UNCLASSIFIED

UNITED STATES NAVAL POSTGRADUATE SCHOOL

RESEARCH

mathegatics for managers made rasy

* * * * *

Theadore M. Bdeon.
$D D C$

by
Tisodore K, Edeon
Lientensut Comsuder, Civil Enginoer Corps, V. B. Ravg and
John J. Shanimg, ix. Lieutsnant, Civil Euginoar Conpe; V. S. Navy

Suhalittod in partial fuifillant of the requirements for the dogreo of

NASTER O5 60DORES
In
M FACBETET
Waitoci Statos haval Postgrodrato school
Montorey, Callfomia

1965

by
Thoodore K. Bdeon
end
John S. Ebanley, Jx.

This torit is sacopted as fultilitus the resosvoh paper requrremits for the cegree of

METER O SCTEXCB

IT
Mandemerni
Era the
Tritod 8tatos Neval postgraduate Sohool.

Approved:

 nore soghisticated than the olsantary enas of adding; subteceting. mantiplying, and dipiding. Ths equalaition of this innoviodse osn bs particularly painixl to thoso wo have been away fro college for a lows period and those who have never boan oxpond to itgher matamotios. Clowe corutixy of available texts'indicated that there ners nome which inoorgorates

 his pursuit of an advanced dogree in Hanagement. The authors of tinis rosearch payrar are of the opinion that down to earth, essy to madergtand sxplanations of the babic fundezentals of higher matiomatice would eserst aticionte exwarinig uyon a cource of stusdy in the mangement field. Trio aseas covered in this resoarch papor are: algebra, iunctions, grapis, equations, logerithms, exponents, progressions, and elemontary caloulus.

Tha ant

 acsiatance.

Chaytar 1atue
Tatrocuction $\$$
Agebrete Definttions axi symals 2
2.1 Introanction 2
2.2 Dafindtions 2
2.3 Syzzols 7
Fundarantil Operatione of Algenwa 9
3.1 Introduction 9
3.2 Division zero 10
3.3 Postitive and Rogative Rumors 20
3.4 Oprations with Signod Tusisers 10
3.5 Exponsants 12
3.6 Addition and Spbtraction of Like Terws 12
3.7 fultiplscation of Terms 33
3.8 Addition and Subtraction of polqnomials 14
3.9 Powers of Terms 15
3.10 163.11Fractionil Exponants
3.12 Hegstivo Expononts 20
3.13 Multipying Polynomele 22
3.14 Dividing Polynomain 27
Factoring ard Sixplipieation of Factors 31
4.1 Factoring 31
4.2 Sow Otior Comma Feotore 34
4.3 Fertarty 34
4.4 37fuotions ax Grusha45
5.1 Functions 45
5.2 Functions of Frusedmes 45
5.3 Dosain 51
5.4 Gumas 54
6 Equations of tis Firgt Destea 63
6.1 Introduction 63
6.2 Equation of tha sixit Lessou 64
6.3 Word Promless 72
6.4 The Crase of a Farat Dezeo Equation 76
6.5 810po-Intarespt Ficen 78
6.6 Obeaining Equation of Lins Given 80Two POKits
6.7 Spatom or Lirsom Rgetioms 84
6.8 Sustictation liotan 35
6.9 Astitarstic liatiod 88
6.20 90
6.11 Incerozithos 94
6.12 Goming Inozisistion 98
7
 100
7.1 Introcuration 103
Chaperes T1\% Pado
7.2 Guadratios with On Jnkown 101
7.3 ©radiratic Pormis 306
7.4 Quedrazice mitin Two Inknome 109
7.5 Gruphs of quadratica 117
8
Progresaions 121
8.1 Introduetion 221
8.2 Aritumatic Progrecsions 122
8.3 Coosoknic Progreasions 127
Logarithos 138
9.1 Introduction 136
9.2 Kaws of Logarithens 139
9.3 Baces of Logarithras 112
9.4 Finding tha Antilogaritim of positive 145 Logerf thaus
9.5 Lemanthms of Decimal Tutber 1名
9.6 Finding the Antilogaritin aiven a 247Fiogative Logarithm
9.7 Logarithatic Computation 418
9.3 Intoryolation 15.
10 Calcrales 156
20.1 ixterexostich 259
10.2 Fisot patudglco of Colstacy 157
10.3 160
20.4 162
Chaperar T2tlo Page
 2筑 Farterlos
 188
20.7 168
10.8 Foints of Tnizoskuca 277
 170 Pointo is Ixtlostins
20.10 179
10.11 Diturumg Telacity ex 391 Accoleretion
Bibliograxay 26

cravius 1

IFLBODETITAT

This eyilabus is minarity for
 the matarastical concones containad heroin.
(2) The atudent tia has been erry from cohool for a mescre of jeara.

The titles of the chaporrs doscribe tha coutant of tio yandons

Abstract

 (cinso 7t 3 m wot oractiy 22/7).

 is $6,-3 / 5$.

7. Vamisole is dofined as a ayciol whioh is wed to repreant

8. A constent is a sysioi wisch roproconts the sess newor during

 roprecentod by a itteral numbor. The ifrst form lettors of tho alphaist are controntionally used as asiatmary constanto. In tho oxprousion $a x+$ by $+c z, a, b$, and c are ariotitery consterth.

- | 4 年

 THa
 cosititv, numer.

As an cxazies, in tho citegres below tha litoral newors bevo the Pollorang Telues:

$$
\begin{aligned}
& A=-2.5 \\
& B=+1.5 \\
& C=+3.0 \\
& D=0.0 \\
& E=-1.0
\end{aligned}
$$

$$
A-8=5+8
$$

 (Ggsy

13. A

 to a nosative or a fractuonal powas. Exargilos aro as follewat

$$
\begin{aligned}
& \text { Ersad dofinitions } \quad A+E-50-6 \\
& \text { Rostricted dopindtions } \quad 3 x^{2}+5 x+5
\end{aligned}
$$

17. An aigobratc factor is a part of an algebsals torn which is

18. Thi coopisisach of a sean is tho eastor by winch the othor

Is called a mempicai cooffistent. The iactor normily consdered as tye cosfricient is the factor instad iluat in the terse to en exampla, in TVIV, axy of the factors (i.e., $7, b, 7,7,7 b, 70 T, 8 t c$.) gonid be considared a coefficiont of the otiner factorisaidicg wp the term, although 7 would ususily be considered the cositicient. The numpical eoaflicient would be 7 in all cacos where the 7 was a part of tho pactor congidered the coecificiont.
19. The conmiative 2ag for eddition indicaten that the our of wo numere is the same regardless of the oxder in mich we add the numors. Ratis is, $a+b$ is exsetly the ease as $b+a$.
20. The associstive 183 for addition indiontes that the sua of three or more numors is the eans ragardless of the order they aro considered in, or how they are groupod. That $i a_{9} a+b+c$ is the axme as $b+0+a$ or $0 \& \& * b$.
21. The comutative law for multiplication indicstac that the product of tiso numbers is the awe regardless of the order in which they are mpliplied. That is, a tiras b is exactly tha sams as b tisec A .
22. The asscoistive lsk for maltiplication indicates that the product of three or nowe numbers in the sasa regardless of the order of oritiplifing the nuboers togethor.
23. Parenthosis (), brackets [] , braces $\}$, and viniculam -are all symbols that indicato a grouping of terms or factora aitiain the symbol. Whare tha gyrbol is procecded by a juteral or explicit nambor or combination thareof, the ontire groupisg is matiplied by thet coofyisiont. As an example:

$$
6 b(a+b+5) \text { a } 6 b a+6 b^{2}+30 b
$$

$$
s(b+c+d)=x b+a c+2 d
$$

 is called the nitipitor.
27. The woduct is the result of mitipiyins the matipileand by tho miltiplior, At an examio, if wo baro a antiplicand of 56 and a moltiplier of 2, the product ia 112.
26. In diviaion, tho numos wich is divided into anothor mesors
 The result of the division is known as tho protilezt.

2.3 SyEsole.

- ia equal to

三 18 identicasiy cqual to.
度 io not cqual to.
<18 less thon
$>$ is ereater than
§ is leos than or ogeal to.
E 1a escostes tisan or cqeal to.
ni n Pactorial, cs, fatorial n. c (own) varies as. $\sum a_{n}=\varepsilon$ of verimbics of nilioin a_{n} is tho roprceontativo.
a^{n} a to two nth powor, or, a capencnt A.
$\sqrt{8}$ eqtaso root of a.
$\sqrt[4]{8}$ nth root of 8 .

* 18 ajphoximboly equal to.
\mid A anceluta yiva of
(2 muscordyt \mathfrak{n}, ars
a 9×3 n.
(土) S-intation of $\pi, 6 \%$ \& x .
(x, y) point shoce ecordiatos等 x x
 raspestivoly
 boush.

Cuma 3

3.2 Introsuction:

 again replacias the question mirli by x. The followirg etaphers is porriapa tho exigt important chapter in two book, Tho wteizat tiouid work exd urdoritard 211 of the oxorciess and pxinlos.

 problocia can bo cirita onfoztillo.

3.2 bedgion by Zaco.

 equation bivo 0). Thus;
 other than 0 . For this reasin, wo axy that any nisur dividod by 0 is giviotined.

3.3 Fontive and Hegrate Nimpre.

One éscential differsnee betreen andthmotie and algelire is trat in
 atudont aince we hsve cuch thange as proit and lose and positive and
 a moser is positive or nogative. The asm signs are aleo used to cionote eddition or subtsodition.

Bxampless

$$
\begin{aligned}
& (+6)+(-5)=0 \\
& (-5)+(-3)=-8 \\
& (+6)-(+4)=2
\end{aligned} \quad \text { Parenthesis uced for clarity }
$$

A nusher wifich appears withont a eign is by convention considorea to to positivo.

Tha folloring zulos emserning operations with bignod nuesere aro precontod without proops

Eule 1. To cad two musbers of like sign, add thoir abcoluto values sad prefix tion agmor by the "uike sign.
 absoluta value nuear gica the jarger and prestx the recilt
 Addation Exisizies:

$$
\begin{array}{cccc}
48 & 46 & -7 & -15 \\
+2 & -4 & -3 & +2 \\
42 & +2 & -10 & -13
\end{array}
$$

Rule 3. To gubtrate one musher Prow another; chage the sign of the numer to be gubtracted asd then adil tho ntsexa following smies 1 and 2 above.

Subtraction Examiess

$$
\frac{\begin{array}{c}
+3 \\
0
\end{array} \frac{+35}{+25}}{0} \frac{-(-10)}{425} \quad \frac{-10}{-15}, \frac{-5}{-1}
$$

 Ti the aigns of the museore are the casa, the ancuer will be positive. If the signs of the nurbors are not the same, the eign of the anewor is negative. In rhort, pilus tivos a plus or a ruinus tises a minus a a plus aneror, cillie a plus tinas a minus gives of ninus ancios.
fultiplitestion Exampes:

$$
\begin{aligned}
& (+2) \times(+4)=+0 \\
& (-3) \times(-6)=+10 \\
& (+3) \times(-2)=-6 \\
& (-1) \times(+8)=-8
\end{aligned}
$$

 ancwer will negetave. Division Examplegs

$$
\begin{aligned}
& (+5) \div(3)=45 \\
& (+10) \div(-2)=-5 \\
& (-20) \div(-5)=+4 \\
& (-8) \div(+4)=-2
\end{aligned}
$$

 pruckics 11 y twos.

3.5 Expozonts.

a.\& a a^{2} (the dot is the gymbol for tises). He asy that a is raicid
 bace of the exponential expreesion. 3 is the poser to winich the bece is raiced. If a leitor or nuber aspoars without an axponont, then the axponent is taken to be 1 . In the exproceion $6 x^{2} y^{3}$, the poriry of $71 \pi 1$. A lother or meber raicod to the saro power is equal to owo.

3.6 Adsition and Sutrraction of Lika Taxen.

Thite is a simple topic and oan bo oxplsinnd by a.adzolo oxapio. If you havo 2 ayples asd you axo given 3 mox, yon tion hase 5 apices. 81zilarig,

$$
\begin{aligned}
& 3 x+2 x=5 x \\
& 4 x y+3 x y=7 x y \\
& 10 x y-2 x y=8 x y z \\
& \text { asbe - 7abc = abc }
\end{aligned}
$$

3.7 Maltandicatios of texts.

$$
\begin{aligned}
& x+x \cdot x=x^{3} \\
& x^{2} \cdot x^{3}=x^{5} \\
& x^{12} \cdot x^{6}=x^{18}
\end{aligned}
$$

When we multiply like terms, me simply adid the oxpononto ar eash of
 a rulo is necosmaxy, them

$$
x^{2} \cdot x^{b}=x^{84}
$$

 as yoll as your own news. It mould be notod at this point thes we camat maltiply minine tex.

Stxilarly, $x^{3} \cdot y^{2}=x^{3} y^{2}$ or $y^{2} x^{3}$
Another bseic point ought to cover is shat bappers Enen orar teres jo -
 by maltiplying the numarical cocfeilcients togother and going tiarozia tho cop drill that we went throug above with the lotters and thoir axponowis. Thuse $62^{2} \cdot 3 x^{3}=182^{5}$

$$
200-304=-605
$$

Sixdicirys

$$
\begin{aligned}
& 2 a^{2} \cdot 43 \cdot-3 a^{3}=-24 a^{6} \\
& a \cdot 6 a^{3} \cdot 45^{5}=2499
\end{aligned}
$$

 in tizo ancusry colven.

1.	0^{2}－${ }^{6}$	A顽。	6^{8}
2	$z^{2} \cdot x^{3} \cdot(\cos$	Asas．	48
3.	ITx－ 3005	Anso．	1606
4	$3^{2} \cdot 8^{315} \cdot 0^{3}$	A20：	${ }^{2} 100_{0} 3$
5.	$3 x^{2} \cdot 44^{3}$	Ans3．	$12 x^{2}{ }^{2}$
6.	$4 x^{2} \cdot 2 y^{3}=\left(0005^{2}\right)$	229\％	－ $\operatorname{cosem}^{23}{ }^{3}$
7.		Arase	40306
碞。	（ $-x^{2}$ ）$=2 x^{3} \cdot 6 x^{3} \cdot(a x)$	Ans．	12323
9.	$5 x^{2} 3{ }^{3} 4$	景盛。	－ $0^{5} \cos ^{2} 3^{3} 5^{4}$
70.	$3 x^{5}=3 x^{3} \cdot(+2 x)$	＊5s．	－2lis ${ }^{1+8}$

 0ent I

 overything Eitkin tha parcrihogiat
thateles：
It $\quad 13 a+40-20-20=20$
2． $20 x-10 x+20 y-15 y-5 x-5 y=5 x$
3．$-5 x y+10-5 x-5+25 \times 5=5 x y+5$
4． $10-3 a^{2} 30-0+4 x^{2} x^{2}=a^{2} 5^{3}+2$
5． $102-(50+20)+30-(2 a-b)=3+20$

2． $1 \sec ^{2}+3^{3}-30^{2}+5 x^{2}$

2． $8=840=(30=4$
司道。 务

4． $100^{2}+5 b^{2}+a^{3}=3$

5． $3 \int^{2} y^{2}+x^{2} z^{2}$
6x $x^{3 x} \cdot x^{2}$
7． $70 \mathrm{x} 5=32+2 \mathrm{ycx}$
ans $\sin ^{2} z$

3.9 （xatay

 0

$$
\left(x^{17}\right)^{12} \times x^{252}
$$

$$
\left(a x^{x}\right)^{2}=a^{2}+x^{2 x}
$$

We acrnia that

Exampless

2．$\left(a^{6}\right)^{2}=8^{12}$
2．$\left(3 x^{6}\right)^{3}=27 x^{6}$
3．$\left(-2 y^{2}\right)^{3}=-88 y^{6}$
4．$\left[\left(3 s^{2}\right)^{2}\right]=\left(9 s^{4}\right)^{3}=7295^{12}$

2. $\left.\cos ^{3}\right)^{4}$ - (6) y^{2}
2. $\left(x^{8}\right)^{2} \cdot\left(x^{3}\right)^{2}$
3.- $\left(z^{2}\right)^{2} \cdot\left(\operatorname{lax}^{2}\right)^{2}$
4. $\left(-3 m^{2}\right)^{4}$
5. $\left(-2 x^{2} y^{3}\right)^{2} \cdot\left(3 x^{3} 3^{3}\right)^{4}$
6. $\left.\left[-2 x^{2} y\right)^{2}\right] 3$
7. $\left(a^{2}\right)^{4} \cdot 3 b^{2} \cdot\left(3 c^{2}\right)^{3}$
B. $\left.\left(x^{2}\right)^{3}\right)\left(x^{b}\right)^{2}$

Se (筑) $)^{7}$.
$(3)^{x}$
10. $\left[\left(-\mathrm{c}^{2}\right)^{7}\right]^{ \pm}$

12. $\quad 14 x^{2}=2 x+10-5 x^{2}-3$

An为 x^{32}
Anc. Guby
Sns. 5xs
Ans. $324 x^{22} 72$

Atus BEation
Ansa $z^{z a b b}$
Ano. $x^{7} 3^{2 x} x^{2 y y}$
ans. $\quad-2^{5 x} x^{4 z}$

Ags. $9 x^{2}=2 x+7$
3.10 Diviadon of Terize.

In one of orr carlice paragrapis, we developed the tecimicau sor
 tochmque for handling tha divionom of tike toms, mash as $\frac{x^{3}}{x^{2}}$.
 the tro x° In the denoginator cancel cat uith tro of tho three afa in
 carrici out in elomantery aritimutic ans $\frac{202 \cdot 2}{2 \cdot \frac{2}{2}}$ - 2. Nors, honvers,

$$
\frac{x^{n}}{x^{n}} x^{5 m}
$$

 be viry 00 xciez exirsemions.

Exzanass

 the comsegt $\frac{x^{3}}{x^{2}}=\frac{x^{2} x}{x^{2}}=x$
2. $\frac{5^{5}}{8^{6}}=8^{b-a}$
3. $\frac{(x-y)^{15}}{(x-y)^{14}}=(x \operatorname{cog})^{1 j^{2}-14}=x-y$
4. $\frac{\left(b^{2}\right)^{x}}{\left(b^{x}\right.}=\frac{b^{2 x}}{b^{2}}=b^{2 x-x}=b^{x}$.
5. $\frac{\left(x^{2}-x^{2}+3 x^{2}\right)^{15}}{\left(2 x^{2}+3 y^{2}+2 x^{2}-4 y^{2}\right) 13}$
$-\frac{\left(4 x^{2}-y^{2}\right)^{15}}{\left(14 x^{2}-y^{2}\right)^{13}}=\left(4 x^{2}-y^{2}\right)^{25=13}$
$-\left(4 x^{2}-y^{2}\right)^{2}$

Thore took siat looked like a vary ingocaible aitustion and turmed
 fen problom, Resozber that as go nove alons it will be nococenvy that you ritiliwe all of the Intile tochniguas that you howe lournod thas far. Two oxercieos may contain rovicen problex tuat have nothing to do with the ferdiato paragreyhs, Tho zomexo hors is, wo not dovolop a get

 colved problem prior to tedcling a ner loccon. Ho all mood tho roinforcemoni. Vith this Ifthlo civico in eind it is tim for a arill.

1．$\frac{x^{35}}{x^{15}}$
我気：x^{20}
2．$\frac{x^{406}}{x^{-3}}$
Ans． 3 ジ
3．$\frac{\left(x^{35}+x^{5}\right)^{2}}{x^{2}}$
L．$\frac{35 a^{3}}{7 a^{2}}$
4ns．x^{78}

A 2 se ．5a
5．$\frac{\left(4 b^{2}\right)^{3}}{(4 b)^{2}}$
Ans． $4 b^{4}$
6．$\frac{\left(30 a^{2} \cdot b^{3} \cdot 4 c^{4}\right)^{3}}{\left(40 b^{3} \cdot 3 a^{2} \cdot d^{4}\right)^{2}}$
7． $3 x^{2} \cdot 4 x^{3} \cdot 2 x \cdot x^{75}$
8．$\frac{3 x^{7} \cdot 4 x^{2}}{12 x^{2}}$
Ans． $120 i^{2}{ }^{2} 3_{c}^{4}$

Ans． $24 x^{22}$
Ans．$\quad x^{+}+z=a$
9．$\frac{\left(2 t^{2}\right)^{2 n}}{(2 t)^{n}}$
10．$\quad 3 x y z+3 y x z=2 y z x$
11．$\frac{\left(3 a^{3} b^{2} c+17 b^{2} a^{3}\right)^{10}}{\left(200 b^{2} a^{3}\right)^{8}}$
12．$\frac{\left(2 x^{2} \cdot 3 y^{4} \cdot x\right)^{2}}{36 x^{2} x^{2} y^{8}}$
13．$\frac{(x-y)^{8+3}}{(x-y)^{2}}$
14．$\frac{(a+b+c)^{3 / 2}}{(s b b+a)^{2}}$
AIS．$(x-y)^{b}$

Ana．$a+b+0$
15. $\frac{\left\{0^{2} \frac{0^{3}}{\theta^{2}} \cdot 0\right\}^{2}}{0^{2}}$
16. $5 x z=3 x y z+10$

Ans. e^{2}.

Ans. $2 \mathrm{xyz}+10$
3.11 Pxattional Exgonexta.

Earlior in thie ehonter, wo leannad hot whon wo sulujpiy two like

 Anothar rule that we used in arithwatc nas that the equare of tace cquars

$$
\begin{aligned}
& \sqrt{4} \cdot \sqrt{4}=4 \\
& \sqrt{26} \cdot \sqrt{26}=26
\end{aligned}
$$

In algebre tho came rule apolios.

$$
\text { ard } \begin{aligned}
\sqrt{24} \cdot \sqrt{\sqrt{4}} & =x \\
\sqrt{y^{6}} \cdot \sqrt{y^{6}} & =y^{6}
\end{aligned}
$$

but

$$
\left(y^{6}\right)^{\frac{3}{2}} \cdot\left(y^{6}\right)^{\frac{1}{2}}=\left(y^{6}\right)^{1}=y^{6}
$$

We then can conclude that if we raiee suy quantity to the $\frac{3}{2}$ power this is the eam operation as taling the equare root of the quantity. Thaserome

$$
x^{2}=\sqrt{x}
$$

$$
\sqrt{x} \cdot \sqrt{x}=x=x^{\frac{3}{3}} \cdot x^{\frac{1}{2}}
$$

Romeboring alco in one of the provious paregrapas tiant when wo raice a perser to a porer wo moltiply the two powors ass

$$
\left(x^{2}\right)^{3}=x^{2 \cdot 3}=x^{6}
$$

Sinilaply $\quad\left(x^{2}\right)^{\frac{1}{3}}=x^{2}+\frac{3}{2}=\sqrt[2]{x^{2}}=x$
thon

$$
\left(x^{3}\right)^{\frac{1}{3}}=x^{3 \cdot \frac{1}{3}}=\sqrt[3]{x^{3}}
$$

but $\sqrt[3]{x^{3}}$ alco $x \quad$ 1Hiceries $\left(x^{4}\right)^{\frac{2}{4}}=\sqrt[4]{x^{4}}=x$
In the goneral case then

$$
\left(x^{a}\right)^{\frac{1}{6}}=\sqrt[b]{x^{2}}=x^{\frac{1}{6}}
$$

Examples:
2. $a^{1}=\sqrt[3]{\frac{2}{2}^{2}}$
2. $y^{\frac{2}{2}}=\sqrt[3]{5} \quad$ or $\cdot \sqrt{5}$
3. $a^{\frac{9}{5}}=\sqrt[5]{a^{9}}$
4. $\left(y^{5}\right)^{\frac{1}{2}}=\sqrt[3]{y^{5}}$
5. $\left(x^{3} \cdot x^{3}\right)^{\frac{1}{3}}=\sqrt[3]{x^{6}}=x^{2}$

3.12 Negative Exponents.

At this stage of the games, we ought to have the operation $\frac{x^{2}}{x^{3}}=\frac{x}{x}-2$ down cold. For a moment, you should focal our rule for the multiplication
 Well 10 and behold this is the same result that se arrived at after carrying out the operation of $\frac{x^{17}}{x^{n}}$. Wo then can conclude that $x^{-2 h}=\frac{1}{x^{2}}$. In exile terms, we say that an expression winch has a negative exponent is equivalent to the reciprocal ($\frac{1}{\text { oxprosicion }}$) of the expression to the same absolute value of the exponent with a positive align. The above for sentences might sound like a little grbberieh, however, after you work through the following problems you will have acquired another addition to your bag of tricks. After studying some examples, you will probably agree that there is nothing . mysterious about what we are doing.

