UNCLASSIFIED

AD NUMBER

AD132166

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors;

Adm ni strative/ Qperational Use; 12 AUG 2009.

O her requests shall be referred to Arny
Research Laboratory, Attn: ARL-APG Security

O fice, RDRL-LOA-I, Aberdeen Proving G ound, M
21005.

AUTHORITY

ARL Form 1, signed by the Public Affairs
Ofice, 9 Jul 2012

THISPAGE ISUNCLASSIFIED

B

“.«’A‘;-
-

‘ﬂ.t" e W S

W) »E evenm
,-“- - cEpeTuEy. W A P
[4
| ‘
e a5 SRS T S

Hrmed Services Technical [nformation flgency

Reproduced by

DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, 0HIO

-

v
... A R ol e MR e - .—naﬁj

FOR

MICRO-CARD
CONTROL ONLY

PERSON OR COR PORATION
| N, MISSION TO MANUFACT URE
USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

-
F__J
—
——
——e

' u lIIHI

DT

" IlIH‘ iy "

i,w“ I lw L

REPORT No. 997
OCTOBER 1956

—————

Programming And Coding
For ORDVAC

TADEUSZ LESER
MICHAEL ROMANELLI

11 DEPARTMENT OF THE ARMY PROJECT No. SBO306002
1| ORDNANCE RESEARCH AND DEVELOPMENT PROJECT No. TB3-0007

?ﬁ“d’g Qo

ABERDEEN PROVING GRO;UND MARYLAND

| BALLISTIC RESEARCH LABORATORIES

_" W: W

=

DISCLAIME

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

BLANK PAGES
IN THIS
DOCUMENT
WERE NOT

" FILMED

ERRATA

The instruction P for printing by typewriter is given as LA000 and
used as such in several examples in the text. If the entire ccutent of
register R2 is to be printed, the instruction should be changed to L4028
in all cases. The 028 is not an address but an amount, indicating forty
binary bits {in sexadecimal form). [?br special purposes smaller amounts
(multiples of four) are occasionally™used, but careful timing is necessary
if a particular special format is desired]

Similar comments apply to the instruction T for reading from tele-
type tape into RL. The code 9%--- shoul. normally be 94028, [agam vith
special options possible].

PROGRAMMING AND CODING FOR ORDVAC

Tadeusz Leser

Michael Romanelli

Department of the Army Project No. 5B0306002
Orinance Research and Development Project No. TB3-0007

ABERDEEN PROVING GROUND, MARYLAND

e

TABLE QFf CONTENTS

ABsmAcr L] . L] [L] o [] L4 . L] L] L L] L] L] L] L] L] o L] o [] L] [] L] L] []

PREFACE
I.
II.

III.

VII.
VIII.

X.

XI.
XII.

BINARY AND SEXADECIMAL ARITHMETIC NECESSARY FOR ORDVAC.

INTRODUCTQRY DESCRIPTION OF ORDVAC OPERATIONS. Flow
Charts. Coding. Short List of Symbols. . . . « « « &

CARD PUNCHING AND TRANSCRIBING. Conversion.
Reconversion. Putting a Problem on the Machine

SHII'T ORDERS. Scaling. Coding Scaled Problem in
Straight Sequences. i E MW i G KEWaARREERBE J 3

CONTROL UNIT. Frcant Panel. Operating Instructions . .

REPETITIVE SEQUENCES. Transfer Orcers. Decision Box.
Counters. Formation Formula. Address Modification.
Extract Orders. Programming and Coding Loops of
Repetitive Operations. ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« o &

SUBROUTINES « & + « o « « o o o o ¢ o o o o o o o o oo
TRANSCRIBER ROUTINE AMD INPUT ROUTFINE « « « .«
CODE CHECKING . - « o ¢ o « « o o « o o o o o o o o ¢ o
"IBM IN" AND "IBM OUT" ORDERS. "IBM IN" and "IBM OUT"
SBubroutines. . . . ¢ ¢ ¢ ¢ ¢ ¢ 4 6 4 0 e o 0 6 e o o .
FLOATING POINT ROUTINE. . . ¢ ¢ & ¢ o « o ¢ o o o o o o
THE ORDVAC MAGNETIC DRUM .+ ¢ « o « o ¢ ¢ o o o o o o o

Page

=~ U

25
W

65
75

81
127
145
161

187
205
233

e

BALLISTIC RESEARCH LABORATORTIES

AEPORT NO. 997

TLeser/MRomanell1/ jew
Aberdeen Proving Ground, Md.
October 1956

PROGRAMMING AND CODING FOR ORDVAC

ABSTRACT

The installation of the new magnetic core memory in ORDVAC and the
accampanying improvements in the machine's design have caused a change
in the order types and in the address system. Furtbermore, the high
rate of personnel changes at the Computing Laboratory of the Ballistic
Research iaboratories has also indicated a definite need for a manual
or text which gives systematically the essentials necessary to code
problems for high speed digital computers in general and for particular
machines in detail. This text attempts to present to the dbeginner such
basic fundamentals needed in the case of ORDVAC. The ideas presented
here are not restricted exclusively to the ORDVAC, since they may be
Spplied to a large family of digita) computers which have been built
with the same underlying pattern.

PREFACE

A computer is a "data processing machine". Indeed, raw numerical
data are put into the computer, are operated on in the machine in a
prescribed way, and thereupon yleid the desired processed numerical
results. Computers are of two types, "analog" and "digital". 1In an
analog computer, numbers are represented by measures of certain physical
quantities. For example, a slide rule is an enalog computer, one in
which numbers are represented by physical distances on & ruler. Or
again, numbers in an analog computer may be represented by amounts of
voltage or current. On the other hand, a digital computer counts
discrete digits and handies number symbols themselves in an appropriate
scale of numeration. ORDVAC (Ordnance Discrete Variable Automatic
Computer) is an electronic digital computer.

A digital computer performs not only the four elementary arithmetic
operations of eddition, subtraction, multiplication and division, but
also other basic operations, called "logical" operations. The most
{mportant of these logical operations are (1) duplicating numbers,

(11) moving rumbsrs from one part of the machine to another, and,

(111) after testing two quantities for "equality" or for a "greater than"
condition, choosing one of two paths to follow depending on the results
of the comparison. Every protlem to be computed on the machine must in
its final analysis be expressed in terms of these basic operations.

An outstanding but nevertheless restrictive characteristic of an
elactronic digital computer is the cpeed at which it can perform the
basic operations. ORDVAC can perform thousands of these operations per
second. This fact makes feasible the solution of many problems not
previously attempted because of the enormous length of time thrt would
be required +o do them by hand. Another notable characteristic of an
electronic digital computer is the capacity of its storage device, called
"memory". In a memory we can store data and information which in case
of hand computations are kept in mind or recorded in notes, tab.es, etc.
A simple machine such as & deci calculator which has a very smail memory,

or no memary &t all receives an order to perform a single operation,
obtaing & resudt wihich the operator records by hand and stores on paper,
then it recetwes the next order, and so on. Each operational step
requires direct human intervention. In a large. memory we can store nct
merely ihe numerical rz2sulte cf all operations, but also a sequence of
orders. A computer with such a memory can be automatically sequenced
by a device cailed "control unit", in the sense that it can be made to
perform & whole program of computations without any human intervention.
This sequencing in turn requires a very detailed set of instrutions on
what the computer has to do. Instructions must take into account all
the acts of judgment and memory which in hand computation a person
would perform (often sutomatically and perhaps without realizing their
nature) and must be expressed in a language understood by the machine.
The machine language is called "code", and the process of translating
desired operatious into code, is called "coding".

