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PROGRESS TO DATE ON COMPUTING REGRESSION BASED ESTIMATES
OF CLIMATIC CHANGES FOLLOWING VOLCANIC ERUPTIONS

John Bart Wilburni
US Army Electronic Proving Ground

Fort Huachuca, Arizona 85613

ABSTRACT

Report and invite conments on: Problem addressed, method of analysis,

and results to date.

Intent of project is to produce regression based estimites of seasonal

temperatures and precipitation at several locations by: Perfortning

a multivariate analysis of Tree Ring data from selected sites in

North America and perform a subsequent multivariate regression of the

Tree Ring data against meteorological data.
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PURPOSE:

The purpose of this project is to detect tree growth anormolies following volcanic
eruptions by analyzing tree ring growth patterns and using modern meteorological data with

coincident tree ring data to develop transfer functions for reconstructing climate anomalies
following volcanic eruptionL

Thes climate anomoly patterns can be compired with other derived paleoclimate

anomolies for further understanding of the environment.

PROCEDURRE:

The procedure involve• several steps of analysis. First the analysis of the tree ring data to

detect statistically significant responses of tree sites to volcanic eruptions, The volcanic
eruption data was selected from H. H. Lamb (1969), Volcanic Dust in the Atmosphere. (1)
The tree ring data were selected from Schulman (1956) (2) and were restricted to Douglas
Fir troes with good intercorrelation, high sensitivity, and with sufficient length of sample to
incorporate most of the volcanic data. The tree ring data was selected from ten sites (fig. 1)

to span a significant portion of the Western North American Continent so as to obtain a
good sample of a large scale climatic condition. (29 0 N - 520N, 1 05 0 W - 121 W).

Thues tree ring data (percent of normaW growth) were then arranged into a 14-year laded
array. That Is to 1st column in years I (referenced to the beginning of the chronology) to
14. The second columns are years 2 to 15 and so on to the last row of M. 13 to M for a
chronology of M years. This array is referred to as The Total Ring Data array. From this

array, for each site, was extracted a subset referred to as The Ring Signal Data Array.

A second subset is created by implication of the first. That second subset is the remainder
of the Total Ring Data and is referred to as The Background Ring Data array. These arrays
are denoted by: DtN M ,Total Ring Array; DS Ring Signal Array; and Db
Background Array.

The D s are picked from D in the following manner, The volcanic eruptions are

parameterized by date of eruption in years, location in latitude and longitude and
magnitude of eruptions denoted by a dust veil index (d~vyi) devised by H. H. Lamb. (pp.
471-473)

A class of eruptions is specified by bounds on these parameters. The dates of the
eruptions within these bounds are translated to column numbers of D I These columns of
D I selected in this manner are extracted from Dt and comprise the array D s of N rowi
and the number of columns determined by the number of eruptions in the specified class

called for,

The test for significant responses is a two-fold test, First, a CHI-SQUARE test was
performed as follows: A CHI-SQUARE test was performed on the row averages of D S

against the hypothesis of being indistingulisable from the row avtrages of (a)D t and (b)
D b. At the same time, a CHI-SQUARE test was performed on the row averages of D b
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aalnst the hypothesis of being distirqtishable from thi row average of (c ) D , *n
CHI-SQUARE test on the row averages of D against the hypothesis of being

distinq•Jutable from the average of the total tree ring chronology ( d). If all hypothesis are

rejected, that is the probability of 0 S being a chance variation of D t or D b is low while at

the same time the probability of D b being a chance variation of D t is high and that rows of

D t are ail chance variation of the total ring average, then the set D S is labeled as a

candidate for the second test.

An example of this first test is ween below (fig. 2). The error terms are standard

deviations. The example picked is the Tree Ring chronology from the Fraser River Basin.

The volcanic criteria was: Magnitude 500 - 5000 d.v.i., latitude 20ON .900N, longitude 00

to 1358W.

The seconnd test involved an .6qenvector comparison. The software which built the Arrays
Dt, D and 0o and computed the CHI-SQUARE test was extended to perform a correlation

matrix calculation and an eigenvector extraction. An examp!e of the printout is seen in

figure 3 for the correlation matrix CtMN -I D D the elgenvector setE t
and the elgenvalues A t . This computation was1 performed fNor correlation matrices and

"Iheir associated set of eigenvector/elgenva4ues, for variance about the row averages of each

of the arrays. That is, the data for D t, D 5 and D 0 we"e normalized with respect to their
own row averages.

There were some Irteresting developments from these eigenvectors as seen in figures 4, 5,

and 6. These vectors are from D t, the total ring array. Each elgenvector appears to be a

composite of sinusoids of increasing complexity. The first and stcond vectors being

predominately half waves of a fundamental and increasing from there on. The explanation

of this behavior Is not settled as yet.

Some comments on what is being done as an aid In interpretation are due here. The

matrices, D t, as well as the others, are correlated by rows.

That is, we are looking at the correlation of a pattern of growth beginning in one year and

running sequentially with a pattern of growth beginning in another year and running

sequentially. In short, we have a type of autocorrelation. In this context, however, we might

explain it as the correlatioii of a growth sequence with any set of previous growth

conditions of each element of the sequence. The eigenvectors depict the relative

contribution of the respective rows to the total variance of D t accounted for as indicated

by the relative magnitude of their associated elgenvalues, or the mode of variance associated

with that elgenvalue.

The notion of the mode of variance in years following the year of the first row is

particularly useful when we are interpreting the average growth d sJ and olgenvector of the

Ring Signal array D S. This is because now we are talking about modes of variance in years
following in aeuption in a specific class of volcanic eruptions.
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This brings us to the second test for sgnilficance • • the comparison of elsenvectors. TheRing Sign" arrays 0 S were amelyzed a econd time. This time the row averages of O t were
subtracted from the elements of identical rows of D S and then a covariance matrix was
computed from the new array 0 S and the sigenvectors extracted from the covariance
matrix, To insure that we were not comparing unrelated quantities, the eigenvectors of the
coveriance matrix of D t, S and D b were recomputed using their own ro% avwrgs of
their respective arrays as used previously for the correlation matrix computation. The
olgenvectors computed from the covariance matrix were nearly Identical with those from
the correlation matrix. This was to be expected since variances of the row variables are
nearly the same-

The rationale behind this move was the following. The elgenvectors extracted from the

correlation matrix of 0 s using its own row anvrages comprise a description of the modes of
variance about the response signal of the trees to volcanos, if there is one; whereas, the
odgetov:tars extracted from the covariance matrix of 0 5 using the row averages of D t
comprise a decription of the variance of the response signal of the trees about the

background signal of tree growth. Baud on this reasoning, if the two sets of eigenvectors are
nearly the same, then the array D Is labeled as a type I error and rejected. There are more
rigorous statistical techniques fr comparing the elgenvectaor (4) but the situation here does
not seem to warrant that degree of r4or. If the two sets of eigenvectors are significantly
different, then the array 0 is Ikaeled a a significant response signal to volcanoes &ad the
elenvectors of the covaefimn matrix are considered as the modes of varilace of the
response. Note that because the variance is Indicated by the square of eigenvector
component. a mirror image is considered as the sarnm mode.

An examsple of this comparion Is seew in figure 7 which shows the average growth

[ (" S ) of the Frer River Chronolgqy for 14 years following an eruption specified by the

class 500 - 5000 d.v.i., 0 . 1350 Long, 20 • O&N Lot, and the olgenvector, Ev, extracted
from the covariance matrix and the egnvoctor, Ev, extracted from thd correlation matrix.

The reults of these tests were the selection of four situs, one with two case, making a
total of five cmes. The site and their case were:

Frawer RFvr Basin : 500 - 5000 d.v.i.
200 - 90HW at.
00 - 135oW long.

Saskatchewan River 500 - 5000 d.v.i.
Basin: 200 - 900 N lat.

00 - 135°W long.

Missouri River Basin: 500 - 5000 d.v.I.

200 - 90ON let.
II 00- 135OW long.

-- ~~472 --- -
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Big Bond: 500 - 5000 d~v.;,
200o 90°N lit.
0 -- 135 0 W long.

0 - 500 d.v.i.
+ 20N lat.

± 180°W long.

Note that with four of the cases, a latitudinal dependance may be investigated.

Their average growth curves (U-S ) and their first eigenvector (Ev) are shown in figures

8 and 9 respectively. There does not seem to be anything consistent in the growth curves
but the elgenvectors indicate a definite similarity of Modes of variances between Fraser
River and Saskatchewan River and between Missouri River and Big Bend chronologies. One

mut remember that the growth curves depict the result of change from a previous set of
initial conditions of growth and climate, whereas the sigenvectors depict the mode, or
mechanism, of that change.

METHOD

The next part of the project was to use these chronologies from the four sites to
estimate the seasonal temperature and precipitation at or near the tree sites during the 14
years following the eruptions. Because of the nature of the tree growth physiology, the

sasonal data was referenced to the preceding year, For example, precipitation during the
winter season preceding the year of the tree growth (8), The seasons were divided into: (a)
preceding year ending 30 May; (b) preceding summer consisting of months June, July,

| August and September; (c) preceding winter consisting of months October, November,

January, and February; and (d) the preceding spring consisting of months March, April, and
May.

The regression based estimate was performed by a regression analysis technique
* referred to as, "Princip& Component Regression Analysis." It is described in detail in a

paper (5) to be published separately and is Included at an appendix in this clinical report.

The essence of the principal component regression analysis is that it allows the physical

phenomena, considered as a system, to be partitioned Into independent and orthogonal
modes of variance, or principal components, and then to allow only those modes of variance
of the regressand phenomena which correlate well with all of the allowed modes of variance
of the regressor phenomena to be used In the estimate of the regr4send. This technique
further allows a selective reduction of error in the egressand estimate.

All of the properties mentioned above are consequences of the orthogonality and
independence of the principal components of original data.

Quantitatively, the regression rationale is as follows in a brief outline. We have a set of
tree ring data DtNM from which a complete set D tNU can be selected which matches,
chronologically, a set of meteorological data F NU also formatted Into a legged array. The
meteorological data is from a station at or near the tree site. From these two sets of data are

2474
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computed the correlation matrices C dNN and C t and "aabsequenitty the el*piector
set~s are extracted satisfying the equationst

Cd NENN UENNANN

CNN GN .G~NN N

The unitary transformation of D and IF Into their respective principal components Is
performed byt

Xpq~ ENN D'pg

YNU so NU FNU()

Now then, from XNU we seect a specified number of components q accounting for the
amo-unt of variance requested. This is detennined from the knowledge @1 the fact t1hat t1he
amount of variance acounted for by the ith principal component. X ju , Is given by

tr AN N

Thus all have a set Xqu accounting for a speified amount of variance given Ly:

VU(Xq) It AN

A set of regression equations ý N are calculated such that w~i have a regreesaon model of

YNU'PPq XqU * tNN (2)

It Is worth noting that because the X NU rar all Independent, the q coefficients of the
N TH equation are completely independent. Also, the multiple correlation coefficients,
R 2 Nare unambiguous because the joint confidence region of the regreulson equation Is
unambiguous. In any case, recalling the transformation (1), (2) can be restated as

F NP U GN q E'q N 1q OSqP (3)

Those equations 0 N which fail an F-test against the hypothesis C *0 are set to zero.
This amounts to a l'~nd of stepwise regression except that the variables rejected are thosee
modes of variance of the system of F which have an insignificant statistical relatilondp with
any combination of all of the modes of variance of the system of 0.

The conf idence bounds (90%) of the estimteW, F N P, Indicated by 8 FN a4P re
computed from the confidence bounds of 0 N.Indicated by VK qq I K a 1, N . The
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FLOW CHART OF THE REGRESSION
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computation is performed by (Cf.5)

6F ~ ~~~~ ~ ~ E~-q1 DSa2) C t(Dp'.,'I'4

P EEqV q qN DNP 41 '

Summarizing, the estimation of F P from D5N p can be performed by transfer fun~ction,
T

TN4N * GNNo3qqE'qN

and the calculation of the confidence bound of the estim aft FNp can be performed by on
operator function of .5 F Np0p on O5NP as Indicated In (4).

This analysis wa implemented in the manner indicated by the flow chart shown in
f q i10.

The results to date are for data selected from the Fraser River Chronology for the classf of eruptions specified by 500 - 5000 d.v.i., 00 - 135OW Long, 200 - DOO Let. The

meeoolgia data tested was the pre-sumnmet precipitation from Kamloos, Alberta,I

The regression barsed estimates of the pre-summer precipitation In Kaml oops, Canada
was made by using the best estimate for each of the 14 years selected from the regressionsI
specifying: S0 percent, 90 percent, 95 percent and 100 percent of the variance of the Tree
Ring data system and accepting the regression equations which peas the 90 percent
confidence F-test.

Figure I1I (Plate 10) of Appendix A is an example printout of the principal component
reigression compliter program run of a CDC 6500 for the case of 60 percent variance
requested. Note the program computes the ostimarte twice; once before the F-test rejectionI and then again Incorporating the F-test rejection.

Figure 12 illustrates the estimates of the pra-summer precipitation. These esilmates are
the composite of the best results of all four cases (80%, 90%, 95% and 100% of Tree RingI dota variance).

2
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Figure 12Y
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Regression based estimates of summer precipitation in Kamloops, Canada during: (a)
1533.1566, (b) 1600.1613, (c) 1624.1637, (d) 1659.1672. (e) 1720.1733, (f) 1754-1767,
(g) 1765.1778, (h) 1782.1798, (I) 1644.1857, (J) I U5.5187.

Figure 13 is the plot of the averag of the regression based estimates of the preosummer
precipitation. This average Is avaraged over the ton chronologies for each of the 14 years
following the eruption. The error bases are the root-mean square of the errors of each of the
ten values in the average.

Figure 14 compares the curve plotted in figure 13, re-normrnazed, to the normalized,
a"rege growth, dSI of the Fraser River Basin tree ring chroclogy. Note that since the
precipitation estimates are of the preceding summer of the ring growth index, or4y 13 values
are plotted. The striking feature of this plot Is that the curves seem to have a high
correlation. It Is , in fact, 0.68 which seems to imply that the assumption that the tree
growth in any one year is dependent on the precipitation in the summer preceding the
growing mason rather than on the summer of the current growing season is not strictly true.
In fact, the dependence is on both and when one considers trees in the northern latitudes,
the dependence on precipitation of the current growing season increases. This can be tested
by repeting the experience using summer precipitation from the current growing season
and then see which regression produces estimates wift the highest prer.sion. However, due
to the sampling nature of the decomposition of the data systems into principal components,
the components which heavily weight the first row of D tNp will not correlate highly with
the similar component of YNP' For that reason, when one deals with a lagged array, a
mistaken assumption on time coincidence does not cause a complete miss on the regression
analysis.

The curves of figures 12 and 13 are interpretable as follows. The curve in figure 14 Is a
"general estimate of the summer precipitations following an eruption of a large volcano,
whereas the curves of figure 12 are specific "timates. The estimates are given by year with 4
9 confidence bounds. As one can see, some of the estimates have confidence bounds so
large as to constitute essentially no estimate at all. Within the confidence bounds calculated
for each point, the curve In figure 13 agrees with most of the curves in figure 12.
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APPENDIX A

*ThM next article in these Proceedings is the appendix to the paper
entitled "Progress to Date on Coputing Regrssion Based Estimates
of Clin1tic Changes Following Volcanic Eruptions".
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PRINCIPAL COMPONENT REGRESSION ANALn ":,.

John Bart Wilburn

United States Army Electronic 'roving Ground

Fort Huachuca, Arizona 85613

ABSTRACT: Development of the mathematical rationale of multivariate regression

between sets of principal components with a demonstration of a computer program

implementing the rationale.

The intent of this paper is to propose a user-oriented method of multivariate linear

regression which will reduce the uncertainty of the user by eliminating the unwanted effects

of intercorrelation of variables and to enable the user to eliminate unnecessary variables

with predictable results.

Procedure:

The situation is that of two sets of data: Regressor data, DNM; Nvariables and

Mmeasurements and regressand data; FNM also of N1variables and M measurements. In

general, the sets D and F will not be of the same number of variables, but for purposes of

development, they will be considered the same without any loss of generality.

The user supposes that he has two systems, D and F, adequately described by the

variables in each. The user further acknowledges that the systems are very likely noisy and

that he has observed them long enough to have a representative sample of the variance in

each and also that normality can be assumed. Having satisfied these assumptions, the user

may proceed as follows:

First, compute the variance/co-variance matrices of the two normalized data sets

cDNN M DNM D'MN

and

CN M-I FNM F'MN*

Next, perform the eigenvalue/eigenvector calculations

CDNN ENN =E A
NM NM NNANN

Best Available Cop,::
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S€"NNONNUG NNfl"NN

where and G are orthonorma sets, e4.

E•S1 4I and Z.'u-I.

The elgenvector sets are used to compute the prinelpal oomponmnts by the ulmt""y
transformt ton ofr

• ~~~XNM • [NNN

and

YNM 0 NN NMI

Users from the physical inclee will recognze this as analogous to a prineul4 axis
transformation.

Each of them principal w.mponset sets consists of vetors which ae indepdeont and
orthogonal. Furthermore, each of the vectors represents a secIflc "mode" of variance of the
system which Is Independent and orthogonal to the other N - I modes. The time-Independant
modes themselhs are represented by the el•nvecters associated with the principed compowent
In question Indicating the relative contribution of each of the original N variables 1i 0 mr F to
that mod#.

The following operation demonstrates the orthogonality propertis of the princpaIl
components and also one other very useful property.

We will use the set X but the sarne applies to Y. Compute the variance/co-variance
"matrices of the principal components

XNM X MNu M 1 9MNNDNMD MN ENN.
M -I -I,

The rlththand side of the equation can be seen to be

E'NN (M- I 0 NM D'MN) Emma E'NN CDNNENN

S- . . . .- -



which reduces to

Er C 0 MNNOE, ANN.

Thus, the principl compronets are orthogonal and now we can e that the variance of each
of the principal components is givei by the elgemvalue associlated with the elgenvector used
to compute that particular component. Viewed in this way, the total variance of the original

data, D0NM, is partitioned by the eigsenvectors ENN with the relative amount of the variance

accounted for by the I THprinclpal component given by

Reletive Var. (XM ) I

~XM tr ANN*

It should be noted here that If the variables in D and F are of the same units and variance,
the correltion natrices C computed from the normalized dat can be replaced by the

co-varlance matrix computed from unnormalled data. This may appeal to some users.
However. under thos conditions of equa variance and units, this writer's experience has

been that the eigenvectors are very nearly the same as those from the correlation matrix. It

Is when the variances are not the same that the sampling properties of the el@4evctors differ
d~endini on wheter they are extracted from the orrelation matrix or from the

covirerience matrix. It Is my feeling that the correlation matrix is beut for general ite.

These properties, orthoganality, independene, and the partitioning of the variance will

be ae to be very useful in the following development of the rekoprlon postulating the

model of

YNM NN XNM +' M".

From the above comments, we now know that both the X"M and YNM are distributed

according to XNM - N(O,ANNand YNM" N(O, fNN).

Thus, the estimate of ONN, ONN Is found by:

ONN Y NM X MN (XNM X MN)

which reduces to

-- XMM'NN

489



We can ineorporate the factor -Into the relationship by settirq

M-I

A* NN a (M-i)- ANN

and simllarly

flNN M (M--I)'fNN

The matrix of the residual mm of squares ENO of the rWassion estimated by the
maximum likelihood method Is estimated by i Np computed as follows:

from whish follows

ZtNEMI- YNMYMNpN-- .XNM XMN MNNI

this reduces toiI

An unbieaed estimate of ZNN Is given by

" - N

From the above formulation, we can Identify the total sum of 9quares as the diagonal matrix

"NN and the sum of squares due to regresslon as PW&OMNOP NNN

GEOMETRIC INTERPRETATION:

The matrix NNA*NpjN NN is the matrix of the vector products of the rewasson based
estimates? Y..'

This can be men as

YNMYU MN NN XNM XMN DNN

where XNM X'MN is identified as A'*NN. Viewed in the geometrial context, the

diagonal terms of 0NNA*NN $ 'N N ar thlengths of the vectol YNiIMI Thiof diagonal

terms are the vector products YIMY JMl ' .0
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Thus

YiM . = I+iM I I JYM I cos

Thus the off diagonal terms may be negative if cos q < 0. However. since the vectors YNM

are ideally orthogonal, the angle 0 is an error. By this argument, it is of no great

consequence that the off-diagonal terms of TNN may be negative in the computation.

While interpreting the regression geometrically, consider ONNXNM as the projection into

X space of Y NM in Y space. Thenhl3XI/IYlis the cosine of the angle between YNM. and

its projection 0 NN XNM Graphically, this would appear as, follows considered in two

dimensions.

X,

xl

X2

Figure I

where

IYI cos I- l l.
Thus

,P .,"

ONNXNMX MN 14NN
Cos 2 E = -

YNMYMN

or

2 E N N N NO'N N
Cos 2 e -

N N

this can be identified

R N ONN A NN 0 NN

NNN
NN9N
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Since the vectors Y NM are not, in oeneral. completely orthogonal, and that the matrix
aN is a diagonal matrix. the off-diagonal elements of R 2 NN may be negative. However,

we are actually only concernrvd with the diagonal elemenrf s; therefore, we can compute

R NN =•NN "'NN 'NNt1NN" 5 NN"

The quantity R 2 NN is interpretable as the square of the multiple correlation coefficients of
the regression equations ONN"

An F - test against the hypothesis C j 0 can be provided from R2 by

R2  M - N >

1 - R2 N-I - N--,M-N (I)

which is equivalent to

O N-I - FN--1. M - () SMENN 1

Note that for the off-diagonal elements, the F - ratio is neatrle.

The multiple correlation coefficient squares, interpreted as the amount of variance of
Y fpA explained by 13IN XNM , can be transformed into the coordinate system of FNM so
that the amount of variance of F variables explained oy the 0 variabin can be estimated.
The transformation is simply the diagonal terms of

V(F) OGNNSPN (I NNR NN) # NN4}
tr a

However, it is not clear just how useful this information is. What is useful to the user is a
regression transformation from 0 to F and an expression for the confidence Intewals on the

estimates FNM

The transfer function for computing F is simply

F = (G 3 E' )D
NM NN NN NN NM
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where the expression G.P., E is' identified as the transfer function

TNN GNN ONNEN.

The calculation of the confidence intervals proceeds as follows and will illuminate some very

useful consequences of the independence and orthiogonality properties of the principal

components.

The variance/co-variance of the regression equations can be computed by the following

procedure:

(Oi) -2 ( ja )No >ONv X NNANNI

Fori. j3 1, Nthis becomes

V(PNN) 1:NN, X A NN

WheroE;N Is the unbiased estimate of

Recalling the previous argument regarding the off-diagonal ellements ofP OwA*?N we may
ignore them in which case V (ý3 Np) is a diagonal matrix of dimension m2 X N42. 1' is worth
noting that, in general. the off-diagonal elements are usually at lek on or more orders of
magnitude down from A*,~

The matrix V( P can be partitioned as:

2 0o N
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Where the submatrix VKNN is a diagonal matrix for the K"M row of' 3 ,NN KN. The
submatrices are found by

UKNN OKK 2

where OKK is the KTM diagonal element of 2NNand X*-! are thit diagonal elements of AN.
NNl

Thus, it is clear that

COV KQ'KM) =0, Q M

as a consequence of the orthogonality of XNM. This implies that the joint confidence
regions of each of the regression equations are entirely unambiguous. This is vital to the
interpretation of the confidences intervals of the estimates; FNM , as legitimate intervals.We
can also see how the variance of the 1 increases for the less important components of X for
any given component in V.

The independence of the 0 1N for any given i . is of great help in the application of the
regression analysis. This comes about when one recalls how the principal component
transformation, in addition to its properties of independence and orthogonality, also
possesses the property of having partitioned the variance of 0 ýind F into modes of variance
which form a decreasing series of relative contribution to the total variance of the original
data, D and F. Of concern here is the set D leading to X. If the W.: X NM is too large in the
dimension N as to be undesirable one can select those components which contain a
prescribed amount of variance less than 100 percent. Thus, XNM is replaced by X PM ; p<
n'.The assumption that the principal components have to be sorted has been made.

This selection of p components will cause the regression equation N Nto beONp.What is
imlportant here is that the remaining P coefficients are unaffected by the rejection of the last
N- P coefficients. Of course, the R 2NN is lowered, but then the F - ratio may be increased
because of the change in the degrm of freedom involved. The price paid for this reduction
in the number of variables in X is that one may not know a priori which modes of variance
in X will correlate with any one of the modes of variance in YNM I The decision must be
made on the results of seeing all, or at least those allowed by computer limits tried first. For
this reason, an interaction of the user is required in the use of this analysis. Also the F - test
(as will be seen later) can be used in conjuction with the selection of p to improve the
confidence intc:-al calculation. The set YNM may also be reduced leading to hqp ,q< N , q
, p. However, this would prmnpt the F - test and therefore shor'd be used only to satisfy

the computer limits.
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This confidence Interval calculation proceeds as follows. We start with the confidence
interval calculation of ~N

Conf (l-Oa,NN) *t(M-N-1, 1-&/2)

For an Individual row of the regression maitrix this becomes

This can be expanded to compute the confidence Interval of tite results If an operation
hIndiaed by JIM Is performed to convet the Mx N Maitrix computed by

cow ( Ia. *KU) Ut(M N 1.1- qM)[ PNM1? NN X"Mj

Into aIx M matrix coffeepond Ing tothe KT" row of YN

That Is

Conf (1-a,) m t(M N 1. I-u/2) N ['NVN N ]

which can be re-writtn as

6YKI M a t(M N1. 1-*/2) {CIJMPMNEN4 uK NE'NNDNMJ }

If this operation Is done K a1. N times, &YtC1Mbecomes a matrix 8 *NM of confidence
Intervals of ýfNMI Note that &Y decreases as the rank of IF'NNdocreasss. This matrix of
Intervals can then be transformed back Into F-space by GNN. Thus we got t;e a -a
confidence Intervals of FNM by

NMU GNN S NM

If the calculation of Sim Is performed using Indepedent deta, O*Nq as would be
applied to TNN , the, calculation wouid appear as

FNq TNN DN~q

and

24:1



FN GN 6 Yq

where

6 Y Nq (M----1, I--x/2) • m (D*qN'E-N 1NNENND 1Nq]
ItK=- 1,N

Note that E and G are from the calibration data, D and F, used to compute TNN and
ui (P NN).The condition on D*Nq is that it comes from the same distribution as did DNM

Note that if E and G come from the correlation matrix, then the estimates F . 5 F are in
units oi standard deviations.

A further refinement in the accuracy of the regression (over that of eliminating
unnecessary components in X NM) can be introduced by using the F--test to reject
(suppress to zero) entire regression equations. This has the effect of setting to zero
components of Y NM which have insufficient probability of being more meaningful than
zero. This amounts to a kind of stepwise regression except that the elimination of some of
the components estimated in Y NM leaves the remaining components unaffected since they
are independent.