1. $\frac{1}{x^{-2 C}}=x^{22}$
2. $\left(a^{-2}+\frac{1}{(a)^{2}}\right)\left(\frac{2}{a^{2}} y\right)=\left(\frac{2}{a^{2}}\right) \quad\left(2 a^{2}\right)=4$
3. $\frac{1}{a^{3 x}} \cdot \frac{1}{a^{-3 x}}=\frac{1}{a^{3 x}} \cdot a^{3 x}=1$

5xycerite

$$
\text { 3. } 3 x y^{2}+2 y * \frac{2}{(x x)^{-1}} \quad \text { Ang } \quad \operatorname{tgx}
$$

$$
\text { 2. } a+\frac{1}{\operatorname{anc}^{-2}}+\frac{2}{\operatorname{mos}}
$$

$$
\text { Axis. } \quad x^{3}+a^{2}
$$

3. $\left(b^{2}\right)^{2}+\frac{1}{\left(b^{2}\right)=2}$ Ans. 3
$46\left(x^{2 x}\right)^{18} \cdot\left(\frac{4}{\left(x^{2}\right)^{2}}\right)$
A药. 4×4
4. $(a+5)^{+2} \cdot(a+b)^{6} \cdot(a+b)^{-2}$

Ans. $(8+b)^{2}$
6. $x^{2} \frac{x^{2}}{5}+x^{\frac{2}{2}}$

4Ewn IT
7. $3 a^{2}+25^{2}+320-a^{2}-33^{2}-2 b$
203. $a^{2}-n^{2}+25$
8. ($s+2)^{2 H}(s+b)^{-4 y}\left(\frac{1}{(a+\theta)^{-2 \pi}}\right)$
2035. $(a+b)^{2 y}$
9. $\left(33^{2}\right)^{2} \cdot\left(a^{4}\right)$
10. $\quad \mathrm{a}+\mathrm{b}=(3 \mathrm{a}-\mathrm{l}, \mathrm{b})$
31. $\frac{1}{a^{-2}}+\frac{3}{a^{-02}}-\frac{2}{a^{-2}}+\frac{30}{a^{m 2}}$

Ans. 9
Ax. $\quad 5 y$
Ans. 182 ${ }^{2}$
22. $\quad 3 a^{2}-8 s^{2}-\frac{1}{\left(3 a^{2}-x^{2}\right)^{-1}}$. Ave. 0
13. $(3 y)^{x}(3 y)^{7} \frac{1}{(3 y)^{2 x}}$

Ams. $3 y^{2+y} 2$
14. $-(2+5)+32-20$

Ans. $\quad 2=3 x$
15. $\frac{2}{x^{2 x}} \cdot \frac{x^{2+2}}{\frac{3}{x^{2}-3}}$

2tix. x^{2}

17e $6+20-\frac{1}{(5-3)^{-2}}$
13. $(a-b)^{2} \frac{2}{(a-b)^{2}}$
29. $-x+y * 3 y+4 x-\frac{3}{x}$

4ns. $2 x / 4$
20. $\left.\quad(x x)^{2}\right]^{2}$
2. $\left(y^{3} \cdot y^{3}\right)^{t}$

22, $x^{\frac{3}{2}} \cdot x^{t} \cdot x^{t}$
23. $\sqrt[8]{x^{2}} \cdot\left(x^{\frac{3}{3}}\right)^{-2}$

Exprees as a frastional exponsnt
24. $\sqrt[3]{x^{50}}$
25. $\sqrt[4]{x^{3}}$

3.13 rontidelyigy Polypoyils.

 to tito 3 and then raitipiliod the of 7 by tis 2 to got an anewor of 74 .

 sirich are 0 and 6. By rapid mithemitios ne amive at 1h. In chorts

$$
2(3+4) \times(2 \cdot 3)+(2 \cdot 4)=14
$$

Ery 10tes take the alcobraic exprossion $a+b$, DTito itu 1160ral

$$
o(a+b)
$$

 procixets) to got our masiots. shas

$$
a(a * b)=4
$$

By the tokers

$$
\approx(b-c+d)=a b-a d
$$

and

$$
x\left(y-5+x^{2}\right) \text { x } x+x+x^{3}
$$

How that se have digasted that, latifo go on to the nast tidbit of knozledge. Hore sgain, the arithmetio analcz is also post epproverste. In arithastic, if wa ware asked to find the follocing product (2 ti) $(3+4)$ we could got our answer by tao appraches as above.

$$
2+1=3 \text { and } 3+4 \times 7
$$

then

$$
3 \times 7=21
$$

Notice, alco, we can maltiply

$$
2 \cdot 3 \text { and } 2 \cdot 4
$$

and

$$
1 \cdot 3 \text { and } 1 \cdot 4
$$

Tren we add up tha partidil prodrots of 6, 8, 3 and 4 and aleo obtain the snemer 21.

$$
(a+b)(c \Rightarrow d)=c e \& c a * t o+b a
$$

It foll curs then trat

$$
(a+b)(e+d+b) \quad a+c a+\infty * b+b d+b
$$

 Is to man thin
 the answos.

73ampless

2. $(a+b)(a+b)=s^{2}+2 b+b a+b^{2}=a^{2}+2 a^{2}+b^{2}$
3. $(5 \times b)\left(a^{2}+2 a b+b^{2}\right)$

$$
\begin{aligned}
& a^{2}+2 a b+b^{2} \\
& a+b \\
& a^{3}+2 a^{2} b+b^{2} a \\
& +a^{2} b+20^{2} a+b^{3} \\
& a^{3}+3 a^{2} b+3 b^{2} a+b^{3}
\end{aligned}
$$

4. AJ=0 $a^{2}-b^{2}$

$$
\frac{a-b}{a^{3}-b^{2} a-b a^{2}+b^{3}}
$$

$$
\begin{aligned}
& a * b \\
& a=b
\end{aligned}
$$

 Chutations;

1. $2 x-3 y$
$\frac{x+3}{3 x^{2}-3 x y}-3 y^{2}$
$\frac{43 y}{2 x^{2} 0 x}+3 y y^{2}$
(Wo have arearco 14100 torsm

2. $2 x+3$

39-2
$6 x y-4 x+9 y-6$
3. $x=y$
$2 x-2 y$
$2 x^{2}-2 x y+2 y^{2}$
$\frac{-2 x y}{2 x^{2}-4 x y+2 y^{2}}$

Exercisess

Gasyy ont two indicatod operationso

1. $b(a x+b y)$
2. $x\left(x^{3}+x^{2}+x+2\right)$
3. $\left(y^{2}+2\right) y^{5}$
4. $(6 x+2) 3 y$
5. $(a-b)(a+b)$
6. $(x+y)(x+7)$
7. $(3 y+x)(2 y-x)$
B. $(a+b)(a+z b)$
8. $\frac{1}{x^{-2}}(x-y)$
9. $\left(\frac{1}{a^{-3}}\right)\left(\frac{1}{a^{2}}\right)$

Ans. $\quad a b x+b^{2}$
203. $x^{4}+x^{3}+x^{2}+2 x$

3ns. $\quad y^{7}+2 y^{5}$
Axs. $18 x y+6 y$
Ans. $\quad a^{2}-b^{2}$
Ans. $x^{2}+2 x+y^{2}$
4xs. $\quad 6 y^{2} \times x-x^{2}$
2n3. $\quad s^{2}+503+\varepsilon^{2}$
Ans. $x^{3}-x^{2} y$

Ans. a

33．$(x-x)(597$

$33 \mathrm{~F} 7^{2} x^{2}(8+6)$
14．$\left\{x^{2}\right\}^{\hat{3}}$（ 44 ）

16：$(x+y)\left(x^{3}+x+y^{2}\right)$
17．$(3 \times 3)(2+3+8)$

20．（ $\left.x^{3}+x^{2}-2\right) \frac{2}{(35)^{2}}$
21．$\frac{x^{2}}{5 \times 2}\left(x^{2}-2\right)$
28．$\left(3^{2}\right) 4\left(\frac{2}{3} \frac{2}{3}\right)$
23．$(3 x=7)^{2}\left(x^{2}+2 y+y^{2}\right)$
240 $a^{300}\left(50+2^{25}\right)$
$25 .\left(3^{35}\right)\left(5^{5}+5\right)\left(b^{5}\right)$

20．（2x）（x39）（xuc5）
29．$x^{3} y^{2}(8+x+7)$
30．$(4 x+24)\left(\frac{1}{2 x^{2}}\right)$

488 $\quad 3 x^{3}+3 \times y^{3}$

娄卦娄 $\quad 3 x^{2}+7 x^{2}+5 y^{2}+3$
系留： $150+75$

Ans：$z^{3} 3 a^{2}+3 t^{2} a+b^{3}$
A850． 2
4ne． 3 药
（x）$x^{2} x^{2} y^{2}+x^{4}+y^{2}+3 x^{3} 3^{3}$
Anso $\frac{4}{8}$

$$
\left(x^{2}+2 x\right) \frac{\square}{e} x
$$

 240

$$
(10+8) \div 5 \% 7
$$

$$
\frac{10+85}{5}=\frac{20}{5}+\frac{35}{5} 2+5=7
$$

Exangicis

1. $\left(4 x^{4}+2 x^{2}\right)+2 x$

$$
\frac{\operatorname{lx}^{4}}{2 x}+\frac{2 x^{2}}{8 x}=2 x^{3}+x
$$

2. $\left(10 x^{6}+5 s^{3}-3 s^{2}\right) \div 5 a^{2}$

$$
\frac{10 a^{6}}{5 a^{2}}=\frac{5 a^{3}}{5 a^{2}}=\frac{3 a^{2}}{5 a^{2}}
$$

$$
=24+\infty+\frac{3}{5}
$$

Sengioss

$$
\left(x^{2}+2 x+y^{2}\right)+(x+y)
$$

5nen

$$
x+y \sqrt{\frac{x+z}{x^{2}+2 y^{2}+y^{2}}} \begin{array}{r}
\frac{x^{2}+x y+y^{2}}{0} \\
\frac{y+z^{2}}{0}
\end{array}
$$

 cxiotif $x+y$ tisen, Wa woo than that $(x+y)(x+y)$ equels
 xaccurse tist $x^{2}+2 x+y^{2}=(x+y)^{2}=(x+y)(x+y)$
 freatise forn ex follems

$$
\frac{x^{2}+3+y^{2}}{x+y} \cdot \frac{(x+y) \operatorname{lx}+x}{f=x y} \cdot x+y
$$

$$
\begin{aligned}
& a+b \quad \frac{a^{2}-4 a b+6 b^{2}}{a^{3}-5 a^{2} b+20^{2} a-b^{3}} \\
& \frac{a^{3}+a^{2} a^{2}}{-4 a^{2} b+2 b^{2} a} \\
& -4 a^{2}-4 b^{2} a \\
& +63^{2} a-b^{3} \\
& \frac{+6^{2} a^{2}+8^{3}}{75^{3}} \\
& \text { Eearidor }
\end{aligned}
$$

Tha ansser then $1 \mathrm{~s}^{2} a^{2}-48 b+60^{2}+\frac{70^{3}}{a+6}$
Lote bry a fey of those ca our cem.

Exaraiess:
Caryy out the indscated oparations.

1. $\left(a^{3}+2 a^{2} b-2 b^{2} a-b^{3}\right) \div(a-b)$ Ans. $a^{2}+3 a b+b^{2}$
2. $\left(x^{2}-y^{2}\right) \div(x+y)$

3ns. $x=7$
3. $\left(K^{2}-L^{2}\right) \div(K-L)$

Ans. $\quad \mathrm{K}+\mathrm{I}$
4. $\left(16 a^{2}-95^{2}\right) \div(40+30)$

Ana. $4 \mathrm{a}-3 b$
5. $\left(3 x^{2}-4 x-4\right) \div(x-2)$

Ans. $3 x+2$
6. $\left(12 x^{2}+4 x-8\right) \div(2 x+2)$

Ans. $\quad 6 x-4$
7. $\left(6 x^{3}+6 x^{2}-2 x-2\right) \div\left(3 x^{2}-1\right)$

Ans. $\quad 2 x+2$
8. $\left(3 x^{2}-4 x-2\right) \div(x+2)$

Ans. $\quad 3 x=10+\frac{18}{x+2}$
2. $\frac{3}{(3 x-4)-1} \cdot(3 x+4)$

Ans. $9 x^{2}-16$
10. $\mathrm{g}^{25} \cdot \mathrm{~K}^{25} \cdot \mathrm{~K}^{10} \cdot \mathrm{~K}^{-5}$

Ans. \quad :35
11. $x^{2} y\left(x^{3}+2\right)$
4.3. x^{5} 等 $+8 x^{2}$
12. $\left(x^{2}-x^{2}\right) \cdot \frac{1}{(x+y)}$

Ans. $x \cdot=5$
13. $\left(a^{2}+2 a^{3}+b^{2}\right) \cdot(a+b)-1$

A23. $+b$
3. $\left(\operatorname{Hax}^{4}-1\right) \div\left(x^{2}+1\right)$
25. $\left(\frac{1}{x^{2}+2}\right) \cdot\left(2 x^{2}+3 x-2\right)$
36. $\left(3 x^{4}-2 x^{3}+x^{2}\right) \div\left(2^{2}\right)$
17. $\left(103^{30}+55^{5}\right) \div\left(55^{5}\right)$
18. $\left(5 x^{3}-x^{2}+2\right) \div(x+1)$

Aที่ $2 x^{2}-1$
4nay z-1
4ns: $33^{2}=2 x+2$
408. 2552

A委 $5 x^{2}-6 x+6-\frac{4}{x+1}$

CEAFERE 4.

4.2 Foctoring

In the days ahead you will sie mex algebra can be usad to molve mive (may problass whioh wo conid not eolve with arithmatic. oftentizes in the solution of algentaje probless we develop cospilcatod fractions, polyw nomisls and equation that can be aixplified by the procese that is called factoring. Factoring is the opposite operation to tho oze wa have learned In the previous chaptor; the miliplication of polynowale. As wo nove along into the subject, we will learn avveral elover tschaiquos knich through dxill the student will comait to manyy. Respmbor alway that Eestoring is a tachnime af breaking dem cosplex oxpeosions into iectors or maltipliers which whon and if muitiplied tozether would booces the oxiginal exprossion.

The fators of 10 aros 10 and 1, or 5 and 2. The factors of 100 ares 100 arc , or 20 and 5, or 10 and 10, or 4 and 25 , or 2 and 50.

In sigebrg, the factors of x^{2} are x snd x, of x^{3} are x^{2} and x. Romomor that factoring la taking a proimet and fiming out wisat mitipliscand and multiplior zore zultiplied togothor to amive at the given expression. If were asked to divido $\frac{x^{3} y}{x^{2}}$, one way of apsuoching this problen rovid bo to break the munator into $x^{2} \cdot x: 7$, divide out tomo x^{2} in tho numorator and donominator and you rould bo laft with an anewor of $x y$. Oux apprasch mas to "factor" tro x^{3} into x^{2} and x and then aluenlify the exprossion. Keop this sicolo problem in nind as ro leara a fers mose waini toold of the trado.

The firat rulo of factoring is to sactor ant a comptoment
 wruked just oppost to to our runtipileztion process.

81iniJarly,

$$
\begin{aligned}
& x^{2} a+x^{2} b=x^{2}\left(a+x^{2}\right) \\
& 2 x^{3}+b x^{6}=x^{3}\left(a+b x^{3}\right)
\end{aligned}
$$

and

$$
15 x^{3}-10 x^{2}+5 x=5 x\left(3 x^{2}-2 x+1\right)
$$

In the dayp ahsed you will weo this techniqu cver and ovor sgain. Remomor, the first thing to look for is a comen terian.

Examplest

1. $\frac{2 x+b x}{8+5}=\frac{x(3+5)}{(8-35)}=x$
2. $\frac{x^{3}-x}{x^{3}-1}=\frac{x\left(x^{3}-1\right)}{\left(x^{3}-1\right)}=x$

The escond sule thast we will ue over and ovor again is the "difference of two equares rule". The rule is atated eysuolicaily as Pollows.

$$
x^{2}-y^{2}=(x-y)(x+y)
$$

That is, the difference of two squares can be iactored into tho aru and the difference of the equare roots of the absolnto valuos of the crisireal components.

Examplos:

1. $a^{2}-b^{2}=(a-b)(a+b)$
2. $a^{4}-b^{4}=\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)=(a-b)(a+b)\left(a^{2}+b^{2}\right)$
3. $4 x^{2}-1=(2 x-1)(2 x+1)$
4. $16 x^{2}-4 y^{2}-(4 x-2 y)(4 x+2 y)$

Tho atwiont will poriaps gragy tho oonsogt in ho vill miltipiy tho abovo iactors to obtena the orisinn axerociton.

Exapis
5. $\frac{4 a^{2}-1}{2 a+1}=\frac{(2 x-1)+2 x^{2}+1}{(2 z-1)}=\cos 1$
6. $\frac{1\left(x x^{4}-1\right.}{\left(4 x^{2}+1\right)(2 x-1)}=\frac{\left(4 x^{2}-1\right)-\left(4 x^{2}-1\right)}{\left(4 x^{2}+1\right)(2 x-1)}=\frac{4 x^{2}-1}{2 x-1}-\frac{(3-2)(2 x+1)}{-2 x-1}=1$
 to Purther sixalify more ecspiax onpressions ise

$$
a^{2}+2 a b+b^{2}=(a+b)^{2}=(a+a)(a+b)
$$

Sixilariys

$$
4 x^{2}+8 x y+4 y^{2}=(2 x+2 y)(2 x+2 y) \quad \text { (In 如is case vo }
$$

and

$$
9 x^{2}+6 x+1=(3 x+1)(3 x+1)
$$

The next ractor rule that we must alzo leam is sixilar to the owe se just talked about. It is:

$$
a^{2}-2 a b+b^{2}=(a-b)^{2}-(a-b)(a-b)
$$

and again aixilariy,

$$
4 x^{2}-8 x y+4 y^{2}-(2 x-2 y)(2 x-2 y)
$$

and

$$
9 x^{2}-6 x+1=(3 x-1)(3 x-1)
$$

There are coveral othor laotor rulos that so could dovolop nows but, wo will take thes ug in the next ecction aitor wo have drillod cn the abovo nutily acguired knoviedgo.

Exerolees:
Feotor the follenting oxgrossions.

1. 2×0 + bkc
Ans. \quad vi(ax +ki$)$
2. $\mathrm{pb}+\mathrm{ap}$
A818. P(754)
3. $15 x^{3}+10 x^{2}$
Ans. $5 x^{2}(3 x+2)$
4. $64 x^{2}-1$
5. $4 x^{3}-4 x x^{2}$
6. $a^{3}-2 a^{20}+a b^{2}$
7. $9 x^{4}+6 x^{3}+x^{2}$
8. $2 x^{13}-2^{12} x$

Stin. ($8 \mathrm{x} \times 2 \mathrm{l})(8 \mathrm{x}-1)$
Ane. $\quad 4 x(x-y)(x+y)$
Ans. (amb) ($\mathrm{a} \mathrm{\infty}$)
sws. $\quad x^{2}(3 x+1)(3 x+2)$
Aus. $\quad 2 x\left(x^{3}-y^{3}\right)\left(x^{3}+x^{3}\right)\left(x^{6}+y^{6}\right)$

4.2 Som 0thaz Comon Yatomas.

Trere are two othor Incters that wo ought to learn to reeozrise.
 of tro oubes can be factored as folionss

$$
x^{3}+y^{3}=(x+y)\left(x^{2}-x y^{4}+y^{2}\right)
$$

This cen be groved by waltiplying the two factorg.

$$
\begin{aligned}
& \begin{array}{l}
x^{2}-x y+y^{2} \\
\frac{x+y}{x^{3}-x^{2} y+x y^{2}} \\
\frac{+x^{2} y-x y^{2}+y^{3}}{x^{3}}+y^{3}
\end{array}=x^{3}+y^{3}
\end{aligned}
$$

Sivsilariys,

$$
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)
$$

and

$$
\begin{aligned}
& x^{2}+x y+y^{2} \\
& \frac{x-y}{x^{3}+x^{2} y+y^{2} x} \\
& \frac{-x^{2} y-y^{2} x-y^{3}}{x^{3}}=x^{3}-y^{3}
\end{aligned}
$$

4.3 Factoring Twinomale of the Forn $2 x^{2}+b x y+c y^{2}$.

You will rocall from the peotious chaptor when wo discuasod tho maltipitication of two binomiais, eay $(2 a-4 b)(3 a+2 b)$, our nothod was to maltipiy esch tern of eithor by tho torsw of the othor, \& toviniguo which the student exy find helnful to oarry out this oporation is to

$$
\begin{aligned}
& 2=4 b \\
& 3 a=40
\end{aligned}
$$

 maltiply (3s) by (-ib) and obksin -laxi. Thany would mitiply (i4b)

$$
\begin{gathered}
2 a-4 b \\
\frac{3 a+4 b}{6 a^{2}-12 a b-16 b^{2}} \\
+8 a b \\
6 x^{2}-4 a b-16 b^{2}
\end{gathered}
$$

The atredent chould confirm that this opesatiea confosms to the zulo of maltiplying binozials which to diecusced abovo.

Romomer that factoring is a process of dotcrurining \& poacible sat of nueders which wore multiplied together to get a certain mander. We
 xay want to simplify the expremsion. Orur approscle sould bo, in a eense, working in a revareed direction to the procecs above. Wo would first eay to ourcolvos that the two festira will oach bo mado up of an a and b tesp. We would thon jot down

a	b
a	b

Wh mould twen aso niat woro the factors of the $6 a^{2}$ and of tho -165^{2} :

$$
\begin{aligned}
& +6 a^{2}=(3 a)(2 a)=(6 a)(a)=(-3 a)(-2 a)=(-6 a)(-a) \\
& -16 b^{2}=(16 b)(-b)=(8 b)(-2 b) a(4 b)(-4 b), \text { otc. }
\end{aligned}
$$

僄

Examples:
Factor tho follutisury

1. $x^{2}+5 x y+4 y^{2}$
$(x+40)(x+y)$

2. $9 x^{2}-3 x=2$

$$
\begin{gathered}
3 x-2 y \\
\frac{3 x+y}{3 x^{2}-6 x y-2 y^{2}} \\
+3 x y \\
9 x^{2}-3 x y-2 y^{2}
\end{gathered}
$$

It ahonld be noted at this point that not every expression of the form $a x^{2}+b x y+c y^{2}$ can be fantorod. Hany such exprocsions eampt bo further arraplified. Both $x^{2}-4 x y+y^{2}$ axd $3 x^{2}-10 x y+2 y^{2}$ aro axariples of expressions that camot be fastored. Orice all af tha cominstions of factery sbove have boen obookod and tha student is sot able to arrive at tha Eiddle terry, then he should conclude that tho argrousion cannot bo factored.

Furthor on in the book, rion co take wy tho etwiy af quedratic equations, wo will coo that one approsch to the solution of quadratis equations is ths utiliwation of the tochaiquas of feotoring.

Esurimers

Fenter the follyntag:

1. $x^{2}=6 x+8$
2. $\quad 18=x=x^{2}$

Ans. $(x-4)(x-2)$
Ans. $(3+x)(4-x)$
3. $63^{2}+80=b^{2}$
4. $8 x^{3}+16 x^{2} y+6 x y^{2}$
5. $3 x^{3}-12 x$
6. $3 x^{3}-6 x^{2}+21 x$
7. $8 x^{3}+y^{3}$

Ax9. (3xuy) (2atb)
Ans. (8 (5) $(2 x+37)(2 x+5)$
8. $a^{3}-8$
9. $\quad 3 a^{2}+30-40^{2}$
10. $24 x^{2}-2 y^{2}$

4.4 8irguification of Fraotiong.

In apitaretic, the general dufinition of frections is one ramas
 symolises the divieion aisn. $\frac{4}{2}$ canns k diviced by 2 . $\frac{a}{3}$ in algoura ayzbolizes t diviciod by b. In exithmotic, we cancel cut like tems to gixpilify the exprencions. As an exaplit

$$
\frac{10 \times x \times 35 \times 50}{\mathscr{O} \times F \times 7 \times y^{2}}=500
$$

In this exprosedon, the 8x8 cansols out with bit and tio 755 eaneols

 out 3ika turca.

4

(1) 整路

 Frantigio

Taixa, for examlo, tho tractuan $+\frac{7}{2}$

数酎

一积 whin is tho

 －or

$$
-\frac{+2}{+2}=+\frac{+1}{-2}=\frac{+2}{+2}
$$

1．The sign of tho greetion
2．The signs of the torses in ins numarator
3．Tha atgas of tho torms in the concadnatore
In the exprossion $\frac{y-x}{x(x-y)}$ ，wo oan ohsinge the asgn of the frachion and the olgus of the nuesrator ard obtain－$\frac{x-y}{x(x-7)}$ which equale a $\frac{1}{x}$ ，
 both two nusurtor end donorsnator．

20ylots

$$
3^{2}{ }^{2}=3 \cdot 9
$$

 Trangloss

- E E
- $\begin{array}{r}8 \\ 2\end{array}$
$=\frac{8.9}{4}$

2. $\sqrt{\frac{2^{2}}{x^{4}}}=\frac{a}{x^{2}}$
3. $\frac{\sqrt{\frac{24}{5^{2}}}}{\frac{2}{\frac{2}{5} / 1}}$
$-\frac{x^{2}}{y^{2}}: \frac{\mathbf{K}^{2}}{5}=x$

 donczinstore would divids futo erenly we callod this the loant coment

$$
\frac{2}{x+3}-\frac{(4 x-2)}{x^{2}-9}
$$

$$
\frac{2}{x+3}=\frac{4 x-1}{x^{2}-9}=\frac{2(x-3)-(4 x-1)(1)}{(x-3)(x+3)}=\frac{2 x-5-4 x 1}{(x-3)(x+3)}=\frac{-2 x-5}{x^{2}-9}=-\frac{2 x+5}{x^{2}-9}
$$

Examplens

1. $\frac{2 x}{3 x-5}+\frac{5}{5 x^{2}-4}=\frac{2 x(3 x+2)+5}{(3 x-8)(3 x+2)} \cdot \frac{6 x^{2}+4+4 x+2}{8 x^{2}-4}$
2. $\frac{8}{3}+\frac{a}{a}=\frac{2+\cos }{4}$
3. $\frac{a^{2}-\frac{1}{x}}{2+\frac{x^{3}-1}{2}+2} \frac{e^{2}+1+2}{2}$

$$
\frac{\frac{\frac{3}{3}^{3}-1}{a^{2}}}{\frac{a^{2}+2+2}{a}}=\frac{a^{3}-1}{2} \times \frac{x}{a^{2}+1+2}
$$

Exarelese:

- Fantor the follostux.