Experience with changing personnel and vearied equipment at the
Computing Laboratory of the Ballistic Research Laboratcries has indicated
a definite need for a manual or text which gives systematically the
essertials necessary to code problems for high speed digital computers
in general, and for one or more particular macbines in detail. The aim
of this text i1s to present to the beginner such basic fundamentals
needed in case of the ORDVAC. The ideas here presented are not
exclusively for ORDVAC, since they may be applied to a large family of
digital computers designed with the same underlying pattern. The
variations from this pattern called for added refinements only.

——

=

ot 0%

it 2 L ol e,

CHAPTER I
BINARY AND SEXADECIMAL ARITHME''IC NECESSARY FOR ORDVAC

ORDVAC can deal with nunbers only in their binary representation

(to the brse 2), or for convenience in the essentially equivalent

sexadecirsl representation (base 16). Therefore an acquaintance with

binary end sexadecimal arithmetic is essential for the ORDVAC coder.

Representation of Numbers. 1In every day life we use numbers in

decimal representation, or numersls to the base ten, and these in
connection with a position-value notaticn. For example the numeral
2489 means 2x105 + hxlo2 + 8x10l + 9xlO°. The digit 2, the most signifi-
cant digit, is the fourth from the right and this position indicates
that the digit thus placed is multiplied by 103, the digit 4 1s the
third from the right and is multiplied by 102, and so on. Analogously,
the numeral 0.2489 means 2x10t + l&xlo'2 + Bx10™° + 9x10'h. A number
expressed to the base ten is written as a sum of multiples of consecutive
powers of this base. In decimal representation we have available ten
different digits, 0, 1, 2, 3, &, 5, 6, 7, 8, 9, the number of digits
being equal to the base, ten. Each non-negative integer less than or
equal to 9 is represented by a single corresponding digit, integers
greater than 9 are represented by combinations of two or more digits.
The numeral for the integer next greater than the greatest digit, 9, is
"10", which represents the base, in decimal cepresentation. The above
examples illustrate the general principlez of positional representation.
These principles can be summarized as follows: 1) the number of distinct
digit symbols equals the base, 2) the numeral, in positional notation,
is written as ; sum of digital multiples of consecutive powers of the
base, 3) the symbol of the base is "10", 4) each non-negative integer
less than or 2qual to the greatest digit is represented by a one-digit
numeral, integers greater than the greatest digit are represented by
combinations of two or more digit numerals. 5) The integer next. greater
than the greatest digit ie the vase. Thus & number, to the base "b",
represented say by "°091°2°3°h" 18 edbh + el'b3 + éjbl + enbo. The
exporents O, 1, 2, 3, & for the sake of simplicity are kept in decimal
representation and each "°1" is a digit less than b,

T

From now on whenever necessary we shall indicate the base of &
given numeral by a decimal numeral in parentheses. For example 15(16)
would mean the number sixteen plus five, represented in the base sixteen,
namely twenty-one, (or 21 to the base ten).

Eigary Representation. In binary representation the base is two.
The symbol of this base is (in binary notation) "10", and the only digits
available are O and 1. For example "1111(2)" represents 1x23 + 1x22
+ lx21 + lx20, - 15(10). Numerais in binary representation are called
"binary numerals", and the digits "O" and "1" are called "bits", a word
coined by contracting the words "binary" and "digits". Examples of
binary numerals and their ordinary verbal equivalents are shown below:

Binary Verbal Decimal Binary Decimal
1 one 1 0.1 = b2™* 0.5
10 two 2 -1 2

11 three 3 0.11 1x2 ™ + 1x2 0.75
100 four L 1 5 3

101 five 5 0.001 = 02" + X2 + 1x2™° 0.125
110 six 6

11 seven T

1000 eight 8

1001 nine 9

1010 ten 10

1011 eleven 11

1100 twelve 12

1101 thirteen 13

1110 fourteen 1k

1111 fiftesn 15

10000 sixteen 16

The Basic Operations on Binary Numerals. The rules of basic oper-
alions for numbers in decimal representation may be so phrased as to
remain valid for binary nuzerals. Addition, subtraction and multipli-
cation are explained in the following examples. Divisicn is omitted as
we shall not need it.

Addition. 1011 augend 11(10
111 addend T(10
10010 sum 18(10)

We add beginning from the extreme right colura (the least signifi-
cant bit): 1 plus 1 is 10; we write "0" and carry 1. The second colwmn
from the right: 1 plus 1 4s 10 plus the carry bit 1 is 11; we write "1"
and carry 1. The third column: 1 plus the carry bit 1 is 10; we write

8

v L

"0" and carry 1. The fourth column: 1 plus 1 is 10; we write "O" and
carry 1. The fifth column; 1 plus O 18 1; we write "1". The sum is
10010(2) = 18(10).

The example is easy. There was never a carry into more than one
column. But if a series of more than two binary numbers is added the
"carry" problem becomes more diff'iculi. Often three or four carries are
involved for one colum. Because of the increesing difficulty of adding
longer and longer series of binary numbers, electronic computers add
two numbers at a time and then add the third to the first sum, etc.
Althoughk more operations are involved, the additional time consumed is
practically nil because of the extremely high speed of the machines.

An important case of addition is adding & binary 1 to a binary
nuober N. If N is a number whose bits are not all ones, the next larger
number N + 1 is obtained by changing the least significant O to 1 and
changing all the 1l's to the right of it to 0. For example:

10101 + 1 = 10110

10111 + 1 = 11000.

Subtraction. 1011 minuend 11(10)
111 subtrahend 7(10
100 difference 4(10)

We besin subtracting from the extreme right column: 1 minus 1 is
0, ve write "0". The second column from the right: 1 minus 1 is O; we
write "O". The third column: the digit 1 in the subtrahend is greater
than the digit O in the minuend hence we borrow 1 from the fourth column
(which makes 10 in the third cclum) in the minuend 1 from 10 is 1; we
write "1". The fourth columm; after borrovwing 1 from the fourth column
there is notbing left in the minuend; we 40 not write anything. The
difference is 100(2) = k(10).

Multiplication. (To find the product of 1011(2) the multiplicand,
by 111(2), the multiplier.)

1011 x 11l 11 x 7
-_ 77 (10)
1011
1011

1001101 (product)

Multiplication of binary numbers hardly needs explaining:
We always multiply by 1 or by O which makes each single step much
easier than in multiplying numbers in decimal representation.

An important case is multiplication of binary numbers by powers of
2. Remembering that 2°(10) = 10°(2) ' (the exponent n is in decimal
representation), multiplication of & binary number by 2" is performed
by shifting the binary point through n places to the right if n is
positive, or to the left if n is negative. For example:
11.01011(2) x 23(10) = 11010.11(2)

11.01011(2) x 2"‘(10) = ,001101011(2)

Conversion from Decimal to Binary Representation. The rule for
converting an integer numeral N(10) to its binary equivalent is as
follows: divide N by 2, write the quotient arnd remainder together in
the next line below, with the quotient directly underneath and the
remainder in a special column at the right; repeat this process with
the first quotient, that is, divide this quotient by 2, write the new
quotient, and the new remainder; continue thus until the last gquotient
becomes zero. The remainders which can be only 1 or O give, vhen read
from bottom toc top, the binary equivalent of "N(10)", the last remainder
represents the first, the most significant bit, the first remainder
represents the last, the least significant bit.

