIDENBEO, R0OMIAAN, AND JAUNZEMIS

TABLE XIV (continued)

C 1
3 0 E((/ 2 )p+(3/ 2 )p2+( 9 9 /1J4 0)p +( 2 9 /1J 4 0)p +(1 9 / 4 2 0)p5 +(1/10 5 )p 6 ]e-P

(20) 0,76e =1,210 ; -3 4 a 4 2

D-3 ,1
21  

= -P [540+2 0+0p+2J4p3+(7/2)p ]-

E _,210 = p 4 (270+270p+129p2+39p +8p p)e-P

D~ 210 - p[j126o+630p+25op2 +55p3+8p4 +1/3)p 5 e-P

E 210 = 2p (3 15+3 15 p+150p+4 5p +9p +p5e

21, p3c1260+630p+250P2 +55p3+( 95/12)p 
4 +(1/4)p 5 _(1/12)p 6]e-P

-_1,1 21 2p4 (315+315p+150P2 4 5p +9p4 5eP

E 210 2_2 3 -

-L (1/20)p+(1/20)p .. 1/60)p3 _(1130)p4 le~

[21
2 1/ 4)p~+(12/45)p2+(1/105)p4.. (1/30)p5._.(1/605)p leP

(21) p,76 e = 1,120 ; -2 4 2

D~,120 = p3[126o+630p+3 1OP2+85p3+(i43/2)p 4+(23/6)p5Ie-P

E2  120 -4 .pf(63 O+63 Op+33OP2 +12 Op3+ 3
4 +7 5+p6 )eP

D_, 1
12 0 

= -p3 [126o+630p+310P 2 +85p3+(253/12 )p4+ (41/12)p5+1/'f)p 6]le-P

= [ (1/5)p+( 1/5)p 1/60),p3 -(1I/20)p leiP

1204



TWO-CENTER INTEGRALS. III

TABLE XIV (continued)

(22) P,-yk = 1,101 -4 4 a 4 2

D_41 01= p-3[l2o+6op+(44/3 )p2+ (2/3)p3]e-P

E-4,1 101 = -4fp4 (15+15P+6p2+p3)e-P

D_31 01= _-p3(5140+270P+78p2+9p3)e-P

E-3,1 = 2p (135+135P+57P2+12P +~p )e

D_ 101= p -3 [1260+630P +190p2+25p3(2/3)p4 ]e-P

E-21 01= -6p&4 (105+105P+I45p2+10P3+& )e-P

D_11 01= _-p [1260+630p+190p2+25p3+(1/2)p4_(1/6)p5]e-P

E-il 01= 6p-
4 (105+lO5p+45P2+10P 

3+P4)e-P

co 01 = [(1/5)p+(1/5 )p2+( 1/15)p3 ]e-P

C11 
10 1 = [(l/2 )p+(1/ 2)p2+(l/5)p

3+(l/3 O)p 1eP

C21 10 [(H3/2)p+(3/2)p2+(23/35)P3 +(11/70)P4 +(2/105)P 51e-P

(23) P,-Ybe = 2,101 ; -4 <- a 1

D_42 01= _-p [1140+570P+526p2+(73/3)p 3+(2/3)p 4 eP

14,101= 2p (285+285P+123p +28p +3p )eP

_320 p 3[4500+2250P+7142p2+121p3+(29/3)p ]e-P

101. 4~ 3 4 5e-pE-3,21 -2p-(1125+112 5P+J4 98p +123p +17p +p )

D_2, 10 -, p3[1O080+5Oi4Op+17OOP2+29Op3+(161/6)p4+(1/2)p5]e-P

E2 2101 =6p-
4 (84f0+8J40P+375p2+95p3 +1i4p4+p 5)e-P

10 3[ 1O80+50J4Op+17O~p2 29OP3+(267/10 )p44(11/3O)p5_(1/1O)p6)e-P

A-.1,2 101 - 6p-4(8i40.840p+375p2 +95p
3+1Jfp4p5)e-P
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RUEDENBERG, ROOTHAAN, AND JAUNZE4IS

TABLE XIV (continued)

C02101 = -[(3/1O)p+(3/lO)p2+ (2/15)p3+(1/30)p]e-P

C12
10 1 = -[p+p2+( 3 1/ 7 0)p3+( 2 3 / 2 10)p 4 +(1/70)p5]e-P

(24) P,76e = 1,011 ; -3 4 a 4 2

D_ 1011 = _p-31540+270p+lO2p2+21p3+2p4]e-P-3,1

01= 6p- 4(45+45P+21P2+6p3+p 4 )e-PE.3,1 =

011 p-3[1260+630p+250p2 +55p3+(23/3)p 4 ]e-

01= -2p-4 (315+315p+ 1 50 p2 +45p3 +gp 4 +p5)e-P

Oi l p-3[1260+630p+25Op2+55p3+(49/6)p
4 +(1/2)p5]e-P

-1,1 = 2p-4(315+315p+150p2+45p3+9p
4 +p5)e-P

011 - 2
C0 1  = [(3/10)p+(3/10)p +(1/lO)p 3 ]e-

011=2CI il = -[(1/2)p+(1/2 )p2+(I1/5)p 3+(1/30)p 4]e-P

C2 1
0 1 1 = -[p+p2+(31/70)p3+(23/210)p 4+(1/70)p5]e-P

Functions with 7+6+2e = 4

(25) P,7ye = 1,310 ; -4 < a s 1

D 310= -4 OlOP2 34 5-
-_ 1 -p [5040+2520p+lOO p2+220p3 +(227/6)p +(25/6)p 5 ]e-

E-4,1310= p-5(2520+2520p+1200p2+360p3+75p
4 +11p5+p6)e-P

D 3 ,1310 = p-[20160+10080p+3940p2+850P3+(275/2)p +(77/ 6 )p5+(1/3)P6]e-P

-3p5 (3360+3360p+1590p2 +470P3 4+13P )e-PE3,1

D_2,1 = -P 4 [45360+22680p+8820p
2 +1890p3+(1199/4)P +(107/4)p +(1/2)p 6 -(1/12)p 7 ]e-

E-2 ,1310 6p-5(3780+3780p+1785p2+525p3+1O5p +14p5+p 6 )eP

3-1, p-4[45360+22680p+8820p
2 +1890p 3 +(2993/O4p +(263/O)p5+(2/5)p

6 _ 07

+(1/30)p
8 ]e-P
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TWO-CENTER INTEGRALS. III

TABLE XIV (continued.)

E_ ,1 10= _6-5(3780+3780p+1785p2 +525p3+l05p 4+ 4p5+p 6)e-P

C030= -[I:(3/4)+(3/4 )p+(3/lO)p2+(l/2O)p3_(l/6O)p4_ (1/6O)p5]e-P

31
3 0 _ -[(q/4)+(9/J4)p+(l5/14 )p2+(q/28)p3+(l/28)p4_(/1O 5 (/0) 6I

(26) Pyb = 1,220 ; 0 4 a 6 1

=o 2 -[(3/4)+(3/4)p+(l/4 )p2+( 1/60)p5 ]e-P

011220 = ((9/4)+(9/4)p+(23/28 )p2+(l/114)p.5-(l/70)p 4+(l/84)p5+(l/l4o)p6 ]e-P

(27) P,7
6
E = 1,201 -4 -- a 1

D_4,201 =_-4[5040+2520p+820p 2+l130p 3+(29/13)p ]e-P

E_ , 201 = 2p-5 (1260+1260p+555p 2+J35pi5+18p4 p5)e-P

D_31 21 =P_ [20160+10080p+3340p 2 +550p 3+( 139/3).p 4+23p]-

E_3 ,1
2 0 1 =_2p-5 (5o40+5o4op+2235p2 +555P3 +78p 4+5P5)e-P

D_ ,1 01= _-p 4 45360+2268op+7560p 2+1260p3+(219/2)p4 +(3/2)p5-(l/6)p 6 ]e-P

E_ , 201 = 24p-5(945+945p+420p2+l05p3+l5p 4 +p5)e-P

D_ ,1 01= P_ [ 45360+22680p+7560p 2+1260p3 +(549/5)p 4+(9/5)p 5+( 1/15 )p?]ei'

E_ , 201 =_ .24p-5(945+945P+420p2+105p3+15p 4+p5)e-P

Col21 [(1/2)+(1/2)p+(3/10)p +(2/15)p +(1/30)p
4 ]le-p

(28) P,'y6c = 1,111 ; -4 _< a 1

D_ ,11 1= _p_ [5040+2520p+940p2 +190P3 +(713/3)p 4+(2/3)p 5 Je-P

E -4111= 6p-5(420+420p+195p2+55p +lop +p )e-P

D_ 1 
1 1 , P_ [20160+10080p+3880P2 +82op3 +(373/3)p 4+(29/3)p 5]eP
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RUEDENBERG, ROOTI{AAN, AND JAUNZEMIS

TABLE XIV (continued)

E-3;1
1 1il . 2p-5(5040+5040p+2370p2 +690p3 +135p 4 17P 5+p 

6 )e-P

D_2,1 ill = _P-4[J4 536O+2268Op+882OP
2+ 1890pý +(599/2)p 4+(53/2)p5+(l/2)p 6]eP

E_-. 1111 6p ( 7 O 3 8 pl85P +52 5p --105P +14p +p)e

D_=, p [45 36O+ 2 26 80p+ 88 2Op +l89Op +(1499/5)p +(134/5)p5+(1/2)p 0/1/0)p]e

E 11 il -.6p-5( 3 780+3 78Op+1785P 2+52 5p 3+105P 
4+14p5+p 6)e-P

00o11 [(l/2 )+(l/2)p+(l/lO)p2-(1/15 )p3_.(1/ 30)p leP

(29) PY 6 E = 1,002; -4 a1

002 42 34
D-4,1 _-.p[5o40+252OP+76op +loop +(8/3)p Je-P

E_ 4,1 002 _24p-5(105+105P+45p

2+10P3+p4 )e-P

D_~ ~ 3,1 20160+10080p+32 8 0p 2 +520p1 3+(116/3)p l

E_ , 002 =-8 p 5( 26o+l26op+555p 2+135p 3+18p 
4+p 5)e-P

D_ ,100 _- 4 (45360+22680+75
60p2 +126Op3+llOp 4+2p5)e-P

E2, 002 _ 24p-5(945+945P+420P2+105P 
3 +15P 4+P5)e-P

D_1 ,1
0 0 2 -p- 4 [i4s360+22680p+760p 2 +1260p15+(54~4/5)p 4 (4/5)p 5-(2/5)p6 ]e-P

E_1,1 002 = .24p-5(945+ 945P+420P2+105P 
3 +15P 4+p )e-P

C ,002 = -.[2+2p+(4/5 )p2+ (2/15)p
3 ]e-P

c,, 0 02 . - [6+6p+( 18/7 )p2+ (4/7)p3+(2/35)p 4]-
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TABLE XV

EXPLICIT FORMULAS FOR C-FUNCTIONS IN THE CASE p - 0, 0 € 0

Functions with y+6+2c = 0

(1) plbe = 1,000 -1 4 a 4 4

c_1,1 -(-)col 0 C = -(1/2)(1-0)3
00, (3/4)(1ir)• 5000 c•O0 _1/)i•6

c21000 4 C3 1 
000  -(3/2)(1-T) C41  =

(2) ,76 = 2,000 -1 £ a e 4

0002 (1/2)(1.) 0
0 0  (1/2)(1-v)3 000 (3/4)(1-T)

0_1,2 =-002 12

C22
0 00  (3/2)-(1,-)5 C32

00 0  (15/4)(1-T)6  C42
0 00 = (45/4)(1-T) 7

(3) ,76 = 3,000 ; -1 a"4 3

c_1,3 = -(1/2)(1-,T)3 C3 = -(3/4)(1-.T) 4  C13
00 = -(3/2)(1-T

C2 00 - -(15/4)(1-T) 6  C3 3
000 = (45/4)(1)7023 =C3

(4) a,76c = -1,000 ; 4 5 • ' 9

000 C 00 = -1,6/2)(1_/4)5 000

c_1,4 = (3/4)(1-T),4  c_1,5 00c-1,6 = (15/4)(1-) 6

000 000 008 (152(~)

0_i,7 = -(45/4)(I1-T)7 C_1 , 8  = (315/8)(1-v)8 C~ 1 , 0 0 0 
= -(315/2)(1-_1) 9

Functions with 7+64e = 1

All these C-functions vanish for p = 0

Functions with 7+6+2e 2

(10) f,76e =. 1,200 ; -3 £a 4 2

C_3,120 -(1/3)(1-T) 0_2,1 = -(1/6)(-_T) 2  C_1 , 1
2 0 0 =(1/6)(1-)3

204200 200 = (/)z•6
Co02 0 0  -(1/4)(1-T) 4  C0 0 = -(1/2)(1-,T) 5  C2 1  -

(11) -,y6e = 2,200 ; -3 •a • 2

C-32 00. 1/) ,_)2C-,2200. (1/6)(1_,r)3 C12200 =(1/4)(1-T)4

Co2°°00 (1/2)(1-T) 5  C12 2 0 0 = (5/4)(1_-). 6  C2 2
2 00  (15/4)(1-1)7
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TABLE XV (continued)

(12) P,76y = 3,200 ; 1 4 a 4 2

0200 (5/4)(1-_ )6 C 3
20 0 = _(15/4)(1-T)7

(13) p,y6e = 1,110 ; -2 r a 4 3

C 1
10 = _(i/6)(i_) 2  i0 _(I/6)(T) 3 0 = _(1/4)(1)_2,1C-1 = ,01

C1
11 0 

= -(1/2)(1_T)
5  C 1 1 0 = -(5/4)(1-_) 6  C3

1 10  (Ii0 (i2(z)C21 C31 =-15)I-)

(14) P,y6E = 2,110 ; -2 4 a 4 2

110 (1/6)(I_T)3 i0 i1)I)4 021 I2(_)

C2,2 = 0-1,2 = (1/2)(1-T5=

C O110 ( 5 /4)'(i_..)6 =I0 (15/4)(1-_) 7
C12 = 22

(15) P-,6c = 1,020 ; 0 £ a 4 3

=0020 -(1/4)(1-T) 4 -(1/2)(1-)
5  C2 1

0  =

c020 = -(15/4)(1-T)7
C3 1

(16) ,y6€ = 1,001 ; -3 4 a 4 3

3, =(2/3)(1-T) C 2 ,1
0 0 1 = (1/3)(_)2 C-1

0 01  (1/3)(1-T)3

C0 _
0 01  = (2/3)(I-•) 0_2,1 = 1 co =6

ol001 =(1/2)(1-T) 4 C 001 (1_T)5 C2001 (5/2)(1-T) 6

001 (15/2)(,_T)7
C3 1  =

(17) ,76€ = 2,001 ; -3 4 a 4 2

001 _(1/3)(1._)2 C 2 ,2
00 1 = -(1/3)(1-T) 3  C 0 0 1  _(1/2)(1-)4

C3,2 0_, =C_2 =

00 -(- C 001 6 -(15/2)(1
C02  -(i 12 -(5/2)(1-T) 2
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TABLE XV (continued)

Functions with y+6+2E = 3

All these C-functions vanish for p = 0

Functions with 7+6+2e = 4

(25) P,y6e = 1,310; -4 a 4 1

310 _(1/1O)(=_T)2 310 _C 310 = 4(3/20)(1_)SC_3, =_(/i) T) 3 C_ 30 -(/0)1T
**44,1 ~ lT -3,1 -2,1

c, 3 10 _ -(3/1o)(_-T) 5  30 = -(3/4)(1-T) 6  c 310 _(9/4)(i_=)7

(26) P,y6e = 1,220; 0 a •

C01
2 2 0 1 -(3/4)(i-T)6 C 1

220 = -(9/4)(1-T)7

(27) *,y6e = 1,201; -4 4 a 4 1

c-T,1 )2  C 3,1
2 1 = (1/15)1-T) C-2 ,1

201 = (1/10)(1-) 4

C- 201 = (1/5)(,-_,)5 C01 
2 0 1 = (1/2)(1-T)6 201 (3/2)(1_•)7

(28) Py6e = 1,111 4 - a 6 1

C 14 ,1 "' (1/15)( C 11 1  2 =/11)(10) C 11
11 111il 111 (3/2)(1-T)7

C_1,1 "(/)-)5Co1 (1/2)(1-T)6 C11

(29) ,-y6e = 1,002 ; -4 • 1

C 4 1
002 = -(4/15)(1-_) 2  C-3,1

00 2 _ _(4/15)(,_T)3  002 = -(2/5)(1-T)4

C -(_4/5)(1-T) 5  C0 1
002 = _2(1-_) 6  11002 - -6(1,-) 7

255



RUEDENBERG, ROOTHAAN, AND JAUNZE4IS

LITERATURE ON HYBRID INTEGRALS

The existing publications on the hybrid integrals dan be divided into four groups

according to the integration methods employed.26

First Group:

(1) N. Rosen, Phys. Rev. 38, 255 (1931).

[nsansblnsbnsb] in terms of An(2P), Bn(2Tp).

(2) W. H. Furry and J. H. Bartlett, Jr., Phys. Rev,. 38, 1615 (1931), and 39, 210 (1932).

[2sa2saj2sa2sb] in terms of An(p); [2Sa2PdaI2sa2sb], [2Sa2Saj2sa2p"b],

[2Sa2sa 12P~a2P~b], [2Sa2Pda I2Sa2Pdb], [2Pda2PdaI 2sa2Sb], [2sa2Saj 2PIra2Prb],

[2Plra2 12a2pltb], [2pa2piraj 2sa2sb], for T = 0 in terms of auxiliary functionsSa ab

with numerical tables for the latter.

(3) J. 0. Hirschfelder and J. W. Linnett, J. Chem. Phys. 18, 130 (1950).

[lSal~aI2Sa2Sb], [i1a2P"all'a2Ppb], for T = 0 in terms of auxiliary functions.

The method employed by these authors was developed by Rosen and Bartlett. The early

work on hybrid integrals is not very extensive, presumably because in the Heitler-

London theory of the covalent bond hybrid integrals do not occur. They appear only if

ionic structures are taken into account, and for this reason some authors call them

"ionic integrals".

Second Group:

(4) A. L. Sklar and R. H. Lyddane, J. Chem. Phys. 7, 374 (1939).

[2Pita2P7rbI2Pwb2P7Tb] for T = 0 in terms of auxiliary functions.

(5) R. G. Parr and B. L. Crawford, Jr., J. Chem. Phys. 16, 1049 (1948).

[2Plra2PltbI2p~rb2p~rb], [2P7ra 2 PrbI2p~tb2p;Rb], [2Pwa2P71bI2P7rb2P:Rb] for T = 0 in terms

of auxiliary functions.

(6) E. Srocco and 0. Salvetti, Ric. Sci. 21, 1629 (1951).

[2P7ra2pTraI2P7Ta2PlTbi for T * 0.

(7) R. 0. Brennan and J. F. Mulligan, J. Chem. Phys. 2O0, 1635 (1952).

All integrals [Xa,'Xa"IXaXb] between orbitals with quantum number 2 have been eval-

uated in an explicit form, under the additional assumption that Xa, Xa', Xa" have

the same orbital exponent (in general different from the orbital exponent of Xb),

_i*.,Pa = Pa # Pb in our notation.

The procedure here employed was first developed by Sklar and Lyddane and then improved

26These four methods are all different from the one developed in this paper.
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by other authors. Brennan and Mulligan make a systematic investigation of the limited
class of integrals mentioned above.

Third Grou2:

(8) M. Kotani, A. Amemiya, and T. Simose, Proc. Phys. Math. Soc. Japan 20, Extra No. 1

(1938), and 22, Extra No. 1 (1940).

(a) [2sa2sa12sa2sb], [2P7ra2SaI2Pa2Sb] for =
(b) [2sa15bIlsblIb], [2Pal bIlSblb], [2sa2sa12salSb], [2Pda2PdaI2SalSb],

[2Sa2Pda12Sal b], [2P a2PalI2Sal~b], [2p7ra2praI2p.alSb], [2 a2Sa12P~al~b],

[2sa2Pda*I2P~al~b], [2P2P12p6alsb [2 Sa 2PWal2p7r~alSb], [2pda2P7raI2P71aalab]

for Pa = Pa # Pb

All in terms of auxiliary functions. Numerical tables for the latter in 20, Extra

No. 1 (1938); numerical tables of integrals in 22, Extra No. 1 (1940).

(9) H. Kopineck, Z. Naturforsch. 5a, 420 (1950), 6a, 177 (1951).

All integrals [Xa Xa" IXaXb] between orbitals with quantum number 2, with the

additional assumption that Xa', Xa'' Xa, Xb all have the same orbital exponent,

ie'.,a = b in our notation.

The integrals are expressed in terms of auxiliary functions; tables are given for

the integrals.

(10) G. Araki and W. Watari, Progr. Theor. Phys. 6, 961 (1951).
Although being prepared independently, this paper covers the same material as

Kopineck's paper (regarding hybrid integrals). The integrals are tabulated for

closer steps of the argument and with more significant figures. There are serious

discrepancies between the tables of (9) and (10).

(11) T. Murai and 0. Araki, Progr. Theor. Phys. 8, 615 (1952).

They give five Hybrid Integrals for several argument values which include cases

with Pa = ýa * Pb and Pa = Pb # Pa

This method was developed by the Japanese authors, on whose results also Kopineck's

papers are based. This group of papers contains the largest amount of numerical tables

yet made. Work in this direction is presently continuing in Japan. 2 7

Fourth Group:

(12) M. P. Barnett and C. A. Coulson, Philos. Trans. A243, 221 (1951).

2TSee Progress Report No. 1 (October, 1952) of the Japanese Research Group for the
Study of Atomic and Molecular Structure.
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All hybrid integrals for n = 1, 2 in terms of generalized exponential integrals

and half-integral-order Bessel functions of imaginary argument.

(13) S. 0. Lundqvist and P.-O. L8wdin, Ark. Fys. 3, 147 (1951).

Outline of a method applicable to all hybrid integrals.

These authors are primarily interested in developing an integration method applicable

to all molecular integrals, and apply it then to the hybrid integrals. Coulson and

Barnett proceed more by means of an analytical investigation; L8wdin relies more on

numerical integration methods.
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FREE-ELECTRON NETWORK MODEL FOR CONJUGATED SYSTEMS. II. NUMERICAL CALCULATIONSt*

[THIS TECHNICAL REPORT, 1952-53, Part One, 581

CORRIGENDA

Charles W. Scherr
Laboratory of Molecular Structure and Spectra

Department of Physics
The University of Chicago

Chicago 37, Illinois

P. 60: The text immediately following Eq. (1) reading: "there exist solutions

to the end of the paragraph is incorrect. It should read: "there exist an

infinity of solutions which may be found from the considerations of I, Sections 2d and

2e. The symmetries of these higher levels are reproduced in the same fashion as the

energy levels of nonalternant molecules."

P. 75, Table II: Under the row heading "n-polyenes", (n + 1)/2 should be correc-

ted to 2/(p + 1).

P. 83: The next to last line of Eq. (A.2) should read: "0(1,12) - 2cosK¢(l) +

0(2) - 0"..

P. 86: Immediately following Eq. (A.9a), the text should read: "Hence, 0.1799 -

0(l) - ao00a(3K/2) o.5488a 1 ... ".

tThis work was assisted in part by the Office of Naval Research under Task Order IX of

Contract N6ori-20 with The University of Chicago.

