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FOREWORD

Six previous comprehensive TECHNICAL REPORTS have been issued under Contract
N6ori-20, Task Order IX, Project 019 101, with the Office of Naval Research: A Quar-

terly Report for the period 1 June 1947 to 31 August 1947; an Annual Report (in two
parts) for the period from 1 September 1947 to 31 August 1948; a Report (in two parts)
for the period 1 September 1948 to 31 March 1950; a Report (in two parts) for the ;
period 1 April 1950 to 31 March 1951; and a Report (in two parts) for the period
1 April 1951 to 31 March 1852.

e

The present Report is being issued in an as yet undetermined number of parts, 4
published Jointly under this Laboratory's contract with the Office of Naval Research
as well as under Contract Number DA-11-022-0RD-1002, ORD Project Number TB2-0001 (505),

s i

with the Office of Ordnance Research. Part One covered roughly the period 1 April
1952 to 31 March 1953 for the contract with the 0ffice of Naval Research, and the
period 24 June 1952 to 23 June 1953 for the contract with the 0ffice of Ordnance
Research. The present Part Two covers roughly the period 1 April 1952 to 30 September
1953 for the former contract, and the period 24 June 1952 to 30 September 1953 for the
latter.

This Part Two contains complete texts of finished articles recently published,
now in press, or shortly to go to press, covering research partly or wholly supported
by one or both of the two contracts. In addition, it contains, as a new and experi-
mental feature, Progress Reports on various activities of the Laboratory, reflecting
the status as of the time of going to press; these Progress Reports, to be included
in future reports as activities and timeliness indicate, replace former sections of
this Foreword entitled "Summary of Papers in Present Report", "Work in Progress", and
"Associated Activities",

For an account of the general program and a survey of the equipment and apparatus
on hand and in use, reference may be made to this TECHNICAL REPORT, 1948-49, Part One,
and 1952-53, Part One, p. x. For a note on the reorganization of these Reports,

reference may be made to this TECHNICAL REPORT, 1952-53, Part One, p. ix.

vii
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THEORETICAL WORK IN PROGRESS

l. Computation of Molecular Integrals

Work now in progress on the problem of computing molecular integrals is reviewed

in a separate Progress Report on this subject (see p. xiv).

2. Free-Electron Network Model

The free-electron network model for conjugated organic molecules, which had been
proposed in four reseach papers by K. Ruedenberg, C. W. Scherr, and J. R. Platt,l has
been further developed. Dr. Ruedenberg has succeeded in showing that this theory is
in essential respects equivalent to the semiempirical LCAO theory most commonly used
fér the study of conjugated systems. A further investigation by Mr. Norman S. Ham and
Dr. Ruedenberg has provided a numerical substantiation of the theoretical calculations.
Professcor J. R. Platt has investigated more closely the model of 0. Schmidt,2 i.e.,
the behavior of electrons in a box of the shape of the organic molecule. Although this
box model does not contain any assumption concerning the molecular framework, very
typical properties of the m-electron densities have been found.

The three investigations will be published in subsequent issues of this TECHNICAL
REPORT and of the JOURNAL OF CHEMICAL PHYSICS. Work on these theories is being
continued. In particular, applications to heteroatoms and inclusion of electronic

interaction are being carried out.

3. Ultraviolet Spectra of Aromatic Systems

Extensive analyses have been made and are being continued by Professor Platt on

the wavelength shifts in the ultraviolet spectra of aromatic systems produced by
chemical substitution. The shifts are a combination of two independent terms, one a
product of the directing power of the substituent with some local property of the
aromatic eigenfunction, and the other‘a product of the lonization potential of the
substituent wilth some other local property of the aromatic eigenfunction. These two
terms provide accurate empirical predictions of the wavelength shifts, but their

theoretic interpretation is not yet clear.

1this TECHNICAL REPORT, 1952-53, pp. 18, 58, 88, and 97 [J. Chem. Phys. 21, 1565,
1582, 1597, and 1413 (1953)].

28_e_g. deut. chem. Ges. 73A, 97 (1940).
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PROGRESS REPORTS

4. Structural Formulas of the Boron Hydrides

Professor Platt has devised a new method for writing the structural formulas of

the boron hydrides, and it will appear shortly.

5. Long-Wavelength Spectra of Polyacetylenes

Studies have been made by Professor Platt on the interpretation of the long-
wavelength spectra of polyacetylenes and will be published shortly. Other molecules
whose spectral interpretations are also being studied include ethylene, the thermo-

chromic dianthrones, and the convex peri-condensed hydrocarbons.

6. Calculations on the First-Row Atoms

Comprehensive calculations on the first-row atoms have been completed, using

single-term Slater wavefunctions for the 1ls, 2s, and 2p atomic orbitals with arbitrary

effective nuclear charges for the three orbitals. Determined were the best Z-values
and the corresponding energies of the first-row atoms in their neutral, singly lonized,
doubly ionized, and triply lonized states, arising from any distribution of the outer
electrons over 28 and 2p orbitals. These results will form the subject of a paper to

. be written 1n the near future. The calculations were carried out under the direction

of Dr. C. C. J. Roothaan, primarily by Mr. Robert Bonic (until 17 April) and Mrs.

Gudrun Lenkersdorf (since 22 June); smaller portions of the results were obtained by ﬂ

predoctoral students C. W. Scherr and A. D. McLean,

7. Molecular Complexes and Hyperconjugation

Professor Mulliken has been continuing his studies on molecular complexes and

their spectra, and on hyperconjugation especlally in radicals and ions.

Some of the aforementioned activities are being supported under Project NR 019
101 of Contract N6ori-20, Task Order IX, with the Office of Naval Research, others
under ProJject TB2-0001(505) of Contract DA-11-022-ORD-1002 with the Office of Ordnance

Research.

30 November 1953
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EXPERIMENTAL WOFK IN PROGRESS

1. Xenon-Emission Continua

Work now in progress on xenon-emission continua is reviewed in a separate

Progress Report on this subject (see p. xxi1).

2. Vacuum Ultraviolet Spectra of Organic Compounds

The last 101 vacuum ultraviolet spectra of organic compounds taken by Klevens,
Platt, and co-workers from 1945 to 1950 have now been reduced and will be published in
a forthcoming issue of this Laboratory's TECHNICAL REPORTS. Plans are being made to
study polarization of transitions in this region by the method of stream double
refraction, using the new photoelectric spectrophotometer which was described in the

last 1ssue of this TECHNICAL REPORT.

3. Naphthalene Vapor

Mr. William L. Lichten, predoctoral student, is constructing apparatus for
studying magnetic and optical properties of a beam of naphthalene vapor in the triplet

state.

4, Molecular Complexes

Dr. Dennis F. Evans (from Lincoln College, Oxford University), Research Assoclate

on this Laboratory's OOR eontract, is undertaking an experimental program in the fileld
of molecular complexes. He 1is planning to continue the study of.pyridine-iodine
complexes begun by Professor C. Reid (see paper in this TECHNICAL REPORT), and is now
studying the near vacuum ultraviolet spectrum of iodine in the vapor state and in
"inert" solvents.

A study of iodine complexes in rigid glasses at liquid-nitrogen temperature, and
in solutions under 2,000 atmospheres ﬁressure, has recently been completed by Mr. Joe
S. Ham. A doctoral dissertation covering this work is nearing completion and will
appeat in a subsequent issue of this TECHNICAL REPORT.

These research activities are being supported under ProJecq TB2-0001(505) of Con-
tract DA-11-022-0RD-1002 with the Office of Ordnance Research.

30 November 1953
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- PROGRESS REPORT ON THE INVESTIGATION OF INTEGRALS BETWEEN SLATER ATOMIC
ORBITALS AND THEIR APPLICATION IN MOLECULAR CALCULATIONS

1. Coulomb Integrals

The 28 Coulomb integrals between the ten basic charge distributionsl arising from
Slater orbitals with quantum numbers 1 and 2 have been evaluated for the argument

values:
p = 0.(0.02) 10.0 , T = -0.9(0.1) 0.9

The calculations were directed by Assistant Professor C. C. J. Roothaan and were
carried out on IBM punched-card machines at Iowa State College, Aﬁes, Jowa, after
certain auxiliary functions had been previously computed by hand. The information is
at present stored on punched cards. Aside from a simple factor, each of the 48 conven-
tional Coulomb integrals 1is a linear combination with simple numerical coefficients of
at most five basic Coulomb integrals; in 27 cases the linear combination comprises only
one term (see reference 1, Eq. (30)). The computation of all required linear combina-
tions 1s planned for the near future.

It is intended to have tables printed from punched cards by a card-governed elec-
trical typewriter as soon as feasible at the Watson Laboratory of the IBM Corporation
in New York.‘ Such tables should provide a fair copy for photolithographic reproduction
in form of a separate volume in the series of TECHNICAL REPORTS issued by this Labora-
tory.

2. Exchange Integrals

Numerical investigations of the Exchange integrals under the directlon of Dr. K.
Ruedenberg were carried out by Mr. Tracy Kinyon, full-time computer, and by Mr. Walter
Jaunzemis, part-time student computer, beginning in April, 1952. The possible use of
large-scale electronic digital computers was studied with the assistance of Mr. Philip
Merryman, Research Aid for electronic computing. The investigations had a three-fold
objective:

(1) to test the feasibility of the proposed method® and to study the

1gee C. C. J. Roothaan, J. Chem. Phys. 19, 1445 (1951).
2K. Ruedenberg, J. Chem. Phys. 19, 1459 (1951).
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PROGRESS REPORTS

numerical problems involved in its application; )
(2) to study the problems connected with tabulation, in particular to
consider the feasibility of satisfactory interpolation;

(3) to study the application of automatic computing machines for the

evaluation of Exchange integrals.

ST

The Exchange integrals, it will be recalled, are expressed as an inflnite conver-

gent series:

I-= CI(IO + I+ I, + )

where CI is a simple factor and each IZ is a function of four parameters a, a, B, and i
B, It was decided first to investigate the procedure of evaluating the Il's by means i

of the auxiliary functions BMA(B), ¢Mf(a,&), i.e., by the formulg
J nn
N W
1, - £ _Tol(e)al@)e(,q),
n=0 n=0 n n nn

where :

J
£ M2
w (B) = ijwnJB'j 8) ,

n

[see reference 2, Eqs. (1,16,17, and 19)]. Since the functions ¢Mf(a,&) were expected
- - - nn
to present the most difficult problems, they were considered first. 1In accordance

with the general recurrence procedure, the following functions were successively ' t

computed:

A(x), G (x), ¢%a,a), ¢°%(a,d).
nn nn

Together with the functions ¢09, the following related functions were investigated:
nn
M -
¢ _ ea+a¢00

n+l -n+l -
) O, v = a = a_ 09’ Y*_ = eOF%y .
nn nn nn n! n. nn nn nn
*
In distinction from the functlons ¢0?, the \Ym-"s, and the ‘i’nﬁ"s have the advantage
nn

that their orders of magnitude do not increase with increasing values of the indices

n, n. Hence they are more convenient for numerical work than the functions ¢09, and
* » nn
Ynﬁ’ and ¢nﬁ are more easily interpolated than !

¢'_. Furthermore, the functions ynﬁ’

nn 00 00 ¥ »
the functions ¢ _. All four functions, ¢, ¢ _, ¥ _, and ¥ _, were computed for the
nn nmm nn nn nn
following values of the argumenta: !
|

XV




PROGRESS REPORTS

and

p =0.2 T = oEo.lgl 5

p =1.0 and T =0(0.1)1 ;

p = 3.0 and T =0, 0.5, 0.9 ;
p = 6.0 and T =0(0.1)1 ;

T =0, p=0(0.2)1(0.25)5.5(0.5)7 .

The computations were carried out for the valﬁes n, n = 0(1)10 of the indices and, in
general, for ten significant figures. For the values n, n =0, 1, 4, 7, graphs were
drawn and difference tables were constructed. Also the functions (ﬁ/a)wnﬁ, [(n/a) +
(ﬁ/&)]wnﬁ, [alné(l-r)]wnﬁ, were investigated for interpolation purposes.

No serious difficulties were found in computing these functions or the necessary
auxiliary functions An(x), Gn(x). However, it had to be concluded that in all these
functions interpolation requires a very close mesh of entries, a fact which would lead
to very voluminous tables.

Subsequently the functions A _, ¢Of, ¢Mf were computed for the argument values

nn nn nn

p = 0.2 and T=0, 0.9 ;
p =1.0 and T=0, 0.9
p = 6.0 and T =0, 0.9 .

It was found that, in each step of the recurrence procedure, one to two significant
figures were lost so that the recursion could only be carried out for a limited number
of £ and M values. The number of significant figures remaining for different £ and M

values are given in the following table:

M=0 M=1 M=2
JA
p T 0 1 2 3 4 5 6 1 2 3 4 5 2 3 4
0.2 0.0 9 5-6 1-3 0 k-5 0
0.2 0.0 9 2-5 0
1.0 0.0 |9-10 8 6 46 1-4 © 6-7 3-5 2-5 0 2-5
1.0 0.9 |8-9 3-7 1-6 0 4-6 o0 ‘
6.0 0.0 8 7 6 5-6 k-5 3-4 2| 6-7 5-6 4-5 3-4 2-5 4 3 2
6.0 0.9 9 6-8 3-7 2-6 1-4 0

It was found that the loss of figures increases with increasing t and decreases with
increasing p. For large values of 1, the loss becomes more serious with increasing n,
whereas it is fairly independent of n.

Moreover it turned out that, in raising the indices £ and M, the last significant
digit slowly moves towards the decimal point, while the total value of the functions
becomes smaller; 1.e., one loses figures "on the left and on the right." Hence the

functions ¢Mf for higher values of M and £ have fewer significant figures and fewer
nn

xvi
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PROGRESS REPORTS

decimal places than those for lower M and 4, from which they were computed.

It was now decided to find out how these results would affect the evaluation of

an Exchange integral as a whole. (S

! For this purpose the functilons BJME had to be computed first. The following

procedure was found to be practical: BoM9 and BoMlo were computed by series expansion,

which proved more convenient than the use of explicit formulas. Then BOMB, BOM7, ‘oo

OMO M4 by ascending recursion. Actually

’ the functions

B were obtained by descending recursion, and BJ

e~

! ! 1
Lo (U e - [ anelfin) (1-n2)/ 2680y

[ proved to be most convenlent for numerical work.
After the functions bJM£ were computed for a number of argument values, the

evaluation of a number of integrals was undertaken. 1In all cases (16 different inte-

grals were considered) it was found that the loss of decimal places, which occurs in
raising the 1ndices £ and M of the ¢-functions is not compensated by other gactors 80
that the ¢-functions with highest Z-values determine the last significant decimal
place. The number of significant figures in the total integral is less than the
number of significant figures in the largest term.

The integral [lsalsbllsalsb] was furthermore compﬁted for the values:

o, P
1, T

.2)3, 1(0.25)5.5 ;
0.1)1 .

el
nn

Difference tables were constructed, and it proved to be possible to interpolate this
total integral to five decimal places.

Furthermore the integral [23a23b]2sa25b] was evaluated for a = a = 1(1)6, B =
0(0.5)a, B = 0(0.5)a in order to obtain an insight in the coﬁvergence of the series
which becomes infinite for B # O and f # 0. The convergence was found to be satis-
factory for all possible values of B, B (one must have B € a, 8 < a). Furthermore the
p-dependence and P-dependence of the integral was studied, and graphs were drawn. The
simplest behavior resulted when the integral was divided by ¢ = f(ca+cb+ta+zb) and

when the resulting expression was considered as a function of

= #(a+a), T = (a-a)/(a+a), ' =a/B, T =a/f .

Here, as always, it was observed that interpolation proved to be very much easier in

xvii
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the total integral than in the auxiliary functions.
In view of the unpleasant information obtained for the ¢-functions, it was now
decided to investigate a different method of computing the I,'s, 1.e., 2 numerical

Me

integration proposed by Dr. Ruedenberg. In this method the functions BJ are computed b

as before; I, is then given by the integral &

I, - °{° ag(e-1)7 e M(e)1-2 f ax P M(x) (x-1)"2e "%t (g, x)

3 i
X { dx PZM(x)(xe-l)M/ae axwz(ﬁ,x) ,
where
N ‘
of(g,x) = I x" k),
n=0
which follows from Egqs. (1.17), (3.12) of reference 2. The three successive single

integrations were carried out numerically. The method proved to be straightforward,

and no significant figures were lost. Transforming the interval x = (1 - =) into the

interval x = (1 - 0) and taking steps of 0.0., the integral [23a25b]25a2sb] was found
correct to five decimal places. Since, in a numerical integration of this type, most
of the time 1s spent calculating the integrand, it was concluded that this method
would be very much facilitated if the following table were available:

(1) An interpolatable table of the B Mf(p)

(2) A table of PEM(I/t)[(l/t)g-l]M/e }

M -5 5 .1 for t = 0(0.01)1 (say).

(3) A table of [P, (1/t)]17°[(1/t)%-1]

Then, for a particular integral, only the functions i

eV, ¥t o ty, &t (%)
n

would have to be calculated before starting the integration proper. Moreover, in one
molecular problem the same functions of the type (*) will occur in several integrals.

In view of the great complexity of the calculations involved in the Exchange

integrals, the possible use of an electronic digital computer had been investigated
simultaneously. It was concluded that these machines offer the best existing method
of carrying out such complicated computations. It was however realized that the

inordinate loss of significant figures as well as the extreme variations in the order

of magnitude of the intermediate results, both of which are characteristic of the

¢-function method, create very unpleasant problems for machine operation, namely

xviiil
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scaling and multiple precision. On the other hand, the numerical integration procedure
should be well suited for a machine.

The ¢-functions theoretically offer one advantage: they can be tabulated as two-
parameter functions. The numerical integration method on the other hand, furnishes
the total integral in one step; 1.e., 1t ylelds directly four-parameter functions
which would lead to very voluminous tables and therefore do not seem suitable for tabu-
lation. It was however already mentioned that the ¢-functions are difficul? to inter-
polate and, therefore, are not ideal for tabulation either. Furthermore, our investi-
gation of electronic computing techniques seems to indicate that future molecular com-
putations may rely rather on subroutines executed within the machine than on printed
interpolatable tables. For these reasons a tabulation of the ¢-functions loses a
gréat deal of 1its attractiveness.

It was therefore decided to prepare a code for the numerical integration method
for an electronic digital computer in order to learn how well this method would work
on a machine. Although a flow chart for the ¢-functions had already been made, it was
decided to wait with the preparation of a code for them. If the numerical integration
. by an electronic machine would work out well, and if it should prove to be superior in
simplicity to anything which can be expected from the ¢-function method, then, it is
felt, a computation and tabulation of ¢-functions is likely to be inadvisable. Rather
it might be preferabie to consider the preparation of the following tables:

(1) A table of total exchange integrals (computed by numerical integration)
for a very wide mesh of entries to serve as a guide for the general behavior of the
integrals;

(2) A closer tabulation for such selected intervals and/or special values
of the arguments as may prove to be very frequently used;

(3) 1In case one wants to make provision for a facile evaluation without an
electronic_computer: a tabulation of the three kinds of simple functions which, as
was outlined before, would make it possible to evaluate (by numerical integration) an

exchange integral by hand without excessive labor.

3. Hybrid Integrals and One-Electron Integrals

The investigation of the hybrid integrals has resulted in a paper entitled "A
Unified Treatment of the Hybrid, Coulomb, and One-Electron Integrals", by K. Rueden-
berg, C. C. J. Roothaan and W. Jaunzemis, which appears in this TECHNICAL REPORT.
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A methodwa dealing with the integrals has been developed which permitted an entirely
general solution of the problem. The treatment is based on a new type of auxiliary
functions, called casvée, and 1t has been possible to express the two-center one-
electron integrals as well in terms of these auxiliary functions--with the only excep-
tion of the nuclear attraction integrals of the type [ deax;/rb, for which independent
formulas are given. Pilot computations‘are being started_at present. It 1is antici-
pafed that ?he final calculations will probably be carried.out on an electronic digi-
tal computer; they shall furnish tables for one-electron integrals arid tables for the

auxiliary functions occurring in the hybrid integrals.

, Application of Machine Computing Techniques to Molecular Calculations

In view of éhe rapid improvements made in the last few years in the relilability
and power of electronic digital computers, it appears to be likely that future mole-
cular calculations will largely be carried out by means of such machines. Since the
techniques which are now being developed in the fleld of automatic machine computing
will therefore have to be considered in planning future work, a study of this new
fileld was initiated by Mr. P. Merryman, Dr. K. Ruedenberg, and Dr. C. C. J. Roothaan.
The possibilities of phe new machines have also been recognized by other researchers;
ploneer work is being done in particular by Dr. S. F. Boys, who for several years has
been working with the EDSAC computer in Cambridge, England.

The most immediate consequence is, of course, that calculations whose complexity
makes them forbidding for hand computation are now within the range of possibility.
The most obvious examples are the integrals between the atomic orbitals. It may be
expected that codes can be prepared which will allow the evaluation of an integral of

this kind for a particular set of parameter values in a matter of minutes, so that it

may become possible to obtain a large number of them when required, e.g., if a diatomic

molecular problem is to be solved for many values of the interatomic distance in order
to construct a pofential curve. Another important example is the solution of secular
equations of very high order; such equations up to the order forty are now being
solved, and it can be expected that equations of higher order will become soluble, by
automatic methods. This fact will facilitate the superposition of more atomlc orbitals
to form molecular orbitals than appeared to be possible until now, and it will also
permit taking into account a greater amount of configurational interaction than was

hitherto feasible.
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Another development to be mentioned 1s the tendency of those working with high-
speed computing machines to rely more on subroutines executed within the machine than
upon interpolatable tables in order to obtain values of complicated as well as simple
functions. It 1s generally considered more economical to generate these values in the
machine, by a subroutine, whenever required than to store an interpolatable table in
the memory of the machine. Thils fact seems to indicate that, with such computers, one
will want to solve molecular problems individually and in total; that is, the four
steps of the LCAO procedure (evaluation of the necessary integrals, construction of the
energy matrix elements in terms of the integrals, solution of the eigenvalue equation
of this matrix, computation of certain physical quantities from the eigenvalues and
eigenfunctions) will be combined into one master code which would contain such inter-
mediary steps as the evaluatlon of integrals in form of subroutines. Boys has already
taken some steps along this path. It must be admitted that total molecular codes will
require a large fast machine memory; but 1n view of the rapid progress being made at
present; the latter can be expected to become available, In light of the foregoing it
appéafs then that the calculation of molecular problems will presumably move away from
integral tables and that, instead of such tables, a library of codes required in mole-
cular calculations (g.&., codes for integrals, for the construction of matrix elements,
for the solution of secular equations, for the calculation of dipole moments, etc.)
will prove to be the appropriate tool in conjunction with an electronic digital
computer.

Finally it should be pointed out that the high-speed large-scale computing
machines will facilitate the handling and use of numerical wavefunctions, e.g., SCF
atomic orbitals, as contrasted with analytical functions. Indeed, it is likely that
even the execution of numerical Hartree-type SCF calculations for three-dimensional
molecular orbitals will come within range of possibility.

The conclusions presented here are, of course, preliminary in nature and will
undoubtedly give way to more precise_formulations as experience with the-new computing

machines accumulates.

The research on molecular integrals hereabove described is being supported in
part under Project NR 019 101 of Contract N6ori-20, Task Order IX, with the Office of
Naval Research, and in part under Project R-351-40-4 of Contract AF 18(600)-471 with
the Air Research and Development Command.

30 November 1953 K. Ruedenberg
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PROGRESS REPORT ON XENON EMISSION CONTINUA

Recently Dr. Yoshlo Tanaka of the Alr Force Cambridge Research Center discovered
a continuous emission in xenon and krypton excited by microwave ener'gy.:L This con-
tinuum spreads to the red from the 1,47ox‘xenon resonance line and 1is quite intense
up to approximately 1,8502.

In the original experiments at the Air Force Laboratory, an electrodeless pyrex
tube was waxed to the slit of a vécuum spectrograph, and xenon was stressed through
the tube at approximately 10mm pressure. Owing to the high cost of xenon, experiments
were conducted at the Air Force Laboratory and also in thils Laboratory to produce a
sealed-off tube with a lithium-fluoride or a calcium-fluoride window. Great difficulty
was experienced initially with small amounts of impurities which gave rise to the
intense fourth positive group emlssion-band system of carbon monoxide overlapping the
continuum. It proved to be possible to remove these impuritles by means of a getter
of magnesium-aluminum-barium alloy, and a number of sealed-off tubes were prepared
with varlous pressures of Xenon.

These tubes have apparently limitless 1ife, but their usefulness is reduced to
about 100 hours! operating time by solarization of the lithium-fluoride or calcium-
fluoride windows. The relative intensity of the xenon emisslon continuum increases
with pressure to a maximum intensity at about 200mm pressure. Above this pressure,
increasing absorption by weak xenon van der Waals 'molecules begins to reduce the
intensity. This is in agreement with the work of McLennan and Turnbu112 on the pres-
sure broadening in absorption of the 1,4702 resonance iine. Also, the extent of the
continuum 1s reduced at the higher pressures, particularly on the short-wavelength
end. The useful range of the emission in 200mm of xenon photographed on the Harrison
21-foot vacuum spectrograph is 1,520 to 1,8502, with a maximum in intensity near
1,650K.

In the region 1,900-6;0008, the mercury 2,5372 and 2,4832 lines appear. At
B,OSOX is a weak and diffuse emission-band system which is favored by a pressure of
190mm, and from 2,400 to 7,0002 is another weak emission continuum with a region of
1Y. Tanaka and M. Zelikoff, Bull. Am. Phys. Soc. 28, No. 6, 29 (1953).

2J. C. McLennan and R. Turnbull, Proc. Roy. Soc. (London) Al39, 683 (1933), Al29,
266 (1930).
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relatively low emission near 5,3002, and one observable maximum near 4,7003. The
entire region above 3,8008 is overlapped by many atomic emission lines of xenon. The
intensity of this continuum i1s at least twenty times weaker than the vacuum ultraviolet
continuum.

The characteristics of the xenon emission are such that 1t should be possible to
use the vacuum ultraviolet continuum in the third orde? of a diffraction grating with-
out the use of a disperser. The third order of the continuum would fall from 4,560 to
S,SSOX where BEastman SWR plates are 1lnsensitive, and the second order falling in this
region is very weak. This vacuum ultraviolet continuum has already been used in this
laboratory to photograph the absorption of ethylene, deutero-ethylene, and carbon
dioxide in the first order from 1,520 to 1,8508. These absorption experiments have
shown that the xenon continuum is more sultable for absorption spectroscopy than the
Lyman continuum due to its more even intensity distribution and its ease of production.
The use of the third order of the Harrison 21-foot grating in absorption spectroscopy
is very important since the theoretical resolving power would be tripled, and many
observed bands might then be resolvable. _

At present a half-wave dipole antenna 1s used to couple the microwave energy to
the discharge.tube. Since this results in a considerable loss of available power, a
microwave cavity has been constructed in cooperation with Professor Hutchison of the
Department of Chemistry and Mr. Gale Flesher of the Department of Electrical Engi-
neering, Illinois Institute of Technology. This tunable resonance cavity was designed
to resonate in the TM,,, mode of oscillation at 2,464 megacycles per second; it is
cylindrical in shape, the discharge tube being located along the axis to coincide with
the maximum electric-fleld intensity. 1In its present form, the cavity will resonate
in the TE112 mode at one end of the tuning range and in the TMOlO mode on the other
end. Some modifications are still necessary to improve the efficlency of the cavity.
In its final assembly, a crystal_detector and a microammeter will be employed to
monitor the power output, and a double stub tuner will be located on the input power
cable to secure satisfactory impedance matching.

The xenon continuum may be somewhat similar to the Hopfield emission continuum
in helium from 5842 to 1,oooR. The latter is due at least in part to a transition
lzu+, to the unstable ground state lzg+;

results from a combination of a normal lS atom with an excited lP atom. In xenon, a

from a stable excited state the excited state

combination of an excited 3? atom with an unexcited 18 atom may result in the formatiomn
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of a stable excited state, probably 32u+, which can combine optically with the unstable
1, +

ground state, 28 .

" The continuum which appears in the 2,400-7,000X region is very slmilar to that
produced by a high-voltage condensed discharge in xenon, reported by LaPorte.3 This
continuum as it appears on LaPorte's published plates, extends from 2,9002 to 6,000X
and shows two maxima, one at about 4,7008 and another at about 5,8002. In microwave
excitation, the intensity maximum at 5,BOOR is not observed although there 1s a region
of relatively weak emission near 5,3003, in agreement with LaPorte. It seems possible
that under the microwave-excitation conditions, the long wavelength maximum has been
shifted beyond 7,000X, which would then be out of the region of measurement. The
diffuse band shaded toward the violet with its head near 3,0BOR is not observed in the
published photographs of LaPorte.

No ultraviolet and visible transitions of molecular xenon have been ldentified.
It 1s conceivable that upper states in xenon exist other than that suggested above and
that these can combine with a repulsive lower state in a manner similar to the transi-
tion in the vacuum ultraviolet. It is fairly clear that the long wavelength continua
are not Just parts of the tail of the vacuum ultraviolet continuum, since maxima of

intensity occur in each, and at widely different positions in the spectrum, namely at

1,6508 and at 4,700K.

The aforementioned research is being supported under Project TB2-0001(505) of
Contract DA-11-022-0RD-1002 with the Office of Ordnance Research.

30 November 1953 - ' P. G. Wilkinson

M. LaPorte, J. phys. radium 9, 228 (1938), 6, 164 (1945).
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A STUDY OF TWO-CENTER INTEGRALS USEFUL IN CALCULATIONS ON MOLECULAR STRUCTURE.
III. A UNIFIED TREATMENT OF THE HYBRID, COULOMB, AND ONE-ELECTRON INTEGRALS '
Klaus Ruedenberg, C. C. J. Roothaan, and Walter Jaunzemis
Laboratory of Molecular Structure and Spectra
Department of Physics
The University of Chicago
Chicago 37, Illinois
INTRODUCTION

IN RECENT YEARS it has become recognized that in calculations on molecular structure
the exact values of all integrals between atomic orbitais (AO's) must be taken into
account in order to draw meaningful concluslons ffom the initial assumptions through
detailed calculations. It has further been reallzed that these integrals require sys-
tematic investigation in order that the present unsatisfactory state 1in this field
may be clarified. Several studles have therefore been made recently on this sub,ject.1
In two previous publications, two of us presented a study of all the two-center
integrals between Slater AO's except the so-called hybrid integrals.g’3 Referring
the reader to these papers we shall not repeat the introductory remarks given there.
We shall use certain concepts and results from these papers, quoting reference 2 as
(I) and reference 3 as (II).

The principal obJject of.the present paper is a completely general treatment of

the hybrid integrals
(X' X"y IXgXp ) = £ aVy [ avoxt, (1)x", (1) (1/r5)x, (20, (2) (A.1)

where x&,x'a,x"a denote three different Slater AO's on atom a, and x, denotes a Slater

A0 on atom b. The Slater AO's used here have the form

(ntm) = (20)"*¥((2n)11 326005 (0,0) (a.2)

?This work was assisted by the Office of Naval Research under Task Order IX of Con-
tract N6ori-20 with The University of Chicago.

1See the biblilography.
2¢. C. J. Roothaan, J. Chem. Phys. 19, 1445 (1951).
. Ruedenberg, J. Chem. Phys. 19, 1459 (1951).
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where Szm(e,v) denotes a normalized, real spnerical harmonic [see (I), Eqs. (9,10),
and (II), Eq. (1.3)]. If we use ay, the Bohr radius, as the unit of length, then the
parameter { is defined by

¢t =2/, (A.3)

where n 1is the principal gquantum number and Z 1is the effective nuclear charge. We

propose for the parameter { the name orbital exponent.

Unfortunately there exists some confusion in the literature due to different
choices of the unit of energy. We propose therefore that the symbol [x'ax”alxaxb]
always be used to denote the integral on éhe right-hand side of (A.1), regardless of
which unit of energy is used. From this convention it follows then that the contribu-
tion to the energy matrix corresponding to the integral (A.1) is given by
[x'ax"alxaxb] if the energy 1is expressed in units of e2/aH (Hartree and present au-
thors), und by 2Lx'axfa|xaxb] if the energy is expressed in units ofee/zaH (Parr,
Brennan and Mulligan). \ﬁe consider the foregoing convention more satisfactory than
the suggestion of Brennan and Mulligan,)’l who make the meaning of the symbol
[x'ax"alxaxb] dependent upon the choice of energy units.

The orbital exponents of the four orbitals are entirely arbitrary 1n our discus-
sion, which is therefore wider in scope than the treatments given by Kotani, Amemiya,

5 and by Brennan and Mulliga.n.)4 A new method is developed which involves

and Simose
only one type of auxiliary functions. It appears to be simpler than any of those
previously suggested, and from the following exposition it should be a straight-for-
ward matter to apply it to any hybrid integral involving Slater AO's. The explicit
results are given for all hybrid integrals involving ls, 2s, 2p AO!s.

It is furthermore shown that the coulomb integrals, overlap integrals, kinetic-
energy integrals, and one type of nuclear-attraction integrals can also be very simply
expressed in terms of the new4éux111ary functions, so that a unified treatment of
these five types of integrals has been achieved.

Section 1 of this paper deals with the hybrid integrals; Section 2 treats 1in a

general way the integrals of paper (I), that is, the coulomb integrals and one-

4See (7) in the bibliography.

See (8) in the bibliography.
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electron integrals; Sections 3 and 4 provide an analysis of the new auxiliary func-
tions; Section 5 collects some useful facts about the exponential integral and cer-
tain related functions; and finally the bibliography surveys the literature on the
hybrid integrals.

1. HYBRID INTEGRALS
a. Charge Distributions; Classification of the Hybrid Integrals

The Slater AO's which enter (A.l) are functions of coordinates having the ori-
gins a and b, respectively; the orientation of these two coordinate systems is
explained in (I), Eq. (1), and in (II), Eq. (1.4) and Fig. 1. Following the method
employed in (I) and (II) we call

x', (1)x", (1) (1.1)

and

X, ()% (2) (1.2)

the charge distributions occupied by the two electrons.6

The symmetry group of our two-center problem i1s the two-dimensional rotation-
reflection group‘Cmv. Consequently, it is useful to write the charge distributions

(1.1,2) as linear combinaticns of certain basic charge distributions, that is, charge

distributions which belong to irreducible representations of Cmv; it 1s also said
that these basic charge distributions are of a particular gpecies (a particular
irreducible representation) and subspecies (classifying the different members within

the same irreducible representation). The species and subspecies determine the de-

pendence of the basic charge distributions on ¢, the azimuth around the ab-axis; this

dependence 1s given in Table I.
The charge distributions (1.1) are products of two Slater AO's on the same cen-
ter a. Convenient basic charge distributions Qa for this case are, as is shown in

(1) (Section: Charge Distributions on Atoms), given by7

6xa(l) is an abbreviation for xa(xal’yal’zal)’ etc.

7In the case of the hybrid integrals there occurs only one one-center charge distri-
bution, na; this distribution is characterized by the three integers N,L,M. In
the case of the coulomb integrals, treated in Section 2, there occur two one-
center charge distributions, Qa and‘nb; we shall characterize these distributions
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3 L N+2 N-1 -2T.r, :
[NLM] = [(2L41)/4n) [2 (2T,) /(MLal)t]r, e Sim(84:9) » (1.3)

where SLM(G,v) denotes a normalized, real spherical harmonic [see (I), Egqs. (10) and

(11)], and where
— " 3
T, = Her,ety) (1.4)
is the average orbital exponent of the AO's X', and x"a.

TABLE T.
DEPENDENCE OF THE BASIC CHARGE DISTRIBUTIONS ON THE AZIMUTH ¢
FOR THE DIFFERENT SPECIES AND SUBSPECIES OF C_.

Species Subspecies Dependence on ¢
z — independent of ¢
I cos9
I
sing
A cos2¢9
A
sin2¢
d cos 3¢
¢
sin’e

The explicit expansions of the charge distributions (1.1) in terms of the basic
charge distributions (1.3) are given in Table II, for all the possible products of the
AO's 1s, 28, 2p6, 2pm, 2pT7. Thig table is taken from the more general formulas in
(I), Eqs. (12). It is seen that the basic charge distributions 1S, 28, 35, 2pz, 2PI,
2PN, 3p=, 3P0, 3PN, 3D=, 3p0, 3DN, 3DA, 3DA are required for this purpose.

It should be stressed that this method of expanding the one-center charge dis-

tributions into basic charge distributions provides the most economical way of

then by Na’La’M and Nb’Lb’M respectively (it is not necessary to write also Ma and
"b’ since the integrals with Ma ¢ "b vanish).
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dealing with integrals involving charge distributions of the type (1.1).8

TABLE IT.
EXPANSION OF THE ONE-CENTER CHARGE DISTRIBUTIONS
IN TERMS OF BASIC CHARGE DISTRIBUTIONS

18t 18" = g1, Y20 327 “31s ]

l1s1,28" = (\/3/2)¢.a3/2,;uas/2ta-u[2sa]
oo+ 01,3508 3/, )

1s',2p0",] [2E2, ]

1s' 2pm", =‘;|a3/2;na5/2z;-4 [epn,]
181,207, [2PI, ]
2s!,2p6 “a~ [3p2, )

2st 2pm", } = (5/2‘/3)0&5/2("&5/2'5&’5 (zPO,]

281,207, [3PM,]

2p61,2p5 " ] [[38,1+313Dz, ]

2pst 2pn"_| _ (3v3/2)(3D1, ]

2p6 ! 2p7" (3V3/2) (300, ]

i = L 5/2cll 5/2':' —i

2pmt 2pm", BB |138,1-(3/2) 1302, 1+(3V3/2) [3D8, ]
epmt 2p7" | Gv3rai 308, ]

2pm!  2pm" | - [3841-(3/2) (302, 1 (3V3/2) 302, ]

8’1‘his statement 1s illustrated by the fact that Barnett and Coulson in their paper
[see (12) in the bibliography], where they used the charge distributions (1.1) di-
rectly, 1list 90 hybrid integrals as being essentially different; whereas we, using
the basic charge distributions (1.3), find that actually 79 integrals are suffi-
clent. This difference is due in particular to the fact that the six products of
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1.2 charge distributions (1.2) are products of two Slater AO's on different cen-
ters, namely a and b. Convenlent basic charge distributions Q,p, for this case are

given in (II), Egqs. (1.5-11) and Table I. Since we consider only the AO's 1s, 2s,

2p6, 2pm, 2pT on the centers a and b, an actual decomposition for the charge distribu-

¢ tions (1.2) in terms of basic charge distributions occurs only for the three products

where both factors are m-AO's, as 18 shown in Table III of this paper. The basic
two-center charge distributions which we shall need are listed in Table IV. They are
i expressed in the elliptic (prolate spheroidal) coordinates £,1,9, and multiplied by
(%R)E(&-n); the inclusion of this factor will later prove useful. The elliptic

f coordinates are defined by9

) §=(rg#r ))/R, n=(rgr)/R, 9 =9, =9, , (1.5)
1 so that
| r, = IR(E+n) , vy = R(¢-n) ,
rcosé = #R(1+€n) , r,cosé, = 3R(1-én) , {1.5%)
r,8inf, = r sind = %R[(Ez-l)(hnz)]‘% s

where R is the internuclear distance ab.

TABLE III.
EXPANSION OF THE w-AO PRODUCT CHARGE DISTRIBUTIONS
IN TERMS OF BASIC CHARGE DISTRIBUTIONS

2pna2pﬂb = Epﬂazpwbz + 2pﬂazpnbA
2pw32pwb = 2pna2pwb2 - 2pﬂ32pﬂbA
2pm 2pm, = 2pm 2pm = 2pna2pﬂbK

2p AO's can be expressed in terms of five basic charge distributions (see Table II).
Similarly, among the 30 hybrid integrals listed by Brennan and Mulligan [see (7) in
the bibliography], only 24 are independent.

IThis definition coincides with the one given in (1), Eqs. (2) and (3), but differs
from the one given in (II), Eq. (18), by the sign of 1.
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TABLE IV.
THE BASIC TWO-CENTER CHARGE DISTRIBUTIONS Qab

ab ($R)2(£-n)0,,
10 I-type distributions:
18,28, | (6,720, 7% 2um)e P e N ()
18,28, | (£,7/% Y% 3/8V3m)e P PN )2
28,18, | (t,%/%¢,7/% 2/8V3m)e PPN (kin) (£om)
28,28, | (8,572, % t/u8m)e PPN (g4n) (6-m)°
18,200, | (6,726, 7/% 2/8m)e P4 PN (¢on) (1-6n)
2p0, 18, | (2,520, 7%/% 2 /6m)e P E- PN (n) (14£n)
28,200, | (2,26, "%/ */16V3m)e P 8PN (£4n) (£-n) (1-£n)
2po, 2y | (2,720, 7/% /16v3m)e PEP N (£o0) 2 (248n)
2ps, 206, | (¢ 520, "%/ % H/16m)e PPN (¢on) (148n) (1-2n)
2pm_2om 5 | (¢,5/2¢, "3/2p b /52m)e PEP N (6on) (£2-1) (1-07)
6 I-type distributions:
1s,20m (8, %20, 7/2p, 2/8m)e PEP N ) [ (€2-1) (1-17) 1 2cos®
epm 1s, | (8,92, 7/% 3 /8m)ePETP Nk n) [ (6%-1) (1-n2) 12cose
2s 2om | (2,572, "¥/2p */16v3m)ePEPN (£4n) (£-n)[ (£2-1) (1-17) 1 Zcosw
epm 2, | (2,520,732 /16v3m)ePETPN (6-0)2] (2-1) (1-92) T Fcose
2ps 2o, | (£,5/20, 73/, /16m)ePE PN gon) (148n) [ (£2-1) (1-17) 1 cose
2pm 206, | (£,5/2¢, /%0, /16m)e PPN (6on) (1-£0) [ (£2-1) (1-1%) T Fcoso
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TABLE IV (continued)

ab (3R)2(e-n)0,,

6 M-type distributions:

replace every m AO in the above list by a 7 AO, and cos? by sin®.

1 A-type distribution:

epm2pm A (0,202 b /32m)e PPN (6 n) (2-1) (1-n2)cos2y

1 B-type distrivbution:

replace 2pna2pwa by 2pna2pﬂbK, and cos2p by sin2g.

In Table IV Ca,ﬁb,na,nb are the orbital exponents and principal quantum numbers
of the AO's Xa and‘xb. The basic charge distributions are further considered as
functions of the parameters p, and p,, defined by

Py = LR » Py = LR 5 (1.6)

finally, the parameters p and T, occuring 1n the factor e-pE-Tpn’ are defined in terms

of p, and p, by

p = 2patpy) = 2L +L )R,
(1.7)
T = (pa=pp)/(pgtey) = (8,-8,)/ (6, +8,)
so that Py and Py can also be written in terms of p and T, namely
Pa = (147)p , py = (1-1)p . (1.71)

Obviously, we may consider the basic charge distributions Qab as either functions of
Pa and p,, or as functions of p and 1. The former choice is more useful for the

mathematical analysis of the hybrid integrals, and will be adhered to throughout this

paper; the latter choice, however, 1is more useful from the point of view of the numer-

ical tabulation of the auxiliary functions in which we shall express the hybrid
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integrals.
From Table IV it can easily be verified that the basic charge distributions nab
satisfy the general formula

n+% -n+% n_+n_ -pf-1pn
a ¢, 2’2 "a e

(R)2(8-n)ay, = ¢, b

cosMe

x p(e+n,€-n,1+€n,1-€n)[(62-1)(1'ﬂ2)]Q+%M{s1nmv

(1.8)

where q is a non-negative integer, and p(u,v,x,y) 1s a homogeneous polynomial in u,v,Xx,
¥y of the degree na+nb-2q-M-1. Actually, in all our cases, due to the re-triction to

18, 28, and 2p AO's, p consists of only one term; further q = O, except for 2pna2p z,

™o
in which case q = 1. The ZI-type distributions are independent of ¢, hence the upper
choice of (1.8) applies with M = 0; for I- and A~ (or II- and A-) type distributiond the
upper (lower) cholce applies with M = 1 and M = 2, respectively. The validity of Eq.
(1.8) can of course be proven in general; however, since this proof 1s somewhat lengthy,
though not difficult, we shall omit it here.

By means of the Tables II and III any hybrid integral involving AO's with prin-
clpal quantum numbers 1 and/oq 2 can lmmediately be expressed in terms of a few inte-

grals between basic charge distributions; if Qa and Qab are the basic charge distri-
butions, then such a basic hybrid integral has the form

[nalnab] = [av, | dvena(l)nab(a)/r12 - (1.9)
S0, for instance |
[1s',28" |1s,2p0,] = (V3/2)t1 3/2tn 5/20 (2 |18 2ps,] ,
[2p6* 206", |2pm 2pm, ] = £1,5/2¢v 5/%7 -5
x {[3s,|2pm 2pm 2] + [3S,|2pn, 2pm A]
+ 3[3DZ, | 2pm 2pm =] + 3[3D2a|2pna2pﬂbA]} .

Since the basic charge distributions Qa and Qab are classified according to their
qpecies and subspecles with respect to the group cwv’ we may conclude [see (II),
Theorem II] as follows:

Theorem. The integral [Qalﬂab] vanishes if Q, and Q,, belong to (1) aiffer-
ent species, (il1) the same species, but different subspecies. Furthermore, the
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integral 1is independent of the subspecies. ‘

As a corollary to this theorem we conclude that, in order that the integral
[halﬂab] shall not vanish, Q, and Q,, must both be of the same type (both of Z-type,
n-éype, M-type, etc.); and that an integral involving NI- (or B-) type distributions
has the same value as the integral involving the corresponding - (or A-) type distri-
butions.

In our example [ls'aas"allsazpdb] we conclude, since 28, and 1s,2pG, are both
of =-type, that this integral does not vanish. In our example‘[2p6'a2p6"a|2pﬂa2pﬂb]
the integrals between I-type and A-type distributions vanish, so that this integral

reduces to
[2ps® 2ps", | 2pm 2pm, ] = cra5/2cna5/22é'5{[38a|2pﬂa2pﬂb2] + 3[3D, |2pm 2pm 3]} .

We can now classify the basic hybrid integrals as being of Z-type, IN-type, or
A-type. On the other hand, a further classification is suggested éccording to
whether Qa is S-, P-, or D-type [see Eq. (1.3)], that is, whether Q, 1s a charge dis-
tribution of (mono)pole, dipole, or quadrupole character. We are thus led to the

classification of the basic hybfid integrals as exhibited in Table V.