1. $87 \%-12 x^{2}$
2. $e^{2}{ }^{2}-850^{2}$
3. $a^{2}+4+16$
4. $9-6 x+x^{2}$
5. $\quad a^{4}+5 a^{2}=14$
6. $2 x^{2}-8-10$
\%. $8 x^{2} 5^{2}-388$
7. $x^{4}-x^{4}$
8. $x^{2} y-y^{2}-x^{2} x+y$

10, $x^{2}-y^{2}+4 x^{2}-s^{2}$
11. $\frac{x^{2}-x}{x^{3}+y^{3}}$
12. $\frac{\left(x^{2}+x-6\right)(x-3)}{(x-2)\left(x^{2}-9\right)}$

Cocisis into a minle arsotion.
13. $\frac{(x-1)}{\left(2 x^{2}-18\right)}+\frac{(x+2)}{\left(9 x-3 x^{2}\right)}$

Ang. $\quad(a b-58)(a b+50)$
Ans. $(a+4)(a+4)$
Ans. $(x-3)(x-3)(3-x)(3-x)$
Ang. $\quad\left(\mathrm{a}^{2}+7\right)\left(\mathrm{a}^{2}-2\right)$
Ans. $\quad(2-5)(a+8)$
Ans. $\pi^{2}(2 a+3)(2 \pi-3)$
Ans. ($x-y y)(x+y)\left(x^{2}+y^{2}\right)$
Ang. (y 0 O) $\left(\mathrm{x}^{2}-7\right)$

Ans. $\frac{x-y}{x^{2}-y^{2}+y^{2}}$
ans. 2
ans. $\frac{x^{2}-13 x-12}{6 x(x+3)(x+3 y}$

Siepily:
15. $\frac{x^{3}}{y^{2}} \cdot \frac{\left(x y y^{2}\right)}{x^{2} x y} \div \frac{x^{3} x^{3}}{x^{3}+y^{3}}$ Ans. $\frac{x^{2}}{y} \cdot \frac{\left(x^{2}-x+y^{2}\right)}{\left(x^{2}+x y+y^{2}\right)}$
16.

$$
\frac{\frac{x y}{3 y}+\frac{y}{y+x}}{1-y\left(\frac{3}{x+y}-\frac{2}{x+y}\right)}
$$

Ang. $\frac{x}{x+2 \pi}$
17. $(-3)^{2}$

Ans. 9
18. $5^{7} \div .5^{4}$

Ans. $\quad 125$
19. $\frac{3^{5}}{(-3)^{6}}$
A) $\frac{3}{3}$

20. $x^{3}-\frac{5}{5}$

Ans. $\quad x^{8}$
22. $\left(x^{9}\right)^{b}$
22. $\left(3 x^{2 n}\right)^{4}$
23. $\quad x^{a(a-b)} x^{b(a+b)} x^{x^{2}-0^{2}}$
24. $a^{2 \pi=3} \div\left[a^{20 d}\left(b^{5-2}\right)^{2}\right]$

9xizatify
25. 56°
25. $\frac{6}{(x-y)^{0}}$
27. $\left(3 x^{-2}-y^{2}\right)^{2}$
28. $\left(-x^{-1}\right)^{-1}$

Anse 5
Axs. 6
ans. zix
Ans. 812Sn
A $43 . x^{2 \pi} 3^{2}$
Ams. $8^{8 / 15} 3 \operatorname{tra} 9$

$$
5
$$

4.53. $\frac{\mathrm{a}^{2}}{50^{4}}$

An. $\quad x$
$44^{2}=4$
解 x [b $[x+0]$
30. $3 x(4+2[040\{+10\}+1]+12)$

32. $\frac{x^{2}+2 x+x^{2}-x^{2}}{x+4}$

3. $\frac{35}{x+2 y}=\frac{35}{x-25}$

4ns. $\frac{\mathrm{A}}{3}$

Aus.
403. $\frac{50-\mathrm{kd}}{35}$
$\frac{6 x-10 \pi}{x^{2}-4 y^{2}}$

6xatice 5

Since Iunctions and grapis are co cloonly relstad to ora another, the diseugetion of both has bson inoungratod into thic ohaptar. Do not woxy sbout the relationesip at this thes it will becoss oleswer as you agprocth the ord 0 the chaptas. Sirac a fungition must exist bafore a granh is direms we will start off with a siccuszion of funotions.

5.1 Functions.

 exista batzoen tro or more variabies. fio oan easoly untosstand funtions If we say to omrealves that the movent of mons we here in our pockets is a funation of, or is somehos rolated to, the muser of gusitars in our pockets (if we axame that we have quartars), or the nember af gusreart dissas, and niekels (assumins that we bave oniy cqurtors, dimss, and nickels in our pockets), ott. Ifs in the first case, we let in stand for the money; expressed in dollars, and q stand for the numer of guartors in our pockets wo could writot
a dopends in corn mor upon or is rolatod cosshow to q_{0}
 n the dopendent variable and of the indoponient variable. Then, since
 (xe subotituto a literal gysisol (nasuliy I, probabis bocause it is the first iettor of the word function, but any eytiol may be nead) followed by a parenthesis in piace of the words "doponds in rom zanoer unon or in related eowhors to". Noxt, wo placo tho gyebol for the judopsncont raxiable within the parenthesis. If there aso two or nope indepowiant

 doponiont variable vifich goas on the isft of the equition, wolsoo th oqual ofen (s) betwoon the trio. We rhovid bo cautioned that the ogal asgn
 uead to indicato function tises the contents of the pronthoste in the
 bo considered at eno tise in detorraning ith manings whioh is, comothing is If fumotion of whstover is indicated within tho paronthonis. Patiting tha above informaion together, we giavla bo abls to seo that tha faat way expremsing the jact that twe zonoy is furotion of the cuartars in oxr pockset las

$$
\begin{aligned}
& x=P(q)=\text { whicis sfixply means thaty the asount } \\
& \text { of moner in our pookots is a frasition } \\
& \text { of the nowber of quartores that me have } \\
& \text { in our pockets. }
\end{aligned}
$$

In the cocond cace, wiore wad quartors, dimot, and nickols, we could uce the syebole a for money in dollars, ofor the nusoer of quartars, d for the nusbor of dimes, and in for the nueser of nickols ased easily, I hops, coo thes wo can writo stio relationeldip in tho following menort

$$
\begin{aligned}
& n=f(q, d, n)=\text { manirg that the monoy in our pockors is a } \\
& \text { function of tho nutbor of quarters, deves, } \\
& \text { and alcicols that th havo. }
\end{aligned}
$$

gotioc that ec par wo bave only eaid that of () imileates caly the

 thes symols x and .

Now that we know thent $f(x), g(x)$, cte., only nemis that gontining

 obwious that wh mest know the oxach relationship bofore we cen dotarint any valuss of the dependent griable rogardiass of kow much wose about the independont variable. For axazale, all wo knos 60 Iar in the money Cace is the fact that tine anount of money is comohow relatsd to the numor
 one dollar so wo can wite the following:

> n = . 25a (That is, for overy quartor wo have in our pockets wu have . 25 doliarc).

Thon, it wo had 10 giuntors, wo movid exbetituto the nemer 10 for the litoral numer q and wo could fini that monoy, in ciollars, aquals 2.50. Going buck and pratting tho data into furstional langrago we worid bavas:

$$
\begin{aligned}
& n=\mathbb{L}^{(}(q) \text { wtors } f(q)=.25 a-\text { Tant } 10, \text { xonay is a function of } \\
& \text { the nuebors of guartora and the exnct } \\
& \text { rolationehip is . } 25 \text { fimos the nusbas } \\
& \text { of quarters. . } 3 \text {.i in nilliw. }
\end{aligned}
$$

Onco givan tho rolationchip of : to q_{i} wowla plece within tho parenthouss tho valwo ax a that we hantod to colve E for, and would

wis $I(q)=25$ find the velve of for $I(10)$, in othor moxus
 wa mocld gots

$$
a \in f(q)=.25(30)=2.50
$$

How getting aloug a lithlo bits, we mill ge to the quarterg, dians, saci nickels caes. We can mite this fuction staterant ass
of monay that we how in dollexw is
equal to 弯 the nuswar of quaricers,
plus 1/10 the sumor of tivas, plus
1/20 the nusiber of nickaid.)

Thus, if we wantod to find the value of four quartears, ton dines and ten nickola, we หould write:

$$
m=f\left(q_{2} r^{\prime}, n\right)=.25 q+.10 d+.05 n \text { Solve for } f(4,10,10)
$$

Since, by convention, the nuwarical values within the paronthesis are interprated as boing spplicable to the iltaral number occupying the sam velative pitition in the parenthesis, we substitate 4 for $q, 10$ for α_{0} and 10 for n in the function oquation. We can sew solve the problea as SOL10sses:

$$
\begin{aligned}
& =.25 q+.10 d+.05 n=.25(4)+.10(10)+.05(10) \\
& =1.00+1.00+.50=2.50 \mathrm{Ans} .
\end{aligned}
$$

At this tive, gre should nowien the fact that wo can uso sury litwal sywol that wo digh in ordor to roprecont tha doperdont vasiabla, tho indopondont variable or variablos, of to indicato a fuation. Tho only requiremant is that wo bo conalotont. In othor wosdy, we woeld not mant the syabol x to atand for ow variablo ono place in a problea, and for a
 vo could havo just as oasily krstions
the nexuex es matision

1. $m(y)=y+2$ e0sex $x=x(2)$

2. $n=g(y)=y^{2}+4$ solve gox (2)
tharexares $x_{6}=(2)^{2}+4 * 4+4 \times 8$ Ane.
3. $y=f(x) x=3$ a0l $f=f(3)$
tharetore: y=3-30 0 dita
4. $5 f(x, w)=2 x+46+1$ solvo $105(3(3,4)$

therofese: $x=3(3)+2(3)+(4) \cdot 2 \%+6+4$ 37 Ans.
5. $f=f(4, a)=\operatorname{colva} \operatorname{sos} f(3,16 ;$
tharefores $\mathrm{I}=(3)(26)=48$ Ans.
6. $g \propto f(x) \times x^{2}+x+1$ eotr $\operatorname{Ior} P(x+1)$
thurefore: $y=(x+1)^{2}+(x+1)+1-x^{2}+2 x+1+x+1+1=x^{2}+3 x+3$ A 40

5.2 Functions of Funtions.

 the ralus of tie dopondont Farisblo wion tivo irdeporiont varisbla is, itecif, dopendont upon a third variablo. To I11ustasto this condition,

can constice 5 niokels as one quarter. Nowsin comidinco uith tha restriotion that se placed on the problemg to ann eay thata

$$
\pi=x(a)=, 25 a
$$

 that se have. fncaing thisy se can urito a fumetion statorent as ioliowe:
q $g(n)$ (We coula have just sa will naed $f(n)$ but $g(n)$ wes usect to avoid coniusion that conld have reanted lator one)

Sinos firo uiclela ano equiralent to s quartar, wo can indicato the sxact reletionsist ast

$$
q=g(n)=.20 n
$$

Continuing to easure ibst \mathbb{F} only have nickels, it follows that what we resily want to do is golve the equations
$m=f(q)=.25 q$ for the vaiue of $q * g(n)=.20 n$
Thorefore, we way zubstitate $g(n)$ in the equation wherevar q appears and we sind that:
$n=.25(g(n))$, but in this case $g(n)$ is equal to $.20 n$, go se get,
$\pi=.05(.20 n) * .05 n$
Aswurdig that wo had 25 nickels, we can atate that the dollar pelue of owe money mold to . 05 times 1505.75 , which is also intuitively obvious.

Now, if we want to expand this example still further to include quarters and dimes as well as nickels, with the aves atipulation with regards to exproseing a in tomss of q, we get the following equationss

$$
\begin{aligned}
& m=f(q)=.25 q \\
& q=n(q, d, n)=q+.40 d+.20 n \text { (Note that we have zaid that } q \\
& \text { is a function of itself and that we est, the relation } \\
& \text { ship as one to one. This makes zence, doesn't it?) }
\end{aligned}
$$

As a probleathic would probably be stated as followes:

wo have i quarterss 10 dissas ,
and 10 notobole

In this caso we proceed as followts

1. Substitate $h(q, d, n)$ in gisee of of in the oxast rolatuonehin end get $\mathrm{n}=.25\left(\mathrm{t}\left(\mathrm{c}_{\mathrm{g}}^{\mathrm{g}} \mathrm{d}, \mathrm{n}\right)\right)$
2. Replece $h(q, d, n)$ witit the exact ralationebip $q+40 d+.20 n$ and get no . $25(a+140 d+20 n)$
3. Put in the values of q, 4 , and n and we get mo. $25(4+040(10)$ *

We also have a furction of a function whon to doterains for afterpt to detoratne) the valus of the deponiont remiable for a ralua of tha independent variable, 腋ere the vaius usod is depondent upon the ass indepondent varisiole as the original dependont varizile. In order to simplify this apparent talking in circios, ItI\% indicate wase is mant by an example.

Assume:
 of x. It does not indicate that they ars equal. In fact, they axe not equal. Solving the problen, we get:

$$
y=\frac{H+1}{W} \text { but } w=x+1 \text { go ka get } y=\frac{(y+1)+1}{x+1} * \frac{x+2}{x+2}
$$

5.3 Domain.

Having seen how fuctione work, we must think about the range over which the exact relationohip tolds true. This gange io called tho domsine A rather sixple exampie would be the case of the ealesman wo receivea a commisaion of 10% on all ales under \$1,000. and a comadistion of 100 .

 furction ${ }^{2}=$ daxis.

 problens.

Esnaytes:

$$
\text { a. } 5 \neq 2+3=5
$$

$$
\text { b. } 7 \times 3+4=7
$$

$$
\text { s. } t *(2)^{2}+(2)+(3)^{2}-1=2+2+1 * 14
$$

$$
\text { b, } t=(3)^{2}+(3)+(3)^{2}-1=9+3+26-2=27
$$

$$
\begin{aligned}
& \text { 1. } y=F(x)=x^{2}+5 x=3 \text { Bolvo for B. } F(3) \text { b, } Z(5) \\
& \text { в. } y=(3)^{2}+5(3)+3-9+35+3 \text { - } 27 \\
& \text { b. } 7 \times(5)^{2}+5(5)+3-25+35+3=53
\end{aligned}
$$

$$
\begin{aligned}
& \text { a. } 2=5(2)^{2}+b(2)+3=20+20+3=23+20 \\
& \text { b. } 5=(3)^{2}+b(3) \div j=45+3 b+3 \times 43+35
\end{aligned}
$$

A, $n=2(x+1\}-2-2(x)-1=2(x+202 x-1 \cdot 0$
b. $n \times 2(x+3)-1+2(x-1)-1 \approx 2 x+5+2 x-2-1 \geq 4 x+2$

 the sigebratc operations axind fors.

a. ${\underset{t}{t}}_{=}=\frac{3+5}{(5)^{2}-3}=\frac{8}{35-3}=\frac{8}{22}=\frac{4}{11}$
E. $\sum_{t}=\frac{4+5}{(6)^{2}-3}=\frac{9}{36-3}=\frac{9}{33}=\frac{3}{11}$

$$
\text { b. } g(5)-\mathrm{E}(2)
$$

a. $y+\frac{2}{t}\{3)^{2}+2+(4\}^{3}+5(4)-2=6+8=12+16-1=42$
b. $y \sim t=(5)^{2}+3-\left[(3)^{3}+\mathrm{H}(2)-1\right]=3+2-[8+5-2] * 29-25=12$

a. $[h(x)]^{2}+4=[3+x]^{2}+4=4+5 x+2+4013+6 x * x^{2}$
b. $\left.34[g(x)]^{2}=3+\left(x^{2}+4\right)\right)^{2}=3+z^{2}+6 x^{2}+160 x^{4}+8 x^{5}+19$
9. $g(x)=x^{2}+13 \operatorname{axf} b(x)=6 x^{3}+5 x+3 \quad$ Frese $g(7)=\{(a)$

$$
g(7)=(7)^{2}+12=49+12=62
$$

$$
4(2)=6(2)^{3}+5(2)+3=40+10+3=61
$$

$$
=\frac{3(x+2)^{2}-12}{(x+1)+2}=\frac{3\left(x^{2}+2 x+2\right)-12}{x+3}
$$

$=\frac{33^{2}+6 x+3-32}{x+3}=\frac{3 x^{2} 6 x+9}{2+3}=\frac{(3 x+2)\left(x^{2}\right)}{x+3}=3 x+3$

Frailess.

3. 理

 -xarest z fot terss of x

$\operatorname{decs} \mathrm{F}(4)=9(5) t$

Ana. Tos

5s 4 6entas

 graping one dixantion le given to each vainis.
 Faricus pogsible values of a singlo variabie, 171 wo nged for this is
 dinding lines which haye been nuberod In an approphiato, logioal manner.

 necessary, By logical is mant staring at me pisco, cann=1 the origin,
 the arigin. Thus, se donst have 1 norit to the origin folioned by 3 aed

In ordor to chow tio relstionohit setroen tro variables, ocusmisy called plothing the wation, west fom whot is called a grotom of coordinatos. A systas of coordinetes serely consiets of tro stratight linos

 is sor reed for tho waswerontr to be thy wase alous both axes. Iy
 Shen will the point of intoreostion the origin and acoism yointive ar
 axte to the rifght of the origin, Ke do Thksice to to divisions dong the verifical axia abops the origin. Regative or xinus valug ge gatignad to the Gifreaione along the horizontal sxis to the Lett of the drigin and to the ajwheions along the rertical axis banath the origin. Ropeating, these values aesignod wo the ainigions are called corcinatob. The nost congidaration is the four areas or quadranta that the two ases divide the

 the lown left qugirent is qugrant III, pat the lower right geadrant in
 coorlinates ase positife, fimile in quarant II, the horizontal coondinate
 matronanding the numbering system there are a pow comventions that wo

 usually msod for plotitng the value of the indepencent variable, while the ordinate is used for plottisg the vitu of the ciependent varigble. Thind, that for a given abscisex value a vertical line is dramp through that sbscisaa value to establich one line of constant absciesa value.
 Falme to establish one Jine ulth constanit oritnate ralue. Tito last two pointe axe jilustrated in Figure 5mi. Nossaliy, we do not actually araw the lines but instraad gust jresine thom to bo there.

Again ty ecmention, when giving the coordinates of points we give the abseisca Falua first and then the ordinate value. Is we are groen

6

Figupe 5-2

soint $C(050,0 \pi)$
6
5

2-9<
an abscises valne axd en oritnate value for a point, wa have what is cullod an ordered pais. Given an ordered pair, such es (2,3), we plot the point by draming a verticsi line through the abscisea coordinste 2 and a horizontal Itne bhrough tho ordinate coorainate 3, and where thay Interseoi is the point thai we mant. This Ifthe maneurer is also iliustrated in Figuse 5-2. Exmilariyg is ve zent to Find the coordinates of a point on a graph, tre rum Iines timough the pointe that are porgendicular to the tiro axes. Where the rertheal line croscess the nerinontal sais is
 axis ts the ordinate coordinats. The grdered par econdinateo for aperral pointe have been anom in Figurs 2, We would describe point A as the ordored pair $(+3,+2)$, point B as the ordered paty $(-2, * 3)$, ofc.

If ke santed to ahow the rolationahips among three varjables, we sinply add another axis to the graph, the third axis being perpendioular to the plane of the first tro exes. Now that we are in three dimensions, a specific value for any axis cowid life andatare on a plane through the axis and perpendicular to the axis at that value. If we are given three coordinates, and asked to locate the point represented by then, we can draw the three planes. The intersection of the three planes is the point that we want.

Now, knoring how graphe are drawn and developed, we can get into the plotting of functions. To plot one relationehip betreen the dependent vasisble and the independent variable, we noed te snlve the function equation with a selectred valua of the indepondent variable in order to got the dependent variable Faice and thus have an ordered pairy obviously,
tive coordinate for tho indepordent variable will bo the vele substitute into the equation, winile the ccordingto of the doponatert Tarisble will be the rosult of substituting the inclapondent mins fute the formula. Knoring the coordinateg, all we have to do is dises owe horisontal line through the ordinate eoordingto ard our wertieal lizs
 varistie is 4 and the dependent varibble is 6 , we dras a line perporiterlas to the indepondent varigble axis at 4 and a line parpondioutar to the depondent varisble axie at 6. The point at 础ch they cross is the point wo are jooithg for. How, if contimue to datermino ordered prirs ard to plot thes, we kill get a ories of points that could be conneoted together somones. If we assume that the function is continuous, that is, that the "niependent variaible can have any value with the furction's doman, we can connect the points mith a solid line. Then wo asn detomsins the valuse of the independent and dopondent variables that make ordered paise by aropping perponiterdar jines to the axis. The shape of the line will cepand unon the fuxotion plotteds the reasons for the differences will be takon up in later chapters. If the tarisibles ean only assum auctain Feluas within the domain of a function, as an example, assum that only nimole numer values cas be assignea to the independent reriable, we have wat is cailed a disereto furction. We camot Nlegaily comoot the poisnts with a netraight line but we could plot seweral points and consont
 for values of the irdependent variable which can be asemed.

To plot a graph, the first thfing to do is creay a table chacring the Fines of the indeporient vamiable to be conoidared anu tizn dotorealre the comperyoming tepariont varisble values. Thon we would plot the escosta

 shoun in Pisure 5 m ．

$$
F=f(x)=x+3
$$

13x	－ 9	－3	0	73	46	栘
¢゙	－6	0	＋3	6	49	42

$$
y=p(x)=x^{2}+3
$$

d ${ }^{2}$	－3	－ 2	－1	0	＋	42	13	\％${ }^{4}$
$\%^{*}$	512	7	4	3	4	7	12	19

 the curve necus to sparoach a certsin value of on or the othor of this

 Notuce that the curve apyroaches the y and x sxea but that it mover
 In our fuaction $y=\frac{1}{8}$ ，the plece of coatect would be at $x * \infty$ when $y=0$ and $y=0$ when $x=0$ 。

Since the drawing of three dicensional graphe in s lengthy procass and results in a parapentive probles，no illustrations of thres disencional graphe will be given．However，sil ke roally have to remomer is that we would be working with planas ratior than lines and that it takem three coordinate raiues to obtain a point．

The atudent should now plot exaplas for the following functions． By usitig ordored paire otione than tho onses in the anener colvan and
4
araming innea botwoen tha points, wan catock his worit by saeing if the ondeacd pare in the zncey colwen fall on the jung.

Froblesis

3. $y^{2} \leqslant 4 x=4$
4. $x^{2}+4=0$
5. 74
6. $y^{2}+4 y+3 x=0$
7. $\quad x^{2}+2 x+3 y^{2}=0$
8. $16 x^{2}+9 y^{2}=$ Ihl

Ans. (Varticul lines at $x=0$

Ans. ($\left.x^{n 1}, \bar{F}^{x-1}\right)\left(x^{\infty} 4, y^{2}\right)$

Ans. $\left(x^{\infty} 3, y^{\infty}\right)\left(x^{\infty} 0, y^{-4}\right)$

UEAPEAK 6

6.1 Introduction.

 represeat the equality $4+3=5 * ?$
 and 80 on. The degee corresponds to tifs term of the highogh west in the equation.

$$
\begin{aligned}
& x+6=20 \text { xa en equstion of tho frst degrea, } \\
& x^{2}+4 x+2=7 \text { is an exqution of tho }
\end{aligned}
$$

 substituted in the equation, rearit in both aliog of the squation bsiag dosined. The conditional equstion in only trese for parkicular values af the variables. Theso particuler faluan we cill reote ox folutions of tha equations. ${ }^{1}$ Tho folloring are 17lustrations of Identitiecs
i. $\sqrt{x^{4}}=x^{2}$

$$
x^{2}=x^{2}
$$

Ifay Dubisoh, Farnon E. Hones and Stsven I. Bryant, Interisaists

S. $\frac{7 x^{3}+12 x^{2} y^{3}+5 x^{2}}{2 x+y}=4 x^{3}+6 x y$

 ez equationts.

$$
\begin{aligned}
& 2 \times 4=8 \\
& 4 \times 3=28
\end{aligned}
$$

$$
\begin{aligned}
& x=1 \\
& 3 \xi<12
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 x}{x}=\frac{\beta}{2} \\
& x=4
\end{aligned}
$$

$3=12$
$\frac{32}{3}=\frac{12}{2}$
$y=4$

Probien.

IT wa $13 t x$ btand fos the kubrow, the problea can be axproczed as 2011043:

$$
2 x+5=10
$$

Ones you have an ectarion 9xprosed, the zointion is found by
 ono stas of the Parition aloze. Wo thon have solvod the squmion. The

 09 ow

 Ogation we zest

$$
3 x+4 \text { \& } 20
$$

$$
2 z+4-4=29-4
$$

新 6
Tron wo divide bothe eides 2,
Thus

$$
\begin{aligned}
& \frac{2 x}{2}=\frac{6}{2} \\
& x=3 \text { Ans. }
\end{aligned}
$$

Bocmuce of tho grest sunortance of this tople naty eolvod problems ndomeciena an providod.

Examless
solve the follountry for thenkom variable.