Example: Find the binary equivalent of 867(10).
Quotients Rerainders
867 & 2

1
1
0
0
0
%
1
0
1
1
Thus 867(10) = 1101100011(2).

10

The rule for converting a decimal fraction 0.N(10) to its binary
equivalent is as follows: Multiply O.N by 2, write the decimal part of
product underneath and the integ-al part in the same line in a special
column at the left; multiply only the fractional part of the product by
2 and proceed as before; continue until the fractional part of the product

D T S

{ becomes zero, which would mean that the fraction terminates, or carry
until the desired number of bits is obtained; the integral parts of the
products give the binary equivalent of 0.N(10); the first integral part
represents the first bit after the binary point.

Example 1. Find the binary equivalent of 0.671875(10).

Integral parts Fractional paris
671875x2

343750x2
687500x2
37500002
7500002
500000x2
000000

HPHOKFOWK |O

Thus 0.671875(10) = 0.101011(2).

Example 2. Find the binary equivalent of 0.6(10).

Integral parts Fractional parts
0 6x2
i 2x2
0 L2
0 8x2
1 6x2
1 2x2
Q L2

In this example the binary fraction equivalent to 0.6(10)
1s a non-terminating recurring fraction. Thus

0.6(10) = 0.3001 1001 1001(2) 0.1001(2) .

11

Exercises: Convert the following numbers in decimal representation

A St e

to binary representation. In case of non-terminating
fractions find at least ten most significant bits.

1)3k56 2)80012 3)10093 4)0.010203 5)345009 6)0.53125 o

Seradecimal Representation. In sexadecimal representation the base
18 sixteen, the symbol of the base 1s "10" and the digits are 0,1,2,3,k,
5,6,7,8,9,K,S,N,J,F,L. The new digits, K,S,N,J,F,L vhose decimal
equivalents are 10,11,12,13,14,15, can be remembered from the mnemonic:
"King Size Numbers Just for Laughs". For example "KBN(16)" represents
10xl62 + 8xl6l + 121160 = 2700(10). Examples of sexad:ccimal numbers
and their decimal equivalents are shown below:

Sexadecimal Decimal
10 16
1 17
12 18
15 19
14 20
1F 30
28 ko
32 50
3N 60
46 70
50 80
64 100
N8 200
114 500
3r8 1000

Addition and Subtraction. The rules of operations for numbers in
decimal representation may be so phrased as to be valid for sexadecimal
numbers. We shall need only addition and subtraction

Addition. 156K augend 5482(10
118 addend 507(10
1765 sum

We begin adding from the extreme right column: 8 Plus K is
15/ decimally it means 11 plus 10 1s 21 = 15(16) /, we write "5" and
carry 1. The secand column: the carry digit 1 plus L 1s 10 plus 6 is
16; we write "6" and carry 1. The third column; the carry digit 1 plus

12

:
! 1 18 2 plus 5 18 7; we write "7". The fourth colum: O plus 1 is 1;
5 ve write "1". ‘The sum is 1765(26) = 5989(10).

Subtraction. 156K Minuend 5482(10)

11S subtrahend 507(10)
136L difference 4975(10)

We begin subtracting from the extreme right column: the digit
S = 11(10) in the subtrahend is greater than the digit K = 10(10) in the
minuend, hence we borrow). from the seccnd digit in the minuend (whick.
is 10(16) 1in the fivst column): S from 1K is L/ decimally it means 11
from 26 1ig 15 = L(lﬁ).:/-7 , we write "L". The second colum: after
borrowing, the second digit of the minuend is 5; the digit L in the
eubtrahend is greater than the digit 5 in the minuend hence we borrow
1 from the third digit in the minuend: L from 15 is 6 [decimally it
means 15 from 21 is 6_/; we write "6". The third column: after
borrowing 1, the third digit in the minuend is 4; 1 from 4 1is 3; we write
"3" Pourth column: O from) is 1; we write "1". The difference is

1361(16) = 4975(10).

Conversion from Binary to Sexadecimal Representation and from
Sexadecimil to B . Conversion from binary to sexadecimal represen-
tation is very simple. The rule for converting a four-bit binary numeral
abcd to the equivalent sexadecimal numeral is as follows: make the
following correspondence: +the first digit from the right corresponds,
fo virtue of its position-value, to the multiplier 1(10), the second

to 2(10), the third to 4(10), the fourth to 8(10), thus:

a is the multiplier of 8 = 27

b 1s the multiplier of 4 = 22

¢ 1s the multiplier of 2 = 2

d 1is the mltiplier of 1 = 20.

The sexadecimal equivalent of abcd is then 8a + kb + 2¢ + 1d. This sum
is less than 16(10) because each of a, b, c, 4 12 O or 1, therefor:

15

sexadecimal number equivalent to a four bit binary numeral consistis of
only one sexadecimal digit. For example 1011{2) = 8x1 + kxO + 2x1
+ Ixl = 11(10) = S(16).

The rule for converting a binary numeral to a sexadecimal numeral
1s as fullows: divide the numeral in groups of four bits starting from
the birary point, to the left and to the right, and write the corre-
sponding sexedecimal digit for every group. For example to convert
1 1010 0111 .00111(2) we group as follows:

(1) (1010)(0111).(0011)(1) = 1K7.38(16)
1l K T . 3 8

When the number of bits is a multiple® of four then the number of
digits in equivalent sexadecimal number is only a quarter as great.

The rule for converting a sexadecimal numeral to its binary
equivalent is as follows: Express each sexadecimal digit as & sum
8a + kb + 2c + 14, where each a, b, c, 4, 1s O or 1, which will give
the bits, a, b, c, d corresponding to the given sexadeciral digit.
For example to convert KSL8(16) we proceed:

¥ = 8x1 + 4x0 + 2x1 + 1x0, giving 1010
8 = 8x1 + 4x0 + 2 + lx1, giving 1011

L = 8x1 + kx1 + 2x1 + 1x1, giving 1111
8 = 8x1 + 4x0 + 2x0 + 1x0, giving 1000

Thus KSI8(16) = 1010101111111000(2).

Conversion from Decimal to Sexadecimal Representation. The rules
for converting an integer K(10) or a decimal fraction 0.N(10) to its
sexadecimal equivalent are very similar to the rules for converting to
binary equivalents and need not be repeated. The only difference is
that in case of an integer N(10) we divide by 16(10), and in the case
of a fraction 0.N(10) we multiply by 16(10). Sometises it is more
convenient to convert first to binary equivalents and then to sexadecimal
equivalents.

14

LY — APt -

e e S

s

|
|
!
4

Examples. 1) Find the serxadecimal equivalent of 961(10)

Quotients Remainders
961 2 16
60 : 16 1l
3 16 N = 12(10)
0: 3

Thus 961(10) = 3N1(16).