The application o' the F-test -ejection involves the calculation of R2  ; p< n
NPaccording to the amount of variance desired by the user based on experience. From the

Np, the F--ratio is calculated. Those F--ratios failing the minimum value (95 %
confidence level) cause the corresponding rows of ý NN and submatrices VKNN to be set to

zero and the calculation of TNN IFNN, and V (FNN) is repeated. The user can then
manipulate p = p (% var. F) until the confidence intervals of FNN &ppear to be optimum. It
S;houid be noted that in most cases the values of t(M-N-1, 1-ci/2) do not change to much
for changes in N to p amounting to a few integers, if M is several times as large as N. The
value of the F-ratio, FM.p, P-1 (-y), can be estimated from a simple polynomial in (M
p) with sufficient accuracy for use here.

The Var (F) can be estimated as mentioned earlier compounded by the amount of variance
corresponding to the number of principal components V s passing the F-test rejection.

sq

It is important to realize the physical implication of the means by which ,he accuracy of
the regression is improved. By the initial assumptions about the data DNM and FNM , we
claim normality and a representative sample of the behavior of the observed phenomena for
all time. Further, we postulate a modal nature of tie behavior or variance of the system as
described by the N-variables. The modal nature of the variance is further postulated to be
multimodal with modes numbering up to N and, in general, being of differing relative
magnitude which linearly add up to comprise the total variance of the system.
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With these observations in mind, we can now understand what is happening in the
regression situation. When one or more of the least important principal components of
X NM are omitted, we are .iaiming that those modes of variance of Dhave an insignificant
statistical relationship to any of the modes of variance of F. When we reject any of the
regression equations by the F--test rejection,we are claiming that the mode of variance of F
represented by that regression equation has an insignificant statistical relationship to all of
the modes of variance of X used in the equation. It is important to reaffirm that one cannot
say a priori which components of X will correlate higifly with wlhich components of Y. This
will be clearer upon inspection of the demonstrated regression following. In any case, we
can now understand that we are using as many as possible of the modes of variance of X
that seem to have some significarnt statistical relationship to at least one of the modes of Y
which passes the F--test. Further, we are allowing only those moeles of variance of Y to be
estimated which have a significant probability of not having been estimated by chance to be
used to reconstruct the regressand. F. In this way, we can see that it may well be possible
that the modes of variance of X and Y that have a significant statistical relationship may or
may not be the dominate modes in each and in any case the regression based estimate of F is
a composite of significant modes estimated in Y without the interference of the insignificant
ones. It may be possible to further Improve the estimate by selectively eliminating the
components of X for each regression equation in which the associated regression coefficient
is insignificant. However, this would cause the degrees of freedom for each estimate Y IM
to be, in general, different than for the other estimates. This would cause a rather

cumbersome complication in the software and it is not clear just how beneficial it would be
since the primary impact is on the confidence interval and not the estimate. Perhaps further
work on the problem may answer these questions.

APPLICATION:

The regression analysis described in this paper has been implemented into two matching
software packages: CORMAT and REGRESS. Attendant to thGse packages are two
subroutines; CLEAR, which simply zero's out an array, and a CDC library subroutine
MATRIX which performs matrix operations. The programs CORMAT and REGRESS are
written so as to be used as subroutines themselves in a parent program which reads and
formats the data DNM and FNN D Nq is selected and formatted by another subroutine:
SIGNAL.

The program CORMAT computes the correlation, or co-variance, matrix, depending on
how it is called and also the eigenvalues/eigenvector and the principal components. The
number of components computed is determined by the amount of variance requested to be
accounted for. The maximum number of components is limited by the length of data and
the size limitations of the machine. It is worth noting that the program CORMAT will
compute the co-variance matrix about a mean value given to it which may be other than the
mean value of the data supplied. In this way, one may investigate the modes of variance
about a mean value from another distribution.
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The output of CORMAT is the correlationi, or co-variance, matrix, the list eigenvalues, the

set of eigenvectors and the set of orincipal components computed accounting for the
prescribed amoun t of vai'ance of the input data. CORMAT writes the principal components,
the reduced (if variance accounted for < 100%) set of eigenvoctors and the list of eigenvalues
used on a random access file and then returns. The number of eigenvectors used to compute
the principal compoitent are transferred betwee, subroutines.

Subroutine REGRESS uses the principal component sets, the eigenvactor sets and the
independent regressor data (referred to as signal data) to compute the regression
coefficients, the transfer function, the multiple correlation coefficients, the F--ratio and the
regression based estimates of the regressand from the signal data. Subroutine REGRESS also
performs the F--test rejection computation.

For an example application, the situation is the regression of tree ring data, the regressor.
taken from the Fraser River Basin against matching precipitation data; the regressand,
occurring during the summer months at Kamloops Meteorological Station, Kamloops,
Alberta, Canada. The calibration data runs for 49 years from 1896 to 1944. The two data
sets are lagged by 14 years. That is, the first column contains years 1 (referred to 1896)
through 14, the second column years 2 through 15 and so on to column 36 containing years
36 to 49. The signal data, D *Nq , is composed of columns selected from D NM, the tree
ring data dating from 1500 to 1944, such that the tree ring indicies in row : correspond to
years in which a large volcano erupted in the region prescribed by the limits of long 0 0 to
135°W, latitude 20°N to 90°N. In appendix A are copies of the printout of the program
with the conditions on percent of variance accounted for and F-test as descbibed in the
printout. Two other cclculations were performed requesting 100%•Rd 80%of the variance in
D NS" The effect can be seen in Figure 2 where the plots of F NS + 6 tNS for the
estimated precipitation in years 1783 - 1796 are shown as an example. The curves are: (a)
100% variance, with no F--test, (b) 100% variance with F-test, (c) 95% variance with
F-test, (d) 90% variance with F-ltest and (a) 80% variance with F-test.

Upon Inspection of Figure 2 we can see several effects at work, all of which involve the
user as a student of the phenomena being analyzed rather than as a purely detached

statistician.
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First, one sees the changing nature of the estimate F is asfewer modes, or principal

components, of X are allowed in the rn.- .ion. Secondly, one notices that the 90%

confidence bounds, & 1, of I vary from 'jne element to another within each of the rows of F

for each case (variance accounted for in X). This is to be expected when one recalls the

modal nature of the decomposition of the data into principal components. For any given

mode of variance some of the variables may be emphasized and others may not. This is
evident upon inspection of the associatid eigenvectors. This is equivalent to identifying
"which variables are contributing significant amounts of variance to a particular mode and

which are simply supplying no•se.

On the other hand, if the noise is evenly distributed among the variables and if the entire
mode is essentially a noise mode with none of the variables containing any significant
amounts of signal, then nor,, of the elements of the associated eigenvector will be
prominent. If the noise is not eveniy,* distributed, some of the elements may be prominent in
a noise mode. However, remember that noise is random and unlikely to correlate with
another sW. of data. Thus the coefficent 13 will be small and the variance VK (B) will beI • NN

large.

When one remembers that the modes are themselves partitioned with respect to the
variance of the original date, it is easy to see how a variable contributing mostly noise in a
dominate mode (dominated itself oy signal) may still overpower the contribution of that
same variable contributing mostly signal in a lesser mode.

Another fact which must be considered fi,wally when inspecting the estimates F is whether
or not the' noise evidenced by & F is caused by uncertainty in ( or by the physical
phenomena itself. This problem is largely self correcting to be one and the same when one
assumes that the noise should be highly uncorrelated between the sets D and F and also
recalls that the 13 are independent within each regression equation. Thus, the regression
coefficients should be essentially zero for noise and this in turn will cause VKNN to be

large. Therefore, by disregarding an estimate in one case (variance accounted for) because of
a large 6 F, one is always su-e of not overlooking a valid signal and by the same argument,
keeping an estimate F i i-from one case because of a small 8 F and plotting it with another

similarly good estimate F IKfrom a different case, e3ch with their original 6 F's, one is
simply combining good estimates of F from D and disregarding noise. In a sense, one is simply

keeping those components of X and Y which contain mostly signal and discarding those
which contain mostly noise.

Using these arguments, the final regression based estimate of l; re-summer precipitation in
Kamloops. Canada, for 14 years after the Icelandic ýfolcano eruption in 1783 appears as
shown in figure 3. The units are standard units ot deviation about the mean and the error
bars are 95% confidence bounds.
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1 4 5 7 1 12 13 14

!0

Figure 3

Before leaving the topic of Inspection of reults, note the transfer function itself (plates 6,

7 and 10). The reader will note the occurrence of "ridges" and "valleys" running diagonally
from rows I and 6 and column 6.

Inspections such as this of the transfer function and also the elgenvectors, can reveal

the likelihood of physical relationship between and within the sts F and D worthy of

future causal Investigations.
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PREDICTING METASTASIS OF ENUCLEATED SMALL
OPHTHALMIC MELANOMAS BY DISCRIMINANT FUNCTION

Walter D. Foster
Ian W. McLean (Maj, MC, USA).,,

Armed Forces Institute of Pathology
Washington, D. C. 20306

ABSTRACT. Malignant melanomas of the uveal tract of
the eye are tumors with a significant risk of metastasis.
To reduce this risk, it has been the practice of ophthamolo-
gists, after making a clinical diagnosis of malignant melanooa,
to recommend immediate enucleation of the eye. The objective
of this study was to search for a criterion by which the risk
of metastasis could be estimated.

Over 300 cases of enucleation for small malignant mels-
nosms have been referred to the Ophthalmic Pathology Division
of the Armed Forces Institute of Pathology (AFIP) for inves-
tigation and research. Of these cases, pathologists recorded
16 characteristics on each of 72 eyestogether with informa-
tion on whether the tumor had metastasized. Analysis by
stepwise discriminant function was employed to suggest which
of these characteristics might be predictive of metastasis
and the degree of their effectiveness. An unexpected dividend
in the use of the discriminant function was the redefinition
of some of the characteristics and the review of the original
data for othersin a medico-statistical dialog in the refine-
ment of the capability for prediction. The following table
shows the degree of success of the analysis for the body of
data at hand:

Table 1. Comparison of Classification by Discriminant
Function with Actual Behavior in 72 Cases of Small Oph-
thalmic Melanoma

Correct Incorrect
Prediction Prediction

Actual group
Nonmeteatasizing (40) 34 6
Metastasizing (32) 27 5

1. INTRODUCTION. A major ophthalmic problem is con-
cerned with the decision whether to advise enucleation of
the eye when a small intraocular melanoma has been dis-
covered. The decision to remove the eye depends heavily
upon the risk of metastasis. In the case of small tumors
of the choroid, the surgeon is faced with the difficult
decision of whether to remove the eye or continue to ob-
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serve the lesion until there is greater certainty that it is
malignant. The purpose of this research was to discover
whether there is a basis for estimating the risk of metastasis.

The Ophthalmic Pathology Division of APIP has the largest
known collection of eyes enucleated for small malignant sela-
nomaa--over 300 cases. After defining 15 characteristics as
possible predictors of metastasis, pathologists selected 76
tumor-containing eyes enucleated prior to 1945 because all
needed data were available; 34 tumors were known to have ire-

suited in metastasis, and 42 patients were free of metastasis
at the last known status 7 or more years after enucleatlozv.

Fisher's linear discriminant f- Lion was chosen as the
statistical function for the classi .cation of these melanomas
on the basis of the 15 predictors. Analysis by stepwise
discriminant function to order the predictors in terms of
their relative predictability was envisioned as a process
for identifying the most meaningful set of predictors to be
compared with the list of predictors selected by pathologists
from medical experience for intraocular melanomas of all
sizes.

2. DISCRIMINANT FUNCTION. To define the linear dis-
criminant function,

Let Xi w i-th characteristic, e.g., size; i - 1 - 15,

Let 8, - coefficient of Xi to be estimated.

Set Z- I BiX, for the nonmetastasizing melanomas

and Z2- I BiXi for the metastasizing.

Let D a Z- - Z2 and di - i- im so that

D - E B id and V(D) E E I BiBjaij a S.

For analogy with the univariate case, just as we wish to
I ~maximize 1X 2/(/l+In)/2

t ( - + or its square,

in the discriminant function the Bi are estimated by
maximizing D2 /S:

3D2/S - 0, whose resulting equations have the solution
4 i

B. - (S/D)Ediaij where atJ is an element of the

inverse of the variance-covariance matrix of the Xi, pooled
over the two groups under the assumption of homoscedasticity.
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The constant S/D has no meaning as far as the discriLminant
function is concerned and can be arbitrarily equated to
unity for simplicity.

The assumptions for the probability statements implicit
in the use of the discriminant function required that the
predictor variables be continuous and have a Joint multi-

A variate normal dirtribution and that the variance-covariance
matrix for each group beequal. Therefore, the following list
of propojae predictors (characteristics) was examined in
terms o.. its marginal distribution properties.

Predictor Predictor Univariate properties
Number

I Age Continuous, approximately normal
2 Duration Continuous, skewed to right
3 Enucleation date Continuous, skewed to left
4 Size Continuous, skewed to right
5 Volume Continuous skewed to right
6 Area Continuous, skewed to right

7 Sex Two-class, uniform
8 Posterior margin Nine-class, skewed to right
9 Anterior margin Nine-class, skewed to right

10 Eye Two-class, uniform
11 Cell type Four-class, skewed
12 Pigment Four-class, skewed to right
13 Fiber Five-class, skewed to right
14 Scleral extension Four-class, skewed to right
15 Optic nerve Four-class, skewed to right

Three results were immediately obvious. Not only was
the assumption of multivariate normality invalid, but it also
was clear that the covariance matrices of the two groups,
metastasizing and nonmetastasizing, were not equal. More-
over, the additive model was at best a first approximation.
Nevertheless, it was felt that an imperfect approach could
be tried and judged on its performance. The UCLA BMD pro-
gram, stepwise discriminant function, was utilized. This
program selects as the first predictor and as successive
predictors in turn that one ior which the likelihood ratio
expressed in terms of thn F-statistic is a maximum. The
advantage of this approach is obvious--the set of predic-
tors is ordered and can be truncated at any point by the
experimenter. Further, in this study it offered a compari-
son of predictors selected in thia fashion to those
previously selected .y the pathologists from experience.

. MEDICO-STATISTICAL INTERACTIVE DIALOG. The results
of ou, first run with the stepwise discriminant-function
program are given in Table 2. It was clear from this run
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tliL.t of the 15 ouriginal predictoro, Ito more than 8 were
ellet•cve lit combination. An astounding finding was the
failure of predictor 011. cell type, which was the leading
choice by pathologists' experience, to be included in the
list of effective predictors. Also unexpected were the
negative signs for the coefficients for predictor #2,
duration,; #1, age; #3, enucleation date; and #6, area.
In effect, the data were contradicting the notion that the
probability for metastasis increases with increasing age,
duration of the melanoma, area of the melanoma, etc. The
error rate for false positives, I+, defined as nonmetasta-
sizing cases erroneously classified by the function as
metastatic, was 5/42, or .12, while that for false nags-
tives, F-, defined as metastatic cases erroneously classi-
fied as nonmetastatic, was 11/34, or .32, for a total error
of 16/76, or .21. Our review of these results included a
detailed examination of those cases that were misclassi-
fled by the discriminant function. This review revealed
Inconsistent criteria for call type and three cases that
should not have been included in the study.

The second run, with the value for cell type revised
by thk consensus of three pathologists, selected the pre-
dictors in the order shown in Table 2. The review of run
02 found yet another case erroneously included in the orig-

inal set of data. It was of interest that the refined
definition of cell type, predictor i11, was included in the
group of meaningful predictors. Only fiber content as
a predictor in the pathologists' list failed to be included

in the group of meaningful predictors in run #2, although
it was noted that age continued to have a negative coef-
ficient. At this point, it was decided to add a 16th pre-
dictor, mitotic activity, for the next run.

Run #3, shown in Table 2, did include the new pre-
dictor, mitotic activity, but unexpectedly dropped celltype. The total error rate stayed about the same as before

despite a slight shift in the F+ and F- rates. Pathologists'
opinion did not agree that #1 (age), #2 (duration), and
#3 (enucleation date) were physically meaningful and
recommended that these as well as #15 (optic nerve exten-

sion) be dropped as predictors for the next run.

Run #4 did not discriminate as well as runs #2 and 3.
Its oaerall error rate was 15/72, with F+ as 7/40 and F-
a- 8/32. It also dropped both cell type and altotic acti-

vity as meaningful predictors. It did continue to show an
acceptable level of discrimination.
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With these as the results thus far, we reminded ourselves
that It has been the thrust of this preliminary paper not so
much to list medical findings or implications (which will be
reported elsewhere) as to suggest the value of the continuing
medico-statistical interactive dialog in the winnowing proa-
ess of finding and redefining meaningful predictors.

4. CONCLUSIONS. The discriminant-function approach ap-
pears to ofTer considerable promise to serve as a basis for
estimating risk probabilities as a help to medical practice
in evaluating small ophthalmic melanomas. Future investi-
gation in this specific direction will Include (1) the use
of this discriminant function on a new population to estimate
true error rates and to improve overall predictive ability,
(2) the reformulation of the prediction function to allow
greater flexibility than offered by the linear terms, such
as "product" or "reciprocal," or special relationships
among the variables, and (3) possible use of transformations
toward achieving normality.

The opinions or assertions contained herein are the

private views of th authors and are not to be construed

as official or as reflecting the views of the Department

of the Army or the Department of Defense.
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FONICASTING MODELS FOR 14SQUITO POPULATION BEHAVIOR

Stephan Smeach and Ctris P. Tsokos
Department of Muthematics

University of South Florida
Tampa, Florida 33620

ABSTRACT. The object of this paper Is to develop statistical models to
forecast mosquito densities up to a specific desired time in advance.

It is shown that the mosquito series Is a non-stationary stochastic
realization. A procedure in presented in modeling the mosquito deoitites
for the purpose of forecasting one, two, three. ... , k days ahead. Auto-
regressive, moving average and mixed autoregressive-moving average models
have been utilized for the purpose of predicting mosquito density behavior.

In addition, the technique of utilizing the formulated models in a

simulation study to determine the influence of several pesticide application
strategies Is briefly discussed.

1. 1NTROUCT1ON. Aside from the nuisance factor associated with the
presence of mosquitos In the human environment, it is of interest to develop
control strategies for mosquito populations since they serve as essential
links in the life cycles of a number of human parasites. The incidence of
such parasites can be controlled by reducing the population density of their
mosquito vectors. Control techniques can take the form of pesticide spraying
strategies and alteration of the mosquito larval habitats. The develoyment
of accurate statistical models to predict future mosquito densities can be
used to advantage by scientists studying control of mosquito-related diseases.
Such statistical models could be used to simulate population density behavior
under various control strategies and hence serve as an evaluation of control
strategies, fndependent of field tests.

In the present investigation, statistical models are formulated to predict
mosquito population densities up to four days in advance. The procedures
used are those developed by C.P. Tsokos ( 2 ] for use in formulating forecasting
"models from non-stationary time series. The data used in this investigation
consists of three years of light-trap capture data of adult female mosquitas
(Culex tarsalia) collected at two day intervals from light trap stations i
Malvern, Iowa during 1969, 1970 and 1971. Hacker, Scott and Thompson [ 1 1
have analyzed this data using a somewhat different approach. Professor Thompson
discussed their investigation with the present authors and kindly provided the
data for our independent analysis.

We shall be concerned with an important class of statistical models, vi, the
autou ,ke•6ive pooee6, the movig aveulpoMocAe6 and the miued autoAk-gaft ive-
moving £vekAge pAocU6. These processes have been widely used for describing
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stationary time series (i.e., those time series that are in statistical
equilibrium about a constant sean level). However, much biological data is
non-stationary. One can transform non-stationary data In such a manner that
it can be treated as a stationary series. Such transformations consist of
applying an appropriate filter to the observed time series to "filter out"
non-stationary components. In the present investigation, applications of
first or second difference filters remove the non-stationary components of
the data. Once we have obtained a model for the filtered, stationary series,
we must employ the appropriate "backward" filter to replace the non-stationary
components. The result will be a model that can be used to obtain forecast
values of the original non-stationary time series.

In section 2, the autoregressive, moving average and mixed processes are
defined and a procedure for obtaining the "best" statistical model among
them is explained in greater detail. In section 3, this procedure is applied
to a smoothed-data version of the mosquito population density data and
forecasting models are developed. The smoothing procedure is that employed
by Backer et. &I. [ 1 1. In section 4, the procedure developed in section 2
is applied to the original, non-smoothed mosquito population data and fore-
casting models are developed. Finally, in section 5 we discuss the approach
used in this investigation as compared to the approach used by Hacker et.al.
and describe further research being contemplated in this area.

f. POCEVU. A discrete in-order vtoAt WASZve pACoUA derived from a
purely random process is given by

Xt - 0 al1(X t-1-) + a2(X -) + ... + am(X -u) + Zt (2.1)

where X is the autoregressive series; al* a2, ... , a are parameters of the
process,F and p is the expected value of the series X. Such a process assumes
that the current value Xt of a series can be express d as a linear sum of past
values plus an independent error term Zt, not connected with the past.

A finite mouWAg ave~ge pwoceh4 of order q is given by

Xt - U M Zt --B1Zt. - ... - 8qZt-q (2.2)

where Xt is the mov'ng. average series; 0 , a , ... 9 0 are parameters of the
process; and u is the expected value of Khe ieries. This process is interpreted
as a weighted sum of a random series, Zt.

A mixed auuoati4Le-mnvint aVeAae pUoee4 of order (a, q) is given by

t-U - Y(Z~t~-u) + ... + aI(Xt..U-U) + Zt - olZtI- ...- 0qZt-q (2.3)

where the value of q is independent of the value of a and all other symbols
are as defined above.
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The procedure used in the present investigation to determine an
appropriate statistical time series model is that procedure developed by
Tsokoa [ 2 1 and is seumarized below:

(i) Te, tts ot g4to, 6e)aie o 4.tAt&WoftaALUV. A trend test such as
Kendall's i is used to test for stationerity. If the original
series fail. this test, a first difference filter is applied to
the original series to create a new series. The testing procedure
is repeated and first difference continue to be applied as necessary
until a time series is obtained that passes the stationarity test.
A second order difference filter is usually sufficient to filter
out non-stationary components.

(ii) Peteuike the "beut" 4tiWtcat time 4Me4 mode. Using the
time series obtained In step (i) a computerized searching procedure
is initiated to determine the model and its order from among the
models discussed above that best fits the data. The criterion for
selecting the beat model for the filtered series is based upon
estimates of residual variances. One proceedo by estimating the
parameters of the different models for different orders. The
residual variance estimates are then computed and recorded against
the orders of the processes. The minimum residual variance will
correspond to the order and type of process which best fits the
filtered series.

(iII) Appet azn appwp4iae bka simd £te. If the original time series
were non-stationary, then the model chosen under step (if) was
appropriate for the filtered, stationary series. Hence, at this
step a backward filter is applied to replace the non-stationary
components. For example, if a first difference filter, yt " xt-xt-l'

had been applied to the original series and the appropriate model
for the filtered series had been of order (1, 1) then the model
has the form

A

Yt - "l +t-l " 1 + - t- (2.4)

"where V, a,, and 01 are estimates of the parameters based upon the

filtered series (see Tsokos [ 2 ]). Written in terms of the X t' .
equation (2.4) becomes

Xt = (1 - + (1 + . Z (2.5)

- oXt -2 + Zt- (2.5)l

the process of going from equation (2.4) to equatiua (2.5) is
called "applying the appropriate backward filter". It is
equation (2.5) that is then used in step (iv) to forecast future

values of tile X t process.
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0(v) Fo•eca6t vatues o4 the O.•gio .time. &e.,6 X-daqy ahead. we
desire to forecast a value xt+,Z >_ 1 when we are currently at

time t. For example, as discussed in Tsokos, the generalized
mixed model under the influence of a first difference filter has
minimum variance 1-day ahead forcast given by

t ( + lt+- + "'" +
(2.6)

t+L-1 0 q Zt+_-q

where Xt(1) - Et[Xt+L], i.e., the expected value, at tim t, of

Xt The constants are functions of c and the ; Is; the in

are defined previously; and Zt = X - X (1). Due to the
t t t-l

recursive property of the mixed, autoregressive-moving average
process, when we forecast with a lead X2 2, our forecast iu
dependent upon the previous forecasted value(s).

In addition to the procedures discussed above, one could proceed to
compute confidence intervals for forecasted values and to employ updating
methods for use in the model as new time series observations are obtained.
These techniques are not discussed here but are well documented in the paper
by Tsokos.

3. TIME SERIES MODELS FOR THE SMOOTHED DATA. Because of the (apparent)
high noise level in the raw light trap data, Hacker et.al. [ 1 1 smoothed
the data using a cubic-spline-integration method that is described in their
paper. Figures 1 through 3 below are graphs of the original population data
(solid lines) and the smoothed data (dotted lines) for the year 1969, 1970
and 1971 respectively, collected during the months May through October.

A: Figures 4 through 6 show the smoothed data (solid line) and the 4-*day

ahead forecast values (dotted line) for each of the years 1969, 1970, 1971.
As can be seen by inspection, the agreement is very good except for the lag
between the two curves which is characteristic for time series work. All
three years data required first difference filters for stationarity and
were best fitted by order 3 moving average processes. The models for
1969, 1970, 1971 are presented as equations (3.7), (3.8) and (3.9), respectively.

Xt - .0083 + (.9)Zt - (.l)ztA - (.5)Zt_2 (3.7)

Xt --. 0278 + (.9)Zt + (.2)Zt_1- (.3)Zt-2 (3.8)

xt" .0431 + (.9)Zt + (0.0)zt-1  (.3)Zt-
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.r 4. TIME SERIES MOVCLS FOR RAW VATA. A data-smoothing technique such as that
applied by Hacker et.al. is a reasonable approach to use If one can demonstrnte
that the sample population density data is more erratic than that expected for
the true density behavior und if one can identify the sources of noise in the
data. However, to the knowledge of the present authors, this haa not been done.
Hence, the nagging possibility remains that smoothing techniques may remove
basic, essential components of the data. In this section we avoid the problems
inherent in the use of smoothed values to predict smoothed values by formulating
statistical time series models for the raw data itself. The following graphs
show the results of applications of the procedure discussed in Section 2 to
the three sets of raw data.

In Figure 7, the raw data collected during May through Octotbr, 1969 is
shown, along with the one day ahead forecast generated from the moving average
model of order 3:

Xt+1 - -(.08) - (.83)xt - (. 71)xt_1 - (. 3 4 )xt_2  (4.0)

Again, the agreement is quite good except for the characteristic time lag.

Figure 8 is a visual display of the stationarity test of step (I). If a
series is stationary, then Its sample autocorrelation fumction, r xx(k), should

dampen out to zero fairly rapidly where

n-kI( " ;(x t+k"

rx(k) - "1 , for k =0 1, S.., n-i (4.1)

I (xt - )(xt+k -t'l

As can be seen, r xx(k) does not dampen out quickly for the original series
(solid line) but upon application of a second difference filter,

Y x - 2xt- + x- 2 ' ry (k) for the filtered series does dampen out quickly

(dotted line).

Figures 9 and 10 show the 1-day ahead forecasts for the raw data collected
during May through October, 1970 and 1971, respectively. For the 1970 data,
a first difference filter was required for stationarity and the forecasts
were generated from the second order moving average process.

xt -(.014) - (. 2 0 )zt.1 - (. 3 0 )zt.2 (4.2)

The 1971 raw data required a second order difference filter for stationarity
and the forecasts were generated from the third ordor moving average process.