1. $3 x+362 x$

3x-告 - -36
$x \quad-36$
2. $2 x-5 x-100$
$2 x-5 x$ - 100

- $3 \pi=-100$

$$
\begin{aligned}
& 3 x=\frac{380}{3} \\
& x=\frac{100}{3}=33
\end{aligned}
$$

$$
\begin{aligned}
& \frac{7}{8}=x \\
& \text { ※ } \mathrm{F}
\end{aligned}
$$

(b) \quad = 䜌

䧼 A

A
4. $\quad x+2=30$
thea by syasiong both sides
$\sqrt{2+2}=300$
$x-200-2 \cdots 8$
z 98
 saster. In the aquation

$$
3 x-9=6
$$

the ifrst step in tio colution is to sed t9 to bota sedes. Bince the etudent is morkity to get the musbors on ons ofic end x as the othor; the above operation can be looked tyon as expins the a froa ow bide of ows equation to tho other and mexing 1t a 49.

$$
\begin{aligned}
3 x-9 & =6 \\
3 x & =6+9
\end{aligned}
$$

5定

$$
\begin{aligned}
3 x+9 & =24 \\
3 x & =2 y_{1}-9
\end{aligned}
$$

In sharty 足

Sisdinaty,

$$
\begin{aligned}
38=9 & =6 \\
3 x & =6+y=25 \\
3 x & =15
\end{aligned}
$$

the nsxt -gene kould be to divide both didss by 3

$$
\frac{38}{3}=\frac{35}{3}
$$

 gide, and naking it a divider on the rigit side.

$$
\begin{aligned}
3 x+9 & =24 \\
3 x & =24<9=15 \\
3 x & =15 \\
x & =\frac{25}{3}=5
\end{aligned}
$$

If this is the atimentis firet acquaintance with this proceos, hate as mush time ss is neceasary to practice the above operations wnid thoy sre known so well that they will naver; be forgotten.
5. $36 x-42-24 x+6$
$36 x-24 x=42+6$
$12 x=48$
$x=48 \quad 4$
12
fo $\theta=\frac{\frac{2}{(\sqrt{x})^{-2}}}{(\sqrt{x}}$

$$
\begin{array}{r}
\sqrt{x}=6 \\
x=36
\end{array}
$$

7. Solve fer s.

$$
\begin{aligned}
\frac{6}{d} & =\frac{2}{a} \\
a & =\frac{d}{b c}
\end{aligned}
$$

Solve for c in the abrentions
$a=\frac{d}{b c}$
c $=\frac{\mathrm{d}}{\mathrm{b}}$
8. $6(x+2)=3(x+8)$
$6 x+12=3 x+24$
$6 x-3 x=24-12$
$3 x=12$
$x=4$
9. $4(a-12)=-2(a-3)$

$$
4 a-48=-2 a+6
$$

$$
\text { \& }=48+6=54
$$

$$
6 a=54
$$

$$
a=9
$$

10. Solve for x in torres of a, b and c.

$$
\begin{aligned}
\frac{4 x+a-b}{c} & =3 \\
4 x+a-b & =c \\
b x & =\frac{c+b-a}{4}
\end{aligned}
$$

11. Solve fur n.

$$
\begin{aligned}
& 1=\frac{2}{3} * \frac{3}{\sqrt{2}} \\
& 1-\frac{2}{3}=\frac{3}{\sqrt{4}} \\
& \frac{1}{3}=\frac{3}{\sqrt{n}} \\
& \sqrt{12} 9 \\
& \text { n } \quad 81
\end{aligned}
$$

12. Find x in tarns of the other ravishers.

$$
\begin{aligned}
& \frac{x+2}{2}+2 x=x+y+z \\
& x-2=\frac{x^{+}+2}{2}-5-\Sigma
\end{aligned}
$$

Than factoring ort the amon hare x

$$
\begin{aligned}
& x(1-2 z)=\frac{y+z}{2}-y \infty z \\
& z(1-2 z)=\frac{Y+z-2 y-2 z}{2}=\frac{-y z}{2} \\
& x=\frac{-y-z}{2(1-2 z)}=\frac{y+z}{2(2 z-1)}
\end{aligned}
$$

Exorcizes:

1. Six subtracted from two tina a number is equal to the namer plus six. What is the number?

$$
\text { Ans. } x=12
$$

Aspune that x my represent any real number for wifi both combers are defined and classify each of the following as either equations or identities.
2. $2(x-3)+5=3(x-2)+5 \quad$ Ava, Equation
3. $6 x+4 \div 2=(6 x+4) \div 2$ Ans. Equation
4. $(5 x-55)\left(3 x^{2}+7 x\right)=5 x(3 x+7)(x-11)$ Ans. Identity
3. $\left(9 x^{2}-36 y^{2}\right) \div(3 x-6 y)=3 x+6 \quad$ Ans. Equation

6. $\frac{\text { y }}{\sqrt{2}}=5$
anse $x=\frac{y^{2}+25 y+y^{2}}{25}$
7. $\frac{1}{y}-\frac{3}{2} \times \sqrt{\frac{2}{2 \infty x}}$

Ans, $x=1-\frac{\frac{2}{2}^{3}}{(5 \operatorname{man})^{2}}$
B. Solve sor y

$$
\frac{z+7}{y^{2}-2 y}=\frac{y}{y-2}-\frac{y+4}{y} \quad \text { Ans } \xi=\xi
$$

 check the remultw.
9. $7+2=7$

Ans. y 5
10. $2 x$ 交

Ans, $\mathbf{r}=\frac{1}{4}$
11. $\frac{2 t}{3}=\frac{24}{5}$

Arts. $t=-6 / 5$
22. $3-5-2 a+5$

Ans. : 10
13. $3 z+2=38$
anc. Iemonatble
14. in $\sqrt{5}=3=n+1$

An3. $h=4 /(\sqrt{5}-1)$
15. $\frac{2 x+3}{2}+\frac{3 x}{x-1}=x$

Ans. $x=1 / 3$
16. $\frac{Z-7}{y^{2}-Z y}=\frac{y}{y=2} \times \frac{y+4}{y}$

Ans. $J=5$
17. $\frac{5}{x-1}+\frac{2}{4-3 x}=\frac{3}{6 x+16} \quad$ Ans. $x=7 / 5$

Sat up equations watioh exgress asch of the folloring couditions.
Solve thas if you can.
18. Trice a numer n is oqual to the wachse inareaced by 5.

Ans. $n=5$
19. A numer x is 5 wore than a number 70

$$
\text { Ans. } x=y+5
$$

20. Trum
21. Thu

$$
c \div\{a+b\}=\frac{c}{n}+\frac{5}{b} \quad \text { krs. Fals }
$$

$$
\begin{aligned}
& S=\frac{1}{8} \overline{\mathbf{3}} \mathbf{2}
\end{aligned}
$$

$$
\begin{array}{r}
T=2 \pi \sqrt{F} \quad \text { ans. } e=\frac{\text { 年 }^{2}}{4 \pi^{2}} \\
e=\frac{4 \Pi^{2} e}{T^{2}}
\end{array}
$$

2i. Solve for pirs

$$
\frac{1}{2}=\frac{1}{p} \div \frac{1}{2}
$$

25. Bolve for T in

6.3 Ford Problens.

 equal in the probien. The noxt stopy 3 to wato muation th tores of the literal variable for the aquivaient expressions. The next stop is to solve the squation for the varisble. We then will have optained the

 diancore Exacione

İt x a tho nasitr
 problea in ajentrie tsras is：

$$
x+25 \times 55=0 x
$$

inen olving sor x

$$
\begin{aligned}
& 8 x=10 \\
& x=5 x \text { 经e numer. }
\end{aligned}
$$

The solution is cheotsu try subtitaking the faita of x into tho

$2(5)+15=55-6(5)$
$35=25$ Solution is eoreect．
2．Wiat ars tho diaonsions of a comfield wiose longth is trice its wion and whoge perimoter is equil to 600 feet

Let w the sidut of the ifeid

$$
\begin{aligned}
& \text { 复 - ? (2) * w } \\
& \text { 6 } \quad 60
\end{aligned}
$$

chocrine

$$
\begin{array}{r}
2(100)+(x+0)=60 \\
6 \infty=600 \quad \text { solution is correct. }
\end{array}
$$

3. Tro cities A and B are $100 a t o d ~ i 00$ malea apart. A ox leavea A headed for B traveling at 20 miles par hour. Another" oar Ieaves B headed for A at the same time thats the firet oer left. This our it traveiing at 30 miles por hom'. Where will the are pees one another?

It is ofton helpful to drem a little picture to desmpibe the problem,

Remanber: Distance $=$ Rate x Mime.
Let's let the diatance thi cav winch jeft A travels = D. Ition the distance the other car travela before they pese one anc ther is equal to 100 - D. Using the simple formula $D=\mathbb{E} \times$

Car fromato $B \quad D=20 \times T$
Car from B to $A \quad 100-D=30 \times T$
We camot solve sither of tine above oquations soparataly becanse each equation has two unchansi,uric n, herever, we know that the them which each car travels prior biscon: one another is the ame.

I he time of the first car $=\frac{D}{20}$
The timo of the sccond car $=\frac{100-D}{30}$
$\operatorname{Th} \frac{D}{20}=\frac{100-D}{35}$
$30 D=20(100-D)$
$30 \mathrm{D}-2000-20 \mathrm{D}$
$50 \mathrm{D}=2000$
$D=40$ millog
$100-D=60$ - 1 (les

גd00 379ทาIษดท 1S38

Uboleng:

$2-2$ Tha point is 40 wiles trom A and 60 wiles from B.
 6
 elexantary.

Emactess:

 mach did te give the consultant?
 consulitant 33,000 .
 of these integare.

Ans, 34.
 por cent of the larger. Find the nuwera.

Ans. 4 Red 16.
 they would have the cana erounto. Hosa acch did g 117 have ?

Ans. $\quad \$ 2.00$.
5. Don usuliy driver trom his tome to the college in 12 ginutes. Whon rushed, he durreases bxy average speed by 5 wiles per hour and makeat the trip in 10 manntos. How far doas Doritrayels

Ans. 5 milea,
6. In a given tiras, fron sian a prodroen 500 nore tons of ore than wine B. The ore froz the formor cortains 25 per cent pure fron

 outzit of each fn tens de ceot

$$
\text { Ags. }=2000 \text { tens } \quad \text { B } 553500 \text { tena }
$$

7. Fextry ilions of six

 Anz. (a) 1 gal.
(b) $53 \mathrm{~s} / 3 \mathrm{~s}$ g61.
8. A zotor radistor contasns alit gravis of a solution wisich in 80%

Axs. 3 quarts.

6.4 Tha Gxaph ge \& First Deyree Equation.

 ie 0 understoceds i,e. $y=10$ or $x * 4$, we are able to graph the equation on coordinete sues suoh an we dizenssed in the chaptor on functions and graphs.

Latit take the equation $y^{=2}+2$ and make ap a table of coorditates, grapit them and then discouse what we bave done. By substituting vaiues of x into the equation rean colve for corsecponding velwes of y in the rollowing manmer:

 This form of the

by the cinange in x

6.5 giope-Intareppt 7 oys.

In the equstion that
 By our above definition of slopo, oinge in y divided by a obenge in x we can we that suinn we nove a distance of a +1 in tha x direction ths
 slope. Then wave the equation in the slopewatercept fora, if the coesficient of x ia positive the graph of the 1 ine will slope up to the right if the cosfificient of x is negetive the lino slopos down to the right.

The b portion of the slope-intercept form telle us the poist wacere the graph arosees the \bar{y} axis. This ic ppoven in the foiloulag namers At any point on the y exis the value of x is 0 . In the genorel form then

$$
\begin{array}{ll}
& y=x+b \\
\text { When } & x=0 \\
\text { then } & y=m(0)+b \\
& y=+b
\end{array}
$$

Examplems

1. What is the slope and the y intorcept of the equation $2 y-4 x+10=0$

$$
\begin{aligned}
2 y-4 x+10 & =0 \\
2 y & =4 x-10 \\
y & =2 x-5 \\
\text { 810pe } & =+2 \\
y \text { intercopt } & =-5
\end{aligned}
$$

 asie aty -5.

$$
\begin{gathered}
3 y+12 x=12 \\
3 y=-12 x+12 \\
y=d x+4 \\
810 p=d 4 \\
y \text { 1ntergegt }=44
\end{gathered}
$$

 y axis at $y=+4$.
 etr., swo homitontal Lines parrilel to the x axin with a slope wich is
 innos parailel to the y aris shtch all have an infinito slope. The equation $x=0$ is the y axis.

If we were asked to dotermen the x intercept (whore the lino croscos the x axis) for an equation eush as y $=3 x-9$; we world substituto 0 for y oince the ralw of y at ang point on the x axde in 0.

Exacmles

$$
\text { Given } \begin{aligned}
y & =3 x-9 \quad \text { Find the } x \text { interoopt。 } \\
y & =3 x-9 \\
0 & =3 x-9 \\
y & =3 \text { Ans, }
\end{aligned}
$$

Exryciass

Grayh the folloming equations and dateriane the riope and the 3 sutercopt of each.

1. $10 x+2 y=8$
2. $3 x-6=38$
3. $8 x-\operatorname{ly}=16=0$
4. $x+y=4=0$
5. $-50 x-25 y=75$

$$
\begin{aligned}
& \text { Anc. Srope - } 5 \\
& \text { 7 invercept }=4 \\
& \text { Ane. Slope }=1 \\
& \text { I Intarcegt }=-2 \\
& \text { Ans. } 310 \mathrm{p}=42 \\
& \text { Fintercept se m } \\
& \text { ASB, SIope }=1 \\
& \text { F intercost }={ }^{3} \operatorname{ch}_{4} \\
& \text { Ans. Blese }-2 \\
& \text { y intercept }-3
\end{aligned}
$$

6. Explain wiy the slope $0:$ the equation $y=4$ is 0 ,
7. Explain winy the slope of the equation $x=218$ irifinite.
8. What can we eay about the graphs of tro Inses parallel to one another?
9. What is the oinplect means of obtaining the π intercept?

6.6 Obtaining Equation of a Iine Given fro Points.

Nou that we have learned hou to graph an equation of the first degree, we will derive a formula wich wo can use to obtain the equation of a line if we are given any two sets of coordinates on the lirse.

80.

 take any otine point on the Ine, call it point P with coordinstes (x_{0} 事). If we thon deternasse the alops between point \mathcal{F} and point \mathbb{D} w will obtain
 obtain $\frac{Y-I_{3}}{X-X_{g}}$. Sinco esch of theae three points, P, A, and B are on the axse line tate elogea to obtained surt be equal to one anothar.

Theterore

$$
\frac{I-I_{a}}{X-X_{a}}=\frac{Y-Y_{b}}{X-X_{b}}=\frac{Y_{b}-I_{a}}{X_{b}-X_{a}}=\text { slope }
$$

With the above forsula now con write the equation of a lise, if we are givers the coordinates of any two pointe on the line. We can also use the formala to write the equation of the live if are given ons set of coordinates and the slope of the line.

Examplea:

1. What is the acqation of the Ine through $(1,2)$ and $(4,3) 3$

$$
\begin{aligned}
& \frac{I-I_{1}}{I-I_{1}}=\frac{I_{2}-I_{1}}{X_{2}-I_{1}}=\square \\
&=\text { slope } \\
& \frac{I-2}{I-I}=\frac{3-2}{4-1} \\
& \frac{I-2}{X-1}=\frac{1}{3}
\end{aligned}
$$

Cxon multiplyfus \times

$$
\begin{gathered}
3(4-2)=y-1 \\
3 T-6>y-3 \text { Axas }
\end{gathered}
$$

$$
\begin{aligned}
3 Y & =x \neq 5 \\
Y & =\frac{x}{3}+\sum_{3} \quad \text { ans. }
\end{aligned}
$$

 equation, wo would obtain the slope of the time $\frac{3-2}{4-1}=\frac{1}{3}$. We proved this when pat the equation in the clopo-fatercopt form and foum that the coefficient of x vas $\frac{3}{3}$.

It folicws then that is wo gore given a point axd the slope of a Iino through that points, weocid obtain the equstion of the lisss. If we wess given the point (2,3) and asked to fixd the equation of a 1 lmo

$$
\frac{I-X_{I}}{X-X_{1}}=m \vdots
$$

$$
\frac{x-3}{x-2}=3
$$

Then

$$
\begin{aligned}
Y-3 & \pm 3 x-6 \\
Y & =3 x-3 \\
\text { SLops } & =3 \\
\text { Y intorcopt } & =-3
\end{aligned}
$$

Exarcises:

Find the equation of the limo throwg the following sets of
 the slope the y intercepty asi tho x interompt?
2. $(1,-3)(2,0)$
2. $(-2,-6)(2,10)$
3. $(-2,-2)(2,-6)$
4. $(2,3)(4,4)$
5. $(-2,-16)(3,4)$

Ens. 7 $7 x-6$
越 3

Anc. $\quad 3 x \leq x+2$
± 4

x interectet $=\frac{1}{2}$
Ans. $T=a x-4$
y ${ }^{\circ}-1$
y ixternept -4
x intercept $=$ als
A12s. $y=\frac{x}{2}+2$
$\mathrm{m}=\frac{\mathrm{Z}}{\boldsymbol{z}}$
7 interergt $=+2$
x Intercopt $:-4$
Ans. $y=4 x-8$
m 4
y intarcept $=-6$
x sintarcent $=+2$

Datemine the equation of the line through the indicated points haring the given slopes. Then graph the line and detemane the y and x interrecpts.
6. $(2,6), m=2$
7. $(-2,-3), \mathbb{Z} \geq 3$
8. $(1,-1),-2$

Ans. $y=2 x+2$
y intercapi $x+2$
x intarcepton n
Ans. $y=3 x+3$
y intarcopt $=+3$
x intersapt $=-1$
Ans. $F=-2 x+3$
\bar{y} intercespt $m=3$
x intareopt $=3 / 2$

$$
\text { F. }(5,-1), \quad x_{3}=-1
$$

kns. $\quad 7=-2 \neq 18$

$$
\Gamma \text { Int }
$$

$$
\pm 14 \mathrm{armes}
$$

10. x atatacem
kn. $y=2+4$
y antereory $=4$
11. x intercspt $x+6$

7 invercept $=03$
Axa. $y=\frac{x}{2}+3$
12. x intriccont +4
y intersopp $=-8$
Ans, $y=2 z-8$

6.7 Syoters of Linsar Resions.

 x and y wrola bo $x+y=4$. Thera
 +12 and 0 多

$$
x+7 \Rightarrow 4
$$

Then substitating $7=8$ Ior $\%$

$$
x+8=4
$$

Then er can solve for x

$$
z=\frac{1}{4}-8=x
$$

 80룬

 Wh jugt exployen tisis esthod in colfing twe sjstex of

$$
\begin{array}{r}
x+\xi=\frac{1}{y} \\
y=8
\end{array}
$$

 matack.

 tares of the otbor verlabiesand then cubstitute this vaiue in the otior equation and eolyo for the othar variable. Then we substitute the valua

 Exmycies:

1. Solve the Pollostrig eqsten of equations for $\bar{x} \mathrm{amd} y$,
(1) $x+y=7$
(2) $2 x-35=6$

The equations have boen muserod to factiltate the axplanation. Flust polve equition (1) for x in term of $y \quad x=7-J$. Then abotitute this valus of x in terma of gisto equation (2)

$$
2(7-y)-3 y=-6
$$

Since we now have one actabion axd one winnow, we can eolve for that unkwowa.

$$
\begin{aligned}
2(7-x)-3 y & =-6 \\
34-2 y-3 y & =6 \\
5 & =20 \\
7 & =4
\end{aligned}
$$

 sisplast equation, in this case equation (1), and solve fox x.

$$
\begin{array}{r}
x+y=7 \\
x+4=7 \\
x=3
\end{array}
$$

 fellowing maver.

$$
\begin{aligned}
& 2 x-3 y=-6 \\
& 2 x-3(4)=-6 \\
& x=6+12=6 \\
& x=3
\end{aligned}
$$

One next atep is to check the rateos of $x=3$ and $y=4$ in equations to prove our moris to ourselvor.
(1) $x * y * 7$
$3+4=7$
(2) $2 x-7=7=-6$
$2(3)-3(4)=-6$
6-12 - -6

- 6 - 6 Corruct

2. Solve tho folloring eyster of equations for x and 5 and chocit your resuits.
(1) $x-2 y=0$
(2) $3 x+2 y=8$

Solving (1) for x

$$
x=2 y
$$

Substituting this in oquation (2)
(2) $3 x+2 y=6$

$$
\begin{aligned}
& 6 y+\text { 文 } 0 \\
& \text { 敋 } 8 \\
& 8 \pm 1
\end{aligned}
$$

（I）

$$
\begin{aligned}
x-2 y & =0 \\
x-2(2) & =0 \\
x & =2
\end{aligned}
$$

（1）$x-0$ $2-2(2)=0$
and
（2） $\begin{array}{rl}3 x+3 y & 0 \\ 3(2) & +2(2)\end{array}=8$
Tatzas clesots．

3．Solve the follering systor of equations．
（2） $2 x-3 y=4$
（2）$x+6 y=2$
colving（2）for I

$$
x=2-5 y
$$

Sbustatutiog in（1）

$$
\begin{aligned}
2(2-2 y)-3 y & =4 \\
b \times \operatorname{lyy}=3 y & =4 \\
7 y & =0 \\
y & =0
\end{aligned}
$$

Sabstatuting in ocysucion（2）

$$
\begin{array}{r}
x+2 y=2 \\
x+0=2 \\
x=2
\end{array}
$$

Chesting
（i） $2 x-$ 控 $=4$ $2(2)-3(0)-4$
4.4
（2）$x+6 y=2$
$2+6(0)=2$
$2-2$

 equations cross (ff the

 oliminte one of the rarlablea, romenowing slmays that anything we do to one gide of aur equstion, wo wast do to the other. The other paincipio
 equation we obtain a third equation, since we are adding equals to both Bides of an equation, This may soud confusing, tower m, aftes we work through a couple of solved probleas you whonid have no trouble in applying this mathod.

Example:

1. Solve the following system of equations by the arithmetic mathod.
(1) $6 x+2 y=10$
(2) $3 x=4 y=\infty$

We should ain at elimunting osso pariable iroa the systorn We can elixdnate the yes by matiplying eqsation (1) of 2 and thea ading
 multiplying equation (2) by -2 and than adding equations (1) sad (2). Let's olirdyate the y's. Equation (1) bacosags
(I) $12 x+$ ly 20
(2) $3 x-4 y=5$

Adding (1) and (2)

$$
\begin{aligned}
15 x & =15 \\
x & =2
\end{aligned}
$$

At this point, our mothod is the same as tho one we need in tho substiftation rethod above after we bad noived for one of the variables. We exmoly substitute the value known in either of the original equations ard eolve for the other and then chock both ralmea.

Subetituting $x=1$ in squation (2)

$$
\begin{aligned}
3(1)-4 y & =-5 \\
4 y & =8 \\
y & =2
\end{aligned}
$$

Then

Checking in (1) and
$12(1)+4(2)=20$
$20=20$
checking in (2)

$$
\begin{aligned}
3(1)-4(2) & =-5 \\
-5 & =-5
\end{aligned}
$$

2. Solve the following sygtem of equations by the arithmetic method.
(1) $3 x+2 y=1$
(2) $4 x-y=16$

We can elininate the J^{i} s by meltiplying equation (2) by 2 and then adding (1) to (2) or we could elininate the x is by miltiplying (1) by 4 and (2) by -3 and wion adding. Letis eliminate the $\mathrm{y}^{98} 8$ since this involves only one moltiplication.
(i) $3 x+2 y=1$
(2) $8 x-2 y=32$

11x $=33$
$x=3$

Sxiostitaring $x=3$ in oxiginnal kysution (2)
(2) $\quad h(3)-y: 36$

$$
y=-4
$$

It in left to the strilent to oheck these valuse in tise oriednal equations.

6.10 Sinaltanaous Equations with Threa Uninowns.

In oxder to solve equations of the first degree with two minowns; we found that we needed tro equstions. Sinilariy, to colve a syatem of equations with three unknows ws need to have three equstions which express relationships between or ancong ofme onall of the wariablas.

Our approach is very gimilar to the subatitution and artitheefic methode used in the previous paragraphs. Suppose are givon the systrem of equations
(1) $x+y+z=6$
(2) $2 x-3 y+2 z=2$
(3) $\quad==3$

Our approach would be to use the value of a which we are given in equation (3) and substitute it in equations (1) and (2).

We obtaint
(1) $x+y+3=6$
(2) $2 x-3 y+6=2$
transposing the integors
(1) $x+y \div 3$
(2) $2 x-38=-4$

Wa now have two equations and two maknowns which we can colve. Using the arithsotic method, we would moltiply ocquition (1) by -2 and then edd the two equations and olisinato the xts and then solve for \bar{y}.

(1) $x+7+8<4$
(2) $2 x-3 y+5=-1$
(3)

$$
2 x-4 y=0
$$

 z. This we can do by multipifing squation (1) by mi and twen exting (a) and (2) to get a new equation (4) vith minoms x and y.
(1) $-x-y=2 \quad-4$
(2) $2 x-3 y+z=-2$
(4) $x-4 y=-5$

We then can take the combination of equation (3) and (4), suitriply (4) by al and elindnate the $y^{\prime} \mathrm{s}$, and then rolve for x,
(3) $2 x-4 y=-2$
(4) $\frac{-x+4 y+5}{x=3}$

We can then substitute $x=3$ in one of the equations which has only 2 varisblea, in this cace aither (3) or (4), and anive for the other variable. Subatituting in (3) wo get
(3) $2(3)-4 y=-2$ $4 y=6+2$ $y=2$
 contains tirree variables, substituto the values of x and y which wo havo alresty doterained and 001ve for s . Lat's wes equation (1) for thin

(1) $3+2+5 * 4$

 take another cozinintion of two aquations and olfmintig the sam vorisble

 parieble and one other. When we have aolfod for 2 variables, wa zubstitute thece valum in ons of the equgtiors containing the three wariables and isnd the third and last. He then oheck all threo values in all original equations.

Example:
Solve the folloring systan of oquations:
(1) $3 x-2+2=1=0$
(2) $x+2 y-3 z-13=0$
(3) $x+y+2 x \quad-3$

Tazing equations (1) and (2) and pritiras the constanta on the right sde of tho equation and eliminatiug the $y^{\prime} s$ by adding
(1) $3 x-2 y+z=1$
(2) $x+2 y \circ 3 z=13$
we get
(4) $4 x-2 z=14$

Taking ocustions (2) and (3), sre can matinis (3) by -2 , thas acid it to equasion (2) to obtain equation (5).
(2) $x+2 y-3 z=23$
(3) -转定 $-48=46$
(5) $\triangle x \quad-7 \pm=19$

We then take equations (h) and (5) and eliminato x by matiplying equation (5) by th and sadixs the result from equation (4).
(4) $4 x-2 z=34$
(5) - $4 x$ 2028 $\quad 3 \quad 76$ $-30 z=90$
g $=-3$
Substitutixg z - 3 in equation (4)

$$
\begin{aligned}
4 x-2(-3) & =14 \\
4 x & =8 \\
x & =2
\end{aligned}
$$

Then: substituting $x=2$ and $z=-3$ in equation (3)

$$
\text { (3) } 2+y+2(-3)=-3
$$

$$
\begin{aligned}
& y=-3+6=2 \\
& y=1
\end{aligned}
$$

It would be a good drill for the etudent to chock the vaiues :n the orjesnal equationss

Emarciseas:

Solve the following systoss of equations by both the substitatiou and arithmotic zwhods and check tine values obtannod in the original equations.