*These Corrigenda apply only to the version of the article appearing in THIS TECHNICAL

REPORT, 1952r53, Part One, and not to that appearing in J. Chem. Phys. 21, 1582

(1953).
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STUDIES OF ATOMIC SELF-CONSISTENT FIELDS. I. CALCULATION OF SLATER FUNCTIONSt

Per-Olov L8wdin t

Laboratory of Molecular Structure and Spectra
Department of Physics

The University of Chicago
Chicago 37, Illinois

ABSTRACT

A refined technique is described for approximating the numerically given radial

part of atomic wave functions associated with self-consistent fields with exchange by

means of Slater's analytical functions obtained by replacing each exponential ir a

hydrogen-like wave function by the sum of one, two, three, or more exponentials. Expo-

nents and coefficients of these exponentials are calculated for the 3p-function of Cl,

corresponding to an accuracy of 0.0015 for the normalized radial part, and, with

slightly less accuracy, for all the functions of two closed-shell ions, F (without

exchange) and Na+, and for some neutral first-row atoms, C(ID), N(2 p), and O(1 S). The

interpolation problem is discussed, and a new interpolation rule for the coefficients

is stated, which gives excellent agreement (0.001) in the examples chosen, namely the

ls-functions of the He-like ions and the 2p-functions of Na+, Mg+2, and Si+.

IN THE QUANTUM-MECHANICAL treatment of many-electron atoms, the total antisymmetric

wave functions describing the different atomic states are usually approximated by the

sum of one, two, three or more determinants of one-electron wave functions, each being

a product of an atomic orbital (AO) and a spin function. The atomic orbitals are

determined from the basic Schr8dinger equation for the atom by means of the variation

2principle as products of radial parts and spherical harmonics, and the best expressions

for the former are obtained numerically by step-by-step integration of the Hartree-Fock

equations by using the self-consistent-field technique developed by Hartree. 3

tThis work was assisted in part by the Office of Naval Research under Task Order IX of

Contract N6ori-20 with The University of Chicago, in part by the Swedish Natural

Science Research Council, and in part by the Elizabeth Thompson Science Fund.

*Permanent address: Institute for Mechanics and Mathematical Physics, University of

Uppsala, Uppsala, Sweden.

J. C. Slater, Phys. Rev. 34, 1293 (1929).

2 J. C. Slater, Phys. Rev. 35, 210 (1930), and V. Fock, Z. Physik 61, 126 (1930).

3Por an excellent survey of this field, see D. R. Hartree, Rep. Prog. Phys. 11, 113

(1946).
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For some purposes, it has been found desirable to use also analytic forms of these

atomic orbitals. Here we will not discuss the question whether it is better to base

applications of the atomic theory on the analytical wave functions rather than on the

numerical tables. It has often been said that the analytic expressions would be better

for use, e.g., in the theory of molecules and crystals, but our experience is that it

is often Just as convenient to use numerical computations as analytical calculations

and that many times the former are simpler and quicker. However, considering the fact

that many physicists are more accustomed to analytical work than to numerical computa-

tions, we think that both methods should be developed simultaneously without giving

priority to anyone of them. This series of papers will be devoted to a study of the

atomic self-consistent fields with exchange, and various problems will be discussed

both from the analytical and the numerical points of view.

Analytic expressions for the radial wave functions can be derived in two ways,

either directly by fixing parameters in given analytic functions, for instance, of the
4hydrogen-like type by means of the variation principle as described by Zener and

others,5 or indirectly by approximating the numerically given Hartree-Fock functions in
6

some way analytically, as was proposed by Slater. Except for the simplest cases, the

former method leads to rather formidable calculations, whereas the latter is simple but

based on the assumption that the self-consistent-field functions are given in advance.

An investigation of the accuracy of these analytic atomic orbitals shows that the

Zener and Morse-Young-Haurwitz functions4,5 containing only a few exponentials repre-

sent rather poor approximations of the self-consistent fields 7 and hence also of. the

true charge distributions,8 and that the deviations are appreciable, particularly at

4V. Guillemin and C. Zener, Z. Physik 61, 199 (1930); C. Zener, Phys. Rev. 36, 51

(1930); J. C. Slater, Phys. Rev. 36, 57 (1930).

5Extensive tables have been given by Morse, Young, and Haurwitz, Phys. Rev. 48, 948

(1935); for improvements and corrections, see also L. Goldberg and A. M. Clogston,
Phys. Rev. 56, 696 (1939), and W. E. Duncanson and C. A. Coulson, Proc. Roy. Soc.
(Edinburgh) 62, 37 (1944).

J. C. Slater, Phys. Rev. 42, 33 (1932); F. W. Brown, Phys. Rev. 44, 214 (1933).

7 Only in a few cases have Zener-type functions been used as starting, functions for

self-consistent-field calculations; see, e.g., V. Fock and M. J. Petrashen, Physik.

Z. Sowjetunion 6, 368 (1934); 8, 359 (1935).
8 H. Bethe, Z. Physik 52, 431 (1929); 5, 815 (1929), has given a survey of different

approximations of the charge distribution of He and He-like ions in comparison to
the "true" distributions given by Hylleraas.
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large distances. The last fact is of essential importance in the theory of molecules

and crystals, and the simplest way of obtaining good knalytical orbitals for appli-

6cations in this field seems therefore to be to use Slater's approach. Part I of this

series of papers will be devoted to a study of a refinement of Slater's method, giving

analytic atomic wave functions with almost the same accuracy as the numerical functions

themselves.

I. CALCULATION OF SLATER-FUNCTIONS

An atomic orbital with the quantum numbers n, 2, m is the product of a radial wave

function fn 2 (r)/r and a normalized spherical harmonic Y m(e,T). The best expressions

for the functions fni(r) are now given numerically for many atoms and ions by Hartree

and Hartree, Fock, and others.3 In order to express fn (r) analytically, we will now

slightly generalize Slater's original idea9 and try to approximate these tables by

functions obtained by replacing each exponential in the corresponding hydrogen-like

functions by a sum of one, two, three or more exponentials. For the lowest functions,

this gives the following expansions:

fls(r) = rk Akexp(-akr)

f 2 s(r) = rk Akexp(-akr) - r 2 -k B kexp(-bkr)

f2 p(r) = r 2 Z Bexp(-bkr) ()

f 3 s(r).= rk Akexp(-akr) - r 2  Bkexp(-bkr) + r3 E Ckexp(-ckr)

f 3 p(r) = r 2 Zk Bkexp(-bkr) - Ckexp(-ckr)

• etc.

where the exponents ak, bk, ... and the coefficients Ak, Bk, ... may be different for

each orbital. We will here determine the values of these parameters by a numerical

method, which is a simple development of the graphical method described by Slater. 6

The exponentials involved in the expansions (1) may be calculated by means of a
methd o sucesiveapproximations1 0

method of successive agoing inwards from r • m to r = 0. The

9 According to Slater (reference 6) only the exponential multiplied with the highest
power in r should eventually be replaced by a sum of exponentials, but our generali-
zation is obvious.

10A preliminary report of this method was given at the Shelter Island Conference, 1951.
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computations are based on the fact that in the outer region (r = e) only a single

exponential is important, in the next inner region two terms are important, in the

following region three terms, etc. The numerically given function f(r), divided by the

highest power rp of r according to (1), is considered in equidistant points; a quotient

series is then formed for the outer region by successive divisions, and from this

series a trial exponential function is determined as a geometrical series. This func-

tion is now subtracted from'f(r)/rp, and the difference is investigated in the next

inner region, where a new quotient series is formed, giving a new trial exponential
function. This second function is now subtracted from f(r)/rp, and the outer region is

considered a second time with a still better result for the first term, etc. In most

cases, this process is quite straightforward, and special care must be taken only in

regions where the power of r has to be changed according to (1).

We note that here the quotient series have taken the place of Slater's logarithmic

graphs. The success of the method depends partly on the fact that these quotient

series and the trial exponentials, i.e., the geometrical series, can be computed so

quickly by means of the modern electric desk machines.

A few words may be said about the fixing of the first trial functions for each

region. It is easily seen that if a function gn is the sum of two geometric series,

gn = ak n + bk 2n (2)

of which the first is dominating, then the quotient gn+i/gn is slowly varying according

to the formula

gn+l/gn = k, - (b/a)(kl-k 2 )(k 2 /kl)n + " " (3)

From the quotient series, considered in a region where gn still has enough significant

figures, it is therefore possible to get an approximate value of kI and estimates of

Sand bk 2 n/akln, of which the latter are usually too rough to be of real value for

determining an initial term akin somewhere in the first geometrical series. After

fixing a suitable value of kl, we form instead the auxiliary function

hn = klgn - gn+l bk 2 n (k 1 -k 2 ) (4)

and its quotient series hn+l/hn, from which we get a much better estimate of k 2 , bk2n,

and finally of ak1  = gn - bk2 n. After choosing a specific initial term of the first

geometric series, we can then form our first trial exponential by repeated
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TABLE I.

Survey of the maximum errors in different intervals in the analytic

SCF-functions for Rb+ (without exchange) given by Slater (reference

6) as an example of the accuracy of his graphical method.

Maximum error in units of 10-3

r-interval Rb+2s Rb+3s Rb+3p

0.00
14 -41 -9

0.04
-30 ±17 -46

-15 ±28 14
0.50

2 25 -31
1.00

1k 5

multiplication with constant factors, different for the various interval lengths. The

method of successive approximations, as described above, is now started.

The accuracy of the analytic self-consistent-field (SCF) functions obtained by

Slater's graphical method may be illustrated by his own example for Rb÷+'in Table I;

even if the maximum error is of the order 45 x 10-3, the approximation is certainly

good for many applications. The analytic SCF-functions, calculated from Slater's

6exponents for other atoms of the periodic system, have also errors of about the same

6order of magnitude. In treating F, F, and Ne, Brown reports errors of the order

20 x 10-3.

In our investigation of the alkali chlorides,II we needed the 3p-function of Cl-

with exchange, given numerically by Hartree and Hartree,12 with a very high accuracy,

and most of the technique described in this paper was actually developed for the

investigation of this function. Our final result is given in Table II, and, by using

TABLE II.

Exponents and coefficients in an analytic SCF-function of the form (1)

for Cl-(3p) with exchange (reference 12). Maximum error = 1.5 x 10-3.

AO k 1 2 3 k= 1 2 3

Cl-(3p) bk 4.2435 8.4758 22.314 ck 0.92426 1.6658 2.9859
Bk 9.0441 26.493 2.49 C 0.07099 1.3955 8.4236

P.O. L8wdin, A Theoretical Investigation into Some Properties of Ionic Crystals

(Almqvist and Wiksells, Uppsala, 1948), thesis.

12D. R. Hartree and W. Hartree, Proc. R. Soc. (London) A156, 5 (1936).
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six exponentials (three in the C-group and three in the B-group), we could obtain a fit

as good as 1.5 x 10-3, i.e., the analytic SCF-function has about the same accuracy as

the numerical function itself. With slightly less accuracy, we treated then two other

TABLE III.

Exponents and coefficients in analytic SCF-functions of the form (1) for
F- without exchange (reference 13) and for Na+ with exchange according to
Fock and Petrashen (reference 14). For maximum errors, see Table IV.

AO k= 1 2 k= 1 2 3 4

F-(1s) ak 8.1890 12.187
Ak 40.285 9.5770

F'(2s) ak 7.1485 ... bk 1.6465 2.7178 4.1211 ...

Ak 11.755 ... Bk 1.3054 8.7816 6.6845 ...
F-(2p) bk 0.64417 1.4357 3.0759 5.9696

Bk 0.080948 1.3016 8.6449 7.0549
Na+ (Is) a~k 8.1093 11.577

Ak 12.835 57.640
Na+(2s) ak 9.1285 ... bk 2.3650 3.9031 ...

Ak 16.895 ... Bk 3.6178 25.462 ...

Na+(2p) bk 2.3718 3.8934 6.5076

Bk 5.1958 14.024 18.128

TABLE IV.

Maximum errors of the analytic SCF-functions
for F- and Na+ in Table III, in units of 10-3.

r-interval F-is F2s F -2p r-interval Na+is Na+2s Na+ 2 p

0.00 0.0

0.081 8 *7 3 -5
-1 *10 1 8 *1 -1

0.3 o.4
-1 -10 -5 -3 *2 2

0.6 1.01 14 *I 2 -I
1.2 2.0

-1 -I *1 0
3.0

0 *1
6.0

0 1
10.0

-1
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closed-shell ions in the same way, namely, F- without exchange 1 3 and Na+ with ex-
41

change.. The results in a somewhat improved form are condensed in Table III and the

maximum errors for different intervals in Table IV. In tabulating the errors, we are

always giving the quantity (fanalytical - fnumerical) for the normalized functions in

units of 10-3.

In the theory of molecules, some, first-row atoms are of particular importance, and

we have therefore tried to obtain analytic SCF-functions for neutral carbon ( 1 D-state),

neutral nitrogen ( 2 P-state), and neutral oxygen ( S-state), all given numerically with

TABLE V.

Exponents and coefficients in analytic SCF-functions of the form (1) for neutral

carbon (reference 15), ID (p = 04), for neutral nitrogen (reference 15), 2p

state (P = 0), and for neutral oxygen (reference 15), 1S state (6 = 0), all with

exchange. For maximum errors, see Table VI.

State AO k= 1 2 k= 1 2 3

D C(Is) ak 4.9840 7.0411

Ak 14.881 12.811

C(2s) ak 3.9471 ... bk 1.4784 2.8493 7.7990
Ak 5.9095 ... Bk 2.5829 5.2230 4.5676

C(2p) bk 1.0789 2.1444 5.9216
Bk 0.87935 3.3336 2.1226

2p N(Is) ak 6.2736 10.920

Ak 28.744 6.8632
N(2s) ak 4.1749 ... bk 1.7123 3.4424 8.8037

A 7.8400 ... Bk 3.5175 11.832 8.4171
k

N(2p) bk 1.2210 2.4466 5.6236

Bk 1.0755 5.2350 3.4611
is 0(ls) ak 7.2052 12.523

Ak 35.267 8.6933
0(2s) ak 5.9096 ... bk 1.9764 3.6744 13.931

Ak 9.8450 ... Bk 4.9049 11.246 5.5364

0(2p) bk 1.3632 2.7487 5.9169
Bk 1.3284 7.3218 6.088

13 D. R. Hartree, Proc. Roy. Soc. (London) A151, 96 (1935).

lkV. Fock and M. Petrashen, Physik. Z. Sowjetunion 6, 368 (1934). The slightly

improved tables for Na+ given by D. R. Hartree and W. Hartree, Proc. Roy. Soc.

(London) A193, 299 (1948), were not available in Uppsala at the time of these first

calculations.
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exchange by different authors. 1 5 The results are condensed in Table V, and the maximum

errors are given in Table VI. We note that all the functions in Tables III and V are

6
of orthodox Slater-type, having only their highest-power exponential developed in a

sum. The accuracy is essentially higher than in Slater's original functions, but this

improvement is gained by adding at least one more exponential, which will again in-

crease the work in the applications.

As was already pointed out by Slater,6 all these expansions are not uniquely

determined at all, and the exponents and the coefficients may vary over considerable

ranges. A drastic example of this phenomenon is obtained by comparing our 2p-function

1
for carbon ( D) in Table V with the 2p-function in Table VII given previously by

16Mulliken and others; it is impossible to see directly that these functions with

essentially different parameters approximate the same numerical function, but this is

actually the case. The respective errors may be found in Table VI, and a closer

TABLE VI.

Maximum errors of the analytic SCF-functions for C,

N, and 0 given in Tables V and VII, in units of 10-3.

1 ~~Mull i-213
r- Dken r- P S

inter- inter- A I Ival Cls 2s C2p •2p val Nls N2s N l 0s 02s 02p 02p

0.0 0.0
6 4 3 -3 8 -2 0 12 -1 0 0

0.2 0.04
*3 8 *3 12 8 -2 1 10 1 3 ±10.8 0.2

3 -4 3 ±8 ±4 2 2 ±4 -12 4 ±1
2.4 0.5

0 -4 *1 ±3 ±2 ±4 ±3 *2 ±6 ±3 -6
4.0 1.2

4 -2 2 -1 *6 ±3 -1 -9 *2 *6
8.0 4.o

-2 2 2 1 2 -3 ±2
7.0

-l -1 0

1 5 C: A. Jucys, Proc. Ea. Soc. (London) A173, 59 (1939). N: D. R. Hartree and W.

Hartree, Proc. Roy. Soc. (London) A193, 299 (1948). 0: Hartree, Hartree, and

Swirles, Trans. Roy. Soc. (London) A238, 229 (1939).

l 6 Mulliken, Rieke, Orloff, and Orloff, J. Chem. Phys. 1Z, 1248 (1949); the function in

their Eq. (76) is transformed to our form (1).
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investigation shows that the two error functions have opposite signs almost everywhere.

In general, the order of magnitude and the sign of the errors will determine how much

the different parameters in the functions (1) may vary.

The different states of a specific electronic configuration of an atom (or ion)

may be characterized by Slater's 1 7 parameter P, and Hartree and others1 5 have found by

experience that the corresponding radial functions fni(r) vary almost linearly in this

parameter. In order to investigate whether this simple linearity in P could be trans-

ferred, e.&., to the coefficients in the analytic SCF-functions, we have treated

1 3~0 n hneutral oxygen in two of its states, namely the s-state (P = 0) and the P-state

= -0.6). As may be seen from a comparison between Tables V and VII, the preliminary

result was negative, and the problem is therefore still under investigation.

TABLE VII.

Exponents and coefficients in an analytic 2p-function of the form (1) for
the 3 P-state of neutral oxygen (reference 15), and in Mulliken's (refer-
ence 16) 2p-function for the D-state of neutral carbon (reference 15).

State AO k= 1 2 3
3p 0(2p) bk 1.4107 2.8500 6.5935

1 1.4384 8.3557 4.7562
D C(2p) bk 0.898 1.416 2.694

Mulliken: Bk 0.2727 1.427 3.576

II. INTERPOLATION OF SLATER-FUNCTIONS

The purpose of the original Slater-functions 6 was not only to describe numerically

given SCF-functions analytically, but even to permit interpolations to atoms for which

these self-consistent fields had not yet been prepared. This interpolation was based

on the rule that the exponents should vary linearly for similar electron configurations

and different atomic numbers. The coefficients in the last group were interpolated by

means of an auxiliary "intermediate" exponent, also varying linearly, which gave the

ratio between the coefficients; the absolute values were then determined by the nor-

mality and orthogonality conditions.

The interpolation problem can, of course, be treated rigorously by investigating

J7j. C. Slater, Phys. Rev. 34, 1293 (1929).
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the effect of variations of the atomic number Z in the basic Hartree-Fock equations,18

but, with the present mathematical methods, the error margins seem to be too large to

render really useful results. For the moment, it seems therefore to be better to work

intuitively by using the hypothesis that the SCF-functions are closely analogous to the

hydrogen-like functions, but that they Just have more general exponents replacing the

atomic number Z. The interpolation rule for the exponents seems very plausible from

19this point of view, but, in order to obtain full accuracy also in the interpolated

functions, we must modify the interpolation rule for the coefficients.

Let us consider the simplest SCF-functions, namely the ls-functjons of the He-like

ions, which we will express in the following form:

fls(r) = Alr exp(-a 1 r) + A2 r exp(-a 2 r) (4a)

The numerical functions for Li+(Z = 3) and C+4(Z = 6) are given by Fock and Petrashen 2 0

and by Jucys,15 respectively, and the corresponding values of our parameters in (4a)

are condensed in Table VIII; the maximum errors are in both cases below 1.0 x l10.

By using these data, we will then try to make interpolations and extrapolations in the

series of the He-like ions.

The exponents a1 and a 2 are easily determined as linear functions of Z from the

fixed values for Z = 3 and Z = 6. For the coefficients A1 and A2 , the normalization

condition for fls gives one relation, but, in order to carry out the interpolation, we

need one more equation for them. However, we note that, for a pure hydrogen-like ls-

function, we would have the relations

fls(r) = 2Z3/2r exp(-Zr), [fls(r)/2r]2/3 = Z , (5)

and, according to our analogy rule, the last relation indicates that, also for the SCF-

functions, the quantity

K15s [f 1s(r)/2r?/0 (6)

18Compare also D. R. Hartree and W. ]artree, Proc. Roy. Soc. (tondon) A166, k50 (1938),

and reference 3.
1 9 Compare also the exponents in the analytic wave functions for Be-like atoms and ions,

calculated directly from the variational principle by V. Fock and M. Petrashen,

Physik. Z. Sowjetunion 8, 359 (1935), Table IV.

-VO. Fock and M. Petrashen, Physik. Z. Sowjetunion 8, 547 (1935).
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TABLE VIII.

Analytic SCF-functions of the form (1) for Li+(ls) and
for C +4(is); the maximum error is below 1.0 x 10-3.

A0 k= 2

Li+(1s) ak 2.4346 4.4250
+4 Ak 6.6641 2.5618

C+(is) aak 5.4523 9.5935
Ak 23.919 4.0324

will vary linearly with Z. We have tested this rule on some numerical SCF-functions

calculated by Hartree and others, and the results in Table IX show that the "linearity

rule" holds with excellent accuracy. Similar quantities K2s, K2p, K~s, ... may be

constructed also for the 2s-, 2p-, 3s-, ... functions, and a closer investigation shows

that they are approximately linear in Z, too. Complete results also for the higher

functions will be given in a later paper in this series. We note that all these

quantities are important in the calculations of self-consistent fields with exchange,

since they characterize the behaviorof the normalized wave functions in the neighbor-

hood of the point r - 0.

TABLE IX.

The auxiliary quantity K1 s = (fls(r)/2r)r/O for some is-

functions belonging to self-consistent fields with exchange. 3

Z Atom Kis Z Atom Kls

6 C 5.76o 17 c0- 16.70
7 N 6.757 18 Ar 17.69
8 0 7.751 19 K+ 18.70

20 Ca+ 2  19.69
11 Na+ 10.73
14 Si+ 4  13.73

If the Kls-rule is applied also to the He-series, we get a second relation for the

coefficients A1 and A2, which then may be determined. The results of the interpolation

are condensed in Table X, and it may be of some interest to test its accuracy. The

Is-function for Be+2 is numerically given by Hartree and Hartree, 2 1 and a comparison

2 1 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A149, 210 (1935).
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S~TABLE X.

Interpolated and extrapolated SCF-functions of the form (1) for some

He-like ions, obtained by using the linearity of the quantity K1 s.

The star * indicates the given quantities, taken from Table. VIII.
Z Atom Kls a1 a2 A1  A2

1 H 0.7505 0.4228 0.9794 0.30025 1.0001
2 He 1.7608 1.4287 2.7022 2.7626 1.9104

3 Li 2.7711* 2.4346* 4.4250* 6.66.41* 2.5618*
4 Be+2 3.7814 3.4405 6.1478 11.601 3.1057
5 B+3 4.7917 4.4464 7.8706 17.387 3.5909

6 C 5.8021" 5.4523* 9.5935* 23.919* 4.0324*

7 N+5 6.8124 6.4582 11.316 31.101 4.4604
8 0+6 7.8227 7.4641 13.039 38.897 4.8621
Difference: 1.0103 1.0059 1.7228

shows that our analytic function reproduces the numerical table with full accuracy.

We may suppose that the same will be true also for B+3 . In the extrapolations, the

accuracy can certainly not be so high, but we note that our analytic function will give

the same charge distribution for He as was once numerically given by Hartree. 2 2 Even

for H- our analytic function is comparatively good, since it gives a much better fit to

Hylleraas's charge distribution8 than the best hydrogen-like wave function.

The calculations involved in the application of the Kls-rule are somewhat clumsy,

and we have therefore tried to derive a simpler interpolation rule for the coefficients,

which could be generalized also to functions containing more exponentials. Using the

analogy principle, we will make the assumption that each coefficient Ak as a function

of Z has the form

Ak(Z) = Kk{ak(Z)}Pk (7)

where the parameters ik and pk are independent of Z. This means that loglOAk is a

linear function of loglOak:

logl 0 Ak(Z) = log 1 0 'k + Pk l kgl0 ak(Z) , (8)

and the coefficients Ak are therefore easily determined' e.y., by using divided dif-

ferences. However, these preliminary values of the coefficients Ak are usually not

representing a function which is fully normalized, and, in the last step of the

2 2 D. R. Hartree, Proc. Cambridge Phil. Soc. 24, ill (1928).
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interpolation, they should therefore be given revised values by using the, normalization

condition.