A

xt - (.056) - (. 9 9 )ztI - (.0 9 )zt_2 + (. 1 8 )at-3 (4.3)

The graphs for the sample autocorrelation functions are not Included here
since they are qualitatively similar to Figure 8.
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5. C104CLUSTON. It has been shown in previous sections that the techniques
dir:u.sed here can provide adequate forecasting models for non-stationary
thime serl.e.s. even if those series have suspected, hut uunccounted-for noise
cor iponni's. '11iis seems to he an important improvement over the smoothing
approach us;ed hy Hacker et.al. If the source of the noise is not identified,
thien one can not be sure that smoothing the data will lead to a set of data
that is more representative of the true state of nature. The technique
developed in the present investigation avoids this problem by formulating
time series models using the raw data itself. (It should be pointed out
that the complete procedure discussed in the previous sections is contained
within o software computer package developed by the authors.)

Further research along the lines of the present investigation is now
being contemplated. Hacker et.al. discuss a method for using their model
equations to develop simulation studies useful in evaluating various control
strategies for mosquito populations. Their method consists of adding the
(previously suppressed) error term, ct, assumed to be normally distributed.

They then can sample independent random normal variates with the same variance
as that estimated from the data, and use these values to drive the process.
It turns out, however, that using a random walk of this type occasionally
yields pseudo-observations outside the range of those observed in the Malvern
study. To remedy this, they employ a mathematical condition that reflects
the process away from the boundaries of negative values and overly-large
values. The present authors are considering application of this simulation
approach to the models developed here, which we believe are more representative
models of actual behavior of mosquito population densities.

In addition to the simulation studies, the present authors are initiating a
spectral analysis approach to the study of this problem. Such an approach will
give a better understanding of the intricate details and inter-relationships
between the essential variables involved in the study of the behavior of mosquito
populations.
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CURV FITTING OF DISCRETE POINTS BY LEGENDRE POLYNOMIA•S

Oskar M. Essenwanger
Physical Sciences Directorate

US Army Missile Comand
Redstone Arsenal, Alabama 3509

ABSTRACT. It is well known that the Legendre polynomials render
the least square fit, while Tchebycheff polynomials provide the minimum
of the maximum deviation from the observed points. Therefore, it should
be assumed that the selection of the desired type would depend only on
the primary goal of the analysis.

Legendre polynomials are in widespread use in mathematics, but
their application to statistical problems is rarely found. This can
not always be attributed to the differences in goals between statis-
tical and mathematical analysis. One of the reasons may be the difficulty
of adjustment of Legendre polynomials to discrete point curve fitting as
necessary in statistical analysis. While the Tchebycheff series is ortho-
gonal for discrete points, the orthogoality of the Legendre series is
based on the continuous type and does not hold up for a small number of
discrete points.

The author has attempted to display first the fitting of discrete
points by Legendre polynomials and compare the results with the Tchebycheff
series. Furthermore, examples are given for the calculation of the co-
efficients of the Legendre series from discrete points, and their relation-
ship with the left variance. Finally, the most advantageous utilization
of Legendre polynomials in statistical analysis is a fitting to N > 50
where the Tchebycheff series becomes difficult to handle.

1. INTRODUCTION. Although certain types of polynomials such as
the Legendre polynomials are in widespread use for curve fitting in
mathematics, their application in statistical analysis can rarely be
found. It is a well known fact that individual polynomial types serve a
special purpose and have particular properties. Among orthogonal poly-
nomials the Legendre polynomials render the least square fit while the
Tchebycheff polynomials provide a solution where the maximum deviation
is a minimum.
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It may be speculation that this latter property is a preferred
"goal In statistical reAlysis, and therefore the Tcbebycheff series
is z.tly utilized. This fact is contradicted, however, by various
atiala %bee authors have employ empirtial polynomials. Thus
ow would think leant square solutions should be f inaong the de-
saied analysia goas, and one could discover Legendre polynomial
fit@ in statistical analysis.

As it will become clear from the subsequent diecurinon, ams
peosible reason for the abeemnc of Legedre polymial fits my be
the difficulty of adjusting Logendre polynomials to discrete point
fittirng. May data in statistical analysis are given or prepared in
the form of discrete points rather than the continuous type of solution
wuica are usually illustrated in mathematical tents, altheuo a limited
ember of discontinuities in the observattoou (step functions) hea
been accepted in numerical analysis.

The fitting of Legendre polynomials to discrete points has,
therefore, been studied in details in the subsequent sections. As
we shall learn the major problem is not the preparation of Lesendre
polynomials for discrete point fitting. The difficulty lies in the
determination of the proper coefficients for the series from discrete
points. Although the LASendre series is orthogonal in a continuum,
the series loses its orthogonality for a smll number of discrete
points.

As will be outlined coefficients from integrals can be calcu-
lated by numerical methods, but disadvantages still remain with respect
to the left variance. The Tchebycheff and the Legendre series are
fitted to wind profile data end the results are comparable. It will
be learned, however, that the Lagendre series would be most advanta-
geously used for the number of points greater than 30, even better for
mre than 50 points where no table values for the Tchabycheff series
are readily available, and the orthogonality of the LeSendre series is
restored. It should be added that orthogonalized sets of discrete
Legaendre polynomials for few points assume the same numerical values
as found for the Tchebycheff series.
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2. THE LEGENDRE SERIES. As can readily be found in various
texts (e.g. Boas, 1966; Abramowitz and Stegun, 1964; Essenwanger, 1975a,
etc.) the Legendre polynomials comprise an orthogonal system over the
interval -1 5 x : 1. For details of their analytical expressions the
reader is referred to the literature. Let us denote here the Legendre
polynomial by Pn(x), where n represents the order.

The Legendre polynomials are orthogonal, i.e.

+1 2/(2n+l) for h-k-u
Sdx(1)

- 0 for h k.

Any function Y( z) would be represented by Legendre polynomials with
the transformation y(x) =Y(z). Then

'Z= a P(x). (2)

The coefficients must be determined from

+1

and here begins the difficulty in practical work with discrete points.
If Y(z) is a function which can be expressed in analytical terms, and
the integral can be solved explicitly, the representation of any function
by Legendre polynomials is trivial. Such examples can be found in almost
any text on mathematics or numerical analysis where polynomials are
covered. In the atmospheric sciences or other branches with statistical
analysis we are mostly interested, however, in expressing a discrete
function Y(z) by polynomials.' While the coefficients for the
Tchebycheff series are simple to calculate even in this case, the usual
procedure of replacing the integral by the summation sign is insufficient
for a small number of points, i.e. we cannot merely state

an 2nl) /2 z (4)
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This replacement would be a permissible approximation for a large
number of- points, say probably for about 30 or more and the number
oa term n,<< 30. For a small number of points, i.e. seven, this formula
generally does not provide the coefficients a accurate enough
to be of value.

We may evaluate the success of engaging eqn. (1) by calculating
two polynomial characteristics, the variance Varp and an integral,

which we may call SL . The two parameters have analytical solutions

depending on n and are defined by

+1

Varp = f (x)dx =2(2n+l, (5)
n - n

d+1 n/2
aSn (x)d L z(.) 1-3- 5...(2n-2v-l'- 1

n V-0 2v!(n - 2v): (n-2v+l)

= 0 for even n 0 0. (6)

Against these expected values the empirical counterparts can be
obtained.

2
= Z $(xax 42/(2n + 1).

The smumation
.xi=l

xi-on(8

is somewhat more difficult to calculate due to considerations in the
marginal class intervals. If the two border points xi = 0 and xi = 1
are utilized, the Pn(xi=O) and Pn(xi=l) must be.multiplied by

xi1=l
ax/2. Otherwise, Z Ax = 1 is not fulfilled.

x =0
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Transformation from the z to the x system is based on the
equalixation of the ranges and references, i.e. x =z Conse-
quently

x/xr .(z-zo)/zr (9)

(the reference equivalent to z is xo = 0).
Since most of the observed discrete variables can be arranged in
steps of class intervals, two versions of the transformation must be
accommodated. Let us assume that 7 points Y(zi) are given. We
number the variate z from zI = 1 through z7 = 7 (with unity steps).
If other scales are given, they can be reduced to this basic form (see
later Table 1). The transformation in this case can be written (with
S-2 and z -z - zi 6)

r ? r

= mi(z-) (loa)

or 3z + =z. (10b)

We shal call this version one.

If we consider z= 1 with a lower class boundary of 'l = 0.5

and the upper boundary of z as z =7.5, the z - z 7,u r r
51!!..(z-4) U lla)2 7

or 3.5x + 4 = z. (llb)

This may be called version two. The resulting Legendre polynomials
for these two interpretations are given in Table 1. The respective
Var' and S' parameters are listed in Table 2 for four different
n;mer of polnts.

It is self-evident that the expected Varp and S are best
approximated for the largest subdivision, namely 31 poin-s. The second
version renders a slightly better approximation than the first version.
The deviation increases with ascending polynomial order. In other
words, at least about 30 points are needed to calculate the coefficents
accurately enough by mere sunmmation.

It will be further seen that the discrete Legendre polynomials
for a small number of points are not fully orthogonal (see Table 3).
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Table 1. , dre g 17Plmmal lenm for 7 Discrete boits.

Vamln 1. Lx - 116 Vmaua 2, Ax a l7
(z at wwipiLt of Class)

P- -

1 1 -1.0 1.0 -1.0 1.0 .1.0 -0..T 0.61-o0.2f9 -0.019 0.260
2 1 -0.6.7 0.167 0.2"9 -o.112 0. -o."7 -0.010 0.391 -0.3&8 0.081

3 1 -0.-33 -0.333 o.0 o.0o -0.3 -0.26 -0.o78 0.370 0.098 -0.3k7
4 1 0 -0.0o0 0 0. 37 0 0 -0.o00 0 0.37' 0

3 1 0.35• -0.333 -. o0 0.o012 0.53 0.06 -0.378 -.0370 0.096 0.547
6 1 0.667 0.167 -0.259 -0.427 -0. 0.571 -0.010 -0.391 -0.383 -0.061
7 1 1.0 1.0 1.0 1.0 1.0 0.8"7 0.602 0.289 -0.019 -0.260

Table 2. uinmtio- of Ir1. 7 and 8. (Ime Text.)

______ 1 Pe 146 %~ 1 2 P4 -I'm

True value 2/3 2/5 2/7 2/9 2/11 1/2 0 .1/8 0 1116
for Itmtro 067 0.400 0.226 0.222 .1• .2o 0 .O,• 0 O.0625

7 points 0.63 0.360 0.213 0.130 0.111 0.1490 -0.010 0.1•5 -0.033 0.0016
I 11 points 0.661 0.384 0.2%1 0.17" 0.124 0.496 -0.004 .0.129 -0.013 0.0371

21 points 0.665 0. 39 0.277 0.208 0.161 o.499 -o.oo0 o.26 -o.007 0.0o%1

31 points 0.666 0.3980.282 0.215 0.172 0.499 -0.0005-0.12 -0.001 0.0593

7 Points 0,704 0.509 0.4089 0.5M 0 .470 0.50 0.028 0.o% 0.091 0.176
,• 11 points 0.6W 0.440 0.363 0.343 0.310 0.5•0 0.10 0.100 0.033 0.105W2

21 points 0.670 0.111 0.306 0.254 0.229 0.500 0.003 0.119 0.008 0.0734

31 points o.698 0.1140.2 0.237 0.203 O.0 0.001 0.112 0.004 0.06T3
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3. UTmiIIATU•I OF THE CMTANTS. As can be readily seen from
Table 3, the discrete series of Legeidre polynomials for a small number
of points is not fully orthogonal. In an orthogonal system only the
diagonal of the matrix would remain non-zero. Thus the calculation of
coefficients is problematic by replacing an orthogonal system and the
integral by sumation. The coefficients of a non-orthogonal system can
be properly calculated as outlined for linear systems (see Isesmenuger,
1975m). This is equivalent of converting the "covariance matrix" (left)
into the "coefficient matrix" (right)t

10 EI P !70 E Pa P0 . .1 a F0 1 . 0 0 ..0 A 0
zp2 30 0e100 0 AIIE•o ,i ,i ... V . 10 1.0 0... 0 A

* S • . .
on~~1 0 00a1%y

This conversion has been treated in many texts or by the author (197b,
section 3) and is equivalent with the diagonaliUation of a matrix.

This technique does not provide 'Legendre coefficients" unless the
matrix contains a sufficient number of terms (i.e. orders of Ps). E.g.
the following coefficients are obtained for an approximation of Ax)
being a third plus fourth order Tchebycheff polynomial of 7 points (Se
Table 8). The last row in each version of Table 4 is identical with

gthe Leandre coefficients.

Table 3. Covarianc* matrix for 7-point discrete Legudte
polynomials.

Version 1 Ierseis a
0P F1 P P P P P, F. • P ? P
0___2_a-___a_0_2___ S __ 4 a

P 07.0 0 1.17 0 1.55 0 7-0 0 -0.07 0 -0.23 0
P 0 3.11 0 1.38 0 1.81 0 2.29 0 -0.16 0 -0.

P2  0.17 0 2.53 0 1.660o -0.07 0 1.26M 0 -0.98 0
P30 1.38 0 2.47 0 1.89 0 0160o 0." 0 -0.34
P4  1.ý5 0 1.66 o 2.51 0 .0'-o'3 0 -0.28 0 0.45 0
Ps  0 1.81 0 L.89 0 2.41 0 0.34 0 -0.31 0 0.39

Table 4. Coefficients for 3, 4 and 5 term of the discrete
Legandre polynomials.

Version I Version 2
""o 23 "4 a 0 al &2 6 %

0 0 0 0 0 0 .
0 -0.8 0 1.8 - 0 0.20 0 2.86 0

-1.3 -0.8 -6.5 1.8 10.8 0.71 0.20 4.42 2.86 2O.Ol
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We learn from this table that the "Legeadre coefficients" (last
row) #re not the moat advantageous coefficients for an incomplete system,a
but the solutions converge with the inclusion of a sufficient number of
(or all possible) term. lom readers my prefer this method of calcu-
laties coefficients since It is mathematically eact sad it certeinly
proes advantageous once the number of term La the serets has been
"deeided upon. As in any non-orthogonal system, the addition of term
requires a recalculation of coefficients, however.

It it also possible to utilise numerical solution for calculation
of Lntegral., such as Gregory's or Simpson's rule (see Iseeemmnger,
-1973a, or Abranowitx and Stegun. 19&B). The author (l975a) has developed
an Iterative process, which in eobination vith Grugory's or 8opson's
techuique, works reasonably well. This combination is necessary since
Grepory's or Simpson's approximation becoues less efficient for the
higher order terms %bile given correct entries for the lower order term
the iterative steps lead to good approximations (see Tables 5 and 6).

As evident from Table 4i, the coefficients from the covartance
matrix are not identical "Legaetre coefficients" as they would be
obtained from analytical solutions of the coefficient integrals (eqn. 3).
The two sets converge only after a sufficient number of term is carried.

an the utilination of numerical methods for calculation of
Integrals, however, the "Legendre coefficients" are obtained directly,
if possible, without further modification (see Table 5). The reader
may ask whether it would be desirable to calculate Legendre polynomial
coefficients under these circumstances because they do not provide the
best fit for an insufficient umber of terms.

It may be replied that generally curve fitting is of little value
unless at least 80 to 90% of the 'variance has been explained. In these
cases the coefficients from the solution via the covariance matrix and
numerical methods from integrals merge (see also later the example,
section 6). The question should be rephrased: Do the Legendre poly-
nomials fulfill any need since the orthogonal system of Tchebycheff
polynomials is available? The answer will be given after some further
discussion,

1. 550



Table 5. Coefficients of the Legendre Polynomial Series for a

fourth order Tcbobycbeff term with 7 points.

Tersiem 1 Version 2

Iteration

With

Tr- - - O-ly - True w/o It It

a% -1.30 -1..0 -130 -0..0 -1.30 -1.o0 0.71 0 0
da 0 0 0 0 0 0 0 0 0
d6 -6.30 -6.50 -6."3 -7.96 -6.90 -6.50 4.)2 0 0
a 0 0 0 0 0 0 0 0 0

S10.80 235 5 23.1 10.70 10. 8 10.80 20.01 9.90 16.86
0 0 0 : 0 0 0 0 0

i1 w Gregory, 3 w 8lmpson, It a Iteration

Tabe 6. Iecamputed fourth order Tchebycheff polynomial term for
7 Points for the coefficients as given by Table 5.

Version I ersion 2

L Y(x) I S Only a + v/o
____________a 0 % 5k I T...L..

1 3 15.2 15.2 2.2 2.5 3.0 -0.2 -0.5
2 -7 -12.2 -12.3 -6.4 -7.0 -7.0 -3.8 -6.6
3 1 1.2 1.2 2.3 1.1 1.0 1.0 1.7

7 6 1O.6 10.6 7.5 6.2 6.0 3.7 6.4
, 1 1.2 1.2 2.3 1.1 1.0 1.0 1.7

6 -7 -12.2 -12.3 -6.4 -7.0 -7.0 -3.8 -6.6
7 15.2 15.2 2.2 2.5 3.0 -0.2 -o051
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Ii I¶UOaMSIATIOU OF DI3W*T MENI I )LUMN MUZ5* h
reader may ask whether the discrete Legeandre polynomia•l could be
orthogonalLsed. Without doubt, orthoeonaliuation is technically
feasible, and the author has produced an orthogonaliaed sat of
polyomnials for the 7-poLit Legepdre polynomials which mre given
in Table 1. This orthogonalled set is exhibited in Table 7. It
must be reported first thdt versien I and version 2 mered to only
em set after this ortbagosalinatiou procedure.

A closer perusal of the orthogonalized set reveals that the
columms of Table 7 ar noa identical with the Teheabyeeff 7-poist

polynomials except for rounding and a multiplication factor. This has
been found for other number of points, too. Identity with the
Tacebycheff system implies, however, that this orthogonalLed set
has also assumed the properties of the Tehebycheff polyumials.
Consequently there would be no reason why the Tchebycheff poly-
nomials could not be employed a' priori, since the origLnal purpose
of utilizing the Le8endre series is defeated with the change of
properties. Consequently for a mall number of points V the
discrete Legendre series would not be very advantaqgous while its
application for a larger 9 (e.g. N > 30) should prove useful.

Table 7. Orthogonalized set of discrete Leoandre polynomials
of Table.

P, p P P P
a U

-o. 0.5155 .o.08 0.2117 -.01092
.-0.37 0 o.0o83 -o.%41 06
0.10 0.327o 0.o083 o.o806 -0.5157
0 -o.4365 0 0.5&1 0
0. 189o -0.3273 -0.1083 0.08o6 0.5457
0.5780 0 .0.-4083 .0.4-.0.-4363
o.69 0.5155 0.io8 0.:247 0.L092

This statement is even more valid for N > 50 because most
table values of Tchebycheff polynomialsdiucontinue after N - 50.
Since for larger N the integral in eqn. (3) can be replaced by
the summation sign with sufficient accuracy, and the Legendre
system becomes orthogonal again, the difficulties encountered for
few points disappear.
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powewtoey polnted out that the goal in curve I ttu m aseaelso be
elmeftted as attept to deseribe the va•uance of the f£mtm y

ma toatieal teseLo" s If tie mseh is perfest, the vmi•m
e do segivem data and e of tde mslytial s meu ',

Sdeatoee-. Vse ea, therefore,; mstemtically fmulaee a eritneiem
of the euaeoes i *uam fitteiq by deft"" a left vwiame

s 71 i Y 1 - "'.

The inp"lamd vaetme is then

4(.3)
Mw measure

sa be called reductiong and

5alot* 100Clb)

Is then the percentage reduction.

As illustrated in detail (IBameamukpr 19754) the left výaiance
can be written as

,!P OF g+ (ao j)" +* x,,

'lY

•23



*were u denotes the variance of y, and j is the mean, ao the
7a

pqlyu*al eoeffcloeut of order sere. The He devotes the suimntion
of the elmeets in

3 0

",o 0••,• *..,,•,.€

t~ •) 
( 4kho o , 

& I Pe 
PSm

oe deft"m

TA" In an orthogonal syes t e M "•" % a"d a *" (see Eseuager.

IMT~). Vurthegmore, soa . avid

0L

In a non-orthogonal system eqn..(i5) cannot be reduced to simple term .
Because a to not necessarily j in a no*-orthogonal system, m
could istise

alid 1:U~./; le (11c0
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Let us assum that the given data are the tvo term

a 4

for the Tchebyeheff polynmials for seven points. This exple has
beo selected because the coefficients of the Legendre polyuamo8lsseries c:an be calculated by Lateoration Use following table reults.

Table 8. Given y aed coefficients.

i•irt Version Seoad Version

041 y _1- _ a_ _ _

S1 -1 2 e -lJ 0.7W9
2 2 1 -7 -6 -0.8 -0.2(*

!* 1 1 2 -6.k 1..
0 6 6 +1.82.88

-1 1- 0 10.8 20.008

6 -1 .7 -8 0 0
*7 3 k.

The y a oa0 + a2 P 3 + %P 4 with the coefficients of Table 8,

and ya is identical wich the data Y,. Thus we have a perfect niatch.
"VOW "0 and a2  160/7 = 22.8'7 where 2 - 617 anda 2  .22.0.

* ~00
Hence x2 3 =.8% and x2 - 96.26 for the Tchobycheff series.

3 4
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The matrix M (version 1) becomes for the ix: coefficients

at through a.:

Line Sun

0 0 1-71 -4.0 0-145.71
0 - 6.20 0 - 3.38

0.28 0 -0.28 0.0 0 0

X 0 15.26 0 -16.67 0- 1.41

-0.28 0.0 1.14 0 0 0.86

o.0 -16.67 0 41.76 0 25.00\ 0.0 0.0 0 00

The sumiation of all elements of M = -24.55. Consequently,

LC = 22.86 + 1.69 - 24.55 = 0

.is confirmd.

The left variance of the individual term sequence is

C E(oy-a 0 ) 2 /N = 24.55 = 22.86 + 1.69

CTL = y-ao-a"P 2 )2 / = 24.83 = 24.55 + 0.28

•2 �E(y-a-a 1 P1 -a 2 P = 24.83 + 18.08 - 42.91, etc.

L

52= 41.76

L = 0.

The corresponding rumbers for version two are 23.36, 23.37,

26.83, 25.96, o. It leads to the percentage reduction as displayed
in Table 9.
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Table 9. Percentage Reduction.

Part a. Cumulazive Value.

0 .1 2 1,. 4 .5iI-

Version with 2 - -8.6 -87.7 -W.7 100% 100%

1 with S 0.0 -1.2 -74l.8 -70.1 100% 100%
Y

Versin with 2 -.2.2- -1..6 O0% loot

Y • 0.0 -0.1 -14.9 -11.1 'Loot 100S

Part b. Individual Terms.

0 o I L 2 1

Version with 2 -7.4 -1.2 279.1 5.0 l•.7 0
7I

I vith S2 0.0 -1.2 -143.6 4.7 170.1 0
7

Version with C -2.2 -0.1 -15.1 3.8 11u.6 0
2 I

2 ith 0.0 0.1 -l1.8 3.8 111.1. 0

Y I I

The positive reduction begins in both versions with the third order
term. Although the actual percentage contributions of the third and
fourth order terms are not completely identical with the nimbers from
the Tchebycheff system, the important feature: ru, parallel; namely a
small rtr-ti'xjitiou from a third order term and a considerable dominance
of the fourth order term. It may be further coneludad that a representa-
tlion including only the three coefficients a through a is inadequate.
In fact, the assumption of zero for these three coefficie.nis above would
leave a smaller left variance than the actual value (see matrix co-
efficients Table 4). For more details see Essenvanger (l9a).
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6. AN MUMLE FOR WIND PROFILE REPRESENTATION. Two wind pro-
files at 2 km altitude level intervals were arbitraritv selected,
January 1, 1957 and 195 at Montgoaery. The following Table 10
exhibits the empirical data and the approximation by polynomials
up to the fifth order. Since the correct coefficients for Legendre
polynomials cannot be determined a' priori, the effect of the
approximation cannot be directly shown. It may be inferred, however,
that the reconstructed curve from the Legendre polynomials should
have a smaller sum of the squared deviations from the analytical
data than for the Tchebycheff approximation. As can be readily
checked, however, both sums are about the same. This may be seen
as a confirmation of an earlier conciusion that for less than
about twenty points the advantage of the Legendre series over the
Tchebycheff series may not show up in practical work.

As an added feature, the percentage reduction is displayed.
No problems are apparent for the Tchebycheff series, whereas the
third order term in version 1 is negative which demonstrates a
slight increase of the left variance on both dates. The percentage
reductions for the individual terms have been calculated by eqn. 14a.
While S2  is the basis for the reduction in version 1, tne a y

y 0

version 2 and S2 2'2.
Y y

Although differences in the percentage reduction between the
three systems exist, the numbers are equivalent and imply the same
integrated effect. The second order term dominates considerably.
Besides this second order term, a fourth order term contributes to
the 1957 date and a fifth order term for I January 1958. The other
components may be considered to have minor influence.

7. CONCLUSION. As has been pointed out in the beginning, the
Legendre series is different from the Tchebycheff series in its
theoretical approach to curve fitting. Some difficulty arises when
cl.e Legendre series is applied to a discrete function ytx). For a
small number of points (e.g. N < 50) the discrete Legendre poly-
nomials are not fully orthogonal and the coefficients cannot readily
be calculated from the regular coefficient formula in replacing the
integral by a summation sign. Some outlines for an approximation
are given, and more details can be found by Essenwanger (1975a).

It was pointed out that in the sequence of this non-orthogonal
system for a small number of points the coefficients are not inde-
pendent, and the contribution to the left variance by the individual
term may become negative. Thus the contribution by the individual
order cannot be readily judged by cuatomaryv methods for an ortho-
gonal system.



?lrL 10. F) -•risan of Representing a Wied Profile
b7 Tesobycheff and Legendre Poly]inials.

a. BScac*id Wind Profile (HosIgmry).

I i 3m7 1 3m 36

8(x) Tche Loeudgre Metrtz y(z Tche Legodre Natrtlz
/sCa VI V2 VI V2 1 a/8 8I. V2 VI T2

6 .7 3.1 6.1 5.8 5.8 5 3.7 0.7 6.1 •.I 5.7
121 132 12.5 12.7 13.2 13.2 14 18.3 18.9 17.8 18.3 18.3
S20.8 20.3 20.4 20.8 20.8 23 21.0 21.9 20.2 21.0 21.0
28 30.1 29.5 30.1 30.1 30.1 31 24.7 2k.6 24.3 214.7 24.7

51 39.,5 8.9 19.8 39.5 39.5 27 32.7 31.8 32.7 32.7 32.7
144 145.7 145.5 4g6.2 45. 45.7 40 142.5 161.3 1.2.7 4.2.5 4'2.5
147 45.7 4,5.8 46.2 45.7 45.7 51 4.4 47.6 48.9 48.4 4.438 3 7.8 38.2 38.4, 37.8 37.8 6 45.5 45.4 46.2 4,5.5 Ws.5

"* 23.9 242.13 24.3 .4 239 2.90 0.9 14.2.203. 13 4 3.3526.13

i 10.5 10.9 o0.9 0o.8 10.9 12 k.2 1k.1 15.2 14.8 14.8

01.1 -10.80.2 -11. 0. 1 -. 7 . 0.1 65 .1 0.1 914.

S~b. Coetficients.