TABLE V.

CLASSIFICATION AND ENUMERATION OF THE BASIC HYBRID INTEGRALS

Number of baslc Number of basic Number of basic
charge distributions charge distributions hybrid integrals
Qa Qab ‘ [Qalgab]
S P D j S P D |Total

z 3 2 1 Z ]J1o D 30 20 10 | 60

2 1 I 6 bid 12 6 | 18

A 1 A 1 A 1 1

Total| 30 32 17 | 79
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b. First Integration

The integration over the coordinates of electron 1 in Eq. (1.9) leads to the
functions

UQa(2) = [ dVlﬂa(l)/r12 , (1.10)
which are the electrostatic potentials of the charge distributions Qa. We substitute

for Qa the general expression [NLM] as given by Eq. (1.3) and for l/r12 the Laplace
expansionlo
Ve = B Dim/es)) (e e B E s, (61,9008, (6.0,0,) (1.11)

12 % % </ me-g Am'7a1’%1/%m'"a2:%2) .

where r, means the smaller one of“ral and Pyns and ry the larger one. Carrying out

the integration in the spherical coordinates ral’eal'wl’ we obtain immediately the

result
Upgy(2) = [4n/(2041) 13028 (2T, )V*2/ (n4na1) 118 4, (0,5,0,)
w -2
x‘.édral(I,<L/I,>L+1)I,a1N+1e CaTal ,
or
Uypm(2) = [4n/(2L+l)]%2L+1ZASLM(9a2,¢2)UNL(ra2) , (1.12)
where
‘ ‘ N+1 it L, L+l,. N+1_"2%a%a1
UNL(Paz) = [(215) / (N+L+1)1] é dral(r< /r> Jrgy e . (1.13)

Carrying out the substitutiocns
t = ral/ra2 , 8 = elgraa s (1.14)
we obtain for (1.13)

1 e
Uwr (r.) = (8NP /(N4L4+1) 1 1] | ate 80¢MHIHL | ¢ qpe-8YgN-Ly |
NL a2) / ) g {

or

1°Usua11y the Laplace expansion is given in terms of the complex spherical harmonics
Y‘m(e,w) [see (II), Eq. (4.18) and ref. 24]; the expansion (1.11) in terms of the
real spherical harmonics Slm(e’°) is readily obtained from this one.
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Uyp(Tap) = [8M*L/(NeL41) 1L (NHLA1) 1 /8N4 L a0 (8) + Ag 1 (8)],  (1.15)
wherell

Al®) = (ni/a™h)e™® T ol . (1.16)

We rewrite (1.15) in the form
N+L
Upy, (Fap) = 87173 (167" Z w s%) , (1.17)
with

w, = 1/k! for O € k € 2L ,
(1.18)
u, = (1/k1) - (N-L)1/(N+L+1)1(k-2L-1)! for 2L+1 € k € N+L .

Substitution of (1.17) into (1.12) yields the potentials UNLM(2). For all the basic
charge distributions occurring in Table II the results were already derived in (I) and
are given there in Egqs. (33); in order to write these potentials in the present nota-
tion we have to make the substitution 6 = 4s. The purpose of the present derivation
1s to establish the general fact that (1.17) and therefore also (1.12) contains nega-
tive powers of Tao only in the form
2L
s L l1-e® I (s%/k1)] (1.19)
k=0
. L+l
which will be essential for our further conclusions. (It may be noted that I would
be sufficient in (1.19) to insure that UNLM(Z) remains finite for r , = 0.)
In order to prepare the potentials UNLM(Q) for the second integration we express

them in the elliptic coordinates £,n,9. We define the new parameter
0 = = ' "
Pg = LR = #(L1 +L" )R, (1.20)
so that [see Eqs. (1.5', 14%)]
8 = Eg(ﬁ+n) . (1.21)

Furthermore we note that the factor Sy in (1.12) can be written

1100ncern1ns the functions An(x), see Section 54 of this paper.
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cosMo
Syu(9g0:9p) ~ s1ns, 2 (M) (°°°°a2)[51nmz
‘ M
=[(52-1>(1-n2)1*“<e+n)'“PL("’[<1+en)/<e+n)1{°°s Y2 (1.22)
sian:2

considering Eqs (1.12,17,21,22) we obtain for the potentials UNLM the general relation
-p, (£41) N4L

IR(En) U (2) = 5,7 (64n) 21 - e Z WP < (e4n)¥]
M
X pt (&4n, L+€n) [ (£2-1) (1-n2) M T°° 02 (1.23)
sithp2

where p'(x,y) is a homogeneous polynomial in x,y of the degree L-M. The inclusion of
the factor (#R)(€+n). in (1.23) will prove useful later.

In Table VI are given the explicit expressions of the type (1.23) for the 10
basic charge distributions which are needed; these expressions are readily obtained

from those given in (I), Eq. (33).

c. Second Integration

The second integration 1s carried out in elliptlc coordinates. The volume element

is given by
av, = (rR?/8) (6%-12)atande, , (1.24)
8o that the basic hybrid integrals have the general form
. 1 a2m 2
[9,195,] = [ a8 [ an [ ao,(3R(Em)Uy (2)ILR)Z (€02, (2)] (1.25)

where the expressions (%R)z(ﬁ-n)ﬂab(Z) and éR(&m)UQ (2) are to be taken from Tables
a
IV and VI, respectively.
Now U, (2) and Q_, (2) contain @, in the form cosMe, or sinMp,: hence the integra-
Qa ab 2 2 2

tion over 9, can be carried out immediately. Since

a2n )
g d¢2 =27r ,
2m am
é do,cosme, = é de,sinme, = O ,
f (1.26)
am 2
é dg,cosmy,cosng, = é de,8inme,sinng, = M, ,
2n
é de,cosme,sinng, = 0 , J
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TABLE VI,
POTENTIALS OF THE TEN BASIC ONE-CENTER CHARGE DISTRIBUTIONS Qa
w
r 8, | W(tn)vy
L
/ (Mono)pole Potentials (L = 0)
]
-p, (E41)
(18,1 |1-e2 7w (1/2)5, (e4)]
-pg (E+1)
(25,1 [1-e 2 V1 (2/3)5, (e4n) + (1/6)F,2(64n)2)
. “p, (&4n)
| (33,1 |1-e 2 Ve (305, (8en) + (1/8)5,2(6m)2 + (1/28)5,2(64)?]
7
! ‘ | Dipole Potentials (L = 1)
e F(E4n) 2
} - .'- - +1‘ - -
1 fepm 1} |25, M(eny 2 - e T2 UL B (5K (6e)* + (1/8)5 3 (840)%1)
[eem, 1) | )
(1+€n)
x { [(£2-1) (1-n2) 1 2cosg
[(£2-1)(1-1%)1%s1ne
17, ] 5 (6em) 2
[spn 1t 26,7 (e+m) 722 - e P2 E (5 /et) (gem)¥
(3P ]
s + (3/20)5,2(6+0) + (1/%0)5,* (&+n)* 1}
(1+€n)
x [(52-1)(1-q2)]%coscp
[(£2-1)(1-7°)]2s1ng
: Quadrupole Potentials (L = 2)
[30z,]]
| {200, ) () b
; (00,1} |25, 2(6em)™Ha - e TRV Z (B /RN () + (1/18)5,7(84n)°13
: (3pa,]
2 [3(1+8n)2-(g+n)?]
[508,1. 2v3(1+€n) [ (£2-1) (1-1°) 1¥cose
1 : ' x 4 2V3(1+¢n) [ (£2-1) (1-1°) 128 1ne
i ‘ 43(52-1)(1-n:)cos2v
~ v3(£€°-1)(1-n°)sin2e
| , —
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where m ¢ O, n % 0, we obtain here once more the result already stated on the ground
of group theoretical considerations, namely: in order that the integral [Qalnab]
shall not vanish, ﬂa and Qab must be of the same type (both Z-type, I-type, N-type,
etc.); and an integral involving I- (or A-) type distributions has the same value as
the integral involving the corresponding I- (or A-) type distributions. We see further
from (1.26) that the integration over 9, ylelds 2w for integrals of Z-type, and m for
integrals of I- and A- type.

Substituting the general expressions (1.8) and (1.23) into (1.25) and carrying out
the integration over ¢2, we obtain for the non-vanishing basic hybrid integrals the

general formula

na+§ -na+§_ -L n_+ny

[9,19,,1 = &, N Pa Pp
© 1 _ -p, (&+n) N+L
{ ag { dn(gsn) 2H[1 - e 2 ukpak(€+n)
x e"’g"“"‘p"(&+n,e-n.1+en,1-€n)[(e -1)(1-92)19M (1.27)

where p"(u,v,x,y) 1s a homogeneous polynomial in u,v,x,y of the degree n,+n, +L-2q-2M-1.
Actually, the polynomial p" consists of only one term in all cases except for the
integrals involving the distribution 3Dz, , in which case p" consists of two terms.
For instance, for [ZPHalepcaepﬂb] we find p" = (1/8)(&-n)(1+&n), q = 0, and for
[3Dz, |2pm 2pm 5] we find p" = (1/8) (€-n)[3(1+&n)2-(£+n)%], q = 1

If we now expand the polynomial p" in terms of its four arguments €+n,£-1,1+En,

1-¢n, then the integral (1.27) can be written as a linear combination with numerical

coefficlents of expressions of the type12
5 n+t -n+i_-L n+n o 1 -pg (E+n) N+L
Le' C=ta G © Py P Cfatfanli-e® T X up f(em)

e PEPN(g4n) (6-n)P(140)7 (1-80)8(£2-1)€ (1-92)¢ ,  (1.28)

where

n +% -n_+3%
12Accord1ng to Eq. (1.28), the Ixayée's are, apart from the factor { & &y a*,

functions of the three parameters 5A:Pa'Pb They further depend of course on the set
of indices A,B,v,0,e, but also on the numbers W which are determined by L and M.
This dependence of L and M is not indicated by the symbol IXB e, however, this does
not lead to any difficulties, since 11576 is only used as the symbol) for an inter-
mediate result, and does not occur in any of the tables designed for practical use.
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€ = q+M ,
A +y+d = na+nb-L-2q-2M-1 R
8o that

AP +y+6+2¢ = na+nb-L-1 .

(1.29)

(1.291)

Obviously B,Yy,5,e are non-negative integers, whereas )\ 1s restricted to the range

-2L € )\ € na+nb-L-2q-2M-l s

so that in general X ¢ O.

(1.30)

We shall deal first with those integrals Imyée which can be evaluated by a term

by term integration. This is certainly possible if L.= O, since then A = O; however,

in many cases where A < O it is still possible in spite of the singularity of (847

for é+n = O, as will be discussed below.

)l

The functions Ixavée depend on the three parameters E;,pa,pb. It is useful, how-

ever, to consider instead p*a,pa,pb, as the primary parameters, where p*a 1s given by

P*a = 2 4p, = (L1 +C" +L )R .
In analogy to (1.7), we define the secondary parameters p* and T* by
p* = lp¥tpy) = F(L +L" +L 4L R,
T* = (p*y-py )/ (p*atpy) = (L1 +L" #,-0 ) /(80 +8" +8 +8,)

so that

prg = (1+7%)p* , py = (1-7*)p*,
and also
p* = p+5a , T*p* = Tp+5‘a .
We define further another secondary parameter p by
b= (p*y-pa)/2py = Po/Pp = Lo/ = (L14L",)/20, .

In view of Egs. (1.31-33), we may write for the integral (1.28)
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‘ n+% -n_+% -L A4P+y+8+2¢+1
vbe _ ¢ a ¢ a N

he a b Pp

00 1 N+L
X [ d& [ dn[e PE-TPN _ -p*E-T¥p* k k k
{ E_{ nle e kfo ey (€41)7]
x (&) (6-0)P (1+69)7(1-£9) 8 (£2-1)€ (1-n2)€ . (1.34)
Defining now the two-parameter functions
. o 1
Casybs(Pa:Pb)‘ = (_1)ﬂ+6+€(%pb)d+ﬁ+'y+6+2€+1 :{ de-{ dne-pﬁ-’rpn
X (E+n)(6-n)P(1+60)Y(1-80)%(62-1)€(1-92)€ ,  (1.35)

we may write for (1.34)

YOe _ (_1\BHote My +642e4l, Mot “mp+E -L
1 = (-1) 2 4 ¢
gt a = ¥

N+L
vYée _ a vYée
X [cxﬁ (Pa’Pb) afo ua(2u) CX+<1,B (P*a’Pb)] . (1-36)
Remembering that each basic hybrid integral is a linear combination of a few functions
Ixaybs, we see that the basic hybrid integrals for which the term by term integration
is possible, have the general form

na+§-C -na+% -L N+L

m‘amab] = t..a b M [Ho(Pa:Pb) - afO uaﬁa(P*a:Pb)] s (1-37)

where each function Ha(pa,pb) is a simple linear combination of C-functions with
numerical coefficlents.

We return now to the question of the possibility of a term by term integration;
this method is valid provided all the funections CaBYGE which occur in Eq. (1.36) are
defined by converging integrals as given by (1.35). This is clearly the case if
@ > 0. It is furthermore shown in Section 4 that for a< O the integral (1.35) st1ll

converges 1if
a+y+2e+l 2 0 ; (1.38)

oconsequently, Eqs. (1.36,37) hold if
Ay+2e+l 2 O . (1.39)

The basic hybrid integrals for which all the occurring functions IAByée satisfy (1.39)
are saild to form the first class; whereas those for which some of the functions IXB76€

do not satisfy (1.39) belong to the second class. The validity of the general

153




i

RUEDENBERG, ROOTHAAN, AND JAUNZEMIS

expression (1.37) is therefore proved for the basic hybrid integrals of the first class.
With the help of Tables IV and VI it is easily established that all but three of
our 79 basic hybrid integrals belong to the first class; the three integrals of the

second class are
[3DZ, |18,y ], with Xy = 18, 2s,, 2p6, . -(1.%0)

For these integrals we shall prove that the general expression (1.37) 1s still valid;
however, in this case the H-functions are not any more simple linear combination of
C-functions with numerical coefficients, but with coefficients depending on Pa and Py

(or p*, and p, ).

Ybée
B

converges, regardless of whether 1ts indices satisfy (1.39) or not. Namely in the

Returning to the expression (1.28), we observe that the integral I, always
integrand the negative powers of £+n occur only in Vx[55(5+ﬂ)]: where [see Eq. (1.18)]
-1
v (x) =2 (1 - e £ /) (1.41)
k=0
vx[EA(E+n)] is a well-behaved function. in the entire domain of € and 7, even at the

critical point €+n = 0, since

A -x,x Mok
Lim v, (x) = Lim x"e (e - I x/k!) = 1/(-A)1
x-0 x=0 k=0

Obviously, the functions vk(x) are defined for A € -1. Making use of Eqs. (1.31,41)
we may write for (1.28)

L vbe _ na+=}c -na+%‘-L AB+Y+0+2e+1
M T ta b WPy

© 1
x {5, 7™ [ at [ anvy (5, (&+1)1ePE™PH(en)P (146n)Y (1-6n)° (¢2-2) ¢ (10 ¢
S S

-a2¥i by’ Z de_i ane P TP (610) M2 (£1)P (14n)Y (1-8n) ® (£2-1) € (1-07) ).
_7__(1.A2)
We define the three-parameter functions
cxaybe(ag’pa’pb) - (_1)B+6+e5£-x(%pb)X+a+7+6+2e+1
Z ae_i anv, (5, (6+1)1e™PE-TPN(60)P (14€n) Y (1-8)° (£2-1) (1-2)€ (1.43)

this definition is valid for A &€ -1. Making use of Eq. (1.35), we may write for (1.42)
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A n_+% -n_+% _
I, yobe - (_1)B+6+e2 +B+y+6+2e+lz a T a n L
g a b

N+L '

ParParPy) - a§ A uu(zujack+a,§Y6€(p*a’pb)] o (1.44)

X [C)\s'yae(

Eq. (1.4%4) 1s to be used as the starting point for the basic hybrid integrals of the
second class. However, for many integrals of the first class Eq. (1.44) can still be
used, namely as long as these integrals give rise to I-functions with A € -1. 1In these
cases the C-functions can be expressed in terms of C-functions by means of

s

-1

PasPp) - A [(Eu)a/a!]cx+a’576€(p*a,pb) ; (1.45)

CXEYGG(a;’pa’pb) - Clﬁ76€(

substitution of (1.45) into (1.44) yields once more (1.36).

We observe now that for the integrals (1.40) the I-functions occur in the combin-

ation

280 080  1tn

Iy, “lop ¢

g=1,%8

0 for xb

[]
o}
(]

o’
-

g (1.46)
p=2, 6 =0 for Xp = 2s

w
it
i

-
[
[

= 1 for Xp = 2p6b .

L

Now in Section 1d the following relatlon is proved:13

260 060
3.4, Coo,p

- b papb-lC-B,BOGI + 2pb-lc-2,5160‘+ 5Pb-10_2;50’6-1’14
- [- Papb-lc-3,506l . gpb-lc_e,aléo . épb-lc-z,sp’é-l'll*
- gu[c-3’6061 ) papb-lc-2,6061 N 2Pb-1°-1,a160 UL
- 2u2[20_2’5061 ) papb-10_1’3061 R 2Pb-1C06160 N 6Pb_10050’6-1’1 + 0s00)0
- wdor, j200 (1.47)

13In Eq. (1.47), and also for the analysis in the following sections, we have adopted,
unless stated otherwise, the following convention concerning the arguments. (1) The
arguments of the C-functions are always Eg,pa,pb. (2) The arguments of the C-func-
tions are Pa Py’ if the asymbol C is used, and P*a?pb if the symbol C* 1s used.
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According to Eq. (1.44), the "easy" part of the I-functions in (1.46) yields, combined
with the expression (1.47), an expression of the form (1.37).

The explicit formulas for the H-functions of (1.37) in terms of the C-functions
(1.35) are given in Table VII for all the 79 basic hybrid integrals. ?he C-functions
themselves will be dealt with in Sections 3 and 4.

At this point we wish to call attention to the fact that we have not dealt with

~ the integrals of the second class in a general way, but have considered only the

explicit cases arising ffom the restriction to 1ls, 23, and 2p AO's. However, we feel
confident that for all possible cases formulas of the type (1.47) can be found by the
procedure outlined in the next section 1d, in partlcular by approprlate use of the
noteworthy relations (1.54,54t). 1In other words, Eq. (1.47) is probably the first
member of a more general family of relations. Nevertheless, since within the scope

of the present program only three integrals of the second class arose, we did not deem

it worth while to investigate this class in a more general way.

d. Proof of Eq. (1.47

From the identity

(1+€n) + (1-8n) = 2

follow the relations13
praByée + caa”’é“l’e = cou.:ﬂ‘“l"se , (1.48)
prxB’yae + Cxay’6+1’€ = CXB’Y.‘.I’&G . (1-1‘9)

Similarly, from the 1dentity
(1+8n)2 + (£2-1)(1-n7) = (&m)?

follows

be -2,0,e+l -2,6¢ ,
Caﬂy - Caﬁy 50, + Ca+2,ﬁy ’ ; (1.50)

also

(3) The symbol * outside an expression in brackets applies to all the symbols inside
those brackets; that 1s, not only 1is every C to be considered as C¥, but also Py is
to be considered as p*, .
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TABLE VII

THE 79 HYBRID INTEGRALS IN TERMS OF THE AUXILIARY FUNCTIONS Cy vbe

p

The last column of this table contains common factors with which the expressions

in terms of C-functions have to be multiplied in order to yield the H-functions.

L=0, M= 0 : Monopole Integrals

(2, 19,,] H, Hy Hy of
[lsallsalsb] COIOOO CllOOO o
[18,]1s,2s, ] co2ooo Cl2ooo 2/
[1Sa|25alsb] cllOOO Cel000 -2/J3
[15] 25,28, ] cl2000 Czeooo 2/3
[18,]1s,2p6, ] 001010 011010 5
[lsa[zpdalsb] 001100 ClllOO -
[18,|2s,2p6, ] Cll010 021010 /5
[lsa|2p6aesb] 002100 Cl2100 2/J3
[18,]2p6,2p6) ] o, 10 €yt °
[lsalepwa2pﬂbz] 001001 Cll001 1
[2s,]1s,1s, ] 3001000 4011000 2021ooo _2/3
E2Sallsa23b] BCOEOOO‘ 4012000 2022Ooo 2/3V3
[2Sa|2salsb] 3011000‘ 4021000 2031OOO 2/
[2s,|2s,2s, ] 361,90 40,90 20,,°% 2/9
[2sal 1s,2p6, ] 3001010 4011010 2°21010 2/3
[25,]2p6, 15, ] 3001100 4011100 20211oo 2/3
[25, |25, 2p6, ) 30,910 40,10 2031010 2/3V3
[28a12p6a23b] 3002100 uclzloo 2022100‘ 2/3V5
[2s, |2pc,2p0,)] 305,210 b0y, M10 2,110 2/3
[28, |2pm2pm 5] | 305,70 40,90 20,90 13
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TABLE VII (continued)

[Qalﬂab] Hy Hy H, Hy i cf
(35, 15,15, ] 60,0 o, 0% 60,°° 20,  -1/3
[35, 18,28, ] 640 9¢,,°%° 60,00 20,,9°  1/3V3
[35, 2,18, ] 6c,,°% 9¢,, 9% 6031000 20,,°°  -1/3V3
[3S,]2s,2s, ] 6c,,°%° 9C 500 6032000 20,,°°  1/9
[35,|18,2p6, ] 6Cq 0 9c,,°*° 6¢,,%1° 2031010 1/3
[35,]2p6,18,] 64, 10 9¢,,1%° 6,,1%° 2031100 -1/3
[35, |28 2p0, ] 6c,,0*° 9C,, 10 6031010 20,,°1°  1/3v3
(35, |2p6,2s, ] 6C,, 0 9¢,,1%° 6C,, 0 2032100 1/3V3
[3s, |2p6,2ps, ] 6Cqy 0 9c,, 10 6,, 110 2031110 1/3
[38, | 2pm,2pm, 2] 6c,, %" 9., 6C,, "0 2031001 1/6

L=1, M=0 : Dipole Integrals of I-character

(Q,19,,] Hy Hy H, Hy ef
[2p, |15, 18, ] c_p 4% 2c_y ,*%° 2c,,*°  ¢;?° -2
[2Pz, |18,2s, ] Cp % 2c_y ™% 20,,"°  ©,70 2/
[2pPz, |2s,1s, ] °-1,1100 204, 1%° 2c,,20 0,1 -2/¥3
[2pz,|2s,2s, ] C-1,2100 20,,1%° 20,,"%°  0,,"°  2/3
[2pz, |1s,2p0, ] c_p 40 2c_y ;0 N
[2p, |2ps,1s, ] 0_2’1200 2c_y ,°%° 20,,?°  ¢,%° -2
[2Pz, | 25,2p6, ] 0_1,1110 24,0 2c,,11° ¢, M0 23
[2PZ, |2p6, 28, ] 0_2,2200 20_1’2200 20,290 0,20 2/v3
[2rz, | 2p5, 256, ] 0o 1?0 20 (200 20,20 ©,20 2
(2P5, | 2p7, 20m, 5] c_2’11°1 2c_, 100 20,10 ¢),10 N
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TWO-CENTER INTEGRALS.

TABLE VII (continued)

III

(9, 19,1 H, Hy H, Hy H), ef
[3Pz, 18,18, ] 5C_5,,°%° 100y ;190 1000, P 601,20 20, ' -2y5
[3P%, |15 25, ] 5c_2,21°° 1oc_1’2100 100,70 60,10 20,10 2/543
[3Pz,|2s,1s, ] 5.3, 00 100, % 1003,%° 60,10 205,10 -2/5v3
[3pz, | 28,25, ] 5C_3,5 0 1000, 100,70 60,70 20,,1%° 215
[3pz,|18,2p6,] | 50, **® 100, MO 10ch,M10 6cy, 11O 2,10 275
[3pz,l2ps 18] | 50, 2% 100, 10 100,,2%0 601,790 20,2 -2/5
[3Pz, |28 2p5, ] 53,100 1004, 14C 100,710 60, M0 205, M0 253
[3Pz, |2po 25, ] 50_2,2200 1oc_1’2200 100,,°%°  60,,2%0 20,20 2/543
[3pz, |2ps,2pe, ] | 5C_, %10 10c_y (B0 100,70 60y P10 20, PO 25
[3pz,|2pm2pm 2]| 5C_, 1% 100, PO 100t 60 POt 20, POt uss

L=1, M=1 : Dipole Integrals of Il-character

(2, 19,,] Hy Hy Hy Hy Hy ef
[2P0, |1s,2pm, ] c_2’1°°1 20_1,1001 205, ¢,,%% 1
[2P0, | 2p, 18, ] 0_2’1°°1 2c_1,1°°1 205,20 ¢,,0% 1
[2pn, |28, 2pm, ] 0_1’1001 2¢,, %% 2c,,%% ¢, % 1/V3
[2P1, | 2pm, 2s, ] Cp 00t 20y 0% 20,,%% ) 0% -1/¥3
[2Pn, | 2ps, 2p, ] 0_2,1101 20_1’1101 205,10 ¢ ;1 1
[epn|2pmepsy] | o, O oy (O 20 OM e O -1
[3P1, | 1s,2pm, ] 50_2’1001 100_1’1001 100y, %0 60,,%%0 20,9 15
[3P0, | 2pm,1s, ] 5 _2,1001 1oc_1’1°°1 1005,%%0 60,9t 2c,,%%t 15
[3P0, | 28,2pm, ] 5c_1,1°°1 104, %% 100,,%% 60, %%t 205,90 1/5v3
[3P1, | 2p,2s, ] 5C_p o000 200y %% 100,70 60,7 20, -1/543
[3p1,|2p0,20m ] | 5C, ;%% 100, PR 1065, 60,100 20,1 a5
[3Pm, |2pm 2ps, ][ 5C, ,*  10c_; O 1005, 60y, 20Ot a5

159

[ D N N




[9,19,,]

RUEDENBERG, ﬁOOTHAAN, AND JAUNZEMIS

L=2,M=0 : Quadrupole

TABLE VII

[}DZallsalsb]

[BDZallsaQBb]

[3D2a|18a2p6b]

[3Dza|zsa2sb]
[BDZalzsalsb]
[3Dz, |2p6,2p6, ]
[3DZ, |2p6,1s, ]
[3DZ, |2s,2p6, ]

[3Dza|2pobesa]

[3D2a|2pﬂa2pwb2]

-1 001
Py [-18pyC 5 4

00l
-2,1

100]

+18p,C
-360_1,1

-1 001
Py [-18pC 5 5

001
-2,2

lOO]

+18p,C
36C_3 o

-1 011
Pp [-18ppC 3 4

011
-2,1

110

+18p,C

-36C_; .

001
-18C_ ]

200 0

00
54C_ -18C,,

suc_, ,200-18¢,,9%°

310

SHC_5 177°-18C_ 4

s4c_, ,-°0%-18c_, .90

2,1
540_2,1

1,1

210 0

01
-18C4,

300
S4C_5 57 -18C_; ,
201

5“0_3’1 -180_1’1

160

110

100

0ol

Ha
Pb-l['36PbC-2,1001
+18paC_1,1001
-36C01100]
pb-1[_36%0_2’2001
+18paC_1,2001
-36002100]
pb-l[_36pbc_2,1011
+18paC_1,1011
3604, 110
-180,, %]
540_1,2200_18012000
540_1,1200_18011000
s4c_p 1°+0-1804, 110
540_2,1300-18001100
540_1,1210-18011010

300 100
54C_p 57" -18Cq,

201 001
540_2’1 -18COl




(continued)

TWO-CENTER INTEGRALS. IIX

Integrals of S-character

001 200 200
-36c_1’1 -18001 -6cll y
9‘
-2uc11°°° +6021°°° +2c§1°°°
001 200 200
-360_1 ,2 -18002 -6012 ors
000 000 000 -
-2l+c12 +6c22 +2C5,
011 210 210
-36(:_1,1 -18001 -6C{, ,
‘ -1/9
010 010 010
-2‘4011 +6C21 +ec31
200 000 200 000 200 000 ‘
36002 -12C,, 18c12 ~6032 6022 ~20),, 1/27
200 000 200 000 200 000
36001 -12c,, 18011 -6c31 6021 ~2C), -1/9v3
36c_1,131°-1201111° 18001310-6021110 6011310-2031110 1/9
360_1,1300_12011100 18001300-6021100 6011300_2031100 -1/9
210 010 210 010 210 010
36001 -12C,, 18011 -6c31 6021 .‘2041 1/9v3
300 100 300 100 . 300 100
360_1,2 -12¢,, 18002‘ -6C,, 6C,, -2C5, 1/9V3
201 .., 001 201 001 201 001
36°-1,1 -12¢,, 18001 -6c21 6c,, ~2C4; 1/18
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TWO-CENTER INTEGRALS. 1III

Y-2,%¢

. Y de vY-2,58,e+l
Cx = CXB e + C)‘+2)B

B

- [2w) 7B/ (Ae2)11ongg Y200 - f(an) T T/ (A1) nlem TR0, (151

which holds for » < -2, and

Yée _ Y-2,56,e+l Y-2, é¢ - ¥-2,08¢ v-2, 8¢
Cop’ =C2p ™ * Cop - C%og T T (1.511)
1.51¢
Yée _ Y-2,6,e+l v-2,6¢ Y-2, 8¢ ‘
C"l,s C"']-)B ) + cla - - C*lﬁ .
II
The functions v,(x), defined by Eq. (1.41), have the property
(a/dx)vy(x) = Avy_;(x) , (1.52)
whence
— X = . -
(M1)p, Valp, (&) = {S;Sﬁ}pa Ylfa )], (1.53)

which suggests partial integration of this factor in (1.43). We consider only the
case € > 0; then the integrated parts vanish for‘fhe:boundary values, namely for

n = 21 in the case of a partial integration with respect to 7, or for £ =1, and of
course also for £ = «», in the case of a partial Integration with respect to €. Hence

we obtain

© 1
-(N+1)Cl576€ - (_1)6+6+e5 —X-l( MB+Y+O+2e+1 { dg-{ dﬂvx+1[5;(5+ﬂ)]

a 3py)
{33818 TP 6P (1etm) Y2-60)°(£2-1) S (1P

adding these two equations, and carrying out the indicated differentiations, we obtain

o] ,041,e-1 -1,6 v,6-1,
..()d-l)PbC)@yée =- paC)\+1;B’Y €+ 260»’_2,57 ety ycx+2,By 4 60)4—2;& ’ )
- [(2n)8/(-a-2) Hl2eCop T €T 4 a0 T8 4 a0 T €Y
. (1.54)

which holds for X < -2, and

e + 2¢C vY,0+1,e-1

vée _ _ ¥ -1, ¢ v,8-1,¢
PrC_2,p PaC.1,p 0B + o + 8Cog

- [‘2GCOB'Y,6+1,€-1 + wbﬂ“/—l,ée + 6coa‘7,6-1,€]* ; (1.54|)
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260 o 080
'2’ﬁ

We turn now to the actual problem of expreasing 30-4 B in terms of
»

C-functions. We observe that for both C-functions
Ay+2e+l = -1 .

This we compare with the condition (1.39). Apparently, if we succeed in converting

30-4 6260-0-2 5060 into C-functions in which A,7y,o0or € is raised by at least one, then
s E
we can expand this new expression in terms of C-functions using Eq. (1.45).
First, we apply (1.51) to C_y 6260 so that
»
260 _ 050 _ 061 080 _ . 2., 080 _ , 3., 080
y,p” = Cap = yp "+ 20,877 - OO - A0 T
061
Next, we apply (1.54) to C-# 8 , obtaining
s
260 080
Hoyp ~Cop
- - -1 061 -1 060 0,6+1,0 -1n 0,56-1,1
PaPp G35 + 2Py (Pplo g™ + Cpp )+ by Cipyp

060

0,6+1,0 + 60080,5-1,1]* _ 4u30*13060 ]

- euzpb-l[prCOB + 2C0q

-

Finally, making use of Eq. (1.48,49), we obtain

30-4,5260 - 0-2,3060
_ -1 061 -1 160 -1 0,6-1,1
= " PaPp Czp " 2y Cppt T Oy Cpg
"2”2[00ﬁ060 . 2pb—1005160 R 5Pb-1coeo'6_l’1]* ; 4u30*1606° _ (1.55)

We note that all the C-functions occurring at the right-hand side of Eq. (1.55) satisfy
the condition (1.39). We can therefore now make use of the expansion (1.U45). When

1

this 1s done, then papb' appears as a multiplier of C-functions and C*-functions.

Keeping in mind the desired form (1.37), we substitute for Pg» when it occurs in

connection with the C*-functions
Pg = P*a-2upy (1.56)

a relztion which is readily obtained from Eqs. (1.31,33). We obtain then for (1.55)
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TWO-CENTER INTEGRALS. 1III
280 ) 060 )
Xup ~Czp i

61 160

-1 -1
c + 2py C-Q,B

0
=~ PaPp Y3,

08 1

1 -
+2py 7Y 5 ot

-1
- [-papp Co3,p
081 -1

061 -1
- PaPp Cop  t 2y

2u(C 58

2 061 -1 0
20 5,677 - PaPy Co1,p

0807 . (1.57)

wlte ) 2% 4oy

If Eq.. (1.50) is now applied to the term with u3, then Eq. (1.57) becomes identical
with (1.47). b

e. Discussion of the general result (1.37)

& The general basic hybrid integral (1.9) depends upon the four parameters R,ca,cb,
! :a' But Eq. (1.37) shows that they can all be very simply formulated in terms of the ;
two-parameter functions Ha' Each integral has of course i1ts individual set of N+L+1
functions Ha 8o that there exist altogether 336 H-functions for the 79 basic hybrid
integrals. Table VII shows however that each of these 336 H-functions is a very

simple linear combination of a few out of only 122 C-functions. This situation sug-

gests a tabulation of the auxiliary functions Caavée, in particular since these func-

! tions are also very useful for other types of integrals, as will be shown in Section
2.
i The C-functions will be discussed in Sections 3 and 4. Section 3 deals with

:those for which a 2 0, and Section 4 with those for which o < 0; it is not surprising
that these two types differ quite radically. In these sections general recurrence
methods are developed for the computation of any C-function. By their means the
explicit formulas are given in Tables XIII, XIV, and XV; they make 1t possible to

compute spot values of the listed hybrid integrals as long as numerical tables of

i the C-functions are not yet available. The course of calculation followed in finding
3 the explicit formulas is described in Sections 3 and 4.
Speclal attention should be paid to the limiting case R —» 0, i.e. the centers

a and b coincide, and the hybrid integrals reduce to one-center integrals. It 1s
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seen from Eqs. (1.6,31) that in this case Py ™ 0, Pp = o, p*a — 0. Now each two-para-
meter function Caayée(pa,pb), and therefore also each function Ha(Pa’pb)’ is discon-
tinuous for Pg = Pp = 0, since the numerical value still depends upon the limiting
ratio pb/pa; this is more fully discussed at the end of Section 3. However if we
consider p,T as the arguments instead of PasPps then the C-functions are well-behaved
in the entire domain O € p < w, -1 € T € 1; this is the reason why for numerical tab-
ulation the parameters p,T are more suitable than ParPp? although the latter are more
useful for the analytical aerivations in this paper.

The values of the hybrid integrals for R — O must of course be in agreement with
the formulas given in (I), Egqs. (34b), which were obtained as the limiting case for
the coulomb integrals. In making this comparison, the following points should be kept

in mind:

{1) The one-center charge distributions LimQab of the hybrid integrals should be
R-0

expanded in terms of the basic one-center charge distributions LimQb of the coulomb

R-0
integrals. This expansion is done by means of (I), Eqs. (27). The parameter 7

occurring in those equations has precisely the same meaning which it has in this paper

for the hybrid integrals.

(2) The one-center integrals between basic one-center charge distributions are given

by (I), Eqs. (34b). Let us denote the parameters { and T occurring in those equations

by T and %, as we have also done in Section 2 of this paper. By means of the following

equations we can now carry out the transition from the hybrid integral parameters

ca,cb,r,r*,u to the coulomb integral parameters f,T,tT:

by = (147)(1-)C ,

ty = (1-7)(1-9)T ,

f (1.58)
-t = 3(1-1)(2-7) , |

(1-to)u = 3(147) .

As an example, we shall carry out the indicated comparison for Lim[lsa|2pda2pdb] .
R—-0
From (I), Eqs. (27,34b) we find
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TWO-CENTER INTEGRALS. IIT
§i$§1sa|2pca2pcb] = (1-12)5/2§i$f[1sa|3sb] + 3[18, |30z, 1}
= (1/32)(1-12)5/2(1-72) (14-77-724373-74) 2.

On the other hand, using Eqs. (1.37,58) and Tables VII and XV, we find

Lim{18, |2p6,2p6, ] 2(1+1)5/2(1-r)'3/2(1-%)L1m[c0111°-c*0111°-c* 1107¢

R—0 R— 0O
(147)7/2(1-1)"32(1-7) [3(1-1) -3 (1-r# )t (1-14)012

11

= (1-18)5/2(1-%)[4-(1/32) (1-7)*- (1/32) (1-7) % (147) 10

(1/32) (1-12)5/2(1-72)(14-77-724373-3")2.

In this fashion, we compared all the hybrid integrals for R - O with the results of

(1), and found agreement throughout.
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2. COULOMB INTEGRALS AND ONE-ELECTRON INTEGRALS
a. Coulomb Integrals

In paper (I) it is shown in detail [see (I), Eq. (30)] how the general coulomb

integral
It ax"g Ix'pX"pl = [ avy [ avox' (1)x", (1) (1/ry5)x' 4 (2)X", (2) (2.1)

can be expressed in terms of the basic coulomb integrals

(19,1 = [ avy [ 4V, (1) (3/ry,)0(2) (2.2)
where_ﬂa and nb denote basic charge distributions on a and b of the type (1.3),
namely7
% La_ Na+2 9
Q, = [NL M] = [(2L +1)/4m)2[2 * (2T ) /(Ng+L +1)1]
N_-1 -2
XL Ifa a e taraSL M(9a,“v)‘ ’
. 2 ; (2.3)
3.5 p+e
Oy = [NLM] = [(2L+1)/4n]%[2 P (28) ©  /(Ny+L, +1)1)
N -1 -2% r
X I’b b e b bsLbM(eb’v) s
with
T, = o e,
(2.4)
:b = %(C'bﬂi"b)

Since the basic coulomb integral (2.2) differs from the basib hybrid integral
(1.9) only in the appearance of the charge distribution Q, in lieu of the charge
distribution Q,,, it follows immediately that the integral (2.2) can be written in the

form
© 1 2 (2
(9,101 = [ at [ an [ del4r(Em)ug (2)1T(ERIZ(E-M)0(2)] (2.5)

which 1is analogous to Eq. (1.25). 1In Eq. (2.5) the potential 1s precisely the same as
in Eq. (1.25), namely the potential for which Eq. (1.23) gives the general expression
and Table VI furnishes the particular expressions in specific cases.

In order to be able to perform the integration (2.5) we must express the distri-
butions Qb in elliptic coordinates. The resulting expressions are given in Table VIII
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for all those basic charge distributions Qb which are needed.

TABLE VIII
THE BASIC ONE-CENTER CHARGE DISTRIBUTIONS Qb

o | | (3R)2(&-n)ay

6 Z-type Distributions:

s, | (2 /im2e o™ ()

: 28, (:b/12w>5b3e'5b(e'“)(e-n>2

! 38, (2 /m8m5, e P (1)
2P, (Zb/Bw)5b3e-§b(e-n‘)(e-n)(l-en)
3%, (2,/40m)5, *e ol 21

-‘Sb (€-7m)

305, (Z,/144m)5, e (£-n)[3(1-tn)3-(£-1)2]

3 II-type Distributions:

€-1) 1
2PIL, (2,/8m)py % ol ) (82-1) (1-0%) Bcose

o (E) 1
sem, (t,/80m5, Y P2 ™ (40)20(£2-1) (192) eose

(t-n) 1
3o, (8, /2035, e T2 5™ (6n) (1-8) ((€2-1) (1-12) T cono

3 R-type Distributions:

Replace I by 1 in the above listed charge distributions, and cose by sing.

1 A-type Distribution:

3DAy, (L, /48V3m)p, ‘e (€-n)(£2-1) (1-92)cos2e’

1 A-type Distribution:®

Replace A by A in the above listed charge distribution, and cos2¢ by sin2¢.
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From this table, which is analogous to Table IV for the distributions Qab’ it is seen
that the Qb's satisfy the general formula
_N +1 -p, (&-n) cosMp,
GRZ(E)0, = Bfy D e D pr(gen - [(£2-1) () TRHEONL (2.6)
s
vhere p'"(x,y) is a homogeneous polynomial in x,y of the degree N,-M, and 5b is

defined by

-

Pb = R:b = %(C'b+C"b)R . (2-7)

It is not difficult to verify that the relation (2.6) is generally valid.

In order that the integral [Qalnb] does not vanish, both charge distributions,
Qa,and Q,, must belong to the same species and subspecies of C_. [see (I)]. In such a
case we obtain, by substituting (1.23) and (2.6) into (2.5) and carrying out the inte~
gration over ¢, the general form
)Na+La

-pg (E+n

~L N, +1 = 1 -2L
[9,19,] = Lf, 2F ° [ae ] an(eem) F - WP, (6+n)¥]

e-Pb(ﬁ-ﬂ)

x P (40, €-m, 1460, 1-€0) [(£2-1) (1-02) 1, (2.8)

where p""(u,v,x,y) is a polynomial in u,v,x,y of the degree N +L,-2M. If this poly-
nomial is expressed in terms of the four arguments £+n,£-1,1+€n,1-£n, then the integral

(2.5) can be written as & linear combination with numerical coefficients, of expres-

sions of the type

-L N +1 = 1 -p (&+4n) Natly
) - - b -k k
o't = Ly (2Ry) [ at [ dr(l[l _e e LRGN
-py(€E-1)
xe P (ean)M(6-n)B(2+80)Y(2-60) 0 (62-1)6 (102)€ , (2.9)
where
e =M,
(2.10)
AME+Y+6 = Nb-La—ZM »
so that
MB+y+b+2e-= N -L, . (2.10')

Obviously PB,Yy,5,¢ are integers » 0, whereas A is restricted to the range
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-2L, € 1 & Ny-Lg-2M , (2.11)

so that in general X\ % 0.

The integrals ixavée’ defined by (2.9), are analogous to the integrals Ixsvée’
defined by (1.23‘. As iématter of fact, ixayée 1s obtained from Ixavée by replacing
the factor cana Cb'na by Eb and furthermore changing censistently all other para-

meters and indices in the following manner:

Pa = Pg s Py =0, Py =20y 3

(2.12)
na+nb —ON‘b+1 s, N —"Na , L =»L

a

Again, we shall deal first with the integrals Ixavée which can be evaluated by a
term by term integration. In section 1 we introduced p* P as parameters for
P g:Pa Py
Ixayée instead of ﬁa,pa,pb. Keeping in mind Eq. (1.31) and the parameter changes
(2.12), we see that by the same token the integrals I Y%€ Should bve considered as
B

functions of 253,0,25b. Furthermore, we define the secondary parameters g and T by

P n HEgedy) = e

T = (Pa=Pp)/(PatPp) = (148" =01 =L ) /(L1 48" 481 +2") (2:22)
80 that
Pa = (1+7)p , pp = (1-T)p (2.131)
We define further a parameter [, analogous to u of (1.33), by
Bo=py/2py = T /20 = (L0487 )/2(8  +E",) . (2.14)

From Egs. (1.31,32,33) and (2.13,14%) 1t is clear that, if we extend the parameter
change (2.12) to the parameters p*a,p,T,p*,T*,u of section 1, we obtain

P¥s = 2P, P =Py 5 P* = 2P ;
(2.15)

T =1, 1% 27T , L~ .

In view of Egs. (2.13,14), we find for the integral (2.9), in analogy to (1.34%)
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1Xﬁ76€ - tbﬁ-La(2_ )X+B+y+6+2e+l

Py
@ 1 -p (&-m)  -2pe-27pn Natl
xfae Lante P - e N e ) K (g
x (E+n)M(6-n)P (14+6n) Y (1-9)0(£3-1) (1-02)€ . (2.16)

If we make use now of the two-parameter C-functions (1.35), we may write for (2.16)

- _ _-L
Ixsyée - (_1)B+6+e2x+a+y+6+2e+1cbLL a
Na+La
X [03g70(0,25,) = B “ug(e)% o 3%%(285,28,)) (2.17)
a= ’

and consequently the basic coulomb integrals for which the term by term integration is
possible, have the general form
- _-L Na+La

[919,] = Tt PlHy(0,28,) - B 5%, (26,,25,)] (2.18)
where each function Ha is a simple linear combination of C-functions with numerical
coefficients. The term by term integration of the integrals szyée is valid if the
condition (1.39) i1s satisfied. Accordingly, the basic coulomb integrals are also to be
divided into integrals of the first class and integrals of the second class. It is
easily seen from Tables VI and VIII that the second class consists of the integrals
involving the charge distribution BDZa. Indeed, Eq. (1.47) now has a considerably
simpler form since, according to Eq. (2.12), one must put Py = 0 in Eq. (1.55). Conse-
quently, the seven C-functions with yde = 081 are eliminated from Eq. (1.57), and the
corresponding changes must be made in Eq. (1.47).

The coulomb integrals have the convenient property that it 1s arbitrary which one
of the charge distributions is to be considered as Qa (i.g., as forming the potential
Una), and which one is to be considered as Q (1.e., acting as charge distribution in
the field of the potential). For instance, the integral between 3S and 3DZ on two
centers can be evaluated as [BSaIBDZb] or as [BDZaIBSb]. Accordingly, for each basic
coulomb integral there are two possible expansions of the type (2.18) with two dif-
ferent sets of H-functions. 1In Table IX, which gives the explicit expressions of the
H-functions in terms of C-functions for all the 28 basic coulomb integrals, only one
expansion 1is given for each integral, namely always the simpler one. In particular,
application of Eq. (1.47) is avoided wherever possible; this was always feasible,
except for the integral [BDzaIBDZb].
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TABLE IX

THE 28 COULOMB INTEGRALS IN TERMS OF THE AUXILIARY FUNCTIONS Cc,'a‘y6€

The last column of this table contains common faccors with which the expressions

in terms of C-functions have to be multiplied in order to yleld the H-functions.