The results of the application of the rule (8) to the He-series are given in Table

XI, and we note that, for the interpolated ions Be+ 2 and B+3, the coefficients are

practically the same as in Table X.

TABLE XI.

Coefficients in interpolated and extrapolated SCF-functions for some

He-like ions. The exponents are the same as in Table X, but, this

time, the coefficients are obtained by using the simple rule (8).
The star * indicates given quantities, taken from Table VIII.

Unnormalized Normalized
coefficients coefficients

Z Atom A1  A2 A1 A2

1 H- 0.41560 1.0585 0.3385 0.8622
2 He 2.8631 1.9269 2.7772 1.8691
3 Li+ 6.6641" 2.5618" 6.6641 2.5618

4 Be+ 2  11.529 3,1064 11.593 3.1236
5 B+ 3  17.312 3.5905 17.382 3.6049
6 C+4 23.919* 4.0324* 23.919 4.0324
7 N+5  31.281 4.4422 31.117 4.4189
8 0+6 39.349 4.8271 38.930 4.7759

S= 1.6265 1.0713
p = 1.5850 0.5862

The interpolation rule (8) may be directly generalized also to the other groups

of coefficients (B, C, ... ). As another example, let us consider the 2p-functions of

some Ne-like ions. The functions for Na+(Z = 11) and Si+4(z = 14) are numerically

given by Hartree and others,23 and our parameters for the corresponding analytic func-

tions (1) are listed in Table XII and the maximum error (0.002) in Table XIII. From

these fixed data, the interpolations for Mg+ 2 (Z = 12) and Al+3 (Z = 13) were carried out

by using the simple rule (8) and the normalization condition. Our analytic 2P-function

for Mg+2 may be checked against the SCF-function given numerically by Yost, 2 4 which is

2 3 Na+: D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A193, 299 (1948).

Si+4: Hartree, Hartree, and Manning, Phys. Rev. 60, 857 (1941).

2.W. J. Yost, Phys. Rev. 58, 557 (1940).
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TABLE XII.

+14Analytic SCF-functions for Na+(2p) and Si (2p) with exchange calculated

from the numerical tables (reference 23), and interpolated functions for

Mg +2(2p) and Al+3 (2p) with the coefficients determined by the simple
rule (8). For maximum errors, see Table XIII.

Unnormalized coefficients Normalized coefficients
Z Atom b1  b2  b3  B1  B2  B3  B1  B2  B3

11 Na+ 2.1880 3.7288 6.8864 3.6164 15.660 18.729
12 Mg+ 2  2.7226 4.4808 7.9907 6.9728 22.590 21.156 7.0360 22.795 21.348
13 A1+ 3  3.2572 5.2327 9.0950 11.952 30.781 23.524 12.043 31.016 23.704

14 Si+4 3.7918 5.9847 10.1993 18.870 40.231 25.840
Dil'. 0. 5346 0.7520 1.1043

)c - 0.34400 1.1348 3.8533

p = 3.0046 1.9943 0.81944

almost fully reproduced with an error below 0.0016; it is somewhat surprising that the

error in the interpolated function is even lower than in one of the fixed functions

(Na+), see Table XIII.

The net result of our investigation seems to be that it is possible to interpolate

analytic SCF-functions with about the same accuracy as in the fixed functions by using

Slater's rule for the exponents and the simple rule (8) and the normalization condition

for the coefficients. The results already obtained are somewhat encouraging, and

further work on this problem is now in progress.

TABLE XIII.

Maximum errors of the analytic SCF-functions given in Table XII in
units of 10- 3 ; note that Mg+2 is interpolated between Na+ and Si+4

r-interval Na+2pMg

0
-0.6 -0.7 -0.9

0.04
2.0 1.6 1.1

0.20 -2.1 -1.3 0.7
0.50

2.1 *1.1 -0.9
1.2

-2.1 *1.4 -0.8
4.0

-o.6 *0.46.0
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TABLE XII.

Analytic SCF-functions for Na+(2p) and Si +(2p) with exchange calculated
from the numerical tables (reference 23), and interpolated functions for

Mg+(2p) and Al+3(2p) with the coefficients determined by the simple

rule (8). For maximum errors, see Table XIII.

Unnormalized coefficients Normalized coefficients
Z Atom b1  b 2  b3  B 1  B2  B3  B1  B2  B3

11 Na+ 2.1800 3.7288 6.8864 3.6164 15.660 18.729

12 Mg+ 2 2.7226 4.48o8 7.9907 6.9728 22.590 21.156 7.0360 22.795 21.348

13 A1+3 3.2572 5.2327 9.0950 11.952 30.781 23.524 12.043 31.016 23.704
14 Si+4 3.7918 5.9847 10.1993 18.870 4o.231 25.840
Diff. 0.5346 0.7520 1.1043

S- 0.34400 1.1348 3.8533
p = 3.0046 1.9943 0.81944

almost fully reproduced with an error below 0.0016; it is somewhat surprising that the

error in the interpolated function is even lower than in one of the fixed functions

(Na+), see Table XIII.

The net result of our investigation seems to be that it Is possible to interpolate

analytic SCF-functions with about the same accuracy as in the fixed functions by using

Slater's rule for the exponents and the simple rule (8) and the normalization condition

for the coefficients. The results already obtained are somewhat encouraging, and

further work on this problem is now in progress.

TABLE XIII.

Maximum errors of the analytic SCF-functions given in Table XII in

units of 10-3; note that Mg+2 is interpolated between Na+ and Si+4.

r-interval Na+ 2 p  Mg+2p S1i+42p

0
-0.6 -0.7 -0.9

0.04
2.0 1.6 1.1

0.20
-2.1 -1.3 0.7

0.50
2.1 *1.1 -0.91.2 -2.1 *I.4 -0.8

4.o
-0.6 *0.4

6.0
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CONCLUSIONS

In the theory of molecules and crystals, which is based on the use of atomic

orbitals in one or other form, the SCF-functions take a selected and most important

place, since they represent the best one-electron AO which are available. The problem

of calculating analytic SCF-functions has become particularly important during the last

few years, since most of the extensive molecular tables under preparation in Chicago

under Mulliken, in Oxford under Coulson, and in Tokyo under Kotani, are based on the
25use of single exponential functions. In order to make all these tables applicable

even to the best atomic orbitals, it would be desirable to have the exponents and the

coefficients in the analytic functions (1) calculated for all self-consistent-fields

which are numerically available, and to carry out interpolations to atoms which have

not yet been treated by the Hartree-Fock technique.2 6  In addition to the best fits, it

would also be of interest to have fairly accurate analytic SCF-functions containing as

few exponentials as possible.

By the generalized Slater method described in this paper, it is possible to calcu-

late analytic SCF-functions from the numerically given tables with any desired accuracy,

but, even if the technique is simple, the computations are still time-consuming and

rather tedious. It is felt that, if the periodic system should be investigated on a

large-scale basis in order to obtain analytic SCF-functions having errors of the order

of magnitude (0.001-0.002) exemplified in Tables II, VIII, and XIII, then it would be

worthwhile to re-examine the basic method for further improvements, if possible. Work

on this program is now in progress, and the results will be reported in a later paper

in this series.

The author is greatly indebted to Fil. Mag. L. F. Ljungstr8m, Uppsala, who kindly

assisted in the computations on the sodium and the fluorine ions when this work was

started, to the Swedish Natural Science Research Council for a grant, which made these

calculations possible, and to Professor I. Waller for many forms of valuable support.

The work on the first-row atoms was started on the initiative of Professor R. S.

Mulliken, Chicago, and I would like to express my sincere gratitude to him for many

valuable discussions and for the great hospitality I enjoyed during my stay in Chicago.

2 5 Molecular tables for particular atoms may also be prepared directly from the
numerically given SCF-functions; see, e.y., reference 11, Method I.

It seems probable that the interpolated analytic functions would give very good

initial functions for self-consistent-field calculations.
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ON THE USE OF A SINGLE SCALE FACTOR IN ATOMIC WAVE FUNCTIONS. I

Charles W. Scherr
Laboratory of Molecular Structure and Spectra

Department of Physics
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Chicago 37, Illinois

ABSTRACT

Single scale factors are determined for converting ls, 2s, and 2p self-consistent

field orbitals of atoms in the first row of the periodic table into one another.

Several simple relationships are found which allow predictions for fluorine and neon.

I. INTRODUCTION

RECENTLY there has been a recognition of a desirability of using SCF (self-consistent

field) atomic orbitals rather than the Slater atomic orbitals in problems on molecular

structure. Most of the LCAO MO (linear combination of atomic orbitals molecular orbi-

tals) method has been pursued through the use of Slater orbitals; but decidedly dif-

ferent results may be expected from the use of SCF orbitals, as shown, for example, by

calculations of overlap integrals.

Any SCF orbital XAS is of the form RA,S(r)F(e,¢), where A and S refer to the

atom and the state, respectively. By introducing a scale factor XAB,ST one can expect

to predict XB,T, the SCF orbital of atom B in state T from XAS by an approximation
1

XW AB,ST) RA,S()AB,STr)F(6,¢). Since the radial part may be approximated 2 byXB,T BS' ASXBT

a sum,

R n Ela rke-Ckr()
RASni kr kr(

k-A

in which the last term is dominant, then

AABST a Cn-l,B/Cn-l,A (2)

This work was assisted (in part) by the Office of Naval Research under Task Order IX

of contract N6ori-20 with The University of Chicago.

iSee for example R. S. MullikenJ•. Phys. Chem. 56, 295 (1952), particularly p. 300.
2 j. C. Slater, Phys. Rev. L2, 33 (1932).
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The ak's and the ks (orbital exponents) 3 depend on the particular orbital, atom, and

(to a small extent) electronic state.

Some early workers4 on SCF calculations used a scale factor to obtain their first

approximations from previously treated atoms, which were nearby in the same row of the

periodic table. Brown, Bartlett, and Dunn5 noted that the reciprocals of the radii at

the maxima of the SCF radial wavefunctions were nearly linear in the atomic number,

and used the ratios of these reciprocals as scale factors. Hartree 6 has discussed the

use of a scale factor, and introduced the idea expressed in Eq. (2).

The present paper is a result of a systematic investigation of the use of a single

scale factor in the exact SCF wavefunctions with exchange for atoms of the first row

of the periodic table. The SCF wavefunctions are the "best" wavefunctions arising

from the variational method with the use of antisymmetrized spinorbital-product wave-

functions.

There is a characterizing coefficient used extensively in this paper which it is

best to discuss here. RA,S(r) depends on S; but by Slater's theory of complex spec-

tra, 7 ES = EC + PSF2 , where F2 is an energy integral and EC is a configuration energy,

hence RA,S(r) = RA(r,PS) for any given configuration. For example the 3 P ground state

of carbon has • = -5/25, and the 1D and lS states have 0 = +1/25 and +10/25, respec-

tively.

II. PROCEDURE

We have

002 2 0
f ,ABSTRAS (NAB,STr)r dr = O RB,T(r)r dr = 1

where the symbols have all been defined in Section I. Further,

SAC,ST = XAB,SU"BC,TUT ' (3)

3 This term was introduced by C. C. J. Roothaan and K. Ruedenberg. It is the effective

nuclear charge divided by the principal quantum number.
4 Arnot and McLauchland, Proc. Roy. Soc. 146A, 662 (1934); Manning and Millman, Phys.

Rev. ý2, 848 (1936).
5 Brown, Bartlett, and Dunn, Phys. Rev. 44, 296 (1933).
6 D. R. Hartree, Repts. Progr. in Phys., 113 (1946-1947)

7J. C. Slater, Phys. Rev. 3, 1293 (1929).
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where XB,U is any orbital.

Numerically tabulated SCF with exchange rR(r) functions from the literature8 -1

for the various s p states of each of the atoms carbon, nitrogen, oxygen, and neon

were approximated by scaling from tabulated SCF with exchange rR(r) data for the s2 p3

* 8states of carbon. Various X-values were tried in each case until that one was found

which, for a particular scaling, minimized

00.2
2 f I(6R)RB,Tlrdr • (4)

0

This procedure may be compared with the usual 1 2 least squares treatment of problems of

similar type, namely the minimization of

2 f (6R)RB 2 dr . (4a)

0 BT

In integrals 4 and 4a, RB,T is the correct numerical SCF function for the radial part

of the orbital that is being approximated. 6R is defined as the difference between

the correct tabular value of RB,T and the approximation. The integrals were evaluated

by numerical integration.

III. RESULTS

The best values of the scale factors, determined by the above procedure, are tab-

ulated in Tables I, II, and III. The "criterion error" reported is the magnitude of

the minimized integral (4). These criterion errors can be used as measures of the re-

lative errors involved, for different atoms and states, in the best computed orbitals

of any one kind obtained by scaling with a single scale factor from an initial SCF

tabulation. The published SCF data are accurate to *0.002 unit. This degree of unre-

liability would correspond to a criterion error of about 0.0035 to 0.0040 for the 2s

and 2p orbitals.

8 A. Jucys, Proc. Roy. Soc. 173A, 59 (1939); also see J. Phys. USSR, 49 (1947).

9 Hartree and Hartree, Proc. Roy. Soc. 193A, 299 (1948).

lHartree, Hartree, and Swirles, Philos. Trans. 238A, 229 (1939).
1 1D. R. Hartree, private communication of tentative results (first iteration) by Miss

B. H. Worsley for the 2p neon orbitals, and of estimations by Hartree for the ls and

2s neon orbitals.

1 2 The original purpose of the work was the estimation of two-center overlap integrals,

and integral (4) seems better for this purpose than integral (4a). The two minimi-

zations give scale factors that agree in the second decimal.
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TABLE II. THE 2s SCALE FACTORS FOR

Beryllium Carbon
s 2 s 2 p2

To 1S IS D 3P
2s in:

From
2s in: 250: 0 10 1 -5

carbon
2 p2 S... 1 ( 0 . 9 9 4)a 0.990

carbon
s2 p2 D 0.594 1.006 1 0.996

carbon
2p2 ... (1.010) (1.0045)

Corresponding

carbon
2 p2 S... 0 (0.0026) 0.0067

carbon
2 p2 D 0.0176 0.0026 0 0.0028

carbon
2 p2 3P 0.0060 (0.0028) 0

aThe values in parentheses are the mean values of estimates made by one or

bThe whole spread of criterion error here is too small to make estimates

TABLE III.

THE 1s SCALE FACTORS FOR SCALING FROM CARBON SCF ORBITALS.

To Beryllium Carbon Nitrogen Oxygen Neon

From carbon 0.6455  1 1.172 1.349 1.6975

Corresponding "criterion errors"

From carbon 0.0082 0 0.0023 O.o0048 0.00033
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SCALING FROM CARBON SCF ORBITALS.

Nitrogen Oxygen Neon

2 2 p 261

sa3sp4 s~p

p 2 D S S D p S

0 -6 -15 0 -9 -15 -30

1.1855 (1.181) 1.176 5 1.3775 (1.374) 1.3715..

.194 1.189 1.183 1.3855 1.382 1.378 1.766

1.1995 (1.193) 1.1875 1.3935 (1.388) 1.3835 ...

"criterion errors"

0.0075 (0.0090) 0.0102 0.0095 ... b -0.0112

0.0060 0.0070 0.0099 ý0.0100 -0.0094 0.0095 0.0144

0.0079 (0.0040) 0.0065 0.0102 ... b 0.0094

more methods, for example, by the use of Eq. (3).

meaningful.

IV. DISCUSSION

For 2s or 2p scaling from carbon to either oxygen or nitrogen, the scale factors

are nearly linear in P. For carbon scaled to carbon the linearity is slightly less

good. In Jucys' SCF calculations of carbon, the tabulated values of rR(r) for the 2s

and 2p orbitals in the 1D state were found to be in agreement, to the accuracy of the

calculation, with the results of an interpolation linear in 0, at any given r value,

between the tabulated values for the 3P and IS states. Hartree and the others in sub-

sequent SCF calculations on nitrogen and oxygen assumed the validity of corresponding

relations for these atoms; the wavefunction of 2 D state of nitrogen was assumed to be

linearly spaced with respect to 0 between those of P and S states; likewise the D
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state of oxygen between the 1S and P states

,, •and consequently only the last pairs in each

case were calculated by them.

Surprisingly enough, the criterion

error does not increase as the scaling goes

to atoms more remote in the periodic table

In "from carbon. This result may allow one to
I I I i I I

,o s 0 -s . e make safely "long distance" scalings for use

Fig. 1. y , as first approximations in SCF calculations.

Regularities in the behavior of the cri-

terion error indicate that a scaling to

eg.4 .,the 2P state of fluorine from the D of car-

bon should have a criterion error of about

"" 0.018, but that scaling to the 2P state of

boron should have a large criterion error.

An interesting characteristic of the

,-values, evident if one compares Figures
10 5 0 -5 -I0 -1S

1 2 1 and 2, is that ýX/6p has opposite signs
Fig. 2. X s(N,0:6,1)

for the 2p and 2s orbitals. This may be

the result of the influence of the inner loop of the 2s orbital which, relatively

speaking, requires a much smaller N than the outer loop, as can be seen from Table IV.

The considerable success of a single scale factor in estimating one SCF orbital

from another must reflect a close mathematical similarity between the SCF wavefunctions

of the various atoms. The accuracy of such estimates could be increased several fold

by using two or more scale factors; for example, in a 2p or ls orbital these could be

one scale factor for a radius less than, and another for a radius greater than the

radius at the maximum of rR(r); and in a 2s orbital, one scale factor for each loop.

In several of the investigated cases any X-value within an appreciable range gave

a satisfactory scaling; that is, the minima of integral (4) were broad. Almost all of

these broad minima occurred in scalings with large criterion errors.

V. GENERAL FORMULAS

The near linearity of the scale factors with respect to 0 allows simple formulas

to be written for the scale factors of the first row atoms. We use the symbol

282



I. ..... .

SINGLE SCALE FACTOR IN ATOMIC WAVEFUNCTIONS. I

TABLE IV.

A COMPARISON OF X WITH THE USE OF THE RATIO OF THE RECIPROCALS

OF THE RADII AT MAXIMA IN THE WAVEFUNCTION FOR SCALE FACTORS.

X for the 2s orbitals
Carbon X for the Inner Outer X for the

scaled to Method Is orbitals maxa maxa 2p orbitals

nitrogen by reciprocals 1.183 1.148 1.184 1.230

nitrogen calculated here 1.172 1 . 1 7 6 - 9 9b 1.180-1.301

oxygen by reciprocals 1.356 1.308 1.414 1.482

oxygen calculated here 1.349 1.371-93 1.384-1.506

neon by reciprocals 1.680 1.661 1.768 1.963

neon calculated here 1.6975 1.766 1.87

aThis refers only to the reciprocal method.

bThe numbers in this, and the next column, under the row heading "calculated

here", are the complete spread of scale factors found for each atom as cal-

culated here. Since the maxima of the SCF functions of the same orbital

for the various states of the same atom coincide, there are no "spreads"

for the "reciprocal" rows.

W(N,0:6,1) to mean the scale factor for scaling from s 2 p 2 1D carbon to the s2pN-4

state, characterized by P, for the atom of atomic number N. The formulas 1 3 are:

'2p(N,P:6,1) = 1.002 + 0.207(N-6) - o.0 9 8 3 (0.707 )N-6 P (5)

X25(N,0:6,1) = 0.999 + 0.194(N-6) + 0.0025(13-N)p , (6)

?Is(N:6) = 1 + o.174(N-6) . (7)

Scale factors for scalings from other than ID carbon, can be obtained by the use of

Eq. (3). The scale factors calculated from these formulas, for scaling from the 1D

state of carbon to certain states of boron, fluorine, and neon atoms, are presented

in Table V.

"13 Because of the tentative nature of the neon data, and of the probability that
Hartree estimated the Is and 2s neon orbitals on a basis similar to ours, these
formulae were not adjusted to fit the neon data. The neon data are however repro-
duced by the equations.
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TABLE V.

SOME CALCULATED SCALE FACTORS FOR SCALING FROM 1D STATE OF CARBON.
Atom Boron s 2 Fluorine s2p5 Neon s2p6

Orbital 2 P 2P 1S

2p ... 1.651 1.860
2s ... 1.573 1.766

ls 0.826 1.522 1.696

VI. A COMPARISON OF SCALE FACTORS FROM VARIOUS SOURCES

Slater1 has given a recipe for orbital exponents 3 to be used in conjunction

with his well-known and very useful orbitals. This recipe may be compared directly

with our scale factors by means of Eq. (2). It requires for the coefficient of (N-6)

in Eq. (5) and Eq. (6), the value 0.2 and in Eq. (7), the value 0.1754. The results

of the present and the following paper of this series indicate that these rather

arbitrary choices of Slater were remarkably good. This, of course, is no new con-

clus ion.

TABLE VI.

A COMPARISON OF ?ý WITH THE SCALE FACTORS CONSTRUCTED FROM

THE CALCULATIONS OF DUNCANSON AND COULSON (REFERENCE 15).

Scale factor for scaling from s 2 p 2 3P carbon for the:

ls orbital 2s orbital 2p orbital

Reference Reference Reference

Atom State 15 X 15 5 15

Li 2S 0.473 (0 . 478 )a 0.398 (0.419) ... ...

Be IS 0.648 0.646 0.593 (0.597) ......

B 2 P 0.824 (0.826) 0.800 (0.809) 0.769 (0.777)

N 4S 1.174 1.172 1.192 1.188 1.224 1.218

0 3 P 1.350 1.349 1.385 1.384 1.423 1.414

F 2 P 1.524 (1.522) 1.580 (1.580) 1.1,634 (1.613)

Ne IS 1.700 1.698 1.776 (1.774) 1.846 (1.827)

aThe values in parentheses have been estimated either by the use of Tables

I, II, or by the use of Eqs. (5), (6), (7) in conjunction with Eq. (3)..

14J.O. Slater, Phys. Rev. 36, 57 (1930), and C. Zener, Phys. Rev. ý6, 51 (1930).
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Duncanson and Coulson1 5 have calculated orbital exponents for approximate SCF

wavefunctions. As might be expected (see Table VI), our results are in good agree-

ment with the scale factors constructed from their data.

A comparison of our scale factors with those constructed from the ratios of the

reciprocals of the radii at maxima in the wavefunctions is given in Table IV, where

the method can be seen to give fairly good scale factors.
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1 5Duncanson and Coulson, Proc. Roy. Soc. Edinburgh 62A, 37 (1944).
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ON THE USE OF A SINGLE SCALE FACTOR IN ATOMIC WAVE FUNCTIONS.

II. APPLICATION TO OVERLAP INTEGRALS

Charles W. Scherr
Laboratory of Molecular Structure and Spectra

Department of Physics
The University of Chicago

Chicago 37, Illinois

ABSTRACT

A method of estimation of two-center homopolar overlap integrals between SCF

atomic orbitals, due to Mulliken, has been tested and verified.

THE CALCULATION of two-center overlap integrals from numerically tabulated SCF (self-

consistent field) functions is somewhat laborious, and even with the use of analytical

fits to the SCF functions, when available, the calculation is still rather lengthy.

It is the purpose of this paper to demonstrate the applicability of a simple method of

making estimates of homopolar two-center SCF overlap integrals. This method is appli-

cable to the various atom pairs which can be constructed from any particular row of the

periodic table, when exact calculations are available for the SCF overlap integrals of

one of those pairs.