Converting first to binary equivalent and then to sexadecimal equivalent:

Quotient Remajnder
961 - 2

480 - 2 1
240 - 2 0
120 = 2 0
60 = 2 0
30 - 2 0
15 = 2 0
T+2 1
3.2 1
1-2 1
0 1

Thus 961(10) = ..11 1100 0001(2) = 3N1(16)
3 N 1

2) Find the sexadecimal equivalent of 0.345(10)

Integral Part Fractional Part
0 345 x 16
5 .520 x 16
8 .320 x 16
5 .120 x 16
1 .920 x 16
F .720 x 16
8 .520 x 16

Thus, 0.345(10) = 0.5851FS....(16)

15

Converting to binary and then to sevaaecimal equivalent:

Integral Part Fractional Part

345 x 2
690 x 2
.380 x 2
.T60 x 2
520 x 2
040 x 2
080 x 2
160 x 2
.320 x 2
640 x 2
280 x 2
.560 x 2
120 x 2
2hk0 x 2
480 x 2
.960 x 2
.920 x 2
BL0 x 2
6680 x 2
360 x 2
720 x 2
40 x 2
880 x 2
.T60 x 2
.520 x 2

PHOHOPPHPOOOHOPOOOOI—‘I—‘OHOO

Thus, 0,345(10) = ...0. 0101 1000 0101 0OOL 1110 1011 = 0,5851F8...(16)
0 5. 8 5 1 F 8

Exercises: Convert to sexadecimal equivalents:
1) 2358(10) 2) 0.2538(10) 3) 0.0110011(2) 4) 1.011110100011(2)
Convert to binary equivalents:
5) 0.KKLL8S(16) 6) 0.0:2345(16) 7) 12K .KSNJF32(16)

B_Q;_Eolentation of Negative Numbers by Complements. In order not to
complicate -he design of electronic computers a posit ve complement
rejresentation as described below was found for a negative number
(subtrahend), such that this positive complement can be added formally
to the minvend to obtain the desired difference. Thus, the operation
M - N can be done as M plus the complement. of N. ILet us consider for
exaxple & computer which holds in the "register" only three digits.

16

If a result of some operation has more digits than three the register
will show the three least significant digits. (A register in a computer
1s a device which holds a number and records some or all of the operations
on them). The digits beyond the left end ot the register will be lost.
For exauple multiplying the decimal number 231 by 11 we should obtain
2541, but the first digit "2" will be lost and the register will show
541, Let M and N be three-digit positive numbers. Using (lO3 - N) as
the complement representation for (-N) we get M plus (105 - N)=(M-N)
plus lO3 . Since lO3 is 1 multiplied by 1000 the digit 1 exceeds the
caﬂﬁcity of the register, being beyond the left end of the register; it
will be lost and the number shown in the register will be M - N. For
example 1f M = 324 and N = 135, then 135 is first subtracted fraom 1000
and the result is added to 32k.

1000 324
-135 +865
— 865 7159 =M-N

Sinece 1, the leading digit, is lost the correct difference 189 stands
lin the register.

The number (10" - N) is called the "complement" of N (with respect
to 10°) where the exponent n equals the number of positions in the
register. ORDVAC is a "fixed" polnt machine, that 1s, it handles only
numbers whose absolute values are less than . (save for the formal
exception to be mentioned presently). If a result of some operation 1is
greater than 1 the register in ORDVAC will normally hold only the
fractional part and the integral part will be lost. The lost excess is
called "the overflow". In ORDVAC the complement of a number + N(2) is

/10(2) - N(2)_/. Examples:

Numbers Complements
0.1 10 - 0.1 = 1,1
0.01 10 - 0.01 = 1.11
0.101 10 - 0.101 = 1,011
17

It is seen that the complement of any proper fraction has 1 in its
integral part. In such a case the digit to the left of the binary point
would be intervreted as representing a negative number. It must be
stressed that the 1 in the integral part would be correctly interpreted

by the ccmputer only in the cace of negative numbers represented by the
complemeat.

a4 easy rule to convert a number - N(2) to the binary ORDVAC comple-
ment, of N(2), or the binary complement of N(2) to -N(2) 18 as follows:
Replace in N, "0"'s by "1"'s and "1"'s by "0"s, except (Counting from
the left) the last "1", and leave the "O"'s following the last "1"
unchanged., For example; 1if
N = 0.01011100

then (the complement of N) = 1,1 00100,
or, if (the complement of N) = 1,01010110,
then N =-0.10101010.

Examples of binary subtraction performed by complement addition:
1) Subtract 0.0011 from 0.1011

By ordinary subt. 0.1011
-Oan

0.1000

By complement addition 0.1011
complement of 0.0011 = +1.1101

10.1000

The minuend plus the complement of the subtrahend is 10.1000, but the
ORDVAC register will hold 0.1000 which is the correct difference 0.1011
-0.0011. |

2) Subtract 0.1101 from 0.0011

By Ordinary subtraction - 0,001l
-0.1101
-0.1010

By compiement addition 0.0011
+1.0011
“1.0110

18

ol

NPV PUYUSE—

ey Q.Lummmw

L RATEYVRNID. | |5 I Btk i

PO RPN f e, |.

The sum of the minuend and the complement of the subtrahend is 1.0110
which will stand in ORDVAC registers. It is interpreted ag

-(10.000-1.011) = -0.1010 which 1s the correct difference of

0.0011 - 0.1101. The result -0.1010 could be obtained directly by the
rule of replacing 0's by 1's and 1's by O's in 1,0110.

Machine Representation, ORDVAC handles forty-bit fractions of the
form e0 el e2 ..,.....e59. The binary point follows after the first bit,
eys and e, 18 Y0" (in case of a positive fraction), or "1" (for use with
a negative fraction), where, as explained before, a negative fraction
1s replaced by its complement. The bit ey 1s the first significant bit
and e59 1s the last significant bit. If positive as well as negative
numbers are taken into consideration, a thirty-nine significant bit
fraction may assume 2“0 - 1 different values. 7o give the "machine
reépresentation” of a number, N, means to express N in the above described
form. The binary point is self-understood and ig usually omitted.

Examples:
1. Give the machine representation of 1/2,

1/2 = 0.5(10) = 0.1(2), thus the machine representation
of 1/2

1s 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000

2. Give the machine representation of -1/2,
-1/2 = -0.5(10) = -0.1(2); the complement of 0.1 1 1.1,

thus the machine representation of -1/2 15 1100 ceees.0 (thirty-eight zeros),

Exercises: Give the machine representation of: 3/k, -3/y, o, -1,
3/16) '7/8: 1.

Machine Sexadecimal Representation. To avoid writing by hand all
the forty bits of machine binary numerals we use special sexadecimal
equivalents which represent machine binary numerals and have only ten
sexadecimal digits. The "ORDVA " .machine sexadecimal representation"
of binary numeral N(2) is the sexadecimal equivalent of N(2) divided by
2. To convert a binary numeral N(2) to 1ts machine sexadecimal
representation, 1t is convenient to divide 1t by 2 before the conversion

19

by merely moving the binary point through one vit to the left. Thus,
we tirst divide the numeral N(2) into ten groups of four bits. The

first group containing e, as the first bit; and then we replace each

0
group of four bits by its sexadecimal equivalent. For example, the

proper seradecimal equivalent of the binary numeral is, 0.1000 0100
8 L

0001 01)0 1000 0110 0000 0000 0100 000 or 0.8414860040(16), but
1 L 8 6 0 0 " 0

the machine sexadecimal representation of the binary numeral (binary

point moved one left), is, 0100 0010 0000 1010 0100 0011 0000
i 2 0 K L 3 0

0000 0010 0000, or 420K430020. A number in machine sexadecimal
0 2 0

represéntation has ten sexadecimal digits. We shall repeat that the
machine sexadecimal representation equals one half of the fractional
part of the proper sexadecimal representation. For example,

if the proper sexadecimal representation is 0.8414860040,

the machine sexadecimal representation is 420K430020.