1. $2 x-3 x=1$
Ans. $x=5$
$x-2 y=-1$
$y=3$

$$
\begin{aligned}
& \text { 2. } x-2 \pi=28 \\
& 2 x+7=6 \\
& \text { Ans. } \quad \begin{array}{l}
x=8 \\
y=-10
\end{array} \\
& \text { 3. } 3 x+38 *-15 \\
& \text { 4x-2y } 2 \\
& \text { 4. } 6 x-5 y=16 \\
& 4 x-3 y=12 \\
& \text { Axs. } x=4 \\
& \text { \#. - } 3 \\
& \text { Axgn } x=6 \\
& y \text { i } \\
& \text { 5. } 2 x-3 y=14 \\
& \text { 4ns. } x \quad 4 \\
& 3 x+6 y=0 \\
& \text { Solve the following syatems of ograsticus } \bar{y} 0 \mathrm{y} x, y \text { and } 2 \text { and then } \\
& \text { cheok the resulta in tise original acuations. } \\
& \text { 6. } 3 x-4 y+28=8 \\
& 4 x-8 y-2 z=-6 \\
& x-7 y+2 z=1 \\
& \text { 7. } 6 x-3 y+28 \Leftrightarrow-74 \\
& x+y-z=-3 \\
& -2 x-2 y+3 z-11=0 \\
& \text { 8. } z+7=0 \\
& 6 x-3 y=6 \\
& 4 x-y+2 z=-2 \\
& \text { 9. } y+3=0 \\
& 10 x+4=0 \\
& x+y-z-2=0 \\
& \text { 10. } 3 x+4 y=60 \\
& 2 y+\varepsilon-8=0 \\
& 2 x+3 y+4 z-3=0 \\
& \text { Ancis } x=2 \\
& y=1 \\
& \text { 3 } 3 \\
& \text { Ans. }=-2 \\
& y=4 \\
& 8=5 \\
& \text { Ans. } x=5 \\
& y=8 \\
& 8-\infty \\
& \text { Ans. } x=-1 \\
& \text { y }-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ans. } \begin{array}{rll}
x & = & 8 \\
y & = & 9 \\
y & =10
\end{array}
\end{aligned}
$$

6.11 Inagtalities.

There are occasions in a managesent crrriculan, particulariy in tho quantitative dieciplinss, waen sien to symisolically stato that one numer is "grastor than" or "lews than" srothar nuchor. Conventionaily
we wrise
a ji b minich mana a la grostor tems
Or

 the point silmay "pointe at the swaller mexterit.

Similarly:

We can apply most of the tecknfases thet wo lave learned in the colution of equalities to the handling of insqualites. leteg g .taks the stepole inequality $8>4$ and see wat wean so with it.

1. We can add like geintitios to both aldea of an smegisilty sed the insquality wili still have the "asmen.

$$
\begin{aligned}
8+2 & >4+2 \\
10 & >6
\end{aligned}
$$

(Same senae maning, in this osse, is atill groster than. Similarly:
2. We can subtract like quantities froe both sides of an inequality and the inequality will still have tho eame sense.

$$
\begin{aligned}
8-3 & >4-3 \\
5 & >2
\end{aligned}
$$

3. We can multiply or divide boch sides of an frequality by the same "positiva" number and again stili mintain the validity or zence of the inequalitity.

$$
\begin{aligned}
8 & >4 \\
892 & >i^{2} \\
16 & >8^{2}
\end{aligned}
$$

8 cc

$$
\begin{aligned}
& \text { 浪 } \\
& \text { 莫>要 } \\
& \text { \& } 2
\end{aligned}
$$

 by 8 ninus

$$
8>6
$$

$$
\begin{aligned}
8 \cdot(-2) & >4(-2) \\
-1 E & >2
\end{aligned}
$$

$$
-26<3
$$

$$
3<6
$$

$$
\begin{gathered}
3(-3)<6(-3) \\
4<-26
\end{gathered}
$$

$$
\frac{3}{-3}<\underset{x}{E}
$$

 inisionster is sppropriatis．

$$
6>4
$$

$$
35
$$

$$
64.100
$$

$$
\begin{aligned}
& 8<10 \\
& -8 \geqslant-10
\end{aligned}
$$

 the folloxids fregrility ics x ．

$$
3 x+4 \text { 2 }
$$

$$
\begin{aligned}
& 3 x+428 \\
& \text { 3x 怒 } 28-4 \\
& 3 \text { 遮 灿 } \\
& \text { - 怨 }
\end{aligned}
$$

$$
\begin{aligned}
2 y & <3 \\
2 & <30+6 \\
6 y & <42 \\
y & <20
\end{aligned}
$$

6.12 Graxitus Iragogitios.

 or area deacribod by the following ikres rolataonshipgs
(1) ≤ 30
(2) $y>0$
(3) $5 \geqslant-2 x+8$

Reforring to figw 6-3, the giret insqualitys $x>0$ oxcludse

 30 have lindted the area are looding for to the wron in the firct
 above the line $y=-2 x+8$. The arne mich fulfills the smpotifcentons" of 11 thrse relationcitipg le the area of the croesmhatohed trimgle
 of tho x and y axos which border the triangle.

Exaroisas:
Solve the Sollonisas inequantiot.

$$
\text { 1. } \quad x+6>15
$$

4x2. 329
? $x-10<30-52$
4.as. $x<5$

Gratic tha follority groter of inequalises.
3. $x>0$
$\geqslant>0$
$72-5+3$
4. $\quad-4<x<+1$
$-2<y<42$
59.

2can

云

 tion

511 cesse be substitutec back into the original equation to enoura tive

 equations sith one minotin, and than go into colving equatione with two mknoms and finnlly take up the graphing of quadraties.

7.2 Ouadratics with Ons Jhknow.

 is that 211 the makrown parts to aprodien ath be exprossod in toras af
 but not know ite leasth or width. However, if wo know the rolationabip between the length and widh so ean azprese one in tomy of the otmer and we hould thas conaider that we hex a probles with onif cmo zulmona,
 which axpresaes this goraition. Th our dovelopsont, letis aselign the unkroun varisble the litsral gywol x. Since it is to be a quadrasic aquation, there nust be ons tosm containing the variable raised to the second power. Inowing that this torw will bo x^{2}, but not knowing hou
 Since a la the first lettor of the alphabet, waill ass a and get the first tern of ous general quadratic aquation to be $a x^{2}$. Fiox, we haswe illied the minima requirasanta for a quadratic equation. It is, of course, pousible, but not necosseany, to have the variable raiced to tho sirst poser and to

$$
x^{2}+k+t=0
$$

Remaber, b and/ar 0 can be usro but that a canow bo sacos is it wro: we wowld not bise a qusdratio.

There axe enraral mothods of solving the quadratic egustion, that la finding values of the varisble that will eatiafy bequation, If we conaider our land parcel. to 15,000 aquare feet and to bave sides of equal leagth, we can easily deterrine the length of the nides. First, let x stand for the length of a aide and set wp the equation for the sreas that is

$$
x \text { thisge } x=15,000
$$

Multiplyinas the x^{9}, we get

$$
x^{2} \propto 15,000
$$

If we take the square root of both oides of the equation, the solation to our land problem would thas be plas of minus $\sqrt{15,000}$ saet. Be exw to remomber that when we take aquare roots, te get a plus and minus value. Substituting back into the original equation, we EAnd that both roots satiafy the equation, Howovor, nour wost nee a litile practical comon sense and realise that whilo the $-\sqrt{15,000}$ astixfies the equation, thast there may be sozs question as to its boing moaningivel in a practioal sense. Coviousiy, it does not mise sonse beasuce we carnot have negative dimonsions of land, 80 we diEregsird this root and uso ondy the root $* \sqrt{15,000}$ and sey the length of a side is $\sqrt{15,000}$ feet.

For those quadratice with one minown where b lia not zero, wa have a livule zore compleated problem. If se can mapipiste the oquation to get the right aide of the oquation equal to sero, and still bave on the left side of the equation an expromoion that is factorable, we have an easy task. 1.11 we do is factor the laft side, abt amoh factor equal to sero and solve for the vaius of tho varisble that ulll make the indifideri

 formula for the ares as

$$
x(x+50)=15,000
$$

 the lert sides, we gat $x^{2}+508025,000=0$ which we isotor inte $(x+150)(x-100)=0$ setting anch faator = 0_{2} we get

$$
\begin{array}{lll}
x+150=0, & \text { or } & x=150 \\
x-100=0, & \text { ox } & x=100
\end{array}
$$

 both roots estisify it. But think, the -150 is iversible so wo onif conside" the t100 as a solution to ow problem. This tolis us that tho ridin is 100 feet. Knowing that the longti is aqual to the sidtri pius 50 feet, we find the lonsth to be 150 Reet, By raptd esthematies, 100 times 150 equals 15,000 and we that se have a valid solution. In addition to the problet of anstiazs gotting solutions that sro not valid from a pasctical point of riew, wean aloo got oolutions that won's even eatisity the ariginal equation. Trese to oxil axtransone roots. For axamie, if we mitipiy both sides of the aquabion by a ocman dexumintor wo my get an extraneous root. To facilitate undorstanding this onncept; lat'e try zolving the folloming equation.

$$
\frac{x^{2}+3 x}{3+x}=0
$$

$$
x^{2}+3 x \Leftrightarrow 0
$$

sthen ean bs factorat ioto

$$
x(x+3)=0
$$

$$
x=0 \operatorname{sen} x=3
$$

 extigiactory root is $x=0$, The waris of the ftory id to cheok ail roots
 whethar or not tinay are practsoal.
 we have been walking about,

1. Solve $x^{2}+5 x+6=0$

Solutions factor into $(x+2)(x+3)=0$
setting axal isctor $=0$, then $x=-2$ and $x=-3$
checking $x=-2,(-2)^{2}+5(-2)+6=4-10+6=0$ checige
checking $x-3,(-3)^{2}+5(-3)+6=9-15+6=0$ cheoks
2. Solve $200 x^{2}-750 x+625=0$

Solution: divide by 25; $8 x^{2}-30 x+25=0$
fuctoring into $(2 x-5)(4 x-5)=0$
setting each fator $=0,2 x-5=0, x=2.5$

$$
4 x-5=0, x=1.25
$$

Checking $x=2.5, \quad 200(2.5)^{2}=750(2.5)+625=1250-2875+625=$ 0 chooks
Checking $x=1.25,200(1,25)^{2}-750(1.25)+625=312.5=937.5-625=$ 0 chsoks

10h.

 bought. Then, his avaruge cost wes 36,000 divided by x and his total salas were 36,000 divided by x plus 250 winch $1 a$ all mitipliod by I minus 2. The differenco betwen Ekles and costo wss his profit, Symbilically we can wite

Sales	- Costs	Profits
$\left(\frac{36,000}{x}+950\right)(x-2)$	$-36,000$	$=100$

Hultipiying both sidea by x, we get

$$
\begin{aligned}
& \begin{array}{l}
(30,000+950 x)(x-2) \quad-36,000 x \quad \\
36,000 x-72,000+950 x^{2}-1500 x-36,000 x=400 x \\
\text { Collecting tores,we get } \\
\\
950 x^{2}-2300 x-72,000=0 \\
\text { dividing by } 50, w e \text { get } \\
19 x^{2}-460 x+1440=0
\end{array} \\
& \text { which wo can factor into }
\end{aligned}
$$

$$
(x-10)(19 x+144)=0
$$

setting factors $=0$, wo got

$$
x=+10 \quad \text { and } \quad x=-\frac{144}{19}
$$

In this case, it is easicst to jast ignore the $-\frac{3 h_{h}}{19}$ beoause it is noi possible for the dealer to bry regative quantities of care, arsi then sheok to ses if 10 cars would eatisify the conditions of the problen. It does, co the solution is 10 cars.

7.3 Quedratio Eqraula,

 We can see that we must add the term $\left(\frac{3}{3} \frac{3}{3} \frac{3}{2}\right)$ 解 both sidiss of the equation. Thus we get

$$
\begin{aligned}
& x^{2}-\frac{2}{3} x+\left(\frac{2}{3} \times \frac{1}{2}\right)^{2}=\frac{4}{3}+\left(\frac{2}{3} \times \frac{1}{2}\right)^{2} \\
& x^{2}-2 / 3 x+\left(\frac{1}{3}\right)^{2}=\frac{4}{3}+\left(\frac{1}{3}\right)^{2} \\
& \text { factoring, wo get } \\
& \left(x-\frac{1}{3}\right)^{2}=\frac{4}{3}+\left(\frac{1}{3}\right)^{?} \\
& \text { taking the square root of both sides, we gut } \\
& x-\frac{1}{3}=\frac{14}{3}+\frac{1}{9}= \pm \frac{\sqrt{2}+\frac{1}{9}}{\frac{13}{4}} \\
& \text { or } \\
& x=\frac{1}{3} \pm \sqrt{\frac{2}{3}}
\end{aligned}
$$

It ahould be apparent to wi that if ne could dswalop a genoral fomula for this mathot conld eave a lot of wish. To doviop this formula letis go back to the generai form of the grabrate ogration axal " do the same thing with gyswola rathor than numorrs. Taking the geraral form of the quadratis equation, $a x^{2}+b x+0=0$, letos ecbtrect e ites both sides and divida by a and get

$$
x^{2}+\frac{b}{a} x^{m} \frac{c}{a}
$$

How in we edत $\left(\frac{1}{2} \quad 0 \quad \frac{b}{2}\right)^{2}$ to both aides
we get $x^{2}+\frac{h}{a} x+\left(\frac{b}{2 a}\right)^{2}=\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2}$
which can be factored into

$$
\left(x+\frac{b}{2}\right)^{2}=-\frac{c}{a}+\binom{s}{Z_{S}}^{2}
$$

now traking equare roots of both aides

$$
\left(x+\frac{b}{2 a}\right)= \pm \sqrt{\frac{b^{2}}{4 a^{2}}-\frac{c}{a}}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}
$$

subtracting $\frac{b}{\frac{b}{2 a}}$ Proc both sides, is got

$$
x=-\frac{b}{2 a} \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}=-\frac{b}{2 a} \pm \sqrt{\frac{b^{2}-4 a c}{2 a}}
$$

comining, we get

$$
x=\frac{-\sin \sqrt{2}-\operatorname{dac}}{28}
$$

which to the gensmal formala for eolving ang quadratic equations with one unknown. Kroxing this formula, ail wese to do to solve any quadratic equation sition one whom is zubstituto in the valuen of a, b, and c.

The $\sqrt{\mathrm{b}^{2}-4 a c}$ part of the formuls is called the dotarriment bocesise, knowing its valua, to an forowall nhat forn the roots of tho oquation will take.

IS

2. Solrs $z^{2}-2 x-3=0$

$$
=\frac{\pi \sum 412}{\tilde{2}}
$$

therezore $x=\frac{3+4}{2}=\frac{3}{2}=\frac{2-4}{2} \circ \operatorname{ld}$

2. Solve $2 x^{2}+2 x=13=0$

$$
x=\frac{-(2) \dot{4}+(3)^{2}-4(3)(-4)}{2(3)}
$$

$$
=\frac{-2+\sqrt{4+18}}{6} \cdot \frac{-2 \pm \sqrt{52}}{6}
$$

$$
\frac{-2 \pm 2 \sqrt{13}}{6}=\frac{-1 \pm \sqrt{13}}{3}
$$

$$
\text { therriore } \quad x=\frac{-9+\sqrt{13}}{3} \text { sed } x=\frac{-1 x \sqrt{13}}{3}
$$

$$
\begin{aligned}
& =\frac{-2 \sqrt{2}+2 x}{2} \\
& =\frac{-(-2) \frac{ \pm \sqrt{(-2)^{2}-1}(1)(-3)}{2(1)}}{\frac{10}{2}}
\end{aligned}
$$

 an立se tar velio reots.
 anarars in the entarer calush.

Bancisesa

1. Solve $x^{2}+x-20=0$
Ang. $x=1$
2. Solve $x^{2}-16$ a

3. Soive $x^{2}+2 \sqrt{2} x-6=0$
5xan $x=\sqrt{2} \sqrt{2}$ max $x-3 \sqrt{2}$
4, soive $5 x^{2}-2 x-2=0$

4. Soive $t^{2}+\sqrt{3} t-1=0$

5. 80370 $\frac{4}{3} x^{2}+\frac{1}{2} x-5=0$

6. Solve $x^{2}+2 x \Rightarrow 5$

7. Solve $x^{2}+6 x+5=0$

8. $8050612 x^{2}+7 x=22$

9. volre $y_{2}^{2}+12 x+4=0$

 eqaztions.

$$
3 x=2 y=5
$$

and

$$
x^{2}-x y+2 y=7
$$

Solution Nampalate the Lizear squation axi उxputs y in

Srbstituth this fato the socoma açation wan fet

$$
\begin{aligned}
& x^{2}-x\left(\frac{3 x-5}{2}\right)+2\left(\frac{3 x-2}{2}\right)=7 \\
& x^{2}-\frac{3 x^{2}-5 x}{2}+\frac{6 x-10}{2}=7
\end{aligned}
$$

We can moltiply by 2 awt got

$$
6 x^{2}-3 x^{2}+5 x+6 x-10 \approx 14
$$

$$
-x^{2}+22 x-3=0
$$

$$
x^{2} \text { an 等东 }+ \text { 瑇 }
$$

$$
(x-3)(x-8)=0
$$

$$
\begin{aligned}
& z=3 \\
& z=8
\end{aligned}
$$

$$
(x: 3, y=8), \quad\left(x=8,5=\frac{29}{\frac{2}{2}}\right)
$$

$$
\begin{aligned}
& 8 x^{2}+5 y^{2}=65 \\
& 2 x^{2}+3 x^{2}=85
\end{aligned}
$$

Solntions kutiply

$$
8 x^{2}+1 x^{2}=300
$$

$$
\begin{array}{r}
8 x^{2}+5 y^{2}=65 \\
\frac{2 x^{2}+12 y^{2}=300}{-7 y^{2}=-35} \\
z^{2}=5
\end{array}
$$

解的上 39 gat

$$
\begin{gathered}
\operatorname{soc} 8+\sqrt{5}, 8 x^{2}+5(+\sqrt{5})^{2}=65 \\
\\
8 x^{2}+5(5)=65=65 \\
8 x^{2}=65=25 \\
\\
x^{2}=5
\end{gathered}
$$

$$
\begin{array}{rl}
\operatorname{sox} 5=-\sqrt{5} & 6 x^{2}+5(-\sqrt{5})^{2} 85 \\
& 8 x^{2}+5(5)=65 \\
& 6 x^{2}=65-25 \\
x^{2} & 5
\end{array}
$$

122．
takiry zusaxt reots, $x= \pm \sqrt{5}$

$$
\text { Sctre: } \begin{aligned}
& 3 x^{2}+2 y^{2}=29 \\
& 4 x^{2}-38^{2}=33
\end{aligned}
$$

 eçustion by 2 and get

$$
\begin{aligned}
& 8 x^{2}+6 y^{2}=67 \\
& 8 x^{2}-6 y^{2}=66
\end{aligned}
$$

$$
\begin{array}{rl}
17 x^{2} & 253 \\
x^{2} & =9
\end{array}
$$

$$
\begin{aligned}
3(+3)^{2}+2 y^{2} & =29 \\
27+2 y^{2} & =29 \\
2 y^{2} & =2 \\
y & =1
\end{aligned}
$$

quacing zequare rosts, got, Im \ddagger
to ge wxth $x^{x}+3$

$$
\begin{array}{rl}
3(-3)^{2}+2 y^{2} & =6 \xi \\
c 7+2 y^{2} & 29 \\
2 y^{2} & =2 \\
y^{2} & =2
\end{array}
$$

䍝及 $x=-3 . \quad$ Thas sian

Letis aclive

$$
\begin{aligned}
& 2 x^{2}-3 y+6 y^{2}=6 \\
& 2 x^{2}+5 y-10 y^{2}=8
\end{aligned}
$$

$$
\begin{aligned}
& 2 x^{2}-36 x y+2 x^{2}=24 \\
& 6 x^{2}+35 x+30 y^{2}=24
\end{aligned}
$$

$$
x^{2}-3 x y+54 y^{2}=0
$$

Wex can now fretox whet we have sma solve x in toxns of y ox y in *zas of x_{5} ihat is: $(x-2 y)(x-27 y)=0$

Setting facture aqual to 0

$$
x=2 y \text { and } x=\frac{27}{2} y
$$

$$
\begin{aligned}
& x=\frac{-(-33 y) \frac{4\left((-31 y)^{2}-12(2)\left(5 y^{2}\right)\right.}{2(2)}}{2} \\
& x=\frac{3 y y \sqrt{961 y^{2}-432 y^{2}}}{4} \\
& =\frac{31 y \pm \sqrt{569 y^{2}}}{4}=\frac{33 y \pm 23 y}{4} \\
& =\frac{\delta y}{4}=2 y \text { and } x=\frac{54 y}{4}=\frac{27}{4} y
\end{aligned}
$$

Tha noxt tixing we do after getting one unkoran las tavis of the sacond mbrown is sursticute this vilue into one of the equations. Jotss

$$
\begin{gathered}
2(2 y)^{2}+5(2 y)(y)-10 y^{2}=8 \\
0 y^{2}+10 y^{2}=10 y^{2}=8 \\
8 y^{2}=8 \\
y=1
\end{gathered}
$$

Nour lot's substituto $x=\frac{27}{2} y$ back into the astond egration and are wat got.

$$
\begin{aligned}
& \left.2\left(\frac{27}{2}-y\right)^{2}+\frac{27}{2}\right)(y)-10 y^{2}=0 \\
& \left(\frac{729}{2}\right) y^{2}+\frac{135}{z^{2}} y^{2}-10 y^{2}=8
\end{aligned}
$$

Hulthelyng throigh by the lesst cossin denorinator; 2, ws sot

$$
\begin{aligned}
725 y^{2}+135 y^{2}-20 y^{2} & =8 \\
6 l 44 y^{2} & =16 \\
y^{2} & =\frac{36}{6}: \frac{4}{2} \Psi
\end{aligned}
$$

Taking aquere roots yo get

$$
y= \pm \frac{y^{3}}{3}
$$

Again tuming our thinking arcumd, we can dotersine that
 and when $y=-\frac{2}{\sqrt{211}}, x=\frac{27}{\sqrt{211}}$, This gives us our second pair of zoots, namaly:

$$
\left(x=\frac{27}{\sqrt{211}}, y=\frac{2}{\sqrt{211}}\right) \quad \operatorname{and}\left(x=\frac{27}{\sqrt{211}}, \quad=a \frac{-2}{\sqrt{21 i}}\right)
$$

How that we know how to fird the srots of two quadratic equations, "we night say " ${ }_{30}$ what". Well, the value of this knowledge is that we can solve groblems where we have two unimowns that affect two or wore phases off a problen. Using thase minomas, we axyress each pheme of the problem in the form of an equstion and solve the equations, As an exangaie, consider supply and giusand problens, If the functions for supply and demsand were quaratic equstions, esch with tha nare waknown, we oould find the wint where the crrves orosoed (equilibrimp point) and could thus toll at what prices surply would meet demanal.

Now try the probloms given bolow and see if you can get the ancwera given.

Exercianas

$$
\begin{aligned}
\text { 1. Solve: } 3 x-2 y=5 \\
x^{2}-x y+2 y=7
\end{aligned} \quad \text { Ans. }(x=3, y=2)\left(x=8, y=\frac{19}{2}\right)
$$

$$
\begin{aligned}
& \text { 2. Solves } 2 x y-3 y^{2}+1=0 \text { Ans. (xids yal) (onsy ono sointion) } \\
& 2 x=3 y+1=0 \\
& \text { 3. Solve: } 3 x^{2}-5 y^{2}=-5 \quad \text { Ans. }(x=5,5=4)(x=5 ; 5=-4) \\
& 4 x^{2}+y^{2}=216 \\
& \text { 4. Solye: } x^{2}+4 x^{2} \approx 4 \\
& x \geq 1 \\
& (x=-5 ; 5=4)(x=-5 z=-4) \\
& \text { Ans. }(x=-1.4,5 \infty-0.7) \\
& (x=1.4, y \times 0.7)
\end{aligned}
$$

7.5 Graphs of gugdratios.

The use of the zenthenstion procecures outisined above are fine, but ther can be somowhat tadious, so whonsver we can, we solve quadratic aquation problews with two unknowns with graphs. Tho mothor tis réally aimple and all we do is lay out c re graph and for each equation determine for various values of one variable the corresponding values of the other variablea. Then we plot the ordered pafr for ach equation and connsot the points. Examples of thia procedure are shown in Figares $7-1$ through 7alu. The prints where the curves cross are aclutions. In ploting the graph of quadratic equations,we mat be particulariy careful to ressember that where wo bave aquare roots thers are two encsers, plue and minus, for overy value. In addition, wo should instantily diemise any plota of negritive quantitios, when suoh cannot wractioaliy axist. Wo should recall fron an eariler chaptay that if wo have only oze wiknom, the solution lica on a stresight line perpondicuiar to that unkowis axis at the valus wralues of the unknown that satiafies or catiafy she equation.

How welll take the came problems as in section 7.4 and solve then by graphical mothods. The colutions aro thom in Figures 7ml through 7-4, reapectively.
(1)

 the following problems mould be no great offort. It is augented fiat sou solve the problems motiematioally and then solve them grapheally.

1. Solves $:=y=1 \quad$ Ans. $(x=3, y=2)(x-8, y=3)$

$$
x^{2}+y^{2}=13
$$

2. Solver $x+4 y=9$
$x^{2}+4 y=9$
Ans. $\left(x=0, y=\frac{2}{3}\right)(x=1, y=2)$
3. Solve: $3 x+4 y=7$

Ans. $(x=1, y=3)(x-49, y \infty-35)$ $x^{2}+x=2 y^{2}$
4. Solve: $x y-7 x+4 y=12$

Ans, $\left(x=8,5=\frac{17}{3}\right)(x=-2, y=-1)$

$$
3 y-2 x=7
$$

5. Solves $x^{2}+y^{2}=13$

$$
3 x^{2}-4 y^{2}=1
$$

Ans. $(x=3, y=2)(x=3, y=-2)$ $(x=-3, y=2)(x=-3, y=-2)$
6. Solve: $4 x^{2}-2 x y+y^{2}=3$

$$
8 x^{2}+6 x y-3 y^{2}=-4
$$

Ans. $\left(x=\frac{1}{2}, y=2\right)\left(x=-\frac{1}{2}, y=\sim 2\right)$ $\left(x=\frac{1}{x}, y=1\right)(x-2, y=1)$

ounprid 8

Fachassiok

8.1 Indroduction.

If we were to waik dow an avenue in a large city and oberved that firat we crosied Fings street, then Second Street, then Third streat, eto.s wo would aocn reelize that we tere crossing stroets which wero numored in some nequence. Unless we were deal cunces, the could heuristically determine tha'; the next street we would aross would probably have a number one unit greater than the number of the last streat se croased. If we try to visualize what has cocurred, we can see that whe heve followed some ruie or formula which indicates what the next street number will be. In this case, we have simply added one to the previous atreet naber. An orderiy sequencing of numbers such as this allows us to detsmanne wist the next, or the accond following, or the nth (where in is the Ifteral egmbol for the number we want) following number whll be. Suwh a sequence is winat is known in the mathomaticis worid as a progression, Due to the mathoratical manipulations involved, we classify progressions as boing eithor arjthmatic cs geometric progroasions.