The method of estimation used in the present paper has been proposedI and used2 by

Mulliken. The idea of the method is that two-center overlap integrals are about the

same for all the homopolar atom pairs of the same row of the periodic table, for the

same orbitals, for any particular p-value, where p = CR and C is the Slater orbital ex-

34ponent of the atom, and R is the internuclear distance in atomic units. 4

Analytical fits using three to five term linear combinations of Slater-type

This work was assisted (in part) by the office of Naval Research under Task Order IX

of Contract N6ori-20 with The University of Chicago.
1R. S. Mulliken, J. Am. Chem. Soc. 72, 4493 (1950).

2R. S. Mulliken, J. Phys. Chem. 56, 295 (1952), footnote 42.

3 See reference 6, footnote 3.
4 The extension to heteropolar atom pairs should be complicated. If the ratio of the

C-values were near unity, e.1., in NO, it would seem reasonable to use a mean p-v&lue,

p - •(CA + CB)R, where CA and CB are the orbital exponents on the two atoms.
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orbitals to the "SCF with exchange" numerically tabulated functions for the rR(r)

(radial part of the wave function) of the Is, 2s, and 2p orbitals of the various states

of each of the atoms of carbon, nitrogen, and oxygen, among others, were determined by

L8wdin. 5 On the basis of the criterion of accuracy used in the first paper of the
6

present series, these fits give a criterion error of less than 0.0050. As a test of

Mulliken's method of estimation of SCF overlap integrals, the present author computed

the exact SCF overlap integrals for the nitrogen and oxygen molecules at their equi-

librium internuclear distances, from L8wdin's fits for nitrogen and oxygen atoms, and

compared them with the same integrals which were computed from the 1D carbon fit at a

p-value corresponding to that of the exact calculations on the nitrogen or oxygen

molecules. This p-value depends, of course, on the C's (orbital exponents) 3 assigned

to the atoms. The exact carbon-carbon bond calculations are tabulated in Table I.

TABLE I.

OVERLAP INTEGRALS FOR THE CARBON-CARBON BOND

These overlap integrals were calculated by the author for the carbon-carbon bond using

Lbwdin's analytical fits, using three- to five-term linear combinations of Slater-type

orbitals, for the 2s and 2p SCF orbitals as computed for the s 2 p 2 , 1D state of carbon.

The r values are the internuclear separations in atomic units at which the integrals

were calculated, and pSlater = 1.625r is the corresponding two-quantum p. The S are

the overlap integrals, the subscripts referring to the orbitals ls, 2s, 6(2p6), and

7T(2pir). For brevity S7 r, 7 r is written S7, etc. These values may be compared with the

corresponding values in Table 6 of reference 8, which were calculated from the Rieke

fit.

r 2-quantum

au PSlater S7 S6  S 2 s S2s,6 Sls 6 Sls5 2s

2.07 3.36 ... 0.085 ............

2.27 3.69 0.425 0.148 0.511 0.504 0.121 0.070

2.29 3.72 ... 0.152 ............

2.49 4.04 0.373 0.193 0.455 0.485 0.100 0.056

2.70 4.39 0.327 0.225 ... ... ...

2.91 4.73 0.287 0.247 0.357 0.429 0.069 0.035

3.20 5.20 -, 0.238 0.260 0.292 0.384 0.055 0.026

3.32 5.395 0.219 0.264 ... ... ...

5p.-o. L8wdin, Phys. Rev. 20, 120 (1953).

6C. W. Scherr, J. Chem. Phys. 21, 1237 (1953), and THIS TECHNICAL REPORT, 1952-53, Part

Two. A criterion error of 0.0050 is very close to the error of the SCF calculations
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Table II presents a comparison of the exact calculations on the nitrogen and oxygen

molecules along with estimations of the same integrals (made from interpolations into

Table I) based on C-values (1) from the Slater recipe 7 and (2) from the formulas of the

first paper of the present series. Both estimations are quite satisfactory, and there

is little to choose between the two recipes for the C's on the basis of these calcula-

tions. However, the formulas of the first paper of the present series are more

versatile in that they can be adapted without any additional trouble to valence states,

or indeed any hypothetical states of the atoms; they also take into account the dif-

ferences in C-values of the 2s and 2p orbitals.

The row of Table II marked "Rieke" presents estimations derived from the tables

of carbon-carbon bond SCF overlap integrals given by Mulliken8 which are based on an

analytical fit made by Mrs. Rieke 9 from the carbon SCF data. This fit gives a cri-

terion error of 0.0189.6 The C-recipe used is that of Slater. The results so obtained

show that, although the fit is not so accurate as L~wdin's, nevertheless good estima-

tions of overlap integrals can be made from those tables, which are therefore very

convenient to use for this purpose.

themselves. A criterion error of 0.0189 implies a reproduction of the SCF functions

to about *0.010 units.

7j. C. Slater, Phys. Rev. 36, 57 (1930); C. Zener, Phys. Rev. 36, 51 (1930). The

Slater C-values are conveniently summarized in Table I of reference 9.

8 R. S. Mulliken, J. Chem. Phys. 19, 900 (1951), Tables 6 and 9.

9Nullken, Reike, Orloff, and Orloff, J. Chem. Ph~s. 17, 1248 (1949), Sec. Vb.
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HYPERCONJUGATION IN C6 H7+ AND OTHER HYDROCARBON IONS

Norbert Muller
Oxford University
Oxford, England

*0
Lucy W. Pickett* and R. S. Mulliken°

Laboratory of Molecular Structure and Spectra
Department of Physics

The University of Chicago
Chicago 37, Illinois

IN CERTAIN REACTIONS of strong acids with aromatic hydrocarbons, conjugate acids of the

latter can be formed. 1  Simplest is C6 H7+, which may be called benzenium ion. Using

the LCAO MO method, we have calculated energy levels, charge distribution, bond orders,

and resonance energy of this ion.

Benzenium ion may be considered the simplest prototype of the probable reaction

intermediates in electrophilic substitution reactions of aromatic hydrocarbons. Pre-

vious calculations 2 on such intermediates neglected hyperconjugation.

We treat the ion as if it had six w electrons, in orbitals made by combining the

six 2 pI C AO's and a quasi-n orbital (lsH-lsH) on the H2 pseudo-atom (see Figure 1).

The resulting secular determinant contains diagonal elements xi = i- E, a =

*iH*idT, and off-diagonal elements Pij + ½sij(xi + xj), where Pij= *iHjdT - ½Sij

(ai + a ). and Sii is the overlap integral I *i* dvr.

We first set xi = x0 for all carbon atoms, and xH = x0 + 6pO, with SCC = 0.25,

tThis work was assisted in part by the Office of Naval Research under Task Order IX of

Contract N6ori-20 with The University of Chicago.

The computations on C6 H7 + were begun in this Laboratory in the summer of 1951 and

continued at Mount Holyoke by L.W.P., and were extended by N.M. in 1953.

.National Research Council Postdoctorate Fellow at Oxford University, 1952-1953.

tUsual and present address: Department of Chemistry, Mount Holyoke College, South

Hadley, Massachusetts.
0Fulbright Scholar at Oxford University, 1952-1953.
1M. Kilpatrick and F. E. Luborsky, J. Am. Chem. Soc. M, 577 (1953), and references to

McCaulay and Lien, H. C. Brown,and others given there.
2 G. W. Wheland, J. Am. Chem. Soc. 6J4, 900 (19421 and others. See in particular V" Gold,

J. Chem. So-.,2184 (1952).
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0.094 0.193 SCH = 0.512, and PCH = 2PCC" We tried

G C• several 6 values from -0.5 to +0.5. 4 In
0.1790.|194O0.O06 . M further calculations with 6 = 0, we made

: -••--H the p's and the S's self-consistent with

the calculated bond orders and correspond-

Ing distances, assuming 0 proportional

Fig. 1. Diagram of C6 H7+ showing to S.3 Finally, we allowed for the effect

charge distribution of 6 = 0, a = 2.
on the a-values of the uneven computed

distribution of charge among the several atoms by replacing each a. by ai + 40qi and

repeating the computations until self-consistency was reached. Here qi is the charge

on the ith atom, calculated from the appropriately normalized coefficients of the oc-

cupied MO's. Trial values of 2 and 4 for w were used.

The hyperconjugation energy is the difference between the energy thus computed and
2

that similarly computed for the conventional model, consisting here of four 7r electrons

-on five carbon atoms, plus an "inert" CH2 group. For 6 0, the computed hyperconjuga-

tion energy varies from 0.288io, or about 17kcal, if c = 0, to 0.456%0, or about 27kcal,

if a) = 4.5 It is larger for 6 < 0 and smaller for 6 > 0; empirically, it is fairly

sure that 6 < 0, perhaps about -0.5.

Calculations now in progress indicate that w is about 1.5; they involve the ap-

plication of procedures like that described above to the ethyl, isopropyl, and t-butyl

and allyl free radicals and their positive ions, where the observed stabilization

6energies become comprehensible if an a of this magnitude is introduced.

The computations predict two electronic transitions in or near the visible for

C6 H7 +, a moderately strong one at longer and a strong one at shorter wavelengths. Un-

published new experimental work by C. Reid at Chicago on the toluenium and xylenium ion

3a. Mulliken and Rieke, J. Am. Chem. Soc. 63, 1770 (1941), and b. Mulliken and Roothaan,

Chem. Rev. 41, 219 (1947).
41n reference 3, 6 values between 0 and +1 were used; but on the basis of empirical

evidence Coulson and Crawford (in press) assume 6 < 0, probably about -0.5.
5These values are reduced by about 7kcal by compressional energy corrections, but

considerably raised by the use of 6 = -0.5. These points will be discussed in more

detail in a paper in preparation.

6Franklin and Lumpkin, J. Chem. Phys. 20, 745 (1952); J. Halpern, J. Chem. Phys. 20,

744 (1952).
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spectra shows a strong transition in the violet, with evidence of further absorption in

the ultraviolet.

From the present calculations and from computations and observations on alkyl

radicals and ions, it appears that in hyperconjugated systems containing an odd number

of centers bearing n or quasi-7r electrons, the hyperconjugation energy is of a laEr

order of magnitude than in similar systems containing an even number of such centers. 7

It should be noted especially that these results are reproduced theoretically using the

same parameters3, in the two cases.

TTwisted ethylene (see reference 3b) containing two independent three-n-center hyper-

conjugated systems, also has large hyperconjugation energy.
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Chicago 37, Illinois

MOLECULES containing a heteroatom (0, N, S, etc.) with an "unshared pair" of electrons

adjacent to a conjugated system usually show light absorption to longer wavelengths

than do the corresponding conjugated molecules with no heteroatom.

This absorption has been attributed to "n-n" transitions in which one of the

unshared pair electrons is excited into the lowest unfilled level of the conjugated

system. 
1 , 2 3

Most such molecules also show phosphorescence, of lifetime ranging from ca. 10-3

seconds for aromatic. ketones to several seconds for pyridine. Phosphorescences of this

kind have been attributed variously as due to singlet n-it transitions (formaldehyde ),

triplet n--i transitions (formaldehyde, 5 pyridine, 2 ' 3 etc.), and triplet n-nr transi-

tions (pyridine6)). It is not always possible unambiguously to decide between these

possibilities. The following argument clears up some of the difficulties.

Elementary MO considerations show that the singlet-triplet separation = 2 1*nHRIndT

where *n and * are the one-electron n and 7r orbital wavefunctions respectively. We

can expect this integral to be very small for two reasons. First, the amount of

spatial overlap between these two orbitals is small, particularly if the conjugated

system is an extended one. Second, symmetry considerations suggest that the integral

should be zero, any positive part being balanced by an equal negative contribution.

tThis work was assisted by the Office of Ordnance Research under Project TB2-0001(505)

of Contract DA-l1-022-ORD-1002 with The University of Chicago.

*0n leave of absence from The University of British Columbia, Vancouver, B. C., Canada.

1 H. L. McMurray and R. S. Mulliken, Proc. Nat. Acad. Sci., Wash. 26, 312 (19340).

2 M. Kasha, Disc. Faraday Soc. No. 9, 14 (1950).

3C. Reid, J. Chem. Phys. 18, 1673 (1950).

4 P. J. Dyne, J. Chem. Phys. 20, 811 (1952), and references contained therein.

5 A. D. Walsh, J. Chem. Phys. 20, 1502 (1952).

6J . Rush and H. Sponer, J. Chem. Phys. 20, 1847 (1952).
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Triplet transitions are often observed in emission only, the corresponding

absorption being too weak to observe. This emission is thus well to the red of the

longest wavelength (allowed) absorption. However the above argument suggests that in

the case of n--i transitions, T - S emission should be much closer to the corresponding

singlet absorption. Using as a guide an average S-T separation for it-it transitions of

6-7,000cm-, and assuming that the splitting will decrease in n-it transitions in about

the same ratio that the intensities of these transitions bear to those of it-it transi-

tions (about .02), we can expect that only a hundred cm- 1 or so will separate singlet

absorption and triplet emission.

This allows us to say at once that the observed long-lived phosphorescence of

pyridine at 27,000cm (nearest appreciable absorption 0 36,000cm- ) is not n-it as has

been suggested, 2 '3 but it-i.

The correctness of this argument has been confirmed in this Laboratory by a

comparison of the emission spectrum of pyridine in a rigid glass (EPA) with that of

pyridine in concentrated sulphuric acid. For an n--i transition the emission should be

much weakened or absent, since the n-electrons are no longer excitable at such low

energy. In fact, the emission is not only present but enhanced, by a factor of about

10 in intensity. Accordingly it is certainly it-qt, as was suggested tentatively by

Sponer and Rush. 6

Using the above picture, it is also possible to explain why the lifetimes of the

emitting states of aldehydes and ketones are about 100-1,000 times longer (ca. 10-3

seconds) than is calculated from the extinction coefficient of what looks like the

corresponding absorption band (e = 200). It is also possible to explain the con-

flicting results of the detailed analysis of the long-wave absorption and emission of

formaldehyde.45' The explanation suggests that the emission is not homogeneous, but

comes partly from the n--i singlet and partly from the triplet state. Experiments to

confirm or disprove the correctness of this explanation are under way.
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ABSTRACT

The spectra of a number of aromatic hydrocarbons dissolved in liquid hydrogen

fluoride containing boron trifluoride have been examined. Two kinds of absorption

bands have been observed and are attributed (1) to the aromatic carbonium ions RH+

and (2) to the complexes R:BF The carbonium ions are subdivided into two groups with

spectra centered at about 4,00o0 and 4,8oo0 respectively, and a tentative explanation
for these is put forward.

Photochemical changes have also been observed on irradiation of some of the poly-
cyclic carbonium ions and are discussed.

INTRODUCTION

THE FACT that the more basic, polynuclear hydrocarbons dissolve in strong sulphuric

acid, and that even the less basic ones, benzene, toluene, etc., will dissolve in

anhydrous hydrofluoric acid, in the presence of boron trifluoride, is well-known. 1 ' 2

Differences in basicity have been used as a mode of separation of these hydrocarbons. 2

Nevertheless, data on the "carbonium ions" which are formed, it is thought by the

addition of a proton to the hydrocarbon--which thus acts as a base--are very scanty,

although some spectra of sulphuric-acid solutions of the more basic hydrocarbons have

been published. 3 The experimental work here described shows that in fact the phenom-

ena occuring in HF-BF solutions are quite intvolved, addition compounds of BF and
3 3

hydrocarbon sometimes forming as well as the carbonium ion, which may itself react to

tThis work was assisted by the Office of Ordnance Research under Project TB2-O001

(505) of Contract DA-11-022-ORD-1002 with The University of Chicago.
*on leave of absence from The University of British Columbia, Vancouver, B. C., Canada,

which is presently the correct address.
M. Kilpatrick and F. E. Luborsky, J. Am. Chem. Soc. M, 577 (1953), and references

given there.
2D. A. MoCaulay, B. H. Shoemaker, and A. P. Lien, Ind. Em. Chem. L2, 2103 (1950).

3V. Gold and F. L. Tye, J. Chem. Soc., 2172 (1952), and references therein.
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form further products.

EXPERIMENTAL

Absorption

Anhydrous HF (Mathieson C. P.) and dry boron trifluoride (from the same source)

were distilled through teflon tubes into the absorption cell. For quantitative meas-

urements a 1cm teflon cell with thin quartz windows was used in a specially constructed

dewar vessel (Figure 1). At the temperatures used (-800) in this phase of the work,

quartz is not attakcked appreciably by the acid mixture,

and windows may be used fifteen to twenty times before

clouding becomes noticeable. Attempts to use thin teflon

windows were not successful. With this arrangement, a

Beckman model DU spectrophotometer was used.

For some phases of the investigation, the point-by-

point spectrophotometer was unsuitable, and instead a

. . Hilger E2 spectrograph was used. The advantages were:

(1) photographs could be taken only a few seconds after

adding the hydrocarbon to the HF-BF3 mixture; (2) in

* i cases where higher temperatures were required (e.&., for

benzene, which at -80° crystallizes almost completely

from the BF -HF solution), the absorption cell could be

kept several feet from the optical system to avoid attack

by hydrogen fluoride vapor. Accurate absorption coef-

Fig. 1. Low-temperature ficients were not obtained by this method, however.

absorption apparatus. The

shaded body of the cell is Emission

made of teflon. The space Low-temperature emission spectra were taken of

between the double windows frozen systems at -1800. These systems were not the

is evacuated.
usual solid glasses used in emission work but crystalline

masses of HF containing the carbonium ions as impurities. Since solid HF is a molecu-

lar rather than an ionic crystal, however, with absorption only at much higher ener-

gies than in the range studied, it is not surprising that the absorption spectra

observed are in general obviously those of the same species which absorbs in the

liquid systems. Most of the emission spectra were short-lived species. In a few

cases a mechanical phosphoroscope was used to separate a short-lived from a long-lived

component. Loss of light-by scattering in the crystalline mass was considerable, but
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emitted light intensities were still high

enough for photographs to be taken in one

to five minutes, using a 1,500-watt high-

pressure mercury arc as illuminating

1P 0 source.

w I'RESULTS AND DISCUSSIONSI,

Curves showing some typical spectra

I . are shown in Figures 2-9. The out-

standing features are the following.mnr$U 300 400 500 600
(1) The ions examined divide them-

Fig. 2. Spectrum of the benzene - HF-BF3 selves clearly into two groups: (a)

system. those whose "long-wave" absorption is

- - - C6 H6 "BF3 complex absorption

C6H7+ absorption close to 4,OOO ; this group includes all

fluorescence emission the monocyclic hydrocarbons, ,naphtha]ene,

and anthracene; (b) those whose long-

wave absorption is at considerably lower

energies, usually in the neighborhood of

A 9 I4,800-5,O0O, but not quite so sharply

delineated as group (a); this group in-

i j cludes phenanthrene, naphthacene, pyrene,

@ I i/-- fluoranthene, etc.

I It must be emphasized that the

I : ~position of the "carbonium ion" band is

mm.30 00o 00 600 70 not directly related to the position of

Fig. 3. Spectrum of the toluene - HF-BF 3  the absorption spectrum of the parent

system. hydrocarbon. Thus we find phenanthrene,

- - - Curve B, C7 H8 "BF3 complex absorption• • itself absorbing at slightly shorter
•Curve A, C6A 6 BF 3  1 for comparison
Curve C, o-oxylene'BF3 • wavelengths than anthracene, with a car-

Absorption curve after 5 minutes at bonium-ion absorption at much longer
-200C showing the C7H9 + peak

..... Absorption curve after 30 minutes at wavelengths. Similarly, naphthacene,
-20°C chrysene, and pyrene all have carbonium-

Fluorescence emission spectrum of ion absorption in approximately the same
rinal solution region, although, of the parent
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hydrocarbons, naphthacene absorbs at

considerably longer wavelengths than. do

the other two.

There is no very obvious relation-

ship between the structure of the parent

2 molecule and the position of the absorp-

W• tion maximum of the carbonium ion. If

/ We adopt the usually accepted geometrical

structure for the carbonium ion, in which

mm 400 500 6'00, 700 the proton forms a normal CH2 group

Fig. 1. Spectrum of the naphthalene - (which then "hyperconjugates" with the

HF-BF3 system.
-CoH9+ absorption rest of the ring4), the most likely ex-

-.-... CoH9 + fluorescence emission planation seems to be that the "4,000k"

__ group of carbonium ions are those for

which only one ring of the hydrocarbon is

strongly involved, while in the 4,800-

II I5,OOOR group more than one ring is

/ strongly involved.

*A This idea for instance, explains very

- I5 well why anthracene long-wavelength car-

bonium-ion absorption is almost identical

"IN . .with that of benzene. (Here also see
mm, i 300 400 500 6003

Gold and Tye,3 whose spectrum of the
Fig. 5. Comparison of the mesitylene and

hexathylbenzne pecta inHF- anthracene carbonium ion in strong sul-hexaethyl benzene spectra in HF-

BF The left-hand ordinate is phuric acid is similar to that obtained

for hexaethyl benzene, that on the here in hydrofluoric acid.) The 9-10
right for mesitylene.

- - - mesitylene.H+ absorption. positions of anthracene are so much more

mesitylene.H+ fluorescence emission susceptible to attack by electropositive

- hexaethyl benzene.H+ absorption reagents that we may safely assume that
-... hexaethyl benzene.H+ fluorescence

emission the carbonium ion has the structure

T (as also assumed by Gold

and Tye). This means that the anthracene

4 L. W. Pickett, N. Muller, and R. S. Mulliken, J. Chem. Phys. 21, 1400 (1953); J. Am.
Chem. Soo. 76, 000 (1954O).
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bonds are to some extent "frozen" into a

particular structure much in the way that

they were visualized as frozen in quino-

noid compounds by Evans, and the proba-

_P bility of the positive charge migrating

X/ into the end rings is low, i.e., the

/"carbonium-ion" structure is essentially

AN confined to the middle ring. The fact

that for naphthalene and anthracene the
mmp00 400 @ positive charge remains largely localized

in the ring first attacked is substan-
Fig. 6. Spectrum of the anthracene -

HF-BF 3 system. tiated by the substitution reactions of
+3- 1 HII+ ion absorption these molecules. Thus for monosubsti-

...... fluorescence emission (short-lived) tuted naphthalenes, when the substituent

- - - phosphorescence emission (long- i
lived) is one attracting electrons, we find that

a second (electrophilic) substituent goes

into the second ring, and at a rate
'5-

similar to that of monosubstitution in

benzene. It follows that the deactiva-

1P tion is localized in the ring first

/ attacked, and that the positive charge

W 1 can therefore be considered as largely

localized on this ring.

In the case of the benzene carbonium

mn 400 500 600 700 ion, the observed spectrum (Figure 2) is

Fig. 7. Spectrum of the phenanthrene - in fairly satisfactory agreement with the

HF-BF 3 system. theoretical prediction4 that this ion

C14H1l+ ion absorption
CIHll+ ion fluorescence emission should show two strong peaks near 4,OOO0

and 3,20O0 respectively, with the latter

about 2.5 times as strong as the former.

To explain the long wavelength absorption of the phenanthrene carbonium ion, we

must assume that in it--and in all the larger polycyclics--strong migration of positive

charge into rings other than that attacked by the proton must occur.

5M. 0. Evans, Trans. Faraday Soc. L_2, 101 (1946).
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Neglecting hyperconjugation effects,

W_ this means that the conjugated system

i increases from 5 centers + 4 electrons

4 to 9 centers + 8 electrons or 13 centers

+ 12 electrons, according to whether two
2
X or three rings are involved. A simple

5- free-electron calculation suggests that

the observed shifts fit the two-ring

much better than the three-ring picture.

mmj 40 5 600 ?00 (2) In the case of the weakest bases

Fig. 8. Spectrum of the naphthacene- (benzene, toluene, etc.), at the low
HF-BF system. temperatures used, the appearance of the

- 16H.13  ion absorption characteristic carbonium ion peak at
... - -Fluorescence emission of system

4,000R is not the first observation.