% 95.02 2.12.08.9 27.52 259.2 06.7 08.51260.6 08.82 06.7

0.43 +2.1 .0 1 .494 .90 0. 2 8. 5.70 13.2 6.04
• -1.49 -29.56 -3o.o -29.01 .38.81 - 1.45-25.22 -29-14 -n25. -2'8.7T8

% -0•..04o 4.21 - 2.04 - 4.18 - 0.28 - 0.8 -12.69 - 9.81 -12.75 - 6.27

S% 0.82 9.80 18.83 9 ,91 19.50 0.23 0.97 4 .O1 2.79 4. CS%~ a 0.54, 6.001 T.78 5.4•1 8.71. taO uI."5 mf t.8 l 7~k 1.61

? a. Percentage Reduction.1

lot 0i.9 0.9 0.9 ,o.8 0.9 4.2J ,.1 4.2 I.1 4.o
2a 86.9 82.,,, 86.9 84.0 8.6 76.2 76.2 -76.1 76.5 76.-2

I7

3rdi 0.3 0.8 0.2 1 .1 0.1 5.7 0" .1 5.8 0.1 4.9
hi•k'• 9.0 13.0 8.9 11.9 9.2 0.7 0.2 o.6 0.8 0.7

5,, 2.1 3.0 1.9 ,.., 2.3 B.1 13.T T.3 13.3 9.0
99.2 98.8 98.8 99.1 99.1 94.9 [ 4.1 94.o 94.8 96.8

,TI •- Version I
• 2 - V ersion 2
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As the Legendre polynomials for discrete point* become simpler
tc handle with increasing number of points, they should prove to be
a useful replacement for the Tchebycheff polynomials in solutions
of problem3 where the practical application of the Tchcbych.,ff
poly'omtial method apparently shows a weakness such as for 9 > 50.

It is difficult to evaluate a' priori, whether the calculation
of coefficients via the covartance matrix is more cost effective
than the approximation@ of the "true" Legendre coefricients. It
is self-evident that the calculation of the covariance matrix adds
to the computer costs in the matrix solution while the major part
of the costs for the 'Ldgendre coefficient" remiss with the
appiroximation and iteration.
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2. CALCULATOR PROGRAM DESCRIPTION 7. "LOOP" FLOW CHART
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1. INTRODUCTION

Fire Control Sensitivity Analysis (the etfect of a change in condi-
tions on the aim of a weapon system) is normally accomplished on high-
speed computers because of the extensive calculation required. These
computers are, however, expensive to program and operate when only a
short or 1-time program is needed. Since the purpose of the analysis
herein was for pre-test information there was no inherept need for fast
computations. Since a progranmable calculator was available the analy-
sis was programed on it.

It was soon apparent that the physical limitations of the memory
and computation speed demanded special techniques. The first of these
techniques was to minimize the number of calculations which needed full
precision. The second technique was to put the answers after each
run onto a cassette tape to free mmory for the next run. The third
was to code the output answers, which has a large dynamic range, into
integers, thereby reducing the amount of cassette tape required. The

fourth technique was to write an iterative routine which automatically
varied the routines and controlled the output onto tape. This techni-
que allowed the unattended opcration of the calculator.

The unattended c-peration of the calculator is the most significant
feature of the program. It allowed in this case 150 hours of operation
time during nights and weekends. The sole operator requirement was to
load and unload cassette tape at the end and beginning of the work-day.

The detail of the specific program shown herein is to illustrate the
very extensive calculations which can be performed even by small and
slow calculators. It must be noted that even more extensive programs
can be and have been implemented by daisy-chaining the output of one
program into the input of another program.
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12. CAL•U(ATOR PROGUM DESCRIPTION

Equipment: Hewlett-Packard 9830 with 3808 word ammory

Program: Non-critical variables written in single (6-digit) or itnteger
(+215) precision notation. Memori, capacity available only for a
single run. Output data scaled as integers and stored along with
the scaling factor on cassette tape, A typical program is included
as Section to.

Operating Conditions: Computation time of single derivative was 30
seconds. Number of derivatives calculated was 11 instead of 21 be-
cause the rate of change or derivatives did not warrant more. Com-
putation was therefore approximately 5 minutes per run. (900 valid I
runs aers calculated for the analysis.) The program was typically
set up with indexing for 162 runs which required approximately 15
hours of computation. The program and data tape was normally
loaede at the *ad of th- dav and retrieved in the morning. The
only printed output generated was a single line listing rl- rrittcal
information contained in each of the 162 files.

Output Processing: Output data from the program was stored on six
cassette tapes. A plotting routine read nine files and decoded them
into ory. The plotter was then used to generate plots as shown
in Section 9.

Coamnts:

1. The program generates LOS angles which are independent of bal-
listics and are better outputed separately.

2. The operating and storage requirements are based on 21-point
runs instead of the 11 actually used.

3. Changing the program to accommodate Comments 1 and 2 would
allow more runs to be in memory. This would reduce output require-
ments considerably, tape requirements by 3 and files by 9.

4. Comment 3 was not implemented because the savings did not
warrant programing multiple plotting routines for different outputformats.
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3. FIRE CONTROL SENSITIVITY ANALYdlS

I. Weapon ballistic data in generally given with respect to the
weapon line of sight (LOS) coordinate system. Aircraft position is
given In terms of pitch, roll and heading.

2. From the aircraft viewpoint, thc conversion into the LOS coordi-
nates is straight-forward because the LOS angles relative to the air-
frame are known. From the sensitivity analysis viewpoint, however, the
LOS angle are unknown and must be calculated.

3. A conversion routine from the aircraft data into the LOS system
was developed for this analysis. The conversion matrix and its develop-
ment is shown in Section 5 of this paper.

4. The second major part of the program is the iterative solution of
the fire control equation in the LOS system. The fire control equations
and the iteration technique is shown in Section 4.

5. The sensitivity (partial derivative) of the fire control solution
was then determined by channrng a single parameter and determining the
change in the solution. IL should be noted that if all 12 parameters
were used in this analysis technique, the output would approach infinity
(12 sets of 3 values each equal 531,441).

6. Because of this, only pitch, roll and heading are changed for the
analysis of each value. The other parameters were chosen either a maxi-
mum (i.e. range) or were determined to have small linearized responses
(i.e. effects would be additive).

The parameters used were heading (0,45,135*), pitch (-20,0,10),
roll (0,30,60), range 40mm (1500M), 30mm (3000M), 7.62mm (2000H), air-
speed (10OMPS), wind speed cross- and head- (0) Yaw angle** (0), alti-
tude (0) rate of climb (0), air density (1.0), muzzle velocity standard.

*75 for 40mm (weapon could not reach the target at right angle).
**Yaw angle is the angle between the aircraft heading and airspeed.
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4. RALLISTIC FIRE CONTROL EQUATIONS

BL - -[(UAL + GLGp + A5 TOF)W UB I + A6 ( T/Xs) WL

+ As JBS (UA -WM) - d (UAS -Ws)I/V

BM - -[(UAM + GCIP)/ UB ) + AZ ( T/XS)/W•

+AS 11L (AuAS - B)- BS(VAL -WL)]/V

TOr vac X :S/ (UBs + UAS + (-5 GSXs/UBI+ UAS))

6T -TOF vac (ptpS) V (Al Xe + A2 XS2)

TOF - TOF vac +A T

These equations cannot be explicitly solved because the right-hand
expression contains terms dependent upon the value calculated. This
makes the solution iterative, with the previously calculated values
being used in the equation. Because of the nature of the equation, the
convergence to a specific value is extremely rapid. It can be shown
that the error due to truncating the iteration is less tha•n the change
due to the last iteration.

Since there are two equations to be solved, the updating of values
was also done between the solution of the two equations.

Derivatives of the Sensitivity Program were calculated by changing
one of the parameters and calculating the change in the ballistic equa-
tions. The convergence check in the program vas set to allow errors of
less than 0.01 milliradia . D i

Definitions

B Unit vector along barrel (or launcher)

G Gravity vector

L Unit vector in the direction of axis about which elevation
of S is measured

M Unit vector L X S (up is positive)

S Unit vector in direction of launcher to target

S, H , L Line of sight coordinate system

TOF Time of flight

TOF vac Time of flight in vaccum

UA Aircraft velocity

U1  Projectile velocity relative to barrel

V Projectile velocity relative to air

W Windspeed 1

X Position vector of target

P/ps ActUal/standard air density
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5. DERIVATION OF LINE OF SIGHT (LOS) CONVERSION ROUTINE

1. Project Aircraft Attitude Unit Vector onto a vertical plane normal I
to 0 heading vector. R - roll, P pitch,. - heading

IIL

It Iii
R ,

Upon examination we can obtain:

Y - Con P CoB *

1 - Cos P Sin '

Zp - Sin P
2. Examining roll projection and using the fact that ZR is in the plane;

we obtain:

AyX

* 4

K /

6i

565

~ t.



Ht " K Tan R Cos P - ZR

N K Tan R Sin P

AY N Cos go

AX - N Sinp

Becaur-. ZR is In plane we further obtain:

Y - K Sin*-&Y or K Sin*- K Tan R Sin P Cos*

X- - K Cos*+÷X or K Cous* K Tan R Sin P Sin*

Coo r Cos T,Sin*- Tan R Sit. P Coo 0

1/K - Tani- Tan R Sin P -

Coo P

*Circled items are computer progra names

L - Sin*Cos P - K (Cosu+ Tan R Sin P Sin*; (1/K)(L) H P3* Sin*Cos P +

(CosQ* Tan R Sin P Sinj)w @

3. The Aircraft Unit Vector and points ZR and Zp describe a plane
which can be described by the angles A and B as shown.

We have by inspection:

Tan A - (Zp - ZR)/L

Tan B - (Zp - Tan Al)/y

- (Sin P - Tan A Sin 4 Coo P) / (Cos P Cos*)
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Dividing top and bottom of Tan A by K we have:

A - ATAII '(H3 Sin V - Tan R Coo P)/H4 -

B- 4 - A Tan'(Sin P - Tan HS Sin'4 Coo P)/(Cos P Cosu)

4. Conversion from the vertical pane angles to the Line of Sight. Q5
angle from horizontal of the LOS to target.

dim"i
KTAtIk T¢
TAN HoýCoSQS

H5 - Sin Q5 - Tan H6 Cos Q5

Coo Q5 (Tan H_5) K
Tan T 1-Sin 2 Q5 + Sin H6 Cos Q5 Sin Q5

Tan Tm K (Tan H5)

SCos 
Q5 + Tan H6 Sin Q5

Apparent angles M - A tan Tan R5
Cos Q5 + Tan H6 Sin Q5

5. 17
S,,¢x

Rotating by angle: H around LOS 1 the positions of the unit vector 1, 2
and 3 become:
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1. X - Cos Q5, y - 0, Z aSin Q5

2. X - Sin M Sin Q5, y - Cos M, Z - -Sin M Cos Q5

3, X - -Sin Q5 Cos M, y Sin M, Z -Cos Cos Q3

Which expressed in MATRIX FORM is:

Cos Q5 0 Sin Q5

Sin M Sin Q5 Coos M -Sin M Cos Q5

-Sin Q5 Cos M Sin M Cos M Cos Q5
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6. GENERAL FLOW CHART

BALLISTIC
DATA

CALULTED SUTON
AIRCRAFT DATA ADD 0.5 TO VA= LE
INITIALIZING J

no AL 1.
HEADING JP' ROLLITCH P

VARIABLE 
STR PSONTP

_ARLIII]

[Olt_1

L.O.S. COORDINATE
CONVERSION

FIRE CONTROL 
PRMTR

EQUATIONS

cSOLUTIONE
CONVERGED NOtN
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P'ARA34ETER

PITCH 
j

7. "Lo"Iw HR
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II

:Yoo * 2.0 INT 100

STOR IrIExzR DATk

S. DATA SCALING ROUTINE
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1830 t It 22,'p4 3=X I 18
1910FI-1 'ý2 5 ]=X2
1910 tit .3=01J'6

190 tIC2, .1Q=07
19~30 i, I 2C1,3J1--Q98
1940 HE 3 4]3=09
1950 1iL2ý35JllQO

20306 FOr 24 r 21 STEP 2

2070ýN 1 4l &H~.1)

'%-- C 40 IF -'FtBS(H(S.21)<P4) THEN 2100
2 058 0 '4=RPS(NL S,42V1
2 A0 IF ';AG3(HIS,33)<P7) THEN 2`12080
2110 F1=fS HE S'531)

212C, hL:-. r
2131-. prDIT ,*,0~iGP
2'14 0 V.1- -IIIT(LGT(P4i*1E-12))
215 C PK>-lf~lT(LGT'PS+1E-12))
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APPLICATIONS OF SEQUENTIAL SENSITIVITY TEST STRATEGIES

AND ESTIMATION USING A WEIBULL RESPONSE FUNCTION

FOR EXTREME PROBABILITIES AXD PERCENTAGE POINTS

(lortrude -eintraub

Concepts and Uffectiwness Division

Ammunition Development and Iigineering Directorate

Picatinny Arsenal

Devr, New Jersey

1. Abstract

Two applications of Dr. Cinbinder's sequential sensitivity teiot

strategy and estimation methodology for reliability assessments are

discussed. Principal interest is in the determination of reliability

at extrem low or high probability of response regions with a minimum

mumber of tests. Spirical test data topether with analysis and inter-

pretation of the results of analysis are presented and conclusions

drawn.

2. Introduction

Dr. S. Einbtnder of Picatinmy Arsenal devised a sequential sensitivity

test strategy and estimation wthodology. This procedure appears to be

more efficient than other sensitivity methods in determining extreme

percentage points of a response function.

Application of a One-Shot Transformed Response strategy and an Up

and Down Transformod Response strategy to empirical problems are discussed.
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The b3sic characteristics of a sensitivity test are: a stimulus,

a test specimen and a response (0 or 1). Associated with each test is

a critical stimulus or strength such that if the stimulus exceeds the

strength, the specimen responds and vice-versa. The distribution of

strength is called the response distribution or the response function.

Based on quantal response data, vie want to estimate the response function,

the extreme percenta,;e points and the probability of response at a critical

level of the stress variable.

There exist several well kno,.i statistical techniques for treating

a quantal response, but the method in (1) which is the I.'eibull Sensitivity

Model and has been employed in the applications which follow has a number

of advantages over the standard procedures. These advantages are the

following:

1) Robust to unknown true response distribution.

2) Minimizes the need "or variable transformations.

3) Capable of assuming a wide variety of distribution shapes which

allows the approximation of many response curves, including the normal,

over local regions and over the entire domain of the response function.

The main disadvantage of the ,eibull sensitivity model is that it is a 3

* parameter distribution, and the location parameter is sometimes difficult

to Ostimate.

Two of the Dotter knoxn and frequently used sequential sensitivity

test methods are the Ip and Dowin Test (2) and the Langlie One Shot Test

SStrategy (3). For the Up and Down Test one item is tested at a time

starting at the best initial estimate of the 50"1 response point. The
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teat level is moved up one stop after each nerative response and down|

one step after each positive response. The step size is fixed and msu t

be determined in advance of the test. This method tends to concentrate

the observations near the mean of the distribution. As a result, the
4

method is generally good in estimating the man or 50% point of a

symmetric distribution but does not do too well with extreme percentage

points.

Langlie developed a sequential test strategy that overcame the

difficulty with the Up and Down method in predetermining the step sise.

This strategy makes use of continuously variable stress levels and is

insensitive to the starting level and does not require specifying a

prior step size. The analysis is based on a normal response distribution

and has been shown to oe more efficient than the Up and !bwn in estimating

the mean and standard deviation of the response distribution.

Often, howmver, the experimenter is interested in the response function

at the extreme ends of the distribution. This generally requires data

to be obtained from the local region of interest.

"!etherill (4), in 19 '3, published the results of an investigation of

sequential test methods for the estimation of general percentage points

of a quintal response function. He found available procedures like the

Up and Down to be unsuitable for estimation of extreme percentage points.

He proposed a rule for transforming the response in an Up and Down Test

so that observations would be concentrated in the tail areas. In Dr.

Einbinder's test strategy, the Wether.Ill transformation is applied to

the Langlie One-Shot test algorithm. This procedure is referred to as

the One-Shot Transformed Response Strategy (08TR for short).
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The applications I shall describe feature an example of the Up and

Do%!n Tran:formrd Response Stratejy (UJR for short) and the Langlie One-

Shot Tran~formed ResPonrm* Strate-y. 7stination of the extreme percentage

poirnts ia accomplished ushi- a Weihul] distribution as a response function.

Tho baijc rationrle for the new test strategy and estimation methodology

inrlude testin, in or -'lose to the region of interest, usinp a variable

levr] strategy, using a sequential stratep7, usinta a locally best

approximation if the response mode] is not known.

The new teqt strategy involves a transformation procedure which

is defined in Tables I and 2. The transformation is defined by the

value of No which determines the response quantile around which the test

levels tend to concentrate. This quantile is called the transformmd

median percent-i'e (TYP). For No-3, the IWP"79.32•. The response trans-

formation is designed to make an increase in stress easier than a decrease.

The greater the difficulty in decreasing the stress level, the greater

will be the transformed median percentage. For P>.5 as shown in Table 1,

a positive response is denoted by an .( or I and a negative response by 0.

A lype D response which requires a reduction in stress level is allowed

to occur after No confirmations of 2 positive response. For P< .5 the U' s

and D's are redefined as shwmn in Table 2.

A change of response type is said to occur when an alternation of

response occurs. Wetherijl proposed a stopping rule based upon a

specified number of changes of re.iponse type rather th-an on a fixed

number of trials. Based upon Wetherill's results, and our experience with

this strategy, a minimum of 5-6 changes of response is advocated. The

rnmber of observations required In an experiment is a random variable with

582



F4 q4

ca in

I 142 A

0-

583



C% M9 I

£L I

I-~4 C)*

SLA

P% -

1.584



this stopping rule. The expected sample size with a particular number

of changes of response Increases with No or the farther out in the

tails of the response curve in which teotine ta)s place.

3. Discussion

Next, we describe two actual applications of this new sensitivity

test strategy.

3.1 Objective

Ibring the process of acceptance testing of an artillery fuse, it was

found that the fuze armed at a distance of 10 feet from the gun muzzle.

This condition was unsatisfactory since the fuze evecifications required

that no fuze arminp occur at a distance of 10 feet from the muzzle.

A test program was subsequently undertaken to examine the fuze arming

distance distribution in the lower tail in order to determine the following:

a. If the fuze specification acceptance test criterion for arming

was reasonable for the fvze design.

b. If not, to decide on a suitable alteration which would provide

the desired quality control on safe arming.

3.2 Recommended Test Plan

In order to accomplish the desired objective, a statistical test program

was designed, tailored to the new sequential sensitivity test strategyr.

The objective was to determine the distribution of distances at which

fuze arming occurs or conversely the distribution of target ranges at

which fuse functioning does not occur. Primary interest was in a:3certaining

"a safe gun-to-target distance which involved finding a distance at which

"a small probability of functioning would be expected to occur. 4
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A One-Shot Trannfozrmd Response Sequential Sersitivity Teat plan

using an No'1Js wais selected and Implemented. Since fuze sLfety was the

prircipal problm we were intereuted in defining the lower tail of thte

response distribuition as accurately as pos,;ible within the limitations

of time, hardware and cost. Using an No-14 response straterj tended to
$

concentrate the tests in the neighborhood of the lower 51's 'reioi. of fie

arming. .3imu.ation data previously conducted to estimate the required

sample size indicated that about 150 tests would probably be nveded to

obtain 6 changes of response. uzse function at a given range was defined

as a positive response. One (1) represents fume function and sero (0)

is non-arming or non-function. The response nst be defined such that

an increase in stress level results in increasing the probability of a

response. Then to obtain a type U response, we hWon to observe Vi terts

conducted at a given target distance without arming, i.e., 14 zero

responses before increasing the range to the target. If a fuze function

was obtained at a Igiveri stress level or target range ý"efore a sequence

of 14 zeros wis completed, then i type D response is said to have occurred

which ro4quired a decrease in target range.

Test linits wer', set at, 0 and 100 feet from the gun. The first test

level was set at 50 feet from the gun and terting continued uut.l a fuze ¶

function occurred. The response was nlassified as type U or D according

to the criteria described above. Testing was continued by setting each

subsequent level of test halfway between a D and U response. Ir ouch an

alternation did not occur, the procedure consistedof going back in the

sequence of outcomes until an equivalent nuter of D's and U' swere found.

The next test level is the average of the stress levels corresponding

to these outcomes. Where U's and D's could not be averaged (i.e., where
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an equivalent nuoer of DOua an dU's were not obtained) subsequent

levels were averaged by using the lower limit for a type D response

and the upper limit for a type U response. Testing contirned until

al of the 150 rounds were tested. These results are shown in Table 3.

Analysis of test data from the 150 rounds showed the point estimate

of probability of arzig to be .002 at 10 feet and the upper 95% confidence

level of probability to be .010. With these probabilities of arming in

mind, the fuse engineers decided to test fire an additional 40 rounds at

10 fests hoping to get no arming. Much to their dismi, 2 rounds out of

4o tested at 10 feet, were found to arm. This result is not considered

to be inconsistent with the previous perforumnce estimates resulting

from analysis of the test data from the 150 rounds. Thus, if the probability

of functioning is .010 as estimated from the 150 rounds, the probability

of observing 2 functions out of 40o given that the probability of

functioning in .0O, is .060.

Test data from the 40 rounds were subsequently aggregated with the

other 150 data values and revised probabilities were obtained. The

estimte of the probability of arming at 10 feet was estimated to be

.015 as a point estimate and the upper 95% confidence level of probability

was estimated to be .037.

The following conclusions were drawn from the analysi, :

1) The current fuse design cannot meat the Nil-Standard

non-arming requirement at 10 feet, with any high degree of reliability.

2) Either the arming distance acceptance test requirement

has to be changed or the design modification to accoimodate a 10 foot

arming distance characteristic.
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TABLEI 3i

IVFqtSON PROVING GROUND

Y503 FU71C TM T WLTS - April 1974

9T A1T1,UJS R1MSPONSU9 NIMBR.R OF
* I ft)SPONST TYPE ~ CHAN0'M

I 5044Mo 0
2 50.O000 1 D
3 25 0000 0
4 25.0000 0
5 25.0000 0
625-0O00 0

7 25.0000 0
a 25.0000 0

S• 9 25- 0000 0

10 25 0
S11 25 .oo00 0

"12 25.0000

13 25.0000 0

13 25.0000 0 U I
17 37.5000 1 D 2 S31.2500 

U
19 31.2500 0
20 31.250O 0
21 31.2500 0
22 31.25oo 0
23 31.2500 0
224 31.2'500 0
2 31.2,500 1 D
25 15-.52.50 0
27 15.-250 0
28 15.)250 0
29 15. "250 0
30 15. 250 0
31 15-5250 0

* - 32 15.6250 0
33 15.6250 0
34 15.6250 0
3515-6250 0

35 15.625o 0
37 15.6250 1 D
38 7.8130 0
39 7.8130 0
40 7.8130 0

1 - Function
0 = Non-Function

* u 1 :4 (01a)
D- 13 (O's), 1 ctc.• 588
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TAN 3 (, In oD)

43,35bIY -T

IW6o3 lUZq TW RMIS - AffM 297h (C.timomd)

ST Ma' m•mr
r (ft) nsrom ,

42 7.8130 o
43 7.8130 0
"44• 7.8130 0
45h 7.8130 0
4i 7.8130 0
47 7.8130 0

48 7.8130 0

49 7.8130 0
50 7.8130 0
51 7.613o 0 u 3

52 11.7190 0

53 11.7190 0

54 11.7190 0
55 11.7190 0
56 11.7190 0
57 11.7190 0
568 11.7190 0

59 11.7190 0

50 11.7190 0
- 11.7190 0
52 11.7190 0

43 11.7190 0
5 l. 1 9o 0 0

62 11.7190 0 U

67 21.14850 0
68 21.4850 0

S21.h4850 

0
70 21.h850 0
71 21.4850 0
72 21.h850 0
73 21.4850 0
74. 21.4.85o 0
75 21.14850 0
76 21.4o850 0
77 21,4850 0
78 21.4850 0
79 21.4850 0 U

80 29-.4930 0

1 a Function
0 a Non-Function

U - 14 (O's)
D - 13 (0's), 1 etc.
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TABlLE 3 (CUT'r D)

H'03 7971 T~? RWU'S - AMUi 1971s (Oontimed)

S' ru$ RISUPONI IKNR OF

81 29-.4930 1 D 4
8? 25-.890 083 ?5.4890 0
B4 25-4890 0
85 25.489o 0

8 * 25.4590 0
87 25.-4890 0
89 25.-4890 0
90 25.4090 0
91 25.4890 0
92 251.890 0
93 254.4.90 0
94 25.-h890 0

25.4890 0
96 27.-49O 0
97 27.49'•O0
I, 98 27.49.,0 0
99 27.49•SO 0

100 27.494 0
101 27.49ýo 0
10? 27.49 k 0
103 27.49 iO 0

104 27.49 ý0 0
105 27.49 O 01 0"i 2 7.49 ;0 0

107 27.49D 0 S08 

27.49'50 0
109 27.04950 0 U
110 38.7980 1 D 6
121 33.1470 0
112 33.1470 1 D
123 29.3180 0

1I11 29.3180 0

11- 29.3280 1 D
I 1') 20.5190 0
117 20.5190 0
118 20.5190 0
119 20.5190 0
120 20.5190 0

1 - Function
0 - Non-Function

"U A • (o1s)
S13 (O's), I etc.
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ATADnL5 3 ( ODNT'ID)

• ,•I•a lT Ti .ma -,. - I.rll 1974 (Cbntimied)

121 20.90 709
122 20.51900123 20.5190 0

12h 20.5190 0
125 20.5190 0
126 20.5190 0
127 20.5190 0D
128 205190 0
129 2o.190o 0

131 22.7190 0
S132 22.7190 0

133 22.7190 0
134 22.7190 0
135 22.7190 0
138 22.n9o 0
137 22.7190 0
138 22.7190 0
139 22.7190 0
140 22.7190 0
141  22.7190 0
142 22.7190 0
143• 22.7190 0
14 22.7190 0 9
145 23.8190 0
lb 1)7 23.8190 0

ASB 71.8190 0
149 23.8190 0
150 23,8190 0
151 10.0000 0
152 10.0000 0
153 10.0000 0
154 10.0OOO 0
155 10.0000 1
15i 10.OOO 0
157 10.0000 0
158 10.0000 0

* 159 10.0000 0
' 10 10.0000 0

I - %unetion
0 - Non-function
ty , 14 (O's)
D . 13 (019), I etc.
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TA.BIA 3 (CONT'D)

J;'Fr RsON MAIL=n: GROUNrD

Vi503 FUZE TEST RESULTS - Aril 1974 (Continued)

STI:;ULUS' RISPOISE NMBgt or
I (ft) RESPONSE TrPm MAN0G3

161 10.0000 0
162 10.0000 0
163 10.0000 0
164 10.0000 0
165 10.0000 0
166 10.0000 0
167 10.0000 0
168 10.0000 0
169 10.0000 0
170 10.0000 0
171 10.0000 0
172 10.0000. 0
173' 10.0000 0
174 10.0000 0
175 10.0000 0
176 10,0000 0.
177 10.0000 0
170 10.0000 0
179 10.0000 0
180 10.0000 0

102 10.0000 0
183 10.0000 0
184 10.0000 0105 10.00000
1.6 10.0000 0
107 10.0000 0
188 10.0000 0
189 10.0000 0
190 10.0000 0

1 - Function
0 - Non-Function
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3) Without having conducted the fuse tests In the prescribed

sequential minner, the arming response distribution at the lower end

could not have been determined with the same precision using the limited

sample size.