8.2 Axithmetic Progressions.

Arithmatic progressions are those progressions in which the next nivaber is detormined by adding, or subtracting, a constant amount from the previous number. In our street crosaing example, we edded one to the previous number to determine the number of the next atreet wo would cross, If when we got to 30 th strect we decided to retrace our steps, we would assuma the nest street we crossed would be numbered ono less than tine most
reosnt atreet we had croesed, 29th akront. In thits caco, so bavo subtrected one. In othor arithmotic progreagione, it ie fiagolble thas.

Kinoulig what arithmatic progressions are and bow they are roswd, we con proceed to detomins any term in a prograssion onse se knôi no
 between terms. In order to reduce our confusion to a minisnor, wo inll
 dovelap a system for dotarmining the value of the nth (buers an gtands Sor the number of the term we are looking for) (orm of an aritinatic progression, First, we let the literal gymbol a atand for the ralue of the first term and the literal symbol d stand for the conatant difference bataeen tarms. Now we can exproes the toms of a five term progresesion as folluwa

By reflecting for a moment on the value of the multiplier of d, we can see that the valus of a term is equal to the valuo of the first term plus the namber of the term we nant, less 1 , times the comon difference. Symbolically, if we let the ifteral symbol t_{n} stand for the value of the term we are interested $1 n$, we gets

$$
t_{n}=a+(n-1) d
$$

Proof that this iommula mill work cen bo phom mationatically. For example, $\lambda e t a=4$ and $\mathrm{d}=3$ and astume that mont to find the walue of the seventh term: By substitutiong wet

$$
t_{q}=4+(7-1) \times 3=4+(6) \times 3=22
$$

He asn chsek this big doing it , the long way and gettings 4, 7, 10, 13, 16, 19, 22,

In goms cases, me may degire to knon not only the walue of the nth term but also the emmative total of the term in the arithmetic progression up to and including the nth term. Ons reacon might be to detemins total earnings over a period of time if we nere to stant with a stated salary and would receive yearly salary increases. An example would be trying to compare whether you would receive more woney over a ton year poriod of tima from a plan that started you at ol,000 a year whth \$100 yearly increases, or from a plan that started you at \$1300 a yoar
 each term and then add all of the values, however, this could invelve considerable work and would be a more complex problem. Therefors, letis develop a way to ifigure this easily. First, if we were to gum all the values and divide by the number of terms we would have the average value of the terms in the progression. It should follow, then, that if we know the average value of the terms and number of torms in a progression thut we can get the sum of the tarms in the progression just by multiplying the average valus by the number of torms. Fortunately for us, the average is easy to find when thexe is a constant difference between consecutive terms because all we have to do is add tho Pirst term and the last torm together and divide by 2. This can be proved mathematically but a fea examplea will suffice for this text. Assume the pragression is 1, 3, 5, 7.

Average $=\frac{1+3+5+7}{4}=\frac{16}{4}=1 . \operatorname{albo} 1+7 \approx 8$ and $\frac{8}{2}=4$. For the progression 7, 11, 15, 19, 23, the avorage $12 \frac{7+11+25+19423}{5}$ $=\frac{35}{5}=15$. A1so $\frac{7+23}{2}=\frac{30}{2}=15$. In we let s_{n} stand for the sum of the ralue of the first n terms, the the nth termand n for the number of terms, ge get the pollouing equations

$$
s_{n}=n \frac{\left(a+t_{n}\right)}{2}
$$

but

$$
\begin{aligned}
t_{n} & =a+(n-1)+ \\
\text { so } \quad S_{n} & =n\left[\frac{5+a+(n-1)]}{2}\right] \times n\left[\frac{\pi}{2}\right]
\end{aligned}
$$

In our example where $a=4$ and $d * 3$, we would ind the suin of the first 7 terms in the following manners:

$$
\begin{aligned}
s_{7} & =7\left[\frac{2(4)+(7-2)(3)}{2}\right] \\
& =7\left[\frac{8+18}{2}\right] \\
& =(7)(13) \\
& =91 .
\end{aligned}
$$

It is left to the student to prove this fact by adding the values of the 7 terms of the progression.

An infrequentiy been variation of the arithmetic progression is the harmonic progreasion. In a bammonic progression, we have a series of fractions, the reciprocals of which form an arithmetic peogression. An example would ver $\frac{7}{2}, \frac{1}{3}, \frac{1}{4}, \frac{7}{5}, \frac{1}{6}$, etc. For ease of computation, it would be best to always manipulate the fractions so that the mumerators were equal to 1. Then, knowing the reaiprocals form an arithretic progression, we can easily see that what we have is $\frac{1}{a}, \frac{1}{a+d}, \frac{1}{8+20}+\frac{1}{8} \frac{1}{3 a}$, otc.

Obviously, we detormine the ralues of the various demoninatore in the game wy ue determine the value of the nth term of an arithnotic prom grosston. Examples are given below. There is no known easy mothod of getting tine gum of the n terms of a bamonic progreasion.

Before going on to determining the values of nisging ternas; it wowld be wise to go through the following examples until you are cominyed of the correctness of the answern.

1. Find the eighth term of an arjthmetic progresgion where a o 8 and $d=5$.

$$
\text { Solution: } t_{8}=8+(8-1)(5)=8+35=43 \text { Ans. }
$$

2. Find the sixth term of an arithmatic progresaion where a $=5$ and $d=a$.

$$
\text { Solutiont } t_{6}=5+(6-1)(-6)=5-30=-25 \text { Ans. }
$$

3. Find the eeventh term of an aritimatic progrossion were a $=\frac{1}{4}$ and $d=\frac{1}{5}$.

Solution: $t_{7}=\frac{1}{4}+(7-1)\left(\frac{1}{4}\right)=\frac{1}{4}+\frac{6}{4}=\frac{7}{4}$ Ans.
4. Find the iourth term of the harmonic progression where the PIrst term is $\frac{7}{4}$ and $d=2$.

Solution: Find the reciprocal of $\frac{1}{4}$. It 164. Then $t_{4}=4+(4-1)(2)=4+6=10$. Fourth term ereciprocsl of 10 or $\frac{1}{10}$ Ans.
5. Find the fourtin tow of the hamonic progreselon where the first torm is $2 / 3$ and $a=3$.

Solution: Change fraction so that the naterator is ogesi to 2. To do this we divide nimerator and denoninatoce by 2 in the following nanner:

$$
2 / 3=\frac{2 / 2}{3 / 2} \quad \frac{x}{3 / 2}
$$

Then we find the reciprocal of the fraction. It $183 / 2$.
Thus $t_{4}=3 / 2+(4-1)(3)=3 / 2+9=\frac{21}{2}$
The fourch term of the harronic pingresston equale the reciprocal of $\frac{21}{2}$ or $\frac{1}{\frac{21}{2}}$ An $\frac{2}{21}$ Ans.

Wow that we know how to find the nth tem of an arithmetic zrogreasion, letis find a way to determine the values of terms in betreen two known terms. The vaiues of thess unnown terms ars called enfthretic reans. If We think of a straight line of fence posts as forming an arithratic prom gression, we can work up to our method for finding arithrietic means. Acsume between the first and last post that we want to put in 6 posts, giving us a total of efght posts, and that we want all posts equalily apaced apart. Then thu ifrst post wifiserve as the baginning of the ifrst space. The second post will serve as the end of the first space and as the beginning of the aecond oxace. The third post will serve as the end of the cecond saace as the beginning of the third space. Skipping aiong a bit, wo find the seventh post serves the end of the sixth apsce and the beginning of the seventh space, while the eighth post serves marely as the end post of the seventh space. Thus, we cee that there is one more post than the number of spaces. Fow if we attach consecutive term numbers of a progressition one to a pors, we can aee that the aifference of weluas of consecutive tems will be equal to the difference between the veluas of the first torm and the last torm divided ky a number equal to the number
of terms less one because there is one less number of apaces than there are posts. Symbolically, we could urcites

$$
d=\frac{t_{n}+9}{n-1}
$$

The value of a can also be obteined by solving the equation $t_{n}=a+(n-1) d$ for d. Having found the value of dgwe can then proceed to fara the wines of the missing torms.

Examples:

1. Find the 4 arithmotic means in the six team axithmetic progreesion where a $=4$ and $t_{n}=14$.

Solution: $d=\frac{14-4}{6 \pi}=\frac{10}{5}=2$
Arithmetic progression $=4,6,6,10,22$, Ih. Ans.
2. Find the 4 arithmetic means in the six term arithmetic progression where $a=4$ and $t_{n}=16$.

$$
\begin{aligned}
& \text { Solution: } \quad d=\frac{16-4}{5-1}=\frac{12}{5}=2.4 \\
& \text { Arithmatic progresaion }=4,6.4,8.8,17.2,33.6,16 \text { Ans. }
\end{aligned}
$$

3. Find the 3 harmonic means in the five torm hamonic progression where the first torm is $\frac{7}{2}$ and the last term is $\frac{1}{6}$.

Solution: The reciprocals of the fractions are 2 and 6, respectively. then $d=\frac{6-2}{4}=\frac{4}{4}=1$. Therefore, the values of the reciprocals of the terms are $2,3,4,5,6$ and the hamonic $\operatorname{series}=\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{2}{6}$ Ans.

8.3 Qeomatric Progressions.

Gsomstric progressions are those progressions in winich the successive terms difier from each other by some constant multiplier. The multiplier
can be either a fraction or a whole nusber. If we let a the value of Wha first term, $n=$ the number of the terms we are interested in, and r the value of the maltipleer, we would have the following values for the first five terns of a geometric progressions

First term	$=$	2	$=2 \mathrm{r}^{0}$
Second term	\cdots	first texm x	$2 x^{7}$
Thirad term	\square	second term x r	2
Fourth term	\pm	third term \times r	$=a r^{3}$
Fifth term	-	fourth term x r	$=2 x^{4}$

By inspection, we can see that the exponent of the constant multiplier is nol. Thus we can set up the general rule that:

$$
t_{n}=a x^{(n-1)}
$$

As proof, let us determine the seventh torm of a geometric progression in which $a=6$ and $r=2$. Substituting in the formula, we finds

$$
t_{n}=6 \times 2^{(9-1)}=6 \times 2^{6}=6 \times 64=384
$$

Cheching by multiplying each term by the multiplier gives us the follomins, terms: 6, 12, 24, 48, 96, 192, 384. It checks.

The most cormon application of geometric progressions is the determination of the amount of money we will have at the end of a certain period, if we invest it at a compound interest rate. In computing the amount, we must consider the initial amount invested as being the first . post in our line of fence pasts. Then at the end of the first period, we are at the second post, where the falus equals the amount invested plus the interest rate times the amount invested. Syribolically, if we let the Iiteral symbol A_{k} stand for the amount at the ond of period K, the Iiteral aymbol P stands for the amount initially invested, and the literal
symbol i stand for the period intorest rats, we could writes
For the and of first pertod $A_{1}=P+1 P$
For the end of gecond period $A_{2}=A_{1}+i A_{1}$
but $A_{1}=P+i P, 80 A_{2}=P+i P+i(p+i P)$

$$
A_{2}=p+i p+i p+1{ }^{2} p=p\left(1+21+1^{2}\right)
$$

Dactoring we get $A_{2}=P(I+1)^{2}$

We should note that the exponent of the multipler (1 + i) is the same as the subscript. K for A. Since it can be proved, but wont be here, that this relationship almays holds trues we generalize and write the equation as さollows:

$$
A_{k}=P(I+1)^{k}
$$

That is, the amount of money at the end of k poriods equals the initial investment multiplied by the factor 1 plus the interest rate raised to the k power.

As an example, suppose we invest $\$ 2,000$ at a compound interast rate of 5% per annum, compounded annually, and want to know how much monay we will have at the end of ten years.

$$
\text { Soiution: } \begin{aligned}
A_{10} & =P(I+1)^{10} \\
& =1000(I+.06)^{10} \\
& =1000(1.06)^{10} \\
& =\$ 1,790.80
\end{aligned}
$$

Note that this is the amount of money we will have at the end of 10 years. It is not the amount of interest eamed. Re doternine the amount of interest earned, we mast subtract out tri $\$ 1,000$ wisich we initialily investod. As another excmple, suppose we want to find out bow much interest an investment of $\$ 7,000$ will casn over 10 years if the
 Solutions Notice that there will he 20 periods so we ane looking for the amount earnsa over 20 periods. Thens

$$
\begin{aligned}
& A_{20}=1000(1+.03)^{20} \\
& A_{20}=1000(2.03)^{20} \\
& A_{20}=3,806.10
\end{aligned}
$$

But the amount of intorest earned equals

$$
A_{20}=A_{0}=\$ 1,806.10-1000=\$ 806.10 \text { Ans. }
$$

Gemotric progression procedures can also be sppiled in determining the anount of some charactoristic remaining of a material, if we know the rate of deterioration of the characteristic and the amount of the characteristic we are starting with. In this case, the multiplier kould be something less than one. It must be remembered here also that the initial amount corresponds to the first term so that at the end of the first period we are looking for the second term in the progression. As an oxample, let's assume we have a policy of spending half of the mensy we gtart a year with during that year, that we start with $\$ 1000$, and that we want to know how much we will have spent during the third year. Solution: What we really want is the difference witwan what we have at the end of the zecond year and the end of the third year. Since zero years is at the first term, we are trying to find the difference botween the third and fourth terms. To do so, lotig find the third and fourth terms and subtract the fourth term from the thind term.

$$
\begin{array}{ll}
t_{3}=1000\left(\frac{1}{2}\right)^{2} & t_{4}=1000\left(\frac{1}{2}\right)^{3} \\
t_{3}=1000\left(\frac{1}{4}\right) & t_{4}=1000\left(\frac{1}{8}\right)
\end{array}
$$

$$
t_{3}=t_{4}=\$_{2} 250-\$ 125=\$ 125 \text { spent during the chird year. }
$$

As with arithuratic progressions, we wsy decire to obtastn the ata of all the terms in a geowitric progreasion. For exargle, if we wars doubiling our bota at the dice table without winaing, wsient like to know hour unch we have lost, co wo will develop a formuld for the stus. If we let the ifteral symbol S_{n} stama for the oum of n terras, wo have
indicates that tarms heve beon loft out.)
Then if we multiply both sides of the equation by I , we get a second equation whore

$$
r S_{n}=a r+a r^{2}+a r^{3}+\cdots+a r^{n}
$$

How lot's subtract the second equation from the first and we will get

$$
\begin{aligned}
& S_{n}-r S_{n}=a+a r+a r^{2}+\cdots n^{a r}(n-1)- \\
& a r+a r^{2}+a r^{3} .+\cdots+a r^{n} \\
& \text { wifich sfuplifies into } S_{n}-r S_{n} \times 8-a r^{n} \\
& \text { winch can be further dimplified into } \\
& s_{n}(1-r)=a\left(1-x^{n}\right) \text { or } \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} \quad \text { or } \quad \frac{a\left(r^{n}-1\right)}{(r-1)}
\end{aligned}
$$

As an example, if ne want the sum of the first five torms of a goomotric progresaion in which a $=10$ and $r=2$, we would gots

$$
s_{5} \times \frac{10\left(2^{5}-1\right)}{(2-1)}
$$

$$
55=\frac{20(32-1)}{1}=\frac{20(31)}{1}
$$

$$
s_{5}: 310
$$

Where the number of temis increases mithowt linity, wa have wat is oel1od an infinfta goowstric serpeg. Finding the sum of the terms in this case is impossibie if our mitipilar is greator then 1 bocance a numer greater than 1 roised to inflnity is infinity. Where the multipiior is l , tho sum is also infinity because we woald bo dividing by zero. Honever, wion the mitiplier is less than ono, we can deterune a definito macinum sum or 1tmit for the progression because r^{n} approches zero and we wind up with

$$
S_{n}=\frac{2}{1-2} \text { or } \frac{-a}{r-1} \text { for } n=\text { infinity. }
$$

As an example,take the infinite geometric progression $2,2 / 3,2 / 9$ and determine the limit.

$$
\begin{aligned}
\text { Solutions } a & =2 x=\frac{1}{3} \\
& S=\frac{2}{1-1 / 3}=\frac{2}{3 N} \\
, S & =\frac{2}{\frac{2}{3}}=2 \times \frac{3}{2}
\end{aligned}
$$

$$
S=3
$$

In ordar to belp convince ourcolves that thare is no limit to those progressions whore the multiple is greater than 1 , let us woe what sum of money we would have spent after suffering 30 straight loveos at the dice table, assuming our first bat was one dollar and that everytime we lost, wo doubled tale amount lost on the iambet.

$$
\begin{aligned}
& s_{30}=\frac{I\left[(2)^{30}-1\right]}{(2-1)} \\
& s_{30}=\frac{1073761821-1}{1} \\
& s_{30}=1,073,761,823
\end{aligned}
$$

It is easy to soe that if we lost a fer more times, then owre weses would exceed the "riational debt". It is pretty easy to see now why if
 is greater than 1.
 as geonetric manns. Thus if we are given the ifret and last torms of a five term geometric progression wo would have three geonetric misns. Here the probiem is not as easy as considering a line of posta as we did With arithmotic progressions so we mugt go back to our formuls for doriving the valiae of the nth term and work backwards. Femombering that

$$
t_{n}=a^{n}-1
$$

we can see that knowing $t_{n,} n$, and a, we can solve for r. Doing so we got

$$
x^{n-1}=\frac{t_{n}}{a}
$$

or

Having found r,we can now determine the values of the milesing terms starting with t_{2}, then t_{3}, etc.

As an oxample, suppose wo want to ifind the gematric mans in the geomatric progrossion whare a $=16$, and $t_{5}=81$. (Obviously $n=5$, and we bave 3 geometric means).

$$
\begin{aligned}
& \text { Solution: Solve } \mathfrak{x} m(n-1) \text { 弯 } \\
& x=(5-1) \sqrt{\frac{81}{36}} \\
& x=\sqrt[4]{81 / 16} \\
& \text { F } 3 / 2 \\
& \text { then } t_{g}=26 \times 3 / 2=24 \\
& t_{3} \text { (} 24 \times 3 / 2=36 \\
& t_{1}=36 \times 3 / 2=54 \\
& t_{5}=54 \times 3 / 2=61 \text { (checks) }
\end{aligned}
$$

Exercises：

1．Find the nth term of the arithmetic progression whore a
a）$a=3$
b） $3-2$
c）$a=20$
$d=1$
da－1
$A=5$
$\mathrm{n}=8$
$n=7$
$n=4$
Ans． 20
Ans．$\quad .8$
Ans． 35

2．Find the sum of the irate n terms of the arithmetic progressions where：
a）$a: 4$
b）$=5$
d）$a=20$
$d=1$－
$d=-2$
d -2
$n=8$
n＝6
$n=4$
Ans． 60
Ans． 0
Ans． 68

3．Find the values oi arithmetic mans for the aritinnotio progromsion wheres
a）$a=6$
b）$a=12$
$t \delta=16$
虎 ${ }^{m}$
c） $2=5$
$t_{5}=15$
Ans．8，10，12，14
Ans． 60
Ans．1，$-3,=7,-11$

a) 6
b) $a=4$
c) $2=\pi 0$
≥ 3

$$
y=3 / 4
$$

$$
y=1 / 2
$$

$n=5$
$n=4$
$n=5$
Ans. 486
Ans. 2 nh/ 16
$A n \theta_{n}=20 / 16$

In problem 4.0, y you should note that the progression alternates
 - is equal to a minus numbs.
5. Find the and of the first a terms of the geometric pregreacion shares
a) $a \propto 2$

$$
z=3
$$

$$
n=4
$$

b) $\begin{aligned} a & =-2 \\ x & =-3 \\ n & =4\end{aligned}$
c) $\mathrm{a}=6$

$$
x=1 / 3
$$

Ans. $\$ 20$
Ans. $26 / 3$
6. Find the values of the geometric means for the geometric progression wheres
a) $2=1$
b) $\begin{aligned} & a \text { is } 16 \\ & t_{6} \times 1 / 2\end{aligned}$
c) $a=1 / 4$
$t_{4}=2$
Ans. 2,4,8
Ans. $8,4,2,1$
Ans. $1 / 2,1$

chatisu 9

LOARRITHEM

941 Intrioduction.

Mang mathensisice books begin the dovelopsant of tho torito of
 the stident or, in com wis, cauge this etudent to fooi that the nujoct 16 incomphonsibio. On the contrary, Iogarsthes are gasyg thes axo simpis a nathomatical tecmaquis with is principally used to fecilitato extremoly Iaborious arithmasic calcuiations. Buppose the stradent of arithretic were asked to evaluate the expression 15\%50. This is an arithmetic calculation which recquires the otzolent to matiply 25 by itcelf 250 thmos. This pporation would be tedious ard would requirs eovernit hours, of diligent work. After we have learned the mathematicsi techaique of logarithm, we will be able to carry out this computation and obtain an approximate ancwer in juist a lew minates. Keep this thought in rind as you road and work through the dovelopment of the theory of isgarithme. Rememor, it is principally neod to simplipy arithmotic calculations.

Now with that brie introciuction we are ready to digest the gomanat atieky definition refermed to above. The logarithe of a positive numor \$0 a given bace, other than i, is the exponent of the power to which the base mist be raiced to oqual the number.

This dafinition can be expresed as an equation if $=b x$, wiore N is the positive number, b is the baee which is greator than 0 and not equal to 1. Tho exponont is x and it is tho exponent to witich a baco b is raiced to produge a mover fin. The oquation, as expreseod above in the form if b^{x}, we ehail call the exponential form.
 follores:
the inmider on to the bage $13 x$.

To dexil on the definition of a logarthting have fnciedod oxtrciens
 equations ard vice Ferga. The strudent tinil fird it rogt helpiul to
 base 1s raliced to produce a muber. Lrotis try a sot.

Examples:

1. $2^{3}=8$

When we look at this problen we nould jrandately detrmine what ie the exponent or logarithm. We then can write

$$
\log _{\infty}=3
$$

Then we find the bade, or in othor words, the number witich is bering reiced to the poser. In this caee, the base 18 2. Wh than can 1111 in the base blank on the \log side of the oquation.

$$
\log _{2}=3
$$

We complete tine transtomeation by incerting the inaber that we cintain by raining 2 to the 3 power in its propor plece in the iogarithmic form.

$$
\log _{2} 8=3
$$

2. $5^{2}=25$

In logarithanc form this exprocesion becoricos

$$
\log _{5} 25=2
$$

3. $4^{3}=64$

$$
\text { Sixcilax18; } \quad 103_{4} 64 \times 3
$$

4. $34=61$

$$
\text { Then } \quad \log _{3}: 81 \div 4
$$

5. $15^{2}=225$

$$
\log _{15} 25=3
$$

The transfomation Prom 1ogarsthme to exponential form wist the reverce of the above operation.

Examples:

Transiorm the lolloxing logaritimace equations into their exponential forms.

1. $\log _{\mathrm{a}} B=\mathrm{C}$

$$
\mathrm{a}^{\mathrm{C}} \approx \mathrm{~B}
$$

2. $\log _{x} Y=2$

$$
x^{2}=I
$$

3. $\log _{10} 100=2$

$$
10^{2}=100
$$

4. $\log _{\theta} A=B$

$$
\theta^{b}=A
$$

5. $108226=4$
 $$
2^{4}=16
$$

The student thould rowreed and etudy the preceding part of this chapter until the basic prinoiples contained therein are well maretese.

Remomer aluay that a 10 garitin is an erporient. . . ard that
Iogaritins are a mathemoticsi teohniqua ucad to facilitato axitimetic compintations.

9.2 Iave of Iogarithais.

Whth the preceding bagie theory knom, we are now zesdy to discuse the basic laws of logarithens which winl tue oxtonsively in comoutation. In devoicoing thece relationships we witi we the rules of exponents which we have leamsd carijor which ares

$$
\begin{aligned}
& \text { Law A. } \quad a^{x} \cdot a^{y}=a^{x+y} \\
& \text { Law B. } \quad \frac{a^{x}}{a^{y}}=a^{x-y} \\
& \text { Law C. } \quad\left(a^{x}\right)^{y}=e^{x y}
\end{aligned}
$$

From these tiree exponential laws wo are able to derive awefil Jawe of Iogaritinns.

First Isw - Logarithm of a product
Rexriting the multipilication law of exponents

$$
a^{x} \cdot a^{y}=a^{x+y}
$$

Tranaferring this exponential equation into logarithmic form we obtain:

$$
\log _{a} x_{a} y \quad x+y
$$

but

$$
\log _{a} a^{x}=x
$$

and
therefore:

$$
\log _{a} a^{x} \mathbb{D}=\log _{a} a^{x+} \log _{a} a^{y}
$$

therefores in general terms

$$
\log _{a} K L=\log _{a} K+\log _{a} I
$$

 suin of the logs of the Iactors of the product to the eass baco.

$$
\begin{gathered}
\text { Fasof: } \log _{2} 8 \cdot 4=1 \log _{2} 8+\log _{2} 4 \\
\log _{2} 32=3+2 \\
5=5
\end{gathered}
$$

Sindinaly: $\quad \log _{x} A B C=\log _{x} A+\log _{x} B+\log _{X} C$

Second Law - Togerithm of a Guotient

Law B above for exponentg is

$$
\frac{a^{Z}}{a^{Y}}=a^{X-y}
$$

Expressing this exponential equation in logarithmic form

$$
\log _{a} \frac{a^{X}}{a^{y}}=x-y
$$

but

$$
\log _{a} a^{x}=x
$$

and

$$
\log _{a} a^{x}=y
$$

therefore:

$$
\log _{a} \frac{n^{x}}{x}=\log _{a} a^{x}-\log _{a} a^{x}
$$

or in general terms:

$$
\log _{a} \frac{K}{T}=\log _{a} K-\log _{a} L
$$

ox in words: the \log of a quotient expresed as a fraction, to a cerrain bace, is equal to the 10 g of the numator to that base minus the 10 g of the denominator to that eama bace.