Conversion fram Decimal to Machine Sexadecimal Representation. To
convert a decimal fraction to its machine sexadecimal representation we
multiply first by eight and after that we continue to multiply by
sixteen. This process is carried only through the tenth sexadecimal
digit. The zero in front of the sexadecimal point is omitted and it
is not counted as one of the digits. Sometimes it is more convenient
to convert first to binary machine representation and then to machine
sexadecimal representation, or to convert first to the proper roxa-
decimal representation and divide by 2.

Example. Give the machine sexadecimal representation of 0.5671(10).

Integral Part Fractional Part

5671 x 8
5268 x 16
5838 x 16
4208 x 16
7328 x 16
T248 x 16
5968 x 16
5488 x 16
7808 x 16
4928 x 16 :
8848 x 16

2= OO N0 oo

20

Thus the machine sexadecimal reprecentation of 0.5671(10) is WoGo o noinr.
In this non-terminating process the conversion 18 carried only Laruvinn
the tenth sexadecimal digit, not counting the zero in front c¢f the sexe-
decimal point,

Converting first, to machine binary and then to machine sexadecimal
equivalent:
Integral Part Fractional Part

5671 x 2
1342
2684
5368
0736
1472
2944
5888
1776
3552
T104
k208
8416
6832
3664
7328
L656
9312
8624
7248

HHEFOFOKFKFOrFHOOFOCOOKFOOHO

*eetececcccscececsss. This 18 carried throug:
the fortieth bit.

Thus, 0.5671(10) = 0100 1000 1001 0110 1011 1011 1001 1000 1100 O1l11l
% A 9 6 S S 9 38 N
and ie represented sexadecimally by L896SS9RNT.

Conversion from Decimal to Machine Sexadecimal Representation On
& Desk Calculator. The conversion from decimal to machine sexadecimal
rcpresentation is carried through the tenth sexadecimal digit. A ten
digit sexadecimal fraction corresponds to a twelve or thirteen digit
decimal fraction, thus in order to obtain the maximum precision twelve
or thirteen most significant decimal digits must be converted to

21

gexadecimal equivalents. The registers of a desk calculator hold only
ten decimal digits and normally the maximum precision could not be
obtained.

Dr. Harold K. Crowder from Case Institute of Technology, devised
en ingenious method for converiing twelve or thirteen digit decimal
fractions into ten digit machine sexsdecimal equivalents on a tea bank
desk ca.culator. The decimal fraction to be converted is broken into
two parts, the most significant ten decimal digits and the remainder.
Consider the twelve digit decimal fraction .XO0OX XXXXX YZ. The portion
JOOXX XXX 00 can be converted .n the usual manner shown in the pre-
ceding example carried through the eleventh sexadecimal digit. With
the remainder .00000 00000 YZ we proceed as follows: Multiply
00000 00000 YZ by 3436, write the fractional part of the product
underneath and integral pert in the same line in a special column at
the left. Record the integral part as a ninth digit of a machine sexa-
decimal number, the first eight digits being zeros, proceed multiplying
by 16 and recording the integral parts as in the preceaing example,

When the two machine sexadecimal numbers have been constructed they

are to be added. The sum rounded to ten digits yields the complete
converted number,

Jt may be noted that the number 3436 referred to sbove consists
of the first four digits of 235, the described process being a short cut
for multiplication by 8 once and by 16 eight times.

i
|
|

e 2 — - - - o1 At

Example: glve machine sexadecimal representation of cos 1 = 0.%5k03%0 25058 68

Integral Part Fractional Part
0 54030 23058 x 8

32241 8hk6h x 16
X869 51424k x 16
53912 22784 x 16
62595 6u45kh x 16
01530 32704 x 16
24485 23264 x 16
91763 72224 x 16
68219 55584 x 16
91512 89344 x 16
64206 2950k x 16
27300 T2064 x 16

AT XRXTHWOXR @oU &

eight zeros 00068 00000 x 3436
2 33648 00000 x 16
5 38368 00000 x 16
6 13888 00000 x 16
Conversion of most significant part: .4528K O3FKF K
Conversion of least significant part: .00000 00025 6

Converted number: 4528k O3FJ4 O
Rounded converted number: A528K O3FJ4

Exercises: Give the machine sexadecimal representation of
a) the binary machine numeral:
1. 010101000101...00, 2. 101010100110011...00.
b) the decimal fraction:

3. 0.3425, k4. 0.8132, 5. -0.8132 6. -0.1221.

23

e

CHAPTER II

INTRODUCTORY DESCRIPTION OF ORDVAC OPERATIONS
FLOW CHARTS. CODING. SHORT LIST OF SYMBOLS.

The Componente. ORDVAC consists of three main parts or "units"
namely: "the memory", "the arithmetic unit", and "the control unit".

The memory is a storage device and consists currently of 4096 storage

locations called "memory positions" which can be thought of as separate
permanent storage boxes. In each memory position can be stored at any
given time, one forty-bit number. The arithmetic unit is that part of
the machine which performs the actual addition, subtraction, multipli-
catipn and division. This unit consists of several numbered registers,
each capable of holding one forty-bit number for immediate use. The
most important of these registers are: 1) "the accumulator register,
R1l," which is for addition and subtraction, and 2) "the arithmetic
regi‘ter, R2", which 15 rsainly for multiplication and division. The
control unit is the mechanism which schedules the performance of the
operations so that they will occur in the desired sequence. A more
detatled description of the main cdmponents of this unit will be given
later.

Any electronic digital computer operates at such speeds that no
human operator can either supply the machine with data at an adequate
rate for processing, or write down computed numbers as fast as the
machine can supply them. This necessitates the employment of auxiliary
terminal components called "input" and "output" devices.

Figure 1 shows the major units of the machine and the arrows
indicate the possible directions of flow of information through the
various units. Such information is in a numerical form.

25

MEMORY »| CONTROL UNIT
(teletype] R1 A R2 teletype)__’
INPUT ARITHMETIC UNIT OUTPUT
Figure 1

The greatly simplified diagram in Figure 1 shows that all infor-
mation, external or internal, goes to the memory by way of Rl. Infor-
mation can be extracted from the memory by way of either Rl or R2. It
is possitle to move information directly frow R2 to Ri, but gener
not vice versa. The numerical results recorded in the teletype output
device must come fram R2. (For IBM input and output see Chapter X).
While the control unit receives information from the memory unit, it
never transmits information in numerical form.

The Words and Orders. An ORDVAC "word” is an organized unit of
information, consisting of forty-bits. Each memory position can contain
at any given time, exactly one word. Similarly, each arithmetic register
can contain, but only temporarily, exactly one word. A word can
represent either;

1) Ome forty-bit "datum nuxher” which is one of the numbers
to be operated on (processed) by the machine.