L =0, M=0: Monopole Integrals

[nalnb] Hy Hy H, Hy Hy Hy ef
[15,]18,] 05,0  ©p,%% i -1/2
[15; ]25,] Cpp "% ¢, 0% 1/6
[15,]35,] Cox>®  0y5%° ’ -1/24
[15,|2P5, ] G, 010 ¢y, /4
[1s, ]3Pz, ] o0 c 0 -1/20
[18,03D5,] | 30,,%%°  3c,,%2° -1/72

002 -0y ,°°
(25,28, ] 305,000 40,990 2c,,9%° 1/18
[25, ]38, ] 3Cqz0° 4c13°°° 2c23°°° -1/72
[2s,l2pz,] | 3¢,,%%0 40O 2c, %0 1/12
[2s,[3p5,] | 3C,,°1° 40,010 2cy,0t0 -1/60
[2s,]3D5,] | 9co,%%° 12¢,,%%°  6c,, %% : -1/216
30557  -46,,0% -20,,0%
[35,138,] 6C5°%° 90,500  6C,5°%° 2033°°° -1/144
(35,1285, | 605, 90,00 60,020 g, 030 1/2k
[38,13Pz, ) 605,000 90,010 60,010 20,,0M0 -1/120
[38,13Dz,] | 18¢,,9%° 27¢,,%%° 18c,,%%° 6c31°2° -1/432
60052 -90,,° ~60,,0%  -20,,000
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TABLE IX

L=1,M=20: Dipole

, (9, 19,] Hy Hy H,
& 3 [2Pz, |2P3, ] C_p 10 2c_y M° 20, 110
| (eps, |35, ] c_p o110 | 2c_y ,10 20,10 ;
(2p3, |305, ] 5, 4120 6c_, ,120 6c,,12°
; 0y 5100 -20_, ;100 20,190
! [3P%, |35, ] 5C_p 570 : ‘100_1’2110 100,10
[3pz, | 3D5, ] | 15¢_, *2° 30¢_y ;%0 30C 4, 20
50_5 500 100y 4100 ~106,,100

L=1,M=1: Dipole

(e, la,] Hy H, H, : ‘

% [2Pm |2P1, ] C_2’1001 20_1,1001 2, |
[epn, | 3P, ] C-2,2001 20_1,2001 200,20 ;

[2;na|3nnb] 0;2’1011 20_1,1011 20,,° |

[3Pm, |3PH, ] 50_2,2001 1oc_1,2°°l 100,,% '

[3p1, |3D1, ] 5c~2’1°11 1oc_1’1°11 100,01 g

L=2, M= 0 : Quadrupole

[Qalﬂb] Ho H]_ ‘ H2
- - - 120
(305, |30%,] | 18p, ™11 3C_, %0 369,11 3_y 120 36p, 11 3Cqy
+30_2,1011 +30_1,1°11 +3001011 )
100 100 100
€2 1 3 Co3
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Infegrals of Z-character

TWO-CENTER INTEGRALS. III

Hy H, Hy ef
Cllllo 1/4
o0 -1/20
3011120 -1/72
_013120
6c,,"1° 2c,,11° -1/100
18¢, 120 6c,, 20 -1/360
-6013100 _2023100
Integrals of II-character
H3 H4 H5 cf
¢,,%" 1/8
¢,,%% ~1/40
¢,, 01 _1/2uy3
6c,,01 2c,,%%! -1/200
6c,,°%* 2c,, %M -1/120v3
Integral of Z-character
Hy Hy, Hg of
24( 3¢,,%%0 6[-3c,,°%° 2[-305, %2° -1/1296
-0130001 +023ooo +033ooo
490,220 s9c, 220
_3003200 _30132001
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TWO-CENTER INTEGRALS. TIII

It should be noted that 66 C-functions are needed in order to express the 28
coulomb integrals. This situation compares unfavorably with the case of the hybrid
integrals where we had 122 C-functions for 79 integrals. Since the coulomb integral
expansions of Table IX and the hybrid integral expansions of Table VII have 35 C-
functions in common, the total number of C-functions occurring in Tables VII and IX 1is
153. This state of affairs is shown in Table X. Explicit expressions for all the

necessary C-functions are listed in Tables XIII, XIV, xv.lu

TABLE X
NUMBER OF C-FUNCTIONS USED FOR THE HYBRID
AND COULOMB INTEGRALS

79 hybrid 28 coulomb hybrid and coulomb
integrals integrals integrals together
az0 63 Ly 88
a<o | 59 22 65
Total | 122 66 153

If the explicit formulas for the C-functions, as given in Tables XIII, XIV, and
XV, are substituted into the expansions in terms of C-functions as given in Table IX,
then we must of course obtain the formulas which were given in (I), Egqs. (34, 3la,
34b). This 1s indeed the case. In order to make the transition, we observe that our
present parameters §a,§b,§,?, defined by Eqs. (1.20) and (2.7,13), were designated in

(1) vy Pg+PpsPs»T. Furthermore, according to Eq. (2.14%) we must replace g by
B = pa/28y, = H(148)/(1-7) = B (Re1)/ (-1, (2.19)

where

k= ¥(1+1/%) (2.20)
this parameter k was designated in (I) by x. It is to be noted that the exponential
integral functions, which occur in the C-functions for a < 0, do not occur in the

explicit formulas (3%, 34a, 34b) of (I). Indeed, if the indicated transition iscarried

1"‘t'.l"ables XIII, XIV, and XV (as well as Table XII) will be found at the end of Section
5, preceding the Bibliography.
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out, then the exponential integral functions are found to cancel out in the final
results.

We wish to mention that the formulas (34, 34a, 34b) of (I) have all been rechecked
by the present method, which is somewhat different from the method employed in (I).
Besldes a few misprints, only one error was found; all corrections have been previously
reported.15
b. One-Electron Integrals Expressible in Terms of C-Functions

If the overlap integrals [see (I), Eq. (4)]

(XaIX,) = [ dVxyx, (2.21)

are expressed in elliptic coordinates, 1t 1s seen at once that they are linear combi-
nations of C-functions with a = 0. 1In paper (I) it was furthermore shown that the

nuclear-attraction integrals [See (I), Eq. (6)]

(Xa|1/rglx,) = | aVx, (/1 )%y » (2.22)

and the kinetic-energy integrals [Bee (I), Eq. (5)]

(Xal'%Alxb) = ‘% f dVXaAXb ) (2.23)

can be expressed in terms of overlap integrals [See (I), Egqs. (22, 23)]. Hence these
integrals are also expressible in terms of C-functions with o 2 0. It 1s also useful

to introduce the parameter

v =0 /8 = pa/pp = (141)/(1-7) . (2.24)

In Tables XI, XJa, and XIb are listed the expansions in terms of C-functions for the
overlap integrals (2.21), the nuclear-attraction integrals (2.22), and the kinetic-
energy integrals (2.23), respectively. It may be noted that Table XI does not contain
overlap integrals involving Os and 1lp AO's, as did Eqs. {25) of (I); their function
has been taken over by appropriate C-functions.

¢. Nuclear-Attraction Integrals not Expressible in Terms of C-Functions

The nuclear-attraction integrals (see (I), Eq. (7)]
lalxpx'py] = (xpl2/rgIXy) = [ aVxy (1/7)x"y, (2.25)

can be expressed in terms of the basic integrals

150HIS TECHNICAL REPORT, 1951-52, Part Two, Paper 10; 1952-53, p. 101.
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TABLE XI
THE ONE-ELECTRON INTEGRALS (xaIMlxb) IN TERMS OF THE AUXILIARY FUNCTIONS caa75e
(a) Overlap Integrals ‘ (b) Nuclear-Attraction Integrals
(1s,]1s,) = -2v3/2cll°°° (1s,11/r,]1s,) = -2cav1/2001°°°
(1s,]2s,) = (2/#3)v3/2012°°° (1s,]1/r,]2s,) = (2/J3)cavl/2002°°°
(23,128,) = (2/3)v%/2c,,0% | (23, 11/, |18,) = -(2/V3)¢,v*/%c, 0%
(1s,2ps,) = 2v3/2011010 (2s,]1/r,]2s,) = (2/3)cav3/2012°°°
(2s,]2p6,) = (2/J3)v5/202101° © (1s,11/r,|2p6,) = 2cav1/ecblolo
(2p6, |2p6,) = 2v5/2011110 (2p6,]1/r, |1s,) = -ecav3/20011°°
(2pm, l2pm,) = v*/2c,,%0 (25,11/7, |2p6,) = (2/V3) 2,20, 010
(205, |1/7, 28,) = (2/V3)t,v"/ %0y, 100
(2p6, | 1/r, |2p6, ) = ecav3/2001110
(2pﬂa]1/ra|2pﬂb) = cav3/2001001

(c) Kinetic-Energy Integrals

(1s,]-3a]1s,) = -;a2v1/2(2001000_vcllooo)

(1sy|-3al2s,) = (1/«3);a2v1/2(2002000_v012000)

(25, |-38l2s)) = ‘(1/3)Cazvl/e(2002000—4v012°°°+v2022°°°)
(1s,1-3a| 206, ) = £ 2v*/2(2c,,%0-vc,,%0)

(2s,|-%4]2p6)) = -(1/¢3)ca2vl/2(2001010_4vcllolo+v2021010)
(2p6, | -3a]2p6,) = ;a2v3/2(4C01110_V011110)
(2pm, | -3A|2pm ) = (1/2)Ca2v3/2(4001001-v011°°1)
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[a]9,] = | avay/r, , (2.26)

as was shown in (I), Egs. (28). It was further shown in (I) that the integral [alQb]
vanishes unless Qb.is of Z-type, and that the integrals [alNLOb] are intimately con-

nected with potentials U, NLM [see (I), Ea. (32)]. 8Since the difference in notation of
(I) and the present paper may become somewhat confusing at this point, we shall show

this connection here once more. Instead of [alQb] we shall first evaluate [Qalb],

and make the proper change a = b in the final result. Now [Q,Ib] is Just the potential

UQ (2), as given by (1.10), evaluated at the point b, i.e.,r ap = Ry 655 = 0. Since

sm(o,q,) = [(2L+1)/u1r]%a Mo» ¥e find from Eqs. (1.12,17)

N+L ;
DMy [b) = 26T - e B ud gy |

where G = zlaR, and w,  1is defined by (1.18). . Exchanging now a and b, and putting
2ZbR = 2§b [see Eq. {2.7)], we find the general result }

-2, N4L

laliu,] = 2,5~ TP B (26, Toy- (2.27)

The explicit expressions for Eq. (2.27), which arise from AO's with the principal

quantum numbers 1 and 2, were already given in (I), Egqs. (31); the parameters I and

p of those equations are here designated by Zb and Eb, respectively.
In the present derivation of the connection between the potentials UQ‘ and the
a
integrals [alﬂb], the integrals were derived from the potentials, whereas in (I) the

potentials were derived from the integrals.
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3. THE FUNCTIONS cmﬁ”"e FOR a » 0
a. General Remarks

The functions caﬂybe(pa’pb) were defined by Eq. (1.35), namely

© 1
caayée(pa’Pb) - (_1)B+6+e(%pb)a+a+y+6+2e+1 { at { dne-p&-rpn

x (&+1)%(&-1)P (1481)Y(1-6n)0(£2-1)€(1-02)€ , (3.1)
with
p = %(Pa"’Pb) y T = (Pa'Pb)/(Pa_+Pb) . (302)

[}
For a = 0 we can express Cday e(pa,pb) in terms of the functions An(p) and Bn(Tp)
(see Section 5a), by first multiplying out the polynomial in € and n before inte-
grating. A more elegant access to the functions Caﬁybe(pa,pb) for a » 0 is provided
by the following system of recurrence formulas.

b. Recurrence Relations for caﬁOOO

We observe that

o 1
Cap” 0 (pgspp) = (-1, M43, %P [ at | anePE-TPN (3.3)
where
3, = b/apa s O = B/bpb . (3.4)
Carrying out the integration we obtain for (3.3)
Py P
CqﬁOOO(pa,pb) = 2(_1)G+lpba+ﬁ+laadabﬂ(e a_e b)/(paQ_pr) . (3.5)

By virtue of the identity
Py P a B
3,%3,P(e B-e ' P) = Z 5 ($) (513,73, (py%-0,%)]
- 1. B-q, Pg P
x 13,9713 P I(e "2-e ")/(p,2-p,?)] (3.6)

we £ind the recurrence relation16

16For a €1 and B € 1 there occur in Eq. {3.7) C-functions with negative indices with
vanishing coefficients. Such terms should simply be omitted, which 1s easlly seen
to be correct by applying Eq. (3.6) to these special cases.
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03s°% = (k1) (om0, 1051 o2 + po, 100
- 3a(a-1)Cy_p 50 + 38(8-1)0, 4 ,0%
- pba+ﬂ'1[asoe-pa - 6ao(-1)ae-Pb]} , (3.7)
where
k= 2ee(1/1)] = (p,%4p,2)/(p, 20, 2) . (3.8)°

For the three simplest cases Eq. (3.7) yilelds

-1, "P -p
COOOOO = '(K'l)Pb l(e & .e b) s
- -P
Cloooo = (K-l)(P,an lcooooo - € a) ’ (3-9)
-p
Cp1°%° = (k-1)(C?C - e P) . ]

We make use of Egs. (3.9) to derive the following relations, which we shall need in
Section 4:

000 000
Pa001 00 . Pbclo = (K'l)(Pbe - Pt )

(3.10)

000 000 000
Plo1 - Palio  * 20000 = (k-1)(pge T - ppe 7).

¢. Recurrence Relations for the Upper Index Triple

The following recurrence formulas serve to obtain the functions cqﬁyée for which
the upper indices are different from zero. Each of these formulas corresponds to an

identity in € and n. Thus the identities

1% gn =1 % 3(e+m)° - (£-m)2]

(6%-1)(1-02) = -1 + 30(em)2 + (e-m)2] - (1/16)[(&+n)2 - (e-1)3)2 ,

T (1+€n) (1-6n) = 1 - (2/16)[(&+n)2 - (£-n)2] ,

l1+€n+1-¢6n=2,

(62-1)(1-92) - (1+€n)(1-€n)

-2 + 3[(&+0)2 + (¢-1)3] ,

(62-1)(1-2) + (12€)2 = (£n)? ,
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(1+6m)2 + (1-6m)2 + 2(1+¢n) (1-¢n) = & ,

yield the followlng recurrence relations, respectively:

20717 0¢ = ppCag™* + 0y M (Coyp,705 00 54200 -G

2°a67'6+1’€ = 'PbcaB76€ + Pb-1(°a+2,576€'°a,ﬁ+276€) ’ (3.12)
4e g YOt < p Be 070 - 2(Coyp. 0"y a10"0S)

+ pb_z(Ca+4,5yée-2ca+2,B+276€+CG,B+476€) ’ (3.13)

“Caay+1’6+l’€ _ _pbecaﬁvée + pb-z(Ca+4,Bybe-aca+2,ﬁ+2wa€+ca,ﬁ+476€) , (3.14)

CaBy+1,6e _ Caﬁy,6+l,€ - pbcqﬁ75€ , “ (3.15)

a(cas-yé,eﬂ _ Caﬁy+1,6+l,e) _ pbecaﬂyée _ Ca+2,BW€ - ca’6+275€ , (3.16)

Caﬂv+2,6e _ Caayb,e+1 - Ca+2,576€ , (3.17)

CaBy,5+2,e - CaBya,e+1 - ca,B+27ae , (3.18)

Caéy+2,ae + Caay,5+2,e - 20a57+1,6+1,e - pbzcaavée . (3.19)

The Eqs. (3.11,12,13) permit us to raise each of the three upper indices inde-
pendently; Eq. (3.14) permits us to raise 7y and 8 simultaneously. The Eqs. (3.15-18)
gserve to transfer raised units between the various upper indices. So Eq. (3.15) con-
verts one raised unit of ¥ into one raised unit of &, and vice versa; Eq. (3.16)
converts one ralsed unit of ¢ into one railsed unit of y plus one raised unit of 6, and
vice versa; and Egs. (3.17,18) convert one raised unit of ¢ into two raised units of
y or &, and vice versa. Finally, Eq. (3.19) may be useful as a check.

The Eqs. (3.11-19) are of course not the only possible recurrence relations for
raising the upper indices; they are however rather simple relations, particularly
Egqs. (3.15,17,18).

Fig. 1 represents in dlagrammatic form a possible scheme for successively raising
the upper indices, and at the same time checking the obtained results. The scheme
was constructed using mostly the particularly simple relations (3.15,17,18). It

appears to be useful to group together the C-functions which have the same upper
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Equation Numbers vbée € y+b+42¢

o
o

(2.11)

| | J(fijtlllk:f§\ 2

-
(3.15) y=—
— O D

5

[

¥
®
€

VodibaN ]
()=o)
(3.17) / \ 2
(3.18)\ /‘ \ S

Fig. 1. A Possible Scheme for Raising the Upper Indices
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index sum y+6+2€¢; such a group 18 then conveniently subdivided according to the dif-
ferent values of €. In order to calculate C-functions with the same upper index sum,
say n, from each other, we need also C-functions of the group n-1 if Eq. (3.15) is
used, and n-2 if Eq. (3.17) or (3.18) is used. Finally, it should be noted that
parallel arrows in Flg. 1 represent the same equation; this also applies to arrows
which are not drawn in Fig. 1, e.g.,an arrow from 310 to 111 would represent Eq.
(3.17). Another set of parallel arrows which is not shown at all in Fig. 1 is a set
of vertical arrows representing Eq. (3.16), e.g. from 310 to 201.

In the last analysls the methods described for raising the upper indices amount

of course to making the decomposition

(1+6n)(1-¢n)°(£%-1)€ (1-n2) € - R ay Y% (gt (e-m)d

voe are constants. But the described systematic arrangement

where the coefficients aij
of successive steps appears more convenient.

d. The Total Recurrence Procedure

From the foregoing it appears that two units of the lower index sum a+B are con-
sumed in order to raise the upper index sum y+6+2¢ by one unit. Now from Tables VII,
IX,and XI it 1s seen that the maximum value of the upper index sum is 4, and that this
occurs for the index pairs (a,8) = (0,1) and (a,8) = (1,1). Furthermore, it is seen
that the maximum value of "lower sum plus two times upper sum" is 10. For the cal-
culation of the needed C-functions we therefore used the following scheme (see Fig. 2).
First the functions CaBOOO {1.e.,upper sum = 0) were calculated by means of Eq. (3.7)
for all index pairs a,B8 which are entered in Fig. 2. Then, in subsequent steps, the
C-functions with upper sum = 1, 2, 3, 4 were calculated by means of Egs. (3.11-19) for
all the Index pairs a,p situated above and to the left of the lines marked 1, 2, 3, 4,
respectively, in Fig. 2. 1In this manner explicit formulas were calculated for the
260 C-functions with a # O which are listed in Table XIIa. They were needed in order
to establish the 88 among them which appear in Tables VII, IX, and XI. The explicit
formulas for these 88 are given in Table XIII. Formulas for the 172 others can be
made available upon demand. ‘

e. The Limiting Cases p = 0 and 1 = 0O

For p = O and T = O the formulas of Table XIII cannot be employed directly for
numerical computations. Tables XIV and XV give the formulas for the functions Cc’.‘s"'6€

for these two limiting cases. All these formulas were calculated in two ways. The
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80 81

90 gl

Fig. 2. List of Lower Indices a,B Occurring in the Course

of the Recurrence Procedure Represented in Fig. 1
first way consisted in calculating the limits of the expressions given in Table XIII
by expanding the exponentials., The second way for the case T = 0 was the method
described in 3%a: the functions Gaﬁyée were expressed in terms of the functions An(p)
and Bn(Tp) = Bn(O) = [1 + (-1)™1/(n+1). For the case p = O the second way was the

direct integration, leading to the general result

Lim Cg ¢ (py,pp) = oy (-1)PFE (arpayessze) 1[(1-m) | WHPHVHOFEEHL (520

6 ¢
p—0 ap Y+6

€

where the constants c, are defined by

e’ = j at(1-t2)€Y (3.21)
o, = 2% et (Bwre) 1/ (3w) 1 (w2e+1)! (3.211)

for w even, and
c€ =0 (3.21")

w

for w odd.
‘ a+B+y+0+2¢e+1
To prove Eq. (3.20) we substitute p, = (1-7)p in (3.1) and multiply p

into the integrand. Putting pf = x we then obtain
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CaBybe - (_1)5+6+e[%(1_1)]a+ﬂ+'y+6+2e+1 T dx } dne " X"TPN
P -1

X (x+pn) % (x-pn)P (p+x1) Y (p-xn)  (x2-p2) € (1-92)€ ,
so that, letting p—O,

Lincl) 068'766 = (-1 )B+€ [3(1-1) ]a+ﬁ+‘y+6+2e+l é dxe —xxa+5+-y+6+2€
p—o
1
x [ an(1-n2)SgV*0 (3.22)

whence (3.20). It may be noted that it is the factor p X*PHY¥O42€+l yp (5 1) ynion

keeps the functions Cy vbe finite for p-0.

p
The agreement obtained by using two different methods for calculating the limiting

cases 1s a further check on the derivations of the explicit formulas for the general
case.

We can also see now why for a numerical tabulation of the C-functions we should

use the parameters p,t rather than p_,p,. Namely the function Caayée(pa,pb) is

discontinuous at the point p_, = p, = O iIn the p_,p, -plane; but, considered as a
a b a’to

ybée

function of p and T, CaB is well-behaved for the entire range 0 € p < = ,

-l€ 11,
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4. .THE FUNCTIONS caayée FOR a < O

a. Condition for Convergence

The definition of the functions Cdayée by the integral (3.1) shows that for a < O
the integrand becomes infinite at the point € = 1, n = -1, so that the question arises
as to whether or not the integration extending to this critical point in the é,n-plane
yields a finite result. It will be shown that the conditlon for convergence, which

limits the possible negative values of a, is
a+y+2e+l # 0 . A (%.1)

This result was already used in Sections 1 and 2; the relation (4.1) 1s identical with
(1.28).

To derive the condition (4.1), we divide the area of integration in the £,n-plane
into the areas I and II as shown in Fig. 3. For the area I we introduce polar

1
s
1} <

o 2D

. .\ \3 \\\\ "i§
II

Pig. 3. Area of Integration.

(o]

coordinates r,¢:

£-1 = rcos¢ , n+l = rsing , (4.2)

so that the integral (3.1) becomes

cdaybe(pa’pb) - (_1)ﬁ+6+e(épb)a+ﬁ+y+6+2e+1{e'9b ? ap pOtv+2e+l %ﬂd¢ e-r(pcoso+1psino)
0 0

X (cos¢+sin¢)a(2+rcos¢-rsin¢)a(-cos¢+sinv+rcos¢sinv)7

P (2+rcoso-rs1nq>-r2cosq>sinq>)6[coa¢sino(2+rcow)(2+rsin¢)]e

+ i dn 1 ag e PE-TPN
S BN vy oy -4
x (&+1)%(€-n)P (1+n)7(1-¢1)%(62-1)€(1-02)€} . (4.3)

It is easily seen that the second integral 1n (4.3) is always convergent. To investi-

gate the convergence of the first integral, we expand the integrand in a power series
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with respect to r; this yilelds for the first integral
z ar pOtyi2etl Zﬂdw(cosv+sinv)a kgg r*p, (P, ,pprc080,84n9) (4.4)
where each pk(u,v,x,y) is a polynomial in u,v,x,y. Clearly, the infinite series in
(4.4) 1s uniformly convergent; hence a sufficient condition for the convergence of
(4.4) 1s that the integrals

? gy pOtYHRetl+k

im .
{ -and g dw(coso+sin¢)°pk(pa,pb,coso,sinv)

converge for all values of k. Now

cosp+sing = V2cos(p-4n) > 0 for O < ¢ < 47 ;

hence (cosw+sinw)a introduces no singularity inspite of a < 0, and consequently all

the integrals over ¢ converge. On the other hand, the integrals over r converge 1if
a+y+2e+l = 0 ,

so that (4.1) is indeed a sufficient condition for convergence.

It is conceivable that the expression (4.4) might still be convergent if
the condition (4.1) is violated. Namely, if we evaluate po(pa,pb,cosw,sinw, we
find

(cosp+sing)%py(p, ,py,cose,sing) = (-1)V2PHo+e+3(04Y) o0 (giin)cos” (g-m)s n2e

The functiomscos(@+in), cos(e-ir), and sin2¢ are plotted in Fig. 4. From these plots by
it is obvious that ‘

#0, v even, |

m
3 a
! dop(cosg+sing) py(p, Py, cO89,51n9) {= 0, v odd. |

Consequently, if vy is odd, the expression (4.4) might still yield a finite result if

a+y+2e+2 = 0 . I
|

But in that case the integral (4.3) is at most conditionally convergent, i.e. it
depends on how we reach the point € = 1, n = -1 in the £én-plane whether the integral
1

(4.3) converges at all and/or what numerical value will result. Moreover, when we

attempted, in a few simple cases, to use the relation
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11-
cos(@ - &m)
0 sin2¢
: i i
e cos (9 + )
-11

Fig. 4. The functions cos(9 + im), cos(e - in), and sin2g.

) -1%
Y0€ (paspp) = Py [ at Cop ¢ (62py) (4.5)
a

which follows from the definition (3.1), in order to lower the index o beyond the value

Ca-1,8

consistent with the condition (4.1), the right-hand side of Eq. (4.5) was found to be
divergent. It was therefore considered inadvisable to pursue further the problems
connected with those C-functions which have a+y+2e¢ < 0, in particular since we were
successful in Sections 1 and 2 in expressing all hybrid and coulomb integrals in terms
of C-functions satisfying the condition (4.1), which are regularly convergent.

In the following subsections we shall show that the latter type of C-functions

(with @ < 0) can all be expressed by the general formula

766(

5 se,
Cap (PasPp) = Dog” “(pgspp) + Eqa” < (pyspp)F(pyspy)

+ (SR O (op -y )0 R 0y (4.6)

or, suppressing the explicit arguments,

Cap?"¢ = Dgg?*¢ + Egg*F + B (4.61)

where
BV (pgspp) = (~1)7OB Y0 (-p, o0y (4.7)

The functions Da‘;"‘se have a strﬁcture very similar to the C-functions with a 2 O0; each

function Eaaybe consists of a finite series of powers (positive, zero, or negative) of
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Pp

Pa and Py’ multiplied by e ~; finally, the functions F and G, which do not depend upon

the indices a,B,v,d8,e, are expressible in terms of exponential integrals and loga-

rithms.

b. The Functions C 000
2. 1he Hunctions L 3.8

We start from Eq. (4.5) fora =B =7 =6 = ¢ = 0, yielding

00 -1 % 00
¢ 0 O(Pa’Pb) = Py g dt COO o(t,Pb) ; (4.8)
a

substituting for Cooooo‘the expression (3.5) we find

-1,

00 -

- - P - —»
0y 02 (pg ) = byt f dt(eP-e P [(t4py) I (£-py) 7]

a
P -1 @ -t - -p -1 % - - -
=e Pt f oat et o e P 7t poat[(eTPa)eT 4 (b42p, ) 7M1,
pa+pb pa-pb‘
or
00 ) .
C—l,O O(Papr) = AO(Pb)F(Pa:Pb) + Ao('Pb)G‘(PaJPb) ) (4-9)
where the function A, 1s defined by Eqs. (5.1,2) and
' Glpy,py) = - f ate 7t
PaPp (%.10)
Flpaspp) = - J at [(e7%-1)t7 + (t42p, )7
Pa=Py

Note that F and G are well-behaved functions of both arguments except for Py = Pp = 0 ;
for that special case the value of C_1 OOOO if found by the limiting process Pa -0,

i
Pp — O . The functions F and G can be expressed in terms of exponential integrdls and

logarithms [see Section 5], namely

G(Papr) = Ei("Pa'Pb) )
(%.11)
F(pgsPy) = EL(-patpy) - loglpy-ppl + log(p,+py)
For the derivatives BbF and 3,G we find from Eqgs. (%.11; 5.1%), or also directly from
Eqs. (4.10):

“PgP ;
e a b(pa+pb) 1

»

(4.12)

3,G(pgsPyp)
-pa+pb ) -1 1

3 F(pyspy) = - @ (Pa-py) ™t + (patpp) ™ + (pa-py)”

Having obtained an explicit expression for C_; 0000 in Egs. (4.9,10), we proceed
2]
now to the functions C_l BOOO. We shall repeatedly make use of the following relation,
s
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which follows immediately from the definition (3.1):

-a-p-p'-y-6-2¢~ 6 -a-pt-y=-6-2¢~ é
Py a-p-p' -y 2¢ ICG,B+B'Y € _ abBPb a-pf-y 2¢ lcaa'y € (4.13)

Eq. (4.13) permits us to calculate C_; aOOO by successive differentiations of C_; o°°2
2 s

namely, putting a = -1, B! = vy = 6 = € = O,we obtain

-Bc 000 = abac-l,oooo ., (4.1”’)

pb -Lﬁ

If we substitute in Eq. (4.14) for c_ 0000 the expression (4.9), we see that, because
’
of Eqs. (4.12;5.1) the result may be written in the form

by PC_1,50%0 = Agl-py)0 + (-1)PAg(p,)F + p,PD_) O, (4.15)

where the functions D_1 Booo(pa,pb) do not contain any exponential integrals or loga-
2

rithms. Hence we have proved the validity of Eq. (4.6) for the functions c_; BOOO ’

b

namely
000 :
C_I’Booo(pa.pb) = D_l,ﬁooo(pa,pb) +E 35 (ParPyp)Flpgpyp)
+E_) %0410, )0(pPy) 3 (4.16)
the functions E_l 5000 are actually only functions of Py and are given by
s
E_ 00 (paspy) = (-pp)Pag(py) - (4.17)
We observe that Eq. (4.9) implies that
000 .
D_1,0 =0 ; (4.18)
we shall now proceed to find a recurrence scheme for the functions D_1 BOOO. We start
s
with the relation
-p-2 000 000 -B 000 000
Po LC.y,pep +(BH2)Cy auy™ ] - o [0y g7 #BC 3 g 3]
-p-2 000 000, _ -B 000 000
=Py Dy gyp +(B+2)D_y g0y ) = py Dy gTHBD ) 5 g7 )
+ [Aﬁ+2(-pb)+(B+2)pb-1AB+1('pb)'AB(-pb)'pr-lAa-l('pb)]G
‘+ (-l)b[Aﬂ+2(pb)-(B+2)Pb-1AB+l(pb)-Aﬁ(pb)*’ﬁpb-lAB-l(Pb)]F ) ()"-19)

which follows directly from Eq. (4.15) and holds for p # O. The linear combination
of the C-functions in (4.19) is chosen so that the coefficients of the functions F
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and G on the right-hand side vanish; this follows from the recurrence relation for the

functions An(x), Eq. (5.7). Making use of Eq. (4.14), we may write then for (4.19)

pb-a-aln 000} _ o B[p 000,

000 000
-1,842  H(B+2)D_y a4y -1,8 *PPyp-1

- 13,224 (pe2)p, 13, P20, P-mp, 13 P 10, (O . (4.20)

The right-hand side of Eq. (4.20) can be further simplified by making use of the

general relation

b

by T2 ey = 30 + Be P (4.21)
so that

000]

pb-B-E[D °°°+(B+2)D-1,ﬂ+1°°°l _ pb-B[D-l,ﬂooo+ D

-1,B42 BD_y ,8-1

- pb’labﬁ(abz-l)pbc_IJOOOO . (k.22)

It 1s now possible to express the right-hand side of Eq. (4.22) in terms of C-functions

with a 3 0. First we convert ab -1) pb -1, 0000 in the followlng manner. We 1nsert
000 Po _ Po

°-1,o as given by Eq. (4.9) and observe that (ab -l)e e ab (ab+1 = e Q%

so that

-p
(abe-l)pbc_l’oooo (Bb -1) bG+e )

- (6b+1)epbab0 + (Bb-l)e-p

- p -
ab(-epbabc+e pbabF) - e baba - e pbabF ;

taking 3, F and 3,@ from Eq. (4.12), and making use of Egs. (3.8,10), we find

Py P P p
(3,2-1)py0_1, 0% = Byl-2p,(e  2-e °)/(py2-p,2)] + 2(ppe  “-ppe ")/ (pg7-pp°)

-1, 000 -2, 000 -1, 000 ,
= %PaPp ©C +PaPp Co1 - Pp Cio
finally, using Eq. (4.13), this reduces to
2 000 -2, 000 -1, 000
(3,°-1)ppCoy,0  =2PaPy Co1  ~Pp C10 - (4.23)

We apply now the operator pb'labB to Eq. (4.23), and make use of Eqs. (4.13,21):
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-1y B8 -2, 000 -1, B. -1, 000
2PaPp % P, Co1 ~ Pp 9 Pp C1p

-1, B -2, 000 B -1y B-1y. -2. 000
2Py O Pp Cob - (3,"+Bpy, 3y~ TPy C1g

000 _ pb-a-e(ClBooo+BC 000y,  (4.p4)

-B-3
. 2Py~ “Co,p+41 1,p-1

substituting this result into Eq. (4.22), we obtain the recurrence relation

2
D_y,p42 * (B+2)D_y gy - Pp (D3 g+PD_ 3 5 3)

-1 000 000 000
= 2p4Py, Cp,p41 - Cip - BC_y 5.1 . (4.25)

In order to calculate the functions D_y BOOO from Eq. (4.25), we need, aside from the
£

C-functions on the right-hand side, which were dealt with in Sectilon 3, also the

000 2na D_, 1000 . The former is given by Eq. (4.18); the lat-
»

z

ter we obtain by direct application of Eq. (4.14):

starting functions D 1.0
=Ly

000 _ 000 _ -1, Py, “Pp
C1,1  =Pp%Ci,0 = PpopPp (- "G+e °F) ,
or
000 Pp Py )
D-l,l = - abG + e bbF s
in view of Eqs. (4.12; 3.8,10) this reduces to
000 -1, 000
D1, =PaPp Coo - (4.26)

The recurrence relation (4.25) enables us to express each D-function in terms of
three D-functions with a lower index B and C-functions known from Section 3. However,
we can carry out this recurrence scheme in two steps, each step by ltself being simpler

than Eq. (4.25). Namely if we define a new set of auxiliary functions DB(pa,pb) by

000

<18t 00, (4.27)

D =D

B BD_1,p-1

then we may write for Eq. (4.25)

000 000

000
16 - 301,5-1 . (4.28)

2 -1
Da+2 = Pp Dg = 2PaPp Co,p41 - €

We can now use Eq. (4.28) as a recurrence relation to calculate the functions DB .

For that purpose we still need the starting functions Do and Dls they follow from
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Eq. (4.27) for 2 = 0 and B = 1, respectively, and Eqs. (4.18,26), namely

Do=o}

1. 000 (3.29)
Dy = PPy Coo -

Once the functions Dﬂ are found from Eqs. (4.28,29), we can then use Eq. (4.27) as a

000 .
‘115 ’
needed in this case. If desired, we can also use instead of Eq. (4.27) the following

recurrence relation to calculate the functions D no starting D-functions are

explicit expression of D-functions in terms of D-functions:

Dy 50 = k%o (-1)P¥@B1/a)D, (4.30)

which follows easily from Eq. (4.27).

Which one of the two alternative recurrence schemes 1s to be used for calculating

000
‘l:B

the auxiliary functions DB --13 of course a matter of taste. The first method has the

the functions D --the direct scheme of Eqs. (4.18,25,26) or the scheme employing
advantage of directness, whereas the second method consists of more, but simpler,
steps.

¢. Raising of the Upper Indices and Lowering of the Index o

In order to raise the upper indices we can directly use the methods developed in
Section 3¢, since the derivations in that section are completely independent of whether
a is positive, zero, or negative.

Actually the application of those methods are more economical for a < O than for
a 2 0. Consider for example Eq. (3.11). If a > O one has first to raise o (and B) by

two additional units before y can be raised by one unit. However, 1if a < -2, the sit-

uation 1s more pleasant: here a+2 corresponds to a previous step on the recurrence
ladder which starts with a = -1 and proceeds to a = -2, -3, -4, ...; therefore it is
not necessary to make a detour via a-values which are not actually needed.

The situation with respect to 8 on the other hand is of course unchanged, and
since C-functions with 8 = 1 and y+6+2¢ = 4 are finally needed, it is necessary to

00

start with the set C , where B =0, 1, 2, ... 9. This case is indeed simpler

000

0
‘115
than the one for the case a = 0: there we had to start with the set CaB , Where a
and g assumed the values 0, 1, 2, ... 9.

In Fig. 5 the different pyramids represent different negative values of a; due to

the restriction (4.1) they become progressively smaller for decreasing a. The arrows
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4o i
ne 1nverconnec-

within each pyramid represent applications of the formulas {3.11-13);
tions between different pyramids are indicated by curved arrows, corresponding to for-
mulas for lowering o which we shall now derive.

We start with the case o < -1, € 2 1. From the identities
(a+1) (640)% = (3/28) (&+0)™* = (3/2m) (64n)* (4.31)
we obtaln by partial integration with respect to £ and n
(a+1)caayée _ _(_1i5+6+e(%pb)a+a+y+6+2e+1 Z dg-i an(£4n) 4+
AT} PP (e ) (R RS, (h32)

8ince the integrated parts vanish for ¢ > 1. Adding the two Eqgs. (4.32) and performing
the indicated differentiations, we obtain

vée voe v-1,8¢ _ 44 ¥,6-1,6 _ 5.0 Vs0+l,e-1 (y 33)

(a+1)pbcaﬁ a+2,p - c€la42,8

= Palas1,8° "~ Caso,p

Eq. (4.33) lowers o if € > 1 and 1s represented in Fig. 5 by solid curved arrows.
Turning now to the case € = 0, we observe first that if v 2 2 we do not need a

direct formula for lowering o. Namely by virtue of Eq. (3.17) we may write

Y60

S7%0 - Casv-e,bl . v-2,80 (4.34)

Ca a+2,8 ,
and Eq. (4.33) may now be applied to the first term on the right-hand side of Eq.
(4.34). Next we note that if € = 0, a € -3, the condition (4.1) yields vy 2 2. Hence
the only case we still have to deal with separately 1s a = -2, ¢ = 0, v € 1; because
of the condition (4.1) this narrows down to y = 1. We shall deal with this case by
deriving a speclal formula for C_E,BIOO; after that the index 4 can always be raised
in single steps by means of Eq. (3.12), or in double steps by means of Eq. (3.18).

We derive first a formula for C_e,oloo. We perform again partial integrations as
in the derivation of Eq. (4.33); however, due to ¢ = O, we obtain now additional terms,

since the integrated parts do not vanish

-2,0

1 w1
Cp 0% = [ aneP ™, [ e ] an(e+n) "2 (3/38)ePE-TPN(144y)
-1 - (4.35)

1
0_2,0100 o e PE(e Py 4 [ a8 ] an(e+n) 1 (3/3n)e PE- PN (144y) |

We add the two Eqs. (4.35), perform the indicated differentiations, and evaluate the
single integrals; the result is
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Pa 100 000 ,

- “Pp 2_ 2 -
2,0 = - 2(pge T-ppe T)/(pa"py) - papy lc-1.0

by virtue of Eqs. (3.8,10) we may write for this

100

-1 100
2,0 = “PaPp C.1,0

1, 000 -1, 000

-2, 000
o Coo - Py Co1 + PaPp  C1g . (4.36)

- pb-

We can now easily proceed to C_, Bloo by applying to Eq. (4.36) the operator
b
pbﬂ+1ab5, yielding [see Eqs. (4.13,21)]

100 100 000 000

P, = Pal.1p - Co,841

This equation is represented in Fig. 5 by the dashed curved arrow.
Finally we must show that all the C-functions with a < O have the form (4.6).

Since we saw already that C 000 had that form, we only have to show that the form

-1,ﬂ
(4.6) 1s preserved when the upper indices are raised or o is lowered. These proofs are

very simple; as an example we show it for Eq. (4.33) with o = -2:

pchz,ﬁyée _ _pac_l,syée + yCosy-l,be + 60067,6-1,e + 2€Coﬁ'y,é+1,e-1 .
Now, by assumption, the form (4.6') holds for C_, 6766, so that
2
vée _ _ vde Y¥-1,0¢ v,0-1,¢ Y,0+1,e-1
pbc_.z,s = PaD-l,ﬂ + YCOB TR 4 600B ’ A 2€COﬁ ’ ’

_ voeq _ = voe, .
paE-l,B P paE-l,& G ’

hence C_, evée also has the form (4.6'), and specifically
2

de

Y . yée vy-1, b€ v,6-1,¢€ Y,0+41,¢e-1
pr‘Q,ﬁ = paD-l,B + yCOS, ’ + 600B ’ =t o+ 2eCoB ! ’ ’

de

Y _ vYde
PoE_2,8° = PaE_1 .8

It is also clear now how any one of the recurrence relations (3.11-19; 4.33,37)
ylields a recurrence relation for the D- and E-functions. Namely such a relation for
the D-(E-)functions is obtained from the corresponding relation for the C-functions by
changing the C-functions with negative a's into D-(E-)functions, and retaining (omit-

tigg! the C-functions with non-negative a's.

d. The Limiting Cases p = O and 7T = 0

For the same reason as in Section 3d special formulas have to be given for the
functions caayée (6 <0) if p = 0O or v = 0. They were again derived in two different

ways (see below).
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nentlals and exponential integrals (see Section 5b) and subsequent passage to the
limit p = O in the general formulas. It should be mentioned that the parts Da676€ and
EaayéeF+E0676€G each become infinite for p — 0; only their sum remains finite. The
segond method was the application of Eq. (3.20). It has to be noted that the only
condition for the validity of Eq. (3.20) 1is

a+B+y+6+2¢ = 0 , (4.38)

as Eq. (3.22) shows. Now, since the volume element always contributes the factor £-7,

we have always B 2 1, and this fact in conjJunction with the condition (4.1) yields
a+B+y+2€e = 0 , (4.39)

so that the condition (4.38) is always satisfied and Eq. (3.20) applies also if o < O.
In the case T = 0 the first method was again the expansion of exponentials and

exponential integrals in the general formulas. The second method was as follows:

000, & 000
»B F+E“1:B

we calculated D, and subsequently D by means of the recurrence relations (4.27,28)
B ‘116

First, by expansilon, we calculated E_; G and Dy for p, = Pp = P- Next,

(depending now only on p). Finally, we calculated Cq voe using Egs. (3.11-19) and

g
(4.33,37) (again depending only on p).

The agreement of the results obtalned by the two different methods constituted a
further check of the derived formulas. A final check was the agreement found by
putting p = 0 in the formulas for v = O, and T = O in the formulas for p = O.

By means of the methods described in Section 4b, ¢, and d, explicit formulas were
calculated for the 84 C-functions listed in Table XIIb. They were needed in order to
establish the 65 among them appearing in Tables VII and IX. The formulas for the
latter are given in Tables XIII, XIV, and XV. 1In addition, these tables also contain

000 B = 3,4,5,6,7,8,9). The latter have rather long expres-

the seven functions c-l,B
sions, and their derivation is lengthy; since they form the "basis" from which all

other C-functions with a < 0 are rather easily obtained, their inclusion was considered
useful. Formulas for C-functions contained in Table XIIb, but not in Tables XIII, XIV,

and XV, can be made available upon demand.
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5. THE EXPONENTIAL INTEGRAL AND RELATED FUNCTIONS

&. The Functions An(x), Bn(x)

For convenience some properties of the well-known functions ' An(x), Bn(x) are

here collected. They may be defined by the formulas

AL(x) = (-a/ax)™eX/x) - °{° gt e XELR (5.1)
(-1)™1a_(-x) = (-d/ax)™(e*/x) - _Z dt eXten (5.2)
Balx) = (-a/ax){(eX-eR)/x] = [ ab 00T, (5.3)
whence
By(x) = (-1)™ (-x) - A (x) . (5.4)

The definitions of An(x) and An(-x) by means of the integrals are only valid for x > O.

From the definitions (5.1-3) follow the recurrence relations

Apq(x) = (-d/ax)A (x) , (5.5)
By (x) = (-d/dx)B, (x) , (5.6)
XA, (x) = mA__(x) +e™*, (5.7)
xB (x) = nB_,(x) - e™* 4+ (-1)%%* , (5.8)
and the explicit formulas
A(x) = (/™ he™ I () (5.9)
B (x) = 2(nt/x™)[sinnx kg: (x¥/n1) - cosnx §° (x¥/k1)] , (5.10)

where E° sums only the terms with even k, and £° the terms with odd k.
k k
The functions An(x) of Eq. (5.1) have a simple connection with the I'-function
< t
r(n+l) = é dt e”’t" = n1 (5.11)

and the incomplete I‘-function18

Ysee, e.g., (I), Eq. (24) and (II), Eqs. (3.15,18) and (2.27,28).
188ee, e.g., E. Jahnke and F. Emde, Tables of Punctions (Dover: New York, 1945), p. 25.
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F(n+l,x) = g at e~ ", (5.12)
namely:
T(n+l) = P(ndl,x) + x"HA (x) . (5.13)

b. The Exponential Integral

The exponential integral Ei(z) is the éﬁalytic function in the complex plane
defined by?

(d/dz)Ei(z) = eZz"1 , (5.14%)
Ei(-=+01) = O , | ' (5.15)

whence
Ei(z) = _z ag efet (5.16)

For z = 0 the integral has a logarithmic singularity; therefore the complex plane is
8lit along the positive real axis from zero to infinity, and the principal value of
Ei(z) is defined by (5.16) if the path of integration from (-=4+01) to z does not cross
the positive real axis. There secems to be no established convention for the definitilon
of the principal value of Ei(z) on the positive real axis. vFor the present analysis
it is advantageous to let the positive real axis belong to the upper right quarter
plane.
Expanding the exponential in (5.16) and integrating term by term one obtains
Ei(z) = K + logz + ; z%/nin , (5.17)
n=1

since the convergence of the series (5.17) is obvious {the series converges more
strongly than the exponential series): The value of the integration constant K depends
on whether z is located in the upper or lower half of the complex plane; this 1is due to
the fact that in the definition of Ei(z) it is customary to adopt a cut along the posi-
tive real axis, whereas for logz one adopts a cut along the negative real axis. It
should further be noted that for logz the negative real axis belongs by definition to

the uéner left quarter plane; for this reason it was convenient to include for Ei(z)

1930e reference 18, p. 1.
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the positive real axis in the upper right quarter plane. We shall now evaluate the
constant XK. TFrom Eg. (5.17) follows
z £,-1 2 -1
K = Lim [Ei(z)-logz] =Lim ( f dL e>y ~ - fdaL ¢ ) . (5.18) i
z—0 20 -0 1
We adopt the paths of integration indicated in Fig. 6; they comply with the conventions

discussed above. We then obtain for the constant K

a

Fig. 6. Paths of integration for the evaluation of K: a) Im(z) = 0; b) Im(z) < O.