Proof: $\quad \log _{2} \frac{32}{8}=\log _{2} 32-\log _{2} 8$

$$
2-5-3
$$

$2-2$

Rewriting len 0 100 exponents

$$
\left(a^{x}\right)^{y}=a^{x y}
$$

Transforming this exponential equation frito logturithres form

$$
\log _{Q}\left(a^{x}\right)^{Y}=x y
$$

but

$$
\log _{8} a^{x}=x
$$

Substituting

$$
\log _{a}\left(a^{x}\right) y y \log _{a} a^{x}
$$

or in general terms

$$
\log _{a}(K)^{I}=I \log _{a} K
$$

or in words. . The log of a number to a power to a certain base is equal to the power titis the \log of the neuron to that sans base.

$$
\text { Proof: } \quad \begin{aligned}
\log _{2}(4)^{3} & =3 \log _{2} 4 \\
\log _{2} 64 & =3 \log _{2} 4 \\
6 & =3 \cdot 2 \\
6 & =6
\end{aligned}
$$

Examples:

Iranaform using the laws of Iogarithess.
2. $708 \mathrm{~g} A B$

$$
\log _{b} A B=\log _{b} A+\log _{b} B
$$

C. $2 \cos x^{y}$

$$
\log _{b} X ; \log _{b} X
$$

3. $\log _{3} X$

$$
\log x=\log _{y} x-\log _{b} I
$$

4. $3 \operatorname{cg}_{\mathrm{b}} \sqrt{X I}$

$$
\begin{aligned}
& -\log _{c} x^{2}+\log _{b} T
\end{aligned}
$$

$$
\begin{aligned}
& 3 \mathrm{la} \text { 。 }
\end{aligned}
$$

5. $108 \frac{2^{3}}{\sqrt{5}}$

$$
\begin{aligned}
& \log \frac{2^{3}}{\sqrt{5}}-\log _{6} 2^{3}-108 \sqrt{5} \\
& \text { - } 31000_{0} 2-\frac{3}{2} 105
\end{aligned}
$$

9,3 Busge of logexthas.

Iogardturic tables hava been cocrextod for a base of 10 and a base of e (waich is equal to 2.718). Logaritime to the base e ape oalled
 the Jogaritinn of 6 loo the base o ($0=2.728$). The e bace is undorstond whon in is ueed.

Eogarithms to the bass 20 ave eritten uaing the symol 10 g sititout a bate uxitton in. Log 100 manne the logarithas of 100 to the base 10 . Again the 10 base is madorstoco. Logaxithres to the kask 10 arecalled
 numbering syotom is based on 10 and muntiples of 20 . \&t 10 our mestocing cyatisn juras from one to two integers, at 100 it jumen from two to throo and ev on. Tho reabon for the eelection of baes 10 whll becoms more apparent as ke loarn more about coroon logaritites.

Trio exponent to winich 10 mast be raisod to prodsco a given nu-bor is a cozinn logaritha.

Lece 10 m 1 wisioh mans	10^{1}	
$108100=2$ wisch neana	10^{2}	- 200
$\log 1000=3$ vilich texns	10^{3}	10
10g 10,000 4 watich rasus	10^{4}	10,

 the while number pari of a logaritha (sxponent of 10) which can big obtained by ingpoction. For wole newers, it volates to the misher of numbers before the decimat. The gantisen is the deoiral portion of the 3oganithen and it is obtained iroa a logarithate table alullas ba Tabla IT

 the logarithm of a coupla of numers and zeo how ensy trio proceas is. The strudent is oncouragod to rave a table of logarithote matiens availabie wille reading the rest of this chapter.

Another lak of logarithms which we will call tho foutbin les is offored here without proof. It coneorns transforing a legarithm from ons base to another. It is maitten gymolicalis as followss

$$
\log _{a} M=\frac{\log _{b} M}{\log _{b} a}
$$

This rule will be found usoful in tranaferring logarithss from a natoral base to a common base and vice verea. We will not have a great need for this rule in a managerent onfiroment.

Example:

'. Find the log 57.2

Remondoring that the $\log 10 * 1$ and $\log 100=2$, wo kerose that the $\log 57.2$ is comanere betwoon 1.000 and 2.000. This is what is reant by saying that wa can obtain the charactorietic of tho logaritina by inspection. In the case of $\log 57.2$, the charactoriatic of the logarithm

 we chratn 7374.

 th numer for which the leg is reessiod.

Exanpies

2. $\log 35=1.5441$
3. $\log 350=2.54411$
4. $\log 16.3=1.2122$
5. $\log 163=2,2222$
6. $\log 8.3=0.9291$

Since $\log 2=0$ becauco $10^{\circ}=1$ and remerbering tho $10 g 10=1$, it follows inai ke characteristic of a positive nober from 1 to 10 but
 particular eecquencs.
6. $\log 9.2=0,9638$
7. $\log 92 * 1.9538$
8. $\log 920=2.9038$

 antilogexitha of N. Usics exswolo 3 bove an an oxazple, wo coxid be told

Anothor usy to state the problem rould be to remsto the expasion in
 Finding N.

The uperation of findug the antilog is the roveree of finding the logarithas He should realize rifith away that since the charaotarioticic is 2, thers are too integsrs to the left of the deoimal. The atoual seguance of numers ie dependent on the mantiacs. To fird the antilog we go into the table to find 2122. This rantisas corresponds to the sequence 163. Our characteristic, to ropsat, tolls us that there ase two digite to the left of the decinal. So . . .

$$
\begin{aligned}
\log N & =1.2122 \\
N & =16.3
\end{aligned}
$$

It follows that if $\log N=2.2122$

$$
\eta=163
$$

Examples:
2. $\log \mathrm{N}=3.4997$
$\pi=3160$
2. $\log x=1.73 \%$
$x=54.9$
3. $\log I 2.6562$
$Y * 453$
345.
4. $\log \mathrm{A}=.40 \mathrm{xn}$

$$
=2.53
$$

$$
\mu \pm 1.53
$$

At this points the student ghould stoy and so back over the meterial cororsd co far in this chaptor again paying particular attontion to the pelifis witioh are not yot completely undorestood. The baste thoory of logarithwas has now boen covered. It is cmly necestary now to cover the osee of finding the logarithm of deoinal nusbers (witich aso negative) and then the case of finding the antilogarithn given a negative logarithac The payoff of logarsthas will com at the ond af the ofaptor whon we apply the tocinigue of legarithims to facilitate cumplox arithmotic computions.

9.5 Logarithms of Deoivay Numkers.

You will recall fyom our grevious discussions that the charectsristic of a logarithm of a numer from I to 10 was O. Now letis find tho logaritha of a decimal nuxber auch as .1.

$$
\text { or } \quad \log .1=X
$$

If we put this ecquation in axponential form it becomas

$$
10^{x}=.1
$$

x muat equal -1 aince $\frac{1}{10}=10^{-1}=.1$
It follows then that

	10g . 1 - -
Stutiarig:	log.01 - 2
	$\operatorname{log.001} \sim-3$
	108.0001 $=4$

ROM We are ready to find the logarithin of a nusbor suen as .324

$$
0 . \quad \log .324=3
$$

The logarition of a decimel numbr aleo han two parts, a charectoristic and a mantisea, just as ibs wole mubor counterpart. The logesithen of a
 be one more than the nuber of zoros juatiatoly folloung the dectued. The mantisea is obtained in the sam mamer that it was obtaingdin the Whols nusber cases, that is, by entering the log tables with the sequaseo of numbers and obtaining the correct mantiese.

$$
\text { Finds } 20 g .324
$$

The charactoristic is negative and ia ons more than the nuswor of zosos immodiatoly follouing the decimal; in this cage it it -1. The mantiona io obtained from the table by entering the vertical column at 32 and moving across horizontally to the 4 colvom. He resd 5105.

$$
\text { Then } \quad \log .324=-1.5105
$$

To facilitate the manipulation of logarithrea, a logarithm such as -1.5105 is conventionaliy exproseed as 9.5105-10.

Examples:

1. $108.00257=-3.4099=7.4099-10$
2. $\log .521=-1.7168=9.7168-10$
3. \log. 04 $4 \mathrm{l} \mathrm{s}=-2,6170=8.6170-10$

9.6 Finding the Antifiogorithm Givon a Nogative Logarithe

To find the antilogarithen given a negative logaritbes our procedure again is the revereo operation to inding a logarithra given a decimal number. The negative sign of a legaritha is tho irdieator or "clwe" that the aritilog is a deolzol number. The mantisen dotermines the eequence of

Exampess

Find the antilogarithens, given the followisg logaritims.

1. $10 \mathrm{gh}=9.64 \mathrm{l} 4 \mathrm{~s}-10=-1$ glath

Since the logasithm is negative, the antilog is s docinal, The mantiga yiolds a sequance of nwidere from the table of 4il. Since the number of zeroe inmediately following the decimal is one less than the absolute muncical vaiue of the charecteristics one less than one is 0 , thersfores.

$$
\begin{array}{lrl}
\text { sLisoe, } & \log N & =9.644 i 4-10 \\
\text { then, } & N & =.44 I
\end{array}
$$

2. $\log K=7.2201-10$
$4: .00166$
3. $\log x=8.3502=10$
$x=.0224$

9.7 Logarithmic Comprtation.

In order to grasp the toonniquo of logarithric computstion quickiy, we will work through a ainple arithsetio problem using logarithras. The basic nothod for each problem will be the ame.

Sropose we wers asked to cexry out the following calculation.

Our first stop is to cot X a to the computation required. I is the hnwer wo are trying to obtain.

Then,

$$
x=\frac{3^{2} \cdot 6}{9}
$$

$$
\log Z=\log \frac{3^{2} \cdot 6}{9}
$$

and $\quad \log X=\log 3^{2} \cdot 6=\log 9$ (By thas arcosid 1 am)

$\log X=2 \log 3+2006=\log 9(B y$ the thind $\operatorname{lan})$
Ho
$\log 3=.4777$
$\log 6=.7782$
$\log 9=.9542$
Then,
$2 \log 3=2 x \cdot .4771=.95152$
$+\log 6$ * +7782
1.7324
$-\log 9$ -096 .7782
Shereiore $\log x=.7782$
The next stop is to take the mitilog to obtain X

$$
X: 5.0
$$

This certainly looks like quito a bit of werk to obtain an ancuror which we cowld have obtained sixply by carming out the ludiostod oporations to iutain 6.

$$
\frac{3^{2} \cdot 6}{9}=\frac{9 \times 6}{9}=6
$$

Now letts do the computation

$$
36^{5}
$$

This corpotation conid also the done guite earaly by aritheotic.
 cospratation. Again, get \dot{X} equal to the ocmpatation $X=3 \mathcal{S}^{5}$:。

TLen, $\quad \log X=10 \mathrm{~g} 385$
$\operatorname{sind} \quad \log X=5 \log 36$ (by the tindra $10 x$)
Esing the log tables
$10836=1.5563$
Then, $\quad 5 \times 1.5563=7.7615$
Thung \quad Iog X $=7.7815$
Ow next step is to take the antilogerithe. Going into the teble, we Iind that there is no exact mantibsa 1isted for 7815. The nsmifisas In the teble shich straddle thas value are:

7818 which corresponds to the ecquenes 605 and
7810 which corresporde to the exequence 604
Wro are looking for the sequence which corresponds with the mistisa 7615. We approximate this eequence by going through a litile bit of mathesatical gymastics called interpolation. The eequence corresponding to 7815 is ecxomere betspeen 6040 and 605 C . The sequence is approximated by taking $5 \times 10=6.2$ since 7815 is $\frac{5}{8}$ of the distance betrieen 7810 and 7818, or reforring to the log table the 5, 8 and 10 are obtained as folloms:

$$
\begin{array}{r}
7815 \\
-7810 \\
\hline 5
\end{array} \text { and } \begin{array}{r}
7818 \\
-7810 \\
8
\end{array} \quad \begin{array}{r}
6050 \\
-6040 \\
\hline 10
\end{array}
$$

Therefore, the coquence correoponding to 7815 is 6046. We have interpolatod in truro place tables to obtain a fourtin ylace, wilich is the best we can oxpoct froz this approxdmate agprach. Thorefore, the . 2 is dropped. If
 Ifgure 6047. With a characteristic of 7, we know that timere ame 8 digits to the left of the decimal. Our agatoxasio ancrer to the compatition 365: then is

$$
\bar{X} \quad 60,460,000
$$

A more exact answer would require a wore completo sot or logasitimic mantiases.

9.8 Interspolation.

In the exaple above, the student has beon exposed to the technique of interpolation, The student would be wine to fiex this as a menc of oktaining one more significant figure from a toble of x eignificant figures. Jsing perhaps a coareer vernanuar, we are approximeting an answer using 25 和 tables rather than bugins the 50% higher pricod varietor. We axe "approximating" becauce we are aesuming a stanigit line or uniform change betwsen any tro numbers in the taible, when in fact it is not. It is an exponential relationship. This is another resson wing wo dropped tha .2 in the previous example.

Leis's now use our three place tobles to obtain a logarithm of a forr place number.

Find log 2733.
We proceed as follows. We place our numor bstrisen the two numbers which "stracide" it in the table. Since it is betasen 2730 and 2740 , we can arrange our problen as follows:

We can Ind the mantises which comesponi to the semponeen 2740
 locking for then is approximately $\frac{3}{10}$ of the distance betrana 4362 and 4378. (4378-4362 16)

Therefore,

$$
\sqrt[3]{10} \times 16 \times 4.8 \quad \text { easy } 5
$$

The mantissa then is $4362+0005=4367$ and $\log 2733=3.4367$. He could also solve for the mantis by getting up proportion where

$$
\begin{aligned}
& \frac{x}{16}=\frac{3}{10} \\
& x=\frac{3}{10} \cdot 16=4.8=\sin 5
\end{aligned}
$$

Interpolating to obtain the antilog is the process we used in the last example, under logaritinnic computation above, to obtain the fourth significant figure. It is considered worthwhile to do one rare example problem in this section. In this case, we will be finding the antilog of a negative logarithm (which all know mast be a decimal).

Find N if $\log N=8.4688-10$
Remencor that the characteristic 8 \qquad -10 or a merely tolls us that in has one 0 to the right of the decimal point. The reantiese falls between 4683 kind 4698. A recommended way of getting up the problem is as follow as:

Therefore, the sequence we are looking for is about $\frac{5}{15}$ of the distance From 2940 to 2950 , which is 10.

$$
\frac{5}{5} \cdot 10=3.3 \text { Say } 3
$$

or by proportion $\frac{x}{10}=\frac{5}{5}$

$$
x=\frac{5}{5} \cdot 10 .=3.3 \mathrm{Say} 3
$$

Itarefore, the sequence is

$$
2940+3=2943
$$

Then

$$
\mathrm{N}=.02943
$$

Exercises:

1. Express the following in logarithmic form
a) $5^{4}=625$
Ans. $\log _{5} 625,4$
b) $32^{1 / 5}=2$
Ans. $\log _{32} 2=1 / 5$
c) $7^{-2}=1 / 49$
Ans. $\log _{7} 2 / 49=-2$
d) $10^{-4}=0.0001$
Ans. $\log _{10} .0501-4$
e) $a^{b}=0$
Ans. $\log _{2} \mathrm{C}=0$
2. Express the following in exponential form:
a) $\log _{6} 36=2$
Ans. $6^{2}=36$
b) $\log _{8} 32-5 / 3$
Ans. $85 / 3=32$
c) $\log _{27} 1 / 9=2 / 3$
Ans. $27^{-2 / 3}=1 / 9$
d) $\log _{17} 1=0$
Ans. $17^{\circ}=2$
e) $\log _{x} y=z$
Ans. $x^{2}=y$
3. Express as a sum, difference, or multiple of logarithm of simpler quantities:
a) $\log _{4}$ uv
b) $\log _{3} \sqrt[5]{4}$
c) $\log _{a}\left(b^{c} d^{f}\right)$
d) $\log _{10}\left(25 / 3^{4}\right)$

Ans. $\log _{4}{ }^{2}+\log _{4} \nabla$
Ans. $2 / 5 \log _{3} 2$
Ans. $c \log _{a} b+f \log _{a} d$
ans. $5 \log _{10} 2-4 \log _{10} 3$

a) 45.8
Ane. 1
b) 27,800
Ans. 4
c) $93,000,000$
Ans. 7
d) 0.1
Ans. -1 or $9=10$
e) 2.674×30^{-3}
Ans. -3 or 7-10
5. If $\log \mathrm{N}$ has a mantises angh that the gignificant digits of N are 3406, find N for each of the following charecteristics:
a) 1
b) $i-10$
c) 11
d) -3
e) 10^{2}

Ans. 34.06
Ans. . 03406
Ans. $340,600,000,000$
Ans. . 003406
Ans. 3.406×10^{100}
6. Compute the following using logariting:
$\Rightarrow \frac{83.40 \times 2.019}{0.000006423}$
Ans. 233,500
b) $\sqrt[3]{\frac{86.37}{6.143}}$
c) $(2.138)^{3} \times(1,2.10)^{-2}$
Ans. 2.414
d) $(-0.03420)^{1 / 3}$
Aras. . 005513
e) $(-12.36)^{-2 / 5}$
Ans. -0.3249
Ans. 0.3658
7. If a curve in a road is banked to provent glade or orerturning at ∇ ailee per hour, proper olevation (h) in leat of the outaide edge is given by:

$$
\frac{h}{v}=\left(\frac{2 \pi)^{2}}{15}\right)\left(\frac{1}{8}\right)
$$

Find in for $g=32.16, x=4000, y=20.0$ and $v=10$
Ans. 0.697
8. Find the following logarither using a tablo of coczon Iogaritima.
8) $\ln 0.39$

Anss. $9.0584-10$
b) $\log _{5} 2$

Ans. 0.4306
c) $\log _{100} 31$
9. Solve for the malnowat
a) $2^{x+6}=32$
b) $10^{2 x-3}=43$
c) $2^{3 x}=3^{2 x+1}$
d) $\log _{3}(x+1)+\log _{3}(x+3)=1$
e) $\frac{\log (7 x-12)}{\log x}=2$

Ans. -2
Ans. 2.3168
Ans. 09.32
Ana. $0,-4$
Ans. 3,4

CALDEKU

Abstract

10.1 Introduction.

We have previonsly covered sust of the ganipulations that cas be performed on aigebraie equgtions. We have sees hot cans (1) Sactor thera (2) graph theas and (3) soive systers of equations to detersine equatione to help ns solve probless. We atrill must, bowevor, fuventisato says of predicting the affect vaxying the value of coe vaciable will have on the othor varisble or varisbles. For esample, if ware driving aions a highray between tro cities, what affect will cbangirs our speed have on the tive it takes us to wals the trip?

In order to find the various times for all the verion poseible speeds, we could make numarous calonlations and dovelop a table, we could determine a few relationshipe, dras \& graph and then read from the graph, or we could detormins the relationship for ono apeed and deterredin an average rato of change in timo ior cach incremontel change in epoed. Then we could take own known relationchip, and knowing the inoremental change in epsed, cosputo the tirs it takes to corpleto the terip. It is this latter process that is koosn as calculus. In othor woxds, caleulus is morely the procoes of finding hors muh the dopendent variable vames for incremental changes in the ralue of the fnderondent variable. When we want to coroute the rato of change for extremaly cuall changes in tha value of the indopondent variable, we got what so call the instantaneous rate of change. The datormination of the instantuanacia rate of change is comandy called differontral caloulus.

 not worry becmusa moct of the eçustions oncountered in mangerant are not complicated. Sow that wo know what cslculug 13 , letle proceod and determse hon it helps us predict the effecta of changing the value of the independent variablo.

10.2 Pipgt Pringiplos of Cgloulus.

In orier that wo moter undarstand the forzalag that we will later uee in differentisi calculas, let's develop cor om rate of change for a rathar aimple problew. For ease of Eollowing, latis sssum that we have oniy two viriableas namely, x, the indupendent varisble, and J, the dspendent varibilo. Lettis aldo sgree that wo will represent senil changss in the varimble x by the gymbl fitand anall changes in the variable \bar{y} by Δy. The atudent is cautioned that the rasiables could have eny litoral symble asaignad to them, but that by convention ris usually wes x and y. The case in which we have more than tro parisbles will be taicon water.

Letfs procead noz and see what haprone to the dopendont varı ile, when wh change the indegendent Fariablo alisht ift. It chould bo
 befoze so could hope to detemine the effects of cingigins the value of the independent variabla by a slight bit. For pioryoses of expianation, let's agsue the relationchip is expreseod by the aquations

$$
y=3 x^{2}+x+2
$$

Since the rothod we will ues in the basic theory bohind calculus, we call it the firet principles of csiculus.

 relationehip given abore, wocld mey

$$
\begin{array}{ll}
& y+\Delta y=3(x+\Delta x)^{2}+(x+\Delta x)+2 \\
\text { or, } & y+\Delta y=3 x^{2}+6 x(\Delta x)+3(\Delta x)^{2}+x+\Delta x+2 \\
\text { or, } & \Delta y=3 x^{2}+6 x(\Delta x)+3(\Delta x)^{2}+x+\Delta x+2-y \\
\text { but, } & y=3 x^{2}+x+2 \\
\text { so } & \Delta y=3 x^{2}+6 \pi(\Delta x)+3(\Delta x)^{2}+x+\Delta x+2-3 x^{2}-x-2 \\
\text { or } & \Delta y=6 x(\Delta x)+3(\Delta x)^{2}+\Delta x
\end{array}
$$

How if we want to get the avarage raive of change of \bar{y} with reapect to changes in x, we must divide the change in value of our y variable, whets is ΔY, by the change in vaius of oue z variabie, with ie Δx. Eovevor, since we must parform exacty the eam operstions to both aides of an equation to retain the validity of an equation, we mast aivide bota aides of the equation by Δx, if wo want to obtain the arease rate of change of Δy with rerpoct to Δx. This then giver vos

$$
\frac{\Delta y}{\Delta x}-\frac{6 x(\Delta x)}{(\Delta x)}+\frac{3(\Delta x)^{2}}{(\Delta x)}+\frac{\Delta x}{\Delta x}
$$

canceling out on the right oido, wo find

$$
\frac{\Delta y}{\Delta x}=6 x+3 \Delta x+1=\text { the averazo rate of cosince }
$$

Thus, we can see that the rato of change of the vale of tho depersdent variable uith reapect to the indepordent variable ie 6 treas the vinas of the indopondent rariable plus 3 tieos tho ohango in the ixdopardent

 finto ow lagt formia Plods

$$
\begin{aligned}
& \frac{A Z}{1}=6(3)+3(1)+1 \\
& \text { or } \quad \Delta y=18+3+1=22
\end{aligned}
$$

 to bo.

Sinee we normally want the instantaneous rato of change, that is whon $A x$ is extremely amall, we will work througin only tao probless of finding $\frac{\Delta}{\Delta X}$ before pocecding on to the comespt of differential calculus.

Ezerciess:

1. Find $\frac{\Delta y}{\Delta x}$ for $y=x^{2}+x+5$

$$
\begin{aligned}
\text { 801ution: } y+ & \Delta y=(x+\Delta x)^{2}+(x+\Delta x)+5 \\
& \Delta y=x^{2}+2 x(\Delta x)+(\Delta x)^{2}+x+\Delta x+5-y \\
& \Delta y=x^{2}+2 x(\Delta x)+(\Delta x)^{2}+x+\Delta x+5-x^{2}=x-5 \\
& \Delta y=2 x(\Delta x)+(\Delta x)^{2}+\Delta x \\
& \Delta y=2 x+\Delta x+1
\end{aligned}
$$

2. Find $\frac{d y}{d^{x}}$ for $J=6 x^{2}+7$

$$
\text { Soluticaz } y+\Delta y=6(x+\Delta x)^{2}+7
$$

$$
\begin{aligned}
& \Delta y=6 x^{2}+52 x(\Delta x)+(\Delta x)^{2}+7 \infty y \\
& \Delta y=6 x^{2}+12 x(\Delta x)+(\Delta x)^{2}+7 \infty 6 x^{2}-7 \\
& \Delta y=12 x(\Delta x)+(\Delta x)^{2} \\
& \Delta y=12 x+\Delta x
\end{aligned}
$$

10.3 Difforentusting.

Knowing how to find the yato of chacke neing the first priscipleas

 and Δy to dy. Symolically, wito the fact as follomst

$$
\frac{d y}{d x}=\frac{\mu i x d t}{\Delta x+0} \frac{\Delta y}{\Delta x}
$$

 valuss of the pariable. The degree of the change is all thent difiecs. That is, ax mens a very very eall change. Tharofore, would tallo the

$$
\begin{aligned}
& \frac{\Delta y}{\Delta x}=6 x+3 \Delta x+1 \text { to } \frac{d y}{d x}=6 x+3 d x+1 \\
& \frac{\Delta y}{\Delta x}=2 x+\Delta x+1 \text { to } \frac{d y}{d x}=1 x+d x+1 \\
& \frac{\Delta y}{d x}=13 x+\Delta x \text { to } \frac{d y}{d x}=12 x+d x
\end{aligned}
$$

and

Now, if wo considor $d x$ to ho infinitocival, wo aas dxop sil terms witch
 zero. Tinus, we roald not affoot owe acourecy rery much by dropping the tom with dx. Our equations tould nour rawds

$$
\begin{aligned}
& \text { 然 - } \\
& \text { 害 }-2 x+1 \\
& \text { asd } \\
& \text { 变 } 12 x
\end{aligned}
$$

 xits of ctarga．

 urito $6 x^{0}$ ，we writo just piain 6．Looking at it in tian ras，wo can 000
 miltuly by the oxpersat of the 1 ciopomiont variadio，sero，eot poro．

 wito the geweral oxfocaicmy

$$
\begin{gathered}
y=4 x^{8} \\
\text { and } \quad \text { 曼 }=x x^{50-1}
\end{gathered}
$$

5xandasa

Differentist the Policuits agutions:

1. $y=3 x^{3}+4 x^{2}+5 x+1$

2. $y=16 x^{2}-6 x+1$

$$
\begin{gathered}
\text { Solutions } \frac{d y}{d x}=(2) 16 x-(1) 6 * 0 \\
\frac{d y}{d x}=32 x=6
\end{gathered}
$$

3. $n^{-} n^{2}+n-16+n^{-2}+5 n^{-1}$

4. $t=r^{2}+3 \quad$ Ans. $\frac{d t}{\alpha t}=i x$
5. $8-160+5$
6. $y=17 x^{4}+6 x^{2}+5$

Ans. $\frac{\sigma \pi}{\alpha(2)}=16$
Ans. $\frac{d y}{d x}=68 x^{3}+12 x$
7. $=32 *^{2}$

Ans. $\frac{d o}{d t}=64 t$
10.4 pifforsertsicion of Righor Orders.
 of cisazjo then we rant. For axaple, if wo santed the rato af change of tho rato of chango, wo mond steply tata the derivativo of the dorivativo

 dependont ranisble concernad and after the syzol of the isispondert Fariabie. For examplo, the zocoud corifative of y with rerpect to x is

Sxoreisess
Find the dorionitive tralicated in the falioning equations.