2) One or two instructions that specify what the machine 1is
to do with the datum numbers. In both cases a word looks like a forty-
bit number., The machine is able to distinguish datum numbers from
instructions in the following way: All vords that enter the control
unit are interpreted as instructions, all words that enter the arithmetic
unit ere interpreted as datum numbers. The important feature that a
datum vord and an instruction word have identical form, far from being
an embarrassing disr.dvantage, is in fact, a great convenience. The

samne word can be interpreted in oue coancction as un inetruction, in
26

-

Bt s S R T s TP B i e g e e ‘

another, as a catum number, depending upon which machine unit does the
interpreting. We can bring an instruction word into the arithmetic
unit and treat it as & dutum number. We can change an instruction word
by performing some operation on it and, by storing it back in & memory
position, it can then be interpreted as a different instruction word.
In this way the machine can modify its own instructions, and with great
flexibility.

The structure of words representing datum number was explained in
the first chapter.

An instruction word consists of two distinct groups of twenty utto

each called "orders". [igure 2 explains the structure of an order.

The Order

-

2 bits

F

P Instruction: 6 bits 2 bits Address:
‘ (Order type)

S —

These six bits 1denti”y These two bits These twelve bits
an operation (arithmetic are both zero. identify one of the

or logicel), They separate L2
instruction from hogit;ois sexory
address. po *
Figure 2

The first six bits of an order identify the kind of operation to be
performed, the last twelve bits together, represent in bina-y notation,
the address of some particular one of the 4096 memory position (as will
be discussed presently). We repeat that the forty separate blts in the
two twenty-bit orders in an instruction word are strung in one row and
have together exactly the same form as a datum number. The grouping
and subgrouping of instruction words which we just described is purely
a matter of interpretation, recognized by the machine. A diagram of an
instruction word as a whole, in terms of orders, is shown in Figure 3.

27

The Instruction Word

Twenty bits - Twenty bits

The first, or left order The second, or right order.

g - -

Figure 3

The first of the two orders in an instruction word is referred to
as the "left order", the second as the "right order".

The Address. The 4096 memory positions are numbered serially, like
safe deposit baxes in a bank vault. The number rermanentily identifying
8 memory position consists of twelve bits and 1s called "the address"
of that memory position. Furthermore, a memory position has associated
with it, at any aone time, one word which is referred to as "the contents"
of this memory position. Thus, each memory position bhas:

1) A unique permanent identifying address (12 bits) which
can be compared to a box number or cell number.

2) The contents of this memory position (40 bits), vhich cen
be compured to the contents of the box or cell.

The Raster. The "raster" is a television-like screen om the panels
of many computers where each memory position is represented by a green
dot. The dots farm a rectangular arrangement. By analogy, a similar
rectangular arrsngement drawn on a sheet ¢ paper is also called "the
raster” or the "raster sheet". We shail use the word "raster” in the
later sense, because ORDVAC does not have a raster screen on its panels.
Figure & ahows a raster as a rectangular arrangement of 1024k wddressed
memory positions in a 32 x 32 matrix. The memory has 4096 positions
aeeding four raster sheets to represent them. Figure 4 shows the left
upper sheet, Figure 5 the diagram of all four raster sheets. Each small
restangular unit corresponds to one memory position. The identification
of the 4096 rositions in sexadecimal notation ranges from 000 to LLL.

!
LY W »

28

- . \ -
-

- ol

- ll',a\ % - -
/ A v od ~ | ’
. ‘ - N r A -~ - - . - -
- FE n J B . N\ N N " ™, <~
. J ‘ : ;-
“ .,
] l .

1

.ﬂ |
- HEN HEEL
oLl 1 T T T T V1T 1T 1T % .
. ;
] 1] | LT T T T T 7o
4 N - SN N A
- | Q¥ —

2..4.......8 —_— . 8 S
N N (N N Y N AR .,,.,% zﬂ..)

-
-

~ - 2 —
\ =

00 or | 4o W1
o2 05 | a2 W
Left upper sheet Right upper sheet
!

3F 3L | TF TL
80 81 | NO N1
82 83 | N2 N>

Left lower sheet Right lower sheet
SF SL | LF LL
Figure 5

= N P D PPy —

. s cqgobit b b

e —

A vertical heavy line drawn in Figure L divides the raster shect
into two parts. The two digit sexadecimal numerals in the left margin
mark the rows of the left part, the numerals in the right margin mark
the rows of the right part. The numerals in the upper and lower margins
mark the columns separately for each part. For example the little
rectangle here marked with an "X" is in the left part of the raster
sheet in the row labeled "1N" and the column labeled "6". It represents
the address 1N6; the first two sexadecimal digits, 1N, being the number
of the row, the last sexadecimal digit, 6, being the number of the column.
The 1little rectangle marked with a "0" is in the right part of the
raster sheet in the row lsbeled "29" end the coluwn labeled "T7". It
represents the address 297.

The rows and the columns in the three rester sheets representing
the remaining 3072 memory positions (1024 positions in each sheet) are

nuirered as follows:

The right upper sheet:

0.., L.

Columns; O, 1, 2, ..., L.

Left part: Rows; 40, 42, L4, ..., TF; Coluwmns; O, 1, 2
Rignt part: Kows; L1, 43, 45,

-

&

The lqgg_lower sheet. :

Left part: Rows; 80, 82, 84, ..., SF; Coluwms; O, 1, 2, ..., L.
Right part: Rows; 81, 83, 85, ..., sL; Columms; O, 1, 2, ..., L.

The right lower sheet:

Left part: Rows; NO, N2, N4, ..., LF; Colummns; O, 1, 2, ..., L.
Right Part: Rows; N1, K3, K5, ..., LL; Colwmns; O, 1, 2, ..., L.

Programming and Coding. "The Program” is a plan for solving a
given problem. Programs may thereforc range'in complexity from a
tentative sketchy outline Lo a complete eleborate working system of
directions. Planning a method for solving & problem is called
"programming”". This term is somewhat flexible because the programming
may vary with difficulty of the problem or with the experience of the
programmer and of course may reflect the speclal restrictions of the

31

prospectively available computer. The process of programming or planning
a solution 1s distinguished from the "coding" which is the translation

of a program into the language of & specific machine. The "coded program"”,
or "routine", although often also loosely referred to as the "program”,

is a sequence of machine words (explained before) instructing the machine

to perform specified operations which will lead to a solution.

.We learned in Chapter I that ORDVAC handles binary fractions and
w2 shall assume in this chapter that all datum numbers and the results
of all operations on them are such fractions. We shall consider now a
very simple example of programming and coding a problem: given two
numters &, and Y to program and to code the computation and the

1

Frinting of the sun a, + &,. The machine can start the operations when

1 2
‘the numbers a, and a, and the coded program are stored in the memory.

The sequence if words which constitutes a program will usually be stored
in consecutive memory positions (at consecutive addresses) in their
proper order. Storing a coded program (a routine) in the memory is
called "reading in" a program. Reading in a routine directly is
cumbersome and seldom done. In practice, before reading in a routine

we store an auxiliary coded program called the "input routine". Due

to special features the input routine can be stored very easily. When
once stored in the memory the input routine has the facility of
automatically reading in a given computation rrogram, as will be
explained later. The input routine can also perform the necessary task
of storing the numerical data which will have to be processed in the
course of computation. Hence the storing of initial datum numbers

need not be & part of the computation program. In our present program
end in most of the problems which follow we shall assume that the input
routine with all the input datum numbers is already availadble prior to
introducing the coded computation program. In our problem then the
input routine will store the Y and 8, mentioned above at some addresses,
say Al and A2 respectively.