-1 -1 |
K= fdafebed + Lim ? ae(eb-1)e? - { at ¢t ¥
-0 z—0 -1 i

-] _ 1 _ _ -1
1y g at(1-e %)t - fag gl
1

The last integral is different according to whether Im(z) = 0 or Im(z) < 0, and yields

+ml, respectively; hence

C-m1 1if Im(z) =20 ,
X = { (2) ’ (5.19) ;
C+m if Im(z) <O, :
|
where
-] —t 1 1
C=-fateTt™h 4+ [ a(1-e7t)p7 (5.20)
i 0
is Euler's constant.
For real x Eqs. (5.17,19) yield
o
E1(x) = C + log|x| + £ x™/nin, x<O, (5.21)
n=1
«© 1
Ei(x201) = C + logx + £ x/nin¥m , x> 0 ; (5.211)
n=1l

by definition:
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Ei(x+01) = Ei(x) , x> 0 . (5.22)
It is now useful to define a new real function EI(x) by means of
ET(x) = 3[Ei(x+01) + Ei(x-01)] ; - (5.23)

in view of Eqs. (5.21-23) we obtain

EI(x) =Ri(x) , x< o0, (5.24)
El(x) =Bi(x) + 71, x>0, (5.241)

and explicitly
EI(x) = C + log|x| + rE,l «/nin | (5.25)

which holds for positive and negative values of x. EI(x) 1s a function different from
Ei(x); 1t 1is only defined on the real axis and is not an analytical function in the
complex plane. Its importance is based on the fact that it is also given'by the inte-
gral
X ]
FT(x) = fat e®t™l = - fat e P71, (5.26)

s -X

if this integral is interpreted for positive values of x by its principal value. This

1

is easily verified by integrating ez” along the path indicated in Fig. 7; this yields

Fig. 7. Path of integration for the relation
between Ei(x) and EI(x)
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forx >0
=€ t x t
Ei(x) =Lim ( fdt e/t + f dat e’/t) - 71,
€—0 =~ €
or, because of Eq. (5.24!),
€ t x t
Ei(x) = Li% (fate’/t + [ dte’/t) . (5.27)
€e~0 -= €
For negative values of x, Eq. (4.26) is obvious in view of Eqs. (5.16,24).

The exponential integral which occurs in Section ¥ actually is the function ET(x)
22

in all instances. However, since numerical tables““ mostly use the notation Ei(x) for

the function EI(x), we have also written Ei(x) instead of EI(x) in Section &.

¢. Connections Between the Functions\An(x) and the Exponential Integral
From Eqs. (5.2,1%,26) follows

- (-a/dx)"1E1(-x) = - (-d/dx)"HET(-x)

= (-a/ax)™(e*x71) = A (x) . (5.28)
Now the generalized exponential integrals En(x) are defined byao
Eq(x) —e 1, E(x) = - Ei(x),
o (5.29)
(n-1)1Ey(x) = (x)"7Ey(x) + &7 T (n-2-k)1(-x)¥ , n=2 .
From Eqs. (5.29) follows the differential relation
('d/dx)En(x) = En-l(x) y n=z1l, (5.30)
and the recurrence formula
(n-1)E_ (x) =e*-xE ,(x),nz1; (5.31)

if we eliminate En_l(x) from Eqs. (5.30,31) we find the second differential relation

(-d4/ax)[E_(x)x™*1] = e*x™ , n>0 R (5.32)

20g¢e: g. Placzek, "The Functions En(x)”, and J. Lecaine, "Integrals Involving the
Functions En(x)", edited by the National Research Council of Canada, NRC No. 1547 and
No. 1553. Our definitions are those used by the Canadian authors.

21A1though Eq. (5.32) has been established by this derivation only for n » 1, it 1is
easily verified that it still holds for n = 0.
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If Eq. (5.28) 1s rewritten as
Ap(x) = (-a/ax)™1E) (x) = (-d/ax)"Ey(x) , (5.33)
it becomes apparent tnat the functions
...En(x)...Ee(x), El(x), Eo(x) = Ao(x), Al(x), Az(x), ...An(x)...

form one sequence in the sense that the operatilon -d/dx applied to any member of the
sequence produces the next member to the rigﬁt.

The relations (5.32) suggest that it should be possible to express the functions
cab'yb€ for a < 0 by means of the functions El’ E2, ooy Elal. Although this was found
to be true, this procedure proved to be less simple than the one described in Section
4,

d. Numerical Computation of the Function ET(x)

Several methods are available for the computation of the exponential integral in
cases where the available Tables22 are not sufficient.
(1) Computation by means of the expansion (5.25). This method is particularly easy for
small values of |x|, but it 1s also feasible for larger values of |x]|.

(2) For very large values of |x| the asymptotic expansion23

EI(x) = (% 1) (14x+21x 2431x70s ...) (5.34)

can be used. However it cannot give even 10 significant figures for x < 20.
(3) A new method of computation was found convenient in conjunction with the functions

An(x). By virtue of Eq. (5.28) one has the Taylor expansion

EI(x+h) = El(x) - £ (B (-x) , (5.35)

which 18 useful in the intermediate region where the expansion discussed under (1)
converges but slowly and the expansion mentioned under (2) does not yield enough

significant figures.

This method proved particularly convenient in conjunction with Kotani's

22Tables of Sine, Cosine, and Exponential Integral, National Bureau of Standards
(N. Y. M. T. P., 1940); Mathematical Tables of the British Association for the
Advancement of Science (London, 1931), Vol. 1, p. 31.

23See, e.g8., E. T. Whittacker and G. N. Watson, Modern Analysis (Cambridge University
Press, 1946), p. 150.
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tables,au which give values of the functions Ei(-x) and An(x) for x-values up to 24
in steps of 1.0 or closer. Thus EI(-x) was easily obtained for any argument value
> 15, where no tables exist and where the asymptotic expansion was found to be in-
adequate. For 10 < x < 15 this method was preferred to the use of Everett inter-
polation in the British Tables,22 since the avallable tables of Everett coefficients
did not have close énough entries. Finally the method was also used with ease for
x < 10 in order to obtain more significant figures than present 'cables22 provide. .
The computation of EI(x) for x > O by means of Eq. (5.35) requires the func-

tion An(-x). By virtue of Eq. (5.4) the latter can be constructed from the func-
tions An(x) and Bn(x), which are contained in Kotanits tables.

(4) Another method for computing exbonential integrals has been used by Kotani;al+

namely the expansion

“EA[-(x+h)] = - EI(=x) + e® T (-0 (n) , (5.36)
n=
where
Ky(h) = nt - 0™ (n) . (5.37)

Eq. (5.37) follows from

X+h -t -1
-EI(-x-h) + EI(-x) = - f dt e "t
x
h © h
=-eX[at e txet) T =e* ¥ (x)™fat e b0
(o] n=0 0 1

and Egqs. (5.11,12,13). The functions K (h) defined by Eq. (5.37) satisfy the re- ,

currence relation

~
52
I

n = K _,(h) - nle ™" ’

-h

(5.38)
1l -¢e

a3
]

Approximations of the exponential integral by rational functions (quotients of two
5

~

polynomials) have been given by Hastings.2

2‘*See (1), Section 5, for a description of these useful tables.

250. Hastings, Approximations in Numerical Analysis (The Rand Corporation, Los
Angeles).
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q q _a - - - qQ - - -
{q,_°lg d(L6)e-, "d(cerigaryX) 9~ d(Blri-NELE - ¥02-H )+, I(BILT-F60GT- %88~ ¥G)E+

L

Ana+ﬁvAommuz:wmumgwaunuvwmuAﬁ+zv + aanoﬁzmaAn+uvmﬂalzvm-mmmAwd-umauwgvmﬁauuvn+

2 9(BE-HTiH=g¥9L-¥G) (T-3) €47 d(06-49T~5¥) (T %) 9T+(OLE-WHGE5 LT~ ¥) (T+2)9¢ ] V- (17g)g-Y€/R) = 1op

Tsos - ¢ T02°T = 3gh‘d  (L2)

Ana-mﬁpnaAm-gmv-mnqu-gNHvAﬂ-uvm+mpaﬁmm+gow-mgoovAﬁ-gvm.

L

P9(€2r08+,209) (T+1)C+, P8(62+309+,90€ ) 5 (T43)2T+( "I(9/T) 45 9f+ "4T)  (T+4)04981, (T-) “}o-(19)g-%92 = 4ap

Anq-

(624509~ ,90€) 5 (T-3) 2T+ 9(9/T)+, A07+3d+T) | (T-3)098), (T+) + ma-mﬁpmaﬁN+umv+mmahm+gwﬁvAﬁ+uvm+

o[, M (1-32)3-4 d(2-26) (T-)+

Ag/ ot roave. @ e w5 (T a A4z, q - . ey ‘
¢ S(eHT-¥2T) (T-¥)¢-, d(6T+¥0R-5¥08) H(T-¥)+( d(9/T)+5 93+ 9+T), (T F)orHT] (T+¥) + ma-mﬂm (e+¥g)+

it

épe
T'4q

0

Q4 dQN = ‘Hoo

CPI(TH) (T41) 21+, I(ET+01+102) (T+1) €+ (PI(9/T)+5 05+ THT) (THNOMTI (T-2) -}y (TH0) - "y

IsDs>0 ¢ o022T = 3gk‘d  (92)

{a,_

mﬁmnmﬁH-u:Vn+mnaﬁw+u::-muo:vm-znaAH-umvaH'uvowH+nn¢Am-u:vNAH-zvomm+mpaAHﬁ-aNHvaa-uvown+

(Y8+T) (T-7)0nggl, (T+¥) + mQ-mHme+NmQAm+g=vn+mmaﬁmﬁ+uzmvAﬁ+gvm+mquN¢+gxmﬁ+maomvAﬁ+gvn+

amqﬁn+umvnﬂﬂ+uvomﬁ+mmaAm+a:vnﬁﬁ+gVowm+mmaﬁmﬁ+umﬂvmﬁﬂ+zvomm+AmQ+HV¢AH+avoamm_mﬁﬁ-av -VAH-RVH-AH+sz-mQN =
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TWO-CENTER INTEGRALS.

HAnqvﬁ<+Anavm<:|Anavm<w+ApaquiuAnavm<_mnqﬁmﬂ\Hvu = nalmﬁmna+¢pamﬂ+mpam0a+wnaom¢+nmm:m+msmvm-na:m- - Howﬁ.aum
Anaumﬁmnaﬁm+arnmuv+:naﬁmm'nmﬁ+mzm|msznmnammwﬁ+gmwnmz¢#+mziﬁuiumvw+
NnaAmmm+ummﬁnmz:m+mumn-:umvmH+AnQ+HvAww:+ummmnmz::ﬁ+muom|:zwvwH_mAﬁ+uv + manmﬂmmamﬁﬁ|uv+
:maﬁn+2m|myvNAH-zvAﬁ+uvuw+meAHa+2mumu:|mamvmﬁﬁuzvmﬁH+gv©+mmaﬁHma+2wmumumm+muo:|#20HvNAH+2VAﬁnavw+

BI(HTHITL- 09+ H1E- 48) 5 (T+) (T-3) GTH(BIHICLE- W AHTH 06~ 38)  (T¥)8T] ~}5_ (T-¥) "0 = 1,7 Ta

HAnava<+Anavm<:aAnavm<©+ﬁpavb<x|Apavm<u:nqmaAmH\Hv = nqnmAmpm+:namﬁ+nnamoﬁ+mnaom:+nam:m+m:mVwupamazm = Howﬁ.mum

Anaumﬁmnaﬁmﬁuuwlwuv+:nqAH>+u:N+mamungvan.

anAHmn-uaﬁﬁ-mamn+mum-:zvm+mnaﬁnmmﬁ-now:-muanﬁ+mgmm-:gmvm+ApQ+HvAmm#-zmwa-muﬂm+nezﬁ-:umVwmHNAH+2V +
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e k-] ) .
mq|mﬂa aﬂwnkmumam|muvmﬁﬁuzvm+n Qhﬁmnum+mum-muvwﬁﬁnzvAH+nvw+m QAbmmnummwumxmw+ma#muxumvAﬂumzv®+

mQA:mH-umm+mumH-mzmvNAH+uVAﬁ-uvmm+Awmz-umwﬁ-mzﬁm+mudﬁ-:umvNAH+uvmm -wm-ﬁﬁ+uvm-naw 102 a

f

{1(39)Sv+ (%) Sve-(U) Lv1g-1(9) Tue (39) Sva- (19) Swge (19) Lvn- (19)Cv1 %0y Fd(2c /1) -

]
-
-
LY
'
L]

pa-mﬂAmnq+;nama+nn¢m>+mnamww+n¢onw+onwvmAmna+:n¢ma+mnamoﬁ+mnaom:+namam+m:mvm-pammaw_m-nam- 02
{q,_°lg d(TT+a)+, Sd(GH) (9T-2)2-
nnaﬁwoﬁa+amwﬁ+mumm-nzmv+mpaﬁmo::+uﬁnp+manoﬁ|M¥0ﬁV+Ana+ﬁvA¢Nw+amnﬁ+muom-mumvmﬁHwﬁﬁ+uv +
aqumﬁawaﬁw+2mvNAHuxv+mwaﬁooa+z>w+muaanmumvmAﬁnnV+meA:Hw+umﬁm+mumpnmuOﬁvAaumuv+

aaAmmm+unoH+mumH-numvAH-NgVNH+A:mm+ummH+mgom-numvNAH+uVmHu .wﬁ-ﬁﬁ-muva-naﬁ-aam = ﬂomﬁ.mJn

(penutjucd) IIIX FTIAVL




RUEDENBERG, ROOTHAAN, AND JAUNZEMIS

aanpm-awﬁ:muvmaﬁ-avAﬁ+uv-nmmAmNH+u>oH+mg:H-mumVNAH-avAH+av+meAomoﬁ+zﬁmm+memw-muoﬁVNAH+uVAﬁ-uv+
d(922HACOTHHGT- H2) ,(T+¥) (T-¥) BTH( hEGHIELT+,¥02- 32) (T+¥)2T] -vn-ﬁﬁuavm-mam = o £q
(1(%9) Ty-(Y0)Sy- (V) Lyz)ar-
HAnAVH<-An¢vm<m+Anavp<m-Anqvm<_mmawmnam¢Awm\Hv = qy mHAwna+mnaw+:nam:+mnamma+mn¢mﬁm+aQoomH+omev-

(4 gy p&:”+

a a q q ay ® Q4eq - T
ar” amoﬁ+m Qmmm+m dag) T+ aom>n+ompmvm- am Q_w- d-d It g

L

mn?m Hmadat& |mo.2ma+awv :n:o.& w:fumw.vmamvm..

£ 19(996-429%-51g2- ) ¢+,99(98BT-YB6GT- ¥ T6- ¥S) £+ ( I0+T) (0CC-1Be- ,¥LT-(¥) 91, (TH) +

aa-mﬁmaanﬁﬁ-gvn-:maﬁm+¥vmﬁﬁ-gvAﬁ+gvm-maaﬁgp-uwﬁ-mgvmﬁﬁ-gvAH+¥vn+mmqﬁo##-g#m-mgmvmﬁﬁ+¥vAﬁ-avn+

Bd(06-49T- %), (T+¥) (T-%)96+(0EE- 4482, ALT- ) H (TH)9€] -}y _(T-3),_(T+a)¢_Yd(c/e) = (1 T W a

ITsos - ¢ TTIT = 294‘d  (82)
{qy 2l (-3 H(4-2G) (T-0)r2- 9(€-32) 5 (T-¥) 0T+
mpaﬁﬁﬁuao.nvmﬂﬁumvowﬁina+3m:..avomnix:+5 + e o:..ma+ m&H+zvmﬁ+mm&nw+f~wv.ﬂH+u&n+

d- 9

144

y O(€24302) 5 (T+9) 2T+ Pd(S+32) L (T+3) 08T+, (CTHIOT)  (T+3) 08T+( P4T) , (T)02En ] (T-%) -} (T-3) 1 (TH0) "k = 105110

Anauoﬁmnaaunm:

() (1-%)9- 19(8-75) 5 (1-1)2T+,79(82-752) 5 (T-3)2T+( W4T) (T-0)02L] (T43) + 5 2lg 0+ d(THM)6+

y I(L439) (T43) 9+ BI(2T435) , (T43) 2T+, "d(2E+3G7) , (T43)2T+(PI4T) L (T43)02L](T-¥) ~}(T-3) 1 (143) Y, Py = ;1%
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II1

TWO-CENTER INTEGRALS.

[(%9) Tv-(Y9)ve+(Y0)bve-(19)Ov1 M(91/1)- =  o(y 0+ ohT+

q q q q Aq._ _
a4.%(g : QmOH+m ammm+m dggl) 1+ aom>m+ow»mvm- dg

#
Ag( -y~ 2 -
lq, %l I(h-%) - I(TEHACT-aC )2+

:naAowH:aﬁm+mzmm-mumvm-nnaAmow+uum:|muwom+muwoa¢uwvm+mnqAowum+n>nmﬁnmu:w>+mzwownauo:vn+
Ana+ﬁvAww:+umbmumgsaﬁ+nuom::umvmmHmAH+2v + anoﬁmmamﬂﬁngVn+:manma+uw-wzmvNAﬁuavaH+avn+
) MMaA:m+gp+mg;-nz:H,¢xmvNAH-QVAH+¥vm+mmaﬂ:mo+2mﬁm-mgomm+m¥omﬂ-:uo:vNAH+¥VAﬁ-avn+

FA(SHTHITL- X9+ WS~ ¥8) 5 (T+¥) (T-%) 9E+(BBI+HGLE~ IMAT+ OG-, 38) (THN) ] -}, (T-¥)¢_"d2 =

HAnqva<-ﬁn¢vm<m+Anavw<m-Anavm<~:namuAmH\ﬁv = na-mAmpa+mnqaﬁ+¢pamoﬁ+nnammm+mnammuﬂ+naomum+owpmVm-pamaw

mnaumﬁwnqﬁm+wv»mnmﬂwwnuomnmkmv+inaﬁmma+amm+mnnHaMumvm-nnqAmmm-ummw-muuN+mwa|=umvm+

2 O(2T82-AGL6-ATe+ HrL- HOT)CH+( IO+T) (96H-HCLT- A TGHIT- ¥2)9C ] ,(T+3) + ma-mﬁmmamhamuvn-

amaama-avaﬁ-uvAﬁ+gvn+mmaAwOH-uHN+mum-numvaH-gvAH+gvm+mmaAo;w-uuom-muﬁmﬁ+nuomj:goﬁvAﬁ-muvm+
maﬁ:nﬁ-amm+mumﬁ-nzmvmﬂﬁ+uvAﬁ-uvwm+Aom&-amwﬁ-muﬁm+maiﬂ-azmvNAH+uvmnu -vm-AH+nvm-nam =

{0(99) Ty-(9) Sy- (V) Lve 4~

[(Y9)Tv- () ver () dve-(9)0v1 %) Yd(zc/1)- = nq-oﬁAmna+mnam+¢nam:+nnammﬂ+mnamﬁm+naowwﬁ+owmav-
(o d+¢ YT+, YoG0T+ Ydcac+, Ydcgut+WogLcrogLe) , Y, Pdc ] Y- =
mnaqwﬁwn¢n+mn¢Anﬁ+zvm+znaA:mmuwﬁumuVnlnnquwnﬁ+uHHm+mummnnumv+

anaamm:+nbmb+mkwoﬁnnu0HV+An¢+ﬁvA:mm+ammﬁ+mxomunnwvmﬂHﬂﬂﬁ+uv + mQrmHmﬁQAm+uvnAﬁuuv+
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*Hquvﬁ<+Anavm<-Anavm<-Anavp<_m-HAnavﬁ<+Anva<#-Apavm<w+Ap¢v~<:-Anavm<_mevmpaﬂmn\Hv- -

na-mﬁAmpa+:nam+mnam:+mnaoma+namﬁm+manv-Amn¢+:namﬁ+nnamoﬁ+mnaoma+nam:m+mamVN-namman_m-nq:- = 200" = @

‘ q
Apa-mﬁmn¢m+:pmﬁ:H+uvm+npaﬁxm-amﬁ-mgVm-mnqAmoﬁﬁ+gmpﬁ+mgnm-mgmv+ﬁ +T) (H2GHABETH,¥02-H2)E]5(THY) +
manmm:maﬁm+uvaH|2V+MM¢ANN|uma|NzVNAHmuVummaﬁmom+ﬁﬁmﬁ+mubaunxwvAaumuv+
B(gRaICOTHIOT-HT) (T~ ¥ )+ (REGHIBLTH5A02-32) o (T4 )] “3-(T5%) - 297798 = 500" “a
(1030 Ty () Ey- (39) Sy- (%) Ly az-[(30) o () Sv= (30) Swo (38 = (89) Ow1, 9y 1970 96/T) =
a4, 4 q q A4 _¢ 94, @ q q .a qq ® q4ey, - T4~
na-wﬂﬁm oy d6+ dGir+, dOGT+ IGTE+GTE) (g 0+, 96T+, dGOT+, 1doeHr+ IGHE+GHE) 5 d,7d]5."d = goo " &

Apanwﬁmnaﬁm+2v|:naﬁma+uﬁﬁvnnmnaﬁwaﬂ+umw+munvnn

Nnahw::numhm|muomumuvm+Anq+avAomnuu:wmnmnpﬁunuvmuAa+¥v + wanmﬁxmamﬁﬁnzvnumm¢A©+zVmﬁanavmn

_0(g8-agT- ) (T-5#)£+79(06-39T- ) (1) 6+ (0LE-4B2-gALT-¢¥) (T+)6] (1) 9(€/8) = o0 M@

ITsDo3 4 f 200°T = k9 (62)
na-mnaﬂaﬂuzwav+

Ana-uﬂm

:pamhﬁ-uvoo-mnaﬁm-uvaﬁ-uvpmﬁ+mnaﬂw-amvaH-uvowﬁ+ﬁna+ﬁvaH-zVo::ﬁ_mﬁﬁ+uv * ey 3l g d+g Pd(TT4¥2T)+

#mamﬁﬁ+avom+naaﬁm+gvNAH+uvoma+mmaﬁm+umvNAH+uvomH+Ama+ﬁVmAH+uvo:¢HumAH-uv “H (1) g det = (1T
Ana-mHmpq-mnaﬁm-zmv+:namAH-gan-anAHH-umvNAH-QVNH+NDQAHn-gmNVmﬁH-zvNH+AnQ+HVnAH-gvompumAH+gv +
wmrmﬁmmam+amaﬁﬁ+uv:m+nmaAm+zmvAa+zvma+meﬁmm+ummvAﬁ+aVNH+AmQ+ﬁVNAH+uvomwunAﬁnav uwﬁﬁnnvaunaauma: = ﬁﬁﬂﬁoo
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II1

TWO-CENTER INTEGRALS.

aq. 4 ‘
{q  °lg 9 QAH-aVmﬁ+nnquH-avom-mnaﬁm-awvNAH-avom+Ana+ﬁvmﬁalavownunﬁﬁ+zv +

vy 2lg Oty "HTH)2TH "9 (143) 09+, %d(C432) , (T43) 09+(Pd+T) (T+%)09¢ ] (T-3) ~}(1-)¢_®dgy
{q_2lg 3=y HI(T-2)6+ 5 (T-2)9¢-;99(8-7G) o (T-2)2T+(I0+1) L (T-0) 0BT I (T4¥) +

ma,oﬁ:QO+nquﬁ+mv:m+mmaﬁw+¥mvAH+2VmH+AmQ+vaAH+uvomHunﬁa-nv -wﬁﬁ-amﬁ-na:rwmmﬁ

[(39) Tu () Cun- (V9) Swge( 9) Lua- (39)Ov 1 Yd(o/1)- = 5. 3(g o+, 95T+ N9got+, Yoz IGH64G46) o _Vdhna-
Q474 -3y~ 94 -

{q, g 9(h-2)- "d(2esa6-gaz)c+

¢ H(09T-ATg+ 32~ ¥9) -, VI(2gT+368- i+ T, 32) TT+( T0+T) (BBIHIGLE- N+ YOG~ 38)6 ], (T+¥) +

® ey,
maumﬁn amaﬁuuvn+m QAMH+uw«NumvAﬁ+uvNﬁﬁuuvn+mmaﬁmmﬁ+zomnm2om+mumm-:awvAﬁrmkvm+

it

® )
QAN:H+2HNrmgow+n¥:n|:¥wvAH+2VAﬁuzvm+Aww:+nmwmsmxzﬁﬁ+maomniuwvmAH+uvmu |anAH+uv:un¢H|maw

[0 Twr(99) - (39) Swge (W) w09 B B0 (91/1) = o) 3(¢ 0, Ydate Ygon+, Moz dsu6rsn6) g 9%z

AnaumﬁmnaAm+uvnznaA:mnuwumuvm+

nnaAwwH+umm+manH-nzmvn-mpaAann-u#ﬁﬁ-mumm+ngm-:uvm+Ana+ﬁvAmma-anpﬁ-muam+mnaﬁ-a2mvm_AH+uv +
e e e
ma-omz QNAH-uvn-n QAmH-uvaa-zvm+N aﬁmﬁﬁawﬁﬁﬁ-mumm+muoﬁlaumvAa-avn+
maﬁimﬁ-umn+mumﬁ-numvAﬁ-mavm+Ammi-znpﬁ-maﬁm+naaﬁ-:umvAH+uvm_ ~} () Ydg =
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RUEDENBERG, ROOTHAAN, AND JAUNZEMIS

TABLE XIV
EXPLICIT FORMULAS FOR C-FUNCTIONS IN THE CASE p # 0, 7 = O
Note: C-functions with negative a are obtained from the corresponding D- and E-func-

tions listed in the table according to Eqs. (4.6,11).

Functions with y+6+2¢ = 0

(1) B,vée = 1,000 ; -l&a<kh
D 000 _ e P
E_l,looo - -p L(14p)eP
€010 = ~[(1/2)+(2/2)ple™P
€1,%%0 = -[(1/2)+(1/2)p+(1/6)p%)eP
Cp10%0 = -L(3/)+(3/4)p+(1/3)p2+(1/12)p>1eP
051%%0 = ~[(3/2)+(3/2)p+(3/4)p%+(1/4)p7+(1/20)p* 16 7P
0,10%0 = -[(15/4)+(15/8)p+2p2+(3/4)p7+(1/5)p *+(1/30)p 1 P
(2) B,y%e = 2,000 ; -1<a<hb
D_y 2% = -[(7/2)+(3/2)p]eP
= p H(2+2p4pB)e P
c;2°°° = [(1/2)+(1/2)p+(1/3)p%1e™P . -
01270 = [(3/8)+(3/4)p+(1/3)p%+(1/12)p°]e™P
Cpp’% = [(3/2)+(3/2)p+(2/3)p%+(1/6)p7+(1/30)p"1e 7P
05,°%0 = [(15/8)+(15/8)p+(7/4)p%+(1/2)p7+(1/10)p"+(1/60)p71e P
Cy20% = [(45/8)+(45/%)p+(11/2)p+(7/4)p7+(2/5)p"+(1/15)p%+(1/105)pC1e P
(3) B,¥6e = 3,000 ; -l<a<3

D_, 090 = [(23/2)+(11/2)p+(11/6)p%]e™P

E 000 - -p-l(6+59+392+pj)e-p
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TWO-CENTER INTEGRALS. III

TABLE XIV (continued)

= -L(3/8)+(3/%)p+(1/2)p2+(1/4)p 1P

= —[(3/2)+(3/2)p+(3/4)p%+(1/4)p7+(1/20)p" 1e7P

~[(25/4)+(15/8)p+(7/4)p2+(1/2)p+(1/10)p*+(1/60)p 1P

[ (45/5)+(45/4 )p+(21/4)p24(3/2)p>+(3/10)p"+(1/20)p5+(1/140)p ) e P
() o,ybe = -1,000 ; 4 <P €9 |

= -[(189/4)+(93/4)p+(59/6)p>+(25/12)p> 1P

p'l(24+2‘4;>-’0-12‘:2+4p34—9“L )e P

= [(477/2)+(237/2)p+(623/12)p2+(149/12)p 7+ (137/60)p" 1e P

e o ko e 1

[ (5TH5/4)+(2865/4)p+(1267/4)p2+78p+(86/5)p  +(49/20)p7 e P

= p~1(720+720p+360p2+120p>+30p +6p7+p0 )e P L

e e e+t e g+ 2 e T

- [(40275/%)+(20115/4 )p+(8923/4)p2+(1109/2)p>+(1259/10)p *+(403/20)p°

+(363/140)p81e P

4

= —p~1(5040+5040p+2520p24+840p >+210p *+42p+7p04p T)e P

= -[(61+4805/8)+(322245/8)p+(71555/4)92+(-35695/8)93+(20‘+29/20)pu+(3359/20)p5

+(1767/70)p%+(761/280)p 1eP
= p~}(40320+40320p+20160p2+6720p >+1680p *+336p 74560548 T+p8)e P
- [(1451205/2)+(725uu5/2)p+(1289265/8)p2+(322005/8)é3+(369627/uo)p" :
+(15323/10)95+(33101/1uo)p6+(7969/280)p7+(7129/2520)pe]e‘P
6

= -p~1(362880+362880p+181440p2+60480p >+15120p *+3021p+504pC+72p T+9p84p9) e P
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TABLE XIV (continued)
Functions with y+6+2¢ = 1

(5) B,yde =1,100; -2<a€?3
= p H(643p)e™P

92 (343p+p%)e P

-p 1 [643p+(1/2)p%1eP

= p 2(3+3p+p°)e P

= -[(1/6)p+(1/6)p%1e™P

SL(1/8)p+(1/4)p2+(1/12)p7 e P

= -[(1/2)p+(1/2)p2+(13/60)p>+(1/20)p* 1P

SL(5/%)p+(5/8)p%+(3/5)p>+(11/60)p +(1/30)p01e P

(6) B,ybe =2,100; -2<€a=<?3

-p Ll2u+12p+(7/2)p%)e P

_2(

P 12+12p+5p2+p3)e'p

o~ [24+12p+(10/3)p2+(1/3)p le P

= -p 2(12+12p+5p%+p° )e P

[(1/12)p+(1/12)p%+(1/12)p e P

= [(1/%)p+(1/%)p2+(7/60)p+(1/30)p" 1o P

[(3/8)p+(3/4)p24+(1/3)p2+(1/12)p"*+(1/60)p°]e ¥

[(5/2)p+(5/2)p2+(23/20)p>+(19/60)p™ +(5/84)p5+(1/105)p8]e P

(7) B,¥be = 3,100 ; -2<€as=?

= p 1[120+60p+(125/6)p%+(23/6)p>1e P
= -p"2(60+60p+2Tp24+Tp 4p " )e P

242

e

— e




100
E'l’3

100
03 -

100 _
13 N

100
Coz™ " =

c

c

010

0l0

0l0

TWO-CENTER INTEGRALS. III

TABLE XIV (continued)
-1 2 3 boo-p
= -p T[120+60p+(247/12)p"+(43/12)p”+(1/4)p " e

= p 2(60+60p+27p2+7p 4p" e P

= -[(1/2o)p3+(1/2o)p“]e'p

~L(1/%)p+(1/8)p2+(3/20)p2+(1/15)p +(1/60)p5]e P
~L(5/8)p+(5/5)p2+(3/5)0>+(11/60)p™*+(17/420)p7+(1/140)p51e P

(8) pB,yée =1,010; -lsa=<kb

-p°1[6+3p>+(3/2)92]e'p

p 2 (3+3p+2p24p°)e P

[(1/3)p+(1/3)p21e™P
[(1/4)p+(1/4)p%+(1/12)p>]eP
[(1/%)p+(1/4)p2+(7/60)p+(1/30)p " Je P
[(1/4)p+(1/4)p2+(3/20)p7+(1/15)p*+(1/60)p% ] P
[(1/20)p%+(1/10)p™+(3/70)p%+(1/105)p1e P

(9) PB,y6e =2,010; O€a <3
-1 (5/12)p+(5/12)p%+(1/4)p71e P
~[(1/2)p+(1/2)p%+(13/60)p>+(1/20)p" 1P

~L(3/%)p+(3/4)p%+(1/3)p7+(1/12)p *+(1/60)p% e P

-[(5/8)p+(5/8)p2+(3/5)p +(11/60)p +(17/420)p5+(1/140)p81e P

Functions with v+6+2¢ = 2

(10) PB,y0e =1,200 ;3 -3 €a <2
= p'2(24+12p+3p2)e'p

-p -3 12+12p+5p2+p 3 )e™P
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RUEDENBERG, ROOTHAAN, AND JAUNZEMIS

TABLE XIV (continued)

D, .200 _ _5=2[60430p+(15/2)p24+(1/2)p le P

E_2’12°° = 2p 72 (15+15p+6p+p”)e P
D_y 12% = p72(60+30p+(43/6)p%+(1/6)p- (1/6)p" 1e P
_1,120o = -2p”7(15+15p+6p°+p° )e P

% €,,2%° = -[(1/4)+(1/u)p+(1/6)p2+(1/1zﬁp3]e'p

r T €)1%% = -[(1/2)+(1/2)p+(7/20)p24+(11/60)p >+ (1/20)p* 1P

200 [ (5/4)+(5/8)p+(9/10)p%+(29/60)p>+(1/6)p *+(1/30)p5]eP
(11) B,yvée = 2,200 ; -3 &€ a&€2

| D_5 2% = -p~2(156+78p+(49/2)p%(1/2)p7 1P

E 200 p'3(78+78p+3492+8p3+pu)e'9

-3,2 =
D_p 52% = p72[360+180p+(337/6)p%+(49/6)p>+(1/3)p*1e P
E_2,2200 = "29—3(90+90p+39§)2+9p3+pu)e'p

D_, 290 | _072[360+180p+(223/4 )p2+(31/4)p +(1/6)p" - (1/12)p5]eP
E_l’zeoo = 2p'3(90+90p+39p2+9p3+p4)e'p

Cop"0 = [(1/2)+(1/2)p+(7/30)p%+(1/15)p+(1/30)p* 16 P

¢,,2% - [(5/8)+(5/%)p+(13/20)p2+(7/30)p>+(1/15)p*+(1/60)p5]e P

Cpp2%0 = [(15/4)+(15/4)p+(21/10)p%+(17/20)p +(53/210)p *+(11/210)p"+(1/105)p%1e P
(12) ‘B,vée =3,200; O<a<l

02 - ~[(5/4)+(5/8)p+(11/20)p%+(2/15)p>+(1/30)p*+(1/60)p5 ] P

015290 = ~[(15/8)+(15/8)p+(T/4)p2+(1/2)p7+(8/35)p*+(13/420)p%+ (1/140)p81e P

2k




TWO-CENTER INTEGRALS. IIIX

TABLE XIV (continued)
(13) PB,v6e =1,110; -2€a &3

o T e

D_, .10 = —p72[60+30p+(27/2)p24(7/2)p 1P

- 9-3(30+3Op+15p2+5p3+pu)e-p

D_y 1120 = p 2160430p+(79/6)p%+(19/6)p7+(1/3)p" 1P

= -9-3(30+30p+1592+593+pu)e;p

Coqy 120 = -[(1/4)+(1/4)p-(1/12)p le™P

01,710 = -[(2/2)+(1/2)p+(1/10)p2-(1/15)p>- (1/30)p* 1e P

Cpy 110 = ~L(5/8)+(5/4)p+(2/5)p®-(1/60)p - (1/20)p"- (1/60)p TP

1 05,110 = ~[(15/8)+(15/4)p+(3/2)p%+(1/4)p - (1/28)p"- (1/28)p5- (1/205)p51e P
(14) B,vbée = 2,110 ; -2 <as?2

D, 110 = 5 2[360+180p+(481/6)p2+(121/6)p +(23/6)p" Je P

E_, ,119 = _573(180+180p+90p2+30p +7p +p7 )e P

]

-2,2
D-1,211°‘= —p~2[360+180p+(319/8)p24+(79/4)p>+(7/2)p*+(1/4)p71e 7.
21,2710 = p72(180+180p+90p2+30p7+7p *4p°)e P

€., 110 o [(1/2)+(1/2)p+(3/20)p2-(1/60)p>-(1/20)p"1eP

€120 = [(5/8)+(5/4)p+(2/5)p%-(1/60)p>-(1/20)p"- (1/60)p7]e P

Cppt10 = [(15/8)+(15/4)p+(27/20)p2+(1/10)p>-(17/210)p"- (13/420)p5- (1/140)p81e P
(15) B,y6e = 1,020 35 O<a <3

C %20 = ~L(1/M)+(1/H)p+(1/3)pP4(1/4)p7 )P

0,920 = -[(1/2)+(1/2)p+(7/20)p2+(11/60)p7+(1/20)p* 1P
c21020 - _[(5/4)+(5/4)p+(13/2o)p2+(7/2o)93+(1/15)94+(1/60)9513-9

c31oeo\_ _[(15/;)+(15/4)p+(7/u)92+(1/2)p3+(4/35)p”+(13/4ao)ps+(1/140)96]e'9
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D_3,1001-= p~2(24+12p+2p%)e P
-3, 001  _4p=2(343p+p)e P
D, % - -p 2(60+30p+Tp2)e P
E, %% = 2 "3 (15+15p+6p°+p> )e P
D_, 100 « p2[60+30p+(23/3)p%+(2/3)p71e P
E, % - -2p'3(15+15p+6p p”)e P
C %% = [(1/2)+(1/2)p+(1/6)pP1e™P
01,%%% = [1+p+(2/5)p%+(1/15)p°1eP
0p1%0% = [(5/2)+(5/2)p+(11/10)p2+(4/15)p7+(1/30)p" 1P
031001 = [(15/2)+(15/2)p+(7/2)p +p 34(13/70)p +(2/1o5 yp2le P
(17) B,y6e =2,001 3 -3 <€a<?2
D_5 0% - -p"2(156+78p+21p°+2p> )e P
E_5 0% = 2p7(39+39p+16p%43p e P
D_p 200 = p72I360+180p+(167/3)p%+(23/3)p7 &P
E_g,QOOl = -2p77(50+90p+39p249p +p heP
D_1,2°°1 - -p~2[360+180p+(113/2)p2+(17/2)p7+(1/2)p 1P
21,2 = 2072(90+90p+39p%+9p %+ ptye P
Coa 0% = ~[1+p+(13/30)p%+(1/10)p°]e P ‘
0,20 = -[(5/2)+(5/2)p+(11/10)p%+(8/15)p%+(1/30)p* &P
0, = -[(15/2)+(15/2)p+(17/5)p2+(9/10)p+(31/210)p*+(1/70)p &P

RUEDENBERG, ROOTHAAN, AND JAUNZEMIS

TABLE XIV (continued)
(16) B,v6e = 1,001 ; -3 € a3
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TWO-CENTER INTEGRALS. III

TABLE XIV (continued)
Functions with v+6+2¢ = 3

(18) B,v6e = 1,300 ; -4 <as1l

D-u,ljoo = p'3[120+60p+(62/3)p2+(11/3)93]e-p

E_u,l300 = 4(60+6Op+27p +7p74 4)

D_3,1300 = -p 2[540+270p+84pP+12p 0+ (1/2)p 1P

E;3,1300 = 3p u(90+90p+39p +9p3 l‘)e'p

D_2,13°° = p 2[1260+630p+190p2+25p>+(1/2)p*-(1/6)p°1e P

E_2’1300 = -6p ¥ (105+105p+4502+10p 40 )& P

D_; 1790 = —p73[1260+630p+190p+250>+(3/4)p +(1/12)p%+(1/12)p0)e P

E , 1290 = 6p7%(105+105p+45p2410p>+p ¥ )e P

[}
[

-
=
i

Cp17%0 = -[(3/10)p+(3/10)p2+(3/20)p7+(1/20)p" 16 7P
01,790 = -[(3/4)p+(3/8)p2+(2/5)p>+(3/20)p"+(1/30)p5 1P

(19) B,vde =2,300 ; -4 <as<1l
4,200 = -pT2[1140+570p+(598/3)p%+(109/3)p 4 (25/6)p * 1P

E_ o700 = ™ (570+570p+258p2468p 4110 +p% ) P

'
=
-
n
|

D .20 = p 3[4500+2250p+766p24+133p +13p ¥ +(1/3)p"Je P
E_, ,2%0 = 37 (750+750p+336p2+86p>+13p *4p7 ) P
D_p 200 = -p~>[10080+5040p+1700p2+290p 74 (107/4)p +(5/12)p7- (1/12)p61e P

E_, 290 o 6p~*(840+840p+375p2+95p +14p  4pD)e P

D_; 520 = p >[10080+5040p+1700p2+290p +(539/20)p “+(37/60)p+(1/60)p84+(1/30)pT1e P

Ey o700 = -6p7 " (840+840p+375p2495p 7+ 14p 4p7) e P

Cop 0 = [(9/20)p+(9/20)p2+(1/5)p>+(1/20)p*+(1/60)p7 1P

2u7




s L7 O 2

01,30 = [(3/2)p+(3/2)6%+(99/140)p>+(29/140)p "+ (19/420)p>+(1/105)p1e P

120
Eona

120
Dy
120
Eaqa

120
Cor™ =
120
Ciy" =
120
Copym =

e e a

RUEDENBERG, ROOTHAAN, AND JAUNZEMIS

TABLE XIV (continued)

(20) PB,y0e =1,210 ; -3 &a €2
= -p~3[540+270p+108p24+24p +(7/2)p " Je P

o~ ¥ (270+270p+129p2+39p +8p H4p7 ) e P

= p~2[1260+630p+250p24+55p +8p H+(1/3)p> Je P

= -2p’”(315+315p+150p2+4593+9p“+p55e'p

- -p~3[1260+630p+250p2455p 4+ (95/12)p "+ (1/4)p>- (1/12)p01e P
= 2p'u(315-0»315p+150p2+1&593+9;>u+ps)e'p

_[(1/20)p+(1/20)p2-(1/60)p>-(1/30)p" 1P

= —[(1/%)p+(1/4)p2+(1/20)p>-(1/30)p"- (1/60)p7 TP

~[p+p2+(12/35)p7+(1/105)p"*- (1/35)p7- (1/105)p51e P
(21) B,yde = 1,120 ; -2<a <2

0~ [ 1260+630p+310p2+85p 0+ (43/2)p™ +(23/6)p> 1e P

0~ (630+630p+330p 241200 +33p  +7p 4p®)e P

-p~2[1260+630p+310p2+85p +(253/12)p 4 (41/12)p +(1/4)p01e P

9'4(63o+6309+330p2+1zop3+33p4+7p5+p5)e‘P

[(1/5)p+(1/5)p%+(1/60)p>-(1/20)p" 1e™P
[(1/%)+(1/4)p%+(1/20)p>-(1/30)p"- (1/60)p°]e P

[(1/%)p+(1/%)p2+(2/35)p- (11/420)p"- (3/140)p°- (1/140)p8]e P
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TWO-CENTER INTEGRALS. III
TABLE XIV (continued)

(22) PB,ybe = 1,101 ; -4 €a<«2

= p 21 120+60p+(44/3)p%+(2/3)p ]e P

o -bp~H(15415p46p%4p> e P

= -p'3(51+o+.270p+78p2+9p3)e'p

= 2p 4 (135+135p457p2+12p +p * )e F

= p~2[1260+630p+190p2+25p (2/3)p™ 1e P

= -6p~ 4 (105+105p+4502410p +p™* )e P

- -p~7[1260+630p+190p2+25p°+(1/2)p*-(1/6)p2)e P

6p -k (105+105p +45p 2+10p3+p4 ye P

[(1/5)p+(1/5)p2+(1/15)p 1P
[(1/2)p+(1/2)p2+(1/5)p>+(1/30)p" 1P
[(3/2)p+(3/2)p2+(23/35)p7+(11/70)p *+(2/105)p>]e P

(23) PB,y%e¢ =2,101 ; -h<a<l

= -T2 1140+570p+526p 24 (73/3)p>+(2/3)p " 1e P

= 2p~ % (285+285p+123p2+28p>+3p " )e P

= p O[45004+2250p+Th2p2+121p 7 +(29/3)p 1P

= -2p7¥(1125+1125p+498p24123p7+17p 47 )e P

= -p~>[10080+5040p+1700p2+290p>+(161/6)p*+(1/2)p e P

= 6p~ % (840+840p+375p2+95p +14p  4p7 e P

= p~>110080+5040p+1700p2+290p>+(267/10)p*+(11/30)p7-(1/10)p8)e P

= -6p -4 (8‘*0"'8“09"'37592+95p3 +1494+p5 ye P
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RUEDENBERG, ROOTHAAN, AND JAUNZEMIS

TABLE XIV (continued)

Coe101 - _[(3/10)p+(3/10)p2+(.’:‘/15)93+(1/30)9416'p

C.,100 = _[p4p24(31/70)p7+(23/210)p"+(1/70)p5 1P

12

(24) B,yde = 1,011 ; -3 <€a <2

D_3,1011 ='-p-3[540+27Op+102p2+2193+2p4]e-p

E_3’1011 = 6p-4(45+45p+21p2+6p3+pu)e-p

D, M = 0~ [1260+630p+250p2455p>+(23/3)p* 1e 7P

E_p 0 = -2p7*(3154315p+150p%+45p749p 407 )P

D_l,1°11 = -p~311260+630p+250p2+55p7+(49/6)p *+(1/2)p° 1 P

011 _ 29-4(315+315p+150p2+45p3+9p4+P5)e—p
Co1®tt = -[(3/10)p+(3/10)p%+(1/10)p%1e P

¢y, O = —[(1/2)p+(1/2)p2+(1/5)p +(1/30)p* 1e7P
0p 0%t = -[p+p2+(31/70)p7+(23/210)p*+(1/70)p%1e P

Functions with y+642¢ = U

(25) B,ybe = 1,310 ; -4k <as<l

D, 210 o o ¥[5040+2520p+1000p2+220p°+(227/6)p 4y (25/6)p°1eP

E , 310 o p75(250042520p+1200p2+360p>+75¢ +11p7+ pf)e™®

p . >0 _ p"‘[20160+10080p+3940p2+850;>3+(275/2)p“t+(77/6)95+(1/3)9613-p

3 4

E . 310 o _3p75(3360+3360p+1590p2+470p +95p *+13p7+p5)e P

p, .00 . -p"‘[45360+22680p+8820p2+1890p3+(1199/4)p4+(1o7/4)p5+(1/2)96-(1/12)p7}e'p

56)

310 _ 6,5 (3780+3780p+1785p+525p +105p 410

310 p’”[u5360+22680p+8820p2+1890p3+(2993/10)p”+(263/1o)p5+(2/5)p6-(1/3o)p7
+(1/3o)p8]e'p
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- -1

-[(9/4)+(9/8)p+(15/14)p2+(9/28)p +(1/28)p" - (3/140)p>- (1/105)pCle P

-l

CL(9/%)+(9/%)p+(23/28)p2+(1/14)p>- (1/70)p*+(1/84)p7+(1/140)pC]e P

TWG-CENTER INTEGRALS. III
TABLE XIV (continued)
-59'5(3780+3780p+1185p2+525p3+105p”+14p5+p6)e'P

(3/8)+(3/4)p+(3/10)p2+(1/20)p - (1/60)p™*- (1/60)p°1e P

(26) B,y6e =1,220; O<£a €1

(3/8)+(3/4)p+(1/4)p%+(1/60)p°1e P

(27) B,v6e = 1,201 ; -b<a<1l
-p-u[5040+252Op+820p2+130p3+(29/3)pu]e_p
2075 (1260+1260p+555p 24 135p >+18p H4p7 ) e P
o~} [20160+10080p+3340p2+550p 7+ (139/3 )p ™+ (2/3 )p°1e P
—2p ™5 (5040+5040p+2235p24555p 7 +78p *+5p° ) P
—p ¥ [ 45360+22680p+7560p241260p>+(219/2)p ¥ +(3/2)p0-(1/6)pP1e P
24p ™5 (9U5+945p +420p2+105p +15p  +p7 ) e P
o~ [45360+22680p+7560p241260p+(549/5 )p*+(9/5)p +(1/15)p 1P

—24p ™5 (945494 5p+420p2+105p 2+15p H4p2 ) e P

[(1/2)+(1/2)p+(3/lo)p2+(2/15)93+(1/30)p4]‘e'p

[(3/2)+(3/2)p+(13/1%)p%+(3/7)0>+(9/70)p +(2/105)p7 e P

[

(28) B,vyée = 1,111 ; -h<a<1
4
-p [5040+2520p+940p°+190p>+(73/3)p  +(2/3)p 1€ P
69"5(420+4209+195p2+5593+10p4+p5)e'p

p"*[20160+10080p+3880924820p3+(373/3)p'*+(29/3)p5]‘e'p
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RUEDENBERG, ROOTHAAN, AND JAUNZEMIS

TABLE XIV (continued)

- -ap'5(5ouo+5oqu+2370p2+690p3+135p"+17p5+p6)e'P

= -p"‘[u5360+eessop+aszop2+1890pj+(599/2)p“+(53/2)p5+(1/2)961e'p

4

- 6p75(3780+3780p+1785p2+525p>+105p *+114p 94p6) e P

- p'u[45360+22680p+8820p2+1890p3+(1499/5)Pu+(134/5)p5+(1/2)p6-(1/10)p7]e-p

— -6p~5(3780+3780p+1785p24525p+105p " +14p+p6 ) P

[(1/2)+(1/2)p+(1/10)p2-(1/15)p>-(1/30)p"1e P

- [(3/2)+(3/2)p+(3/T)p2-(1/18)p-(1/14)p" - (1/70)p51e P

(29) B,vée = 1,002 ; -b<as<l
= -p~450404+2520p4760p2+100p 7+ (8/3)p* 1P
_ 2Up~5(105+105p+45p2+10p 2 4p Yo P
= p'“[20160+10080p+3280p2+520p3+(116/3)p4]e'p
- -8p‘5(1260+1260p+55§p2+13593+18p4+p5)e'P
- -p'u(4536o+22680+7560p2+1260p3+110p4+2p5)e’P

= 249'5(945+945p+420p2+1059 3+15$>4«i~p5 Je P

= p-u[45360+22680p+756092+1260p3+(544/5)pu+(4/5)95-(2/5)?6]e-p

- -2kp~5(945+945p+420p2+105p7+15p H4p7)e P

= -[242p+(4/5)p%+(2/15)p1e”P

~[6+60+(18/7)p24+(8/T)p7+(2/35)p*1e 7P
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EXPLICIT PORMULAS FOR C-FUNCTIONS IN THE CASE p = O,

(1)

000
°-1,1 = -(1-1)

€,,0% = -(3/4)(2-1)*

21
(2)
c_y 0% = (1/2)(1-1)®

c,.0% = (3/2)(1-1)°

22

(3)

c_y 5°% = -(1/2)(1-7)°

257 = -(15/4)(1-1)®

(4)
¢ ;%% = v -0t

C_y,7°% = -(45/4) (1-7)7

TWO-CENTER INTEGRALS. III

TABLE XV

Functions with y+6+2¢ =

B,yde = 1,000 ; -1l <

01%% = ~(1/2)(1-7)?