Instead, the solution at first remains

colorless, but examination of the absorp-

tion spectrum shows an intense peak in

the ultraviolet at 3,180R for toluene and

KiI at 2,840 for benzene. These peaks are

certainly not simply due to a solvent

shift of the hydrocarbon bands, which

themselves may be seen weakly at

mnW 400 500 00 shorter wavelengths. It seems certain

Fig. 9. Spectrum of the pyrene - HP-BF3  that these new bands are charge-transfer

system. spectra6 due to the presence of molecular

-C16 H 1  Ion initial absorption complexes such as C6 H6 :BF3 and C7 H:BF3.

Fluorescence emission spectrum of
system Highly allowed optical transitions lying

- - - New absorption band appearing after in approximately the region where these
irradiation bands were observed are then expected,

to states approximately described as C6 H6 . 'BF 3 and CH 8 +.. B-F The differences in

position of the benzene, toluene, and xylene bands (about 3,000cm") are in good agree-

ment with what would be expected from their differences in ionization potential. 7

6 R. S. Mulliken, J. Am. Chem. Soc. 74, 811 (1952).

7R. NoConnell, J. S. Ham, and J. R. Platt, J. Chem. Phys. 21, 66 (1953); S. N. Hastings,
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Warming of the colorless solutions to above about -20 0 C results in the rapid develop-

ment of color due to the appearance of the characteristic carbonium-ion absorption at

4,0OO. Even at -70 0 C in the case of xylene the appearance of color takes only a

minute or two.

(3) Most of the systems investigated are not stable for an indefinite period even

after the carbonium ion has formed. Quite early in the investigation it was found

that absorption bands appeared erratically in the red and infrared and bore no con-

sistent relationship to the main absorption around 4,OOO. Some insight into what

such phenomena may involve is provided by the case of pyrene (Figure 9).

Solution of pyrene in HF-FB3 leads to the immediate production of a yellow-orange

solution with a sharp absorption band Just below 5,OOOR. It is found, however, that

the emission is far to the red of this, and further that irradiation leads to a change

in color, the solution rapidly becoming a clear green and remaining thus when irradia-

tion is discontinued. Reinvestigation of the

absorption spectrum after irradiation shows a new

absorption band with obvious mirror relationship to

the emission.

It appears therefore that the first formed

carbonium ion after excitation undergoes tautomerisri

E or perhaps chemical reaction in the excited state,

the new species then emitting and persisting in the

ground state.

Schematically such a process can be visualized

on the basis of the potential curves shown in Fig-

ure 10. Curves A and B then represent the ground-

and excited-state potential curves of the originally

Fig. 10. Possible potential formed carbonium ion, and C and D those of the new

curves for pyrene species, tautomerism being effected by a radiation-

carbonium-ion system. less transition from curve B to curve C. Since the

A. Initial carbonium ion

B. Excited state of same green end-product does not revert to the original

C. Curve onto which system moves carbonium ion again there must be a considerable

in upper-state tautomerism barrier between states A and D. A similar wide

D. Ground state of photoproduct
separation between absorption and emission, and

J. L. Franklin, J. C. Schiller, and F. A. Matsen, J. Am. Chem. Soc. 7, 2900 (1953).
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ready photodecomposition is found for the naphthacene carbonium ion.

(4) Sot~e ambiguity is present in the case of hexaethyl benzene. The BF.-hydro-

carbon complex and the carbonium ion may in this case be.expected to absorb in approxi-

mately the same region of the spectrum. The observed absorption peak is very sharp,

and so is the corresponding emission. The bands are certainly different in appearance

from the usual "carbonium-ion" bands, and it is tentatively suggested that they are in

fact charge-transfer bands. If this is so, the non-appearance of the "carbonium" band

must be attributed to a greater stability of the charge-transfer complex, which perhaps

is itself not a good enough donor to form a carbonium ion. This different behavior

may be due to the steric effect of the bulky ethyl groups which probably result in

some buckling of the aromatic ring.

(5) Finally it is noteworthy that of all the hydrocarbon carbonium ions examined,

only that of anthracene showed a long-lived (presumably triplet) phosphorescence

spectrum. Although perhaps coincidental, it is remarkable that anthracene is the one

hydrocarbon which itself shows so little phosphorescence that the position of its

lowest triplet level is in debate. 8

If it is granted as reasonable that the triplet levels like the singlets will

shift to the red in the carbonium ion, the position of the carbonium-ion triplet

(5,800R) is evidence in favor of the assignment of the anthracene triplet 8 at 5,20O0

rather than at 6,900R.
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INTRODUCTION

THERE HAS LONG been a great interest in the far ultraviolet absorption spectra of

ethylenes, for these molecules are the simplest of all r-electronic systems. The

ultraviolet absorption work of E. Carr, L. Pickett, and co-workers1,2,3,4 on several

olefins in solution and vapor phases, and the work of Price and Tutte 5 in the vapor

phase has given much information about the double bond. Platt, Klevens, and Price6

give extinction coefficients in the farther ultraviolet region of a few olefins, from

work in n-heptane solution. A rather complete bibliography of the literature on

ethylenes is given by Platt and Klevens. 7

The above authors (especially those in references 3 and 5) have shown that the

magnitude of the red shift with increasing alkyl substitution of the N - V transition

tThis work was assisted in part by the Office of Ordnance Research under Project

TB2-0001(505) of Contract DA-11-022-ORD-1002 with The University of Chicago.

*This paper is essentially an extract version of Part II of a doctoral dissertation

[Low-Temperature Spectroscopy in the Farther Ultraviolet Region, Chicago: March,

1953] submitted to the Faculty of the Division of the Physical Sciences, The Univer-
sity of Chicago.

*AEC Predoctoral Fellow, 1950-52.

°Present address: Spectroscopy Department, The Dow Chemical Company, Midland, Michigan.

1E. Carr and M. Walker, J. Chem. Phys. 4, 751 (1936).

2E. Carr and G. Walter, J. Chem. Phys. 4, 756 (1936).

3E. Carr and H. StOcklen, J. Chem. Phys. 4, 760 (1936).

4Pickett, Muntz, and McPherson, J. Am. Chem. Soc. 73, 4862 (1951).

5W. C. Price and W. T. Tutte, Proc. Roy. Soc. (London) A174, 207 (1940).

6Platt, Klevens, and Price, J. Chem. Phys. 17, 466 (1949).
Tj. R. Platt and H. B. Klevens, Rev. Mod. Phys. 16, 182 (1944).
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(the strong, allowed transition near 1,800R) depends primarily on the number of alkyl

substituents, and only to a lesser extent upon the size and position of substituents.

Extensive theoretical investigations by R. S. Mulliken 8 '9jl0 have to a great

measure correlated and explained the existing data. Mulliken and RoothaanI 0 have made

MO calculations which predict semi-quantitatively the potential energy (vs. twist about

the double bond) curves of ethylene in its ground and excited electronic states.

The present research was undertaken to compare the ultraviolet absorption spectra

of four alkyl-substituted ethylenes--tetramethylethylene, trimethylethylene, cyclo-

hexene, and hexene-1--in solution at room temperature (298 0 K) and in a rigid hydro-

carbon glass at liquid-nitrogen temperature (77°K), and to see what effect, if any,

low temperature might have on the spectra, which are presumably sensitive to twist

about the double bond. It was also hoped that the well-known effect of producing

sharper spectra at low temperature would be achieved, and thereby locate the N -eT

(absorption to the triplet state) transition.

EXPERIMENTAL

Materials

The four olefins measured were National Bureau of Standards samples, with the

following maximum impurities: tetramethylethylene (540-5S), 0.10±.05 mole %; trimethyl-

.ethylene (286-5S), 0.06±.04 mole %; cyclohexene (522-5S), 0.023±.02 mole %; and hexene-

1 (519-5S), 0.14L.08 mole %. These compounds were used without further purification.

All measurements on any compound were run the same day the sealed tube was opened, the

solutions being made up and measurements taken as rapidly as physically possible. This

was done because the rate at which the solutions of these compounds became impure when

exposed to the air (presumably due to peroxide formation) is excessive, particularly in

the case of hexene-1.

Methods

The room-temperature data above 2,20O were obtained in 3-methylpentane solution

with a Beckman model DU quartz spectrophotometer, using lcm quartz cells. The data

below 2,200R were obtained with a Cario-Schmitt-Ott vacuum fluorite spectrograph, using

8 R. S. Mulliken, Phys. Rev. 41, 751 (1932).

9 R. S. Mulliken, Rev. Mod. Phys. 14, 265 (1942).

'OR. S. Mulliken and C. C. J. Roothaan, Chem. Rev. 41, 219 (1947).
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techniques similar to those of Jacobs and Platt. 1 1 A 1cm cell was used, except in the

farthest ultraviolet region (below 1,850R), where a .13mm cell was employed. The

solvent was a mixture of 3-methylpentane and isopentane.

All the low-temperature data were obtained in a rigid hydrocarbon glass: the mix-

12ture of six parts isopentane and one part 3-methylpentane as discussed by Potts. The

apparatus and techniques used are those described elsewhere by Potts.12

Errors

As has been discussed by Potts, 1 2 errors of reciprocity failure of emulsions,

spectrophotometer errors, inaccuracies of sample preparation, etc., are small compared

to the error of variance of the optical density of the solvents and glasses in this

farther ultraviolet region. An index of error is provided by the closeness of agree-

ment with Beer's law as solutions of different concentration were used. (All solutions

were in steps of factors of five in concentration.) The maximum error of extinction

coefficient is somewhat more than 15% at the far ultraviolet end, becoming progres-

sively better toward the nearer ultraviolet, being about 10% at 2,000k, 5% at 2,500R.

In the regions of the spectra where data from the Beckman spectrophotometer overlap

with data from the vacuum fluorite spectrograph, the agreement is generally quite good.

Agreement of Room-temperature Data with Previous Work

For solution data above 2,20O0 the agreement is generally good. Tetramethyl-

ethylene and trimethylethylene data are in essential agreement with those of Carr. 1 ' 2

Disagreement of their data on hexene-l with the present data is perhaps because the

very pure NBS standard samples were not available at the time of their work. The

13solution data on tetramethylethylene and hexene-l obtained by Stevenson, using NBS

standard samples, agree very closely with the present work.

'The data below 2,20O0 of vapor-phase investigations of Carr and Stlcklen3 and of

Price and Tutte5 are qualitative. The sharper bands superimposed upon the N - V

transition observed by these authors are not found in the present (solution) work,

which In explained below. Otherwise, the data seem in approximate agreement.

The data of Pickett et al. on cyclohexene in the vapor phase, using an NBS sample,

shows general agreement with the present solution data, although a shoulder on the red

1lL. E. Jacobs and J. R. Platt, J. Chem. Phys. 16, 1137 (1948).

12W. J. Potts, Jr., J. Chem. Phys. 20, 809 (1952); 21, 191 (1953).
13D. P. Stevenson, Shell Development Company, private communication.
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side of the N -*V transition seems better resolved in their work. This is perhaps due

to the expected difference in resolution between vapor and solution spectra. The

cyclohexene solution data of Platt et al. 6 are in general agreement with the present

work, but show a much higher absorption on the "tail" of the N -- V absorption than the

present work. This again may be due to the fact the NBS standard samples were not used

in their work, for the present author has noted a rather extreme difficulty in keeping

this compound "spectroscopically" pure.

Far ultraviolet solution data of Platt et al.6 on octene-1 agrees rather poorly

with .the present work on hexene-1, whose spectra presumably should be quite similar.

Their extinction coefficient of the N - V transition is considerably higher (50% or so)

than the present work, and they indicate a much sharper peak to the band than the

present work. This disagreement is difficult to explain, as the techniques used in

obtaining these data were identical. Critical examination of both sets of data seems.

to indicate that the present emax is probably too low, while that of Platt et al. is

perhaps somewhat high.

RESULTS

Absorption Data

Figures 1-4 give the room-temperature (dashed curve) and low-temperature (solid

curve) absorption spectra from 2,500k to 1,700X of tetramethylethylene, trimethyl-

ethylene, cyclohexene, and hexene-l, respectively. Logl 0 E (molar extinction co-

efficient) obtained from measured optical density, cell length, and known concentration

by the usual relation tc = -logl 0 (I/1 0 ) = 0.D. (I in cm, c in moles/liter), is plotted

against the frequency in wave numbers.

When the rigid glass is employed, it is

&a 7- necessary to correct the concentration

values for the 22% contraction of the

I -- ---- --- glass in cooling.

ft .Table I gives the frequency of the

I absorption maximum, corresponding peakII lmolar extinction coefficient, and esti-

mated oscillator strength (room tempera-

YGPL4 Kl ture only) of the rather broad, allowed

Fig. 1. Absorption spectrum of tetra- N - V transition for the various olefins

methylethylene.
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studied here. There is an uncertainty of

about 500cm in the position of the

absorption peaks because of the broadness

of these peaks. The shift toward the red

Le is seen to depend primarily on the number

Le-- - - - - --- of alkyl substitutes at both temperatures.

Normally, in going from solution to

.4 -- a rigid glass medium a red shift of the

- -j absorption peak is observed, because of

VyeL.IOK the greatly increased refractive index of

Fig. 2. Absorption spectrum of the medium. That a blue shift of the

trimethylethylene. absorption peak is observed in olefins is

: - j ( -• -accounted for below.

- - -It was thought inadvisable to cal-

- - f -culate the oscillator strengths14 of the

-2. H- - - N - V transitions at low temperature,

__ _ - 0- O because the limit of the experimental
Lo m %a

S~technique was 1,700R, and it seems_1  probable that the broad N -. V transitioni ~ i i.= wlI*H ehiqewsl 0 and ienthseems 5

- - -extends to yet shorter wavelengthS. 3 ,5

4 There are not sufficient data in the

Ycm' tIO4  present work to calculate accurately the

Fig. 3. Absorption spectrum of oscillator strengths at room temperature,

cyclohexene.
but these values were estimated by extra-

polating the present data to higher frequencies, using the qualitative results of

Price and Tutte5 as a guide. Their data on propene-1 are used to extrapolate hexene-l,

for presumably these compounds should have very similar absorption spectra. 3 ' 9

There are some weak bands appearing in the region 40,000-48,000cm- which are

masked at room temperature by the strong shoulder on the red side of the N - V absorp-

tion, but which are seen at low temperatures. A possible explanation--that their

lif-number, or oscillator strength, is defined as: f = 10 3 (logloe)--.- fevdv 4.32
9re N

x 10l 9 eVdv, where v is in cm-', eV is molar extinction coefficient.

15 P.1 G. Wilkinson and H. L. Johnson, J. Chem. Phys. 18, 190 (f950).
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TABLE 1.

POSITIONS OF THE N -. V TRANSITIONS IN OLEFINS

Tetramethyl- Trimethyl-
ethylene ethylene Cyclohexene Hexene-l

CH 3 CH3  CH3  CH3 H, C C 3

Structural 3C C /C = C\ CH2  H2 C
Formula CH %CH H CH / H 4CH9

CH 2 - CH 2

Temperature 2980 K 77°0K 298'K 77 0 K 2980 K 770 K 2980 K 77 0 K

Vmax of N -* V

transition 52,250 53,750 53,000 54,000 54,750 55,500 56,000 56,500

*500cm
1

Emax 10,000 10,500 5,800 5,600 6,800 6,800 6,300 5,4oo
*TOO *900 *700 +900 *700 *900 *700 *900

Red shift from

Vmax of ethylene 9,150 8,4oo 6,700 5,400
(61,400cm- )(Seerefs. 5 and 15)

Low-temperature
blue shift, cm- 1  1,500 1,000 750 500

f-number .45*.10 .34*. 09 .38*.09 .29.o08

existence is due to a ground-state-to-triplet (N -. T) transition (and not to trace

impuritiesl)--is discussed below. The "centers" of the transitions, average molar

extinction coefficient, and oscillator strengths of these transitions are given in

Table II. The vibrational separation (?) is tabulated where it is sufficiently

resolved.

- - -, - -Most curious is the low-temperature

/• spectrum of cyclohexene in the region

S- 4o,oo0-45,000cm-. The low-temperature

If - absorption is pronouncedly greater than

L e the absorption at room temperature.

- -- -.m That this surprising effect is probably

S- -.- - real was indicated by showing that the

O, room-temperature absorption is repro-
4 W ,e 49 eW duced within experimental error upon

FIg4. J. Absorption spectrum of hexene-l, warming up the identical solutions used
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TABLE II.

POSITIONS OF THE N - T (?) TRANSITIONS IN OLEFINS

Tetramethyl- Trimethyl-
ethylene ethylene Cyclohexene Hexene-l

"Center" of"of N - T o3,800cm- 1  4,200cm- 1  44,Ooocm- 1  46,400cm- 1

transition

Average e 2.5*.5 .6l.i 1.0*.2 .2*.1

f-number 4.2*1.0 x 10-5 1.0±.5 x 10-5 2.7*.8 x 10-5 .26*.1 x 10-5

Vibrational -1
separation 1,400*100cm- 1,400*100cm-I

for the low-temperature determinations.

Three molecules are obvious by their omission from this study, namely, the three

dimethylethylenes: cis- and trans- butene-2, and 2-methylpropene. Their absorption-

spectra curves would be expected to be about midway between trimethylethylene and

hexene-l. 2 ' 3  (Hexene-l should have essentially the same ultraviolet spectrum as

propene;3 it was chosen only for convenience of physical properties.)

Ethylene, of course, should also be included in this study. However, new experi-

mental techniques are necessary before a gas can be studied by the low-temperature

methods used in this work.

In Figure 5 the low-temperature absorption curves of all four compounds are

plotted together for comparison.

Search for Phosphorescence

Observation of olefin phosphorescence

- - - -- - (T - N long-lived emission) would lend

S - - - - strong support to the singlet-tripletl 6

- - - - - (N - T) assignment given the weaker bands

in the 40-48,000cm region. Hence a search

_ - - - - -for phosphorescence was made, using the

methods described elsewhere by Potts. 1 2

,.cx 4 ale In this setup, the slit of the Cario-

Fig. 5. Low-temperature spectra compared. Schmitt-Ott fluorite spectrograph was mad

It has been quite firmly established that phosphorescence in electronic systems is

due to the lowest-triplet-to-ground-singlet emission. (See reference 17.)
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very wide (1mm), and the very fast Eastman SWR plates were used, so that the weakest

radiations could be detected. With this arrangement it was possible to record the

notably weak phosphorescence of benzene1 7 with only 15 minutes' exposure time.

Tetramethylethylene was chosen for this study because of its higher absorption

less farther in the ultraviolet. No phosphorescence was observed. An explanation for

its non-appearance is given below..

The phosphorescences of chloro-ethylenes reported by Kashal718 must be regarded

as erroneous because their reported lifetimes are much too long. Phosphorescence of

these compounds (if it exists at all1--see discussion below) would be very short-lived,

for the only selection rule forbidding the transition in chloro-ethylenes is the

singlet-triplet intercombination rule, and chloro-substitution tends to break down this

very rule. 1 9

DISCUSSION

As noted above, the larger the number of alkyl substituents about the double bond,

the lower is the energy (longer the wavelength) of the N - V transition peak. This

effect, due to increasing hyperconjugation 9 ' 2 0 and/or increased inductive transfer of

charge towards the double bond from the more electro-positive alkyl groups with

increasing alkyl substitution,5 has been dealt with at length by other authors 3 ' 5 ' 9

and hence will not be discussed further here.

In the vapor absorption spectra of Carr and Stfcklen3 and of Price and Tutte 5

several sharp bands appear superimposed on the broad N - V absorption. These bands

have been interpreted as belonging to a Rydberg-type transition5 ' 9' 2 1 called N - R in

the notation of Mulliken. 9 No such bands were observed in the present work.

The explanation of their non-appearance (if they are truly Rydberg-type transi-

tions) lies in the fact that one would not expect such spectral states to be observed

in a condensed medium (solution or low-temperature glass) because the large-sized

Rydberg orbitals would probably-be strongly perturbed by closely neighboring solvent

molecules. When these bands have been observed by other authors It has always been in

17G. N. Lewis and M. Kasha, J. Am. Chem. Soc. 66, 2100 (1944).

18M. Kasha, Chem. Rev. 41, 4o0 (1947).

19D. S. McClure, J. Chem. Phys. 17, 905 (1949).
2 0 Mulliken, Rieke, and Brown, J. Am. Chem. Soc. §2, 41 (1941).

21g. Carr and H. St'oklen, J. Chem. Phys. 7, 631 (1939).
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the vapor phase at low pressures.

Shape of the N - V Absorption Curve at Low Temperature
It is noticed that in each compound there is a shoulder in the absorption curve of

greater or smaller size on the red side of the N - V transition. The width of this

shoulder decreases as one goes from tetramethylethylene, the most substituted ethylene,

to hexene-l, the least substituted. For an explanation of these phenomena, we refer to

Mulliken and Roothaan's picture1 0 of the potential energy of the various electronic

states of ethylene as a function of twist about the double bond. An adaptation of

their figure is shown in Figure 6.

The curves represent the potential energy as a

$-AV function of angle of twist, e, about the double bond

of ethylene for the normal (ground singlet) state,

N, the first excited singlet iT-electronic state, V,
4.V

and its corresponding triplet state, T. They are

"drawn to the qualitative scale indicated by the LCAO
. , MO calculations of Mulliken and Roothaan,I0 as

corrected by the author to correspond with the

"corrected assignment of the twisting frequency of

Arnett and Crawford.
2 2

From Figure 6, it is seen that the ground
Fig. 6. The potential energy of

state has its'minimum energy in the planar form,the electronic states of ethylene

as a function of twist about the while the planar form gives maximum energy for the

double bond. Energy is in wave excited states. That is, the slopes of the ground-

numbers. The vettical arrows

represent the N - V transitions, and excited-state curves are of opposite sign.

Thus, in an N - V spectral transition, the more the

molecule is twisted, the less the energy required for the transition, and hence the

longer the wavelength of the absorption. The fact that absorption sets in at longer

wavelength at room temperature than at low temperature [(N - V)HT and (N - V)LT in

Figure 6] must indicate that the low-temperature conditions restrict the amount of

twist either in the upper (V) state or in the ground (N) state, or both.

From the corrected assignment of the twisting frequency in the ground (N)

22R. L. Arnett and B. L. Crawford, J. Chem. Phys. 18, 118 (1950). These authors give

v4= 1027cm ", where the older value was 825cm
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electronic state of ethylene22 one calculates k, = 2.71 x 104 wave numbers/radian for

the force constant, which allows 11.1 twist in the ground level and 19.3° twist in the

first vibrational level (i,027cm- 1 ), using V = ½k e2 , where V is potential energy in

cm- 1 . From Figure 6 it is seen that a vertical (Franck-Condon allowed) transition from

the most twisted configuration of the first excited vibrational level in the ground

electronic state [labelled (N - V)HT in the figure] is of lower energy by some 3-4,000

cmI than a corresponding transition from the lowest vibrational level [(N - V)LT],

most of this energy being due to the steepness of the upper (V) state potential curve.

However, statistics allow only 0.7% of the molecules in the first vibrational level at

room temperature, and hence a low-temperature medium. would not be expected to have much

effect upon the absorption-spectra curve of ethylene compared to the spectra at room

temperature.

The values of the twisting frequencies of alkyl-substituted ethylenes are still in

doubt, 2 3 and only estimates of their values may be made. In the case of tetramethyl-

ethylene, which has the same symmetry properties as ethylene, if the force constant of

twist (k ) is the same as in ethylene, the energy of the first vibrational level of

twist is calculated to be 264cm- 1 . The corresponding maximum twist angles are 9.80 for

the first excited level of twist, 5.70 for the ground level. Application of statistics

shows that 28% of the molecules will be in the first excited vibrational level of twist

at room temperature.