Programming., The programming for our problem would consist of the

following outline:

L. Compute the swnm al + &,

II. Print the sum and stop.

In I are grouped the operations assoclated with the computations of

&, +a,, In IT are grouped the operations assoclated with printing

the reswlt and stopping the machine. As a rule the outline 1s prepared
in the form of a diagrem called the "flow chart", having numbered
"Lotes" connected by arrows indicating the flow of Information. Thus,
for our simple problem, programming is reduced to preparing a flow chart.

“he rlow chart of our problem is shown in Figure 6.

FLOW CIVKT, &) + &,

Flgure 6

Notes on the ¥Flow Chart.

- m~mm

&, Groups I and II of -he outline are shown in Boxes I and

1I on the flow chart. It is cus.omary to use Roman numerals to designate
major sections of a program. The orders corresponding to operations in
Boxes T and Ii are often referred to as "Sequence" I and II. There are
no strict rules as to how to &COup operations in a box: experience will
eventually show the coder that 1t is natural to end boxes at "transfer
orders” (explained later). The orders representing individual operations
are numbered with Arabic numerals following the common Roman numeral,

thus: 1in Box I: I,1; I,2; I,5; etc; in Box II: I1,1; 11,2; I1,3; and
6C on,

b) The arrows on the lines connectiug the boxes indicate

tne order in whien the groups of operations will take place, which group
will come first and which next, etc.

23

c) The box connected to the flow chart by a broken line is
not numbered because the operations grouped in it are not a part of
the program. This box 18 called the "Storage Box" and the operation
in it consist of storing the numbers 8, and a, in memory positions
Al and A2, We have assumed that these operations would be performed
by the input routine; the presence of the storage box on the flow chart

reninds the coder vwhere the datum numbers are stiored.

d) The arrow inside Box I indicates that the sum a, +a,1s

to be stored in memory position A3.

Preliminary Coding.

Before the example can be coded it will be necessary to
ligress upon the ORDVAC's order structure. The ORDVAC can execute
fifty different orders. A description of the complete 1list of orders
is given in the Appendix. A short list of orders sufficient for the
early simple examples is presented below.

Short List of Orders. Two forms of representation of orders are
comnoply used: Lie "preliminary representation" and the "sexadecimal
repregsentation". For final coding, for actual use on the machine the
nechlne sexadecimal representation must be used. However, in the
early stages of coding, when mamy changes have to be made and before
addresses have actunlly been acsigned, it is convenient to use "a
preliminaery order representation", a notation which 1s generally more
easily understood by the coder. In this short 1list a combination of a
capital letter and a numeral, like Al, represents an address of a memory
position, savé for two exceptions to be mentioned. Parentheses placed

about an address symbol are used to represent at any stage in the flow
chart, the contents of the given address at that stage, thus "(A1)"
represents the contents of memory positicn Al. The exceptions to this
interpretation of letter-numeral combinetfuns are "Rl and "R2" which
stand for accumulation and arithmetic registers (explained before). How-
ever, the use of parenthescs sti1ll holds: "(R1)" and "(R2)" represent
contents of Rl and K2 (a 40-bit word in each case). An arrow, "_, " is

34

o

il o L ol A s Sl PGS T

v

.

-~ e evimade

read "goes to". For example "(R2) —» A3" 1is read: "the content of RZ
goes to the memory pesition A3", and it means that the 40-bit word in
| R2 1is duplicated in memory position A3. The previous contents of a

memory position or of a register are cancelled only when replaced by

another vord, save for a few exceptions which will be explained later.

A Short List of Orders

Preliminary Represen- Sexadecimal Represen- Description Verbal

tation of Orders tation of Orders of Orders Name
No

1 +Bl Kk... (B1)=> Rl Clear, add

2 (+)B1 NL... (R1)+(BL)-> R1 hold, edd

3 -Bl 2h... -(B1) = Rl Clear, Subtract
" (-)B1 Ok... (R1)-(B1) 2Rl Hold, subtract
5 M Bl 10... (R1)—» B1L Store

exact

6 XuBl K8... (R2)x(B1) - Rl multiplication
7 - Bl 78... (R1)=(B1) > R2 divide

8 R Bl Sk... (BL) - R2

9 P L4000 Print (R2) on teleprinter Print

in sexadecimal form

10 Z u 00000 Stop (for the machine) Stop
1 U Bl NO... Transfer control to the Transfer

left order of Bl

Figure 7

35

Notes on the List of Orders:

a) The two sexadecimal digits in each line of the third colum of
the list are the sexadecimal equivalents of a six-bit instruction folluwed
by two binary zeros (explained before). The three dots used in the repre-
sentation in the third column are to be filled later by three sexadecimal
digits representing the sexadecimal equivaleut of the twelve-bit .address,
Bl.

b) The preliminary representation of Orders Nc, 2 and WNo. 4 stemd
" and "(-)". The parentheses are used tc distinguish
them from Orders No. 1 and No. 3, which start with ", +", and "-". fThe

Orders No. 9, P, and No. 10, Zu, differ in structure from other orders,

respectively with "(+)

isy not containing address parts. They consist of twenty-bit instructions
represented by five sexadecimal digits.

¢) Order No. 6, Xu, is the only order giving a "double precision
result"” . The first thirty-nine most significant bits of the product are
in the register Rl, the thirty-nine least significant bits are in R2.
Tre register R2 holds forty bits, but the first bit, which is always
zero, i{s disregerded. Thus the multiplication of two numbers gives &
geventy-eight-bit product. Addition, subtraction, and division give
thirty-nine-bit results.

d) Order No. 7, - , glves the quotient in F2. The last bit
(e39, the least significant bit) of the quotient 1s always "1" (binary
one).

For example, 0.01+ 0.1 = 0.1, but the register R2 will show,
0100 0000 0000 0000 0000 0000 0000 0000 0000 0001, introducing
an error of 2°°°, The aivision is said to be "a round-off" division.
The remainder, "shifted left one", which is equivalent to being multiplied
by 2, 1 10(2), and 1s held in Rl.

order No. 11 belongs to the category of "transfer orders". A
trans{pr order is not automatically followed by the next order in sequence
but by} the order in the memory position specified in the address part of
the trgnsfer order. For example, Order No. i, U BI, directs control to

36

€ e T

- .

R AT T B DOV n AL R

s IS il MR W NI S BRI PSR 5 T o i T

e S il TR IR

|

S D — -

the left (the first) order which is stored in memory position Bl.

The

Orders No. 1 through No. 10 are not transfer orders and any one of these
orders is sutomatfcally followed by the next order in the sequence. No

order except a transfer order specifies the address of the order to

follow.

Now Yet us return to the example.

The programming results in a flow

chart. When the flow chart is completed we can begin the preliminary
coding, patterned directly upon the flow chart.

Preliminary Coding for Computing ay + a,.

Sequence Tape word Order Rl R2 Memory Description
(Box on the (sr:xadecimal (address of (preliminary (contents of)
flow chart) order) the word) symbol)
I, l Kh... +M al
word (AL?R1
2 Nk... (+)A2 8, +8, (R1)+(A2)R1
b) 10... MA> +a
wordL 81*% (R1) —>a3
II, 1 h... R A3 a, +a, (A3) 9 R2
2 L4000 P Print (R2)
word
b) 00000 Zu Stop
Notes on the Preliminary Coding.
a) The above program can be explained in words as follows:
Order I, 1; (Al) = a, is duplicated in Rl, after this order is performed
(R1) = 8, .
Order I, 2, (Rl) = a, is added to (A2) = +a,; after this order is performed
. (R1) = 1+8,
Order 1, 3, (Rl) = a,+a,, 15 duplicated in A3, after this order is performed
(A3) = a,+a,.
1l 2
Order II, 1, (A3) = a,+a,, 15 duplicated in R2, after this order is performed
| (R2) = &) +a,.