'1 the next application oa sensitivity testing, the objectiw me

to determ tm minimum quantity of propellant charge required to eject

a projectile from a gun tube. An Up and Dawn Trantorsed Response (UMR)

as utilized, sime a limited -m&ber of projectiles wre available for

test, and it was lmpractical to wr7 the test levels In a continuous

A sequential sensitivity test progam was conducted by vWaing the

levels of proellant charge volume for low sons firing. 3hterest was

focuaed on predicting the probability of projectile Mtoking when a complete

low zone propellant charge is employed.

In the loading of a projectile Into a gun tube, the projectile is

rammd Into the tube after which a propellant charge in employed to

eject the projectile from the gun tube. Whon the propellant charge is

insufficient to expel the projectile, the latter sticks In the gun tube

causing an unsafe and undsirable condition.

Our problem was to evaluate the probability of sticking for a

standard projectile and a modified version of the standard projectile

when a complete low sone propellant charge is used. The standard projectile

served as a baseline for comparing the new projectile.

3.3 Test Plan

A sequential sensitivity test plan was designed to vary propellant

charge wvlume by a delta of 10 Os. starting at app1tol 1/2 low

sons propellant charge volume.

593



kn Up and Down Transformed Response (UT'F.) sequential sensitivity

test procedure was implemented. The response strategy of Wo-4 for •

changes of response, requiring approximately 30 rounds was utilized in

the interest of expediency and limitations on hardware. A type D response

consisted of the outcomes (1131) while a type U response consisted of

(1110), (110), (10), or (0) where 0- a sticker and 1- non sticker.

Tables 4 4 show actual test results obtalne- during the test program

from tests conducted on projectiles I and 2. Tests on projectile I were

conducted in accordance with an No-4 strategy and 6 changes of response

stopping rule. The delta used was 5 oz. instead of the originally intended

10 oz. and close to the end of the test program the delta was reduced to

2.5 oz. in order to obtain an overlap region of test results (A.g. sticker

and non-sticker). Tests on projectile 2 did not conform to the prepared

test strategy but rather to an inverse sampling procedure (where several

tests were conducted with a given charge volume before decreasing charge

volume for subsequent tests). The test data resulting from these tests

consisted of quantal responses which were amenable to analysis using our

Wiibull model.

Results of analysis of test results from projectiles 1 and 2 are

shown in Figure 5. The curves show the 901 percentile of non-stick

to be 32 oz. or' 38% of full charge volume for projectile 2 vs. 58 oz

or 68% of full charge volume for projectile 1 (full charge was 85).

The modified design (Projectile 1) showed a greater propensity to sticking

at less than full charge volume. However, extrapolating the estimated

response functions to full charge volume, the probability of sticking at
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narO. ww z) moes Rupms i'm uo. or cmusneI ~56

2 51 2.

3 61 1

4611

5 61 1 D

6 56 1

7 56 1

8 56 1

9 61 1

10 5'1 0 U 2

11 56 0 U

12 61 1

13 61 1

14 61 1

15 6D 1 D 3

56 0 u 14

17 51 1

18 61 1

j 19 61 1

20 61 1 D5

21 58.5

22 58.1

4 23 16.

214 58. 1 D

255.50 u 6

26 58. 1

27 58. 1

28 5851 1 a on- 3tialo D -111
-5 ~ 0 a Makehr v- mios not 10o 0
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TW:"T DATA

ROUNID INO. WZ~iCT (OZ.) RESPONSE

2 851

3 851

4 es1

5 62.51

6 36.51

7 36.5

8 31.7

9 30.41

10 30.41

11. 30.4

12 30.41

13 30.41

14 30.41

1530.4 0

16 30.4 0

1.7 30.4 0

18 ~29.21

19 29.21

20 29.2 0

231 29,2 0

22 29.2 0

23 26.8 11

24 26.8 0

2526.8 0

26 1 - Non-Sticker 26.8 .0
0u~1oku596
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full charge for each of the projectiles was erttiiwtod to he 1 in a

oillion. .aearly, to vorify such sm:ll probability would requi-c -n

extrerely larF.e number of tests at full charge (in the order of 22,000

tests with no stickers in order to validate a probability of stick of 2

in 10,000).

4. Sumnarc and, Lonclusion

The two applications referred to herein r9present actual examples

of the successful imlementation of the Wetherill (UDUR) and Einbinder

(OSPR) sequential sensitivity test procedures and the Weibull response

model. The OST!, procedure has also been applied to evaluate fuse detonator

safety by determining the distribution of out-of-line distances for

non-propargation of the expxlosive train.

Other applications of tf test procedure have been implemented. For

example, it has recently been used for estimating ballistic limit

distributions of penetrators. In this connection, the procedure was

used to estimate hazard velocity levels for plastic fragments in terms

of perforating 1 cm. gelatin blocks.

In summary, similar sequential sensitivity test programs have been

used rather successfully in quantitatively assessing the effect of

environmental treatments and design changes on munition functioning and

safety. In each instance, the effect of a single variable is assessed

by allowing that variable to vary by discrete levels and obtain responses

at each level of test.

Phrticularly has this new method been. helpful in estimating the

response function locally over some low or high region of interest. It

also affords estimates of percentage points of the response distribution
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and probabilities of response at specified levels of a stress. Our

coxpiter program produces point estimates and confidence level estimates

of reliability and percentage points.
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STATISTICAL ANALYS:Z'A AND MODELIG CYO S•."TIrVITY AsT7,h"ENATI N-
IN CLM¶ANES COMMMICATION7

R. D'Accardi and H. S. Bennett

US Army Electronics Ccmnd, Fort !Morz=uth, New Jersey

ABST1PACT. Since about 1965, the US Army Electronics Co.-and has sup,ýrted
st.--ral investigations dealing with a Dew method of ccc=ur.icaticms by which
Informatior transfer takes place through, excitation of the per!pheral
nerve "ndrlnps located in the dermis. The system Involves skin stirulaticn
b-y an electrical pulse transmitted in a Vorse code-like pattern. Two sna! .
electrode pins monted in a plastic holder attached to the subject's fcrea.-.
provided the signal mechanism. One type of data was obtained when a cutaneou-s
"cuinr" signal was used as a precursor in the ztandard Fairbanks .-P2#e audio
test In order to test its ability to increase aural aculty.

I

The object of this presentation is threefold. First, we discuss the desi,;n,
of the experiment, classification of subjects, and techniques for sensitivity
augmentatlon (electrical excitation of the peripheral nerve endings in the
dermis). Secondly. we present statistical estimates of (a) the effects olf the
controlled variables (i.e., level of awareness, and audio noise level) upon j
response, and (b) the independence of these estimted effects. .hi.rdly, we
present a realistic two-dimensional characterization of aural acuity Vith
cutaneous "cuing," over a range of values,for a prescribed evel of confidence.
within which valid values of the model parsaeterz may be found.

Among other things, cutaneous c==unicatio:i is Intended tc strez-gthen and
enhance present audio and visual electronic c•cnunicaticrs by "alertIrxn "
counicators In a tactical environment to the fact that a standard audic or
visual message will follow. In this regard, the I ;for-_aticn obtained frc=
the statistical analysis of the effects of "cuing" should provide useful
information on man-machine-interface characteristics for future design of
such "cued" communication systems.

IT TRODUCTION. The general goal of cutaneous ccmu-.ncations Ir to proaide
an effective means of improving and supplementing present tactIcal coc2uni-
cat.ons, especially in a noisy environment. A system of this nature could
be used for-

1. Warning signals

2. AlertinF or cuing signals

3. Coded message traffic 4
4. Priority one-wa-y cor.=unication
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It can be applied to sentry operations, Airborne or Airmobile operations,
( Army Aviation support, small unit Reconnaissance, and Armored Operations

where noise and distractions from a tactical environment may adversely affect
the performance of radio operators and comcenter personnel. In rapidly
developing situations and reconnaissance where privacy, radio silence, or
back-up communications links are demanded, pre-coded messages can be used

Sin lieu of normal radio means for command and control of small units or
F individual soldiers. Cuing signals used as a precurror to standard message

formats can be of use to armor and helicopter uperations which by their very
nature are "noisy". Communications personnel can, therefore, be alerted to
message traffic which can save time and decrease the probability of operator

error.

In developlig the concept for cutaneous communication, several problems
had to be resolved.* Work by Bennett, Hennessy and McCray(l) determined
these parameters throuwh a series of pilot experiments which were designed to
determine the effects on sensitivity levels when electrode configurations,
pulse width, pulse frequency, and plase type were varied. Other experiments
were conducted to (a) determine if one could detect individual pulses of various
word rates; (b) determine effectL of different metals on threshold feeling
and discomfort; (c) determine the use of "shadow signals" to enhance individual
acuity; and (d) determine, optimally, the lowest possible signal power to
produce sensation on the skin. The results of their work are well documented(2,3)
and they show the optimal signal which proved the most efficient, both from
tho viewpoint of minimization of power and acuity of response, was a bi-phasic
rectangular pulse of 0.25 msec duration applied at a 300 pps rate, using
a pin-type electrode of surpical steel with constant current in the .33 to
n.5 ma range at 10 to 30 volts excitation. With this information, a series
of' experiments were conducted using a cutaneous "cuing" signal as a precursor
signal to the auditory Fairbanks Rhyme Test. These experiments were concerned
with the effects of two variables (level of awareness, and acoustic noise)
at several levels. The level of awareness (cuing signal) was compared with
the recognition of a random selection of phonemes both in the presence of
masking electrical noise, and in a noise-free environment. It remained to
determine whether or not "cuing" improved the accuracy of phoneme recognition
in the presence of noise. This paper is concerned with the analysis and
modeling of these effects.

*Tn order to bo "optimal" such a system had to excite the double layer of
NaW and K4 ions which surround the nerves in the dermis. This means that
parameters such as electrode configuration, optimal power requirements,
pulse shape, and pulse duration have to be determined before the system
becomes a reality.
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()YF T1 ..'I FZ-iMF:'! Thte experiment •ri-i: conducto- at -' t '.,

New Jersey, w!:ere the standnrd Fairbanks Rhyve test v:wns n~ t n rt' " ,
subjects. ý'7e test con-siste,1 of a rI.ndcm zne#'tcticn "" -, u:-
at.:-z, fricet~ves, and liquids and s-m7-voeh-, hTere we:e tv, :!-.,':..
seisions ani e-ight data acquisition sessions taken over a -ve-day pel,.
'.4.%7 subjects were screened for nor-mality of binaural hearin_ and for Ntter
!ne-cal requirements az prescribed by the staf: at Patterson Ary Hospital.
-.he fa-iliarizatir.n sessi-.ns consisted •f electrocutaneous cuinng and auditcry
reception and transcription of 250 rphonemes. D-ata acquisition sessions
consisted of the same protesc accon-panied Ly several treatments or ievel of
"excitation" and "noise". The first familiarization sessions conditinns were
equivalent to a "no-noise" environment. The second was a "noisy" enviror.-ent.
For each of the ten sessirns, the cutaneoz sensation threshold level, (CSTL).
of each subject was determined prior to testings. After each page of 50 phone=es,
the threshold was rechecked and reset if necessary. Thus, fcr each session o:f
250 phonemes, for each subject, there are five distinct threshold measureents
from which the level of the variable, % CSTL, was calculated.

The Fairbanks Rhyme test was "taped" and administered to si=-a!ate both the
"No-noise" and "noisy" environments. Therefore, in the preliminary analysis
of the data, we were concerned with the effects -f two rariables at tvo
levels, where the combination of two levels of CSM and noise are c-ar!ed
using the correct phoneme recognition as the ',.Int response variable for a!:
subjects. The experiment was well suited f7 the 2w factorial design .. Ith
replication. A possible model for this razkcinized design is:

Wij = p + Ai + Bj + ABij+Ej ()

where: Ai - CSTL (cuing factor at 0% CSTL and at 125C CSL),

Bj = Environmental factor (no-noise and noicy),

ABij a Interaction of main effects,

Eij = Experimental error, and

YiJ = Correct phoneme response for all subject:.

The subjects were divided into two groups of four each. "ach group was
prepared with one ftmiliarization session, and tested with four se:szln=
of 250 phonemes. At the "0" noise and -5 dB noise levels, inforattion van
recorded once per session giving a replication of four observations. The
results herein pertain to the group Ii subjects.

ANALYSIS OF VARIANCBE. The group ii data was used to deter-mIne if phorne--e
recognition is improved in the presence of environent&a (acoustic) noise with
cutaneous cuing. As previously mentioned, two levels of CSTL were chosen,
i.e., 0% CSTL and 1250 CSTL, to simulate cue and no-cue conditions. Likewise,
two levels of environment were defined, i.e., two S/N ratios corresponding to
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n(.-noise and noiny nonditions respectively. The response variable is
eorrect Dhoneme response, i.e., recognizing the phoneme B, given B as the
ctln'ulun, etc. The model chosen for this randomized design is:

Y --u + Aj + Bj + APij t Eij

where the variables are defined as in equation (1) above. The effect of each
factor Ic defined as the change of response variable produced by either a
chancre in the levels of Ai, Bj, or both.

Table 1 shows the treatment combinations and the associated measured responses.

CSTL - Cuing Level

0% 125% Totals

,, , 56
60 62
0 UN C.262

- o' 54+
236 228 464

'-4

isl -450
n 44 56

1 188 216 o04

TOTALES 421 444 868

Table 1 - Treatment Combinations

The responses have been normalized to indicate the percentage of correct
phoneme response to the nearest per cent. From this data, the following
ANOVA vas calculated:

Degrees of Sum of Mean S , re F
source Freedom Suares, Error Ratio

CSTL 1 25.0 25.0 0.84

Fnvironment 1 225.0 225.0 7.58

Tnteractions 1 81.0 81.0 2.73

Error 12 356.0 29.67

Total 15 687.0
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I From this information at the 95% level of significance, using

I F1 ,1 2 (.Q5) - 4.75 from the standard F distribution, it is obvious that I
enviroanent is significant end has a ntrong effect on correct phoneeo
revponse. From thr interactions, it is appnrent that the various co'mbi-

*nations of environment wid cuing cre not significant. This is interpreted
as an indication that at least a ý dB improvement in effective 1/1 ratio is

realized. In other words, performance remains essentially the same in a
noisy environment with and without cuing, whereas with no-cuing there is
a significant deterioration in performance observed when going from a
no-noise to a noisy environment.

REGRESSION MODEL. In an 3x'---t to arrive at a reallstic two-dimensional regr"s-
sion model which would der•r'ibe any possible sub-liminal effects, i.e.,
chanees in performance a,- ntwy 50% and 75% CSTL, the folloving linear model was
considered:

Yt a Do + BiXl + B X• + B3X tX2 + EI

where Yt = correct phoneme response

Xit = level of CSTL

-Xt = level of environmental noise.

The level, X2t, was designated either 0 or 1 to correspond to low and high

levels of noise, and Xlt levels are 0.00, 0.75, 1.00, and 1.25 respectively.

The purpose of this model was to establish a mathematical relationship to
describe the effect of varying CSTL in either environment. That is, to
determine response as X, is varied from 0, to 1.25 in the steps indicated.
The intent was to map any possible sub-liminal effects occurring below the
threshold of sensation. Assuming the true relationship between enviroment,
cuing, and responne is linear, then the failure of the observed values to
lie on the straight line is a function of experimental errors. If the
differences are also the result of an inadequate model, then a higher order
model would have to be formulated. Assuming the linear model adequate, the
least squares estimates of the pa-ameters, the respective 95% confidence bounds

* for Bi, and estimates of standard error are:

i C.I. S5
0 56.6 + 3.7 2.1 -

1 2.5 + 4.8 2.8 -

S2 _P4.3 + 5.3 6.2 -

3 17.0 + 5.9 6.9 -

- - - 5.6
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I,

This provides the model:

Y I - 5(.6 + 2.5X3 -24.3X2 + 17.OX X 2t

Testing for linearity, thesum squared error and respective d. f. (lack of'
fit) for the variation of Y1 from a straight line is 29.7 and df = 2
respectively. TIr the model in correct the residual mean square has the
expected value of o ý?. Using S2 - o 31.78 = MS the "F" ratio:

y e,

F a W-L - 14 - 6a 0.45

and is not significant since it is less than unity. Thus, on the basis of
this test at leastwe have no reason to doubt the adequacy of the model and
one can use S 2 a 31.78 as an estimate of a 2. Fiunther, in examining thee y
residuals, (Yi - Yi), and plotting them against ii, one can see that no

abnormality is indicated, that is, (a) ci -. N (0, at2), (b) the variance .is
fairly constant and there is no need for weighted least squares or transforma-
tions on the Yi, and (c) model appears adequate. See figure (1).

0
cod

"*4 -air-S

-4d

0 0
S •

Fige 1 Residuals

Therefore, a valid conclusion Is that this linear two-dimensional model
adequately describes response an a function of the two independent variables,X1, and X2-. This technique is presented to show the feaibility of simple

lelist squzares regression in dealing with thin type of man-machine interface
i ~pr oblIem.

!S

0606

inow



A more Sophisticated modeling approach will be attemptea at a later time

when more data becomes available.
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MULTIVARIATE DATA AMALYSIS

Herbert Solomon

Stanford University

t
S1. Introduction

There has always been a need to achieve parsluimnoun yet opera-

tionally meaningful accounts of what 1 P going on in nature and in human

Sbehavior. We are aware of attempts by biologists to classify flora and

fauna, and even that dichotomy was a major step forward. It is in the

physical and life sciences that w find the first quantifiers at work

on such matters. Later we find social anthropologists and psychologists

engaging in studies on how groupings can be accomplished. Today we find

* i.al tat i al pervasive In practically every field of study. This

has bees spurred by increased activity in data callection and develop-

muate In computer tecmoology. Multiple msaaurements on selmtso,

individuals, or variables abound nowadays, and cone sees invetigators

scurrying about to apply discriminant analysis, classification or

clustering techniques, multidimensional contingency table analysis, factor

analysis, and with good reason. Me will return to these topics.

Even though we regard c:•sification in social sciencees as rather

new, it is difficult to think of its zounterpart in physical sciences a&

I.

very old unless one thiks of a iew hundred years in tha course of mankind

as a very long step. It was just rvo or threa. hundred years ago that

may physical ailments ire labeled "consumption", because they were

characterised by a "wasting amay of the tissues". Under tis wars,
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lumped such diseases as leprosy, tuberculosis, diabetes, and others.

It was not until anm time later that someone noted that the urine of

aome of these sufferers was sweet and that of others was not. Of course,

the subsequent discoveries of two different bacilli for leprosy and

tuberculosis suggested finer groupings that obviously were more meaning-

ful in connection with specific treatments.

There ti a lesson here for all of us, namely that the classification

and grouping of individuals or elements based on data analyses of sets of

variables can lead to sen-mde group concoctions that are artificial and

sometimes misleading. What should be kept in mind is that when this ti

done, a grouping has some mesning to the investigator. For the last

forty years or so, aberrant mental behavior has been subjected to classi-

fication and groupings produced on the basis of observations mede on any

wimber of variables. For an Individual placed in one of these groupings,

some treatment in suggested. I Imagine one does not feel as comfortable

here in a diagnosis as in the case of diabetes or tuberculosis groupings

at present; and rightfully so. Yet treatment will be undertaken based

on a diagnostic category to which an individual is assigned. This should

give us pause when classification Is attempted by data analysis in the

nueer Investigations such as those that occur, for eample, in the

P reenlistmemt decision in the armed services.

2. E1istory

it is in the late 19th century that wo find a blossming of

inquiries into classification through the selection and appropriate use

of manifest variables. Quite often a oue-dimesional index that
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incorporates all pertinent variables was sought so that a technician

-ould assign an individual to one of several groups based on his responses

to the variables employed. For zampl&, the coefficient of racial

X likeness was an index developed at the turn of the century to distinguish

different national or tribal groups on the basis of a set of physical

masurements. Inquiries on association of criminal types with physical

measurements of individuals also received attention in this period by

such investigators as Lombroso.

Much of this inquiry took place in the British commuaity of scholars.

In a way it might be viewed to have begum at least in a larger sense

with Charles Darwin's vast collection of data arising from his travels

around the world. His diaries presented may observations on the animal

kingdom and served as a base for study by many who cane later in the

19th century.

It was with these investigators in the last quarter of the 19th

century that we have the beginniJns of statistical contributions to

classification. In fact, it is the classification problem that in a

way motivated and created statistical inference as an area of scientific

inquiry. The modern discipline we now call statistics use brought about

by the anthropometrists, biologists, and psychologists of that era.

Such initial contributors to modern statistics as Francis Galton and

Karl Pearson stem from that period.

Galton seemad to be perpetually engaged in data analysis. Ha and

his cousin, Darwin, and others revolved in an age of scientific inquiry

that emphasized empiricism. Pesrsom, along with others, later attemptod

quantification and mathematization from the empirical analyses provided
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by their colleagues. Galton, whom we regard as the founder of

regression analysis through his study on relationships between children's

heights and parents' heights, also initiated and developed the notion

of correlation prior to 1885. The correlation coefficient serves as a

basic summarization in multivariate data analysis and consequently in

studies that go into techniques of grouping. horn its very nature,

obviously a high correlation coefficient would indicate that the two

variables belong in a group and a low correlation would suggest that

they do not.

In one of his papers in 1888, Galton became Interested in the

classificatLon problem. lHe pointed out that 12 measures proposed by

Bertillon to be used for classification of criminals were not

independent and suggested that the observed measurements be transformed

into a set of independent measures. He also souggesced the method of

transformation, which we can now view as simple or unweighted summation

in factor analysis. Thus quite early we see the intermingling of

classification analysis and factor analysis - and of course this is still

quite current. We will raturn to factor analysis and its place in

classification analysis.

Pearson was engaged in studies that were obviously related to

classification. In an Interesting paper in 1901, he discussed mathematical

representations of lines and planes of closest fit to systems of points

in space. This geometrical way of looking at the classification problem

may present a neater vim of the problem to some. In effect, the imlti-

dime•sional observations at hand, e.g., age, IQ, schooling, number of

dependents, rank, length of enlistment, etc., for each member of a
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population of N members up for reenlistment decision can be viewed as

N points in a 7-dimensional space. Moreover, each point cannot be

reached by traveling aling 7 perpendicular axes, for the 7 variables can

and usually hAve degrees of association which must be taken Into account.

This effort is a fundamental problem in multivariate data analysls,

namely finding a grid of orthogonal axes to replace the grid of correlated

axes (naturally the points remain where they are). If the number of
dimensions can be reduced to two or three, saw &xas isachieved since !

elements can be grouped by eye. In fact, this is related to one of the

central problems in factor analysis and is pertinent to the use of factor

analysis an a classification technique.

3. Assignment Procedures and Discriminant Analysis

It is now important to be specific about the term "classification".

For our purposes, we will assume that the term comprises both the

clustering of data into groups and the assignment of data to previously

specified groups. Actually, the latter can be valued as a subset of

the former. In the former catepory, we require the data to produce

both the number of groupings or clusters and the assignment of each

element or Individual to these groupings. In the latter category, the

number of groups or clusters is predetermined. Each group is labeled,

and rules are designed on the basis of which an assignment of each

element is made to one of the fixed groups.

We do not wish to convey a sharp distinction between clustering and

assignment procedures. If a classification procedure Is not producing

meaningful groups through the assignments that are mode, then changes

are called for, namely revising the predetermined groupings either in
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number or in shape or in both on the basis of the new information.

This sequential revision of groups on the basis of the data available

at different times suggests that one In indirecLly engaging in

clustering procedures. On the other hand, it is wine to keep in mind

the conceptual differences just mentioned between attompta at clustering

and attempts at assignment.

An essential step in classification procedures is the representation

of the relationships among the variables on which data has been collected.

Awong other Important and prior steps, there are the processes of

developing numbers to measure phenomena, mnking decisions on the employ-

sent of nominal, ordinal or continnous data. and subsequent coding of

this data ior analysis. In this paper, we do not review these issues,

but we ore mindful of their Impact on the data analysis that will undergo

investigation. Thus, we return quickly to clustering and assignment

techniques and the basic simmrizations of data for these purposes.

The clustering and assignment problems, even though they were

recognised for some time. did not possess any cechniques until rather

recently. The assignment problem received the first thrust. The analysis

was provided by one of the great savants of modern statistical inference,

namely R. A. Fisher. In a paper in 1936, we find what is now Fisher's

classic work on discriminant analysis. It is entitled "The Use of Multiple

Measurmnts in Taxonmic Problems" and was published in The Annals of

Rules. 'he author mes to say somewhat later that the paper was written

to enbody the workin; of a practical numerical example erising in plant

taxonomy in which the concept of a discriminant function seems to be of

imnediate service. This is a simple but fascinating statement, because
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it demonstrates once again that when there is a problem requiring

solution some strides can be made. Too often we find solutions looking

for a problem, and this is something we should be especially concerned

with in classification problems.

In his paper, Fisher also listed the basic data he analysed. This

is rarely done by authors, and so we find the Fisher data and just a

r few other data bases referred to time and time again by subsequent

authors who are experimenting with now assignment or clustering

techniques. In this way, an anchor is provided against which the results

t of other techniques can be assessed.

The data employed by Fisher was supplied by a botanist, and it
&

represented measurements on the irises of the Gaspe Peninsula. This data

was previously published in the Bulletin of the American Iris Society and

was therefore not a likely contender for a best seller. Since it is a

classical piece in the statistical literature, let us look at it in some

detail. Four measurements on each of fifty plants in each of three iris

categories were obtained. The categories are: Iris Virginica, Iris

Versicolor, and Iris Setoa". For each of the 150 plants already assigned

to one of three categories, there are measurements of sepal length, sepal

breadth, petal length, and petal breadth.

If we refer back to our geometrical representation, we have 150

points scattered in a four-dimensional space, except that each point is

already labeled as belonging to one of three groups. The question is

whether in some neat and simple way we can separate the 50 points belonging

to any one group from the other two sets. This is compounded by the fact,

in this case, that two of the irises, namely Versicolor and Virginica,
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actually have a specif ic gmetic relationship and obviously. then, do

have soeoverlap. In other words, Fisher Is looking for hyperplanea

that partition the four-dimensional space, end after partitioning,

hopefully leave each group inviolate. Algebraically, be is asking for

a bearm fuinction of the four osa rsenmts (later called the discriuimant

function) that accomplishes this. As a reasonable ledm for detenoimiog

the coefficients of the Hlamer function, be suggests oam that will

mazialse the ratio of the dif fereuca between the mans to the standard

deviatiomse withlu species. To be specific, let d~ ,p " 1,293,4 represent

the dif fermme Is the obeervied seems.