The assumption that the force constant of tetramethylethylene will be the same as

ethylene is, of course, a poor one. Examination of a Fischer-Hirschfelder atom model

of tetramethylethylene indicates that the van der Waas radii of the H atoms on the

methyl groups would actually overlap considerably in the planar configuration if free

rotation of methyl groups could take place. This must be regarded as a rather strong

repulsion by the methyl groups, which would tend to force the molecule into a more

twisted configuration. This in turn would tend to decrease the force constant of twist

about the double bond, and thus make the ground-state potential curve (N) somewhat

flatter than pictured in Figure 6. On the other hand, the repulsion of methyl groups

in tetramethylethylene will tend to steepen the potential curve for the upper (V)

electronic state, particularly in the region of planarity.

An additional effect of the low-temperature rigid glass may result from the

increased viscosity of the surroundings at low temperature. This increased viscosity

2N. Sheppard and G. B. B. M. Sutherland, Proc. Roy. Soc. (London) A196, 195 (1949).
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would make the energy of rotation about the double bond somewhat greater, which would

slightly steepen the ground-state (N) potential curve, slightly flatten the excited-

state (V) curve at low temperature (compared to the curves of the same molecule at room

temperature). This effect should be small, however, in view of the high value of the

twisting force constant for the ground state and the yet higher force constant for the

excited state (at least a factor of 3 greater, probably more in the more highly sub-

stituted ethylenes).

Less highly substituted ethylenes (mono-, di-, tri-) should have values somewhere

between ethylene and tetramethylethylene for the above effects, i.e., force constant of

twist, twist vibrational energy separation, % population of the first vibrational level,

viscosity-dependent resistance to twist. These effects all operate in the same direc-

tion: the more alkyl substituents, the greater the "twisted population" at room tem-

perature compared to low temperature.

Thus, from these considerations it seems reasonable to suppose that the larger the

number of alkyl substituents, the more likely will be the N - V transition between the

twisted states of the substituted ethylene at room temperature, as compared to low

temperature. That is, with increased alkyl substitution, one observes a lower fre-

quency (energy) for the onset of absorption at room temperature compared to the onset

of absorption at low temperature. This accounts in a satisfactory manner for the

increasing width of the "red shoulder" on the N - V absorption curve with increasing

alkyl substitution, which disappears at low temperature. (This "red shoulder" effect

is, of course, a separate effect from the red shift of the absorption peak with

increased alkyl substitution.)

In Figure 7 are plotted together for purposes of comparison potential curves for

the ground (N) and excited singlet (V) states of ethylene (solid), and the probable

curves for tetramethylethylene (dashed). Also shown are the N - V transitions from the

zeroth and first levels of twist vibration. In comparing them, one must bear in mind

that at room temperature the first vibrational level of ethylene will be very sparingly

(.7%) populated, while in tetramethylethylene the first vibrational level will be

strongly (at least 28%) populated. [The absolute heights of the upper (V) state curves

are drawn as if the peaks of the N - V transitions of these molecules coincided, but

of course they do not; however this is immaterial to the present discussion.]

Cyclohexene is a somewhat different case from the other olefins considered here

in that it is a ring structure. Comparison of the N -. V absorption curves at room and
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low temperatures indicate that, insofar as the "red

shoulder" on the N - V transition is concerned, it

i !behaves essentially like a dialkyl ethylene.

/\Apparently the shape of the complete N - V absorption

S ii '\ curve (including data below 1,700R) is quite dif-

ferent from that of a cis-olefin,3'4 which PlattII
S6

et al. consider to be due to a permanent twist of

I - the double bond. But references cited by them and
II
i ithe more recent work of Beckett, Freeman, and

- Pitzer indicate that there is no such permanent
PLANAR p

twist of the double bond in cyclohexene. The effect

Fig. 7. Potential curves of of the structure of cyclohexene on its ultraviolet

ethylene (solid) and probable

curves of tetramethylethylene absorption spectra will be considered below in more

(dashed) compared. detail in the discussion of the triplet state.

The Triplet State of Olefins

When the red shoulder of the N - V transition is "removed" at low temperature, a

weaker band is revealed in the region 40-48,000cm- 1. These bands presumably are the

ground-to-triplet (N - T) transitions, and are so assigned for the following reasons.

Reference to Figure 5 shows a certain regularity to these transitions, if we

neglect cyclohexene for the moment. This regular trend closely parallels that of the

position of the singlet (N - V) peaks, suggesting that the two transitions may be

related. The singlet-triplet separation of the excited states is approximately con-

stant throughout the compounds, and is about the amount predicted by Mulliken. 9 ' 10

Reference to Tables I and II shows that the trend of both e and oscillator strength is

qualitatively the same for both the N - V and N - T transitions. The values and

oscillator strengths of the N - T transitions are within the range of what could be

expected for a singlet-triplet transition between Tr-electronic states corresponding to

an allowed singlet-singlet transition in olefins. 1 9

There is the possibility that the bands observed in the 40-48,000cm-1 region are

due to impurities. Olefins are difficult to keep "spectroscopically" pure; however,

it is felt that the source of materials and experimental precautions used in obtaining

these data were sufficiently good to render impurities unlikely.

2 4Beckett, Freeman, and Pitzer, J. Am. Chem. Soc. 70, 4227 (1948).
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"Upon exposure to air these compounds begin to show increased absorption in Just

this "triplet" region, but this is exactly the region wherein one expects formation of

impurities to be most noticeable: at higher frequencies any impurity would be masked

by the already great absorption of the pure compound itself, while at lower frequencies

the expected impurities (oxygen containing compounds) would have small absorption

themselves .7,25

In the molecules where they are resolved, vibration peak separations of 1,400cm-

appear in the N - T transition. This is approximately the C = C stretch frequency.

That these should be observed in the N -. T transition and not in the N -. V transition

is unexplained.

If these bands in the region 40-48,000cm- are then truly the N -* T transitions,

there is one point a bit more difficult to explain. Their e values and oscillator

strengths increase by a factor of 20 in going from the least substituted ethylene

(hexene-l) to the most substituted (tetramethylethylene), while the corresponding

values of the N - V transition increase by only a factor of two. This must mean that

the singlet-triplet selection rule is being strongly affected by the presence of the

alkyl groups, and this can apparently happen in two ways.

It is known from phosphorescence studies of other n-electronic systems, notably

aromatics, that the intrinsic phosphorescence lifetime of a molecule is markedly

decreased when substituents are added,19 particularly if these substituents are heavier

atoms. This shortening of phosphorescence lifetime is due to the partial breakdown of

the singlet-triplet intercombination rule, whose breakdown is presumably the result of

increased spin-orbit (J-J) coupling at the expense of L-S coupling. The breakdown of

the singlet-triplet selection rule, then, will also increase the light absorption from

the ground (singlet) state to the excited triplet state.

As the effect is currently interpreted a substituent as small in atomic number as

a methyl group should have little effect on the spin-orbit coupling. However, extra-

polation of data from heavier atoms to lighter atoms shows that the effect of a methyl

group while small is yet finite.26 McClure,19 although he finds no essential dif-

ference between phosphorescence lifetime of toluene and benzene, does find shorter

lifetimes for phenol and aniline than for benzene, and he attributes the phenomenon to

2 5 H. Sponer and E. Teller, Rev. Mod. Phys. 13, 76 (1941).

26N. Kasha,, Disc. faraday Soc. 92 14 (1950).
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this atomic number effect. Other workers in this laboratory27 have found that the

reverse process of phosphorescence in benzene, namely absorption of light from the

ground state to the lowest excited triplet state, is twice as strong in toluene as in

benzene, while the corresponding singlet absorption remains little changed in intensit3t

Now with ethylene it is possible to add more methyl groups per v-electron than with

benzene. Hence it is conceivable that several alkyl substitutions28 will cause an

"atomic number" effect on the singlet-triplet selection rule in olefins.

Another possible effect of increasing alkyl substitution upon ethylene N -+ T

absorption is that of a steric effect at low temperature. In its 22% contraction, the

rigid-glass medium may distort the molecule. Presumably the olefin having the greater

number of alkyl groups about the double bond would be more subject to such distortion,

because of its larger "area." Under such distortion there might be a tendency to

enhance the unpaired (or triplet) character of the v-electrons in the ground (N) state,

and thus make the N -. T transition more allowed. The distortion perhaps most likely

to do so is twist, 9 ' 2 9 but if the molecule were to be "frozen" in a twisted state, then

the "red shoulder" of the N - V transition would not disappear at low temperature.

Further, the twist distortion at low temperatures seems unlikely in view of the large

force constant of twist, as has been noted above. Perhaps some other distortion, such

as bending of the C = C plane [force constant less than one-half of twist 30 ], could

produce some unpaired character in the w-electrons.

Perhaps the correct choice between these tw9 possible explanations for the rapid

increase of the N -'T transition with increasing substitution could be found by

examining the absorption spectra of the various fluoro-substituted ethylenes at low

temperatures. If one observed a weak transition analogous to the N - T transition

studied here, which increased strongly in intensity with increasing fluoro-substitu-

tion, the first explanation (that of increased spin-orbit coupling with increasing

substitution) would be strengthened; fluorine atoms are too small to cause much steric

effect, as the second explanation requires.

2 7 j. S. Ham, unpublished data.

28As to whether the shortening of phosphorescence lifetimes in aromatic compounds is

additive as more of the same substituents are added, McClure's data are inconclusive

(see reference 19).

29H. McConnell, J. Chem. Phys. 20, 1043 (1952).

300. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, page 184.
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Another point about the present N - T transition assignment to be discussed is the

"red shoulder" effect for this transition. The potential curve of the excited triplet

state (T) is of the same general shape as the excited singlet (V) state (Figure 6).

Hence, the same arguments about a red shoulder at higher temperatures that obtain for

the N .- V transition apply for the N - T transition. This shoulder can be seen at room

temperature in Figures 1, 2, and 4. (The "main part" of the N - T transition at room

temperature is hidden by the red shoulder of the N - V transition, except in the case

of hexene-l. In hexene-l the "main part" of the N - T transition appears at room

temperature because it is only partly hidden by the narrower shoulder of the N -- V

transition.)

Phosphorescence and the Triplet State

Observation of a comparatively long-lived light emission (phosphorescence), which

is now well established as triplet-singlet emission17'18,19'26 (T - N in the present

discussion), might confirm the present N - T assignment. As mentioned above, no such

phosphorescence was observed in tetramethylethylene. If the statement above, that a

low-temperature glass does not appreciably affect the potential curves (N, V, or T),

is correct, the non-appearance of phosphorescence is easily explained. For as the

molecules get into the triplet state, they could rapidly lose vibrational energy to

the surroundings as they cascaded down through vibrational levels of the triplet state,

eventually reaching the excited triplet (T) and ground singlet (N) crossover point, at

e - 600 (see Figure 6). Here they become singlet states, and cascade through the

ground state vibrational levels back to zero energy. This radiationless process would

be far more rapid than a triplet-singlet (T - N) emission. 18 Thus, no longer-lived

(phosphorescent) emission would be observed.

Cyclohexene

Cyclohexene is a somewhat different case from the other olefins already discussed.

Superimposed upon the double-bond twisting potential will be certain strain potentials

resulting from the fact that it is a six-membered ring structure. As the infrared

frequency assignments are still in doubt, no attempt will be made to go into the finer

details of cyclohexene structure; however, certain general statements may be made

which, it is hoped, will be sufficient to explain the absorption spectrum.

It is expected that steric forces of the ring will have little effect upon the

energy of C - C twist in its region of planarity. This is expected from the high
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energy of C = C twist, about 1.3kcal/deg (as estimated from Arnett and Crawford's value

in ethylene 22), and the comparatively small strain energy of the entire ring, about

1.6kcal.24 That is, the 1.6kcal of strain will be taken up by distortions other than

the high-energy twist distortion. The only change in the region of double-bond pla-

narity might be a small tendency toward flattening the ground-state (N) curve near

planarity. Of course, for the region of large angle of twist (e > 45°, say) the poten-

tial curve would be greatly altered, because it would require breaking a C - C bond.

Presumably, this higher twisted region is not of importance in the present discussion.

At low temperature, negligible change (compared to room temperature) in the V and

T state potential curves is expected in the region of planarity, as in the case of non-

cyclic olefins, and for the same reason--namely, that energy of C = C twist is too

great. Nor is much change anticipated in the ground-state (N) twist-potential curve in

going to low temperature, except some small steepening of the curve which is due to

contraction of the surroundings.

From this reasoning the behavior of the N - V transition should in principle be

Just like the other olefins at room and low temperatures, and this is what is observed:

a red shoulder on the N - V absorption, disappearing at low temperature.

In cyclohexene the behavior of the weaker transition at 43,000cm'1 (presumably the

N - T absorption) is quite different from that of the other olefins in that its absorp-

tion is greatly increased at low temperature. Although it may be coincidental, it is

interesting to note that the oscillator strength of this transition, compared to the

other olefins, follows the same trend as the oscillator strength of the N - V transi-

tion. This gives additional support to its assignment as the N - T transition.

If this is indeed the N - T transition, the only possible explanation for its

abnormally high intensity at low temperature is that the singlet-triplet selection rule

is violated to a greater extent than would be expected. Recalling the sensitivity of

this selection rule to alkyl substitution (as with the other olefins) it would be

expected that the N - T absorption for cyclohexene would be about the same as for cis-

butene-2, which, as mentioned, should be about midway between mono- and tri-substituted

ethylene. The additional effect on the selection rule in cyclohexene must then be due

to its ring character.

As pointed out, the ring structure should not have any great effect on twist of

the double bond in the region of planarity (e < 150, say), for the energy of twist is

too large. Further, if the N -4T transition were enhanced because the molecule was

318



LOW-TEMPERATURE FAR UV SPECTRA OF OLEFINS

somehow "frozen" into a twisted state at low temperature, then the N -.V transition

would probably not show much disappearance of a red shoulder at low temperature.

What is proposed to explain the abnormal intensity at low temperature of the N -*

T transition in cyclohexene is that the contraction of the rigid surroundings at loW

temperature tend to put some additional strain on the cyclohexene ring, which is to

some extent taken up by an out-of-plane bending of the C = C plane. By analogy with

ethylene, the force constant of this bending is sensibly lower (less than half) than

the force constant of twist,30 and hence a bending of the C = C plane produced by

contraction of surroundings is more energetically feasible than a twisting of the, doub~e

bond.

As has been noted, the singlet-triplet selection rule is sensitive to perturbation

of the molecule. Thus, such an out-of-plane bending of the double bond could quite

possibly decrease the bonding nature of the u-electrons by tending to localize them on

the separate carbon atoms and by decreasing their overlap. This, in turn, would

enhance their unpaired character. This tendency toward unpairihg of the u-electrons

mixes a certain triplet character into the ground-state wavefunction. 2 9 Thus, a

transition from such a state to a triplet state becomes less strongly forbidden.

That such an "extra" enhancement of the N - T absorption is not encountered in the

other olefins is explained by the fact that they are not cyclic. It is presumed that

the bending of the double bond in cyclohexene is the unique result of the force of

contracting rigid surroundings upon a ring structure.

This explanation is to be regarded only as rather tentative. Little more can be

said at the present time until such effects are investigated more thoroughly, both

experimentally and theoretically.

SUMMARY

A "red shoulder" on the N - V absorption curve of olefins, observed at room tem-

perature, but not at low temperature, is shown to result from the fact that the poten-

tial curve for twist about the double bond in the ground and excited states have slopes

of opposite sign. The weaker absorption in the region 4o-48,o0ocm-I is assigned to the

N -#T absorption on the basis of its analogy to the N - V transition in position,

extinction coefficient, and oscillator strength, and to the sensitivity of the singlet-

triplet selection rule to perturbations of the molecule.
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LOW-TEMPERATURE ABSORPTION SPECTRA OF BENZENE, TOLUENE,

AND PARA-XYLENE IN THE FARTHER ULTRAVIOLET REGIONt*

W. J. Potts, Jr.*0
Laboratory of Molecular Structure and Spectra

Department of Physics
The University of Chicago

Chicago 37, Illinois

INTRODUCTION

PERHAPS no polyatomic molecule has been investigated spectroscopically as extensively

as has benzene. In spite of the vast amount of literature on this subject, compara-

tively few investigations have been made of the shorter wavelength transitions (below

2,200R) of benzene, and of these only a very few have given absolute extinction co-

efficients.

The nearer ultraviolet absorption bands of benzene (at 2,600R, assigned to the

IAlg -
1B2 u transition by most authors) have such extensive literature that only a few

selected references will be cited here. The nearer ultraviolet absorption spectra of

benzene and several alkyl benzenes have been systematically investigated in hydrocarbon

solution,1 in the vapor state, 2 in the crystalline state at low temperature, 3 and in

rigid-glassy media at low temperature.4 While the low-temperature spectra of the

2,60R transitions of benzene and alkyl benzenes are very much sharper than the room-"

temperature solution spectra, the low-temperature method still cannot compete with

tThis work was assisted in part by the Office of Ordnance Research under Project

TB2-0001(505) of Contract DA-11-022-ORD-1002 with The University of Chicago.

This paper is essentially an extract version of Part III of a doctoral dissertation

[Low-Temperature Spectroscopy in the Farther Ultraviolet Region, Chicago: March, 19531
submitted to the Faculty of the Division of the Physical Sciences, The University of
Chicago.

AEC Predoctoral Fellow, 1950-52.

°Present address: Spectroscopy Department, The Dow Chemical Company, Midland, Michigan.
1 Catalog of Ultraviolet Spectrograms, American Petroleum Institute, Project 44 (1945-

1950).
2 H. Sponer, J. Chem. Phys. 8, 705 (1940).

3A. Kronenberger, Z. Phys. 49, 491 (1930).

1E. Clar, Spectrochim. Acts, 4, 116 (1950).
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vapor spectra in resolution of these bands. Hence, vapor spectra have been used for

the complete analysis of the 2,60O0 transitions of benzene 5 and the analogous transi-

tions of substituted benzenes. 6

In the farther ultraviolet region, the spectral data on benzene and substituted

benzenes become far scarcer. The far ultraviolet vapor spectrum of benzene has been

obtained qualitatively by Carr and Stficklen, 7 and, along with that of toluene and the

xylenes, by Price and others. 8 '9 The vapor spectrum of benzene has been obtained
10 l

quantitatively by Pickett and co-workers, and by Romand and Vodar. 1 1

The absorption spectra of benzene, toluene, and the xylenes have been obtained

quantitatively in n-heptane solution by Platt and Klevens in the region 2,200-1,700X.12

Their work shows nearly as much resolution of structure as most of the aforementioned

vapor work. In their work, as in the vapor absorption spectra, the strong transitions

of benzene and the alkyl benzenes at about 1,850R are quite diffuse.

Romand and Vodar 1 1 have obtained the far ultraviolet spectrum of benzene in the

crystalline state at liquid-nitrogen temperature, but their work shows decidedly less

sharpening of the spectrum than either their own vapor spectrum or the room-temperature

solution spectra of Platt and Klevens.12

The present research was undertaken to see if use of rigid glasses at low tempera-

ture would give increased resolution in the diffuse transitions in the farther ultra-

violet region of benzene and alkyl benzene absorption spectra. The results are most

encouraging and show that these far ultraviolet transitions in aromatics do indeed have

sharp structure. The absolute extinction coefficients and positions of several vibra-

tional bands have been obtained for the farther ultraviolet (2,200-1,700R region)

spectral transitions of benzene, toluene, and para-xylene both at room temperature and

at low temperature. Generally, much more vibrational structure is seen at low tempera-

ture.

5Sponer, Nordheim, Sklar, and Teller, J. Chem. Phys. Z, 207 (1939).
6 H. Sponer, Rev. Mod. Phys. 14, 224 (1942).

7E. Carr and H. St~icklen, J. Chem. Phys. 6, 645 (1938).

8W. C. Price and W. D. Walsh, Proc. Roy. Soc. A191, 22 (1947).

9Hammond, Price, Teegan, and Walsh, Disc. Faraday Soc. 9, 53 (1950).
1 0Pickett, Muntz, and McPherson, J. Am. Chem. Soc." 73, 4862 (1951).

11j. Romand and B. Vodar, C. R. Acad. Sci., Paris 23, 930 (1951).

1 2 J. R. Platt and H. B. Klevens, Chem. Rev. 41, 301 (1947).
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EXPERIMENTAL

Materials

Benzene and toluene used in this research were Merck Reagent Grade chemicals;

para-xylene was Eastman "White Label" grade, m.p. 13 0 C. Each was purified by several

recrystallizations from itself, then distilled from sodium wire to remove any possible

condensed water from the crystallization process. Although this method gives a product

of extremely high purity,13 the problem of impurities in this research is small, for

only regions of intense absorption (c > 5,000) were being investigated. The only

trouble that might arise in this respect would be small amounts of ortho- and meta-

xylenes in the para-xylene. The original melting point of the source of para-xylene

and its method of purification however assure against it.

Method

The spectra at room temperature were obtained in a mixture of isopentane and 3-

methylpentane by the same methods used by Platt and Klevens 1 2 and described elsewhere.14

The liquid-nitrogen temperature spectra were obtained by the methods described else-

where by Potts. 1 5 For both series of spectra the Cario-Schmitt-Ott vacuum fluorite

spectrograph was employed, and Ilford Q1 plates were used.

Errors
The errors in these methods have been discussed elsewhere by Potts15,16 and are

believed to be about 8% in molar extinction coefficient at 2,200R, increasing to some-

what greater than 15% at 1,700R, the limit of the present techniques. Samples of dif-

ferent concentrations gave results consistent within these errors. However, the error

may well be higher than estimated in the region at the "blue" end of the first absorp-

tion (2,100R transition) which is being overlapped by the beginning of a region of

stronger absorptlon (1,850R transition), where it is difficult to pick a solution of

favorable concentration. Also, the errors in the room-temperature data at the extreme

end of the region investigated (1,730R) are probably quite high, as the solvents are

rapidly cutting off here at room temperature.

13G. N. Lewis and M. Kasha, J. Am. Chem. Soc. 66, 2100 (1944).

1I4L. E. Jacobs and J. R. Platt, J. Chem. Phys. 16, 1137 (1948).

15W. J. Potts, Jr., J. Chem. Phys. 20, 809 (1952), 21, 191 (1953).

16W. J. Potts, Jr., "Low-Temperature Absorption Spectra of Selected Olefins in the

Parther Ultraviolet Region", THIS TECHNICAL REPORT, 1952-53, Part Two.
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Agreement with Other Authors

The room-temperature data presented here are essentially a repetition of the work

of Platt and Klevens 12 and generally agree fairly well with their results. Other

workers in this laboratory have independently verified many of these values of extinc-

tion coefficient. 1 7 However, the present data differ from those of Platt and Klevens

in two instances: (a) the present work shows no weak transition at 1,730R in toluene,

which Platt and Klevens observed and have interpreted in a later paper18 as being

analogous to a 1Alg 1E2g transition in benzene; (b) the transition in para-xylene at

2,20O shows a somewhat lower extinction in the present woik than in that of Platt and

Klevens. These discrepancies will be discussed in detail below.

The present work shows none of the very sharp Rydberg bands superimposed upon the

strong 1,850X transition in any of these compounds which have been observed in the

vapor spectra of Carr and Stficklen, 7 Price et al., 8 '9 and Pickett et al. 1 0 This is

presumably to be expected when spectra are obtained in condensed phases, however,

because of the large size of the Rydberg orbitals, which would become strongly

perturbed by closely neighboring molecules.

The value of peak extinction coefficient of the benzene 1,850R transition at room

temperature obtained here, and agreeing with Platt and Klevens 1 2 and with Cohn and

Ham1 7 (all of whose data were obtained under similar conditions in hydrocarbon solu-

tions), disagrees with the vapor phase value of both Pickett et al. 1 0 and Romand and

Vodar 1 1 (whose results approximately agree). That our solution values of e for the

strong transition of benzene (e = 45,000) should be a little more than one-half the

vapor phase value obtained by others (e = 80,000) is difficult to explain, as. it has

been shown that spectra in solution and in vapor should have about the same molar
14

extinction coefficient.