Order II,

Order II,

2, (RR) = a

1

+a, is printed in the teleprinter (the output device)
in sexadecimal form.

2

3, The machine stops operation.

37

b) The orders are written in pairs; I, 1 and I, 2, I, 3 and
II, 1, II, 2 and II, 3. Each pair forms one instruction word to be stored

Nt s .« e W

in one memory positfon. The whole program consists of three words.

¢) The column under the heading "sequence" lists the numerical
sequences of orders of the corresponding boxes. The Roman numerals refer
to boxes on the fluow chart.

L - s

The second column under the heading "tape" contains sexe-
decimal representations of the orders. The instruction part of an order
consisting of the first two sexadecimal digite is immediately available
from the 1list. The address part, the last three sexadecimal} digits, 1s
to be inserted in the final coding after the addresses have been assigne¢.

|

The third column under the heading "word" has the sddresses
of the iustruction word and is also filled in the final coding after the
addresses have been assigned. The columns under the heading "R1", "R2",
"Memory" have the cantents of R1, R2 and Memory respectively, where the
results of the corresponding orders are recorded.

d) Tae sum a, +a, vas actually obtained after the order I, 2,
but we needed three more orders to accomplish its printing, since the
design of ORDVAC permits the printing of results in the teletype output
device only from the register R2 {see ORDVAC diagram).

Qpe Assignment of Addresses. The ncxt step after the preliminary
coding is to assign addresses for instruction words, initial datum
oumbers, and temporary positions. As each address is assigned it will
prove convenignt to record this fact by shading the appropriate space
on the raster sheet to remind the coder that it is no longer available.
The space elloted to the input routine must also be shaded, In the normal
method of operation by the ORDVAC, when transfer orders do not interrupt,
the left order of an instruction word at address Bl of the nemory 1s

38

executed, followed by the right order of that word, then the lef't order
of the word at the next address B2 (next in the sequeénce of addresses),
etc. The ordinary procedure in assigning addresses would be to start
from some convenient unused address and choose the following addresses
in thelr aatural increasing order until 1t becomes necessary, as in
more complicated problems than the present example, to skip out of this
orderin/; by means of a transfer. Figure 8 shows a part of a raster
with aesigned memory positions for the input routine, numerical data

and the words of the routine for computing al+a2.

Raster with Assigned Addresses

0 1 2 5¢.+..F

/7
26 YA A3

28 p¢Computation
outin

BB

Inpu outine
Figure 8

Notes on Figure 8,

a) .The memory positions LNF through LLL are used by the input
routine, (Fifty memory positions).

b) The number 8, 1s stored at the address 260(16), the number
a, at 261(16). In the preliminary coding the addresses of a, and a, vere
represented by symbols Al and A2 respectively,

c¢) In the preliminary coding we used a storage position whose
address was represented by the symbol A3. For this position we assign
the address 262(.5).

39

d) The three instruction words of the computation routine are
asslgned the following addresses in sexadecimal representation: 280, 281,
282.

The Final Coding. Having assigned the sexadecimal addresses we can
now go tack to the preliminary coding, Figure T, and complete the final
coding by £illing the second and the third columns under the headings
"Tape" and "Word".

Final Coding for Computing al+a2

Sequence Tape Word Order R1 RZ2 Memory Description

I, 1 K260 . A N (AL) —> Rl
280
2 Nk261 (+)A2 8, 8, (R1) + (A2)->R.
'3 10262} 5 M A3 a,+a, (R1) — A3
281
II, 1 sk262 R A3 a +e,
2 L4000 P Print (R2)
282
3 00000 Zu Stop
Figure 9

a) The first instruction word of the routine consisting of the first
two orders 1s, K4260N4261, and 1t 1s to be stored at the address 280. The
second instruction word, 1026254262, 1s to be stored at the address 281.
The thiyd instruction word, L40OOO00000, is to be stored at the address 282.

Key-Words. Coded routines are inserted into ORDVAC's memory Dby
means of an input routine which has several optional modes of operation.
In general, a coded program can be subdivided in a natural way into groups
of words at consecutive addresses such that all members of the saic group
require the same treatment. The input routine has been s0 constructed
that & group of consecutive words can be subjected to a common input
operation by inserting a special "key word" for that operation just ahead
of 1ts group. It should be remarked that this insertion 1is actually
necessary only c¢n the tape or punched card input: 1if a key-word is
written on the “inal coding sheets, no address is to be assigned to it,
that is, the key-word itself is not to be placed in the memory.

4o

Sl i wmamw

e Tt oo A It M NN 0 7

e

B AT s M i S, St e Ml ¢ b AU AT NG

P S A o —

e b e e et et DU S - — e e

In this Chapter we shall require ounly the two following key-words.
A complete l1list is given in the Appendix.

Short List of Key Words

Symbol Explanation of the "pseudo"-instruction

1. 80000 00%%. Store the first word of the computation routine

at the address Al and continue storing in consecutive
memory positions the words which follow, until the
next key-word appears.

80001 00?%. Start operations beginning from the left order of

the instruction word stored at the address Bl.
Figure 10

The first key word from the above list precedes the first word of
tae computation routine, the second key word follows the last word of
the computation routine. The computation routine of our problem of
computing a, +a, together with the key words would look as follows:

Coded Program for Computing a,+a,

Key word 80000 00280 key word
1st word K4260 Nu261
2nd word 10262 sk262 Computatic:n routine
31rd word L4LOOO 00000
Key word 80001 00280 Key word
Figure 11

The coded program in Figure 1l reads as follows:

Store the first word of the computation routine at the address
280, and continue storing the words which follow at succeeding addresseu,
281 and 282 fof the second and third words respectively. When the third
instruction word is stored, then the machine is instructed by the key
word which follows the last word to start operations beginning from the
left order of the first instruction word stored at the address 280.
Operations will then continue, and the machine receives and executes
orders from consecutive addresses. The orders will be executed in the
following sequence: left and then right from the address 280, left and
right from 281, left and right from 282.

41

Curd*Punchiqg. The coded progrem in Figure 11 is not yet ir a form

sccepleble by the machine. The last steps consist of punching the ccded
program on cerds or on teletype tape. In ORDVAC praciico the Tape iz
very seldcm used and we shall discuss only the card input. A stack of
cards in their proper order ready for the machine is referred to as the
"deck". The deck, arranged with the computation routine on top of the
input routine (input routine comes first) is the final form of the coded
progren. ready for the input device. The preparation of a deck will be
explained in the next chapter. '

Preparing a Problem for Machine Computation. Summary. Suppose that
& problem has been formulated mathematically and that a numerical method
has been selected to solve it. Then the preparation of the problem for

the machine consists of the following steps:

1. Programming. The course of the computations is planned and the
coding procedures to be used are selected. The final result of the
programming is a flow chart. In principle the general outlines of

programming will not be limited to any one particular machine. In practice,
the special features of a gi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>