The f or ay linear fuction, X, of the mamsuremtsg smly

INOALZIL* Y 2 4 + Y 3 + '04

the differenes bIue the men.m of XIni the am species is

0 - A d * A d2 + A~ 4 +A 4d

while the variance of I withia species Is prportiald to

whr S Is the -o of equares or products Lu I end X
pq p I

The particular Linear fuinction, thet best disecrimination the twon

specles will be one for which thu ratio D2/A is greatest, by 'vauiatios

of the four cooff iciest. AV X,2 A 9 4 . Geomecricaly we are locating

the hyperplame that beet separates twe groups of points In theme

that the distance, bai the £sur-diinsmuiems] omtroids is greatest.

Dres though there are Vmgoups of irises, Lu ef fect Fishe1 acts asj
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if there are two groups, since Iris Versicolor and Iris Virginica are

genstically tied together. Mote that the variations within species is

assumed to be the same In this development.

The index that iL employed to provide the delineation is tied at

first to the multivariate normal structure assumed for each species.

Yet it is very similar to the indexes suggested by strict multivariate

data analysis as we will see in the next section. Here we are maximising

the difference between the centroids of the tuc species of irises, or,

In other words, maxiizsing heterogeneity between groups. This theme

will carry through all of our attempts of classificatiou. Either we

awill maximize heterogeneity between groups or minimi-e the scatter

(i.e., seek homogeneity) withLn groups.

m .As a result of the analysis, Fisher arrives at a linear diacriminant

function that accomplishes a nice separation. For example, Iris Setosa

is separated completely from Versicolor and Virginica. It turns out

that only one of the four measurements is really necessary to do this,

namely petal length, and this can probably be seen by just looking at

the 150 sets of measurements. This should be something for us to highlight,

especially when we get Into data sets for which umanings are not so

specific and measurements are not so commensurate. This will obviously

be so in any numbar of studies in criminal justice.

Fisher's work has been extended to assign an element to any one oi

k groups, and computer programs exist in Computer Center libraries to

accomplish multiple linear discrIminant analysis. Attacbed to this

subject ti the questiom of how many variables should be used In a

discrina•unt function. It is obvious that the more variables one uses,

the better the discriination sbould be, but it ts also obvious that the
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marginal gain in using additional variables can decrease sharply

and therefore some variables can best be omitted in the interests of

parsimony. Thus we seek the best discriminating variables.

We might also ask what one would do if one were faced with the 150

irises and did not know their groupings; that is, if we had only the

four measurements on each, and we wished to see what number of groupings

as well #a assignments could be made. Here we are no longer faced with

the assignment problem alone, but with the clustering problem or

grouping problem, which of course subsumes an assignment problem. It is

to this topic that we now turn.

4. Data Summarization

It is important in talking about grouping to consider whether we

are grouping measurement variables or individuals or elements of a

population. For the iris data, we are grouping elements of a population.

Quite often, one is interested in grouping measurement or test variables.

The basic data summarization in multivariate data analysis will depend

on whether we are grouping variables or elements. We will resolve this

* in subsequent discussion by first going in some detail into the data

su marization question.

There are several ways to begin the data sumearisation. All give

a picture of data interrela-iouship, but each has special reasons for

* its employment by an investigator. One representation is that of the

scatter matrix. Here we portray the total scatter or dispersion

displayed by n Individuals or elements each measured on p variables

(n points in a p-dimansional space) by a matrix with p rove aO p

columns where an element in the i roh
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the sum of the a cross products of measurimnta (taken around the man)

on variable x t with usasuremuts (taken around the mean) on variable

? z4, . t brief.
Jn

p k xikt~ CxkRL (xti) tj )0 t Ij t tji' "

say Ihrow and It clusm, is the was of the squares of the deviations

Sof x I from Its moan. If p a 1, then T is a scalar, nam81y

a m -k

It

Ltu label this K . Anm If w also divide each element, thJe in i

sby the standard devlitions of z m a of the resuftine element

r /S each l us is the orr attleon aoeffcLint detveen b and xt end

the resultng matrix is am th e oorrelation r w trLx c wlch we label R a

An important advantage of T is the manner in which it can be
i

decomposed Into two matrices that are especially pertinent in clustering

and classification studies. In a classification study, the n elements

will be assigned to k predeternmid groups. Esch group with, say,

Al elemets can be visewd " a universe with its own scatter matrix

formed as before and labeled V i . If we sum all the V, scatter
k

matrice, we got V - VL and let this represent the vithia scatter
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or houogeneity of the groupings. Likewise, if for each of the k

groups, we compute the group mean (a p-dimensional vector where the

r th coordinate is tho mean value based on the nr observations for

xr) and then produce the (pxp) matrix that we label 3, for it

expresses a measure of the "betemennesa" or heterogeneity of the k

groups. The central point in this development is the existence of the

fundamental matrix equation

TVH+3 .

This result suggests Immediately an index by which classification

(predetermined number of groups) can be evaluated and, by extemalon,

how clustering can be terminated at some clu-te- size. For any given

data met T is fixed. Thus measures of "grouplnass" or "clusterimeoa"

as functions of W and B are thrust forth for examination.

For p - 1, the matrix equation reduces to an equation about scalars.

Thus a good grouping index is one which minimizes V or equivalently

maximizes 3 . We may also consider maximizing either the ratio D/V

or T/W L1 1 + A/V . An added benefit in that this ratio is Invariant

under linear transformations of the data. Statisticians have long

exploited this fact, for B/V multiplied by an appropriate constant is

the familiar F ratio in the analysis of variance.

When the number of measuremnts per element Is two or mors (p > 1),

grouping criteria are not so straightforward. Several possibilities

suggest themselves and-have been developed and studied by investigators.

One criterion suggested by several authors that is a quite natural

index is the minimization of the trace of V (sua of all elemmets in
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the ma diagonal of the matrix) over all possible partitions into k

groups. This Is equivalent to maxin ailing Tr.cc 3 because

Trace T w Trace V + Trace l

However, Trace Ii is Invarlant only under an orthogemal transformtian

and not under non-singular linear transformations.

Another criterion that my be employed for p > 1 in the ratio of

the determinants

ITI/IVI - 11 + 4'Bl
I

We can use ITI/IWI ms a criterion for grouping and select thatI

F grouping for which this index Is maximized, or equivalently IW .w isI
Smintimined. Also we may employ log(IT/IWI) since :it is a monotonic

function.

Another criterion for grouping is the trace of W-1 3 and we select

the grouping that mezimizes this index. This index has been used as

a test statistic in multivariate statistical analysis as has the ratio

JwJlJTI . The latter wea employed by Wilke to test whether groups

differ in mean values, and the former has been put forth by Hlotelliug

in aome situations and by lao as a generalization of the Mahalanoble

distance between two groups for k > 2 groups. We will shortly define

j and discuss the implications and uses of the Mahalaobis distance in

clustering procedures.

bot:h Trace (W') and ITI/IWI my be expressed In term of the

Geisesalues, kt. of the matrix W3 . We write

4 p
I1I/Il - (I (+

6-1
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and

-1Trace V I - I A i

where AI are the roots of the determuinatal equation, 3-V1 - 0

The characterliation of these ratios in terms of egienvalues is helpful

in data representation especially when the effects ot some reduction

in dimansionality is desired. All the elsenvalues of this equation are

invariant under non-singular linear trmseforiations of the data. It

can be proved that these sigemvalues are the only imnariant of V and

B under non-singular linear transformstions.

S. Distance Matrix

Thus far we have discuased som sumarisations of multivariate data

in matrix form, either T (acatter), K (covariance), or i (correla-

tion) and the kinds of grouping criteria that are suggested by the T

format. Intuitively, we see that any grouping criterion is a function

of homogeneity within groups and heterogenaity between groups and the

indexes already described are specific quantities embodying these notion&.

We shall discuss other indexes as we proceed, but each will be a function

of homoeneity within groups and heterogeneity between groups in which

attempts will be mods to minimise the fomer, uzinmiso the latter, or

in effect do both. eor the correlation coefficient index, large values

indicate homogeneity; mwll values indicate heterogeneity.

A.nother method of sumarising data that is more appropriate on

occasion Is to find the distance between each pair of the a points

In the p-dimstouml space. This leeds to a representatim In matrIz
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form of an axn matrix whore each elent, In the I th raw and the j th

colum, say d ij i the distance in the p-dlaeusional. space between

teIth eeetoiniiuladthe ,j th eeeto niiul l

the elements in the main diagonal are sero. The distance matrix Insakin

to the correlation matrix In that both say be viewed as similarity

matrices - the Jumpitugff place for clustering attemts.

The dec 1st. as to whther correlation matrices or distance matrices

are to be emloyed is usually determined by the problem at heand. If

a lad ividusas or a elamus toare to be glroupe an the basis of p

P ~ moatremosts on each, them the mum distance matrix In the natural

stimrization; if the p ýminrmt variables are to be grouped an the

basis of the measuremto on a individuals or a elemento., then the

pxp correlation matrix Is the natural stamrixatiam of the data.

This latter matrix Is the natural beginning point In factor analysis

where peralmomy in the amber of latent measurement variables is a

desired Voal. We will return to factor analysis sand Its place in clustering

In subsequent sections. In some taxnomic situations the question of which

measure of almilavity to emloy, whether It Is of the association or

distance typeo, will require soee thought. While we will touch on these

points,, these Inquiries will not be featured In this exposition.

The notion of a distance matrix will be placed in sharper focus, and

this will be done by moms discussion of appropriate distance measures.

Because ws will normally think of our data bases for clustering Individuals

or elementst as n points In a p-dimensional space, the distance measurs&

usually appropriate and available, are Kuclidess dietance end Mahalacabis

distance. The Iuclldeen distance betweenia nividuals or elements with
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respect to all p masurement variables way Us written In vector

notation

ii

21i -{i-,Pj 1'{F-?l

where d is the Euclidean distance between individual L and

individual J, PI and P are c;.im vectors each with p rows

listing the p umasurments on the ith and jth individuals respectively.

The product of the difference row vector (P Ipj) by its transpose is

a scalar. This is the distance function with which most of us are

familiar. The Heha3anobis distance my be written as in the notation

above as

2ald:= (PW-PI )W-(Pj-Pj)

whore V- in the Inverse mtriz of V = V and Vi is obtained

for each of the I w 1,3....,k groups by

WIt

Note that a grouping of elents is necessary to compute VI and

consequently W . Thus the )ahalanobis distance cakes into account the

associations or interrelationships in the measurement variables. If

two msasurement variables are highly correlated, the Euclidean distance

can be misleading because of the equal weight it imposes inaccurately on

each measurement variable, but this will not be so with the Mahalanobis

distance. The Mahelanobis distance is mors tedious to compute and for
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a long time it was avoided for this reason alone, but the computer has

brought It within reach. Actually if each of the correlations between

the measurement variables is low. the error In employing the 3uclidean

distance Is not damaging. An a rule of thumb, correlations as high as

0 • 5 will not produce uclUe•n dLstances that lead to operational

difficultoes.

Other distanc measures appear in the literature. Tbe NiahowOi

distance is the name applied to all distance mesaurs that are of the

form

d(i, J) -

We hbe" discussed the case a -2 . Whoe a - 1, the label "city-block"

di.stame is sometimes imployed and It mey be relevant for same distance

situations.

6. Clusterina

We nov look at the clustering side of classification analysis. Our

min emphasis will be on clustering as an exploratory device. Development

of assignment procedures is for those who already enjoy the luxury of

knowing the groups that exist. We will place ourselves in the situation

where a body of multidimensional data has been collected by some investigator 4

and he wishes to decipher what kind of structure, if any, underlies the data

collected. A wide variety of tacblmi, es hSave beeo suggestsd and attempted.

They run the Samut from looking at all possible parttiominau of the data to

try•lg to zero in on an optimal partitioning without havift to look at too

such of all the possiblitles. The formar method Is a "4dub" procedure which
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is workable if the computer can quickly look at everything, and of course

this is not so even for a mall umber of observations in a small number

of diamesions. Thus we sacrifice optimal partitioning for what we hope

are suboptimal partitions that can be achieved such more cheaply.

Let us consider one general way of looking at the problem considered

by several authors. We start with any given partition into £ groups.

Consider moving a single object into every group other than the one it is

in. If no move will create a partition for which % tlustering criterion

is increased, leave the object where it is. Otherwise, move it so that

the maximum increase in the criterion occurs. Naturally, we are assuming

-the existance of a reasonable criterion. "1-ng the partition thus created,

Swe process the secod object in the "as way, then the third, etc. After

several passes, one will reach a point at which no move of a single object

I from the group it is in to a different group will cause an increase in the

criterion function. At this point we say we have found a "local maximum"

of our criterion function. This rarely takes more than a reasonable time

on & compucer. This has been labeled the "hlll-climbing" pass algorithm

by Friedman and Rubin.

SThey and others have suggested modifications. For example, we start

with the best partition yet known. Then procearc one group at a time, in

sequence, by placing each object of the group being processed into the

outside group with nearest center of gravity, recalculating the criterion

L- function after each mo"e. This is done in order, the object nearest an

outside group being moved first. Although the criterion initially

decreases, it way at some point during the process achieve a value higher

tian previously found. This will especially be the case if the gro,-,

t

S~626



being processed consists of two clusters widely separated in space. After

processing all the objects of one group, we restore the best partition yet

found, and proceed to process the next group. This has been labeled a

"forcing pass" algorithm. It is defined as the application of this

proceceure once to each group, in sequence. Forcing passes are repeated

until they produce no Improvement. These passes are relatively fast,

compared to hill-cliabing, since we need not evaluate every possible move

for an object.

Still another procedure proposed by Friedman and Rubin and others

involves starting with a partition Q (we use the best partition currently

known) and reassigning each object to the group with nearest center of

gravity. The value of the newly formed partition is then calculated.

With either of the other two criteria just discussed, we use the metric

defined by the matrix W-1 couputed from the partition P - i.e., f
-l Td(P,Ck) =P-J W lo The centers of gravity Ck En,, the scatter

matrix W are maintained as those of the original partition Q until all

a objects have been reassigned, at which time new values for Ck san V

are computed. This contrasts with hill-climbing, for which the partitioc

and the derived W change with each move of an object.

The reassignment of each object in the above manner is termed a

"reassignment pass". Reassignment passes are repeated until a partition j
with higher value Is no longer achieved. Sets of forcing passes and

reassignment passes are alternated until neither produces improvement, an-

then hill-climbini is resorted co for & new local maximum. Other

modifications are also applied, but when it proves impossible to reach a

higher local maximum, che procedure is terminated. If one is willing and
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I• financially able to spend the computer time, ose can repeat the entire

procedure using another starting partition chose. at random or, as we

will soon see, obtained by a quick step-wise method. The forcing and

reassignment passes are fast, but only occasiomally helpful. Restarting

from each of several random partitions or the step-wise molution is slow

but provides more confidence in the result.
1

7. Initial Partitionima

There is a much simpler way of Initiating clustering. It ms proposed

by Riag and in effect gives a quick initial partitioning of the data

whether it be msasuremnt variable groupings or delineatiom of individuals

in a population. Either something of interest and use to the investigator

appears quickly, or what does eirge can serve as the first step for thoem

algoritbm that require a start upon wbich various kinds of iterations are

attempted. These were Just described in the previous section.

The procedure proposed by Kiag is a step-vise clustering procedure.

This is its principal asset because it leads to a simple and quick

algorithm that involves (n -1) scomings of a correlation matriz based

on n variables. At each scanning or pass, the variables are sorted into

a number of groups that is one lsos than at the previous pass. In this

way, we obtain (n-k) groups of variables at the kth scanning. The

(n xn) matrix can also be a distance matrix. In chat case, ve sort

individuals or elements into groups.

The procedure operates as follows. We will employ the correlation

mastrin as our similarity matrix for expository purposes, and bring in the

distance matrix when appropriate to highlight differences.
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As a start, we can view the n variables as n groups, one variable

to each group. Now scan the correlation matrix for the seximm cell entry

(naturally without regard to sign). In a distance matrix we would seek

the minimum distance cell entry. Suppose the maximm correlation is between

variables X and X . Label it ri,j, . We place X1 and X in the

same group, and we nw have (n- i) groups X1X2,...#.PC.xj),..O.x nl' .In

This produces an (n- 1) x (n- 1) correlation matrix, all pairs of

correlation coefficients over the original (n -2) variables plus the

correlations obtained by pairing each of these with the concocted variable

X + X a Y Essentially, we are representing the group of two elements

"by its centroid.

On the second pass of what is now an (n- 1) x (n- 1) correlation

matrix, a third variable nay join the group of two variables formed on the

first pas@ if the correlation between it and Y is maximum, or the

maximum correoscion value in the reduced correlation matrix may again

involve two individual variables. Thus we would got either one group of
I

three variables and (n- 3) groups each containing one variable, or two

groups each containing two variables and (n- 4) groups each containing

one variable. In either situation we merge variables and revise the

correlation matrix as on the first pass. In the former case, the centroid

of the group of three variables represents Its group, and in the latter

case, each group with two variables is represented by its centroid.

Recall that we do not have to divide the sum of the variables by the number

of variables to obtain the controld because the correlation coefficient it

invariant when one variable of the pair is always multiplied by the aw

const&nt.
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Thus, at each peas, the two groups with the highest correlations

are merged and the total nmber of groups to that point is reduced by

me. After a variable has Joined a group of variables, it cannot be

removed from that group. In this way it Is possible to miss an optimal

grouping. This is very similar to selection of predictors In step-vise

linser regression. It should also be uentioned that a group can lose its

identity by merging with another group on a later pass. by the time all

the scanning is completed we have produced successively (n-1). (A- 2),

(n -3),...,3,2 groupings.

The clustering index employed by King for measuring the worth of

the grouping is that of minimum correlation (or maximal distance) between

the group ceutroids when the scanning has placed the variables into two

groups. This leaves something to be desired because it does not look at

the effectiveness of the grouping when more than two groups are Involved.

He also review another index, suggested originally by Milks for testing

the nutual independence of k subsets of n multivariate nomael random

variables. In terms of what we described earlier In the paper, the indez

is the ratio of the determinants

z - T

where T Is the scatter matrix defined previously and each V1  Is cha

scatter matrix for each of the k groups.

This index has som nice geometrical and statistical properties. For

example, when k

Z JTJ- 2
* - flll-r )

SIVl 11 - W21
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where r I i the Ith canonical correlation between the two sets of

variables. This index may be viewed as a "generalized alienation coeffi-

cient" since it is an extension of 1-- . where R is the ultiple

correlation coefficient occurring when two groups have one variable in

one group and (n- 1) in the other. Howevere, it is not too useful in

soim data analyses, especially in social science, because a number of

data sets lead to quasi-singular correlation matrices and truncation error

can give ridiculous results. For this reason, and possibly others, negative

determinants appear and maks it impossible to employ the hilks index.

Let us look ac the King method for two particular data bases. The

first ts in connection with a penalty jury decision in California, and

the second is the iris data we discussed previously.

Individuals convicted of murder: 238 individuals convicted of first-degree

murder in California over a recent cen-year period were studied on the

basis of 25 masurements each as to whether an association existed between

their 25-dimnsalonal descriptions and the penalty decision that resulted

in life imprisonment for 135 and capital punishment for 103. These 25

variables consisted of biographical information on the individual, descrip-

tion of the crime, Information on defense counsel, the prosecution, and

the judge. A King step-vise clustering procedure was employed to cluster

the 238 individuals and then seek a substantive association, if any,

between the characteristics of the Individual, characteristics of the

crime, judicial process, and the penalty decision. My thanks for the dac&

* under analysis go to several Law Review students at Stanford with whom I

worked on this study. One of their major concerns was to see if there

were any sssociation between the penalty decided upon by a jury, which
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under the law is given no instruction on standards to be employed in

arriving at a decision, and socio-economic characteristics or racial and

tthnic background of the individual. The clustering printout did not

reveal any significant associations between penalty and whether the

defendant was bla-k, Mexican-American, or white; or whether the defef. .',-t

was a blue-collar worker or not. At the 58th pass, there was one

significant group that contained 18 members, all of whom had received

the life penalty. As the number of passes increased, this group remained

the principal group until the last few passes. At the 75th stop the

group ctntained 34 members, of whom 30 received life iaprisonment. At,

the 100th step the group contained 42 life cases out of 62 membere, and

at the 125th step, the group contained 63 life cases out of 102 members-

a 62 to 38 percent mixture for all 238 cases. What we seen to be gettitng

Is clustering indicating very little or no association of pemalty with

defendant and judicial characteristics. This my also have judicial

implications; for a penalty jury is, in effect, tossing for each defendant

a coin which lands head or tall in a 55 to 45 percent ratio.

Irises: In Fisher's well-knovn paper on the linear discrimsiant function,

j he employed three groups of irises, each containing 50 members. Sepal

width and length, petal width and length yere obtained for each of the 150

irises--50 Iris Setosa, 50 Iris Virginica, 50 Iris Versicolor. We will

assume only that we have 150 irises represented as points in a four-

dimensional space which we wish to cluster by the King step-wine clustering

scheme. The results are interesting. The Iris Setoan are quite different

from the other tw.,, which overlap a great deal. Thus we find at the l17th

Spass that there is a cluster of 48 membrs, eacb an Iris Setnee; there sav
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four clusters containing 23, 24, 17, and 24 members respectively, with

12. 4, 16, and 18 Iris Versicolor respectively, all demonstrating the

natural overlap between Iris Versicolor and Iris Virgtnica. At the very

next pass (138th) the two groups with 2'4 saeb.-. each mersg into a group

with 48 msers, 22 Iris Versicolor and 26 Iris Virsinics. Thus when

there is real and decided overlap the step-hise clustering schsem reflects

it; but if we did not know of the original three groups, we vould be hard

pressed for a decision, and tbviously would have to resort to additional

techniques, or expertine, -ir both.

These data bases end several others are discussed in a paper by

Solomon 11l -. In that paper some computer printouts for the King proceditre

t are displayed.

8. Data Ieprnmmsta o Techniques

An interesting idea In nultivarlate data analysis hba been proposed

by Chermoff [11. It is a graphical data representation technique. In

his procedure Cheruoff transforms multidimensional vectors into human

* faces. Thus, for ezanple, several hundred vectors are tramnformed into

several humdred faces and the faces are then classified into groups

according to the sit-ilarity perceived by the classifier. The thems here

is that we are very familier through experiences in life in classifying

facial characteristics, In his paper Chernoff presents a compater program

which handles up to 18-dimensiseal vectors. The reader Is referred to

his peper for more details.

* Up to this polit, is have mentioned factor analysis but not said

much adbout Lt. There ise an extensive literntwfe om tbo oubjoct, Its

current use in multiverlate data analysis is from the representation po 4 ',t
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of view. Computer libraries have factor analysis programs which can

take large order correlation matrices and obtain principal component

solutions. In this way a large number of measurement variables, say 50

to 100, can be transformed into many fewer variables, say on the order

of 5 to 10. Classification and clustering can then be applied to multi-

dimensional vectors of ue-y small order. A reel payoff occurs when the

largest two or three factors are employed, because a graphical display

can then be arranged. When this occurs, clustering or classification

of the data points can be achieved by eye. See Solomon 1111 for more

details.

L 9. Multidimensional Contingency Table Analysis

A multivsriate data analysis technique which is receiving more

attention these days is that of multidimensional contingency table

analysis (logistic response analysis). A number of authors (e.g.,

Kullback [M,91 and Goodman (6], among others) have done fundamental work

on this technique. We will discuss this sodei by illustrating its use

to study reenlistment decision In the arum services. The data stems

from some recent Marine Corps analyses.

In this section the structure underlying contingency table analysis

is discussed, and the mechanics of obtaining odds and probabilities for

the reenlistment decision are illustrated. The reenlistment analysis

is based on a large number of categorical variables. Regression analysis

and similar multivariate techniques for continuous variables become

inefficient and Inappropriate for ts4s situation. Multidimensiomal

contingency table analysis, which we now explore, is more suitable.

634

I.... . . . -. .. -_ , -- • •, • •7 - .- _ • . .. .



We are interested in accounting for the variation in reenlistments

in a parsimonious way and with meaningful factors. Consider a simple

muple with two factors, reenlistuemnt decision and rank. Assume rank

is categorized into two levels, I.e., high rank or low rank. The

reelistment decision and rank of forty individuals night produce the

table

Hi h Rank Low Rank

Reenlistment 10 10

No Reenlistment 10 10

which yields probhellity estimates

Nish Rank, Low Rank

Reenlistment .25 .25

No ReenlistmenC .25 .25

or mrs generally

Reelismen ISigh Rank Low Rank
Rieenlpstment Pl P1 2

No Reenlistment P21 p2 2

The overall probability thac a person reenlist& 1. P11 + P1 2 I .5

The probability that a reenlistment is of high rank is also .5 for

P lU .25
+ P2l .25 + .25

In this example, the probabilities of reenlistment are the amem regardless

of rank. This cable suaMests reemlistmet decision and rank are Independent.
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A related measure denoted as an "odds" measure hab an interpreta-

tion wvll known to bettors. In the above eample, if one aers that a

person selected at random rnenlists, the overall odds, i.e., the odds of

reenlistment regardless of rank are one to one or even. Knowledge that

the bet Is on the high rank group or law rank group does not change the

odds. Realistically, however, the probability and odds that a high rank

end a low rank viii reenlist are not the noe. As an illustration, con-

elder the table

Kzh Rank LOW Rank
Reenliatment 15 5

No Reenlistment 5 15

This given probability estimates

Ma/h Rank Low Rank

Reenlistment .375 1.25

No Aeeosaltsent .121" . 75

From thi& cable the overall probability of a person reealist-ng,

.375 + .125 - .5, remains the same buc che probability that a high rank

reenliscs to

.357

.375 + .125 75

This differ. subscantially from che overall probability of 0.5 which

no longer sommaxisee the data. The odds will change as veil, being three

to one for high rank, one to three for low rank. The information

contained in this and the preceding table is described in term of three
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characteristics: the overall probability that a person will reenlist,

the probability that a low rank will reenlist, and the probability that

a high rank will reenlist.

The basic objective in a more complex table ti to Identify the

minimu. number of probabilities that must be specified to adequately

describe the table. The specification of probabilities given in the

last example can be used. However, recent research has developed a more

formal dsrr 5!ptive model similar to analysis of variance or regression

models. Instead of dealing directly with cell probabilities, it is

convenient to deal with their logarithms. These new varfables, the

logarithms of the cell probabilities, have characteristics similar to

measurement data, and they can be incorporated into a linear model

whose paramters indicate the contribution of the vatious factors and

their interactions to the cell probability.

The linear model for estimating logarithms of ptk (for our analysis

Swhere we fix and employ only the marginals) is

T Kal +aT- .2
(9.1) ap + a t 1, 2, k- 1,2

ptk ~+t + 'tkf

where Inptk is the natural logarithm of ptk * The constant U is a

general mean indicating the average value of t optk . The parameter C

indicates the "effect" of reenlistment decision on bApt i independea

of rank; aK measures the effect of rank on t PAtk independent of
TKk

reenlistment decision. The parameter 0€ measures the interaction

effect of reemlistmeht decision and rank on tnp k . for the first

example cited, where all the ptk (and consequently all the taptk)

are equal, and a are zero since taptk does not vary with either
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reenlitmant decision or raskr sad for this reasou, too, a 8Is zero.

Hence, Ptk is equal to the anti-log of p , jh hia this case it the

overall probability that a person reenlists.