RESULTS

As a vivid example of the increased sharpening of benzene spectra one can obtain

with a rigid glass at low temperature, some of the benzene plates have been reproduced

in Figure 1. Figure la shows absorption of the 2,10OR transition; the lower exposure

is at room temperature, the upper exposure is the identical solution frozen to a glass

at liquid-nitrogen temperature. Figure lb gives a similar picture for the 1,850•

17Unpublished data of J. S. Ham, and of C. E. Cohn.

18J. R. Platt, J. Chem. Phys. 12, 1418 (1951).
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H 3000 2500 2000 1700 1500

Fig. la. Comparison of room-and low-temperature

spectra of benzene 2,10OR transition.

H 3000 2500 2000 1700 1500

- ill iL II LI I t K1U L1 iIL

Fig. lb. Comparison of room-and low-temperature

spectra of benzene 1,850R transition.

transition of benzene. That low temperatures are of value in this farther ultraviolet

region is clearly shown by the effect on the 1,850R transition; not even vapor spectra

,0 have produced such sharpening of this

- transition.

7 OH In Figures 2, 3, and 4 are plotted

__ _the molar extinction coefficient of ben-

4 110 zene, toluene, and para-xylene, respec-

3/
, -tively, against the frequency in wave

V I I --- numbers. The solid curve is the data at

43 44 46 44 0 51 54 5A Fe 6:0
z• , c ar' !00 low temperature, the dashed curve is the

Fig. 2. Far ultraviolet absorption data at room temperature. Figures 5, 6,

spectra of benzene.
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and 7 give the same data on a log 1 0 plot.

Because the molecular symmetries of

---- 'rI 4N benzene, toluene, and para-xylene differ,

analogous spectral transitions in these

molecules properly get different symmetry

3 labels. Thus, to avoid confusion, for the

present we shall designate the transition

e I I i" I I I I I near 2,100R (47,500cm- 1 ) in all three
42 44 46 48 50 82 54 56 56 so

molecules as the "2,100R transition," the

Fig. 3. Far ultraviolet absorption

spectra of toluene. much stronger transition near 1,850R

_ __0_ _ (54,000cm- 1 ) as the "1,850R transition."

In-Table I are tabulated the "elec-

7 - H32 tronic" features of the various transi-

XOo tions, data being given for both tempera-

J4 tures. The "centers" of the transitions

3 -- are chosen as the points which divide in
2

half the integrated absorption intensity,

4 44 46 46 5 2 54 56 58 or oscillator strenth, 1 9 of each transi-

Fig. 4. Far ultraviolet absorption tion. These values are uncertain to about

spectra of para-xylene. *250cm- 1. In a separate column are

to Itabulated the (estimated) analogs of these

positions in the vapor, using the data of
45- -- Price et al.89

4.0 The molar extinction coefficients are

Sfor the strongest vibration peak in all

cases. The error is roughly 15% or less.

The oscillator strengths, 1 9 or f-

numbers, given are subject to some uncer-

I I I I I I I I tainty not only from error of extinction

Fi. 5. Spectr of benzene on a log plot, coefficient, but also from the selection

of cut-off points on either side of the

1 9 t-number, or oscillator strength, is defined as: f = 10 3 (logl0 e) me2-- fvdv = 4.32
ie 2N

x io-9jeV dv, where v is in am"-, ev is molar extinction coefficient.
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____I __________ _I _I transitions. This latter error may be

particularly bad for the 2,10 transi-

• -- _tions, in that they lie so close to the

much stronger 1,850R transitions. The

Schoice for the Junction between the

2,.0O0 and 1,850R transitions was the

-OPCH• point where the slope of the log plot

3. i (see Figures 5, 6, and 7) was zero Just

before the steep rise of the 1,850R

2~2Y44 46 524 4 56 58 6 0 transition. In toluene, because this

Fig. 6. Spectra of toluene on a log plot. zero slope extends some 1,500cm-, its

mid-point, namely 49,550cm -, was chosen
0

as the Junction between the 1,850A and

4.5 - 2,I0OR transitions. Hence the larger

uncertainty tabulated for the f-number of
4.0

the 2,10OR transition of toluene. (Per-0

* . centagewise, this position uncertainty

p-O(CH3, has little effect on the f-number of the

1,850A0 transition.)

I a I IIThe oscillator strengths for room

Y: 0 M4•i X. 10 and low temperature agree within experi-
Fig. 7. Spectra of para-xylene mental error, as theory demands. The

on a log plot.
room-temperature values tend to be some-

what lower than those reported by Platt and Klevens, 1 2 but within probably experi-

mental error of both sets of data.
0

Table II gives the vibrational-structure features of the 2,100A and 1,850R transi-

tions of the three molecules. Values are given for both room-temperature and low-

temperature conditions. The positions of the vibration peaks have been obtained not

from the absorption curves, but by two independent measurements of the plates them-

selves. They are believed to be accurate to *lOOcm- 1 . Those vibration peaks at room

temperature followed by (?) are rather doubtful, and would not have been reported had

not they had definite analogs at low temperature.

As is well known, spectra shift to the red as the refractive index of the medium

1J4increases; thus the low-temperature vibration peaks are all shifted to the red of
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TABLE I.

ELECTRONIC FEATURES OF AROMATIC SPECTRA

Transition center Shift from
A. Compound 1250cm- benzene (cm-I) max number

298 0 K 77 0 K Vapor* 2980 K 77 0 K 2980K 77'K 2980K 77°K

2,100k Transition

Benzene 49,750 49,500 50,600 6,200 6,800 .10±.O1 .11±.O1

Toluene 48,400 48,300 49,000 1,350 1,200 8,100 8,500 .13±.03 .13±.03

Para-xylene 47,000 47,000 47,500 2,750 2,500 6,900 6,900 .12±.02 .12±.02

1,850R Transition

Benzene 54,600 54,250 55,900 42,000 46,000 .60o.07 .63±.07

Toluene 53,000 52,850 54,100 1,600 1,400 55,000 57,000 .80±.08 .82±.o8

Para-xylene 52,100 52,000 52,600 2,500 2,250 61,000 63,000 .89±.08 .89±.08

See text.

the values obtained at room temperature, which, in turn, are shifted to the red of what

would be observed in the vapor phase. In a third column appear the low-temperature

frequency values "corrected" to the vapor state. These "corrections" are made by

comparison with selected values of vapor spectra of other authors,7p8'9 assuming that

in one given transition all peaks shift the same amount. That this assumption is

reasonable is shown by the rather close agreement in positions between the calculated

"vapor" peaks and those which are sufficiently resolved from actual observations in the

vapor.7,9 For the 1,850R transitions a certain amount of personal Judgment has been

used to "correct" the vibration peaks, as they are not resolved in the vapor state.

The vibrational separations of Table II are from these "vapor" listings.

DISCUSSION

Vibrational Structure

The low-temperature rigid-glass method produces decidedly increased sharpening of

vibration structure, particularly in the 1,850R transitions. The results given here

are not sufficiently accurate to warrant a vibrational analysis of states, but there is

good indication that sufficiently accurate spectra may be obtained if one uses an
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TABLE II.

VIBRATIONAL FEATURES OF AROMATIC SPECTRA

Vibration Peaks, *lOOcm"1
Compound 0- 0  "vapor" Separation,

298 77K (see text) *150cm"I

2,10O Transition

Benzene 47,960 47,720 48,970
810

48,660 48,430 49,680
950

49,630 49,380 50,630
1000

50,630 50,380 51,630
770

51,41o(?) 51,150 52,400

Toluene 46,080 45,980 46,700
970

47,060 46,950 47,670
900

47,850 48,570

48,66o(?) 49,380(?)

Para-xylene 45,050 45,050 45,650
820

46,080(?) 45,870 46,470

430
46,300 46,900

76o
47,050(?) 47,060 47,660

1020
48,080 48,680

(diffuse)

1,850R Transition

Benzene 53,050 54,700 860

54,350(?) 53,910 55,560

55,250(?) 54,950 56,600
1070

56,020 57,670

Toluene 52,080(?) 51,810 53,060
1100

53,190(?) 52,910 54,160
1000

53,910 55,160 lo4o?

54,950(?) 56,200(?)

Para-xylene (not 51,020 51,620
resolved) 1200

52.220 522,820
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instrument of higher dispersion and resolution than the small instrument used for this

research.

In Table I the frequencies of the electronic transitions were taken as the apprcxi-

mate centers of integrated absorption in each transition. It is also desirable to know

the frequencies of these transitions with respect to the equilibrium configurations of

their nuclei; that is, the 0-0 band of the transition. 2 0

The 2,100R transition is forbidden in benzene, but allowed in toluene and para-

xylene [see below]. In an allowed transition the 0-0 band is seen, but in a forbidden

transition it is not; for it is vibrational interaction which makes the transition
21

appear at all, and the 0-0 band of course contains no vibrational interaction. Thus

the first band appearing in the 2,100R transition in toluene and para-xylene is probably

the 0-0 band, but in benzene the 0-0 band is not seen.

Further, if one expects the 0-0 band of the 2,100R transition to shift to the red

at about the same rate as the "center" of the transition shifts as methyl groups are

added to benzene, then the first observed vibrational band in the 2,100R transition of

benzene bears no correlation to the first band observed in toluene and para-xylene.

However, if one subtracts about 650cm- 1 from the positions of the benzene vibration

peaks, then the first two vibration peaks correlate well in all these compounds, both

at room and low temperature and in the calculated vapor state. This 650cm-1 is the

value of the E2g vibration which makes the transition allowed 20,21,22 [also see below]

and is also the interval observed between the faint 0-0 band and first strong peak in

the 2,600k transition of benzene.5,21 Thus, for the 2,100R transition, it is probably

safe to assert that the first vibrational peak in toluene and para-xylene are the 0-0

bands (allowed transitions), the first observed peak in benzene is the 0-0 band plus

the 650cm-1 e2g vibration which makes the transition allowed. (Correlation of higher

vibrational bands is not possible, because there apparently is more than one vibra-

tional level being excited in the 2,100R transition of para-xylene, Judging from the

separations.)

The first two vibrational peaks in the 1,850R transition of the three molecules

seem to correlate fairly well with the shift of the transition "centers". As this

transition is strongly allowed2 0 ' 2 2 [also see below] in all three molecules, the first

2 0 Nordheim, Sponer, and Teller, J. Chem. Phys. 8, 455 (1940).

ýIH. Sponer and E. Teller, Rev. Mod. Phys. 13, 76 (1941).

22 C. c. J. Roothaan and R. S. Mulliken, J. Chem. Phys. 16, 118 (1948).
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vibrational peak is quite probably the 0-0 band.

In Table III are given the positions of the electronic transitions, using the 0-0

band as a "point of reference." The 0-0 band of benzene (2,100R transition) is obtained

by subtracting 650cm- 1 from the first observed band, assuming that the e2g vibration in

the 2,1001 transition has about the same energy as in the 2,600R transition. 2 0 ' 2 2

TABLE III.

0-0 BANDS OF THE AROMATIC TRANSITIONS

m1  Shift from

0-0 band position *100cm benzene ±300cm- 1

Compound 2980 K 77°K "vapor" 2980 K 77°K

2,1001 Transition

Benzene ca. 47,310* ca. 47,070* ca. 48,320*

Toluene 46,080 45,980 46,700 1,220 1,020

Para-xylene 45,050 45,050 45,650 2,250 1,950

1,850R Transition

Benzene 53,050 54,700

Toluene 52,080(?) 51,810 53,060 1,240

Para-xylene 51,020 51,620 2,030

*Calculated, See text*

Group Theory Notation

In discussing the more theoretical aspects of these spectral states it will be

necessary to list the symmetries, group theory notations, and selection rules of the

three molecules. These are tabulated in Table IV. The reductions of symmetry from

D6h (benzene) to C2 v (toluene) and Vh (para-xylene) are made by rotating the (substi-

tuted) benzene molecule about the x symmetry axis (so that x - x, y - z, z -- y). This

is necessary to obtain C2 v symmetry for toluene, desirable to obtain Vh symmetry so

that the symmetry axes of toluene and para-xylene have the same notation. (There are,

of course, several alternative choices for axis assignment in reducing D6h to Vh; and,

although each gives some different assignments for states, the same selection rules are

obtained.) The corresponding spectral transitions have been placed in the same row.

If the transition is symmetry forbidden, it is followed by "forb"; if allowed, it is

followed by the moment in which direction it takes place in order to be allowed. 2 1
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TABLE IV.

SYMMETRY PROPERTIES OF BENZENE, TOLUENE, AND PARA-XYLENE

Benzene Toluene Para-xylene

Symmetry D6h C2v Vh

Method of C2 Cy
2 2

Reduction

2 2 2
C x C

V2 2

Transitions IAlg Blu (forb) AI AI(Tz) lAg 1B 1(Tz)

and
Selection IAlg 1 B2 u (forb) 1 AI•I(Tx) 1Ag - B 3u(Tx)
Rules

1Ag -. 
1E1 (Ty'T) 

1 A1  A { TZ) 
1 Agý B,(

SIA (Tz) lA -B {B3u(Tx)}
1 1 z 1 IA 9(forb)

1A1  E (forb) A 1 - A1(T) g tIg 2g(T) 1Bg , 9 iBg(forb)}

*For a general treatment of group theory as applied to electronic spectra,

see Sponer and Teller (reference 22).

The notations in Table IV will be frequently referred to in the following discus-

sion.

In benzene there are only two group-theoretically allowed (singlet) transitions:

IAlg -4 E1u and iAlg ý 1 A2u. The latter is. unlikely as an electronic transition

because its transition moment lies along the axis perpendicular to the plane of the

benzene ring. Two other transitions, 1AI g •IBlu and 1 Alg - IB 2 u, are forbidden in

benzene but may be made allowed by interaction of a e2g type of vibration: 2 3

233mall Greek letters are used for vibrations or orbitals; capital Roman, letters for

electronic states.
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,iBlul =} 02
e2g x {}B2u E lu 2 0  Molecular orbital treatment of benzene2 shows that the only one-

electron (singlet) transitions likely in benzene are 1Alg - 1Blu, 1B2u, * 1Elu, which

all arise from an upper elg electron going to an unfilled e 2u orbital. All of these

transitions become allowed in toluene and para-xylene.

Another possible transition for benzene is the 1 Alg -
1E2 g transition predicted by

Sklar 2 5 from the Heitler-London approximation. It is forbidden in benzene, but could

be made allowed by an elu vibration. Because of its even, or "g" character, the analo-

gous transition is allowed in toluene, but forbidden in para-xylene. Further, if such

a transition exists, according to MO theory it must either be a two-electron transi-

tion (two Elg electrons going to an E2u orbital) or a one-electron transition from the

lower a 2 u orbital to an c2u orbital. In either case this requires more energy than the

other one-electron transitions mentioned above, and thus would be found only in the

very far ultraviolet if at all.

The l,850R Transitions

These transitions may now be assigned with certainty to the IAg .E- transi-

tion for benzene, the A1 _ IBAl for toluene, and the Ag B lu} transition for
Bi B 3u

para-xylene. This one-electron transition is group-theoretically allowed and should be

strong; it is the only allowed one-electron transition in benzene which has its transi-

tion moment in the plane of the molecule. It is noted from the character tables of

benzene 2 1 that the 1Alg ý 1Elu transition is doubly degenerate, and methyl substitution

breaks down this degeneracy in toluene and para-xylene.
The assignment of 1Alg . IElu for the 1,850R transition in benzene has been

advocated before, especially by Mulliken. 2 2 The present work makes this assignment

certain because the low-temperature methods, while obliterating the sharp Rydberg bands

superimposed on this transition, have sharpened the transition to the point where

vibrational structure is seen beyond question. Hence the 1,850R transition is not a

dissociation or predissociation band, 2 0 but a definite w-n type electronic transition.

2 4Much of the MO theory discussed in this section has been borrowed from C. C. J.

Roothaan, "New Developments in Molecular Orbital Theory, with Applications to

Benzene," THIS TECHNICAL REPORT, 1949-50, Part Two.
2 5 A. L. Sklar, J. Chem. Phys. , 669 (1937).
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The 2 Bands

These transitions are group-theoretically allowed in toluene and para-xylene, but

forbidden in benzene, whether one assigns 1A - 1B or 1 A 1 B (and their analogsAlg lu ag 2u

in toluene and para-xylene) to the transition. That they are allowed in the substi-

tuted benzenes but not in benzene itself is experimentally shown from the respective

appearance and non-appearance of what have been tentatively assigned the 0-0 bands.

If these 0-0 band assignments are correct, then the transition may not be assigned

to IAg -. IE 2 g and its analogs as has been proposed by Sklar, 2 5 for these assignments

predict the transition to be allowed in toluene, but not in benzene or para-xylene.

Furthermore, as noted above, the energy of the A E transition must be at least
ig 2g

more than the energy of the iAig -. E lu, or 1,850R transition, thus ruling it out as an

assignment for the 2,100R transition.

The transition at 2,100R must therefore be assigned to either 1A -A 1B orig lu
Alg - 'B2u in benzene, to their analogs in toluene and para-xylene. Most authors have

assigned it to iAlg -1 Blu and assigned the near ultraviolet transition (2,6001 bands)

to IA -A 1Bu. This matter will not be further discussed at present, but the results
lg 2u*

presented may be reconciled with the above assignment.

SUMMARY

The absorption spectra of the 2,100R and 1,850R transitions of benzene, toluene,

and para-xylene show sharp structure at low temperature. The sharp structure of the

1,850R transition shows that it is a 7r-ir type transition, and not a predissociation

band. Its correct assignment is 1A lg - 1Eu1 , and analogous assignments in toluene and
para-xylene. The 2,100R transitions of these molecules can be assigned to 'Alg --- 1Blu

and its analogs, while the 2,600R transitions are assigned to 'Alg - 'B 2u Evidence

presented indicates that there is no 1Alg -. is 2 g transition in this region of the

spectrum.
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IV. THE PYRIDINE-IODINE SYSTEM

C. Reidt and R. S. Mulliken•
Laboratory of Molecular Structure and Spectra

Department of Physics
The University of Chicago

Chicago 37, Illinois

ABSTRACT

The visible and ultraviolet absorption spectra of dilute solutions of iodine plus
pyridine in heptane have been studied, and the existence of an equilibrium with a 1:1
molecular complex Py.I 2 ("outer complex") was demonstrated [K = 290 at 16.70C, where
K means (Py'I 2 )/(Py)(I 2 )]. The corresponding changes in heat content, entropy, and
free energy (at 170) in formation of the complex were determined to be -7.8kcal/mole,
-15.5cals/deg. mole, and -3.3kcal/mole respectively. The location and intensities of
the 12 band (Xmax = 4,220R, emax = 1,320) and of the charge-transfer band (X max =

2,350, emax = 50,000) of Py.1 2 were determined.
The X4,220 band shifts gradually, and increases in intensity, on adding pyridine

to the aforementioned heptane solutions, until for pure pyridine solutions it has
reached about X3,890, with =max = 2,120, provided the solutions are not too dilute in
iodine. These changes can most probably be attributed to a somewhat increased polar-
ity and stability of the Py.I 2 "outer" complex in the polar solvent pyridine than in
the nonpolar solvent heptane. There is no evidence of the presence of the "inner
complex" (PyI)+I- in more than small concentrations, but conductivity studies by
KortiAm and Wilski indicate that appreciable small concentrations of its ions (PyI)+
and I are present in pure pyridine solutions of iodine. Additional studies in very
dilute solutions of iodine in pyridine show further interesting spectroscopic changes,
which are discussed, but we feel that further experimental study will be needed using
extreme precautions toward exclusion of side-reactions, moisture, or impurities.

INTRODUCTION AND SURVEY

RECENT STUDIES have confirmed older ideas that in its violet solutions, iodine exists

essentially free, but that in its brown solutions it forms 1:1 molecular complexes

This work was assisted by the Office of Ordnance Research under Project TB2-0001(505)
of Contract DA-lI-022-ORD-1002 with The University of Chicago.

tOn leave of absence from The University of British Columbia, 1952-1953. Present ad-

dress: Department of Chemistry, The University of British Columbia, Vancouver, Canada
*On leave of absence from The University of Chicago, 1952-1953; Fulbright Research
Scholar at Oxford University, 1952-1953.
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with the solvent. 1 The strong visible absorption of 12 vapor with maximum at X5,200 is

essentially unchanged in "violet" solvents, but in solutions where it forms complexes

this peak is shifted toward shorter wavelengths; this accounts for the altered color.

In addition, a new very intense peak characteristic of the complex first noted by

Benesi and Hildebrand for aromatic solvents, appears at shorter wavelengths, usually

in the ultraviolet. The interpretation of this new peak as a charge-transfer spectrum

has proved important for a clearer understanding of the electronic structure of these

complexes. 1

There is evidence 2,3,4,5 that iodine forms especially stable complexes with py-
2ridine and related compounds. Waentig reported golden crystals, which he attributed

to Py.I 2 , crystallizing from a saturated solution of iodine in pyridine. From heats

of solution Hartley and Skinner 3 estimated the heat of formation of Py-I 2 in solution

to be about 7.95kcal/mole, much larger than for other types of iodine complexes. Simi-

larly, the enhancement of the dipole moment in the formatidn of Py.I 2 is exceptionally

large.4 Further, the change in the infra-red spectrum of Py when it goes into Py.I 2

is much greater 5 than the corresponding effect in the case of compiex-forming solvents

of other types.

Audrieth and Birr6 reported that solutions of iodine in pyridine show high elec-

trical conductivities, which slowly increase with time to asymptotic values. According

to them the molar conductivity based on 12 is so high in dilute solutions that it can-

not be explained by simple dissociation into I+ (or PyI+) and I-. They suggested in-

stead the formation of a ternary electrolyte

1See R. S. Mulliken, (a) J. Am. Chem. Soc. 72, 600 (1950), and 74, 811 (1952); (b) J.

Phys. Chem. 56, 801 (1952), for quantum-theoretical interpretation of molecular com-

plexes and their spectra, and a comprehensive review. These are I, II, and III of the

present series.
2 P. Waentig, Z. physik. Chem. 68, 513 (1909); Chatelet, Ann. Chim. [11] 2, 12 (1934);

H. Carlsohn, Z. angew. Chem. ý_, 580 (1932), and 46, 747 (1933).

3K. Hartley and H. A. Skinner, Trans. Faraday Soc. 26, 621 (1950).

4 Y. K. Syrkin and K. M. Anisimowa, Doklady Akad. Nauk. SSSR a, 1457 (1948); G. KortUm,

J. Chim. Phys. ý9, C127 (1952); G. Kortfn and H. Walz, Z. Elektrochem. 57, 73 (1953).

5D. L. Glusker, H. W. Thompson, and R. S. Mulliken, J. Chem. Phys. 21, 1407 (1953),

and references given there; also further unpublished results of Mr. Glusker. Also W.

Luck, Z.Elektrochem. 56, 870 (1952), especially Table 4.

V I. Audrieth and 1. J. Birr, J. Am. Chem. Soc. 5, 668 (1933).
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PyI 2 - Py++ + 21-

However, recent work of Kortfrn and Wilski,7 using very great precautions to keep mois-

ture excluded, indicates that iodine in freshly prepared solutions in pure pyridine at

concentrations in the neighborhood of lO-4 molar gives only a small conductivity,

though larger than for most iodine complexes.8 They find, however, that this increases

with time, and attribute the effect to a slow iodination in the ring; the effect is

strongly catalyzed by platinum sponge.

Kleinberg, Van der Werf, and associates 9 have made a spectrophotometric investi-

gation of solutions of iodine in pyridine (also in quinoline). They too conclude that

a very slow iodination in the ring occurs; this should liberate I- ions, which may

form 13 ions with 12.