€5, = -(3/2) (1)

B,yée = 2,000 ; -1 <

0™ = (1/2)(1-1)°

05,%% = (15/4)(1-7)®

B,yée = 3,000 ; -1 €

Cs2%0 = -(3/4) (1-1)*

055°%0 = -(45/4) (1-7)"

a,yde = -1,000 ; 4 <

000 _ _(3/2)(1-7)?

Q

¢, 2% = (315/8)(1-7)8

1
-

-
0]
(]

Functions with y+542¢

All these C-functions vanish fo

(10)
C_5,,°% = ~(1/3)(1-7)

€q,2%0 = -(1/4)(1-7)"

ol

(11)

C_5 2% = (1/6)(1-7)°

Coa" 0 = (1/2)(1-1)°

Funct;ons with v+6+42¢
B,yde = 1,200 ; -3 &

c_2,12°° = -(1/6)(1-7)2

0,,%% = -(1/2)(1-7)°

A

(¢

a4

000

000
Cyy " =

a €l

000

000
Cyo =

a €3

000

p=9

000
-1,6

000
'1,9

c

c

rp=20

a € 2

200
-1,1

200
21 -

B,vde = 2,200 ; -3&a€2

C_p 270 = (1/6)(1-7)°
€,,2% = (5/4)(1-7)°

253

200
-1,2

200 _
22

e et vl

¢ 0
-(1/2)(1-7)?
-(15/4)(1-1)8

PR o

= (3/4) (1-1)

(45/4) (1-7)7

= -(3/2)(1-1)

- (15/4)(1-1)8

= -(315/2)(1-1)°

= -(1/6)(1-1)°

- -(5/%)(1-1)®

= (1/%)(1-v)*

(15/4) (1-1)7

e
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RUEDENBERG, ROOTHAAN, AND JAUNZEMIS

TABLE XV (continued)

(12) B,y6e = 3,200 ; 1l<a<&2

652 = ~(5/4)(1-1)° 0,52% = -(15/8)(1-0)7

(13) p,yde =1,110 ;, 6 -2€a €3
0-2’1110 - ‘(1/6)(1‘T)2 c_l’lllo = -(1/6)(1'7)3 001110 =
0,20 = -(1/2)(1-7)° 0py 110 = -(5/4) (1-7)° 05,120 =

(14) B,vde = 2,110 ; -2<a€2
¢p,0" = (1/6)(1-0)° 6y 0 = (M0t ogpllo
c1p 20 = (5/6)(1-0)° 0pp 10 = (15/4) (11T

(15) B,yde = 1,020 ; 0sa<3
00,020 = -(/m) (1-0)* 0,,9% = -(1/2)(1-7)° 0,,°% =
05,%%0 = -(15/4) (1-%)"

(16) B,yde = 1,001 ; -3 €a<€3
C_5 %% = (2/3)(1-7) 05,1 = (1/3)(2-1)° c_y %
COI001 - (1/2)(1-0)* Cll001 - (1-1)5 c21001 _
05,% = (15/2)(1-%)"

(17) B,yée = 2,001 ; -3 <€a<2
c_5,.° = -(1/3)(1-0)° 0p, . = -/ (1) oy 0
c02°01 - _(1_,‘.)5 012001 - _(5/2)(1_1)6 0‘22001 -
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-(1/%) (-0t

~(15/%) (1-1)7

(1/2) (1-7)°

~(5/4) (1-7)°

= (1/3)(1-1)°

(5/2) (1-1)®

- -(/2) (-0t

-(15/2) (1-7)7
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TWO-CENTER INTEGRALS. III

TABLE XV (continued)

Functions with vy+6+2¢ = 3

All these C-functions vanish for p = O

Functions with vy+642¢ = 4

(25) B,vbe = 1,310 ; -4 <a<1l
= -(1/10)(1-7)? c5 70 = -(1/10)2-v)> ¢
= -(3/10)(1-1)% 5,720 = -(3/4) (1-1)8 c,

(26) B,yde =1,220; O <a <1
-(3/8)(1-1)8 0,22° = -(9/4) (1-7)7

(27) B,ybe = 1,201 ; -4 <<€l
= (1/15)(1-7)? c_5 %% = (1/15)(1-7)° c_
= (1/5)(1-7)° 00 2%t = (1/2)(2-1)0 c,

(28) B,y6e = 1,111 ; -4 o<1l
= (1/15)(1-1)2 C_5 1t = (1/15)(1-7)° c.
- (1/5)(1-7) Cor M = (3/2)(2-7)° 0y

(29) B,vbe = 1,002 ; -4 € a <1

-(4/15) (1-7)2

-(4/5)(2-7)° Co1°% = -2(1-1)® c,
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-2,1310 - -(3/20) (1-7)*

1210 = —(9/) (1-1)7

2,170 = (1/10)(1-0)*

2% = (3/2)(1-1)7

2,1 = (1/10)(1-0)*

1= (3/2) (1-1)7

°-3,1°°2 = -(4/15)(1-7)° c_2,1°°2 = -(2/5) (2-1)*

1002 - -6(1-1)7
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LITERATURE ON HYBRID INTEGRALS
The existing publications on the hybrid integrals d¢an be divided into four groups

according to the integration methods employed.26

First Group:
(1) N. Rosen, Phys. Rev. 38, 255 (1931).
[nsansblnsbnsb] in terms of An(2p), Bn(21p).

(2) W. H. Purry and J. H. Bartlett, Jr., Phys. Rev. 38, 1615 (1931),and 39, 210 (1932).
[28,28,|28,28,] in terms of A (p); [2s,2p6,[28,25,], [2s,28,|28,2p6, ],
[2s,28,|2p6,2p6, ), [28,2p6,|28,2p6, ], [2p6,2p6, | 28,28, 1, (28,28, |2pm 2pm ],
[2pwazsa|25a2pwb], [epﬂézpwalzsaESb], for v = 0 in terms of auxiliary functions
with numerical tables for the latter.

(3) J. 0. Hirschfelder and J. W. Linnett, J. Chem. Phys. 18, 130 (1950).
[lsalsalesaasb], [1sa2p6allsa2p6b], for 7 = 0 in terms of auxiliary functions.

The method employed by these authors was developed by Rosen and Bartlett. The early

work on hybrid integrals is not very extensive, presumably because in the Heitler-

London theory of the covalent bond hybrid integrals do not occur. They appear only 1if

ionic structures are taken into account, and for this reason some authors call them

"jonic integrals". ‘

Second Group:

() A. L. Sklar and R. H. Lyddane, J. Chem. Phys. 7, 374 (1939).

[2pﬂ32pwb|2pwb2pﬂb] for T = 0 in terms of auxiliary functions.

(5) R. G. Parr and B. L. Crawford, Jr., J. Chem. Phys. 16, 1049 (1948).
[2pﬂ82pﬂb|2pﬂb2pﬂb], [2pwa2pﬂb|2p%b2pib}, [2pj32pib|2pnbzpﬁb] for T = 0 in terms
of auxiliary functions.

(6) E. Srocco and 0. Salvetti, Ric. Sci. 21, 1629 (1951).

[2pna2pwa|2pwa2pnb] for T # 0.

(7) R. 0. Brennan and J. F. Mulligan, J. Chem. Phys. 20, 1635 (1952).

All integrals [xa'xa"lxaxb] between orbitals with quantum number 2 have been eval-
uated in an explicit form, under the additional assumption that Xg xa', xa" have

the same orbital exponent (in general different from the orbital exponent of xb),

i.e.,p, = Py * pp in our notation.

The procedure here employed was first developed by Sklar and Lyddane and then improved

26'1‘hese four methods are all different from the one developed in this paper.
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TWO-CENTER INTEGRALS. III
by other authors. Brennan and Mulligan make a systematic investigation of the limited
class of integrals mentioned above.
Third Group:

(8) M. Kotani, A. Awemiya, and T. Simose, Proc. Phys. Math. Soc. Japan 20, Extra No. 1
(1938), and 22, Extra No. 1 (1940).

(a) [28a23a|23325b], [2pwa25a]2pﬂaesb] for ﬁa =Py =Py -

(b) [gsalsbllsblsb], [2p6alsbllsblsb], [25a2§al2salsb], [2pca2pcalasalsb],
[2s,2p6, |28,18,], [2pm 2pm, 2,18, ], [2pﬂa2pﬂé|2p§alsb], [2s,2s, |2p6 18, ],
[25a2p6a12pdalsb], [2p6a2p6al2p6alsb], [2sa2pwa|2pwalsb], [2p6&2pna]2pwalsbl
for ﬁa =Py * Py -

All in terms of auxiliary functions. Numerical tables for the latter in 20, Extra

No. 1 (1938); numerical tables of integrals in 22, Extra No. 1 (1940).

(9) H. Kopineck, Z. Naturforsch. 5a, 420 (1950), 6a, 177 (1951).

All integrals [xa'xa"|xaxb] between orbitals with quantum number 2, with the

additional assumption that Xg's xa", Xa» Xp 211 have the same orbital exponent,

i.e., p, = py in our notation. J

The integrals are expressed in terms of auxiliary functions; tabies are given for

the integrals.

(10) G. Araki and W. Watari, Progr. Theor. Phys. 6, 961 (1951).

Although being prepared independently, this paper covers the same material as
Kopineck's paper (regarding hybrid integrals). The integrals are tabulated for
closer steps of the argument and with more significant figures. There are serious
discrepancies between the tables of (9) and (10).

(11) T. Murai and G. Araki, Progr. Theor. Phys. 8, 615 (1952).

They give five Hybrid Integrals for several argument values which include cases

with p, = p, # pp and p, = py #p, .
This method was developed by the Japanese authors, on whose results also Kopineck's
papers are based. This group of papers contains the largest amount of numerical tables
yet made. Work in this direction 1s presently continuing in Japan.27
Fourth Group:
(12) M. P. Barnett and C. A. Coulson, Philos. Trans. A243, 221 (1951).

278ee Progress Report No. 1 (October, 1952) of the Japanese Research Group for the
Study of Atomic and Molecular Structure.

257

R A

T e e e 2 i i Ao i




RUEDENBERG, ROOTHAAN, AND JAUNZEMIS

All hybrid integrals for n = 1, 2 in terms of generalized exponential integrals
and half-integral-order Bessel functions of imaginary argument.
(13) S. 0. Lundqvist and P.-O. L8wdin, Ark. Fys. 3, 147 (1951).
Qutline of a method applicable to all hybrid integrals.
These authors are primarily interested in developing an integration method applicable
to all molecular integrals,and apply it then to the hybrid integrals. Coulson and
Barnett proceed more by means of an analytical investigation; L¥wdin relies more on

numerical integration methods.
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FREE-ELECTRON NETWORK MODEL FOR CONJUGATED SYSTEMS. II. NUMERICAL CALCULATIONS*t
[THIS TECHNICAL REPORT, 1952-53, Part One, 58]

CORRIGENDA

Charles W. Scherr
Laboratory or Molecular Structure and Spectra
Department of Physics
The University of Chicago
Chicago 37, 1Illinois
P. 60: The text immediately following Eq. (1) reading: "there exist solutions
..." to the end of the paragraph is incorrect. It should read: "there exist an
infinity of solutions which may be found from the considerations of I, Sections 2d and
2e. The symmetries of these higher levels are reproduced in the same fashion as the
energy levels of nonalternant molecules."
P. 75, Table II: Under the row heading "n-polyenes", (n + 1)/2 should be correc-
ted to 2/(n + 1).
P. 83: The next to last line of Eq. (A.2) should read: "$(1,12) - 2coskd(1) +
#(2) = o".
P. 86: Immediately following Eq. (A.9a), the text should read: "Hence, 0.1799 =

o(1) alcos(Bx/e) = 0.5#88&1...".

1’This work was assisted in part by the Office of Naval Research under Task Order IX of
Contract N6ori-20 with The University of Chicago.

*These Corrigenda apply only to the version of the article appearing in THIS TECHNICAL
REPORT, 1952-~53, Part One, and not to that appearing in J. Chem. Phys. 21, 1582
(1953).
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STUDIES OF ATOMIC SELF-CONSISTENT FIELDS. I. CALCULATION OF SLATER FUNCTIONS*

Per-Olov LBwdin'
Laboratory of Molecular Structure and Spectra
Department of Physics
The University of Chicago
Chicago 37, Illinois

ABSTRACT

A refined technique is described for approximating the numerically given radial
part of atomic wave functions assoclated with self-consistent filelds with exchange by
means of Slater's analytical functions obtained by replacing each exponential ir a
hydrogen-like wave function by the sum of one, two, three, or more exponentials. Expo-
nents and coefficients of these exponentials are calculated for the 3p-function of C17,
corresponding to an accuracy of 0.0015 for the normalized radial part, and, with
slightly less accuracy, for all the functions of two closed-shell ions, F~ (without
exchange) and Nat, and for some neutral first-row atoms, C(lD), N(2P), and O(IS). The
interpolation problem is discussed, and a new interpolation rule for the coefficients
is stated, which gives excellent agreement (0.001) in the examples chosen, namely the
ls-functions of the He-like ions and the 2p-functions of Na*, Mg*2, and s1*%.

IN THE QUANTUM-MECHANICAL treatment of many-electron atoms, the total antisymmetric
wave functions describing the different atomic states are usually approximated by the
sum of one, two, three or more de’cerminantsl of one-electron wave functions, each being
a product of an atomic orbital (AO) and a spin function. The atomic orbitals are
determined from the basic Schr8dinger equation for the atom by means of the variation
principle2 as products of radial parts and spherical harmonics, and the best expressiors
for the former are obtalned numerically by step-by-step integration of the Hartree-Fock

equations by using the self-consistent-field technique developed by Hartree.3

fThis work was assisted in part by the Office of Naval Research under Task Order IX of

Contract N6ori-20 with The University of Chicago, in part by the Swedish Natural
Science Research Council, and in part by the Elizabeth Thompson Science Fund.
*Permanent address: 1Institute for Mechanics and Mathematical Physics, University of
Uppsala, Uppsala, Sweden.

13, c. Slater, Phys. Rev. 34, 1293 (1929).

2J. C. Slater, Phys. Rev. 35, 210 (1930), and V. Fock, Z. Physik 61, 126 (1930).

3For an excellent survey of this field, see D. R. Hartree, Rep. Prog. Phys. 11, 113
(1946).

260




. By + i e aiva ¢ o e 5 A AR o e o et

ATOMIC SELF-CONSISTENT FIELDS. I

For some purposes, it has been found desirable to use also analytic forms of these
atomic orbitals. Here we will not discuss the question whether it 1s better to base
applications of the atomic theory on the analytical wave functions rather than on the
numerical tables. It has often been sald that the analytic expressions would be better
for use, e.g., in the theory of molecules and crystals, but our experience is that it
is often Just as convenient to use numerical computations as analytical calculations
and that many times the former are simpler and quicker. However, considering the fact
that many physicists are more accustomed to analytical work than to numerical computa-
tions, we think that both methods should be developed simultaneously without giving
priority to anyone of them. This series of papers will be devoted to a study of the
atomic self-consistent fields with exchange, and various problems will be discussed
both from the analytical and the numerical points of view.

Analytic expressions for the radial wave functions can be derived in two ways,
either direﬁtly by fixing parameters in given analytic functions, for instance, of the
hydrogen-like type by means of the variation principle as described by Zeneru and
5

others,” or indirectly by approximating the numerically given Hartree-Fock functions in

some way analytilcally, as was proposed by 51ater.6 Except for the simplest cases, the
former method 1eadé to rather formidable calculations, whereas the latter 1s simple but
based on the assumption that the self-consistent-field functions are given in advance,.
An investigation of the accuracy of these analytic atomic orbitals shows that the

Zener and Morse-Young-Haurwitz function54’5 containing only a few exponentlals repre-
sent rather poor approximations of the self-consistent fields7 and hence also of.the
true charge distributions,8 and that the deviations are appreciable, particularly at

uV. Guillemin and C. Zener, Z. Physik 61, 199 (1930); C. Zener, Phys. Rev. 36, 51

(1930); J. C. Slater, Phys. Rev. 36, 57 (1930).

5Extensive tables have been given by Morse, Young, and Haurwitz, Phys. Rev. 48, 9u8
(1935); for improvements and corrections, see also L. Goldberg and A. M. Clogston,
Phys. Rev. 56, 696 (1939), and W. E. Duncanson and C. A. Coulson, Proc. Roy. Soc.
(Edinburgh) 62, 37 (1944).

65. c. Slater, Phys. Rev. 42, 33 (1932); F. W. Brown, Phys. Rev. 44, 214 (1933).

7Only in a few cases have Zener-type functions been used as starting, functions for
self-consistent-field calculations; see, e.g., V. Fock and M. J. Petrashen, Physik.

2. Sowjetunion 6, 368 (1934); 8, 359 (1935).

8H. Bethe, 2. Physik 55, 431 (1929); 57, 815 (1929), has given a survey of different

. approximations of the charge distribution of He and He-like ions in comparison to
the "true" distributions given by Hylleraas.
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large distances. The last fact 1s of essential importance in the theory of molecules
and crystals, and the simplest way of obtaining good &nalytical orbitals for appli-
cations in this fileld seems therefore to be to use Slater's approach.6 Part I of this
series of papers will be devoted teo a study of a refinement of Slater's method; giving
analytic atomic wave functions with almost the same accuracy as the numerical functions

themselves.

I. CALCULATION OF SLATER-FUNCTIONS
An atomic orbital with the quantum numbers n, £, m is the product of a radial wave

function fnz(r)/r and a normalized spherical harmonic Yzm(e,w). The best expressions
for the functions fnz(r) are now given numerically for many atoms and ions by Hartree
and Hartree, Fock, and others.” In order to express fnz(r) analytically, we will now
8lightly generalize Slater's original idea9 and try to approximate these tables by
functions obtained by replacing each exponential in the corresponding hydrogen-1like
functions by a sum of one, two, three or more exponentials. For the lowest functions,

this gives the following expansions:

a]
-
w

e}

]

rzk Akexp(-akr) , R
fgs(r) = rg, Akexp(-akr) - rezk Bkexp(—bkr) ,
(r) = rgzk Bkexp(-bkr) ,

st(r) = rg, Akexp(-akr) - razk Bkexp(-bkr) + rBIk Ckexp(-ckr) ,

f3p(r) = rZZk Bkexp(-bkr) - rjzk Ckexp(-ckr) s

where the exponents aps bk’ ... and the coefficients Ak’ Bk' ... may be different for

each orbital. We will here determine the values of these parameters by a numerical
method, which is a simple development of the graphical method described by Slater.6

The exponentials involved in the expansions (1) may be calculated by means of a

method of successive approximations10 going inwards from r = « to r = 0. The

9According to Slater (reference 6) only the exponential multiplied with the highest
power in r should eventually be replaced by a sum of exponentials, but our generall-
zatlion is obvious.

1°A preliminary report of this method was given at the Shelter Island Conference, 1951.
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ATOMIC SELF-CONSISTENT FIELDS. I

computations are based on the fact that in the outer region (r = =) only a single
exponential is important, in the next inner region two terms are important, in the
following region three terms, etc. The numerically given function f(r), divided by the
highest power rP of r according to (1), is considered in equidistant points; a guotient

series 1s then formed for the outer region by successive divisions, and from this

series a trial exponential function is determined as a geometrical series. This func-

tion is now subtracted from f(r)/rP, and the difference is investigated in the next

inner region, where a new quotient series 1s formed, giving a new trial exponential
function. This second function is now subtracted from f(r)/rp, and the outer region is
considered a second time with a still better result for the first term, etc. In most
cases, this process 1s quite straightforward, and special care must be taken only in
regions where the power of r has to be changed according to (1).

We note that here the quotient series have taken the place of Slater's logarithmic
graphs. The success of the method depends partly on the fact that these quotient
series and the trial exponentials, i.e., the geometrical serles, can be computed so
quickly by means of the modern electric desk machines.

A few words may be said about the fixing of the first trial functions for each

region. It is easily seen that if a function &, is the sum of two geometric series,

g, = akln + bk2n , (2)

of which the first 1s dominating, then the quotient gn+1/gn is slowly varying according

to the formula

Bn41/8n = K - (b/a)(kl'ke)(kg/kl)n PR )

From the quotient series, considered in a region where g, 8till has enough significant
figures, 1t is therefore possible to get an approximate value of k1 and estimates of -
kz‘and bkan/akln, of which the latter are usually too rough to be of real value for
determining an initial term akln somewhere in the first geometrical series. After

fixing a suitable value of kl, we form instead the guxiliary function
n
hp = k18y - Bpyy = Dy (ky-ky) (4)

and its quotient series hn+1/hn’ from which we get a much better estimate of k2, bk n'
and finally of akln =g, - bken. After choosing a specific initial term of the first

geometric series, we can then form our first trial exponential by repeated
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TABLE 1.

Survey of the maximum errors in different intervals in the analytic
SCF-functions for Rb' (without exchange) given by Slater (reference
6) as an example of the accuracy of his graphical method.

Maximum error in units of 10~
+ + +
r-interval Rb s Rb 3 Rb 3p
0.00
14 -4 -9
0.04
~30 17 -46
0.20 .
~-15 +28 14
0.50
2 25 =31
1.00
14 5

multiplication with constant factors, different for the various interval lengths. The
method of successive approximations, as described above, is now started.

The accuracy of the analytic self-consistent-field (SCF) functions obtained by
Slater's graphical method may be illustrated by his own example for Rb+‘1n Table I;
even if the maximum error is of the order 45 x 10‘3, the approximation is certainly
good for many applications. The analytic SCF-functions, calculated from Slater's
exponents6 for other atoms of the periodic system, have also errors of about the same
order of magnitude. 1In treating F, F, and Ne, Brown6 reports errors of the order
20 x 1077,

In our Ilnvestigation of the alkall chlorides,11 we needed the 3p-function of Cl1~
with exchange, given numerically by Hartree and Hartree,12 with a very high accuracy,
and most of the téchnique described in this paper was actually developed for the

investigation of this function. Our final result is given in Table II, and, by using

TABLE II.

Exponents and coefficients in an analytic SCF-function of the form (1)
for C1™(3p) with exchange (reference 12). Maximum error = 1.5 x 1077,

A0 k = 1 2 3 k = 1 2 3

1™ (3p) b 4.2435 8.4758 22.314 Cx 0.92426 1.6658 2.9859
E] 9.0441  26.493 2.49 c 0.07099 1.3955 8.4236
g‘ ———

11P.-O. Lbwdin, A Theoretical Investigation into Some Properties of Ionic Crystals

(Almqvist and Wiksells, Uppsala, 1948), theslis.

125, R. Hartree and W. Hartree, Proc. Roy. Soc. (London) Al56, 45 (1936).
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8ix exponentials (three in the C-group and three in the B-group), we could obtain a fit ‘
as good as 1.5 x 10'3, i.e., the analytic SCF-function has about the same accuracy as

the numerical function itself. With slightly less accuracy, we treated then two other N

TABLE IIT.

Exponents and coefficients in analytic SCF-functions of the form (1) for
F~ without exchange (reference 13) and for Na' with exchange according to
Fock and Petrashen (reference 14). For maximum errors, see Table IV.

i
. == !
A0 K = 1 2 K = 1 2 3 y §
F (1s) a, 8.1890 12.187 §
A, 40.285 9.5770 {
F(28) a, 7.1485 e b, 1.6465 2.7178 4¥.1211 §
A, 11.755 cae B, 1.3054 8.7816 6.6845 ces i
F (2p) b, 0.64417 1.4357 3.0759 5.9696 !
B,  0.080948 1.3016 8.6449  7.0549 !
Nat(1s) & 8.1093  11.577 ;
A, 12.835 ‘57 .640 - ;
+ ;
Na™(2s) a, 9.1285 cen b, 2.3650 3.9031 ce ;
A, 16.895 et B,  3.6178 25,462 . ‘
Na‘t(2p) b, 2.3718 3.89%4 6.5076 ‘
| B,  5.1958 14.024 18.128
| e e

TABLE IV.

Maximum errors of the analytic SCF-functlons
for F~ and Nat 1in Table III, in units of 1077,

[ ————
) - - - + + +
r-interval F 1s P 28 F 2p r-interval Na 1s Na 2s Na 2p
0.00 0.0
1 8 0 +7 3 -5
0.08 0.2
-1 +10 1 8 +1 -1
0.5 0.4
-1 -10 -5 -3 +2 2
0.6 ) 1.0
1l 4 +] 2 -1
1.2 2.0
-1 -1 1 0
3.0
0 +1
6.0
0 1
10.0
_ -1

265

vt -



L8wpIN

closed-shell ions in the same way, namely, F~ without exchange13 and Nat with ex-

change.14 The results in a somewhat improved form are condensed in Table III and the

maximum errors for different intervals in Table IV. In tabulating the errors, we are

.always giving the quantity (f - f ) for the normalized functions in

analytical numerical

units of 1072,
In the theory of molecules, some first-row atoms are of particular importance, and
we have therefore tried to obtain analytic SCF-functions for neutral carbon (lD-state),

neutral nitrogen (2P-state), and neutral oxygen (ls~state), all given numerically with

TABLE V.

Exponents and coefficients in analytic SCF-functions of the form (1) for neutral
carbon (reference 15), 1p (B = 0.04), for neutral nitrogen (reference 15), °p
state (B = 0), and for neutral oxygen (reference 15), lS state (B = 0), all with
exchange. For maximum errors, see Table VI.

State A0 K = 1 2 Kk = 1 2 3
1p c(1s) a, 4.9840 7.0411
A, 14.881 12.811
c(2s) a, 3.9471 by 1.4784 2.8493 7.7990
A 5.9095 B, 2.5829 5.2230 4 .5676
c(2p) by 1.0789 2,144k 5.9216
B 0.87935 3.3336 2.1226
2p N(1s) a, 6.2736 10.920
A, 28. 744 6.863%2
N(2s) a, 4.1749 b, 1.7123 3. 4420 8.8037
A, 7.8400 B, 3.5175 11.8%2 8.4171
N(2p) b, 1.2210 2.4466 5.6236
B,  1.0755 5.2350  3.4611
1s 0(1s) a, 7.2052 12.523
Ay 35.267 8.6933
o(2s) a, 5.9096 ... b, 1.9764 3,678 13.931
A, 9.8450 e B, 4.9049 11.246 5.5364
o(2p) b, 1.3632 2.7487 5.9169
1

Bk

.3284 7.3218 6.0881

p. =&. Hartree, Proc. Roy. Soc. (London) Al51, 96 (1935).

14V. Fock and M. Petrashen, Physik. Z. SowJjetunion 6, 368 (1934). The slightly
improved tables for Na+ given by D. R. Hartree and W. Hartree, Proc. Roy. Soc.
(London) A193, 299 (1948), were not available in Uppsala at the time of these first
calculations.
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exchange by different authors.15 The results are condensed in Table V, and the maximum
errors are given in Table VI. We note that all the functions in Tables III and V are
of orthodox Slater—type,6 having only their highest-power exponential developed in a
sum. The accuracy 1s essentially higher than in Slater's original functions, but this
improvement 1is gained by adding at least one more exponential, which will again in-
crease the work in the applications.

As was already pointed out by Slater,6

all these expansions are not uniquely
determined at all, and the exponents and the coefficients may vary over conslderable
ranges. A drastic example of this phenomenon 1s obtained by comparing our 2p-function
for carbon (lD) in Table V with the 2p-function in Table VII gilven previously by

Mulliken and others;16

it 1s impossible to see directly that these functions with
essentlally different parameters approximate the same numerical function, but this is

actually the case. The respective errors may be found in Table VI, and a closer

TABLE VI.

Maximum errors of the analytic SCF-functions for C,
N, and O given in Tables V and VII, in units of 10—3.

=
Mulli-
r- p ken r- 2p s ’p
inter- 4 inter- == - N ~ n
val 1s 023 Cep *Ezp val le Nes N2p Ols 023 02p o2p
0.0 0.0
6 4 3 =3 8 -2 0 12 -1 0 0
0.2 0.04
+3 8 +3 12 8 -2 1 10 1 3 +]
0.8 0.2
3 -4 3 +8 x4 2 2 x4 -12 i +1
2.4 ’ 0.5
0 -4 1 13 +2 +4 3 +2 6 +3 -6
4.0 1.2
4 -2 2 -1 +6 3 -1 -9 +2 6
8.0 4.0
-2 2 2 1 2 -3 +2
7.0
L -1 -1 0

15¢: a. Jucys, Proc. Roy. Soc. (London) Al173, 59 (1939). N: D. R. Hartree and W.
Hartree, Proc. Roy. Soc. (London) A193, 299 (1948). O: Hartree, Hartree, and
Swirles, Trans. Roy. Soc. (London) A238, 229 (1939).

16Mulliken, Rieke, Orloff, and Orloff, J. Chem. Phys. 17, 1248 (1949); the function in
their Eq. (76) is transformed to our form (1).
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investigation shows that the two error functions have opposite signs almost everywhere.
In general, the order of magnitude and the sign of the errors will determine how much
the different parameters in the functions (1) may vary.

The different states of a specific electronic configuration of an atom (or ion)
may be characterized by Slater'sl7 parameter B, and Hartree and others15 have found by
experience that the corresponding radial functions fnz(r) vary almost linearly in this
parameter. In order to investigate whether this simple linearity in B could be trans-
ferred, e.g., to the coefficients in the analytic SCF-functions, we have treated
neutral oxygen in two of its states, namely the 1S—state (B = 0) and the 3P-state
(B = -0.6). As may be seen from a comparison between Tables V and VII, the preliminary

result was negative, and the problem is therefore still under investigation.

TABLE VII.

Exponents and coefficients in an analytic 2p-function of the form (1) for
the ~P-state of neutral oxygen (reference 15), and in Mulliken's (refer-
ence 16) 2p-function for the 1p_state of neutral carbon (reference 15).

————— — —
State A0 k = 1 2 3
>p o(2p) b 1.4107 . 2.8500 6.5935
B, 1.4384 8.3557 4,7562
1p c(2p) by 0.898 1.416 2.694
Mulliken: B, 0.2727 1.427 3.576

II. INTERPOLATION OF SLATER-FUNCTIONS
6

The purpose of the original Slater-functions” was not only to describe numerically
glven SCF-functions analytically, but even to permit interpolations to atoms for which
these self-consistent fields had not yet been prepared. This interpolation was based
on the rule that the exponents should vary linearly for similar electron configurations
and different atomic numbers. The coefficients in the last group were interpolated by
means of an auxillary "intermediate exponent, also varying linearly, which gave the
ratio between the coefficients; the absolute values were then determined by the nor-

mality and orthogonality conditions.
The interpolation problem can, of course, be treated rigorously by investigating

175, ¢. siater, Phys. Rev. 34, 1293 (1929).
268

B ST - SN e




ATOMIC SELF~CONSISTENT FIELDS. I

the effect of variations of the atomic number Z in the basic Hartree-Fock equations,18
but, with the present mathematical methods, the error margins seem to be too large to
render really useful results. For the moment, it seems therefore to be better to work
intuitively by using the hypothesis that the SCF-functions are closely analogous to the
hydrogen-1like functions, but that they Just have more general exponents replacing the
atomic number Z. The interpolation rule for the exponents seems very plausible from
this point of view,19 but, in order to obtain full accuracy also in the interpolated
functions, we must modify the interpolation rule for the coefficients.

Let us consider the simplest SCF-functions, namely the 1ls-functions of the He-1like

lons, which we will express in the following form:
fls(r) = Ar exp(-alr) + A,r exp(-azr) . (%a)

The numerical functions for L1+(Z = 3) and C+4(Z = 6) are given by Fock and Petrashen20
and by Jucys,15 respectively, and the corresponding values of our parameters in (4a)
are condensed in Table VIII; the maximum errors are in both cases below i.o X 10'3.

By using these data, we will then try to make interpolations and extrapolations in the
series of the He-1like ions.

The exponents a; and a, are easily determined as linear functions of Z from the
fixed values for 2 = 3 and Z = 6. For the coefficients Al and A2, the normalization
condition for fls gives one relation, but, in order to carry out the interpolation, we
need one more equation for them. However, we note that, for a pure hydrogen-like 1s-

function, we would have the relations

2/3

£15(r) = 227/%r exp(-zr), [fy,(r)/er)2 = 2 , (5)

and, according to our analogy rule, the last relation indicates that, also for the SCF-
functions, the quantity

Kls = [rls(r)/arfiiz (6)

18Compare also D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A166, 450 (1938),
and reference 3.

19Compare also the exponents in the analytic wave functions for Be-like atoms and ions,
calculated directly from the variational principle by V. Fock and M. Petrashen,
Physik. Z. Sowjetunion 8, 359 (1935), Table IV.

20y, Pock and M. Petrashen, Physik. Z. Sowjetunion 8, 547 (1935).
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TABLE VIII.

Analytic SCF-functions of the form (1) for Li*(1s) and
for ¢*"(1s); the maximum error is below 1.0 x 107°.

A0 k = 1 2
L1*(1s) 8, 2.4346 4, 4250
A 6.6641 2.5618
+4 k
(18} a, 5.4523 9.5935
' By 23.919 4.0324

willl vary linearly with Z. We have tested this rule on some numerical SCF-functions
calculated by Hartree and others,3 and the results in Table IX show that the "linearity
rule"” holds with excellent accuracy. Similar quantities KZs’ Kgp, K}s’ ... may be
constructed also for the 2s8-, 2p-, 38-, ... functions, and a closer investigation shows
that they are approximately linear in 2, too. Complete results also for the higher
functions will be given in a later paper in this series. We note that all these
quantitles are important in the calculations of self-consistent fields with exchange,
since they characterize the behavior of the normalized wave functions in the neighbor-

hood of the point r = 0.

TABLE IX.

2
The auxiliary quantity K, = (fls(r)/Zr)pig

functions belonging to self-consistent fields with exchange.

for some ls-

3

Z Atom Kls A Atom Klg___

6 c 5.760 17 c1” 16.70

7 N 6.757 18 Ar 17.69

8 0 7.751 19 x* 18.70
20 ca*? 19.69

11 Nat 10.73

14 g1t 13.73

If the Kls-rule 1s applied also to the He-series, we get a second relation for the
coefﬁicients‘A1 and A2, which then may be determined. The results of the interpoclation

are condensed 1n Table X, and it may be of some interest to test its accuracy. The

+2 21

1s-function for Be is numerically given by Hartree and Hartree, and a comparison

21p. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) Al49, 210 (1935).
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TABLE X.

Interpolated and extrapolated SCF-functions of the form (1) for some
He-1like ions, obtained by using the linearity of the quantity Kls‘
The star * Indicates the given quantities, taken from Table. VIII.

m ———
A Atom Kls a, a, A1 A2

1 H™ 0.7505 0.4228 0.9794 0.30025 1.0001
2 He 1.7608 1.4287 2.7022 2.7626 1.9104
3 L1t 2.7711% 2. 4346% 4. 4o50% 6.6641% 2.5618*
4 Bet2 3.7814 3. 4405 6.1478 11.601 3.1057
5 pto 4.7917 4. 446l 7.8706 17.387 3.5909
6 ctt 5.8021* 5.4523% 9.5935% 23.919% 4,034+
7 N*to 6.8124 6.4582 11.316 31.101 4. 4604
8 o*6 7.8227 7.4641 13.039 38.897 4.8621
Difference: 1.0103 1.0059 1.7228

- —

shows that our analytic function reproduces the numerical table with full accuracy.
We may suppose that the same will be true also for B+3. In the extrapolations, the
accuracy can certainly not be so high, but we note that our analytic function will give
the same charge distribution for He as was once numerically given by H'artree.22 Even
for H™ our analytic function is comparatively good, since it gives a much better fit to
Hylleraas's charge distribution8 than the best hydrogen-like wave function.

The calculations involved in the application of the Kls-rule are somewhat clumsy,
and we have therefore tried to derive a simpler interpolation rule for the ccefficients,
which could be generalized also to functions containing more exponentials. Using the

analogy principle, we will make the assumption that each coefficient Ak as a function

of Z has the form
A (2) = Ko, (2)}PF (7)

where the parameters Ky and P, are independent of Z. This means that logloAk is a
linear function of logloak:

10g- A, (Z) = log, ~K, + log,~a. (2) , (8)
107k 107k 107k

and the coefficlents Ak are therefore easily determined, e.g., by using divided d4if-
ferences. However, these preliminary values of the coefficients Ak are usually not

representing a function which is fully normalized, and, in the last step of the

22p. R. Hartree, Proc. Cambridge Phil. Soc. 24, 111 (1928). -
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interpolation, they should therefore be given revised values by using the normalization
condition.

The results of the application of the rule (8) to the He-series are given in Table
XI, and we note that, for the interpolated ions Be+2 and‘B+3, the coefficients are
practically the same as in Table X.

TABLE XI.

Coefficiehts in interpolated and extrapolated SCF-functions for some
He-1like ions. The exponents are the same as in Table X, but, this
time, the coefficients are obtained by using the simple rule (8).
The star * indicates glven quantities, taken from Table VIII.

Unnormalized Normalized
coefficients coefficients
VA Atom A1 A2 Al A2
1 H 0.41560 1.0585 0.3385 0.8622
2 He 2.8631 1.9269 2.7772 1.8691
3 11t 6.6641% 2.5618% 6.6641 2.5618
4 Bet? 11.529 3,1064 11.593 3.123%6
5 B> 17.312 3.5905 17.382 3.6049
6 ctt 23.919% 4.0324* 23.919 4,032k
7 N2 31.281 B 4422 31.117 4.4189
8 o*0 39.349 4.8271 38.930 4.7759
k = 1.6265 1.0713
p = 1.5850 0.5862

The interpolation rule (8) may be directly generalized also to the other groups

of coefficients (B, C, ... ). As another example, let us consider the 2p-functions of

some Ne-like ions. The functions for Na+(z = 11) and 51+4(z = 14) are numerically

given by Hartree and others,23 and our parameters for the corresponding analytic func-
tions (1) are listed in Table XII and the maximum error (0.002) in Table XIII. From
these fixed data, the interpolations for Mg+2(z = 12) and A1+3(Z = 13) were carried out
by using the simple rule (8) and the normalization condition. Our analytic 2r-function

24

for Mg+2 may be checked against the SCF-function given numerically by Yost, which is

2Nat: D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A193, 299 (1948).
+4: Hartree, Hartree, and Manning, Phys. Rev. 60, 857 (1941).

s1
2%. J. Yost, Phys. Rev. 58, 557 (19%0).
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TABLE XII.

Analytic SCF-functions for Na‘t(2p) and Si+u(2p) with exchange calculated
from the numerical tables (reference 23), and interpolated functions for
Mgt2(2p) and A1*2(2p) with the coefficients determined by the simple
rule (8). PFor maximum errors, see Table XIII.

13 at 3.2572 5.2327 9.0950 11.952 30.781  23.524 12.043 31.016 23.T704
14 Si+u 3.7918 5.9847 10.1993 18.870 40.231 25.840
Diff: 0.5346 0.7520 1.1043

k = 0.34400 1.1348 3.8533

p = 3.0046 1.9943 0.8194%

= |
Unnormalized coefficients Normalized coefficients

Z Atom bl b2 b3 B1 B2 B3 Bl 32 B3

11 Nat 2.1880 3.7288 6.8864 3.6164 15.660 18.7295

12 Mg+2 2.7226 4.4808 7.9907 6.9728 22.590 21.156 7.0360 22.795 21.348]

almost fully reproduced with an error below 0.0016; it is somewhat surprising that the
error in the interpolated function i1s even lower than in one of the fixed functions
(Na*), see Table XIII.

The net result of our investigation seems to be that it 1is possible to interpolate
analytic SCF-functions with about the same accuracy as in the fixed functions by using
Slater's rule for the exponents and the simple rule (8) and the normalization condition
for the coefficients. The results already obtained are somewhat encouraging, and

further work on this problem 1s now in progress.

TABLE XIII.

Maximum errors of the analyﬁic SCF-functions given in Table XII in
units of 10™°; note that Mgt? 1s interpolated between Na' and sith,
[ —— —

+ +2 +4
r-interval Na 2p Mg 2p Si 2p

0

-0.6 -0.7 -0.9
0.04

2.0 1.6 1.1
0.20

-2.1 -1.3 0.7
0.50

2.1 1.1 -0.9
1.2

-2.1 1.4 -0.8
4.0

-0.6 0.4
6'0

———— ——— |
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TABLE XII.

Analytic SCF-functions for Nat(2p) and Si
from the numerical tables (reference 23), and interpolated functions for
Mg+2(2p) and A1+3(2p) with the coefficients determined by the simple
rule (8). For maximum errors, see Table XIII.

o

2p) with exchange calculated

F

Unnormalized coefficients Normalized coefficients

K = 0.34400 1.1348 3.8533
p = 3.006 1.994%3 0.8194%4

Z Atom by b, by B, B, B, B, B, B,
11 Nat  2.1850 3.7288 6.8864 3.6164 15.660 18.729
12 Mg+2 2.7226 4.4808 7.9907 6.9728 22.590 21.156 T7.0360 22.795 21.348
13 a1t 3.2572 5.2327 9.0950 11.952 30.781 23.524 12.043 31.016 23.T704
14 31*“ 3.7918 5.9847 10.1993 18.870 40.231 25.840
Diff: 0.5346 0.7520 1.1043

almost fully reproduced with an error below 0.0016; it is somewhat surprising that the

error in the interpolated function 1s even lower than in one of the fixed functions

(Na*), see Table XIII.

The net result of our investigation seems to be that it 1s possible to interpolate

analytic SCF-functlons with about the same accuracy as in the fixed functions by using

Slater's rule for the exponents and the simple rule (8) and the normalization condition

for the coefficients. The results already obtained are somewhat encouraging, and

further work on this problem 18 now in progress.

TABLE XIII.