The model in (9.1) allows the step-by-stop caeputation of cell

probabilities similar to regresslon analysis. lot esxaplep if remelist-

meat decism is t omoidered ass functios of rnek. tin odds of reamlist-

mast (t - 1) to uou-resmlistint (t m2) for a gives rank are

Plk say k-I for bigh ramk, k 2 foulowrmk.P2k

Using the model in (9.1) to obtain these odds in lo4erithaei form

(demoted hereafter as the log odds), we gat

(9.2) In ;2t0( '+ iK 2+ %I+ ark) I- k +24P2k

where al -u -ansd ~Ml " 6k

Since the a parmeters measure deviatiotn from a aewmral mean, a

deviation from the msan at ome level leads to a deviation In the opposite

direction at the other level. Replacing sad 3m 2o by 0 and

to simplify the notation In (9.2) yields

(9.3) A -pL- + T÷ k- I for high rank, k- 2 for low rank.

Vrum (9.3) the log odds of reuelistmunt to now-reemlistmnmt are sem to

IXdep1d the gmasl mess for the log odds, d , the reka-

tiouaship betwmes tauk sid resmlistmut dectsios.
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To further illustrate thse ideas, let um consider another example.

Assme that reenlistmunt is dependent on two variables: length of

enlistment. L , and the presence of absence of dependents, D . Them

Ptd represents the probability that a specified rsenlistment dec910.M

Is "de given an individual's length of enlistment and dependency status.

Following the previous example. the logarithm of the odds of reemlisting

to not reenlisting as a function of the predictor variables can be

written as

(94) 13 .0  T + TL 7D TLD
P21d I + i + Old

ach one of the 0 parmeters has the same interpretation give.

previously. 0 is a gemeral moan for the log odds. The , 1 A 1

(two Year enlistment), A - 2 (three year enlistment), A - 3 (enlist-

ment of four or more years) are nuamrical measures of the Impact on

reenlistment of enlistment length. Similarly, the a• are numerical

measures of the impact of dependents on reenlistment where the subscript

d identifies the number of dependents, d - 1 (no dependents), d - 2

(one or more dependents). The parameters are i0teratios ters.

It my be, for example, that the presence of dependents my influence

the reenlistment decision of four year enlistees differently than that

of three or two year enlistee. First, dependents ore more comamsa n

four year enlistees and they tend to have more of them. Second, four

year enlistees who serve to and of term tend to be older at the time

they smt decide whether to reenlist. fenoe the Impatue to reenlist my

be greater smong mesbers of this group then would be Indicated by adding
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the separate effects of dependency status and length of enlistment.

The presence of a Joint interaction effect of length of enlistment and

dependency statue on reenlistment implies a non-zero 632T .

fBy exponentiation of each side of the log-linear model (9.4), the

odds of reemllating to not reealisting (hereafter referred to simply as

the odds of reenlistment) can be written in the form

p~ldI d Ud

I where the 6's are the anti-log8 of the B's . In this form of the
Snode1, 6T can be intrpreted as the ove ra l l men odds of reenlistment

w hich in modifled by more detailed information about the levels or values

* of the predictor variables snd their Interactions.

For the full model, the overall odds 6 is estimated as

9

9T . ei . 6-2.60 . .074,

that Is, the odds are .074 to one in favor of reenlistment.* If the

odds of reenlistment are desired for Marines who enlist for four years,

we need to compute

aT aT- (.074) (2.46) - .182 .
I3

fi
*Note that this ts not the odds that would be compuced directly iro.

the observations, but rather from their logarithmic transforms, then
averaeiag, then transforming back to the odds domain. Thus, this "mean
odds" is a multiplicative mean, not an additive mean.
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Thus, the odds of reenlistment increase from .074 to .182 for Marine@

"who enlist for four years.

The calculation can be extended, for example, to Marines who enlist

for four y-ars who have one or more dependents by the end of their

enlistment period. If these independent variables entered linearly in

the model, the estimated odds for reenlistment would be given by

-T 3TL ATD
63-2 'but since dependency status and length of enlistment are

found to interact joitly on enlistment, the odds of enlistment for this

"group of Individuals are given by

-T ^TL ^To ATjD
(9.6) 6 6 3 6 2 6T32 a (.074) (2.46) (1.72) (1.46)- .457

where the last term measures the interaction effect of L and D

Note, the odds of reenlistment for four year enlistees with one or more

dependents would have been substantially underestimated if the first

order interaction effect had been omitted from the calculation.

As can be seen from this example, the estimation of a mall number

K': of V's permits the c.omputation of odds of reenlistment for individuals

having very diverse characteristics. It should be noted that as in the

case of regression analysis, the coefficients of the linear model (9.4)

(and consequently the S's in (9.6)) show the effecc of a change in a

variable holding all the other variables constant. Thus measures

the direct effect of leng..h of enlistment on the odds of reenlistment.

Ii an indirect effect with dependency status is also present, this is

measured by a .d Both the direct and indirect effects of length of

enlisf'went are net of the effects of other variables such as rank,
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education, race, etc. That is, the effects of variation In the latter

variables on the odds of reenlistment are taken into account in the

computation of I and I) ,

Given the odds of reenlistment for Individuals with a given set of

characteristics, it is a simple matter to compute the probability of

reenlistment for the group from the relationship

| . probabliJty, of reenlit itng

(9.7) Odds of reenlistment probability of reeulistng "
probability of not reenlisting

For example, if the probability of reenlisting, p , is .07 , then
I

* the probability of not reenlisting, l-p, is .93 , and the odds of

reenlistment are .074 tc one. Solving for p in (9.6) yields

odds of reenlist men t
(9.8) Probability of reenlisting 1 odds of reenlisment1+ odds of reenlistment

In these calculations it is important to distinguish between

individual 6'a referred to as "odds factors" (e.g., a 6T, 6TLD)

which indicate how the overall mean reenlistment odds. , is modified

and the product of d's (e.g., 6 T 6TL 6 TD 6TLD) which measures the

odds of reenlistment for individuals with a specified set of character-

istics. Since (9.8) converts the odds of reenlistment for a given group

of Individuals to the probability of reenlistment for that group, it

cannot be applied to the individual P's

The above discussion makes clear that a large number of parameters

may enter the contingency table model, thus raising the problem of iden-

tifying which pArametecs are to be included in a model and which are to
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be excluded. Statistical distribution theory and a measure I , which

is asuilar to R 2, the multiple correlation coefficient in regression

analysis, Is used to resolve this problem.

In regression analysis the explanatory value of a set of predictor

variables is measured by the percentage of variation in the dependent

variable explained by the predictor variables. The base measure of varia-

tion in regression analysis is the sum of squares about the mean of the

dependent variable, i.e., E(YI . . As predictor variables are added

to the model, the predicted values of the dependent variable, Y1 , are

used to m=sure the amount of variation, E(Y - )2 eplained. The

percentage of base variation explained Is then

-222 E(Yi - E) .(Yi - •T )

100 1. 100
E(Y: -)2

One method of measuring the contribution of any particular variable is

the change in R2 when that predictor variable Is added to the model.

For contingency tables, the base measure of variation is computed

either as the chi-square statistic*

E (0 
2

or the information measure

2 E 0 Lin E

*The symbol 0 stands for the obuerved cell count and Z the
estimated call count. The summation is over all cells in a table.
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under the hypothesis that all * parameters In (9.4) excapt the general

own are zero. I *t then the percantage of bass variation explained

by the istr-4uction of some collection of B parameters into the model,

i.e.,

0 0

*(E 0in 0 . II Base

*
In practice, an I of 70 percent or better is desired. Sometimes a

lower value is acceptable because Increasing I* requires the addition

of many interaction parameters with the consequent difficulty of inter-

pretation. The prime objective is to find the most important parameters.

When the number of observations is large, parameters segnifylag marginal

impact will be statistically significant. Thus we my adopt a convention,

say, of excluding parameters when tbWy increase I* by less than two

percentage points.
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SKIP-LOT PROCEDURE FORMULATION USING '11TF
SIMPLIFIED MARYOV CHAIN METHOD

Richard M. Bruqqer
US Army Armament Coimand

Product Assurance Directorate
RAM Assessment Division

Rock Island, Illinois

ABSTRACT. Skip-lot procedure formulations
have previously been carried out by using
complicated and tedious Markov chain methuds.
This paper describes a very short formulation
method using a simplified Markov chain
approach which was developed by the author
for continuous sampling plan formulations,
but which has application to the skip-lot
problem also.

It is common practice in quality assurance to use
a samplinq plan to determine whether a lot of units
should be accepted or not. For example, we might have
a lot of size 100, and draw a sample of size seven.
From this sample, we will make an inference about the
lot, thereby enabling us to make a decision about what
we should do with the lot) should we accept the lot or
should we reject? The sampling plan will help us make
this decision by providing us with the decision criteria.
For example, we might have an attributes-type plan,
whereby some characteristic of the unit of product, its
paint job, for example, is judged to be either good or
bad. Perhaps the sampling plan permits one of the seven
units to be defective with the lot still being accept-
able, but specifies that if two or more units are defec-
tive we must reject the lot.

Another general kind of plan is a variables plan,
whereby some dimensional property of the unit, for
example, diameter, is determined, and this measurement
is included with other measurements to determine per-
haps a sample mean and standard deviation, with which
suitable tables can be consulted to determine whether
the lot should be accepted or not.
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In what will follow, we are not especially conce:::'ned
about what kind of lot sampling plan we are dealing with,
since our discussion will apply to any lot sampling plan.
We don't care if it is by attributes or variables, nor
whether the plan is single, double, multiple, sequential,
"or what have you, with the sole requirement that it must
be a plan whereby a decision is made on a lot from an
inference reached in a sample.

Now let's take a look at a skip-lot procedure.
Figure 1 provides an example of a very simple one, pat-
terned after the continuous sampling plan CSP-l of
Harold Dodge [4, 5). Note that the rules of the proce-
dure tell us that if five consecutive lots are accepted,
we may thereafter use some probabilistic device such as
dice or random numbers to determine whether we should
inspect a lotl we want the probability that a lot will
be inspected in this example to be one fourth. Note

j that we have also provided the cautionary statement
"provided there are no indications that factors are pre-
sent which would have caused homogeneity to be lost".
Obviously, if we found that a serious machine malfunc-
tion had developed while a lot was being run throtgh it,
we would not want to skip the inspection on the lot. If

* homogeneity is lost, or if a lot is rejected, we return
* to the 100% phase, after which the cycle goes on and on.

In this example then, we see what the skip in skip-
lot means - we skip the inspection or testing of some
lots. Why do we want to do this? The economic factor
is usually the significant reason. For example, in using
a skip-lot procedure for ballistic testing, over seven
and one half million dollars were saved by the Army in
the period from 1966 through 1973. This is described by
Charles E. Stine [11]. Since skip-lot procedures are
analogous to continuous sampling plans, much of the mathe-
matical theory of continuous sampling applies also to
skip-lot procedures. The first work in continuous
sampling was carried out by Dodge. As the types of plans
generated over the years became more and more complicated,
the direct algebraic approaches of Dodge were not suf-
ficient for determining such properties of interest as
average fraction inspected curves and average outgoing
quality curves.
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These problem were overcom with the introduction
by Lieberman and Solomon [8) of the theory of Harkov
chains into the continuous sampling plan area. Harkov
chain methods were thereafter used a great deal in pro-
blems in continuous sampling plan theoryi their methods
then lugically carried over into problems of skip proce-
dure theory. As a matter of fact, Allen Endres (6], an
employee of mine at the time, presented a paper at the
Thirteenth Conference on the Desiqn of Experiments using
Markov chains to determine the mathematical properties
of a rather complicated skip procedure. Two recent
papers by Perry [9, 101 in the Journal of Quality Tech-
nology make use of Markov chain methods to describe skip-
lot procedures.

While the Markov chain method permits solution of
complex problems, it still involves quite a bit of work.
In 1970, after working for several years in the area of
plan development and problem solution in continuous
sampling plans, the author developed a simplifying
algorithm (1]. Although it is described in terms of a
continuous sampling plan, it applies also to a skip-lot
procedure. The necessary derivations and justifications
are provided in [1], so there is no need to go throuqh
all of it here. Instead, I'd like to give a short philo-sophical explanation of what the simplified Marker chainmethod Is about, and a short example of how it works.

For our example, let's use what Perry (10) called
the 2L.2 procedure, which he made analogous to a continu-
ous sampling plan investigated by Guthrie and Johns [7],
who obtained the plan from a family of plans developed
by Derman, Littauer, and Solomon (3]. This is shown on
Figure 2.

The rules of the procedure are as follows: Start
with normal inspection, inspecting every lot. When i
consecutive lots are accepted on normal inspection, switch
to skipping inspection at rate fl. If we now have i con-
secutive lots accepted, we go to rate f 2 , but if a lot is
rejected, we return immediately to normal inspection.
While we are at rate f 2 , we return to normal inspection
whenever a lot is rejected.
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The next step in the usual 14arkov chain approach is
to set up the transition probability matrix, by consider-
inq each lot to be, represented by a state in a Markov
chain. For example, Perry's transitional probability
matrix is shown in Table 1, where

NR denotes lot rejection on normal inspection.

NJ denotes nvmber of consecutively accepted lots during
normal inspection is j (j - 1, 2, ... , i).

SlAj denotes number of consecutively inspected and
accepted lots during skipping inspection at rate f
is j 0j - 1, 2...., i).

SlR denotes lot rejected during skipping inspection at
rate fl,

SlNj denotes lot skipped during skipping inspection at
rate fl, and previous number of inspected and accepted
lots on skipping inspection at rate f isJ (J = 0, 1, ... 0 i-1).

S2A denotes lot inspected and accepted during skipping
inspection at rate f 2 "

S2R denotes lot rejected during skipping inspection at
rate f 2 "

S2N denotes lot skipped during skipping inspection at
rate f 2 "

The simplified Markov chain approach restructures
the problem by defining what the Markov chain represents.
Under the old Markov chain method, each lot is repre-
sented by a state in a finite Markov chain. Under the
simplified method, we might imagine that we have col-
lected all lots occurring consecutively in any given
phase of the procedure in big boxes, where the size of
the box is unli.vnited. The labels on the boxes represent
the phases of the procedure. The states of the Markov
chain represent the labels on the box. In our example,
since we have only three kinds of labels, norral, first
skipping level, and second skipping level, we have a
Markov chain with only three states. Our concern a
little later will be with the expected number of lots
in a box with a given label.
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I
Table 2 shows the transition probability matrix

using the simplified Markov chain approach.

TABLE 2

TRANSITION MATRIX FOR SIMPLIFIED MARKOV CHAIN

N FSL SSL

N . 1*

FSL 1-P - pL

SSL 1* -

*For P1l

The resulting state probability equations are

iN - (1 - P )FSL + SSL (1)

SFSL - N (2)

SSL - PiFSL. (3)

Solving for each of the state probabilities in terms of

one of them, we have

N -N (4)

FSL - N (5)

SSL = PiN. (6)

Our interest now is in the coefficients in the resulting
equation. These are brought over into column one of our
working table, Table 3.

TABLE 3
WORKING TABLE

1 2 3 4 5

COEF. SIMP. EX. NO. SIMP. PROD.

N 1 1 (l-P )/QPi ff 2 (lPi) flf (1lpi)

FSL 1 1 (1-Pi)/flQ f 2 Pi (1-Pi) f2Pi (1-Pi)

SSL Pi P 1/f 2 Q f1Pi flP2i
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This is our working table needed to complete the soln-
tion. Column one lists the coefficients we just mentioned.
Column two provides for simplifying column one by clear-
ing Jenominators or dividing by common factors. Any oper-
ation carried out on one element of a column must be
carriod out on each of the other elements simultaneously.
In this case, there is nothinq that can be simplified, so
column two is the same an column one. Column three con-
tains expressions for the expected number of lots con-
tained in the boxes with the respective labels. Expres-
sions for the various kinds of phases one would expect
to encounter are contained irk (1]. Column four serves
to simplify column three, in the same way that column
two is intended to simplify c,)lumn one. In this case,
we see that we can clear the rienominatgr by multiplyinq
each element in column three by fIf2 PI. Column five is
the product of columns two and four.

Let the sum of the column five elements equal D.
Then

N - flf2 (-Pi )/D (7)

FSL - f2Pi(l-Pi )/D (8)
SSL - flP2i/D (9)

We are now ready to determine our long-run operating
characteristic curve, which is defined in terms of sta-
tionary probabilities as

Pa = P[N + flFSL + f 2 SSL] + (1-fl)FSL + (1-f 2 )SSL (10)

Notice that we are saying that inspected lots are accepted
with probability P while all skipped lots are accepted.

Substituting expressions for N, FSL, and SSL and
carrying out a few algebraic operations leads to Perry's
solution

f 2 (pi + fl(P-Pi)] + (f 1 -f 2 )P 2(1P a = (11)P2f f2 [pi + fl1(l-Pi)] + (fl_f2)i
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SEMI MARKOV C.qPINS APPLIED TO MARKOV CHAIN
MODELS OF CONTINUOUS SAMPLING PLANS

David L. Arp
Nav.al Weapons Center

China Lake, California

ABSTRACT. A method is presented for overcoming some
of the complexities of analyzing time-homogeneous,
irreducible, and finite state Markov Chain (MC) models of
Continuous Sampling Plans (CSP's), with potential applica-
tions to other processes, by constructing from any such MC
a unique Semi Markov Chain (SMC). To this end, a class of
MC models is defined in terms of four different basic blocks
of MC states called phases which are naturally and un-
ambiguously defined by the MC structures considered. For a
phase of a given type, a time-of-sojourn probability density
function (p.d.f.) is derived for each possible exit. Any
phase, together with its p.d.f.'s, that occurs in a MC is
then treated as a SMC state. If self-jumps of phases are
forbidden, the SMC so constructed induces and is induced by
a unique Markov Renewal Process (MRP); otherwise the MRP
induces the SMC but not conversely.

This constructive technique, the Z-transform calculus,
and Renewal Theory are used to analyze at length, for the
Job Shop and Arbitrary Entry cases, the two most commnon
CSP's and the first two moments of the Fraction Inspected
functional defined on them. Variations in phase types and/
or their p.d.f.'s are considered resulting in, for a given
MC, variant SMC's which are in turn studied using the
concept of filtration.

For the Arbitrary Entry case, delayed p.d.f.'s are
defined by a renewal-theoretical way and by an intuitive
constructive way using an initial probability vector which
overtly depends on the entire MC model. These two defini-
tions are shown to be equivalent thereby proving the latter,
along with certain probability ratios, to the purely phase-
type dependent. Using these delayed p.d.f.'s, it is demon-
strated that the resulting SMC and MRP are stationary.

Other more complex standard and non-standard plans
are also dealt with briefly.
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1.0 INTRODUCTION.~ A prevalent classical ti-eatment
of a class of Contin-us Sampling Plans (CSP's) has been
the study of certain functionals defined on finite-state,
ergodic, and time-homogeneous Markov Chain (MC) models
which distinguish different types of groupings, called
phases, of the states involved -- screening (sc), unlimited
sampling (uls), limited sampling (1s), and checking (ck)
phases being the usual types [see Refs. 7.4 and 7.5].
These phases are in turn hooked together in various ways
and in varying numbers, in accordance with sampling
frequency criteria, to generate the plans making up this
class. Moreover, time is operational and is discretely
measured by "number of production units". Of primary
importance in measuring the effectiveness of such a
sampling plan is the functional Fraction Inspected which
can be defined as follcws:

1 NFI(N) -1 E E MSN(j)

j=0 (SN)

Where

N = number of units (or run nunmer),

) ( if MSN(j) = SN
MSN~j

0, otherwise

and SN varies over all the non-inspection states of the
correspondinq MC model. In deriving formulas for the
moments of FI(N), only two starting conditions are of
practical importance; the Job Shop and the Arbitrary
Entry. In the former case, the components of the initial
probability vector are 1 for the starting state of a sc
phase and zero for all other states and, for the latter
case, the components are the steady state or long run
probabilities.

To date, only the first moment of this functional has
been derived in the Job Shop case for an infinite run and,
since the long-run probabilities are also stationary, in
the Artitrary Entry case as well (independent of N). In
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an earlier paper by the author [Ref. 7.1], in order to
obtain, for the simplest and most heavily used of these
plans (CSP-l), the mean and variance of the above func-
tional in the short-run Job Shop case and its variAwce
for the Arbitrary Entry case, advantage was taken of the
sparseness and regularity of the transitional matrix of
the corresponding model to generate difference equations
for the salient transitional probability functions which '.
were in turn solved for by the Z-transform method. 4

Unfortunately, for plans more complex than CSP-l,
this method becomes less feasible because of the increased
difficulty in deriving the basic difference equations.
This situation arises from the accretion of MC state
relationships as the plan complexity increases despite
the fact that the transitional matrices still remain
relatively sparse. In addition, increasing complexity
makes it harder to (1) obtain bounds on the moments of
FI(N), (2) to study the growth properties of and relation-
ships between the transitional probability functions and
quantities derived from them (which is hard even for CSP-l),
(3) to obtain closed expressions and asymptotic expansions
for these quantities, and (4) to quantitatively analyze
structural differences among the various plans. It seems,
therefore, that the difficulties enumerated above would,
at best, force a piecemeal approach to CSP's in general
with each plan having to be laboriously analyzed from
scratch. However, in 1971, R. Brugger [Ref. 7.3] pre-
sented a unified and simplified scheme of deriving the
mean of FI(-) in the Job Shop case and of FI(N) in the
Arbitrary Entry case for sampling plans of this class
(with obvious extensions to still more general classes).
It is his systematic treatment that stimulated the
approach given in the present paper.

In this paper, the drawbacks to using the dif-
ference equation, Z-transform approach are partially
(and in some respects completely) sidestepped by the I
introduction of Semi Markov Chain (SMC) models. In
these models, each phase is considered to be a SMC state;
the time from entrance to and exit from a given phase to
another is treated as the time-of-sojourn in that state

659



until that particular transition first occurs. Further-
more, the probability density functions (p.d.f.'s) of
these sojourn times are obtained in essentially two dif-
ferent but equivalent ways; formulas for the first
entrance probability functions are derived either from an
absorbing MC or an absorbinq SMC setup in which the givern
MC states of a phase are regarded either as transient MC
or transient SMC states respectively and in both approaches,
the possible exit phases are regarded as absorptive states
(all other remaining phases being deleted). Because the
original MC mode] of any plan in this class is time
homogeneous, irreducible, and finite, the SMC model con-
structed from it is also -- a circumstance which eventually
leads to a finite system of easily solved, linear convolu-
tion equations for the desired probabilities and quantities
derived from them.

The SMC method of obtaining the p.d.f.'s for the
canonical phases by splitting them into new one-MC-state
subphases, obtaining the corresponding p.d.f.'s, and then
reassembling the pieces at the end is really just a varia-
tion of the basic idea of constructing a SMC from ý MC.
Elaborating on this observation, similar departures from
the prescription "canonical phase 4-4 SMC state" ame also
considered to aid in the analysis of CSP's: combining
two or more canonical phases into a new (super) phase,
splitting a canonical phase into two or more new (sub)
phases, and/or altering the p.d.f.'s of the phases by
the introduction of self-transitions. Thus the word
"canonical" (or "basic") should be considered only as
a handy reference term. This added flexibility broadens
the applicability of the constructive technique to in-
clude MC models in general: for example, weapon-effec-
tiveness and acquisition-of-target models, skip lot
sampling procedures [Ref. 7.5), or CSP's with either
different types of phases •han those considered here
or with two or more of +-he same type which are, however,
described by different parametric values. Moreover,
as will be seen, the SMC that results from any coalescing
of phases is a filtered SMC of the original. Hence,
using the variant techniques suggested by the SMC method,
we now can associate with or construct from a MC model
not just one SMC, but rather a partially ordered set of
SMC's with order relation: SMC < SMC iff SMC is a
filtration of SMC 2 .
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Some troubles do arise in two situations due to the
non Markovian nature of a SMC and in a third setting due
to the relationship between a Markov R~newal Process (MRP)
and a SMC. The first difficulty occurs in the derivation
of the second moment of FI(N); the troublesome point is
resolved by the introduction of the concept of filtration
(in this case, phase segmentation). The second problem
lies in the meaning of stationarity for a SMC and arises
specifically here in the treatment of the Arbitrary Entry
case. This latter complication is overcome by the intro-
duction of delayed p.d.f.'s, which are equivalen\. to the
delayed p.d.f.'s in Markov Renewal Theory. The third
difficulty involves the proper handling of self-transitions:
a MRP will record such jumps while the induced SMC will not.
If a probabilistic interpretation is to be maintained, this
snag is handled by treating the MRP as the primary object,
the SMC as secondary.

1.1 Notational idiosyncrasies. Throughout the rest of this
paper, certain notational idiosyncrasies are.observed.
(a) In dealing with transfer functions like Q(z) say, many
times the explicit argument is deleted especially in
complex formulas. (b) Many of the proofs alternate between
the convolutional or sequencial notation and the equivalent
transfer functional one in order to provide some, variety;
the transfer or "hat" notation greatly predominates however
because of greater ease in manipulation. (c) CSP is some-
times used synonymously with MC model, sometimes not; the
context makes the usage clear. (d) Since the MC states are,
by tradition, symbolized by upper case letters, the phases
by lower case ones, a minor inconsistency arises whenever
any of the canonical phases are split; for example, uls
can be split into its component MC states SI (Sampling
Inspected) and SN (Sampling Noninspected) which in turn
can be looked upon as (variant) phases. For simplicity,
this "dual" system is retained here; for instance, when
necessary, we shall talk about the phase SN rather than
the phase sn.

1.2 Acknowledgements. I would like to thank
Mr. Richard M. Brugger specifically for his questions
concerning self transitions for the sc phase. His
queries led me to consider this topic not only for the
sc phase but also the uls phase as well. Also, I would
like to thank Mrs. Carmen Ill for the valuable assistance
she provided in the preparation of the manuscript.
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22.0 PRELIMINARY DEFIN4ITIONS AND RESULTS.

2.1 Z-transform. Throughout this paper, the Z-transform
method will be used exclusively; it is however formally
equivalent to the genprating function method, the trans-
formation w = 1/z being the bridge between the two tech-
niques. Below, NN is the set of natural numbers and RR
is the set of real numbers.

Definition 1. Given a sequence {a(j)} considered as
a function

"a: NN + RR",

its Z-tran3form is
a (J)

a(z) - )ji 0 -z

To retrieve the sequence a(o), contour integration
is used:

a(n) 2 lzzn-Idz

Where r is the path lzl - R(a)+ e; in any subsequent use
of this formula, the following abbreviat;lon will be used.

In definition 1, a(z) is a function of a complex
variable z, analytic in a neighborhood of infinity; i.e.,
a(z) is analytic for lzl > R(a) whose size, in turn, depends
on the growth properties of a(j) as j-*.

We next define two heavily used standard sequences,
the operation of convolution between two arbitrary ones,
and the Z-transform of these results.
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Definition 2. The Dirac sequence at k,

"dk3 NN + {0,1}" for k e.NN, is defined via:

M for j=k

0, otherwise.

Definition 3. The Heaviside sequence at k,

"Hk: NN + {0,1)" for k E NN, is defined via:

Hk(J) 1, J'k
Hk 0# otherwise.

ak(z) - and H = k k

Proof. Clear from the definitions.