Mulliken1 0 in 1952 suggested that when 12 is dissolved in pyridine the following

should be considered as the primary reactions:

Py + 12 Pvty-I 2 "outer complex" (1)

fast

Py-I 2 - (PyI)+I- "inner complex" (2)

(PyI)+- * PyI+ + I- (3)
fast

The "outer complex" Fy.I 2 in (1) would be a molecular complex of the usual type. The

"inner complex" in (2) would be an essentially ionic structure (N-iodopyridinium io-

dide). It was suggested that, in iodine solutions in pyridine, the pyridine has a

double role, acting as an electron donor toward 12 in reaction (1), and as a polar

medium in assisting reactions (2) and (3).

The present research was undertaken in the hope of studying these two roles of

7G. Korttm and H. Wilski, Z. physik. Chem. 202, 35 (1953). See also Korti.m, ref. 4.

8They find an ionic dissociation constant (PyI+)(I-)/(Py.I 2 ) of about 4.6 x 10-8,

which corresponds to about 2% ionization at l0-4 molar iodine. This may be compared

with 1.2 x 10-11 for (H2 0I)+(I-)/(H2 0.1 2 ) as determined by R. P. Bell and E. Gelles

[J. Chem. Soc. 2734 (1951)] and smaller values (see reference 7) for the benzene and

dioxane complexes. However, it seems not impossible that some of the alcohols may

have larger values [cf. L. I. Katzin, J. Chem. Phys. 21, 490 (1953)).

9aKleinberg, Zingaro, and Van der Werf, J. Am. Chem. Soc. 73, 88 (1951).

9 bKleinberg, Colton, Sattizahn, and Van der Werf, J. Am. Chem. Soc. 44, 17 (1953).

1 OReference la, p. 818; reference lb, pp. 812, 819.
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pyridine separately by a spectrophotometric investigation, first, of equilibrium (1)

at varying low concentrations of Py and 12 in a non-polar solvent medium; second, of

the combined equilibria (1),, (2), and (3) in a polar medium (perhaps pyridine itself,

or preferably a different polar solvent). These two phases of the present work are

reported in Sections I and II below.

In Section I equilibrium (1) was successfully studied in heptane solution. The

visible iodine band of the outer complex Py.I 2 was located at the exceptionally strong-

ly shifted position of X4,220 (for free iodine it is at X5,200), and the expected

charge-transfer band at X2,350. The equilibrium constant for (1), and the heat of

formation of Py.I 2 , were determined.

This work confirms other indica-

/tions 2 ,5 that Py*1 2 is an exception-

ally tightly bound outer complex.

Taking into consideration the observed

4
dipole moments of Py (9.28D) and of

Py.I 2 (4.5D), and assuming a geometri-

----------- I cal structure1 1 somewhat as shown in

Figure 1, one can estimate that the

Fig. I outer complex Py.I 2 may easily have as

much as perhaps 25 percent dative character. That is, in the type of formulation

given by Mulliken,

*(Py-I 2 ) = a*,(Py,1 2 ) + b*,(Py+ - I2-) (4)

no-bond dative

with a2 f 0.75, b 2  0.25. In Eq. (4), because of the asymmetry (Figure 1) and unusual

strength of the complex, the dative function *1 may be already approximately of the
+ I

structure C5 H5N - I with the N+ bonded to one I atom nearly in the Py plane (N-iodopy-

ridinium ion) leaving the other I atom as an I- above the plane.12 An outer complex

with an exceptionally large amount of dative character may well account for the fact 5

"liThis is based on general considerations previously advanced by Mulliken (reference 1j

The Py would then be acting as an n donor in the terminology of reference lb. How-

ever, to a slight extent, it probably acts simultaneously also as a iT donor (like

benzene in its iodine complex; cf. footnote 42 on page 818 of reference la). *1 in

Eq. (4) would then involve a mixture of mainly n with a little 7r donor action by the

PY.
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that complex formation causes greater changes in the infrared spectrum in the case of

Py than for any other known cases (except the related picolines).

When the work reported in Section II was undertaken, it was with the thought, 1 0

6suggested by the conductivity studies of Audrieth and Birr, that in pure Py, acting

as a polar medium, (a) equilibrium for reaction (2) lies almost completely to the

right; but (b) the reaction proceeds only very slowly, over a high potential barrier;

and that as fast as (PyI)+I- is formed, reaction (3) proceeds largely to the right.

HowQver, the recent work of Korttlm and Wilski 7 indicates that ions PyI+ and I- are

formed at once in 12 solutions in Py, in definite relatively small equilibrium concen-

trations, and that a late'ý- slow increase in ionic concentration is due to slow side-

reactions. Taken in connection with our spectrophotometric results in Sections I and

IIA and the discussion presented in IIA, the work of Kortilm and Wilski indicates that

in the absence of side-reactions most of the iodine would remain as Py.I 2 , but that a

small portion of it has at once undergone reaction (2) followed by (3), or else per-

haps the direct ionization

Py. I;. PYI+ I . (5)

Further discussion will be given in Section IIA.

EXPERIMENTAL

C. P. pyridine was refluxed with chromium trioxide for several hours to remove

traces of picolines, dried by NaOH, and distilled from magnesium perchlorate. C. P.

iodine was sublimed and kept in a desiccator. Solvents were purified by the methods

described by Potts. 1 3 Absorption measurements were made in a Beckman spectrophotome-

ter, using 10cm, 1cm, 0.0296cm, and 0.0109cm cell thicknesses. Apart from the use of

cells with fairly well fitting lids, no precautions were taken to avoidmoisture up-

take during a run. No lids at all were possible in experiments using spacers to de-

crease cell thickness.

I. THE Py.I 2 COMPLEX IN A NON-POLAR SOLVENT

The equilibrium (1) was studied in very dilute solutions (<0.1% Py + 12) in hep-

tane (>99.9% by weight). As pyridine in increasing but small amounts is added to a

(violet) dilute solution of iodine in heptane, the solution goes through a reddish

13W. J. Potts, J. Chem. PhYs. 20, 809 (1952).
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color to golden brown. The uncomplexed

12 peak at 5,20O0 diminishes and is re-

placed by a new and somewhat higher but

otherwise very similar peak at 4,220R

(of. Figure 2). The peaks are well

enough separated for a fairly accurate

determination of the equilibrium con-

, jstant K:
mMU 400 450 500 550

(Py" 12 )

Fig. 2. Plot of extinction coefficient K = (Py)(i 2 ) litres/mol.

[e = (I/1c)loglo(I 0 /I), where i = cell

thickness, and c = formal molarity based on From the K values at 2°C (649), 16.7 0 C
total iodine added] against wavelength for (290), and 41 0 C (il0)--cf. Figure 3--a

0.0005M iodine solutions in heptane, with

increasing amounts of pyridine. Room tem- graph was made (Figure ) from which in

perature. Cell thickness = 1.00cm. the usual way the heat of dissociation

A. Pyridine 0.0005M of Py.I 2 was calculated to be 7.8 * 0.2
B. Pyridine O.005MC. Pyridine 0.25M kcal/mole. It is of some interest that

this result agrees closely with the

value 7.95kcal/mole estimated from the

heat of solution of 12 in pure P.? by

Hartley and Skinner. 3 From the avail-

able data the free energy and entropy

Zo

M mA 400 450 00 go0 o

-Fig. 3. Plot of formal extinction coeffi-"

cient (see Fig. 2) against wavelength of

12 + Py in heptane for a series of tempera-2M

tures. Cell thickness = 1.00cm. Ig

2°C Py = .005M 12 = .0005M

- 16.7°C Py = .025M 12 = .000625M
-4l 0 C Py = .025M 12 = .000625M 3. 33 + X 0 1a S. 3.?

The equilibrium shifts strongly towards
Py.l 2 as the temperature is lowered, but Fig. 4. Plot of K = (Py'I 2 )/(Py)(l 2 )

the pyridine concentration has been lowered [litres/mole] against l/T for the

in the 2 0 C experiment so that both peaks equilibrium between iodine and pyri-

are measurable. dine in heptane.
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changes for reaction (1) were also compu-

ted, the results, in conventional units,

at 170C, being, AF = -3.3, AH = -7.8)

AS = -15.5.

McConnell, Ham, and Platt have pre-

dicted that the charge-transfer peak of

W PyI 2 should occur at 38,000K (2,635k),

on the basis of an electron impact value

of 9.8 volts 15 for the ionization poten-

tial of pyridine. Use of the same ioni-

L zation potential in an equation given by

! , , go mma! Hastings, Franklin, Schiller, and Mat-too too mMO 300,
16

Fig. 5. The Py.I 2 charge-transfer spec- sen, which fits a great number of iodine

trum at room temperature. The absorption complexes closely, gives a similar predic-

of pyridine which lies in this region was tion (38,300K or 2,610R). A search of

cancelled out exactly by dividing a 0.05M
pyridine solution in heptane into two this region using Py.I 2 in heptane at con-

parts, adding iodine (0.0005M) to one centrations of 0.OIM in Py and 0.0005M in

half, and using the other half as a blank. 12i with thin cells to avoid excessive py-

Cell thickness = 0.0296cm. Free 12 is
neglgibe i itseffct.ridine absorption, showed such a band withnegligible in its effect.

peak at 42,600K (2,350R). The extinction

coefficient is sufficiently large (E = 50,000) that no difficulty was experienced in

locating this band in spite of the considerable pyridine absorption in this region.

The charge-transfer band is shown in Figure 5, in which the pyridine absorption

was automatically cancelled out by using as a blank part of the heptane + pyridine so-

lution which had been used to dissolve iodine. No correction for free 12 was needed,

in view of its very low concentration and small absorption near X2,350.

The fact that the observed charge-transfer band is at somewhat shorter wavelengths

14H. McConnell, J. S. Ham, and J. R. Platt, J. Chem. Phys. 21, 66 (1953).

1 5 Hustrulid, Kusch, and Tate, Phys. Rev•. 5•, 1037 (1938). Stevenson and Schissler in

unpublished work have recently obtained 9.85 volts (private communication from D. P.
Stevenson).

16S. H. Hastings, J. L. Franklin, J. C. Schiller, and F. A. Matsen, J. Am. Chem. Soc.

, 2900 (1953). The form of their equation is based on Mulliken's theoretical dis-
cussion in reference la.
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than predicted may perhaps be connected with the exceptionally high stability of the

Py.1 2 complex. The validity of the predictions mentioned above is dependent on an

approximate constancy of certain parameters in the equations used. Although this con-
16

stancy is apparently surprisingly well fulfilled for most iodine complexes, it has

no obvious theoretical basis. Or on the other hand, possibly the reported ionization

potential of 9.8 volts is inaccurate; a value of 10.3 volts would give a prediction

corresponding to the observed position of the charge-transfer band.

Or, perhaps the observed 9.8 volts is the first n ionization potential, but the

relevant potential, which should correspond not to a n but to a non-bonding (i.e.,

"onium" or n) ionization potential essentially of the N atom,12 is at a higher voltage.

However, the absorption spectrum of pyridine suggests that the W and n ionization po-

tentials are actually almost equal. This statement is based on the fact that, taking

the means of the frequencies of transitions to corresponding singlet and triplet

states,17 the frequencies of the first "n-7" and "n-n" transitions are almost exactly

equal. But here, one should bear in mind, it has never been proved that, in the so-

called n-n transitions in the aza-substituted aromatics, the transition is really from

a true localized non-bonding (n) orbital of the N atom. It would be safer to call such

transitions 5-n transitions, where the 6 orbital may be a fairly strongly delocalized

orbital only partly localized on the N atom. The appropriate localized N atom true n

ionization potential required in predicting the location of the charge-transfer band

would then correspond to a weighted mean of several 6 ionization potentials and might

be appreciably greater than the minimum 6 ionization potential.

II. THE SYSTEM PYRIDINE PLUS IODINE IN POLAR SOLVENTS

A. The Transition to Pure Pyridine as Solvent

When, in a dilute solution of iodine plus pyridine in heptane, the pyridine con-

centration is gradually increased, the X4,220 Py.I 2 iodine band begins to shift toward

shorter wavelengths, and its extinction coefficient increases. The relations between

position and e of the band maximum, and pyridine concentration, are shown in Figure 6,

for a fixed concentration (0.0005 molar) of iodine. (At these concentrations,

practically all the iodine should be complexed.) The position of the band

approaches a limiting value of 3,890R, and emax a limiting value of 2,120 in pure

7Cfn,'' J. H. Rush and H. Sponer, J. Chem. Phys. 20, 1847 (1952), Table VII.
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2400

I / 2000

/ 0)
/

- 1600 W

420

11200 I
I 1m.) I10

Fig. 6. Variation in position (x-x) CL

and extinction coefficient (o---o) of the

Py' 2 absorption band with increasing py-

ridine concentration. 12 = 0.0005M. Sol-
vent heptane. Room temperature. ' 4au' .

pyridine.18 These changes, as distinct mmp
Fig. 7. Densitometer trace showing (a)

from. some of the phenomena to be de- 1.5M pyridine absorption, (b) 1.5 pyridine

scribed in Part C of this Section, are + 0.06M iodine showing charge-transfer peak
shifted to about 2,1450R and superposed on

reversible: dilution of the solution shfetoaut24Ransproedn
the pyridine absorption. The dotted curve

with heptane results in a return of the gives the estimated shape of the charge-

position of the band to k4,220 with transfer band.

corresponding diminution in intensity.

Attempts were made also to see what happens to the "charge-transfer" band at

2,350k as the pyridine concentration is increased. Unfortunately, even using special

thin cells (0.001cm) constructed by putting a rolled lead spacer between quartz plates

the experiments could be carried out only up to 1.5M Py (see Figure 7). At this Py

concentration, with 0.06M iodine, the position of the charge-transfer band appears to

be shifted to about 2,450R. No appreciable change in the ratio of the pyridine molar

absorption to that of the charge-transfer band could be detected.

In connection with the interpretation of the foregoing observations, some unpub-

lished infrared work of Glusker 5 on solutions containing Py and 12 is highly relevant.

He finds no appreciable difference between the modified Py infrared bands in CS2

18 -4Kleinberg and collaborators (reference 9b), for iodine at 2 x 10- molar in pyri-

dine, find £max = 383-380m4 and emax a 2,600-2,700. The moderate difference be-
tween their results and ours at 5 x 10- molar can be understood in terms of our
findings at high dilution, as reported in Section IIC and Figure 8.
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solutions very dilute in Py and in those much more concentrated, up to 12 solutions in

pure Py. This strongly indicates that these modified bands are due to essentially the

same Py.I 2 entity whether the solvent is an inert one (CS2 ) or pure Py, The gradual

shift of the N4,220 Py.I 2 band in heptane to A3,890 in Py solvent may now probably be

attributed to a gradual clustering of polar Py molecules around the strongly polar

Py.12 molecules, causing these to become more polar [increased b in Eq. (4)] and more

stable; but the infrared evidence indicated that these changes cannot be very large. 1 9

It was suggested earlier10 that the "inner complex" of structure (PyI)+I- may be

so much stabilized by the polar solvent pyridine as to be present in predominant amount

in that solvent. But according to the preceding paragraph, it appears that Py.I 2 re-

mains predominant even in pure Py, and this suggests that (PyI)+I- if present is only

in small amounts. The definite presence 7 of the ions of (PyI)+I- in small concentra-

tions does, however, presumably indicate that a correspondingly small amount of the

inner complex itself is present in accordance with Eq. (3).20

1 9 0r perhaps the observed continuously shifting peak is the result of a superposition

in changing proportions of two distinct bands; if so, these may most probably be
attributed to unsolvated and fully solvated Py.I 2 molecules. The limiting positions
A4,220 and X3,890 are so close together (unlike those of the Py-I 2 and free 12 iodine

peaks in Figure 1) that the superposition of two such bands would give a single peak.

Another conceivable explanation of the X3,890 peak, namely that it might correspond
to a superposition of the 'X4,220 Py.I 2 peak and the X3,600 13 peak can almost cer-

tainly be ruled out because these peaks are too far apart. [A very small, probably

negligible, amount of the very strongly absorbing Ion 13 should be present in equi-

librium in accordance with Eqs. (6) and (7) of Section IIC. In addition, the pos-

sible presence of a trace of water or other impurities should give rise to additional

13-, but probably not enough to affect the observed absorption appreciably except for
the very low 12 concentrations discussed in Section IIC.]

2 0 The present work does not throw doubts on the concept of an "inner complex" as dis-

cussed in reference lb, but indicates that the inner complex of Py.I 2 is not so low

In energy as was at first surmised. (Consideration of the system 12 + H2 0 similarly

indicates that, there too, the inner complex (H2 0I)+I- in water solution is a struc-

ture of higher energy than the outer complex H2 0.I 2 .) It is conceivable, however,

that the solvated inner complex or ion-pair (PyI)+I1, while separated by a consider-

able activation barrier from the lower-energy outer complex, may be somewhat un-

stable with respect to the interposition of a Py molecule between the (PyI)+ and I-

ions, so that instead of the equilibria (2) and (3) one has something like

Py.I 2 + Py 0 (PyI)+(Py)I , (2')

(PyI)+(Py)I- PyI+ + I + Py , (3')
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B. Pyridine Plus Iodine in Other Polar Solvents

In order to differentiate between specific effects due to excess pyridine and

effects due to increasing polarity of the solvent as pyridine is added to heptane solu-

tions of iodine, attempts were made to study the pyridine-iodine complexes in other

polar solvents.

Experiments in which pyridine was added to iodine dissolved in methanol were in-

conclusive because the very strong MeOH.I 2 charge-transfer band showed that most of the

iodine was complexed with methanol rather than with pyridine. This was true up to con-

centrations of 4- 5 % of pyridine, beyond which it was impracticable to go.

When Py.1 2 solutions in Py were diluted with water, precipitation of golden-yellow

"Py. 2 to crystals resulted.21 Examination of the resulting solutions after filtration

showed no trace of the tcharacteristic Py.I 2 bands, but only 13 bands and visible and

charge-transfer bands attributable to small amounts of complexes of 12 with the

solvent.22 Apparently the solid PyI 2 , or perhaps21 (PyI)+I-, phase is but little

soluble in these solvents.

C. Very Dilute Solutions of Iodine in Pure Pyridine

In pure pyridine at concentrations below about 0.001 molar in iodine, the position

and particularly the intensity of the X3,890 band become increasingly concentration-

dependent (cf. Figure 8), a fact which was not observed by Kleinberg and his associ-

ates9b,1 8 because their cell thickness could be changed only by a factor of two, where-

as it was varied by a factor of > 1,000 in the experiments here described.

Strong dilution of more concentrated pyridine solutions (> 0.07 molar), or the

preparation of more dilute ones from pyridine and solid iodine, results in an instan-

taneous shift in the band maximum, accompanied by an increase in extinction coefficient

all participants in (2') and (3') being of course solvated. If more than one Py is

interposed between (PyI)+ and I-, the Py may be regarded simply as a dielectric me-

dium separating the ions.
2 1 An X-ray study of these crystals would be of interest. It seems possible that they

may be built from (PyI)+ and I- ions (cf. reference lb, Section VI, and the discus-

sion of NH4+ + CI- crystals on p. 811 of Section VIII), although their insolubility

in water seems to indicate the contrary.
2 2 L. I. Katzin [J. Chem. Phys. 21, 49 0 (1953)] has studied the spectra of solutions of

iodine in water and the alcohols and has demonstrated the presence of 13-, probably

due largely, however, to the presence or formation of 1' from impurities.
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(Ef. Figure 8, curves 1-3). If the dilu-

tion is to between 10 - and 10-5 molar, the

a' ~maximum shifts to 3,68OR and the apparent

S% extinction coefficient based on 12 rises to

. •a maximum value of 9,000. Thie simultaneous
1 -4

t/ \appearance of a characteristic band of

' "nearly double the extinction coefficient at

2,8751 makes it fairly certain that the

maximum, at 3,680R is due to 13 ions. (The

usual absorption spectrum of 13 consists

of two peaks, clnr at X3,650 and one of

nearly double as great peak intensity at

Fig..8. Increasing dilution (1-6) of 12 X2,950.23) The observed maximum extinction

solution in pure Py. Solid curves 1 and coefficient suggests that under optimum con-

2 are essentially due to Py.I 2 . Curve 3 ditions about four 12 molecules yield one

shows the 13- curve nearing its maximum

value. In curves 4 and 5 the 13 inten- 13 group. This would indicate that about

sity falls again presumably because of half the iodine remains as Py.I 2 , but that

dissociation into I- ions. All e values about half has reacted instantaneously in

are based on formal 12 concentration.

1. .025 Molar 12 some way Involving the formation of I

2. .0005 Molar 12 followed by

3. .00005 Molar 12
4. .0000125 Molar 12 Py-I2 + I- ; 13- + Py . (6)
5. .00000612 Molar 12
6. .00000306 Molar 1 2 If dilution is continued below l0-5

molar, a new phenomenon is observed. The 13 peak near X3,650 diminishes rapidly in

intensity (cf. Figure 8, curves 4 and 5), and no new band appears in the visible or

ultraviolet to take its place. This change occurs Just below the concentration range

where Audrieth and Birr6 reported the onset of anomalously high conductivity, and
2 3 aA. D. Awtrey and R. E. Connick, J. Am. Chem. Soc. 73, 1842 (1951).

2 3 bR. E. Buckles, J. P. Yuk, and A. I. Popov, J. Am. Chem. Soc. y4, 4379 (1952).

24The occurrence of Eqs. (7)-(9) would account for the anomalously high conductivity

observed by Audrieth and Birr without assuming the presence of Py++ ions as they

did. However, since these results of Audrieth and Birr were obtained from aged so-

lutions, after occurrence of what other investigators (references 7 and 9) consider

to be a slow ring iodination liberating I ions, it would seem that their results

may not be relevant to what occurs in pure Py without side-reactions.
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and may be attributed to redissociation of 13- ions, by a reversal of Eq. (6) accom-

panied by a passage of Eq. (5) to the right, as is to be expected at sufficiently high

dilutions; the net result would be

I + Py - (PyI)+ + 21 . (7)

3

Conceivably also,

t y + PyI+ • 2Py++ 1- , (8)

Py~ + Py - Py~P (9)

In all the reactions (5-9), the ions should of course be solvated. It is of in-

terest that the ion Py+, containing an odd electron, should be paramagnetic. Such an

ion in Py solution should at once acquire extra stability by the formation with Py

according to Eq. (9) of an interesting ion of biphenyl-like structure with a three-

electron bond between the two nitrogen atoms and further stabilized by various kinds of

conjugation or resonance; this ion would still be paramagnetic.

Since our results were obtained under conditions of moisture-exclusion less rigor-

ous than those of Kortim and Wilski, it seems possible that the almost instantaneous

13- ion production which we report in the 10-4 to l0-5 molar-concentration range may

be moisture-dependent. Or conceivably it may have been due somehow to impurities or

to side-reactions which had occured in spite of all precautions. It is known that in

water or the lower alcohols 13 ions in erratic amounts are instantaneously formed from

dissolved iodine, probably largely as a result of the presence of impurities which

form 1 22

If we suppose, however, that our solutions were free from side-reaction* or other

foreign sources of I-, and that the only important equilibria involved were (1), (5),

and (6), it can be shown that the relative concentration of 13 , that is, the ratio

(13-)/(PY.I2), should be small and approximately constant in the higher ranges of total

iodine concentration, but should slowly diminish, not strongly increase as we observed,

at high dilutions. Hence it may be that our results at high dilutions were due to

impurities or side-reactions which somehow gave rise to I- in relative concentrations

which became large enough to form spectroscopically noticeable amounts of I near

0- 4 molar iodine concentration; 2 5 the observed subsequent redissociation of this 13

2 5 0ur results and conclusions at higher concentrations in pyridine, and our results in
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at higher dilutions according to Eq. (7) would be exactly what one should expect.

An interesting alternative possibility might be that the rise in I-, hence in 13-,

below 10- molar, was due to Eqs. (8)-(9). To test the two possibilities, further in-

vestigations will be required, and it is planned to undertake them.

heptane solution, are not called in question by this possibility.
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