Maximum errors of the analyﬁic SCF-functions given in Table XII in
units of 10'3: note that Mg+2 1s interpolated between Na‘ and Si+4.
_ = ——

 r-interval Na+2p Mg+22p Si+u2p

o]

-0.6 -0.7 -0.9
0.04

2.0 1.6 1.1
0.20

-2.1 -1.3 0.7
0.50

2.1 +1.1 -0.9
1.2

-2.1 1.4 -0.8
4.0

-0.6 0.4
6.0

—_— |
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CONCLUSIONS

In the theory of molecules and crystals, which is based on the use of atomic
orbitals in one or other form, the SCF-functions take a selected and most important
place, since they represent the best one-electron A0 which are available. The problem
of calculating analytic SCF-functions has become particularly important during the last
few years, since most of the extensive molecular tables under preparation in Chicago
under Mulliken, in Oxford under Coulson, and in Tokyo under Kotani, are based on the
use of single exponential functions.25 In order to make all these tables applicable
even to the best atomic orbitals, it would be desirable to have the exponents and the
coefficients in the analytic functions (1) calculated for all self-consistent-fields
which are numerically available, and to carry out interpolations to atoms which have

not yet been treated by the Hartree-Fock technique.26

In additlon to the best fits, it
would also be of interest to have fairly accurate analytic SCF-functions containing as
few exponentilals as possible.

By the generalized Slater method described in this paper, it is possible to calcu-
late analytic SCF-functions from the numerically given tables with any desired accuracy,
but, even if the technique is simple, the computations are still time-consuming and
rather tedious. It 1s felt that, if the periodic system should be investigated on a
large-scale basis in order to obtain analytilc SCF-functions having errors of the order
of magnitude (0.001-0.002) exemplified in Tables II, VIII, and XIII, then it would be
worthwhile to re-examine the basic method for further improvements, if possible. Work
on this program is now in progress, and the results will be reported in a later paper
in this seriles.

The author is greatly indebted to Fil. Mag. L. F. LJjungstrdm, Uppsala, who kindly
assisted in the computations on the sodium and the fluorine ions when this work was
started, to the Swedish Natural Scilence Research Council for a grant, which made these
calculations possible, and to Professor I. Waller for many forms of valuable support.

The work on the first-row atoms was started on the initiative of Professor R. S.
Mulliken, Chicago, and I would like to express my sincere gratitude to him for many

valuable discussions and for the great hospitality I enjoyed during my stay in Chicago.

25Molecular tables for particular atoms may also be prepared directly from the
numerically given SCF-functions; see, e.g., reference 11, Method I.

26It seems probable that the interpolated analytic functions would give very good

initial functions for self-consistent-field calculations.
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I would also like to thank Mr. Tracy J. Kinyon for his valuable assistance in carrying
out the calculations on neutral carbon, nitrogen, and oxygen.

Finally, I would like to thank Fil. Kand. K. Appel, leader of our computational
group, for his skilful cooperation in performing the computations in connection with
the interpolation problem, the Elizabeth Thompson Sclence Fund for financial aid, and

Professor J. C. Slater for his kind interest and valuable support of my work.

275

e e = . . P [}




ON THE USE OF A SINGLE SCALE FACTOR IN ATOMIC WAVE FUNCTIONS. I

Charles W. Scherr
Laboratory of Molecular Structure and Spectra
Department of Physics
The University of Chicago
Chicago 37, Illinois

ABSTRACT

Single scale factors are determined for converting 1s, 2s, and 2p self-consistent
field orbitals of atoms in the first row of the periodic table into one another.
Several simple relationships are found which allow predictions for fluorine and neon.

I. INTRODUCTION

RECENTLY there has been a‘recognition1

of a desirability of using SCF (self-consistent
field) atomic orbitals rather than the Slater atomic orbitals in problems on molecular
structure. Most of the LCAO MO (linear combination of atomic orbitals molecular orbi-
tals) method has been pursued through the use of Slater orbitals; but decidedly dif-
ferent results may be expected from the use of SCF orbitals, as shown, for example, by
calculations of overlap integrals.
Any SCF orbital Xa,s is of the form RA’S(r)F(6,¢), where A and S refer to the

atom and the state, respectively. By introducing a scale factor AAB,ST one can expect
to predict XB,T' the SCF orbital of atom B in state T from XA,S by an approximation

1
F . ‘ ‘ 2
] (AAB,ST) RA’S(XAB’STr)F(6,¢). Since the radial part may be approximated® by

Xg,T
a sum,
n-1
- k_-Ckr
Rp,s,n,z % 585 € » (1)
k=4
in which the last term is dominant, then
MB,sT ® %n-1,8/%n-1,4 - (2)

*This work was assisted (in part) by the Office of Naval Research under Task Order IX
of contract N6ori-20 with The University of Chicago.

1See for example R. S. Mulliken, J. Phys. Chem. 56, 295 (1952), particularly p. 300.
27. Cc. Slater, Phys. Rev. 42, 33 (1932).
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SINGLE SCALE FACTOR IN ATOMIC WAVEFUNCTIONS. I

The ak's and the ck's (orbital exponents)3 depend on the particular orbital, atom, and
{to a small extent) electronic state.

Some early workersu on SCF calculations used a scale factor to obtain their first
approximations from previously treated atoms, which were nearby in the same row of the

5

periodic table. Brown, Bartlett, and Dunn” noted that the reciprocals of the radii at

the maxima of the SCF radial wavefunctions were neérly linear in the atomic number,

6‘has discussed the

and used the ratios of these reciprocals as scale factors. Hartree
use of a scale factor, and introduced the idea expressed in Eq. (2).
The present paper is a result of a systematic investigation of the use of a single

scale factor in the exact SCF wavefunctions with exchange for atoms of the first row

of the periodic table. The SCF wavefunctions are the "best" wavefunctions arising
from the variational method with the use of antisymmetrized spinorbital-product wave-
functions.

There is a characterizing coefficient used extensively in this paper which it is
best to discuss here. RA,S(r) depends on S; but by Slater's theory of complex spec-
E

tra,7 E + B F2, where F2 is an energy integral and E, 1s a configuraticn energy,
c S C

S=
hence RA,S(P)

RA(r,as) for any given configuration. For example the ’p ground state

of carbon hds B = -5/25, and the 1p and 1S states have B = +1/25 and +10/25, respec-
tively.
II. PROCEDURE
We have

2 2 o 2 .
AAB,STRA,S (xAB,STr)r dr = é RB,T(r)r dr =1,

O— 8

where the symbols have all been defined in Section I. Further,

Mc,sT = MaB,su™sc,uT ° (3)

3This term was introduced by C. C. J. Roothaan and K. Ruedenberg. It is the effective
nuclear charge divided by the principal quantum number.

uArnot and Mclauchland, Proc. Roy. Soc. 146A, 662 (1934); Manning and Millman, Phys. .
Rev. 49, 848 (1936).

SBrown, Bartle;t, and Dunn, Phys. Rev. 44, 296 (1933).

6p. R. Hartree, Repts. Progr. in Phys., 113 (1946-1947)

3. c. Siater, Phys. Rev. 34, 1293 (1929).

277

g

e




e

SCHERR

where Xg.u is any orbital.
14

Numerically tabulated SCF with exchange rR(r) functions from the literaturee'll

for the various 32pn states of each of the atoms carbon, nitrogen, oxygen, and neon
were approximated by scaling from tabulated SCF with exchange rR(r) data for the 32p3
states of carbon.8 Various A-values were tried 1in each case until that one was found

which, for a particular scaling, minimized

2 |(5R)RB’T|P2dr . (%)

O— 8

This procedure may be compared with the usua112 least squares treatment of problems of

similar type, namely the minimization of
oo 5 .
25 (6R)RB,TI‘ dr . (4a)

In integrals 4 and 4a, Ry qp 1s the correct numerical SCF function for the radial part
N b4
of the orbital that is being approximated. 6R is defined as the difference between
the correct tabular value of RB T and the approximation. The integrals were evaluated
2

by numerical integration.

I1I. RESULTS
The best values of the scale factors, determined by the above procedure, are tab-
ulated in Tables I, II, and III. The "ecriterion error" reported 1s the magnitude of

the minimized integral (4). These criterion errors can be used as measures of the re-

lative errors involved, for different atoms and states, in the best computed orbitals
of any one klind obtained by scaling with a single scale factor from an initial SCF
tabulation. The published SCF data are accurate to #0.002 unit. This degree of unre-
1iability would correspond to a criterion error of about 0.0035 to 0.0040 for the 2s

and 2p orbitals.

8A. Jucys, Proc. Roy. Soc. 173A, 59 (1939); also see J. Phys. USSR, 49 (1947).

Hartree and Hartree, Proc. Roy. Soc. 193A, 299 (1948).
10

1

Hartree, Hartree, and Swirles, Philos. Trans. 238A, 229 (1939).

1D. R. Hartree, private communication of tentative results (first iteration) by Miss
- B. H. Worsley for the 2p neon orbitals, and of estimations by Hartree for the 1ls and
28 neon orbitals.

12The original purpose of the work was the estimation of two-center overlap integrals,

and integral (4) seems better for this purpose than integral (4a). The two minimi-
zations give scale factors that agree in the second decimal.
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TABLE II. THE 2s SCALE FACTORS FOR

e — — —— e et §
Beryllium Carbon
s2 szpe
2sTgn: ls ls lD 3P
From '
.28 1n: 258 0 10 1 -5
carbon 1 a
Szpz S .o 1 (0.994) 0.990
carbon 1
s2p2 D 0.594 1.006 1 0.996
' carbon 3
Szpa P . (1._010) (1.0045) 1
Corresponding
carbon 1
s2p2 S . 0 (0.0026) 0.0067
carbon 1
32p2 D 0.0176 0.0026 0 0.0028
" carbon 3
s2p2 P 0.0060 (0.0028) 0

8The values in parentheses are the mean values of estimates made by one or

bThe whole spread of criterion error here is too small to make estimates

TABLE IIT.

THE 1s SCALE FACTORS FOR SCALING FROM CARBON SCF ORBITALS.

To Beryllium Carbon Nitrogen Oxygen Neon
From carbon 0.6“55 1 1.172 1.349 1.6975
Corresponding "criterion errors"
From carbon 0.0082 0 0.0023 0.0048 0.00035
280
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SINGLE SCALE FACTOR IN ATOMIC WAVEFUNCTIONS. I

SCALING FROM CARBON SCF:ORBITALS. .
I ———— e

Nitrogen ‘ Oxygen Neon

82p3 | g2 626

2p °p 4y 15 1p 3p 15

0 -6 -15 | 0 -9 -15 -30
1.185; (1.181) 1.176; : 1.377, (1.374) 1.3715

o 1.19% 1.189 1.183 1.385, 1.382 1.378 1.766

’ i n

1.1995 (1.193) 1.1875 1.3934 (1.388) 1.3835

"eriterion errors"

0.0075 (0.0090) 0.0102 0.0095 . ~0.0112
0.0060 0.0070 0.0099 .0.0100 ~0.0094 0.0095 0.0144
0.0079 (0.0040) 0.0065 0.0102 P 0.0094 .

more methods, for example, by the use of Eq. (3).

meaningful.

IV. DISCUSSION

For 2s or 2p scaling from carbon to either oxygen or nitrogen, the scale factors
are nearly linear in p. For carbon scaled to carbon the linearity is slightly less
I good. In Jucys' SCF calculations of carbon, the tabulated values of rR(r) for the 2s
and 2p orbitals in the 1D state were found to be in agreement, to the accuracy of the
calculation, with the results of an interpolation linear in B, at any given r value,
between the tabulated values for the 3? and ls states. Hartree and the others in sub-
sequent SCF calculations on nitrogen and oxygen assumed the validity of corresponding
relations for these atoms; the wavefunction of 2D state of nitrogen was assumed to be

4

linearly spaced with respect to § between those of 2? and 'S states; likewise the lD
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1

state of oxygen between the ~S and 3? states

"; [ 4 and consequently only the last pairs in each
case were calculated by them.

‘——4___,__—-—’ Surprisingly enough, the criterion
lL' error does not increase as the scaling goes

to atoms more remote in the periodic table

ok ’*””’,J——”" sarben . from carbon. This result may allow one to

o s ° 3 E Y make safely "long distance" scalings for use
— B8
Fig. 1. %QP(N,B=6:1) as first approximations in SCF calculations.

Regularities in the behavior of the cri-

terion error indicate that a scaling to

ompgen the 2P state of fluorine from the 1D of car-

bon should have a criterion error of about

L2r : 1 0.018, but that scaling to the 2p state of
< | niregen

. . boron should have a large criterion error.

An interesting characteristic of the

carbon

L i 1 L L L A-values, evident if one compares Figures

10 s (-] -5 -0 -9
~—fBx28

Fig. 2. >\23(N,sz6,1)

1 and 2, is that 3\/OB has opposite signs
for the 2p and 2s orbitals. This may be
the result of the influence of the inner loop of the 28 orbital whiech, relatively
speaking, requires a much smaller A than the outer loop, as can be seen from Table IV.

The considerable success of a single scale factor in estimating one SCF orbital
from another must reflect a close mathematical similarity between the SCF wavefunctions
of the various atoms. The accuracy of such estimates could be increased several fold
by using two or more scale factors; for example, in a 2p or ls orbital these could be
one scale factor for a radius less than, and another for a radius greater than, the
radius at the maximum of rR(r); and in a 2s orbital, one scale factor for each loop.

In several of the investigated cases any A-value within an appreciable range gave
a satisfactory scaling; that is, the minima of integral (4) were broad. Almost all of

these broad minima occurred in scalings with large criterion errors.

V. GENERAL FORMULAS
The near linearity of the scale factors with respect to p allows simple formulas

to be written for the scale factors of the first row atoms. We use the symbol
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SINGLE SCALE FACTOR IN ATOMIC WAVEFUNCTIONS. I

TABLE IV.
A COMPARISON OF A WITH THE USE OF THE RATIO OF THE RECIPROCALS
OF THE RADII AT MAXIMA IN THE WAVEFUNCTION FOR SCALE FACTORS.

cermam—
e —

A for the 28 orbitals

Carbon A for the Inner Outer A for the
scaled to Method ls orbitals max? max® 2p orbitals
nitrogen by reciprocals 1.183 1.148 1.184 1.230
nitrogen calculated here 1.172 1.176-99b 1.180-1.301
oxygen by reciprocals 1.356 1.308 1.414 1.482
oxygen calculated here 1.349 1.371-93 1.384-1.506
neon by reciprocals 1.680 1.661 1.768 1.963
neon calculated here 1.697 o 1.766 1.87

8This refers only to the reciprocal method.

b'I‘he numbers in this, and the next column, under the row heading "calculated
here", are the complete spread of scale factors found for each atom as cal-
culated here. Since the maxima of the SCF functions of the same orbital
for the various states of the same atom coincide, there are no "spreads"
for the "reciprocal" rows.

221

A(N,B:6,1) to mean the scale factor for scaling from s°p D carbon to the s2

pN-4

state, characterized by 8, for the atom of atomic number N. The formulasl3 are:

Aap(N,B:6,1) = 1.002 + 0.207(N-6) - 0.0983(0.707)N"6s , (5)
)\es(N,B:6,1)‘ = 0.999 + 0.194%(N-6) + 0.0025(13-N)p , (6)
Ag(N:6) = 1 + 0.174(N-6) . (7)

Scale factors for scalings from other than 1D carbon, can be obtained by the use of
Eq. (3). The scale factors calculated from these formulas, for scaling from the 1p
state of carbon to certain states of boron, fluorine, and neon atoms, are presented

in Table V.

13Because of the tentatlve nature of the neon data, and of the probability that
Hartree estimated the 1ls and 2s neon orbitals on a basis similar to ours, these
formulae were not adjusted to fit the neon data. The neon data are however repro-
duced by the equations.

28>
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TABLE V.
SOME CALCULATED SCALE FACTORS FOR SCALING FROM 1D STATE OF CARBON.
Atom Boron 32p Fluorine s2p5 Neon 32p6
orbital %p %p 15
2p .o 1.651 1.860
28 .o 1.573 1.766
1s 0.826 1.522 1.696

VI. A COMPARISON OF SCALE FACTORS FROM VARIOUS SOURCES

14 3

Siater has given a recipe for orbital exponents” to be used in conjunction
with his well-known and very useful orbitals. This recipe may be compared directly
with cur scale factors by means of Eq. (2). It requires for the coefficient of (N-6)
in Eq. (5) and Eq. (6), the value 0.2 and in Eq. (7), the value 0.1754. The results
of the present and the following paper of this series indicate that these rather

arbiltrary choices of Slater were remarkably good. This, of course, is no new con-

clusion.
TABLE VI.
A COMPARISON OF A WITH THE SCALE FACTORS CONSTRUCTED FROM
THE CALCULATIONS OF DUNCANSON AND COULSON (REFERENCE 15).
Scale factor for scaling from 32p2 3? carbon for the:
ls orbital 2s orbital 2p orbital
Reference Reference Reference
Atom  State 15 A 15 A 15 A
L1 °s 0.473 (0.478)2 0.398 (0.419) . ...
Be 1g 0.648 0.646 0.593 (0.597)
B °p 0.824 (0.826) 0.800 (0.809) |  0.769 (0.777)
4s 1.17% 1.172 1.192 1.188 |  1.22% 1.218
) % | 1.350 1.349 1.385 1.38% | 1.423 1.414
F %p 1.524 (1.522) 1.580 (1.580) 1,634 (1.613)
Ne 1s 1.700 1.698 1.776 (1.77%) 1.846 (1.827)

8The values in parentheses have been estimated either by the use of Tables
I, II, or by the use of Egs. (5), (6), (7) in conjunction with Eq. (3).

5 c. Slater, Phys. Rev. 36, 57 (1930), and C. Zener, Phys. Rev. 36, 51 (1930).
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SINGLE SCALE FACTOR IN ATOMIC WAVEFUNCTIONS. I

Duncanson and Coulson15 have calculated orbital exponents for approximate SCF
wavefunctions. As might be expected (see Table VI), our results are in good agree-
ment with the scale factors constructed from their data.

A comparison of our scale factors with those constructed from the ratios of the
reciprocals of the radii at maxima in the wavefunctions is given in Table IV, where

the method can be seen to give fairly good scale factors.

VII. ACKNOWLEDGMENT
I wish to express my indebtedness to Professor R. S. Mulliken for suggesting
this investigation and for many helpful discussions; and also Professor C. C. J.

Roothaan for some valuable constructive criticism.

1puncanson and Coulson, Proc. Roy. Soc. Edinburgh 62A, 37 (1944).
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ON THE USE OF A SINGLE SCALE FACTOR IN ATOMIC WAVE FUNCTIONS.
IT. APPLICATION TO OVERLAP INTEGRALS®

Charles W. Scherr
Laboratory of Molecular Structure and Spectra
Department of Physics
The University of Chicago
Chicago 37, Illinois

ABSTRACT

A method of estimation of two-center'homopolar overlap integrals between SCF
atomic orbitals, due to Mulliken, has been tested and verified.

THE CALCULATION of two-center overlap integrals from numerically tabulated SCF (self-
consistent field) functilons is somewhat laborious, and even with the use of analytical
fits to the SCF functions, when available, the calculation 1s atill rather lengthy.

It is the purpose of this paper to demonstrate the applicability of a simple method of
making estimates of homopolar two-center SCF overlap integrals. This method is appli-
cable to the various atom pairs which can be constructed from any particular row of the
periodic table, when exact calculations are available for the SCF overlap integrals of
one of those pairs.

The method of estimation used in the present paper has been proposed1 and used2 by
Mulliken. The idea of the method is that two-center overlap integrals are about the
same for all the homopolar atom pairs of the same row of the periodic table, for the
same orbitals, for any particular p-value, where p = {R and { is the Slater orbital ex-
ponent3 of the atom, and R is the internuclear distance in atomic units.4

Analytical fits using three to five term linear comblnations of Slater-type

*This work was assisted (in part) by the office of Naval Research under Task Order IX
of Contract N6ori-20 with The University of Chicago.

1R. S. Mulliken, J. Am. Chem. Soc. 72, 4493 (1950).

2R. S. Mulliken, J. Phys. Chem. 56, 295 (1952), footnote 42.

See reference 6, footnote 3.

4The extension to heteropolar atom pairs should be complicated. If the ratio of the
{-values were near unity, e.g., in NO, it would seem reasonable to use a mean p-vélue,
P = %(CA + CB)R, where CA and CB are the orbital exponents on the two atoms.
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orbitals to the "SCF with exchange" numerically tabulated functions for the rR(r)
(radial part of the wave function) of the 1s, 2s, and 2p orbitals of the various states
of each of the atoms of carbon, nitrogen, and oxygen, among others, were determined by
L&wdin.5 On the basis of the criterion of accuracy used in the first paper of the

present series, these fits give a criterion error of less than 0.0050.6 As a test of

Mulliken's method of estimation of SCF overlap integrals, the present author computed
the exact SCF overlap integrals for the nitrogen and oxygen molecules at thelr equi-
librium internuclear distances, from L8wdin's fits for nitrogen and oxygen atoms, and
compared them with the same integrals which were computed from the 1D carbon fit at a
p-value corresponding to that of the exact calculations on the nitrogen or oxygen
molecules. This p-value depends, of course, on the {'s (orbital exponents)3 assigned

to the atoms. The exact carbon-carbon bond calculations are tabulated in Table I.

TABLE I.
OVERLAP INTEGRALS FOR THE CARBON-CARBON BOND

These overlap integrals were calculated by the author for the carbon-carbon bond using
LBwdin's analytical fits, using three- to five-term linear combinations of Slater-type
orbitals, for the 2s and 2p SCF orbitals as computed for the sepz, lD state of carbon.
The r values are the internuclear separations in atomic units at which the integrals
were calculated, and pSlater = 1.625r 1s the corresponding two-quantum p. The S are
the overlap integrals, the subscripts referring to the orbitals ls, 2s, 6(2p6), and
m(2p7w). For brevity S,,r’,,r is written Sﬂ, etc. These values may be compared with the
caorresponding values in Table 6 of reference 8, which were calculated from the Rieke

fit.

r 2-quantum
au PSlater Sy Sg Spg S2¢,6 s13,6 515,28
- 2.07 3.36 0.085
2.27 3.69 0.425  0.148  0.511  0.504  0.121  0.070
2.29 372 0.152
- 2.49 4.04 0.373 . 0.193  0.455  0.485  0.100  0.056
- 2.70 4.39 0.327  0.225
2.91 4.73 0.287  0.247  0.357  0.429  0.069  0.035
3.20 5.20 -_ 0.238  0.260 0.292  0.38%  0.055  0.026
3,32 5.395 0.219  0.264

p.-0. LBwdin, Phys. Rev. 90, 120 (1953).

6C. W. Scherr, J. Chem. Phys. 21, 1237 (1953), and THIS TECHNICAL REPORT, 1952-53, Part
Two. A criterion error of 0.0050 is very close to the error of the SCF calculations
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SINGLE SCALE FACTOR IN ATOMIC WAVEFUNCTIONS. II

Table I presents a comparison of the exact calculations on the nitrogen and oxygen
molecules along with estimations of the same integrals (made from interpolations into
Table I) based on {-values (1) from the Slater recipe7‘and (2) from the formulas of the
first paper of the present series. Both estimations are quite satisfactory, and there
is 1little to choose between the two recipes for the {'s on the basis of these calcula-
tions. However, the formulas of the first paper of the present series are more
versatile in that they can be adapted without any additional trouble to valence states,
or indeed any hypothetical states of the atoms; they also take into account the dif-
ferences in {-values of the 2s and 2p orbitals.

The row of Table II marked "Rieke" presents estimations derived from the tables
of carbon-carbon bond SCF overlap integrals given by Mulliken8 which are based on an
analytical fit made by Mrs. Rieke9 from the carbon SCF data. This fit gives a cri-

terion error of 0.0189.6

The {-recipe used 1s that of Slater. The results so obtained
show that, although the fit is not so accurate as L¥wdin's, nevertheless good estima-
tions of overlap integrals can be made from those tables, which are therefore very

convenient to use for this purpose.

themselves. A criterion error of 0.0189 implies a reproduction of the SCF functions
to about 20.010 units.

7J. C. Slater, Phys. Rev. 36, 57 (1930); C. Zener, Phys. Rev. 36, 51 (1930). The
Slater {-values are conveniently summarized in Table I of reference 9.

8R. 8. Mulliken, J. Chem. Phys. 19, 900 (1951), Tables 6 and 9.
SMulliken, Reike, Orloff, and Orloff, J. Chem. Phys. 17, 1248 (1949), Sec. Vb.
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HYPERCONJUGATION IN C6H7+ AND OTHER HYDROCARBON IONST*

Norbert Muller*
Oxford University
Oxford, England
Lucy W. Pickett® and R. S. Mulliken®
Laboratory of Molecular Structure and Spectra
Department of Physics
The University of Chicago
Chicago 37, Illinois
IN CERTAIN REACTIONS of strong acids with aromatic hydrocarbons, conjugate acids of the
latter can be formed.1 Simplest is C6H7+’ which may be called benzenium ion. Using
the LCAO MO method, we have calculated energy levels, charge distribhtion, bond orders,
and resonance energy of this ion.

Benzenium ion may be considered the simplest prototype of the probable reaction
intermediates in electrophilic substitution reactions of aromatic hydrocarbons. Pre-
vious calculations2 on such intermediates neglected hyperconjugation.

We treat the ion as 1f i1t had six m electrons, in orbitals made by combining the
8ix 2pm, AO's and a quasi-m orbital (lsH—lsH) on the H, pseudo-atom (see Figure 1).

The resulting secular determinant contains diagonal elements Xy =0y - E, ay =
g - N 1 3 -

f ¥,Hy,dt, and off-diagonal elements BiJ + -;Sid(xi + xJ), where BiJ = f winJdT %Sij
(ai‘+ aJ), and 513 is the overlap integral f wiwjdr.
We first set Xy = Xq for all carbon atoms, and Xg = Xg + 650, with SCc = 0.25,

1"l‘m.s work was assisted in part by the Office of Naval Research under Task Order IX of
Contract N6ori-20 with The University of Chicago.

*The computations on 06H7+ were begun in this lLaboratory in the summer of 1951 and
continued at Mount Holyoke by L.W.P., and were extended by N.M. in 1953.

*National Research Council Postdoctorate Fellow at Oxford University, 1952-1953.

:Usual and present address: Department of Chemistry, Mount Holyoke College, South
Hadley, Massachusetts.
°Fu1bright Scholar at Oxford University, 1952-1953.

IM. Kilpatrick and F. E. Luborsky, J. Am. Chem. Soc. 75, 577 (1953), and references to
McCaulay and Lien, H. C. Brown,and others given there.

26. W. Wheland, J. Am. Chem. Soc. 64, 900 (1942) and others. See in particular V, Gold,

J. Chem. Soc.,2184 (1952).
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HYPERCONJUGATION 1IN 06H7+AND OTHER HYDROCARBON IONS