1. $\frac{d^{2} y}{d x^{2}}$ for $y=3 x^{4}+4 x^{3}+2 x+5$

Solution: $\frac{S^{2}}{d x}=12 x^{3}+12 x^{2}+2$ derivative of $\frac{\text { gy }}{d x}=\frac{d^{2} y}{d x^{2}}=36 x^{2}+24 x$
2. $\frac{d^{h} y}{d x^{4}} f 0 x y=x^{5}+6 x^{2}+3-x^{-2}$ Solutione $\frac{d y}{d x}=5 x^{4}+12 x+2 x^{-3}$

$$
\begin{aligned}
& \frac{d^{2}}{d x^{2}}=20 x^{3}+12-6 x^{-4} \\
& \frac{d^{3}}{d x^{3}}=60 x^{2}+214 x^{-5} \\
& \frac{d^{4}}{d x}=180 x-120 x^{-6}
\end{aligned}
$$

xand
3. $\frac{d^{2} y}{d x^{2}}$ for $y=4 x^{2}+6 x+10 \quad$ sor0. $\quad B$

10.5 Darirativea th titre Then 2 Vardablos.

In yona cases we say fird that a rarisble is copoxient mon more than one indeposient varishle. For oxamio, T weht bayondent npon a arditas chown in the Following equationi.

$$
y=x t^{2}
$$

In this case wo can take tise derivative of y with reopect to ons of the imopencent variables and consider the other one to be constant. This is what is callod partital differsontintiog, Then no take a pastal dasivative, we take the derinative with respect to one variable and censider everything else to be a constant. If we take y fa^{2} and find the first derivative with respect to fi, we would get:

$$
\frac{d y}{d t}=(2) n t \cdot 2 \pi t
$$

With respect to A , we getz

$$
\frac{y}{d i n} \cdot t^{2}
$$

Bamber rox, oxch of thoco is a parital derivitivo. If we want to got the total rate of charge we wold have to mandralate the cequations no that only tho dyte wary on the lost side of tho equations. In own ofarole, wo would havo:

$$
\text { (1) } d y=2 x t(d \hat{y} \text {) (Difforentimu with roapect to t) }
$$

 *)

$$
\alpha=2 x+(\alpha t)+t^{2}(\alpha)
$$

 given.

Exaty

1. Find the partial derivative with rempot to n for

$$
y=x^{2}+a+x^{2}+x
$$

Solution: Consider x to be a constant

$$
\frac{8 y}{6 y}=20+1
$$

2. Find the partial corivative aith roepect to x Ior

$$
y=a^{2}+m+x^{2}+x
$$

Sclution Considor a to be a cozituant

$$
\frac{d x}{d x}=2 x+1
$$

3. Find the total dorivative of

$$
\begin{aligned}
y & =n^{2}+n+x^{2}+x \\
d y & =(2 n+1) d x+(2 n+1) d x
\end{aligned}
$$

Ex, (2)
I. Fird $\frac{d y}{d}$ for $y m^{2}+m+x \quad$ Ans. $2 \pi x$
2. Find $\frac{\text { 学 }}{x}$ for $y=E^{2}+x a+x$, Aes. $n+1$
3. Find $\frac{d y}{d x}$ ㅇor $y=x^{3}+x^{2}+x^{2}$ An3. $x^{2}+2$
4. Fink $\frac{\partial}{d}$ for $y=w^{3}+x^{2}+x^{2}$ ans $3 x^{2}+2 \times$
5. $\operatorname{sind} \frac{d^{2} y}{x^{2}}$ fox $y^{2}=x^{3}+x^{2}+x^{2} \quad$ dns. \quad ta $+2 x$
6. (1nd $\frac{d^{2} y}{d x^{2}}$ for $y=x^{3} * x x^{2}+x^{3}$ Ans.
7. Find $\frac{\text { Gy }}{\text { Ex }}$ fox $y=z^{2}+n^{2}+x^{2}$ Aros. x
9. Find $\frac{y y y}{d y}$ for $y^{2}+\mathrm{m}^{2}+\mathrm{m}^{2} \quad$ Ans. 2 a
9. Find $\frac{d y}{d y}$ for $5 * n^{2}+x^{2}+x^{2} \quad$ Ans. $2 x$
10. Fird totel derivetivo for

$$
y=m^{2}+n^{2}+x^{2} \quad \text { Ans. } \quad 2 x d x+2 x d i n+2 x+2
$$

10.6 Special Derigativoa.

While all equations can bo difforentiated by the first prizaples, the work ixvolved cosetivess becomo unduly lengthy. For this reason,
 aro listad below, with an exatple of exoh. The formulas used are offered withoet proois

$$
\begin{aligned}
& \text { 这 }-n x^{(i x-1)}+(n-1) b x^{(n-2)}+(n-2) a x^{(n-3)}+a-m 0 \\
& \text { Examis: y a } 3 x^{2}+2 x+3
\end{aligned}
$$

$$
\frac{\dot{y}}{d x}=6 x+2
$$

2. Froduets of terans, say \bar{y} " (u) (v)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d u}{d x}(\nabla)+\frac{d v}{d x}(B) \\
& \text { Examples } y=\left(x^{2}+3\right)\left(4 x^{4}+5\right) \\
& \frac{d x}{d x}=2 x\left(4 x^{4}+5\right)+16 x^{2}\left(x^{2}+3\right) \\
& \frac{d y}{d x}=8 x^{5}+10 x+16 x^{5}+40 x^{3}=24 x^{5}+48 x^{3}+10 x
\end{aligned}
$$

3. Cootients of tarras, way $y=\frac{u}{V}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
& \text { Exampiez } y=\frac{x^{2}+3}{x} \\
& \frac{d y}{d x}=\frac{x(2 x)-\left(x^{2}+3\right)(1)}{x^{2}} \\
& \frac{d y}{d x}=\frac{2 x^{2}-x^{2}-3}{x^{2}}=\frac{x^{2}-3}{x^{2}}
\end{aligned}
$$

4. Derivative of functions of a funstion, $e a y ~ y=x^{n}$ vare a is a function of x.

$$
\begin{gathered}
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \\
\text { Exargie: } y=4 u, \text { whero } u=x^{2}+2 \\
\frac{d y}{d u}=4, \frac{d u}{d x}=2 x \\
\frac{d y}{d y}=4=2 x=8 x
\end{gathered}
$$

Evercicos:

1. Differentiato $y *\left(x^{2}+1\right)\left(x^{2}\right)$ Ans. $4 x^{3}+2 x$
2. Difiorentiate $y=\left(x^{3}+3 x\right)(x+1)$ Ans. $4 x^{3}+3 x^{2}+6 x+3$
3. Dificrentiate $y=\frac{x^{3}+2}{x^{2}} \quad$ Ans. $\frac{2 x^{4}-l x}{x^{4}}$
4. Differentiats $y=\frac{x^{4}}{x^{2}+1}$
sxeme $\frac{2 x^{5}+4 x^{3}}{x^{4}+2 x^{2}+1}$
5. Difierextiate $7=\frac{3}{2} x^{\frac{3}{3}}$ where $u-x^{2}+4$
6. Diecereatiate $y=6 u^{-3}$
where $u=z^{2}$

Ans, $\quad 3 x\left(x^{2}+4\right)^{\frac{2}{2}}$

Ans. $-36 x^{-7}$

The etrient chould roesil from ox origimal derivation of the first

 happen in Figura $10-2$ if wo lot Δx apreach maro.

 tho live tangent to tho ouvo et (x, y). Kren this ocoms, Δx bae
 at point (x, y). It chosld net bo coldert to tho otainent that tha slopo of tise ourve at ony partevar poins is oren to tho elogo of tho lino

 of the frantion at any point on the carre.

If we bad the frowtion

$$
\begin{aligned}
& y=6 x^{2}-12 x+2 \\
& \frac{d y}{d x}=12 x-12
\end{aligned}
$$

The expression, 12x-12,18 the slops of the curpe $y=6 x^{2}-12 x+2$ at any point. If it were nocemasy to obtain tso slow at a parbicciar
 expeesion $\quad 12 x-12$

Then $12(-1)=12$

$$
-12-12=-24
$$

 siope, melh.

At $x=0, \quad 12 x=12$
$12(0)-12=-12$
the aiope aquals .. 12.
$A t x=+1, \quad 12 x-12$
12(1) $-12=0$
the slops io eero, theratore the slope of the curve at the point $x=1$ is parsilel to tho x suis.

$$
\begin{array}{ll}
12 x=2 s & 12 x-12=0 \\
& 12(2)-12 \times+12
\end{array}
$$

$$
\text { at } x=3, \quad 12(3)-12=+24
$$

Tho fumation y - $6 x^{2}-12 x+2$ is cizotohod in Figure 1002. sho y

Pigwo 10-2

You bill secall from our study of innear equations that an equation such as $y=2 x+4$ is in the slopemintercopt forn of the equation. The graph of kinis equation was a line uith a slope of +2. Lat's see wiat happens if we take this aquation and differontiato it.

$$
\begin{aligned}
& y=2 x+4 \\
& \frac{d y}{d x}=+2
\end{aligned}
$$

The first derivative is the coarificient of x which wo alreacy know is the slope of the squation of this line. If wo moderetand the sizxile concept of slope as sovered in the choptar on Jinew oquaticns and as
 relative madem or minina points or points of inflection of graphe of functions will be very simple.

Now, wist do wa raan whon wo say maxims, winizna, rolative maimen or relative minimu peints? In tias grapin of the parabola in Figure $10-2$.
the point ($1,-4$) is definitely a minimu point on the grank sure thore is no pogible value of x which can be substitutod in the equation, nitich whll rasult in a lower valus of y than id. A parabola such as tha ore sisetched in Figure $10-3$ would have a definite maximua at $x=0$.

Figure 10-3

Figure 10-4

At any other value of x_{2} the value of y would be lese than soro. Looking now at the function sketched in Figure 10-4, we can see that as x decreases to the left of point A the corresponding yalue of y also decreases, As X increases to the right of point B the corresponding valus of y also increases. There obviousiy must be higher y values than the \bar{J} value at point A and lower y values than the y value at point B. Point A, tion is referred to as a rolative maximu point, and point E is referred to as a relative rinimum point. The explanations above are prosented uithout the uce of formal definitions. The student is invited to develop in his om words appropriate definitions for theco concopts. It ohould be noted by tise stivent that at the turning points in Figures $10 \mathrm{~m}, 10 \mathrm{~m}$, and $10-4$ s the slopes of the ourre and of the tangents to the ourve are equal to zero.

The shope of a carro ozin also agual sero at points of infleotiou, The strient ghovid tarn ahead to Figures 1007 exd $10-8$ to eco what points of inflection look like. We sill stumy tham in cietail in awsection 10.5 .

At the ecoritnates (2,-4) of Figure $30-2$, we found that the 810 wa wa gero. This point coincidod with the sinimus yoint on the grach. Tha shudent should also realise that as weored along tho curve froa $x=0$ to $x=2$ ovr alope went from - to 0 to + or the "xate of change* of aloge in tiast ares mas positive.

Hemriting our original froction

$$
y=6 x^{2}-12 x+2
$$

and difierentiating

$$
\frac{d y}{d x}=12 x-12=810 p 0
$$

To obtain a point wiere the alope is zeso, we sivgly sot the expressdon we have obtatned as ous pirgt damivative aqual to zero and colve for the unkown, in this case x.

$$
\begin{aligned}
12 x-12 & =0 \\
12 x & =12 \\
x & =1
\end{aligned}
$$

Therefore, at $x=1$ we know the slope is 0 . (Ho then knose that we have a maxima or minimu point or "point of inflection as will bo chown lator). What then is the y coordinate at this points This is obtainod by oubstituting the ralus of $x=1$ in the oxiginal equation.

$$
\begin{aligned}
& y=6 x^{2}-12 x+2 \\
& y=6(1)^{2}-12(1)+2 \\
& y=-4
\end{aligned}
$$

 that the joint ial a duisum point. Suppoca, howover, teat wadd not
 point. Wh can deterraise this without plotting the gravh by tading the second derivative, and then ewbetituting the value of x for whith we knear that the alows is qeco. Since tho firet darivative givea us the slope, or the rats of change of \bar{y} with regpeci to x, the eecirad derivative chould give us the rate of change of the first derivative rr rate af change of slope sith respect to x at axy valuo of x. If ths glope rate is positive, we zhould obtain a positive Ifgur when ws subtitate ow valus of x vaere the slope is zero in the second dexivative oxpression. The rovers is trua if the slope yate is negative at the ralue whero the slope is sero.

In the parabola exaniple

$$
\frac{d y}{d x}=6 x-12
$$

Ito cecond derivative, $\frac{d^{2} y}{d x^{2}}=+6$, which indicatos to us that if ve nare in the poritive x direction on the parsbols the rate of change of slope will almays be positive. This concept oan sore casily bo viemileod by the colution of a proslen.

Exampiot

1. Doternino the trarning points for the graph of the eqamtion $y=x^{3}+x^{2}+1$ axd cratch tho eraph.

$$
y=x^{3}+x^{2}+1
$$

First, tako the first durivativo to obtain the exprossion for the slope.

$$
\frac{d y}{d x}-3 x^{2}+2 x-810 p 0
$$

 expression to zero, since the slope will be acre at any tusuixg point (af at a point of inflection as disowned in subsection 10, 8).

$$
\text { fracturing } \quad \begin{aligned}
3 x^{2}+2 x & =0 \\
x(3 x+2) & =0 \\
x & =0 \\
3 x+2 & =0 \\
3 x & =-2 \\
x & =\frac{2}{3}
\end{aligned}
$$

Therefore, know that at $x=0$ and $x=-2 / 3$, the slops ia 0 and we hame tuning points.

Next, we obtain the values of y wind correspond to $x^{\text {ma }} 0$ and $x=-2 / 3$ by esparately substituting these values in the original oquatica.

$$
y=x^{3}+x^{6}+1 \quad y=x^{3}+x^{2}+1
$$

When is 0
When : $=-2 / 3$
$y=0+0+1$
$y=\left(-\frac{2}{3}\right)^{3}+\left(-\frac{2}{3}\right)^{2}+1$
$\pm *+1$
$y=\frac{-8}{27}+\frac{4}{9}+1$
$J=14 / 27$
Turning points are located at

$$
(0,1) \text { and }\left(\frac{-2}{3}, \quad \frac{31}{27}\right)
$$

Then to deterring if these points are relative mama or minimum points, we take the accord derivative.

$$
\begin{aligned}
\text { Since } \frac{d y}{d x} & =3 x^{2}+2 x \\
& \frac{d^{2}}{d x^{2}}
\end{aligned}=6 x+2
$$

5ubatituting $x=0 \operatorname{in} 6 x-2$

$$
6(0)+2=+2
$$

Substituting

$$
\begin{aligned}
& x=-2 / 3 \text { in } 6 x+2 \\
& 6\left(\frac{2}{3}+2=-2\right.
\end{aligned}
$$

This tells us that the alope rate in negative at $x x^{m}-2 / 3$, therefore, we hava either a "mamum or a relative" maximun. We then can skotoh these two points on a coordinate axis as shome by the solid curve in Figure 10.5 .

Figure 10. 5

We can also see from the ariginal equation $y=x^{3}+x^{2}+1$, that as x increases boyond $x \infty 0,7$ will continue to incroace toward + infinity;
 Thoreicso, so can cleariy ceo that the turning points wa have cotainod are relative maxima and minima points. We can thon siotod in tas rost es our carve. (Shom in dotted lines in Pigure 10.5.)

Exangle:
 tho cguation $y=\frac{x^{3}}{3}-2 x^{2}+3 x+1$ and ekotoh tio graph of trais equation.

$$
\begin{aligned}
& y=\frac{x^{3}}{3}-2 x^{2}+3 x+1 \\
& \text { then } \\
& \frac{a y}{4}=\frac{3 x^{2}}{3}-4 x+3 \\
& \text { equation } \\
& \text { 变 } 0 \\
& \text { facterdxy } \\
& x^{2}-1 x+300 \\
& \text { than } \\
& (x-3)(x-2)=0 \\
& \text { 新济 } \begin{array}{lll}
x & =3 \\
x & = & 2
\end{array} \\
& \text { and } \frac{d^{3} y^{2}}{2 x^{2}}=3 x 4 \\
& \text { at } x \otimes 3, \\
& \text { 雄 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { at } x=1 \\
& \text { 等 }-4 \\
& 2(2) \text { is wis Concsue dom or } \\
& \text { relative "semicman }
\end{aligned}
$$

Finding the corresponding y values froa tho orizinsi equation：

$$
\begin{array}{lc}
\text { at } x=3, & \text { at } x=1, \\
y=\frac{x^{3}}{3}-2 x^{2}+3 x+1 & y=\frac{x^{3}}{3}-2 x^{2}+3 x+1 \\
y=\frac{(3)^{3}}{3}-2(3)^{2}+3(3)+1 & y=\frac{(1)^{3}}{3}-2(1)^{2}+3(1)+1 \\
y=9-18+9+1 & y=\frac{1}{3}-2+3+1 \\
y=+1 & y=\frac{7}{3}
\end{array}
$$

As in the Pirst problea，for raluos of $x>3, y$ sentinuos to iserasce indefinitaly，and for velwo of $x<1$ ，y deorescon inderinitoly．we then confyra that our valuos aro relative naximand andina points．Our akotch will look like Figurs 10－6，

10.8 Points of Inthoction.

so osa that if wo lasd carre suoh as that shown; ove slopo would be poadife as we ayproached $x=0$, in the poaitive dircetion, the alopo sould bs 0 at $x=0$, and then it sould sain becose aroin romin positive

Suaples

$y=x^{3}$
$\frac{d y}{d x}=3 x^{2}$
Equatixts $3 x^{2}$ to 0
$3 x^{2}=0$
$x=0$
thon
ym 0 , by substitution in oxiginal cequation
 the seoond derwitativ,

$$
\frac{d^{2} y}{d x^{2}}=6 x
$$

Wher $x=0, \frac{d^{2}}{d x^{2}} \Leftrightarrow 6(0)=0$
 dorivativa and obsafa a zope anwor, we have a point of inflestion, it
 of the curve in Figurs 10m. The slope goos from pins to zero to plus
 of olumge of alogo, $\frac{\mathrm{e}^{2} y}{d x^{2}}$, is zero mare tho alope is zarco.

The atodont is infotod to plot the curvo $\bar{y}-x^{3}$ and daternens if it kon an in Mootion point.

10.9 Suxwy of Ituning Pointo gisi Points of Intiection.

Whou antrat to grapin a fmotion,

 cs trineation.
 gtopy I. If wo obtains
(I) a wothe

(3) 2050, w faye a point of infleotion.

 etap l 4 s tos oxiginal *quation.

Buerciees:

$$
y a x^{2}+2 x+4 . \quad \text { Aus. } x=\sin \quad y=3
$$

 egration. And.

$$
\begin{aligned}
& \text { Rolative reaxiay } x=a / y=102 / 3 \\
& \text { Ralative zinikun } x=0 \quad y=0
\end{aligned}
$$

3. Skotch the grapis of the equation $y=3 x^{3}$. What are the coordintes of the point of inflectiont \quad Ans. $x=0 \quad y=0$

10.30 Intreduotion to Interration.

In diferontiatisn wo are given a surotion and aelrod to find a
 highos erdar dorivative. In intogration, wort in the oxpoxik direotion.
 cbtein oither tho orlgital suation or tha nakt lowes dorivativo. Latig take tho eleplo runtion

$$
y=3 x^{2}+4
$$

（1）

$$
d y=6 x d x
$$

$$
\int \operatorname{cy}=\sqrt{6 x} d x
$$

We now are racy to integrato．

If we ratan the pow or of x to the next power， 2, and divide by the cease nasion 2，obtain $\frac{6 x^{2}}{2}$ of $3 x^{2}$ ，the first to of the original function．位th the conger amount of informangiven，it is irgoesible to obtain the constant，th，wo originally bad．The original fraction covid have had any number for a constant，since the derivative of a constant is zero．He conventionally compencato for this inability by indicating that trove could is a constant by acing．to to tho pusction developed by integration．Surarixing our integration psoblon，

$$
\int \infty=\int 6 x d x
$$

$$
\begin{aligned}
& y=3 x^{2}+0
\end{aligned}
$$

$$
\begin{aligned}
& y=x+0 \\
& \sin x \quad \int \dot{d}=\int\left(x^{2}+2 x\right) d x \\
& J=\quad \frac{x^{3}}{3}+x^{2}+0
\end{aligned}
$$

 derivative to the intorrabion form,

$$
\int d x \cdot \int \Delta x^{x} d x
$$

isich hecoms

$$
y=\frac{a x^{n+1}}{n+1}+c
$$

Examples:

1. Intograte: $\frac{d y}{d x}=x^{4}-3 x^{3}+2 x^{2}+x+1$
then $\iint_{0}=\int\left(x^{4}-3 x^{3}+2 x^{2}+x+1\right) d x$ $y=\frac{x^{5}}{5}-\frac{11}{11}+\frac{2 x^{3}}{3}+\frac{x^{2}}{2}+x+0$
2. Poriorn tio indicated operation.

$$
\begin{array}{r}
\int d y=\int\left(3 x^{2}+2\right) d x \\
y=\frac{3 x^{3}}{3}+2 x+c \\
y=\quad x^{3}+2 x+c
\end{array}
$$

20.11 Distance, Volooity and Accelarstion.

If wo have an equation kitich exprecose ens itstance travelod oxprescod as a function of time, tho first dorivativo is an mquatica for the velonity: sinco volocity is defjusd as the rato of ahange as isterso with reopoct to tis. Tho cocond dorivativo of erignal cquation is equal. to tho asceloration, ainse the mecoleration 18 tho rato os abarge of volosity with reopect to tseo.

Thoroifore, if the distanco, 8, a cortain objeor travels (in feot) io exproscod as a function of time t (in sccondo) is $\theta=16 t^{3}+2 t^{2}+3 t+10$,

	E $26 t^{3}+22^{2}+3 t+6$	406t
thon	$\frac{d g}{d 6}=\text { relactite }=48 t^{2}+4 t+3$	160/50
and		3xob/Eec/tase

 related to tias by the following equations $V a t^{2}-\frac{t}{6}+L_{0}$ Fised an equation waich maprescos the distanae travelea as a fronction of tims if the distance wrevelod at time 0 soeonde is 0 feet.

$$
\begin{aligned}
V & =\frac{d s}{d t}=t^{2}-t+1 \\
\int d s & =\int\left(t^{2}-t+1\right) d t \\
s & =\frac{t^{3}}{3}-\frac{t^{2}}{2}+t+c
\end{aligned}
$$

$$
0<0
$$

therofore

$$
s=\frac{t^{3}}{3}-\frac{t^{2}}{2}+t
$$

2. Datormino an expromaion for tho aceclerstion of tho objost at anj timot in the sbovo axmalo.

$$
\begin{aligned}
& 7=\frac{d \xi}{d t} t^{2}-6 t y
\end{aligned}
$$

Exprodess:

1. $\int\left(3 x^{2}+\frac{\frac{1}{x^{2}}}{2}\right) d x$ ana. $x^{3}=\frac{7}{\frac{1}{x}} 0$
2. $\int\left(-3+4 x^{3}\right) d x$ Ans. $x^{3}-3 x * 0$
3. $\int\left(x^{-3}+\frac{1}{x^{3}}\right) d x$ Ans. 0 *
4. $f\left(x^{2}+2\right) d x$

Anes. $\frac{x^{3}}{3}+2 x+0$
5. If diatane, yin yards, and timen, in seconds, are cossectad by the Solloning formule, $\bar{y} x^{2}, \ldots+1$, what te the velocity at thes
(a) seros
(o) after 2 eecomis?
(c) aftor 10 escomist
Ans.
(a) I yard/sec
(b) 5 yards/Ese
(0) 22 Fardo/aco
6. What is the coselerstion in yroblom 58

Ans. 2 yauds/80c/ase

 of this object in foot/soc/80c is givos by tho foxsaila a $0 x * 3$, whore x is expressed in zoccnds, what is the equation winion exprosses tico distanco, 3 , travelod in torms of x ?

$$
\text { Ans. } s=\frac{x^{3}}{6}+x^{2}+4 x \text { foet }
$$

8. The valocity of a booty in $\mathrm{ft} / \mathrm{cec}$ at timo t ceconda is givon by $v=t^{2}-t+2$. Find the distanco irom an obcorvor at tise 5 if tho position ie 1 foot at tims eoro eocouds.

$$
\text { Ans. } s=\frac{t^{3}}{3}-\frac{t^{2}}{2}+1 \text { foot }
$$

BIBLIOKXAKII

 for Enstroors

5．Cooley，B．A．，Gans，P．，Kilne，Ris and Wahlort，H．E．Introdiction to Mathestiog．Fewghon Matilin Co． 1937.
 Fress，1562．

7．Fino，E．B．A Collgze Alzebra．Cina and Compary，19li6．
 Adaniotration．Wiilors，1962．

9．Frowd，J．E．A Hoderm Fatroduction to Matiseratiod，Prenticow 8 ${ }^{3} 11,1956$,

10．Geary，A．，Lorry，H．V．and Hayden，H．A．Kathesentos Ior Fechnioal Stuxionts，Longresng，19Li．

11．Grandillo，H．A．，Smith，P．F．and Longioy，W．R．Elomants of tho

12．Harcilton，W．T．and Hanilton，J．E．Katiematical Analyeis，A Yodorn Apryosob．Harpor，1956．

13．Rant，H．L．First Iear Collere Histheratios．Eenth， 1943.
14．Fogbon，L．I．祭施centies for the Hillion．W．W．Forton Co． 2937.
15．Kaltoniom，B．8．，Andorcon，8．A．and Kaltonborn，甘．．．．Bagio

16．Tolloy，J．I．Introdention to Hodern Algobra．D．Van Rockrand， 1980.

17．Solloil，D．B．Hodom Piathenatioe Por tha proctisal Man．D．Van 5ogtrand，15\％．
 सocrawritill, 1960.

 60. 1940.
 Cemany, 1939.

 Libraxy, 1955°.
 Baccm, 2942.