3
0.183 SCH = 0,512, and ﬁCH = Qacc. We tried

c several 6 values from -0.5 to +0.5.4 In

0.07 SJJQ further calculations with 6 = 0, we made
() STl

~~~H the B's and the St's self-consistent with

the calculated bond orders and correspond-

(Y

ing distances, assuming B proportional
Fig. 1. Diagram of 06H7+ showing

to S.3 Finally, we allowed for the effect
charge distribution of 6 = 0, w = 2,

on the a-values of the uneven computed
distribution of charge among the several atoms by replacing each‘a1 by ay + wﬁoqi‘and
repeating the computations until self-consistency was reached. Here a4 is the charge
on the ith atom, calculated from the appropriately normalized coefficients of the oc-
cupied MO's. Trial values of 2 and 4 for w were used.
The hyperconjugation energy is the difference between the energy thus computed and

that similarly computed for the conventional model,2 consisting here of four m electrons

on five carbon atoms, plus an "inert" CH, group. For & = 0, the computed hyperconjuga-

tion energy varies from 0.288&0, or about 17kcal, if w = 0, to O.u56ﬁo, or about 2T7kecal,
if o = 4.5 It is larger for & < O and smaller for 6 > O0; empirically, it 1is fairly
sure that & ¢ 0, perhaps about —0.5.4

Calculations now in progress indicate that w is about 1.5; they involve the ap-
plication of procedures like that described above to the ethyl, isopropyl, and t-butyl
and allyl free radicals and their positive ions, where the observed stabilization
energies6 become comprehensible if an w of thils magnltude 1s introduced.

The computations predict two electronic transitions 1n or near the visible for
06H7+, a moderately strong one at longer and a strong one at shorter wavelengths. Un-

published new experimental work by C. Reid at Chicago on the toluenium and xylenium ion

Chem. Rev. 41, 219 (1947).

4In reference 3, & values between 0 and +1 were used; but on the basis of empirical

evidence Coulson and Crawford {in press) assume & < O, probably about -0.5.

5These values are reduced by about Tkcal by compressional energy corrections, but
considerably raised by the use of 6 = -0.5. These points will be discussed in more
detail in a paper in preparation.

Spranklin and Lumpkin, J. Chem. Phys. 20, 745 (1952); J. Halpern, J. Chem. Phys. 20,
Th4 (1952).
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spectra shows a strong transition in the violet, with evidence of further absorption in
the ultraviolet.

From the present calculations and from computations and observations on alkyl
radicals and ions, it appears that in hyperconjugated systems containing an odd number
of centers bearing m or quasi-m electrons, the hyperconjugation energy is of a larger
order of magnitude than in similar systems containing an even number of such centers.7

It should be noted especially that these results are reproduced theoretically using the

same parametersB'u in the two cases.

7Twiated ethylene (see reference 3b) containing two independent three-n-center hyper-
conjugated systems, also has large hyperconjugation energy.
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C. Reia®
Laboratory of Molecular Structure and Spectra
Department of Physics
The University of Chicago
Chicago 37, Illinoils

MOLECULES containing a heterocatom (0, N, S, etc.) with an "unshared pair" of electrons
adjacent to a conjugated system usually show light absorption to longer wavelengths

than do the corresponding conjugated molecules with no heteroatom.

This absorption has been attributed to "n—n" transitions in which one of the 1
unshared pair electrons 1s excited into the lowest unfilled level of the conjugated 5
syatem.l’e’3

Most such molecules also show phosphorescence, of lifetime ranging from ca. 10"3
seconds for aromatic. ketones to several seconds for pyridine. Phosphorescences of this i

kind nave been attributed variously as due to singlet n—m transitions (formaldehydeu),

triplet n—w transitions (formaldehyde,5 pyridine,z’3 ete.), and triplet 7—m transi-
tions (pyridine6), It is not always possible unambiguously to decide between these
possibilities. The following argument clears up some of the difficulties.

Elementary MO considerations show that the singlet-triplet separation = ijnﬂwﬂdr
where wn and Wﬂ are the one-electron n and 7 orbital wavefunctions respectively. We
can expect this integral to be very small for two reasons. FPirst, the amount of
spatial overlap between these two orbitals is small, particularly if the conjugated
system is an extended one. Second, symmetry considerations suggest that the integral ;
should be zero, any positive part being balanced by an equal negative contribution.

*This work was assisted by the Office of Ordnance Research under Project TB2-0001(505) f
of Contract DA-11-022-0RD-1002 with The University of Chicago.
*On leave of absence from The Univefsity of British Columbia, Vancouver, B. C., Canada.
14, L. McMurray and R. S. Mulliken, Proc. Nat. Acad. Sci., Wash. 26, 312 (19%0).
M. Kasha, Disc. Faraday Soc. No. 9, 14 (1950).
3c. Re1d, J. Chem. Phys. 18, 1673 (1950).

. 5. Dyne, J. Chem. Phys. 20, 811 (1952), and references contained therein.

5A. D. Walsh, J. Chem. Phys. 20, 1502 (1952).
65. H. Rush and H. Sponer, J. Chem. Phys. 20, 1847 (1952).
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Triplet transitions are often observed in emission only, the corresponding
absorption being too weak to observe. This emission is thus well to the red of the
longest wavelength (allowed) absorption. However the above argument suggests that in
the case of n—m transitions, T — S emission should be much closer to the corresponding
singlet absorption. Using as a guide an average S-T separation for 7—m transitions of
6-7,000cm'1, and assuming that the splitting will decrease in n—m transitions in about
the same ratio that the intensities of these transitions bear to those of m—m transi-

tions (about .02), we can expect that only a hundred em™d

or so will separate singlet
absorption and triplet emission.

This allows us to say at once that the observed long-lived phosphorescence of
1)

pyridine at*27,000cm'1 (nearest appreciable absorption = 36,000em™~) is not n—m as has

253 put .

been suggested,
The correctness of this argument has been confirmed in this Laboratory by a
comparison of the emission spectrum of pyridine in a rigid glass (EPA) with that of
pyridine in concentrated sulphuric acid. For an n—m transition the emission should be
much weakened or absent, since the n-electrons are no longer excitable at such low
energy. In fact, the emission is not only present but enhanced, by a factor of about
10 in intensity. Accordingly it is certainly mm, as was suggested tentatively by
Sponer and Rush.6
Using the above picture, 1t i1s also possible to explain why the lifetimes of the
emitting states of aldehydes and ketones are about 100-1,000 times longer (ca. 10'3
seconds) than is calculated from the extinction coefficient of what looks like the
corresponding absorption band (e = 200). It'is also possible to explain the con-
flicting results of the detailed analysis of the long-wave absorption and emission of
rormaldehyde.u’5 The explanation suggests that the emission i1s not homogeneous, but
comes partly from the n—w singlet and partly from the triplet state. Experiments to

confirm or disprove the correctness of this explanation are under way.
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THE AROMATIC CARBONIUM Tons'

C. Reid®
Laboratory of Molecular Structure and Spectra
Department of Physics
The University of Chicago
Chicago 37, Illinois

ABSTRACT

The spectra of a number of aromatic hydrocarbons dissolved in liquld hydrogen
fluoride containing boron trifluoride have been examined. Two kinds of absorption
bands have been observed and are attributed (1) to the aromatic carbonium ions rut
and (2) to the complexes R:BF,. The carbonium ions are subdivided into two groups with
spectra centered at about 4,0003 and 4,8003 respectively, and a tentative explanation
for these is put forward.

Photochemical changes have also been observed on irradiation of some of the poly-

cyclic carbonium ions and are discussed.

INTRODUCTION

THE FACT that the more basic, polynuclear hydrocarbons dissolve in strong sulphuric
acid, and that even the less basic ones, benzene, toluene, etc., will dissolve in
anhydrous hydrofluoric acid, in the presence of boron trifluoride, is well-known.l’2
Differences in basicity have been used as a mode of separation of these hydrocarbons.2

Nevertheless, data on the "carbonium ions" which are formed, it is thought by the
addition of a proton to the hydrocarbon--which thus acts as a base--are very scanty,
although some spectra of sulphuric-acid solutions of the more basic hydrocarbons have
been published.3 The experimental work here described shows that in fact the phenom-
ena occuring in HF-BF3 solutions are quite involved, addition compounds of BF3 and

hydrocarbon sometimes forming as well as the carbonium ion, which may itself react to

1".l‘h:ls work was assisted by the Office of Ordnance Research under Project TB2-0001
(505) of Contract DA-11-022-ORD-1002 with The University of Chicago. ’

*On leave of absence from The University of British Columbia, Vancouver, B. C., Canads,
which 1s presently the correct address.

ln. Kilpatrick and F. E. Luborsky, J. Am. Chem. Soc. 75, 577 (1953), and references
given there.

2). A. McCaulay, B. H. Shoemaker, and A. P. Lien, Ind. Eng. Chem. 42, 2103 (1950).
3V. Gold and F. L. Tye, J. Chem. Soc., 2172 (1952), and references therein.
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form further products.
EXPERIMENTAL

Absorption i

Anhydrous HF (Mathieson C. P.) and dry boron trifluoride {(from the same source)
were distilled through teflon tubes into the absorption cell. For quantitative meas-
urements a lem teflon cell with thin quartz windows was used in a specially constructed
dewar vessel (Figure 1). At the temperatures used (-80°) in this phase of the work,
quartz is not attacked appreciably by the acid mixture,
and windows may be used fifteen to twenty times before
M) ‘ (M) clouding becomes noticeable. Attempts to use thin teflon
windows were not successful. With this arrangement, a
Beckman model DU spectrophotometer was used.

For some phases of the investigation, the point-by-

point specﬁrophotometer was unsuitable, and instead a

Hilger E2 spectrograph was used. The advantages were:

(1) photographs could be taken only a few seconds after

adding the hydrocarbon to the HF-BF3 mixture; (2) in

cases where higher temperatures were required (g.g., for
benzene, which at -80° crystallizes almost completely

from the BFB-HF solution), the absorption cell could be

kept several feet from the optical system to avoild attack

by hydrogen fluoride vapor. Accurate absorption coef-
Fig. 1. Low-temperature
absorption apparatus. The
shaded body of the cell 1is
made of teflon. The space Low-temperature emission spectra were taken of
between the double windows
is evacuated.

ficients were not obtained by this method, however.

Emission

frozen systems at -180°. These systems were not the
usual solid glasses used in emission work but crystalline
masses of HF containing the carbonium ions as impurities. Since solid HF 1s a molecu-
lar rather than an ionic crystal, however, with absorption only at much higher ener-
gies than in the range studied, it is not surprising that the absorption spectra
observed are in general obviously those of the same species which absorbs in the

1liquid systems. Most of the emission spectra were short-lived specles. 1In a few
cases a mechanical phosphoroscope was used to separate a short-lived from a long-lived

component. Loss of light by scattering in the crystalline mass was considerable, but
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Fig. 2. Spectrum of the benzene - HF-BF3
system.’

- - - 06H6-BF3 complex absorption
+

C6H7 absorption

.-t C6H7+ fluorescence emission
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Pig. 3. Spectrum of the toluene - HF-BF3
system.

- = = Curve B, C7H8'B£3 complex absorption

{Curve A, CgHg'BF4

Curve C, o-oxylene-BF3

Absorption curve after 5 minutes at

-20°C showing the c7u9+ peak

«sess AbBorption curve after 30 minutes at
-20°C

-s=+= Fluorescence emission spectrum of
final solution

} for comparison

emitted light intensities were still high
enough for photographs to be taken in one
to five minutes, using a 1,500-watt high-
pressure mercury arc as 1lluminating

source.

RESULTS AND DISCUSSIONS

Curves showing some typical spectra
are shown in Figures 2-9. The out-
standing features are the following.

(1) The ions examined divide them-
selves clearly into two groups: (a)
those whose "long-wave" absorption is
close to 4,0008; this group includes all
the monocyclic hydrocarbons, ‘naphthalene,
and anthracene; (b) those whose long-
wave absorption 1s at considerably lower
energies, usually in the nelghborhood of
4,800-5,0008, but not quite so sharply
delineated as group (a); this group in-
cludes phenanthrene,‘naphthacene, pyrene,
fluoranthene, etc.

It must be emphasized that the
position of the "carbonium ion" band is
not directly related to the position of
the absorption spectrum of the parent
hydrocarbon. Thus we find phenanthrene,
itself absorbing at slightly shorter
wavelengths than anthracene, with a car-
bonium-ion absorption at much longer
wavelengths. Similarly, naphthacene,
chrysene, and pyrene all have carbonium-
ion absorption in approximately the same

region, although, of the parent

e e e b+ e
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hydrocarbons, naphthacene absorbs at

considerably longer wavelengths than do
the other two.

There is no very obvious relation-
ghip between the structure of the parent
molecule and the position of the absorp-

tion maximum of the carbonium ion. If

/[ we adopt the usually accepted geometrical
AA( ‘ structure for the carbonium ion, in which
A Il " A A ]
n1n1“ 400 800 soo 700 the proton forms a normal CH, group

Fig. 4. Spectrum of the naphthalene -
HF-BF3 system..
C.~H + absorption

1079
P, CIOH9+ fluorescence emission planation seems to be that the "y 000R"

(which then "hyperconjugates™ with the
rest of the ringu), the most likely ex-

group of carbonium ions are those for

which only one ring of the hydrocarbon is
strongly involved, while in the 4,800-
5,000R group more than one ring is
strongly involved.

o~ This idea for instance explains very
=15 well why anthracene long-wavelength car-

\
/ \ / bonium-ion absorption is almost identical
"800 3

] , with that of benzene. (Here also see
00

mmy 300 a00

Gold and Tye,3 whose spectrum of the
Fig. 5. Comparison of the mesitylene and

hexaethyl benzene spectra in HF-
BF}' The left-hand ordinate is phuric acid is similar to that obtained
for hexaethyl benzene, that on the pone 4y pydrofiuoric acid.) The 9-10
right for mesitylene.
- - - mesitylene-}{+ absorption. '
—eme m.esitylen,e-}l+ fluorescence emission susceptible to attack by electropositive
hexaethyl benzene -H absorption
-v»e=sshexaethyl benzene -H* fluorescence

anthracene carbonium ion in strong sul-

positions of anthracene are so much more

reagents that we may safely assume that

the carbonium ion has the structure

emission
@ (as also assumed by Gold
and Tye) This means that the anthracene

L. W. Pickett, N. Muller, and R. S. Mulliken, J. Chem. Phys. 21, 1400 (1953)s J. Am.
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mmy 360 -

Fig. 6. Spectrum of the anthracene -
HF-BF3 system.

014H11+ ion absorption

-+=+= fluorescence emission (short-1ived)
- - - phosphorescence emission (long-

lived)

€00 700

500

FPig. 7. Spectrum of the phenanthrene -

HF-BF3
* Jon absorption

clh“ll on absorp

+
—r—ea clh“ll ion fluorescence emission

system.

about 2.5 times as strong as the former.

bonds are to some extent "frozen" into a
particular structure much in the way that
they were visualized as frozen in quino-

noid compounds by Evans,5

and the proba-
bility of the positive charge migrating
into the end rings is low, 1l.e., the
"carbonium-ion" structure is essentially
confined to the middle ring. The fact
that for naphthalene and anthracene the
positive charge remains largely localized
in the ring first attacked is substan-
tiated by the substitution reactions of
these molecules. Thus for monosubsti-
tuted naphthalenes, when the substituent
is one attracting electrons, we find that
a second (electrophilic) substituent goes
into the second ring, and at a rate
similar to that of monosubstitution in
benzene. It follows that the deactiva-
tion is localized in the ring first
attacked, and that the positive charge
can therefore be considered as largély
localized on this ring.

In the case of the benzene carbonium
ion, the observed spectrum (Figure 2) is
in fairly satisfactory agreement with the
theoretical prediction4 that this ion
should show two strong peaks near 4,0008

and 3,2003 respectively, with the latter

To explalin the long wavelength absorption of the phenanthrene carbonium ion, we
must assume that in it--and in all the larger polycyclics--strong migration of positive
charge into rings other than that attacked by the proton must occur.

M. G. Evans, Trans. Paraday Soc. 42, 101 (1946).
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. i A
mmy 400 800 600 700
Pig. 8. Spectrum of the naphthacene -
HF-BF3 system.
016H13+ ion absorption
-«-+- Fluorescence emission of system

Fig.'Q. Spectrum of the pyrene - HF-BF3
system.
c16H11+ ion initial absorption
-«=.= Fluorescence ‘emission spectrum of
system
- = = New absorption band appearing after
irradiation '

'

Neglecting hyperconjugation effects,
this means that the conjugated system
increases from 5‘centers + 4 electrons
to 9 centers + 8 electrons or 13 centers
+ 12 electrons, according to whether two
or three rings are involved. A simple
free-electron calculation suggests that
the observed shifts fit the two-ring
much better than the three-ring picture.

(2) In the case of the weakest bases
(benzene, toluene, etc.), at the low
temperatures used, the appearance of the
characteristic carbonium ion peak at
4,0008 is not the first observation.
Instead, the solution at first remains
colorless, but examination of the absorp-
tion spectrum shows an intense peak in
the ultraviolet at 3,180R for toluene and
at 2,8408 for benzene. These peaks are
certainly not simply due to a solvent
shift of the hydrocarbon bands, which
themselves may be seen weakly at
shorter wavelengths. It seems certain
that these new bands are charge-transfer
spectra6 due to the presence of molecular
complexes such as 06H6:BF3 and C7H8:BF3.
Highly allowed optical transitions lying
in approximately the reglon where these

bands were observed are then expected,

to states approximately described as C6H6+.'B'F3 and C7H8+.'B‘F3. The differences in

position of the benzene, toluene, and xylene bands (about B,OOOcm'l) are in good agree-

ment with what would be expected from their differences in ionization potential.7

6. s. Mulliken, J. Am. Chem. Soc. T4, 811 (1952).
TH. MoConnell, J. S. Ham, and J. R. Platt, J. Chem. Phys. 21, 66 (1953); S. M. Hastings,
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Warming of the colorless solutions to above about -20°C results in the rapid develop-
ment of color due to the appearance of the characteristic carbonium-ion absorption at
4,0003. Even at -70°C in the case of Xxylene the appearance of color takes only a
minute or two.

(3) Most of the systems investigated are not stable for an indefinite period even
after the carbonium ion has formed. Quite early in the investigation it was found
that absorption bands appeared erratically in the red and infrared and bore no con-
sistent relationship to the main absorption around M,OOOR. Some insight inteo what
such phenomena may involve is provided by the case of pyrene (Figure 9).

Solution of pyrene in HF-BF3 leads to the immediate production of a yellow-orange
solution with a sharp absorption band Just below 5,0003. It is found, however, that
the emission is far to the red of this, and further that irradiation leads to a chapge
in color, the solution rapidly becoming a clear green and remaining thus when irradia-
tion is discontinued. Reinvestigation of the
absorption spectrum after irradiation shows a new
absorption band with obvious mirror relationship to
the emission.

It appears therefore that the first formed
carbonium ion after excitation undergoes tautomerism
or perhaps chemical reaction in the excited state,
the new species then emitting and persisting in the
ground state.

Schematically such a process can be visualized

on the basis of the potential curves shown in Fig-

ure 10. Curves A and B then represent the ground-

Fﬁ and excited-state potential curves of the originally

Fig. 10. Possible potential formed carbonium ion, and C and D those of the new

curves for pyrene species, tautomerism being 2ffected by a radiation-
carbonium-ion system.
A. Initial carbonium ion
B. Excited state of same
C. Curve onto which system moves carbonium ion again there must be a considerable
in ypper-state tautomerism ’
D. Ground state of photoproduct

less transition from curve B to curve C. Since the

green end-product does not revert to the original

barrier betweep states A and D. A similar wide

separation between absorption and emission, and

J. L. Franklin, J. C. Schiller, and P. A. Matsen, J. Am. Chem. Soc. 75, 2900 (1953).
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ready photodecomposition is found for the naphthacene carbonium ilon.

(4) Soge ambiguity is present in the case of hexaethyl benzene. The BF5-hydro-
carbon complex and the carbonium lon may in this case be expected to absorb in approxi-
mately the same region of the spectrum. The observed absorption peak 1s very sharp,
and so is the corresponding emission. The bands are certainly different in appearance
from the usual "carbonium-ion" bands, and it is tentatively suggested that they are in
fact charge-transfer bands. If this is so, the non—appeérance of the "carbonium" band
must be attributed to a greater stability of the charge-transfer complex, which perhaps
is itself not a good enough donor to form a carbonium ion. This different behavior
may be due to the steric effect of the bulky ethyl groups which probably result in
some buckling of the aromatic fing4

(5) Finally it 1is noteworthy that of all the hydrocarbon carbonium ions examined,
only that of anthracene showed a long-lived (presumably triplet) phosphorescence
spectrum. Although perhaps coincidental, it is remarkable that anthracene 1s the one
hydrocarbon which itself shows so little phosphorescence that the position of its
lowest triplet level 1s in debate.8

If 1t is granted as reasonable that the triplet levels like the singlets will
shift to the red in the carbonium lon, the position of the carbonium-ion triplet
(5,8008) is evidence in favor of the assignment of the anthracene triplet8 at 5,2008

rather than at 6,900K.
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LOW-TEMPERATURE ABSORPTION SPECTRA OF SELECTED
OLEFINS IN THE FARTHER ULTRAVIOLET REGION**
*0
W. J. Potts, Jr.
Laboratory of Molecular Structure and Spectra
Department of Physics
The Universlity of Chicago
Chicago 37, Illinois
INTRODUCTION
THERE HAS LONG been a great interest in the far ultraviolet absorption spectra of
ethylenes, for these molecules are the simplest of all m-electronic systems. The

1,2,3,4%

ultraviolet absorption work.of E. Carr, L. Pickett, and co-workers on several

olefins 1n solution and vapor phases, and the work of Price and Tutte5 in the vapor
phase has given much informatiorn about the double bond. Platt, Klevens, and Price6
give extinction coefficients in the farther ultraviolet region of a few olefins, from
work in n-heptane solution. A rather complete bibliography of the literature on
ethylenes is given by Platt and Klevens.7

The above authors (especially those in references 3 and 5) have shown that the

magnitude of the red shift with increasing alkyl substitution of the N - V transition

fThis work was assisted in part by the Office of Ordnance Research under ProJect
TB2-0001(505) of Contract DA-11-022-0RD-1002 with The University of Chicago.

*This paper 1s essentially an extract version of Part II of a doctoral dissertation
[Low-Temperature Spectroscopy in the Farther Ultraviolet Region, Chicago: March,
1953] submitted to the Faculty of the Division of the Physical Scilences, The Univer-
sity of Chicago. '

.AEC Predoctoral Fellow, 1950-52.

OPresent address: Spectroscopy Department, The Dow Chemical Company, Midland, Michigan.
1g. carr and M. Walker, J. Chem. Phys. 4, 751 (1936).

%E. Carr and G. Walter, J. Chem. Phys. 4, 756 (1936).

3E. Carr and H. St#icklen, J. Chem. Phys. 4, 760 (1936).
3

5. C. Price and W. T. Tutte, Proc. Roy. Soc. (London) Al74, 207 (1940).
Platt, Klevens, and Price, J. Chem. Phys. 17, 466 (1949).
T3. R. Platt and H. B. Klevens, Rev. Mod. Phys. 16, 182 (1944).
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(the strong, allowed transition near 1,8003) depends primarily on the number of alkyl
substituents, and only to a lesser extent upon the size and position of substituents.
Extensive theoretical investigations by R. S. Mulliken8’9’10 have to a great

10 have made

measure correlated and explained the existing data. Mulliken and Roothaan
MO calculations which predict semi-quantitatively the potential energy (xg. twist about
the double bond) curves of ethylene in its ground and excited electronic states.

The present research was undertaken to compare the ultraviolet absorption spectra
of four alkyl-substituted ethylenes--tetramethylethylene, trimethylethylene, cyclo-
hexene, and hexene-1l--in solution at room temperaturé (298°K) and in a rigid hydro-
carbon glass at liquid-nitrogen temperature (77°K), and to see what effect, if any,
low temperature might have on the spectra, which are presumably sensitive to twist
about the double bond. It was also hoped that the well-known effect of producing
sharper spectra at low temperature would be achieved, and thereby locate the N - T

(absorption to the triplet state) transition.

EXPERIMENTAL
Materials
The four olefins measured were National Bureau of Standards samples, with the

following maximum impurities: tetramethylethylene (540-5S), 0.10+.05 mole %; trimethyl-

- ethylene (286-5S), 0.06+.04 mole %; cyclohexene (522-58), 0.023+.02 mole %; and hexene-

1 (519-58), 0.14+.08 mole %. These compounds were used without further purification.

‘All measurements on any compound were run the same day the sealed tube was opened, the

solutions being made up and measurements taken as rapidly as physically possible. This
was done because the rate at which the solutions of these compounds became impure when
exposed to the air (presumably due to peroxide formation) is excessive, particularly in
the case of hexene-1l.
Methods

The room-temperature data abové 2,QOOR were obtained in 3-methylpentane solution
with a Beckman model DU quartz spectrophotometer, using lecm quartz cells. The data
below 2,2002 were obtained with a Cario-Schmitt-0Ott vacuum fluorite spectrograph, using

8R. S. Mulliken, Phys. Rev. 41, 751 (1932).
9R. 5. Mulliken, Rev. Mod. Phys. 1%, 265 (1942).
108, 5. Mulliken and C. C. J. Roothaan, Chem. Rev. 41, 219 (1947).
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techniques similar to those of Jacobs and Platt.l1 A lcm cell was used, except in the
farthest ultraviolet region (below 1,8502), where a .13mm cell was employed. The
solvent was a mixture of 3-methylpentane and isopentane.

All the low-temperature data were obtained in a rigid hydrocarbon glass: the mix-
ture of six parts isopentane and one part 3-methylpentane as discussed by Potta.l2 The

apparatus and techniques used are those described elsewhere by Potts.12

Errors

As has been discussed by Potts,12

errors of reciprocity fallure of emulsions,
spectrophotometer errors, inaccuracles of sample preparation, etc., are small compared
to the error of variance of the optical density of the solvents and glasses in this
farther ultraviolet region. An index of error is provided by the closeness of agree-
ment with Beer's law as solutions of different concentration were used. (All solutions
were in steps of gactors of five in concentration.) The maximum error of extinction
coefficient is somewhat more than 15% at the far ultraviolet end, becoming progres-
sively better toward the nearer ultraviolet, being about 10% at 2,0002, 5% at 2,5002.
In the regions of the spectra where data from the Beckman spectrophotometer overlap

with data from the vacuum fluorite spectrograph, the agreement is generally quite good.

Aggpement‘gg Room-temperature Data with Previous Work

For solution data above 2,2008 the agreement 18 generally good. Tetramethyl-
ethylene and trimethylethylene data are in essential agreement with those of Carr.l’2
Disagreement of their data on hexene-1l with the present data 1is perhaps because the
very pure NBS standard samples were not available at the time of their work. The
solution data on tetramethylethylene and hexeﬁe-l obtained by Stevenson,13 using NBS
standard samples, agree very closely with the present work.

The data below 2,2008 of vapor-phase investigations of Carr and St{icklen3 and of
Price and:Tutte5 are qualitative. The sharper bands superimposed upon the N -V
transition observed by these authors are not found in the present (solution) work,
which is explained below. Otherwise, the data seem in approximate agreement.

4

The data of Pickett et al. on cyclohexene in the vapor phase, using an NBS sample,

shows general agreement with the present solution data, although a shoulder on the red

11, E. Jacobs and J. R. Platt, J. Chem. Phys. 16, 1137 (1948).
12y, 7. Potts, Jr., J. Chem. Phys. 20, 809 (1952); 21, 191 (1953).
”D. P. Stevenson, Shell Development Company, private communication.
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side of the N = V transition seems better resolved in their work. This is perhaps due
to the expected difference in resolution between vapor and solution spectra. The
cyclohexene solution data of Platt et 51.6 are in general agreement with the present
work, but show a much higher absorption on the "tail" of the N — V absorption than the
present work. This again may be due to the fact the NBS standard samples were not used
in their work, for the present author has noted a rather extreme difficulty in keeping
this compound "spectroscopically" pure.

Far ultraviolet solution data of Platt et gl.6 on octene-1 agrees rather poorly
with the present work on hexene-1, whose spectra presumably should be quite similar.
Their extinction coefficient of the N — V transition is considerably higher (50% or so)
than the present work, and they indicate a much sharper peak to the band than the
present work. This disagreement is difficult to explain, as the techniques used in
obtaining these data were 1dentical. Critical examination of both sets of data seems

to indicate that the present €n is probably too low, while that of Platt et al. is

ax
perhaps somewhat high.

RESULTS

Absorption Data

Figures 1-4 give the room-temperature (dashed curve) and low-temperature (solid
curve) absorption spectra from‘Z,BOOX to l,TOOX of tetramethylethylene, trimethyl-
ethylene, cyclohexene, and hexene-1l, respectively. Logloem_(molar extinction co-
efficient) obtained from measured optical density, cell length, and known concentratioh
by the usual relation elc = ‘10310(1/10) = 0.D. (£ in cm, c¢ in moles/liter), is plotted

against the frequency in wave numbers.

N ~ = £t | When the rigid glass 1s employed, it is
» ,(“, necessary to correct the concentration
: P ]7 | values for the 22% contraction of the
| f‘ / i  glass in cooling.
g' | 1 3.2"' | T Table I gives the frequency of the
‘ ﬁ ‘ " ‘ absorption maximum, corresponding peak
- /}/ ‘ - : molar extinction coefficient, and esti-
* f’ mated oscillator strength (room tempera-
ycm g 109 ture only) of the rather broad, allowed
Fig. 1. Absorption spectrum of tetra- N - V transition for the various olefins
methylethylene.
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studied here. There 1s an uncertainty of
1

¥ ‘ about 500cm™~ in the position of the

A 1 absorption peaks because of the broadness

rd f | : of these peaks. The shift toward the red

is seen to depend primarily on the number

J
? | ‘ .
f ‘ T "‘53" of alkyl substitutes at both temperatures.
‘ S

/ l ‘ " Normally, in going from solution to

a rigid glass medium a red shift of the

P ‘ ‘ ‘ absorption peak is observed, because of

yom 5 1070 ‘ the greatly increased refractive index of

Fig. 2. Absorption spectrum of the medium. That a blue shift of the

trimethylethylene. absorption peak is observed in olefins 1is

. accounted for below.

It was thought inadvisable to cal-
14

of the

;j? culate the oscillator strengths

N - V transitions at low temperature,

\}/5\:

because the limit of the experimental

ﬁ/f\oz‘
3

";
14
/

*a.

technique was 1,7003, and it seems

L ‘ ; : probable that the broad N — V transition
,
| extends to yet shorter‘wavelengths}’5

‘ . There are not sufficient data in the
4“4 4 0 0 K’ 6 8B »N
yiom x 10”0 present work to calculate accurately the

Fig. 3. Absorption spectrum of

oscillator strengths at room temperature,
cyclohexene.
but these values were estimated by extra-

polating the present data to higher frequencies, using the qualitative results of
Price and Tutte5 as a guide. Their data on propene-l1 are used to extrapolate hexene-1,

for presumably these compounds should have very similar absorption spectra.3’9
15

There are some weak bands appearing in the region 40,000-48,000cm'1 which are

masked at room temperature by the strong shoulder on the red side of the N — V absorp-

tion, but which are seen at low temperatures. A possible explanation--that their

2
1“'t‘--number,‘ or oscillator strength, is defined ags: f = 103(logloe)—2§— fevdv = 4,32
) : me N

x 10'9[evdv, where v is in cm”l, €, 1s molar extinction coefficient.

15p. 6. Wilkinson and H. L. Johnson, J. Chem. Phys. 18, 190 (1950).
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TABLE 1I.
POSITIONS OF THE N — V TRANSITIONS IN OLEFINS
e ———— —— —_—— |
‘ Tetramethyl- Trimethyl-
ethylene ethylene Cyclohexene Hexene-1
H M
CH \,
| CHy ~ OHy | CHj CHs N = ¢ . H
i Structural C = L =C_ CH2 CH2 ,C = C\
 Formula CHy “CH H CHy \! / CyHg
‘ CH2 - CH2
Tempersture 298% | 77% | 298°k| 77°k | 298°%k | 77°k | 298°%k | 77°%k
Vpax OF N =V _ ' |
transition 52,250 |53,750 | 53,000 54,000 54,750 | 55,500 56,000 {56,500
+500em™t
' €nax 10,000 |10,500 5,800‘ 5,600 6,800 6,800 6,300 ‘ 5,400
+£700 900 +700 +900 +700 +900 +700 +900
'Red shift from -
Vpax Of ethylene | g 45 8,400 6,700 5,400
- (61,400cm™ ") (See
' refs. 5 and 15)
;Low-temperature
blue shift, em t 1,500 1,000 750 500
' f-number 454,10 34,09 .38+.09 .29:.08

existence is due to a ground-state-to-triplet (N — T) transition {(and not to trace

impurities!)--is discussed below.

The "centers" of the transitions, average molar

extinction coefficient, and oscillator strengths of these transitions are given in

Table II.

- gy A
oV

g <
N“‘*-&

;
. oy W
’
- ’;:/

Pig. 4.

“ &4 » W

yom* 10

Absorption spectrum of hexene-l.

resolved.

The vibrational separation (?) is tabulated where it is sufficiently

Most curious is the low-temperature
spectrum of cyclohexene in the region
40,000-45,0000m'1. The low-temperature
absorption 1s pronouncedly greater than
the absorption at room temperature.
That this surprising effect is probably
real was indicated by showing that the

room-temperature absorption 1is repro-

duced within experimental error upon
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TABLE II.
POSITIONS OF THE N — T (?) TRANSITIONS IN OLEFINS
=
Tetramethyl- Trimethyl-
ethylene ) ethylene Cyclohexene Hexene-1
"Center" of -1 -1 -1 -1
of N =T 43,800cm 44 ,200cm 44 ,000cm 46,400cm
transition
Average ¢ 2.54.5 6.1 1.02.2 24,1
£-number 4.241.0 x 1072 1.0£.5 x 1072 2.7+.8 x 1072 .26%.1 x 1079
Vibrational .1 1
separation 1,4004+100cm 1,400£100cm

for the low-temperature determinations.

Three molecules are obvious by their omission from this study, namely, the three
dimethylethylenes: cis- and trans- butene-2, and 2-methylpropene. Their absorption-
spectra curves would be expected to be about midway between trimethylethylene and
hexene-l.e’3 (Hexene-1 should have essentially the same ultraviolet spectrum as
propene;3 it was chosen only for convenience of physical properties.)

Ethylene, of course, should also be included in this study. However, new experi-
mental techniques are necessary before a gas can be studied by the low-temperature
methods used in this work.

In Figure 5 the low-temperature absorption curves of all four compounds are

plotted together for comparison.

4,/" Search for Phosphorescence

’/, Observation of olefin phosphorescence

/ ‘I' 1{‘ ‘ - (T = N long-lived emission) would lend
16

I ' strong support to the singlet-triplet

Logy tm

in the 40-48,000cm region. Hence a search

]z ‘ ‘ (N = T) assignment given the weaker bands
f

A1
2 7 : for phosphorescence was made, using the
s 12

\
\

4 : methods described elsewhere by Potts.
N In this setup, the s8lit of the Carilo-

Fig. 5. Low-temperature spectra compared. Schmitt-0tt fluorite spectrograph was made

161t has been quite firmmly established that phosphorescence in electronic systems is
due to the lowest-triplet-to-ground-singlet emission. (See reference 17.)
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very wide (lmm), and the very fast Eastman SWR plates were used, so that the weakest
radiations could be detected. With this arrangement it was possible to record the
notably weak phosphorescence of benzene17 with only 15 minutes' exposure time.
Tetramethylethylene was chosen for this study because of its higher absorption
less farther in the ultraviolet. No phosphorescence was observed. An gxplanation‘rOr
its non-appearance 1is given below.

17,18 must be regarded

The phosphorescences of chloro-ethylenes reported by Kasha
as erroneous because their reported lifetimes are much too long. Phosphorescence of
these compounds (if it exists at all!--see discussion below) would be very short-lived,
for the only selection rule forbidding the transition in chloro-ethylenes is the
singlet-triplet intercombination rule, and chloro-substitution tends to break down this

very rule.19
DISCUSSION

As noted above, the larger the number of alkyl substituents about the double bond,
the lower 1s the energy (longer the wavelength) of the N — V transition peak. This

9,20

effect, due to increasing hyperconjugation and/or increased inductive transfer of

charge towards the double bond from the more electro-positive alkyl groups with
increasing alkyl substitution,5 has been dealt with at length by other author33’5’9
and hence will not be discussed further here.

In the vapor absorption spectra of Carr and Stﬁcklen3 and of Price and Tutte5
several sharp bands appear superimposed on the broad N — V absorption. These bands
have been interpreted as belonging to a Rydberg-type transition5’9’21 called N =R in
the notation of Mulliken.9 No such bands were observed in the present work.

The explanation of their non-appearance (if they are truly Rydberg-type transi-
tions) lies in the fact that one would not expect such spectral states to be observed
in a condensed medium (solution or low-temperature glass) because the large-sized

Rydberg orbitals would probably be strongly perturbed by closely neighboring solvent

molecules. When these bands have been observed by other authors it has always been in

18y, Kasha, Chem. Rev. 41, %01 (1947). ,
19p, S. McClure, J. Chem. Phys. 17, 905 (1949).

20qulliken, Rieke, and Brown, J. Am. Chem. Soc. 63, 41 (1941).

2lg, Carr and H. Stlicklen, J. Chem. Phys. 7, 631 (1939).
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the vapor phase at low pressures.

Shape of the N —» V Absorption Curve at Low Temperature

It is noticed that in each compound there is a shoulder in the absorption curve of
greater or smaller size on the red side of the N — V transition. The width of this
shoulder decreases as one goes from tetramethylethylene, the most substituted ethylene,
to hexene-1, the least substituted. For an explanation of these phenomena, we refer to

10 of the potential energy of the various electronic

Mulliken and Roothaan's picture
states of ethylene as a function of twist about the double bond. An adaptation of
their figure is shown in Figure 6.

The curves represent the potential energy as a

function of angle of twist, 6, about the double bond
of ethylene for the normal (ground singlet) state,
N, the first excited singlet m-electronic state, V,
and its corresponding triplet state, T. They are
drawn to the qualitative scale indicated by the LCAO
MO calculations of Mulliken and Roothaan,lo as
corrected by the author to correspond with the

corrected assignment of the twisting frequency of

Arnett and‘Crawford.22
ph
Fig. 6. The potential energy of
the electronic states of ethylene
as a function of twist about the while the planar form gives maximum energy for the
double bond. Energy is in wave
numbers. The vertical arrows

represent the N - V transitions.

rLANAR)
From Figure 6, it 1s seen that the ground

state has its’minimum energy in the planar form,

excited states. That is, the slopes of the ground-
and excited-state curves are of opposite sign.
Thus, in an N —» V spectral transition, the more the
molecule 1s twisted, the less the energy required for the transition, and hence the
longer the wavelength of the absorption. The fact that absorption sets in at longer
wavelength at room temperature than at low temperature [(N _'V)HT and (N --V)LT in
Figure 6] must indicate that the low-temperature conditions restrict the amount of
twist either in the upper (V) state or in the ground (N) state, or both.

From the corrected assignment of the twisting frequency in the ground (N)

223, L. Arnett and B. L. Crawford, J. Chem. Phys. 18, 118 (1950). These authors give
vy = 1027cm'1, where the older value was 825cm ~.
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electronic state of ethylene““ one calculatesky = 2,71 x 10  wave numbers/radian for
the force constant, which allows 11.1° twist in the ground level and 19.3° twist in the
first vibrational level (1,027cm'1), using V = %kyee, where V is potential energy in
cm‘l. From Figure 6 it 1is seen that a vertical (Franck-Condon allowed) transition from
the most twisted configuration of the first excited vibrational level in the ground
electronic state [labelled (N -oV)HT in the figure] is of lower energy by some 3-4%,000
em™ than a corresponding transition from the lowest vibrational level [(N “.V)Ur]’
most of this energy being due to the steepness of the upper (V) state potential curve.
However, statistics allow only 0.7% of the ﬁolecules in the first vibrational level at
room temperature, and hence‘a low-temperature medium would not be expected to have much
effect upon the absorption-spectra curve of ethylene compared to the spectra at room
temperature.

The values of the twisting frequencies of alkyl-substituted ethylenes are still in
doubt,23 and only estimates of their values may be made. In the case of tetramethyl-
ethylene, which has the same symmetry properties as ethylene, if the force constant of
twist (ky) is the same as in ethylene, the energy of the first vibrational level of
twist 1s calculated to be 264cm'1. The corresponding maximum twist angles are 9.8° for
the first excited level of twist, 5.7° for the ground level. Application of statistics
shows that 28% of the molecules will be in the first excited vibrational level of twist
at room temperature.

The assumption that the force constant of tetramethylethylene will be the same as
ethylene 1s, of course, a poor one. Examination of a Fischer-Hirschfelder atom model
of tetramethylethylene indicates that the van der Waalsradii of the H atoms on the
methyl groups would actually overlap considerably in the planar confiéuration if free
rotation of methyl groups could take place. This must be regarded as a rather strong
repulsion by the methyl groups, which would tend to force the molecule into a more
twisted configuration. This in turn would tend to decrease the force constant of twist
about the double bond, and thus make the ground-state potential curve (N) somewhat
flatter than pictured in Figure 6. On the other hand, the repulsion of methyl groups
in tetramethylethylene will tend to steepen the potential curve for the upper (V)
electronic state, particularly in the region of planarity.

An additional effect of the low-temperature rigid glass may result from the

increased viscosity of the surroundings at low temperature. This increased viscosity

23N. Sheppard and G. B. B. M. Sutherland, Proc. Roy. Soc. (London) A196, 195 (1949).
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would make the energy of rotation about the double bond somewhat greater, which would
slightly steepen the ground-state (N) potential curve, slightly flatten the excited-
state (V) curve at low temperature (compared to the curves of the same molecule at room
temperature). This effect should be small, however, in view of the high value of the
twisting force constant for the ground state and the yet higher force constant for the
excited state (at least a factor of 3 greater, probably more in the more highly sub-
stituted ethylenes).

Less highly substituted ethylenes (mono-, di-, tri-) should have values somewhere
between ethylene and tetramethylethylene for the above effects, l.e., force constant of
twist, twist vibrational energy separation, % population of the first vibrational level,
viscosity-dependent resistance to twist. These effects all operate in the same direc-
tion: the more alkyl substituents, the greater the "twisted population” at room tem-
perature compared to low temperature.

Thus, from these considerations it seems reasonable to suppose that the larger the
number of alkyl substituents, the more likely willl be the N — V transition between the

.twisted states of the substituted ethylene at room temperature, as compared to low
temperature. That is, with increased alkyl substitutioh, one observes a lower fre-
quency (energy) for the onset of absorption at room temperature compared to the onset
of absorption at low temperature. This accounts 1n a satisfactory manner for the
increasing width of the "red shoulder" on the N — V absorption curve with increasing
alkyl substitution, which disappears at low temperature. (This "red shoulder" effect
is, of course, a separate effect from the red shift of the absorption peak with
increased alkyl substitution.)

In Figure T are plotted together for purposes of comparison potential curves for
the ground (N) and excited singlet (V) states of ethylene (solid), and the probable
curves for tetramethylethylene (dashed). Also shown are the N — V transitions from the
zeroth and first levels of twist vibration. 1In compafing them, one must bear in mind
that at room temperature the first vibrational level of ethylene will be very sparingly
(.7%) populated, while in tetramethylethylene the first vibrational level will be
strongly (at least 28%) populated. [The absolute heights of the upper (V) state curves
are drawn as if the peaks of the N —= V transitions of these molecules coincided, but
of course they do not; however this is immaterial to the present discussion.]

Cyclohexéne is a somewhat different case from the other olefins considered here

in that it is a ring structure. Comparison of the N — V absorption curves at room and
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an allowed singlet-singlet transition in olefins.
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low temperatures indicate that, insofar as the "red

shoulder" on the N =V tranaition is concerned, it
behaves essentially like a dialkyl ethylene.
Apparently the shape of the complete N — V absorption
curve (including data below 1,7008) 1s quite dif-
ferent from that of a cis-olefin,E’u which Platt

et gl.6 consider to be due to a permanent twist of
the double bond. But references cited by them and

the more recent work of Beckett, Freeman, and
24

Pitzer indicate that there is no such permanent

6‘5 PLANAN ' ' (n.»i
twist of the double bond in cyclohexene. The effect

Fig. 7. Potentlal curves of

ethylene (solid) and probable
curves of tetramethylethylene
(dashed) compared. detall in the discussion of the triplet state.

of the structure of cyclohexene on its ultraviolet

absorption spectra will be considered below in more

The Triplet State of Olefins

When the red shoulder of the N —» V transition is "removed" at low temperature, a
' 1

weaker band 1s revealed in the region 40-48,000cm™~. These bands presumably are the

ground-to-triplet (N — T) transitions, and are so assigned fer the following reasons.

Reference to Figure 5 shows a certain regularity to these transitions, if we

neglect cyclohexene for the moment. This regular trend closely parallels that of the
position of the singlet (N — V) peaks, suggesting that the two transitions may be
related. The singlet-triplet separation of the excited states 1s approximately con-

9,10

Reference to Tables I and II shows that the trend of both ¢ and oscillator strength is
qualitatively the same for both the N -V and N - T transitions. The values and
oscillator strengths of the N = T transitions are within the range of what could be

expected for a singlet-triplet transition between m-electronic states corresponding to

19

There 18 the possibility that the bands observed in the 40-48,0000m'1 region are

due to impurities. Olefins are difficult to keep "spectroscopically" pure; however,

it is felt that the source of materials and experimental precautions used in obtaining

these data were sufficiently good to render impurities unlikely.

24,

Beckett, Freeman, and Pitzer, J. Am. Chem. Soc. 70, 4227 (1948).
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Upon exposure to air these compounds begin to show increased absorption in Jjust
this "triplet" region, but this is exactly the region wherein one expects formation of
impurities to be most poticeable: at higher frequencies any impurity would be masked
by the already great absorption of the pure compound itself, while at lower frequencies
the expected impurities (oxygen containing compounds) would have small absorption

themselves.7’25

In the molecules where they are resolved, vibration peak separations of 1,4000m'l
appear in the N - T transition. This is approximately the C = C stretch frequency.
That these should be observed in the N — T transition and not in the N — V transition
18 unexplained.

If these bands in the region 40-48,000cm'1 are then truly the N - T transitions,
there 1s one point a bit more difficult to explain. Their € values and oscillator
strengths increase by a factor of 20 in going from the least substituted ethylene
(hexene-1) to the most substituted (tetramethylethylene), while the corresponding
values of the N — V transition increase by only a factor of two. This must mean that
the singlet-triplet selection rule is being strongly affected by the presence of the
alkyl groups, and this can apparently happen in two ways.

It is known from phosphorescence studies of other m-electronic systems, notably
aromatics, that the intrinsic phosphorescence lifetime of a molecule is markedly

decreased when substituents are added,lg

particularly if these substituents are heavier
atoms. This shortening of phosphorescence lifetime is due to the partial breakdown of
the singlet-triplet intercombination rule, whose breakdown 1is presumably the result of
increased spin-orbit (J-J) coupling at thé expense of L-S coupling. The breakdown of
the singlet-triplet selection rule, then, will also increase the light absorption from
the ground (singlet) state to the excited triplet state.

As the effect is currently interpreted a substituent as small in atomic number as
a methyl group should have 1little effect on the spin-orbit coupling. However, extra-
polation of data from heavier atoms to lighter atoms shows that the effect of a methyl

26 McClure,lg although he finds no essential dif-

group while small is yet finite.
ference between phosphorescence lifetime of toluene and benzene, does find shorter

lifetimes for phenol and aniline than for benzene, and he attributes the phenomenon to

23y, Sponer and E. Teller, Rev. Mod. Phys. 13, 76 (1941).
26y, Xasha, Disc. Faraday Soc. 9, 1% (1950).
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this atomic number effect. Other workers in this 1aboratory27 have found that the
reverse process of phosphorescence in benzene, namgly‘absorption of light from the
ground state to the lowest excited triplet state, is twice as strong in toluene as in
benzene, while the corresponding singlet absorption remains little changed in intensity
Néw with ethylene it 1s possible to add more methyl groups per m-eleotron than with

28 4111 cause an

benzene. Hence it is concelvable that several alkyl substitutions
"atomic number™ effect on the singlet-triplet selection rule in olefins.

Another possible effect of increasing alkyl substitution upon ethylene N — T
absorption is that of a steric effect at low temperature. 1In its 22%.contraction, the
rigid-glass medium may distort the molecule. Presumably the olefin having the greater
number of alkyl groups about the double bond would be more subJect to such distortion,
because of its larger "area." Under such distortion there might be a tendency to
enhance the unpaired (or triplet) character of the m-electrons in the ground (N) state,
and thus make the N » T transition more allowed. The distortion perhaps most 1likely
to do so 1is twist,9’29 but if the molecule were to be "frozen" in a twisted state, then
the "red shoulder" of the N — V transition would not disappear at low temperature.
Further, the twist distortion at low temperatures seems unlikely in view of the large
force constant of twist, as has been noted above. Perhaps some other distortion, such
as bending of the C = C plane [force constant less than one-half of tw13t3°], could
produce some unpaired character in the w-electrons.

Perhaps the correct choice between these th possible explanations for the rapid
increase of the N —= T transition with increasing substitution could be found by
examining the absorption spectra of the various fluoro-substituted ethylenes at low
temperatures. If one observed a weak transition analogous to the N — T transition
studied here, which increased strongly in intensity with increasing fluoro-substitu-
tion, the first explanation {that of increased spin-orbit coupling with increasing
substitution) would be strengthened; fluorine atoms are too small to cause much steric

effect, as the second explanation requires.

27J. S. Ham, unpublished data.

28As to whether the shortening of phosphorescence lifetimes in aromatic compounds is

additive as more of the same substituents are added, McClure's data are inconclusive
(see reference 19).

2%. McConnell, J. Chem. Phys. 20, 1043 (1952).
3. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, page 184.
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Another point about the present N - T transition assignment to be discussed is the
"red shoulder" effect for this transition. The potential curve of the excited triplet
state (T) is of the same general shape as the excited singlet (V).state (Figure 6).
Hence, the same arguments about a red shoulder at higher temperatures that obtain for

the N = V transition apply for the N = T transition. This shoulder can be seen at room

temperature in Figures 1, 2, and 4. (The "main part" of the N - T transition at room

temperature is hidden by the red shoulder of the N - V transition, except in the case
of hexene-1. In hexene-l the "main part" of the N = T transition appears at room
temperature because it is only partly hidden by the narrower shoulder of the N -+ V

transition.)

Phosphorescence and the Triplet State‘

Observation of a comparatively long-lived light emission (phosphorescence), which

17,18,19,26 (T = N in the present

is now well established as triplet-singlet emission
discussion), might confirm the present N — T assignment. As mentioned above, no such
phosphorescence was observed in tetramethylethylene. If the statement above, that a
low-temperature glass does not apprecilably affect the potential curves (N, V, or T),
is correct, the non-appearance of phosphorescence 1s easily explained. For as the
molecules get into the triplet state, theylcould rapidly lose vibrational energy to
the surroundings as they cascaded down through vibrational levels of the triplet state,
eventually reaching the excited triplet (T) and ground singlet (N) crossover point, at
6 = 60° (see Figure 6). Here they become singlet statés, and cascade through the
ground state vibrational levels back to zero energy. This radiationless process would

18

be far more rapid than a triplet-singlet (T — N) emission. Thus, no longer-lived

{phosphorescent) emission would be observed.

Cyclohexene
Cyclohexene 1s a somewhat different case from the other olefins already discussed.

Superimposed‘upon the double-bond twisting potential will be certain strain potentials
resulting from the fact that it is a six-membered ring structure. As the infrared
frequency assignments are still in doubt, no attempt will be made to go into the finer
details of cyclohexene structure; however, certain general statements may be made
which, it is hoped, will be sufficient to explain the absorption spectrum.

It is expected that steric forces of the ring will have little effect upon the
energy of C = C twist in its region of planarity. This is expected from the high .

217
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energy of C = C twist, about 1.3kcal/deg (as estimated from Arnett and Crawford's value

in ethylene?)

24

, and the comparatively small strain energy of the entire ring, about
1.6kcal. That is, the 1.6kcal of strain will be taken up by distortions other than
the high-energy twist distortion. The only change in the region of double-bond pla-
narity might be a small tendency toward flattening the ground-state (N) curve near
blanarity. Of course, for the region of large angle of twist (6 > 45°, say) the poten-
tial curve would be greatly altered, because it would requlre breaking a C — C bond.
Presumably, this higher twisted region is not of importance in the present discussion.

At low temperature, negligible change (compared to room temperature) in the V and
T state potential curves 1s expected in the region of planarity, as in the case of non-
cyclic olefins, and for the same reason--namely, that energy of C = C twist is too
great. Nor 1s much change énticipated in the ground-state (N) twist-potential curve in
going to low temperature, except some small steepening of the curve which is due to
contraction of the surroundings.

From this reasoning the behavior of the N = V transition should in principle be
Just like the other olefins at room and low temperatures, and this is what is observed:
a red shoulder on the N — V absorption, disappearing at low temperature.

In cyclohexene the behavior of the weaker transition at 43,000cm‘l (presumably the
N - T absorption) is quite different from that of the other olefins in that its absorp-
tion is greatly increased at low temperature. Although 1t may be coincidental, it is
interesting to note that the osclllator strength of this transition, compared to the
other olefins, follows the same trend as the oscillator strength of the N - V transi-
tion. This gives additional support to its assignment as the N — T transition.

If this 1s indeed the N - T transitlon, the only possible explanation for its
abnormally high intensity at low temperature is that the singlet-triplet selection rule
is violated to a greater extent than would be expected. Recalling the sensitivity of
this selection rule to alkyl substitution (as with the other olefins) it would be
expected that the N = T absorption for cyclohexene would be about the same as for cis-
butene-2, which, as mentioned, should be about midway between mono- and tri-substituted
ethylerie. The additlonal effect on the selection rule in cyclohexene must then be due
to its ring character. '

As pointed out, the ring structure should not have any great effect on twist of
the double bond in the region of planarity (6 < 15°, say), for the energy of twist is

too large. PFurther, if the N = T transition were enhanced because the molecule was
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somehow "frozen" into a twisted state at low temperature, then the N — V transition
would probably not show much disappearance of a red shoulder at low temperature.

What 1s proposed to explain the abnormal intensity at low temperature of the N -
T transition in cyclohexene is that the contraction of the rigid surroundings at low
temperature tend to put some additional strain on the cyclohexene ring, which is to
some extent taken up by an out-of-plane bending of the C = C plane. By analogy with
ethylene, the force constant of this bending 1s sensibly lower (less than half) than

the force constant of twist,Bo

and hénce a bending of the C = C plane produced by
contraction of surroundings is more energetically feasible than a twisting of the double
bond.

As has been noted, the singlet-triplet sélection rule 1s sensitive to perturbation
of the molecule. Thus, such an out-of-plane bending of the double bond could quite
possibly decrease the bonding nature of the w-electrons by tending to localize them on
the separate carbon atoms and by decreasing thelr overlap. This, in turn, would
enhance their unpaired character. Thils tendency toward unpairing of the m-electrons
mixes a certain triplet character into the ground-state wavefunction.29 Thus, a
transition from such a state to a triplet state becomes less strongly forbidden.

That such an "extra" enhancement of the N - T abéorption is not encountered in the
other olefins is explained by the fact that they are not cyclic. It is presumed that
the bending of the double bond in cyclohexene 1is the uniqué result of the force of
ébntracting rigid surroundings upon a ring structure.

This explanation is to be regarded only as rather tentative; Little more can be

said at the present time until such effects are investigated more thoroughly, both
experimentally and theoretically .

SUMMARY
A "red shoulder" on the N — V absorption curve of olefins, observed at room tem-
perature, but not at low temperature, is shown to result from the fact that the poten-
tial curve for twist about the double bond in the ground and excited states have slopes
of opposite sign. The weaker absorption in the region 40-1#8,0000111'l is assigned to the
N - T absorption on the basis of its analogy to the N — V transition 1n position,
extinction coefficient, and oscillator strength, and to the sensitivity of the singlet-

triplet selection rule to perturbations of the molecule.
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LOW-TEMPERATURE ABSORPTION SPECTRA OF BENZENE, TOLUENE,
AND PARA-XYLENE IN THE FARTHER ULTRAVIOLET REGION**
*0
W. J. Potts, Jr.
Laboratory of Molecular Structure and Spectra
Department of Physics
The University of Chicago
Chicago 37, Illinois
INTRODUCTION
PERHAPS no polyatomic molecule has been investigated spectroscopically as extensively
as has benzene. In spite of the vast amount of literature on this subject, compara-
tively few investigations have been made of the shorter wavelength transitions (below
2,2008) of benzene, and of these only a very few have given absolute extinction co-
efficlents.
The nearer ultraviolet absorption bands of benzene (at 2,6003, assigned to the

1 1B2u transition by most authors) have such extensive literature that only a few

Alg -
selected references will be cited here. The nearer ultraviolet absorption spectra of
benzene and several alkyl benzenes have been systematically investigated in hydrocarbon

> and in

solution,1 in the vapor state,2 in the crystalline state at low temperature,
rigid-glassy media at low temperature.4 While the low-temperature spectra of the
2,6002 transitions of benzene and alkyl benzenes are very much sharper than the room-*

temperature solution spectra, the low-temperature method still cannot compete with

?This work was asslisted in part by the Office of Ordnance Research under ProJject
TB2-0001(505) of Contract DA-11-022-ORD-1002 with The University of Chicago.

*ThisApaper is essentially an extract version of Part III of a doctoral dissertation
[Low-Temperature Spectroscopy in the Farther Ultraviolet Region, Chicago: March, 1953]
submitted to the Faculty of the Division of the Physical Sciences, The University of
Chicago.

*AEC Predoctoral Fellow, 1950-52.
OPresent address: Spectroscopy Department, The Dow Chemical Company, Midland, Michigan.

1Catalog of Ultraviolet Spectrograms, American Petroleum Institute, Project 44 (1945-
1950).
H. Spcner, J. Chem. Phys. §, 705 (1940).

2a. Kronenberger, Z. Phys. 63, 4#94% (1930).
'y

2

E. Clar, Spectrochim. Acta 4, 116 (1950).
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LOW-TEMPERATURE FAR UV SPECTRA OF BENZENE, TOLUENE, AND PARA-XYLENE

vapor spectra in resolution of these bands. Hence, vapor spectra have been used for

5 and the analogous transi-

the complete analysis of the 2,6OOR transitions of benzene
tions of substituted benzenes.6

In the farther ultraviolet region, the spectral data on benzene and substituted
benzenes become far scarcer. The far ultraviolet vapor spectrum of benzene has been
obtained qualitatively by Carr and St{icklen,7 and, along with that of toluene and the
xylenes, by Price and others.8’9 The vapor spectrum of benzene has been obtailned
quantitatively by Pickett and co-workers,lo and by Romand and Vodar.11 -

The absorption.spectra of benzene, toluene, and the xylenes have been obtained
quantitatively in n-heptane solution by Platt and Klevens in the region 2,200-1,7002}12
Their work shows nearly as much resolution of structure as most of the aforementioned
vapor work. In their work, as in the vapor absorption spectra, the strong transitions
of benzene and the alkyl benzenes at about 1,BSOR are quite diffuse.

Romand and Vodarll

have obtained the far ultraviolet spectrum of benzene in the
crystalline state at liguid-nitrogen temperature, but their work shows decidedly less
sharpening of the spectrum than elther theif own vapor spectrum or the room-temperature
solution spectra of Platt and Klevens.12
The present research was undertaken to see if use of rigid glasses at low tempera-
ture would give increased resolution in the diffuse transitions in the farther ultra-
violet region of benzene and alkyl benzene absorption spectra. The results are most
encouraging and show that these far ultraviolet transitions in aromatics do indeed have
sharp structure. The absolute extinction coefficients and positions of several vibra-
tional bands have been obtained for the farther ultraviolet (2,200-1,7OOR region)
spectral transitions of benzene, toluene, and para-xylene both at room temperature and

at low temperature. Generally, much more vibrational structure is seen at low tempera-

ture.

%poner, Nordhelm, Sklar, and Teller, J. Chem. Phys. 7, 207 (1939).
6H; Sponer, Rev. Mod. Phys. 14, 224 (1942).

TE. Carr and H. Stlicklen, J. Chem. Phys. 6, 645 (1938).

8W1 C. Price and W. D. Walsh, Proc. Roy. Soc. A191, 22 (1947).
9Hammond, Price, Teegan, and Walsh, Disc. Faraday Soc. 9, 53 (1950).
10psckett, Muntz, and McPherson, J. Am. Chem. Soc. 73, 4862 (1951).
115, Romand and B. Vodar, C. R. Acad. Sci., Paris 233, 930 (1951).

127, R. Platt and H. B. Klevens, Chem. Rev. 41, 301 (1947).
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EXPERIMENTAL

Materials

Benzene and toluene used in this research were Merck Reagent Grade chemicals;
para-xylene was Eastman "White Label" grade, m.p. 13°C. Each was purified by several
recrystallizations from 1tself, then distilled from sodium wire to remove any possible
condensed water from the crystallization process. Although this method gives a product
of extremely high purity,13 the problem of impuritles in this research is small, for
only regions of intense absorption (e > 5,000) were being investigated. The only
trouble that might arise in this respect would be small amounts of qrtho— and meta-
xylenes in the para-xylene. The original melting point of the source of para-xylene

and its method of purification however assure against it.

Method

The spectra at room temperature were obtained in a mixture of isopentane and 3-

12 14

methylpentane by the same methods used by Platt and Klevens and described elsewhere.
The liquid-nitrogen temperature spectra were obtained by the methods described else-
where by‘Potts.l5 For both series of spectra the Cario-Schmitt-Ott vacuum fluorite
spectrograph was employed, and Ilford Ql plates were used.

Errors

15,16 and are

The errors in these methods have been discussed elsewhere b& Potts
believed to be about 8% in molar extinction coefficient at 2,2008, increasing to some-
what greater than 15% at 1,7008, the 1limit of the present techniques. Samples of dif-
ferent concentrations gave results consistent within these errors. However, the error
may well be higher than estimated in the region at the "blue" end of the first absorp-
tion (2,1002 transition) which is being overlapped by the beginning of a region of
stronger absorptjlon (1,8502 transition), where it is difficult to pick a solution of
favorable concentration. Also, the errors in the room-temperature data at the extreme

end of the region investigated (1,7303) are probably quite high, as the solvents are
rapidly cutting off here at room temperature. Y

126, N. Lewis and M. Kasha, J. Am. Chem. Soc. 66, 2100 (1944).

ll"L.‘ E. Jacobs and J. R. Platt, J. Chem. Phys. 16, 1137 (1948).

15w, 3. Potts, Jr., J. Chem. Phys. 20, 809 (1952), 21, 191 (1953).

15w. J. Potts, Jr., "Low-Temperature Absorption Spectra of Selected Olefins in the
Farther Ultraviolet Region", THIS TECHNICAL REPORT, 1952-53, Part Two.

22

NS5 5 1 S
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Agreement with Other Authors

The room-temperature data presented here are essentlally a repetition of the work
of Platt and Kleven312 and generally agree fairly well with their results. Other
workers in this laboratory have independently verified many of these values of extinc-
tion coet‘ficient.17 However, the present data differ from those of Platt and Klevens
in two instances: (a) the present work shows no weak transition at 1,7302 in toluene,

18

which Platt and Klevens observe§ and have interpreted in a later paper™ as beilng

analogous to a lAlg —»lE transition in benzene; (b) the transition in para-xylene at

2g
2,2008 shows a somewhat lower extinction in the present work than in that of Platt and
Klevens. These discrepancies wlll be discussed in detall below.

The present work shows none of the very sharp Rydberg bands superimposed upon the
strong I,SSOR transition in any of these compounds which have been observed 1n the
vapor spectra of Carr and St{lcklen,7 Price et 5;.,8’9 and Pickett et gl.lo This is
presumably to be expected when spectra are obtained 1in condensed phases, however,
because of the large size of the Rydberg orbitals, which would become strongly
perturbed by closely neighboring molecules.

The value of peak extinction coefficient of the benzene 1,85OR transition at room

12

temperature obtained here, and agreeing with Platt and Klevens and with Cohn and

Ham17 (all of whose data were obtained under similar conditions in hydrocarbon solu-

O and Romand and

tions), disagrees with the vapor phase value of both Pickett-et gl.l
Vodari! (whose results approximately agree). That our solution values of e for the
strong transition of benzene (e = 45,000) should be a little more than one-half the
vapor phase value obtained by others (e = 80,000) is difficult to explain, as it has
been shown that spectra in solution and in vapor should have about the same molar

extinction coerricient.lu

RESULTS
As a vivid example of .the increased sharpening of benzene spectra one can obtain
with a rigid glass at low temperature, some of the benzene plates have been reproduced
in Figure 1. Figure la shows absorption of the 2,1003 transition; the lower exposure
is at room temperature, the upper exposure is the identical solution frozen to a glass

at liquid-nitrogen temperature. Figure 1b gives a similar picture for the 1,8503

1Tynpublished data of J. S. Ham, and of C. E. Cohn.
187, R. Platt, J. Chem. Phys. 19, 1418 (1951).
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Fig. la. Comparison of room-and low-temperature
spectra of benzene 2,1002 transition.

HY - 3000 2500 2000 1700 1500
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Fig. 1b. Comparison of room-and low-temperature
spectra of benzene 1,BSOR transition.

transition of benzene. That low temperatures are of value in this farther ultraviolet

region is clearly shown by the effect on the 1,SSOR transition; not even vapor spectra

T T 1 T T T T ' have produced such sharpening of this
transition.

In Figures 2, 3, and 4 are plotted
the molar extinction coefficient of ben-
zene, toluene, and para-xylene, respec-

tively, against the frequency 1n wave

INNEEEEEE

numbers. The solid curve is the data at

l ‘
] dT"T}""l""L"'iL""
B0, of 84 s8¢ 8s

- ‘ v o' ¢0 low temperature, the dashed curve 1s the

Fig. 2. Far ultraviolet absorption data at room temperature. Figures 5, 6,
spectra of benzene. :
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and 7 give the same data on a log10 plot.

Because the molecular symmetries of
benzene, toluene, and para-xylene differ,
analogous spectral transitions in these
molecules properly get different symmetry

labels. Thus, to avoid confusion, for the

IEEEENEEE

present we shall designate the transition
1 I 1)
48 80

v om! 1103
Fig. 3. Far ultraviolet absorption
spectra of toluene.

near 2,1008 (47,500cm™t) in all three

.14 54 e 58

8

molecules as the "2,1OOR transition,” the

much stronger transition near 1,8502

(54,0000m'1) as the "1,8508 transition."

1 I 1 1 I ) I )
In-Table I are tabulated the "elec-

" features of the various transi-

tronic
tions, data being given for both tempera-
tures. The "centers" of the transitions
are chosen as the points which divide in

half the integrated absorption intensity,

] | 1 1 1 |

LI LTI

or oscillator strength,19 of each transi-

44 46 48 80 s2 84 s8¢ 58
¥ cnrlx 103
Fig. 4. Far ultraviolet absorption tion. These values are uncertain to about
spectra of para-xylene. tZSOcm'l. In a separate column are
8.9 T T T T T T ] tabulated the (estimated) analogs of these
positions in the vapor, using the data of
4 p—
| Price et a1.8s9
4.0p— The molar extinctlon coefficlents are
? for the strongest vibration peak in all
a8 cases. The error is roughly 15% or less.
‘ The oscillator strengths,19 or f-
30— ‘ :
numbers, given are subject to some uncer-
2.8 1 | 1 ] | i | 1 tainty not only from error of extinction
£ 1 44  as st 8¢ 86 88 60

‘;mﬂfﬁﬂ

Fig. 5 Spectra of benzene on a log plot coefficient, but also from the selection

of cut-off points on either side of the

2
19t-number, or oscillator strength, is defined as: f = 103(logloe)—gg;— Ievdv = 4,32
me

x 10'9jcvdv, where v 1s in cm'l, €, 1s molar extinction coefficlent.
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80 l r r r ; — ' transitions. This latter error may be
particularly bad for the 2,1002 transi-
45— tions, in that they lie so close to the
much stronger 1,8503 transitions. The
'5‘.0_ choice for the Junction between the
L 2,100% and 1,850% transitions was the
point where the slope of the log plot
30— ' (see Figures 5, 6, and 7) was zero Just
before the steep rise of the 1,850%
et 4& SL l l : ' x T

oemys % 84 56 88  60¢yansition. In toluene, because this

Fig. 6. Spectra of toluene on a log plot. zero slope extends some 1,500cm'1, 1ts

mid-point, namely 49,550cm'1, was chosen

8.0 T
as the Junction between the 1,8502 and
D | 2,1002 transitions. Hence the larger
a0l _ _ uncertainty tabulated for the f-number of
P the 2,100% transition of toluene. (Per-
‘gggp_ __‘ centagewise, this position uncertainty
| | has little effect on the f-number of the
ao— ] 1,8502 transition.)
. S&L ‘l‘ .l‘ ‘l‘ ,lo 512 ,'4 5'. 5'. .6 The osclllator strengths for room
V:Gni'x 1073 and .low temperature agree within experi-

Flg. 7. Spectra of para-xylene
on a log plot.

mental error, as theory demands. The
room-temperature values tend to be some-
what lower than those reported by Platt and Klevens,12 but within probably experi-
mental error of both sets of data.

Table II gives the vibrational-structure features of the 2,1003 and 1,8502 transi-
tions of the three molecules. Values are given for both room-temperature and low-
temperature conditions. The positions of the vibration peaks have been obtained not
from the absorption curves, but by two independent measurements of the plates them-
selves. They are believed to be accurate to thOcm'l. Those vibration peaks at room
temperature followed by (?) are rather doubtful, and would not have been reported had
not they had definite analogs at low temperature.

As 1s well known, spectra shift to the red as the refractive index of the medium

14

increases; thus the low-temperature vibration peaks are all shifted to the red of
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¢l
TABLE I.
? ELECTRONIC FEATURES OF AROMATIC SPECTRA
I‘ Transition center Shift from
(! Compound +250cm™1 benzene (cm'l) €max f-number
Y
i ‘ ' 298°k  77°k  vVapor | 298°k 77°% | 208°k 77°k | 298% 77%
, ‘ 2,1008 Transition
. Benzene 49,750 49,500 50,600 6,200 6,800 | .10£.01 .11%.01
. Toluene 48,400 48,300 49,000| 1,350 1,200 8,100 8,500 | .13+.03 .13%.03
; l Para-xylene | 47,000 47,000 47,500{ 2,750 2,500 | 6,900 6,900 | .12+.02 .12%.02
(. : ‘ 1,850 Transition
' Benzene 54,600 54,250 55,900 42,000 46,000 | .60%.07 .63£.07
* Toluene 53,000 52,850 54,100 1,600 1,400 |55,000 57,000 | .80x.08 .82+.08
| - Para-xylene | 52,100 52,000 52,600 2,500 2,250 |61,000 63,000 |.89+.08 .89+.08
= == |
See text.
the values obtained at room temperature, which, in turn, are shifted to the red of what
would be observed in the vapor phase. In a third column appear the low-temperature
i frequency values "corrected" to the vapor state. These "corrections" are made by
comparison with selected values of vapor spectra of other authors,7’8’9 assuming that
in one given transition all peaks shift the same amount. That this assumption is
reasonable 1s shown by the rather close agreement in positions between the calculgted

"vapor" peaks and those which are sufficiently resolved from actual observations in the
vapor.7’9 For the 1,8503 transitions a certain amount of personal Judgment has been
used to "correct™ the vibration peaks, as they are not resolved in the vapor state.

The vibrational separations of Table II are from these '"vapor" listings.

DISCUSSION
Vibrational Structure

The low-temperature rigid-glass method produces decidedly increased sharpening of
vibration structure, particularly in the 1,85OR transitions. The results given here
are not sufficiently accurate to warrant a vibrational analysis of states, but there is

good indication that sufficiently accurate spectra may be obtained if one uses an
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TABLE II.
VIBRATIONAL FEATURES OF AROMATIC SPECTRA
Vibration Peaks, #100cm
Compound ° ° "vapor" Separation,
298°K TT°K (see text) +150cm ™t
2;1002 Transition
Benzene 47,960 47,720 48,970 8
‘ 10
‘ 48,660 48,430 49,680
950
’ ‘ 49,630 49,380 50,630
: 1000
‘ 770
, 51,410(?) 51,150 52,400
Toluene ‘ 46,080 45,980 46,700 ,
‘ 970
[ . . ‘ 47,060 46,950 47,670
: 900
47,850 48,570
810(?)
48,660(?) 49,380(?)
! Para-xylene 45,050 45,050 45,650 8
20
46,080(?) 45,870 46,470
430
46,300 46,900
760
47,050(?) 47,060 47,660
1020
48,080 48,680 ‘
(diffuse)
1,850R Transition
Benzene ' 53,050 54,700
860
54,350(?) 53,910 55,560
1040
55,250(?) 54,950 56,600
1070
56,020 57,670
Toluene 52,080(%) 51,810 53,060
1100
53,190(? ) 52:910 54: 160
. 1000
53,910 55,160
1040(?)
54,950(?) 56,200(?)
Para-xylene {not 51,020 51,620
resolved) 1200
. 52,220 52,§20 —
328
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instrument of higher dispersion and resolution than the small instrument used for this
research.

In Table I the frequencles of the electronic transitions were taken as the appraxi-

mate centers of integrated absorption in each transition. It is also desirable to know

the frequenciles of these transitions with respect to the equilibrium configurations of
their nuclei; that is, the 0-0 band of the transition.zo

The 2,1002 transition is forbidden in benzene, but allowed in toluene and para-
xylene [see below]. 1In an allowed transition the 0-0 band is seen, but in a forbidden
transition it 1s not; for it is vibrational interaction which makes the transition
appear at all,zl and the 0-0 band of course contains no vibrational interaction. Thus
the first band appearing in the 2,1002 transition in toluene and para-xylene is probably
the 0-0 band, but in benzene the 0-0 band is not seen.

Further, if one expects the 0-0 band of the 2,IOOR transition to shift to the red
at about the same rate as the "center" of the transition shifts as methyl groups are
added to benzene, then the first observed vibrational band in the 2,IOOX transition of
benzene bears no correlation to the first band observed in toluene and para-xylene.

1

However, if one subtracts about 650cm - from the positions of the benzene vibration

peaks, then the first two vibration peaks correlate well in all these compounds, both

1 45 the

at room and low temperature and in the calculated vapor state. This 650cm”
value of the e28 vibration which makes the transition allowedEO’zl’22 [also see below]
and is also the interval observed between the faint 0-0 band and first strong peak in

5,21 Thus, for the 2,1008 transition, it 1is probably

the 2,6002 transition of benzene.
safe to assert that the first vibrational peak in toluene and para-xylene are the 0-0
bands (allowed transitions), the first observed peak in benzene 1s the 0-O band plus

the 6500m'l €. vibration which makes the transition allowed. (Correlation of higher

2g
vibrational bands is not possible, because there apparently is more than one vibra-
tional level being excited in the 2,1003 transition of para-xylene, Jjudging from the
separations.)

The first two vibrational peaks in the 1,8502 transition of the three molecules
seem to correlate fairly well with the shift of the transition "centers". As this

transition is strongly allowed2o’22 [also see below] in all three molecules, the first

20y,rdheim, Sponer, and Teller, J. Chem. Phys. 8, 455 (1940).
21y Sponer and E. Teller, Rev. Mod. Phys. 13, 76 (1941).
220. C. J. Roothaan and R. S. Mulliken, J. Chem. Phys. 16, 118 (1948).
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vibrational peak is quite probably the 0-0 band.
In Table III are given the positions of the electronic transitions, using the 0-0
band as a "point of reference."” The 0—0 band of benzene (2,1002 transition) 1is obtainad

1

by subtracting 650cm” ~ from the first observed band, assuming that the ezg vibration in

the 2,1002 transition has about the same energy as in the 2,6002 transition.20’22

TABLE III.
0—0 BANDS OF THE AROMATIC TRANSITIONS
-1 Shift from
0-0 band position +100cm ' benzene t}OOcm'l
Compound o o o
298°k 77°k "vapor" 298°Kk T7°K
2,1008 Transition

Benzene ca. 47,310% ca. 47,070% ca. 48,320%

Toluene 46,080 45,980 46,700 ‘ 1,220 1,020
Para-xylene | 45,050 45,050 45,650 2,250 1,950
1,8508 Transition

Benzene 53,050 54,700
Toluene ‘ 52,080(?) 51,810 53,060 1,2%0
Para-xylene 51,020 51,620 2,030

*Calculated, See text,

Group Theory Notation

In discussing the more theoretical aspects of these spectral states it will be
necessary to list the symmetries, group theory notationé, and selection rules of the
three molecules., These are tabulated in Table IV. The reductions of symmetry from
D¢y, (benzene) to Coy (toluene) and v, (para-xylene) are made by rotating the (substi-

'tuted) benzene molecule about the x symmetry axis (so that x -+ x, y -z, z =-y). This

i1s necessary to obtain 02v symmetry for toluene, desirable to obtain Vh symmetry so
that the symmetry axes of toluene and para-xylene have the same notation. (There are,
of course, several alternative choices for axis assignment in reducing D6h to Vh; and,
although each gives some different assignments for states, the same selection rules are
obtained.) The corresponding spectral transitions have been placed in the same row.

If the transition i1s symmetry forbidden, it is followed by "forb"; if allowed, it 1is .
followed by the moment in which direction it takes place in order to be allowed.2’
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TABLE IV.
SYMMETRY PROPERTIES OF BENZENE, TOLUENE, AND PARA-XYLENE
Benzene . Toluene Para-xylene
Symmetry ‘ D6h sz Vh
Method of s 4
Reduction
y z z
Ca Ca C2
X X
Ca Ca
y y
6h 6v 6v
' : 1 1 1 1 1
Transitions 1Alg ~ B, (forb) A, —Tag(T)) Ag = "By, (T,)
and 1 1 1 1
1 1
Selection A1g = By (forb) A~ BI(TX) Ag - BBu(Tx)
Rules 1 N
lA - lE (T T ) lA N { Al(TZ) } lA - { Blu(Tz)}
1g lur"y* x 1 4 /
lBl(Tx) lB}u(Tx)
1 : 1
A (T ) A_(forb)
o, = B, (forb) a, - {1 177z } - Jl g ;
& g B, (T,) g | By ,(forb)

*For a general treatment of group theory as applied to electronic spectra,
-s¢e 8Sponer and Teller (reference 22).

The notations in Table IV will Be frequently referred to in the following discus-
sion.

In benzene there are only two group-theoretically allowed (singlet) transitions:

1 1l 1 1 : ‘
A18 - E1u and Alg - Aeu‘ The latter is. unlikely as an electronic transition

because its transition moment lies along the axis perpendicular to the plane of the
1 1 1 1

benzene ring. Two other transitions, Alg —~ B1u and A18 — Beu? are forbidden in

benzene but may be made allowed by interaction of a €23 type of vibration:23

-} 233ma11 Greek letters are used for vibrations or orbitals; capital Roman letters for
‘ electronic states.
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24

} = Elu.eo Molecular orbital treatment of benzene shows that the only one-

2u
‘ 1 1 1 1
electron (singlet) transitions likely in benzene are A18 = By BEu’ - Ei which

all arise from an upper elg electron going to an unfilled €54 orbital. All of these

transitions become allowed in toluene and para-xylene.

1 1
Alg - E28 transition predicted by

Another possible transition for benzene is the
Sklar'25 from the Heltler-London approximation. It is forbidden in benzene, but could
be made allowed by an €14 vibration; Because of its even, or "g" character, the analo-
gous transition is allowed in toluene, but forbidden in para-xylene. Further, if such

24

a transition exists, according to MO theory it must elther be a two-electron transi-

tion (two €] electrons going to an €54 orbital) or a one-electron transition from the

g
lower %y orbital to an €4 orbital. In either case this requires more energy than the
other one-electron transitions mentioned above, and thus would be found only in the

very far ultraviolet if at all.

The 1,850% Transitions

These transitions may now be assigned with certainty to the 1

1 1 ‘
tion for benzene, the lAl - {IAI} for toluene, and the lA - {1Blu} transition for
B, g Bsy
para-xylene. Thils one-electron transition 1s group-theoretically allowed and should be

1
Alg - E1u transi-

strong; it 1s the only allowed one-electron transition in benzene which has its transi-

tion moment in the plane of the molecule. It is noted from the character tables of

benzene21 that the lA "lElu transition is doubly degenerate, and methyl substitution

1g
breaks down this degeneracy in toluene and para-xylene.
The assignment of lA18 —olElu for the 1,8502 transition in benzene has been

22 The present work makes thls assignment

advocated before, especially by Mulliken.
certain because the low-temperature methods, while obliterating the sharp Rydberg bands
superimposed on this transition, have sharpened the transltion to the point where
vibrational structure is seen beyond question. Hence the 1,BSOR transitlon 1s not a

dissociation or predissociation band,eo but a definite w-m type electronic transition.

2"'Much of the MO theory discussed in this section has been borrowed from C. C. J.
Roothaan, "New Developments in Molecular Orbital Theory, with Applications to
Benzene," THIS TECHNICAL REPORT, 1949-50, Part Two.

25A. L. Sklar, J. Chem. Phys. 5, 669 (1937).
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The 2,100% Bands
These transitions are group-theoretically allowed in toluene and para-xylene, but

forbidden in benzene, whether one assigns 1A -olBlu or lAlg - 132u (and their analogs

1g
in toluene and para-xylene) to the transition. That they are allowed in the substi-

tuted benzenes but not in benzene itself 1is experimentally shown from the respective
appearance and non-appearance of what have been tentatively assigned the 0—O bands.

If these 0-0 band assignments are correct, then the transition may not be assigned

to lAlg - 1E28 and its analogs as has been proposed by Sklar,25 for these assignments

predict the transition to be allowed in toluene, but not in benzene or para-xylene.

Furthermore, as noted above, the energy of the 1A —-lE
more than the energy of the 1A

g 2g transition must be at least

1g = Fiys or 1,850R transition, thus ruling it out as an
assignment for the 2,100x transition.

The transition at 2,loog‘must therefore be assigned to either 1Alg - lBlu or
lAl8 —-leu in benzene, to their analogs in toluene and para-xylene. 'Most authors have
assigned 1t to 1‘13 '°lBlu and assigned the near ultraviclet transition (2,6OOR bands)
to 1A18 "132u' Thls matter will not be further discussed at present, but the results

presented may be reconciled with the above assignment.

SUMMARY

The absorption spectra of the 2,1003 and 1,8502 transitions of benzene, toluene,
and para-xylene show sharp structure at low temperature. The sharp structure of the
1,8502 transition shows that it is a m-m type transition, and not a predissociation
band. Its correct assignment is 1Alg —olElu, and analogous assignments in toluene and
para-xylene. The 2,1002 transitions of these molecules can be assigned to lAlg —-lBlu
and its analogs, while the 2,6008 transitions are assigned to 1A18 "lBeu' Evidence
presented indicates that there is no 1A18 -01228 transition in this region of the

spectrum.
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MOLECULAR COMPOUNDS AND THEIR SPECTRA.
IV. THE PYRIDINE-IODINE SYSTEM

. C. Reid’ and R. 5. Mulliken®"

Laboratory of Molecular Structure and Spectra
Department of Physics
The University of Chicago
Chicago 37, Illinois

ABSTRACT

The visible and ultraviolet absorption spectra of dilute solutions of iodine plus
pyridine in heptane have been studied, and the existence of an equilibrium with a 1:1
molecular complex Py-I, ("outer: complex") was demonstrated [K = 290 at 16.7°C, where
K means (Py'Ie)/(Py)(Ie)]. The corresponding changes in heat content, entropy, and
free energy (at 17°) in formation of the complex were determined to be -7.8kcal/mole,
-15.5cals/deg. mole, and -3.3kcal/mole respectively. The location and intensities of
the I, band (Xmax = 4,2208, €max = 1,320) and of the charge-transfer band (A
2,350, €pay = 50,000) of Py-I, were determined.

The A4,220 band shifts gradually, and increases in intensity, on adding pyridine
to the aforementioned heptane solutions, until for pure pyridine solutions it has
reached about 13,890, with €nax = 2,120, provided the solutions are not too dilute in
iodine. These changes can most probably be attributed to a somewhat increased polar-
ity and stability of the Py-I, "outer" complex in the polar solvent pyridine than in

max

the nonpolar solvent heptane. There 18 no evidence of the presence of the "inner
complex" (PyI)+I' in more than small concentrations, but conductivity studies by
Kortlim and Wilski indicate that appreciable small concentrations of its ions (pPyI)*
and I” are present in pure pyridine solutions of iodine. Additional studies in very
dilute solutions of iodine in pyridine show further interesting spectroscopic changes,
which are discussed, but we feel that further experimental study will be needed using
extreme precautions toward exclusion of side-reactions, moisture, or impurities.

INTRODUCTION AND SURVEY
RECENT STUDIES have confirmed older ideas that in its violet solutions, iodine exists

essentially free, but that in i1ts brown solutions it forms 1:1 molecular complexes

*This work was assisted by the Office of Ordnance Research under Project TB2-0001(505)
of Contract DA-11-022-ORD-1002 with The University of Chicago.

*On leave of absence from The University of British Columbia, 1952-1953. Present ad-

dress: Department of Chemistry, The University of British Columbia, Vancouver, Canada

$0n leave of absence from The University of Chicago, 1952-1953; PFulbright Research
Scholar at Oxford University, 1952-1953.
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with the solvent.1 The strong visible absorption of I2 vapor with maximum at 15,200 is
essentially unchanged in "violet" solvents, but in solutions where it forms complexes
this peak is shifted toward shorter wavelengths; this accounts for the altered color.
In addition, a new very intense peak characteristic of the complex, first noted by
Benesi and Hildebrand for aromatic solvents, appears at shorter wavelengths, usually

in the ultraviolet. The interpretation of this new peak as a charge-transfer spectrum

has proved important for a clearer understanding of the electronic structure of these

complexes.1

There 1is evidence 2,3,4,5

that iodine forms especlally stable complexes with py-
ridine and related compounds. Waentig2 reported golden crystals, which he attributed
to Py-IQ, crystallizing from a saturated solution of iodine in pyridine. From heats

of solution Hartley and Skinnexj3

estimated the heat of formation of Py-I2 in solution
to be about T.95kecal/mole, much larger than for other types of iodine complexes. Simi-
larly, the enhancement of the dipole moment in the formatiodn of Py-I2 1s exceptionally
large.u Further, the change in the infra-red spectrum of Py when it goes into Py-I2

5

is much greater”’ than the corresponding effect in the case of complex-forming solvents

of other types.

Audrieth and Birr6

reported that solutions of lodine in pyridine show high elec-
trical conductivities, which slowly increage with time to asymptotic values. According
to them the molar conductivity based on 12 is so high in dilute solutions that it can-
not be explained by simple dissociation into It (or PyI+)land I°. They suggested in-

stead the formation of a ternary electrolyte

13ee R. S. Mulliken, (a) J. Am. Chem. Soc. 72, 600 (1950), and T4, 811 (1952); (b) J.
Phys. Chem. 56, 801 (1952), for quantum-theoretical interpretation of molecular com-
plexes and their. spectra, and a comprehensive review. These are I, II, and III of the
present series.

2p. Waentig, Z. physik. Chem. 68, 513 (1909); Chatelet, Ann. Chim. [11] 2, 12 (1934);
H. Carlsohn, Z. angew. Chem. 45, 580 (1932), and 46, T47 (1933).

,BK..Hartley and H. A. Skinner, Trans. Faraday Soc. 26, 621 (1950).

Y. K. Syrkin and K. M. Anisimowa, Doklady Akad. Nauk. SSSR 59, 1457 (1948); G. Kortlm,
J. Chim. Phys. 49, C127 (1952); @. Kortlm and H. Walz, 2. Elektrochem. 57, 73 (1953).

5D; L. Glusker, H. W. Thompson, and R. S. Mulliken, J. Chem. Phys. 21, 1407 (1953),
and references given there; also further unpublished results of Mr. Glusker. Also W.
Luck, Z.Elektrochem. 56, 870 (1952), especially Table 4.

6L, P. Audrieth and E. J. Birr, J. Am. Chem. Soc. 55, 668 (1933).
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Py'I, =Pyt 4 217 .

However, recent work of Kortim and Wilsk1,7 using very great precautions to keep mois-
ture excluded, indicates that iodine in freshly prepared solutions in pure pyridine at
concentrations in the neighborhood of 10'4 molar gives only a small conductivity,
though larger than for most iodine complexes.8 They find, however, that this increases
with time, and attribute the effect to a slow iodination in the ring; the effect is
strongly catalyzed by platinum sponge.

Kleinberg, Van der Werf, and associate39 have made a spectrophotometric investi-
gation of solutions of iodine in pyridine (also in quinoline). They too conclude that
a véry slow iodination in the ring occurs; this should liberate I  ions, which may
form 13' ions with I,.

10

Mulliken™™ in 1952 suggested that when I2 is dissolved in pyridine the following

should be considered as the primary reactions:

Py + I, =Py-I, “outer complex" (1)
fast
Py-I, = (Py1)*1™ "inner complex" | (2)
(PyD*1™ wpyrt + 17 . (3)
fast

The "outer complex" Py:I, in (1) would be a molecular complex of the usual type. The
"inner complex" in (2) would be an essentially ionic structure (N-iodopyridinium io-
dide). It was suggested that, in iodine solutions in pyridine, the pyridine has a
double role, acting as an electron donor toward I in reaction (1), and as a polar
medium in assisting reactions (2) and (3).

The present research was undertaken in the hope of studying these two roles of

3. Korttim and H. Wilski, Z. physik. Chem. 202, 35 (1953). See also Kortlm, ref. 4.

8They find an ionic dissociation constant (PyI+)(I-)/(Py-12) of about 4.6 X 10'8,

which corresponds to about 2% ionization at 10 " molar iodine. This may be compared
with 1.2 x 10" for (H,0I)*(I7)/(H,0'I,) as determined by R. P. Bell and E. Gelles
[J. Chem. Soc. 2734 (1951)] and smaller values (see reference 7) for the benzene and
dioxane complexes. However, it seems not impossible that some of the alcohols may
have larger values [cf. L. I. Katzin, J. Chem. Phys. 21, 490 (1953)].

_—r et et e 2

9bKle1nberg, Colton, Sattizahn, and Van der Werf, J. Am. Chem. Soc. 75, 447 (1953).
lonererence la, p. 818; reference 1b, pp. 812, 819.
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pyridine separately by a spectrophotometric investigation, first, of equilibrium (1)
at varying low concentrations of Py and 12 in a non-polar solvent medium; second, of
the combined equilibria (1), (2), and (3) in a polar medium (perhaps pyridine itself,
or preferably a different polar solvent). These two phases of the present work are
reported in Sections I and II below.

In Section I equilibrium (1) was successfully studied in heptane solution. The
visible ilodine band of the outer complex Py-I2 was located at the exceptionally strong-
ly shifted position of A4,220 (for free iodine it is at 15,200), and the expected
charge-transfer band at 22,350. The equilibrium constant for (1), and the heat of
formation of Py.Ie, were detefmined.

This work confirms other indica-

/fI tions®’” that Py-I, 1s an exception-
‘// ally tightly bound outer complex.
// Taking into consideration the obsérved
// dipole moments4 of Py (2.28D) and of
// Py-I, (%.5D), and assuming a geometri-.
N-——m e 1 cal structurell somewhat as shown in
Flgure 1, one can estimate that the
Fig. 1 outer complex Py-I, may easily have as
much as perhaps 25 percent dative character. That 1s, in the type of formulation
given by ﬁulliken,l
¥(Py-1,) = ayg(Py,I,) + by (Py' - 1,7) , (4)
no-bond dative
with al =~ 0.75, b = 0.25. In Eq. (4), because of the asymmetry (Figure 1) and unusual
strength of the complex, the dative function wl may be already approximately of the
structure CSHSE E I with the N* bonded to one I atom nearly in the Py plane (N-iodopy-
ridinium ion) leaving the other I atom as an I~ above the plane.12 An outer complex

with an exceptionally large amount of dative character may well account for the fact5

llThis is based on general considerations previously advanced by Mulliken (reference 1)

12'l‘he Py would then be acting as an n donor in the terminology of reference 1b. How-
ever, to a slight extent, it probably acts simultaneously also as a m donor {like
benzene in its lodine complex; cf. footnote 42 on page 818 of reference la). ¥ in
Eq. (4) would then involve a mixture of mainly n with a 1little m donor action by the
Py.
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tbat complex formation causes greater changes in the infrared spectrum in the case of
Py than for any other known cases (except the related picolines).

When the work reported in Section II was undertaken, it was with the thought,lo
suggested by the conductivity studies of Audrieth and‘Birr,6 that in pure Py, acting
as a polar medium, (a) equilibrium for reaction (2) lies almost completely to the
right; but (b) the reactlon proceeds only very slowly, over a high potential barrier;
and that as fast as (PyI)+I' is formed, reaction (3) proceeds largely to the right.
Howgver, the recent work of Kortiim and Wilski7 indicates that lons PyI+ and I~ are
formed at once 1n I2 solutions in Py, in definite relatively small equilibrium concen-
trations, and that a latey slow increase in ionic concentration is due to slow side-
reactlons. Taken in connection with our spectrophotometric results in Sections I and
IIA and the discussion presented in IIA, the work of Kortlm and Wilski indicates that
in the absence of side-reactions most of the iodine would remain as Py~12, but that a
small portion of it has at once undergone reaction (2) followed by (3), or else per-

haps the direct ionization
+ -
Py-I, = PyI" + T . (5)
Further dilscussion will be given in Section IIA.

EXPERIMENTAL
C. P. pyridine was refluxed wilth chromium trioxide for several hours to remove
traces of picolines, dried by NaOH, and distilled from magnesium perchlorate. C. P.
iodine was sublimed and kept in a desiccator. Solvents were purified by the methods
described by Potts.13 Absorption measurements were made in a Beckman spectrophotome-
ter, using 10cm, lcm, 0.0296cm, and 0.0109cm cell thicknesses. Apart from the use of
cells with fairly well fitting 1ids, no precautions were taken to avoid moisture up-

take during a run. No 1lids at all were possible in experiments using spacers to de-

creagse cell thickness.

'I. THE PY°12 COMPLEX IN A NON-POLAR SOLVENT
The equilibrium (1) was studied in very dilute solutions (<0.1% Py + 12) in hep-
tane (>99.9% by weight). As pyridine in increasing but small amounts is added to a
(violet) dilute solution of iodine in heptane, the solution goes through a reddish

134. 3. Potts, J. Chem. Phys. 20, 809 (1952).
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Al

i
Mmp 400 450 800 850

Fig. 2. Plot of extinction coefficient
[e = (l/lc)loglo(IO/I), where £ = cell
thickness, and ¢ = formal molarity based on
total iodine added] against wavelength for
0.0005M iodine solutions in heptane, with
increasing amounts of pyridine. Room tem-
perature. Cell thickness = 1.00cm.

A. Pyridine 0.0005M

B. Pyridine 0.005M

C. Pyridine 0.25M

1 1 1 i
mmu 400 450 %00 880
Flg. 3. Plot of formal extinction coeffi-.
cient (see Fig. 2) against wavelength of
I2 + Py in heptane for a series of tempera-
tures. Cell thickness = 1.00cm.

.- 2% Py = .005M I, = .0005M
——  16.7°% Py = .025M I, = .000625M
——~ 1% Py = .025M I, = .000625M

The equilibrium shifts strongly towards
Py-12 as the temperature 1s lowered, but
the pyridine concentration has been lowered
in the 2°C experiment so that both peaks
are measurable.
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color to golden brown. The uncomplexed
I2 peak at 5,2OOR diminishes and is re-
placed by a new and somewhat higher but
otherwise very similar peak at 4,220R
(c¢f. Figure 2). The peaks are well
enough separated for a fairly accurate
determination of the equilibrium con-
stant K:

K = —é;;&%%gT— litres/mol.
From the K values at 2°C (649), 16.7°C
(290), and 4¥1°C (101)--cf. Figure 3--a
graph was made (Figure 4) from which in
the usual way the heat of dissociation
of Py-I, was calculated to be 7.8 £ 0.2
keal/mole. It is of some interest that
this result agrees closely with the
value 7.95kcal/mole estimated from the
heat of solution of 12 in pure P¥'by
Hartley and Skinner.3 From the évail-

able data the free energy and entropy

La K

1

u‘ul.i #x.fl 3.6 31.1_

Fig. 4. Plot of K = (Py-1,)/(Py)(I,)
{1itres/mole] against 1/T for the
equilibrium between iodine and pyri-
dine in heptane.
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changes for reaction (1) were also compu-

ted, the results, in conventional units,
at 17°C, being, AF = -3.3, AH = -7.8,
AS = -15.5.

McConnell, Ham, and Platt14 have pre-
dicted that the charge-transfer peak of
Py-I, should occur at 38,000K (2,6352),
on the basis of an electron impact value
of 9.8 volts15 for the ionization poten-
tial of pyridine. Use of the same ioni-

zation potential in an equation given by

Hastings, Franklin, Schiller, and Mat-

sen,16 which fits a great number of iodine

200 280 mmy 300

Fig. 5. The Py-12 charge-transfer spec-
trum at room temperature. The absorption complexes closely, gives a similar predic-
of pyridine which 1lies in this region was
cancelled out exactly by dividing a 0.05M
‘pyridine solution in heptane into two

parts, adding i1odine (0.0005M) to one centrations of 0.01M in Py and 0.0005M in
half, and using the other half as a blank.
Cell thickness = 0.0296cm. Free I, 1s

tion (38,300K or 2,6108). A search of

this region using Py-I2 in heptane at con-

12, with thin cells to avold excesslve py-

negligible in its effect ridine absorption, showed such a band with

peak at 42,600K (2,350R). The extinction
coefficient is sufficlently large (e = 50,000) that no difficulty was experienced in
locating this band in spite of the considerable pyridine absorption in this region.
The charge-transfer band is shown in Figure 5, in which the pyridine absorption
was automatically cancelled out by using as a blank part of the heptane + pyridine so-
lution which had been used to dissolve iodine. No correction for free 12 was needed,
in view of 1its very low concentration and small absorption near A2,350.

The fact that the observed charge-transfer band is at somewhat shorter wavelengths

luﬂ. McConnell, J. S. Ham, end J. R. Platt, J. Chem. Phys. 21, 66 (1953).

lsﬂustrulid, Kusch, and Tate, Phys. Rev. 54, 1037 (1938). Stevenson and Schissler in
unpublished work have recently obtained 9.85 volts (private communication from D. P.
Stevenson).

168. H. Hastings, J. L. Franklin, J. C. Schiller, and F. A. Matsen, J. Am. Chem. Soc.
15, 2900 (1953). The form of their equation is based on Mulliken's theoretical dis-
cussion in reference la.
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than predicted may perhaps be connected with the exceptionally high stability of the
Py-I2 complex. The validity of the predictions mentioned above 1s dependent on an
approximate constancy of certain parameters in the equations used. Although this con-
stancy is apparently surprisingly well fulfilled for most iodine complexes,16 it has
no obvious theoretical basis. Or on the other hand, possibly the reported lonization
potential of 9.8 volts is inaccurate; a value of 10.3 volts would glve a prediction
corresponding to the observed position of the charge-transfer band.

Or, perhaps the observed 9.8 volts 1s the first w ionization potential, but the

relevant potential, which should correspond not to a m but to a non-bonding (i.g.,

12 is at a higher voltage.

"onium" or n) ilonization potential essentially of the N atom,
However, the absorp@ion spectrum of pyridine suggests that the w and n ionization po-
tentials are actually almost equal. This statement 1s based on the fact that, taking
the means of the frequencies of transitions to corresponding singlet and triplet
states,17 the frequencies of the first "n-n" and "w-7" transitions are almost exactly
equal. But here, one should bear in mind, it has never been proved that, in the so-
called n-m transitions in the aza-substituted aromatics, the transition is really from
a true localized non-bonding (n) orbital of the N atom. It would be safer to call such
transitions 6-m transitions, where the 6 orbital may be a fairly strongly delocalized
orbital only partly localized on the N atom. The appropriate localized N atom true n
ionization potential required in predicting the location of the charge-transfer band
would then correspond to a weighted mean of several 6 ilonization potentials and might

be appreciably greater than the minimum 6 ionization potential.

II. THE SYSTEM PYRIDINE PLUS IODINE IN POLAR SOLVENTS

A. The Transition to Pure Pyridine as Solvent

When, in a dilute solution of iodine plus pyridine in heptane, the pyridine con-
centration 1s gradually increased, the A4,220 Py-I2 iodlne band begins to‘shift toward
shorter wavelengths, and its extinction coefficient increases. The relations between
position and € of the band maximum, and pyridine concentration, are shown in Figure 6,
for a fixed concentration (0.0005 molar) of iodine. (At these concentrations,
practically all the iodine should be complexed.) The position of the band

approaches a limiting value of 3,8903, and‘emax a limiting value of 2,120 in pure

1795., e.g., J. H. Rush and H. Sponer, J. Chem. Phys. 20, 1847 (1952), Table VII.
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39d :
{2400
400 4
2000
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. -
40 1 =
2|
Jie00 g
a20 i
W
1 1 ! 1200 -
! Py (m.) ! 10 <«
-l
Fig. 6. Variation in position (x—x) o.
and extinction coefficient (o---0) of the
Py'I2 absorption band with increasing py-
ridine concentration. I, = 0.0005M. Sol- ' :
vent heptane. Room temperature. 1!5—‘——!10"—!'“"—!]‘3"“'—
18 | moy
pyridine. These changes, as distinct Fig. 7. Densitometer trace showing (a)
from some of the phenomena to be de- 1.5M pyridine absorption, (b) 1.5 pyridine

+ 0.06M iodine showing charge-transfer peak
shifted to about 2,4508 and superposed on
the pyridine absorption. The dotted curve
with heptane results in a return of the gives the estimated shape of the charge-
transfer band.

scribed in Part C of thils Section, are

reversible: dilution of the solution

position of the band to A4,220 with
corresponding diminution in intensity.

Attempts were made also to see what happens to the "charge-transfer" band at
2,3503 as the pyridine concentration is increased. Unfortunately, even using special
thin cells (0.00lcm) constructed by putting a rolled lead spacer between quartz plates
the experiments could be carried out only up to 1.5M Py (see Figure 7). At this Py
concentration, with 0.06M iodine, the position of the charge-transfer band appears to
be shifted to about 2,4503. No appreciable change in the ratio of the pyridine molar
absorption to that of the charge-transfer band could be detected.

In connection with the interpretation of the foregoing observations, some unpub-
lished infrared work of Glusker5 on solutions containing Py and I, is highly relevant.
He finds no appreciable difference between the modified Py infrared bands in 082
1BKleinberg and collaborators (reference 9b), for iodine at 2 x 10'4 molar in pyri-

dine, find £ .. = 383-380mp and €nax = 2,600-2,700. The moderate difference be-

tween their results and ours at 5 x 10" ' molar can be understood in terms of our
findings at high dilution, as reported in Section IIC and Figure 8.
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solutions very dilute in Py and in those much more concentrated, up to I2 solutions in
pure Py. This strongly indicates that these modified bands are due to essentially the
same Py.I, entity whether the solvent is an inert one (CS2) or pure Py: The gradual
shift of the A4,220 Py-I2 band in heptane to A3,890 in Py sclvent may now probably be
attributed to a gradual clustering of polar Py molecules aréund the strongly polar
Py-12 molecules, causing these to become more polar [increased b in Egq. (4)] and more
stable; but the infrared evidence indicated that these changes cannot be very 1arge.19
It was suggested earlierlo that the "inner complex" of structure (PyI)+I' may be
8o much stabilized by the polar solvent pyridine as to be present in predominant amount
in that solvent. But according to the preceding paragraph, it appears that Py-I2 re-
mains predominant even in pure Py, and this suggests that (PyI)+I’ if present is only
in small amounts. The definite presence7 of the ions of (PyI)*1™ 1n small concentra-
tions does, however, presumably indicate that a correspondingly small amount of the

inner complex itself is present in accordance with Eq. (3).20

190r perhaps the observed continuously shifting peak 1is the result of a superposition
in changing proportions of two distinct bands; 1if so, these may most probably be
attributed to unsolvated and fully solvated Py-I2 molecules. The limiting positions
A4,220 and 23,890 are so close together (unlike those of the Py-I, and free I, iodine
peaks in Figure 1) that the superposition of two such bands would give a single peak.
Another conceivable explanation of the A3,890 peak, namely that it might correspond
to a superpgsition of the A4,220 Py-I2 peak and the x3,600‘13L peak can almost cer-
tainly be ruled out because these peaks are too far apart. [A very small, probably
negligible, amount of the very strongly absorbing ion 13' should be present in equi-
librium in accordance with Eqs. (6) and (7) of Section IIC. In addition, the pos-
8ible presence of a trace of water or other impurities should give rise to additional
13', but probably not enough to affect the observed absorption appreciably except for
the very low 12 concentrations discussed in Section IIC.]

20The present work does not throw doubts on the concept of an "inner complex" as dis-
cussed in reference 1lb, but indicates that the inner complex of Py-I2 is not so low
in energy as was at first surmised. (Consideration of the system I2 + H20 similarly
indicates that, there too, the inner complex‘(H201)+I' in water solution is a struc-
ture of higher energy than the outer complex HEO—IQ.) It 1s conceivable, however,
that the solvated inner complex or ion-pair (PyI)+I', while separated by a consider-
able activation barrier from the lower-energy outer complex, may be somewhat un-
stable with respect to the interposition of a Py molecule between the (PyI)* and 1~
ions, so that instead of the equilibria (2) and (3) one has something like

Py-I, + Py = (PyI)*(Py)I™ , (21)
(PyD)¥(Py)I” = Py1* + I” + Py, (31)
343
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B. Pyridine Plus Iodine in Other Polar Solvents

In order to differentiate between specific effects due to excess pyridine and
effects due to increasing polarity of the solvent as pyridine is added to heptane solu-
tions of iodine, attempts were made to study the pyridine-iodine éomplexes in other
polar solvents.

Experiments in which pyridine was added to iodine dissolved in methanol were in-
conclusive hecause the very strong MeOH-I2 charge-transfer band showed that most of the
iodine was complexed with methanol rather than with pyridine. This was true up to con-
centrations of 4-5% of pyridine, beyond which it was impracticable to go.

When Py-I2 solutions in Py were diluted with water, precipitation of golden-yellow
"Py.I," crystals resulted.’’ Examination of the resulting solutions after filtration
showed no trace of the ‘characteristic Py-I2 bands, but only 13' bands and visible and
charge-transfer bands attributable to small amounts of complexes of I2 with the
solvent.22‘ Apparently the solid Py-Ie, or perhgpé2l (PyI)+I', phage is but little

soluble in these solvents.

C. Very Dilute Solutions of Jodine in Pure Pyridine

In pure pyridine at concentrations below about 0.001 molar in i1odine, the position
and particularly the intensity of the 13,890 band become increasingly concentration-
dependent (gg. Pigure 8), a fact which was not observed by Kleinberg and his associ-

atesgb’l8

because their cell thickness could be changed only by a factor of two, where-
as it was varied by a factor of > 1,000 in the experiments here described.
Strong dilution of more concentrated pyridine solutions (> 0.07 molar), or the

preparation of more dilute ones from pyridine and solid ilodine, results in an instan-

‘taneocus shift in the band maximum, accompanied by an increase in extinction coefficient

all participants in (2') and (3') being of course solvated. If more than one Py is
interposed between (PyI)+ and I°, the Py may be regarded simply as a dielectric me-
dium separating the ions.

21An X-ray study of these crystals would be of interest. It seems possible that they
may be built from (PyI)* and I~ ions (ef. reference 1lb, Section VI, and the discus-
sion of Nﬂu+ + C1” crystals on p. 811 of Section VIII), although their insolubility
in water seems to indicate the contrary.

2L, I. Katzin [J. Chem. Phys. 21, 490 (1953)] has studied the spectra of solutions of
iodine in water and the alcohols and has demonstrated the presence of 13', probably
due largely, however, to the presence or formation of I  from impurities.
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1
380 400  may

Fig. 8. Increasing dilution (1-5) of I,
solution in pure Py. Solid curves 1 and
2 are essentlially due to Py-Ie. Curve 3
shows the 13' curve nearing its Taximum
value. In curves 4 and 5 the I3 inten-
sity falls again presumably because of
dissociation into I~ ions. All e values
are based on formal I2 concentration.

1. .025 Molar 12
.0005 Molar I,
.00005 Molar I2
.0000125 Molar 12
. .00000612 Molar I,
.00000306 Molar I,

AW &

molar, a new phenomenon 1is observed. The

(cf. Figure 8, curves 1-3).
y

If the dilu-
tion is to between 10” ' and 107° molar, the
maximum shifts to 3,680R and the apparent
extinction coefficient based on I, rises to
a maximum value of 9,000. Tiie 3imultaneous
appearance of a characteristic band of
nearly double the extinction coefficient at
2,8758 makes 1t fairly certain that the
maximum at 3,6808 is due to 13' ions. (The
usual absorption spectrum of 13"consists
of two peaks, cnc at 13,650 and one of
nearly double as great peak intensity at
X2,950.25) The observed maximum extinction
coefficient suggests that under optimum con-
ditions about four 12 molecules yield one
13' group. This would indicate that about
half the iodine remains as Py-Ig, but that
about half has reacted instantaneously 1n

some way involving the formation of I~

followed by
Py-I, + I" = 13' + Py . (6)

If dilution 1s continued below 1072
13° peak near A3,650 diminishes rapidly in

intensity (cf. Figure 8, curves 4 and 5), and no new band appears in the visible or

where Audrieth and Birr6

This change occurs Just below the concentration range

4

reported the onset of anomalously high conductivi’cy,2 and

238, . D. Awtrey and R. E. Connick, J. Am. Chem. Soc. 73, 1842 (1951).

23bp. E. Buckles, J. P. Yuk, and A. I. Popov, J. Am. Chem. Soc.

4, 4379 (1952).

2u’l‘he occurrence of Eqs. (7)-(9) would account for the anomalously high conductivity
observed by Audrieth and Birr without assuming the presence of Py++ ions as they

did.

However, since these results of Audrieth and Birr were obtained from aged so-

lutions, after occurrence of what other investlgators (references 7 and 9) consider
to be a slow ring iodination liberating I~ ions, it would seem that their results
may not be relevant to what occurs in pure Py without side-reactions.
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and may be attributed to redissocilation of 13' ions, by a reversal of Eq. (6) accom-
panied by a passage of Eq. (5) to the right, as is to be expected at sufficiently high
dilutions; the net result would be

I,” + Py = (PyI)" 4 217 . (7)

Conceivably a.iso,
Py + Pyit = 2pyt + 17, (8)
{ pyt + Py - Py'Py . (9)

In all the reactions (5-9), the lons should of course be solvated. It is of in-
terest that the ion Py+, containing an odd electron, should be paramagnetic. Such an
ion in Py solution should at once acquire extra stability by the formation with Py
according to Eq. (9) of an interesting ion of biphenyl-like structure with a three-
electron bond between the two nitrogen atoms and further stabilized by various kinds of
conjugation or resonance; this lon would stlll be paramagnetic.

Since our results were obtained under conditions of moisture-exclusion less rigor-
ous than those of Kortlim and Wilski, it seems possible that the almost instantaneous
y

13' ion production which we report in the 107 to 10”2 molar-concentration range may

be moisture-dependent. Or conceivably it may have been due somehow to impurities or

to side-reactions which had occured in spite of all precautions. It is known that 1n
water or the lower alcohols 13' ions in erratic amounts are instantaneously formed from
dissolved iodine, probably largely as a result of the presence of impurities which
form 1°.%2

If we suppose, however, that our solutions were free from side-reactions or other

foreign sources of I, and that the only important equilibria involved were (1), (5),

"and (6), it can be shown that-the relative concentration of 13', that 1is, the ratio

(13')/(Py-Ié), should be small and approximately constant in the higher ranges of total
iodine concentration, but should slowly diminish, not strongly increase as we observed,
at high dilutions. Hence it may be that our results at high dilutions were due to
impurities or side-reactions which somehow gave rise to I~ in relative concentrations
which became large enough to form spectroscopically noticeable amounts of 13' near

-4

10 " molar iodine concentration;25 the observed subsequent redissociation of this 13'

25Our results and conclusions at higher concentrations in pyridine, and our results in
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at higher dilutions according to Eq. (7) would be exactly what one should expect.
An interesting alternative possibility might be that the rise in I™, hence in I, ,

below IO'4 molar, was due to Eqs. (8)-(9). To test the two possibilities, further in-
vestigations will be required, and it 1s planned to undertake them.

heptane solution, are not called in question by this possibility.
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