Definition 4. Given two sequences a(-) and b(.),
their convolution a*b(.) is a new sequence given by

n
(a*b)(n) - E a(:i-k)b(k).

k-0

Proposition 2. Letting RM = Max(R(a),R(b)),
A A A

a (z) = a(Z)b(Z); ,V(z) a (z)+b(z); and

r'(z) - ra(z) for izl > RM where appropriate

and r E RR.

Proof. The preceding definitions and the Cauchy
produc-' r the multiplication of two power series.

We next state a useful property of the Z-transform.
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Theorem 1. (End point property) If a(.) is a bounded
sequence, then a(z) converges at least for lzl - R>l and

Lim z-1Li+ z-Z a(z) = a(-).
z+l T (z

Proof. See reference 7.2, chp. 11.

2.2 Semi Markov Chains. We next define the concept of a
SSZC Given a finite set S, numbered from 1 through r, an

outcome space n (of sample paths), and a family of random
variables {X(t)}, t E NW, from n to S, we have

Definition 5. X(.) is a finite stater time hovwgeneous
Semi Markov Chain iff for each i E S, there exists a family
oYunctions7-?-ri NN to 10,1],

{ij(t))}, j Esiss,

such that

1. 0_Qi, (t), j E si

2. EH= 1, j E Si

3. P[X(t)H j IjX(t*)-i, 0<t'<t] QiJ(t)

4. Qi,j(t*,t+t') - Qi,j(,t) - Qi,j(t)

The following interpretations can be given to the foursteps in definition 5. A SMC can be looked upon as a 14 in
which transitions take place at random times; for i E S,
(Qi, (t)} is just the family of defective p.d.f.'s of the
time to transition to some possible exit state; depending
on i, and starting initially from i; i.e., the functions
are just the time-of-sojourn p.d.f.'s. Step 2. of the
definition guarantees that a transition will occur with
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probability one. Step 3. is just a more symbolic restate-
ment of the interpretation for the functions Qij, explicitly
linking them to X(-). Finally, step 4. is the &me homo-
geneity criterion.

In preparation for the next major theorem, we list, for A
convenience, some abbreviations in definition 6. To
emphasize some of the short hand notations, one should note
that H0 *a(t) - Ea(J),j - 1 to t, and (6 0 *a)(t) * a(O).

Definition 6.

a. HO*Qik(t) n Ai.k(t)

b. EQ i k(t) = Qi(t), k E Si
C. EA M(t) Ai(t), k E Si

k i k

d. H0 *[(qi k)60-Qik](t) = Ji,k(t)

e. H0 *1 [0-0i] (t) = Ji (t). -

Some comments on definition 6 follow. In a., Ai k(t)
is the (defective) distribution function (d.f.) for
the transition i-*k. Q. in b. or A. in CJ is the (non
defective) p.d.f. or d.f. respecti~ely of a transition
from i. In d. Ji*k(t) is the (defective) d.f. of no
transition from i to k and finally, sumxming this quantity
over all possible exit states from i, we get Ji which is
the d.f. of no transition from i. In the future, for
convenience, we let Qi k(t) = 0 if k4 Si thus eliminating
the need for additional notation. Hiving definition 6,
we can now state

Theorem 2. (Backward equations) If we define

Pilj (t) = P[X(t)=j I X(0) =

we then have

(F.S.) Pi, (t) = E( it )k,j (6i j
k

k E S, 6 i,j is the ordinary Kronecker 6.
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Proof. Time homogeneity and conditioning on the
time o-Trst transition starting from i; also see
[7.9 and 7.11).

Associated with any SI4C is its embedded MC; we define
this in

thDefinition 7. Let W be the tire for the n- transi-
tioni let

Y(n) - X(Wn).

Then Y(') is the Embedded MC associated with X(.).

Clearly,

[Ai,j [qi,j]

is the transitional matrix for Y(.); it is time homogeneous
since X(') is.

Letting Fi,k(t) be the first entrance probability of i
into k, which exists since transitions take place at Markov
points or epochs (i.e., the Wn's), conditioning on the first
entrance, and using the Z-transform, we have

Proposition 3.

a. Pj(t) = P *Pj.j(t) + Jj(t).

a'. Fj =1- - and -
Sj P. .~ 1-F.

b. Pj,k(t) = Fj,k*Pk,k(t).

b-. j,k = - ,k and Pj,k = Fj,k Pk,k"
Pk,k

Letting Wn(k) be the time of occurrence (waiting tima)
of the nth entrance into k by X(.)#we have
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Definition 0.

Nk(t) = Max {n I W (k)<t}

BjINk(t)] ENk(t) I X(0)--j] Rj,k(t)

N(t) E N k (t), k S
k

N(t) (Nk(t)), k ES.

Proposition 4.

Pk,k(t) = Rk,k*(aO-Ok) (t)

Pjk(t) = Rj k* 6 0-Q ) (t).

Proof.

a. n*F ) (t) - 1 + ! Pk[1n(k) tIa. 0Fk,kkn
nwO n=1

- i + ! Pk[Nk(t)>n]
n=1

= 1 + ! mrPk(Nk(t)=m]
m=1

=Ek [N (t) ]

b. *. taking Z-transforms, we have

H 0  A

_ kk
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Similarly, we also have

Rjk = Fjk*Rkk or = Fjkjk o ~j Fk Rkk'

c. From b. and Prop 3p' and 3b',

0 k
~kk 1-

l~kk

and klQ)

Pjk P FjkPkk

Sjk k (1k60

=jk(iQk)k

As in a finite MC, we can define recurrent state,
communication of states, irreducibility, and periodicity.
With these topics in mind, we state

Theorem 3. A (finite) SMC is irreducible iff its
embedded MC is. A SMC is aperiodic iff there exists j - Si
such that support (Qij) _ {(At, t = 1 to - provided that
the SMC is irreducible.

Proof. (a) First statement see [Ref 7.6, Chp 5],
(b) Second statement see (Ref 7.7, Chp 2].

The proofs are straight forward but lengthy.

If i Si (i.e., Qi,i = 0 for all i) for all i, then
an irreduc ble SMC induces a uniquely defined MRP and
conversely. The MRP can be taken to be ((YnT), T is the
time spent in Yn since the last transition} [Ref 7.6,
Chp 7]1 in older terminology [Refs 7.11, 7.12], N(t),
definition 8, is defined as the associated MRP since
{(K, Wn(K)) v K f S} can be looked upon as a multiple
rmarkov renewal process. Conversely, the MRP induces
the SMC via: X(t) = YN(t)
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Closing the section, we give the basic theorem on
irreducible SMC's.

Theorem 4. If us is thy.- long-run mean time-of-sojourn
in state s, then, given that the SMC is irreducible and
finite with e = (e 1 , ... , ey) as the corresponding eigen
vector of the embedded MC matrix with eigen value one, we
have

a. Lim P,(t) = Pj(-)t Pi,j

EeSU
--j

s

b. Lim (-)Pi (z) - Pj(-)z+l ~

c. An ergodic theorem holds:

if F is a functional, then

N-N -J F (X (t ) ) E [ F[ a .]
t=O

where

E [F] = EF(s)P (S)-- • S

s
S

Proof. b. is just the end-pt. property of the
Z-transfrm. a. and c. follow from some straight-forward
renewal-theoretical arguments found in [Ref 7.6, Chps 7, 81.
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2.3 Sampling Plan Phased. In the following descriptions,
the box dia-ram for each phase is given first followed by
the MC description; in passing from the former to the latter,
the assumption of a constant probability of defective, p, is
assumed. Furthermore, practically speakinq, upon finding a
defective, one either discards it or, less realistically,
replaces it with a non-defective unit. In Figures 1 through
4, q = i-p, f = samplinq frequency, v - 1-f, and thel'transi-
tional probabilities are written beside the corresponding
arrows.

Upon entering the screenin. phase (abbr. sc), inspect
the production units atM%-untiiII--1 -onsecutive units are
defect free; then exit.

Figure 1

MC Model of Sampling Phase.

: (1, 1)

one entrance and one exit.

1P

q q q q q

Upon entering the unlimited saplin ha (abbr. uls),
sample at random with frequency f until a efect is found
(during inspection); then exit.
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I Figure 2

MC Model of Unlimited Sampling Phase.

I j

one entrance and one exit.

vALV

f vf

SI

SN = Noninspection State
SI = Inspection State

Upon enterinq a limited samling phase (abbr. Is)
sample at frequency f until, condion-1,'-3 units are
sequentially found to be defect free or, condition 2,
a defect is found before condition 1 is satisfied; then
exit to the condition-dependent next phase.iI
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Figure 3

MC Model of Unlimited Samplinq Phase.

(1, 2)

one entrance and two exitsV VO V,
f f VV f

f fqfq fq

Upon enterinq the checkin q (abbr. ck) inspect
f at 100% the next m units discardng- or replacing) all

defective units found; if the m units are all defect
free exit one way or another different way if one or
more defects are found.

6I

j 672

. - . . . -



PFigure 4

MC Model of Checking Phase.

• ck

one entrance and two exits.

qq q q q1 • (m- 2)1 C (- 1 )

, p 
p

Ct

11

2.4 Sampling Plans flaving defined the sampling phases,
it is now an easy matter to describe the two most
practical ones, CSP-l and generalized CSP-2, as well as
one which contains all four phases -- generalized CSP-3.
The diagrams in Figure 5 are self-explanatoryl also, as
indicated by the diagrams, the terms CSP and MC model
will be used interchangeably unless otherwise stated; the
use of the word "generalized" is necessitated by standardusage which requires k I for the is phase and m - 4 for
the ck phase.
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Figure 5

Sampling Plans.

•. q

(Generalized)
CSP-2 [I, f; P] jq p

(Generalized)
CSP-3 [I, k m, fj P1.

4q

yq

I,
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3.0 SAMPLING PLAN PHASES.

3.1 Phases as SMC states. In Theorems one through four
Mbelow, two essentially different but equivalent methoda
of proof are used: the MC method and the SMC method.
Before launching into a 3-escription of these-two approaches,
we make

Definition 1. A phase is completely ordered iff its
states are well-ordered by the phase regime from entrance
to exit; it is asi ordered iff its states are totallyordered by the ---- from entrance to exit.

In the MC method, for a given phase, an absorbing MC
is constructed whose transient states or absorptive states
correspond to the phase MC states or exit phases respec-
tively. Using an initial probability vector whose transient
components are equal to the individual phase MC state
entrance probabilities conditioned by the event of initial
phase entrance, the formulas for the first entrance proba-
bility functions into the various absorptive states are
then derived. Specifically, for a given absorptive state,
the first entrance p.d.f. into this state starting from
each of the transient states is obtainedl then a weighted
sum of these functions, each weighed by its initial *
entrance probability, is taken. The result is the desired
p.d.f. for this particular exit phase.

In the SMC method, a given phase is broken up into
its constituent M states by treating any state with self-
transitions or no self-transitions as a non-degenerate or
degenerate MC (noncanonical) phase respectively. Proceeding
according to the MC method, the appropriate p.d.f.'s for
each of these (noncanonical) MC phases are then obtained
thereby constructing from each such state a "mini" absorbing
SMC whose absorptive SMC states are equal in number to the
possible exit MC states -- exclusive of the state itself
(i.e., no self-transitions are allowed in the SMC). These
"mini" absorptive SMC's are then amalgamated into a composite
absorbing SMC whose transient states are now the correspond-
ing "mini" transient SMC states and whose absorptive states
are, once again, the relevant exit phases. Finally, since
a first entrance occurs at an epoch in a SMC, one can
proceed to mimic the MC method to derive the first entrance

I7
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probabilities. In particular, for a canonical MC phase which
"is either completely ordered or can be subdivided into sub- I
phases which are (e.g., the ls phase), this method can
proceed inductively -- the absorbing state or subphase at
step h being the (h + l)St state or subphase respectively.

Thus, in the end, with either method, we have con-
"structed from a given phase an absorbing SMC with one
transient state and absorptive states equal in number to the
possible exit phases. Moreover, though the setup given in
Chapter two for an absorbing SMC can be formally used for
the amalgamation in the SMC method, the proofs below which
use this method will be given more constructively and,
hopefully, more intuitively. Nonetheless, the absorbing
SMC apparatus will always lie in the background. Purther-
more, outside of the context of any irreducible SMC, we
shall hereafter refer to a phase with its p.d.f.'s either
as a potential SMC state, for eventual inclusion in a CSP
(irreducible SMC) or as a transient SMC atate in the con-
structive sense of the SMC methodl both viewpoints are
mathematically equivalent, the nuances different.

In Theorems one through four below, A(-) will always
stand for an absorptive state; for instance, if a phase
has only one possible exit, the symbol "A" alone will be
used; if two or more exits are possible, the symbols "AI",
"A2 ',..., or "A(l)"t "A(2)", ... will then be used.

Theozer: 1. The screening phase is a potential SMC
state with -3.f. given as:

0 A(Z) W q 'z- pq'

sAz (z-1)+y

Proof. (MC method)

a. Absorbing W is given by:

HI H2 H3 --- H(I-l) A

HO p q 0 0 --- 0 0
HI p 0 q 0 --- 0 0
H2 p 0 0 q --- 0 0

11(1-1) p 0 0 0 --- 0 q
• A 0 0 0 0 --- 0 1
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b. Initial probability vector = (1, 0, 0, ... , 0).

c. From the Chapmann-Kolmogorov (C-K) equations, we
get, from a. and b., the following system (lettinq Tij j):

P n n-1 , ,n- 0 -
j,A = PP0,A J+l,A'

k and

1-1,A "0PPA , 1

since
k - k-1
A,A 6AA 0-

kA Ak - H0 (k).

d. Because of b., we want to obtain

( 1 ) f 0 ,

which is just Q scA(n).

e. But

,O,A (fo,A*PA,Aln

AA

. 0,A f 0,A "AA

HO.
! == f0~,A "rO

Thus, fo,A = o
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Vi f. From c. we obtain by substitution:

Sn (pq )pn-(j+l)+ cIpr-I
P,A ",A qA,AS~J=0

or

J)0A 1 0- (pqJ) y+ +q-io, -o

Simplifying and using geometric series sumation, we finally
have

•. •~o,A ' H•o 0i(-,I ))
So rz (z-e) +Y

Thus from f., e., and d., we have

z' (z_€l)+

Second Proof. (SMC-method).

a'. Since the sc phase is completely ordered, we can
proceed by induction. For I - 1,

O--M yields Q^,A - q/(z-p)

- q(z-q)/(z-p) (z-q)

S( z-q),
z(z-1)+Y1

b". stt o1 )- -)

(Z) - q y. - pqI
SAscjA(j+I)() z (Z-I)+-.

by induction.
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IJ+l,A(Scj)
Wz q where (j+l) =H(j+l).

c-. Amalgamate (j+l) and scj.

a A fl

Th s 0 j,A n=O (Oscj,(j+l) Q (+l),scj ''SCj(j+1) (J+1',A

~scj, (J+l) (J+l) ,A -

z pqz-pq zpq~

q J~l (z-q)

z+1(z-l)+Yj+

Third Proof. (SMC method - no induction) This third
proof is givent further elucidate the SMC method.

a. mini states: {j)ý ; all are degenerate except
3 0

for 0. Working with the corr~aspg-nding mini-absorptive
SMC's, we have

Q0A1 (z) .= Lf w~j,A(j+l) (Z) z.j(I

~J,A(O) (z 11

where AMI A.
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b". Upon amalqamation, we have an absorbina SMC
with I transient states

{(j; P j (z), 0 (z))}JI-

j10; Q0,- (1-1 01 . W

and one absorbing state (A; 0AA(Z)) where QA(z) = H0 (z).

i. c" Given the (assembled) absorbing SMC in b" we have

: I-i
0E (6 )F (z) - (i)FO (z) - Q (z).j0 , j,A 0,A sc,A

Theorem 2. The unlimited sampling phase is a potential
SMC state with p.d.f. given b±y

Ouls,A(z) -

where 6 (unadorned) = fp and 8 1-6.

First Proof. (MC method)

a. The absorbing MC is given by

SN SI A

SI f 0

A 0 0 1

b. Initial probability vector = (u, f, 0).

c. Again from the C-K eqs. and a., we have:

n .- n-i + fpn-
SN,A SNA SI,A

n n-1 + n-3 _n-iPSI,A =qSN,A fqsI,A +PA,A
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which implies

SNA Z-u SIA

•U
SI,A Z-rqVSN,A z- O

Since Psf,A HSNAH0

and PSI,A ifSI,AI1O

we have upon simplifying%

S 6 a =(z- u)
fSN,A z ( andfSI,A " z-

d. From b., we want to obtain

(u)f••,A IA Ouls,,A(n)'

e. Transforming d. and using the last two formulas
in c., we have

6

f. Thus 0uls,A -= from a. and d.

Second Proof. (SMC method)

a'. "QSN,A(SI) (z) =

QSI,A(SN)(z) -

8SItA(z) - J¶

681 1



Thus we have two non-degenerate mini SHC states and two

mini absorbing SMC's with the following embedded MC's:

SN A(SI)

SMC(SN): SN i]

A(SI)

SI A(SN) A

S1 . uqf/.l-fq) /J-q

SMC(SI): A(SN) 01 0

A Li 1

b'. Now once again assemble the two mini absorbing

SMC's into one aggregate absorbing SMC. The result is an

absorbing SMC with two transient states (SN; 0SN,sIz()) and

(SI; .SI,sN(z), OSI,A(z)); one absorptive state (A; OAA(z))•

and an embedded MC given by

SI SN A

SI 0 uq/(l-fq) p/(l-fq]

SN 1 0

SA 0 1AL a 0

c . Hence, we now want:

())F SN,A(z) + (f)FSI,A(z) - .uls,A(Z)

by d. We can write down expressions for the F's directly:

n_0SN4SI-SI, A

FSN,A : QSNSI{nJ•0  ,SI ,sSN,SI )n}.SIA AisI,SN0 SNS
n=O 1 _0 S,SNQSN,SI
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tSIA = (QsI sNsNSI ) nSIA
n-0

l-Q1- ,SN SN,SI

d°. From c'. and simplifying,

Quls,A(z) = ( 0 sNsI~SI ,SN,(-QSN,SI+fI SIN

SZ-~8 "

Theorem 3. The limited s phase is a potential
SMC state with p.d.f. 's given by:

S6__ L
' Qls,,A(1) (Z) - (_) (i-0 (Zu)

W 5s,A(2) ( Zu

First Proof. (MC method)

a. Ordering the states of is as: SN0 , SI 0 , veer

SNk_, SIki, A1 , and A2 ; we have an initial probability

vector v - (u, f, 0, 0, --- ); i.eo, VSN0 'u and vsi 0 - fj

the matrix corresponding to the absorbing MC can be easily
written down if one desires.

b. For convenience, we combine SN0 and ST0 into

SNOV SI0 - S. Then, using the C-K equations again, we

have
n n-+ n-1PS,A(2) TMqssI(k-l) + S,A(2)

683
I.l



nBS~kj n n-

SUqSP 5 (k-J) Se+1) - + u) ~S, SN (k-J)

S,SN(k-J) -u)Slk(+1) SNkJ

IS.,SNO -UPs sno+(U) 8 0(n)

-SSI fpfll 0+ (f) 80(n

c'. Letting a -P4,A 2 )bjPSI,Bj # and c P5Sj

then, using the Z-transform in b. arnd simplifying yields:
9c

k-j z-u k-(j+l)

(1<jtk-l)

,~bk-j (fq )bk-(J+l)

*b f- J for 1jjjk-l

__q -1b Z-U

_)k using as, (L,2)z
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For exit to A(1), we have:

Sn kI-l n-I n-I
, " 0,SIJ S,A(l) A(1),A(1)

V which implies

S,A(l) -(T-- ' z-u" SAgain using a. and multiplying through by (H10) 1, we have l

QlsA(1) (Z) (_-4700 (1- -U .

Second Proof. (SMC method)

(J+l), for Ojk-2

a'. Let A(J+l) -

A(2), for J - k-I

Ii

Noting that A(J+I), 0j<Jk-l,
S~sij

A(l)

are all structually equivalent, in contrast to the sc
phase where HO differed from HJ, O<j<I-1, we could use
the inductive imethod applied to 2-stite subphases; how-
ever, it is easier to use the SMC method directly
applied to 2-state phases thereby skipping one logical
"step in the amalgamation procedure.

b'. F~or given k~lp we have

QSNJ,Sij - f/(z-u)

6SIJ,A(j+l) = q/z

SSIj,A( ) p/z (O0j <_k-l). .-
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Therefore for subphase J, we have

0 j,A(J+l) - UOSNj,sIJqlj,AjlJ + f 1SIJA(J+I)

fq/(z-u)

•j,A(I) - (u)OSNJ,SIJQSIJ,A(1) + (f)qSIJA(1)

- fp/(z-u)
o'. Hence we obtain mini absorbing SMC's which have

one transient SMC state (two-Wc-state) and two absorbing
states for each J. Amalgamating as before, we get k
transient states

k-2
( J,J+1' 1 )) 0 ((k-i) ) (k-),Al)

and two absorptive states A(l) and A(2). Its embedded MC

is:

0 1 2 --- (k-1) A(1) A(2)

0 0 q 0 --- 0 p 01 0 0 q --- 0 p 0

(k-1) 0 0 0 --- 0 p q
A(l) 0 0 0 --- 0 1 0
A(2) 0 0 0 --- 0 0 1

d . The initial probability vector is now -

(l, 0, ... 0). Thus we now want

(l) (iO,A(l)) 018,A(l)

and

0l)(FO,A( 2 ) 150,A(2)"

e *. Once again using a constructive derivation, we
have
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Or() (01 l, " (k-l) ,A(2))

k

Z-

and

O0,A(1) "(60,A(1))+(60,1) (6IA(1) )+""+

1°opi) 11,21 ""(k-lA(l))

f k-I

iwo Z-U

= (z 1(zu)

f -
_z-(_ 2-u" 8 z- ) (,_(fq ) )k ').

Theorem 4. The checking phase is a potential 8NCstate with p.d~f. 's given by-

dck,A(2) (z) - (q/z)m

Qck,A(1) (z) - ( 1 -qm)/(zm)

First Proof. (MC proof)

a. The absorbing MC transitional matrix is easy to
write out from Figure 2.

b. Ordering the states CO, Cl, --- , p , --- AI, A2 ,
we have v - (1, 0, 0, -- , 0) as the initial
probabilTty vector.
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c. Proceeding an before, we have
pfn _n-I P +5 (n)nqm
P COA(2) " CO,A(2) A(2) A(2) m

I n n- p m
"6C0,A(1) PCO,A(1) A(1),A(1) m

d. Z-transforming c. and solving we obtain the result.

Second Proof. (SMC method)

a,. Since we neither have a possible re-entry to an
initial state at any step nor a natural segmenting of ck
into (cj, -63), we use the SMC method directly.

b'. The functions

.cj,A(J+l) c(°j-'~l) ocjXT3T) ( z) - - ,

where A(m-l) - A1) and A(m-l) * A(2), and
(O~jcm-2) ,-

where A(m-l) - A(l) again, make up the pieces to be
assembled in the usual way.

c'. We want (1)FCOA(l) and M1)C0,A(2). Letting

Cj -j and U - 3, we have

F "0,A (2)

0#A(1) o,1) (Ol, T) -- (• , z)
(0o1) (01,T ) .---. (1)

x •_(~qj)
ZM J=0

,1-C.
zm
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The last four theorers clearly show that once the
logical structure of a more intuitive tIC model is known,
St4C techniques can be vastly superior to the more
pedestrian but, perhaps at first sight, more straight
forward MC techniques.

Theorem 5.* (A compendium on the four phases). The$long ru man values for time-of-sojourn and (potential)
transitional probabilities for embedded MC's associated
with the four canonical phases are as follows:

so: Ii 1
pq

uls: P'l l,

"ls ls - ls,A(l) ' lOlsA(2)

I k k k k
* 4 = - ~q (1+-y-) )+(q(1!)}

Ik
y- qls,A(1) =~q

k
ql5 ,A(2) - q

ck: v ck - 1 ck,A(l) + P kjA(2)

M (lCqm) + q

Proof. If (a Iis a probability sequence, then its
mean is=g ven by

(-zD a(z)) jz =1

where a(z) is its Z-transform. Secondly, %*1 .

^ a (z) Iz
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3.2 Self lumps and MRP's. The SHC method suggests the
following considerations. If a given phase is completely
ordered with a possible return to the initial MC state at
each step or is only quasi ordered with possible random

S re-entries to each of its MC states at each step, then
"corresponding variant, transient SMC states can be con-
structed by this method by adding the phase itself as one
of the exit phases. In. either case, due to the alterations
in the p.d.f.'s, the resultant SMC state now has self-
transitions -- a fact that necessitates defining the MRP
as the primary object, the induced SMC as secondary, in
contrast to the "no self-jump" situation where they are
equivalent. Below, this approach and some of its implica-
tions are examined for the sc and uls phases.

Theorem 6. If self-transitions are allowed for so,
we hayer )....I

a , -

Proof. a. HO is now treated a. a degenerate MC
state •-'-n&any return to it is considered to be a (self)
transition of sU. Letting j - HJ and s - A,, we there-
fore have the following system:

pnA. ppn-l + -n-1i OI -1
A-A+ qpn ( ) ,A (OJ' AI-l)

1j~ 1

Sb. The system in a. implies, upon Z-transforming,
p1-2)

I -,-..+ I • . -) **,

where P 1-,A 1 - H0"
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Thus POA H -( J

Letting A(Mi) - A1 " s-, we have

Qs-c,sciý(z z z-q a
-#(• (j&) (1)(- (0 I

c. p n q1 n-1m*mOA - qlf* I' ,m,

Oj,A2 Pi 2 A2

,A- (z) " . )

Corolla= 1. If i-c denotes the screening phase with
self transitions as defined in Theorem 6, we have

Pic- --1-- - l-q and qrc,A q

Proof. i-, - ii-,-c + U6A-

-I• sc • sc~so "c

i = " q') + IqI

differentiation of the Z-transformy rest is trivial.

Corollary 2. Letting i• be as above,

S•sc,A l - -,A

sucac

-{ (?-)n~c and

seA ("-O -~ic )5C,50,

tn 0

fact that Q ,--(l) = l-q <l.
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The expansion in the proof to Corollary 2 above can
be given the following interpretation:

2(Q WC)J0

means j defects before transition. However, though the use
9f ic leads to a probabilistically natural expansion for
QscA' it is not necessarily the most practical (except
perhaps for small N) due to an accumulation of factorial
terms: more practical complete formulas useful for all N,
can be developed by considering arely analytical expan-
sions (see Ref 7.11. Secondly, sc throws some light on
the requirement of continued inspection after a defect is
found in the ck phase; ck would be a "one-time" WE if
inspection were stopped and a transition made at this
point in contrast to the usual requirement made above.

We how turn to self-jumps for the uls phase. Having
in mind the situation that occurs in the SMC proof of
Theorem 3 for the ls phase, we have.

Theorem 7. If uls were to be allowed self-transitions
which mimic any SN-SI block of the ls phase, then

M~l z - fqand (Z)z u uA z-U

Proof. Consideration of the following diagram provides
the proof:

C): f q

si q -A (SI SN)

A1

I6 •! 692
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Corollary 1.

- I-i8,A
QUl.,A 

' I_ 
A,U__B

Proof.

nus A G 1 fl,

Corollary 2.

1s,A(l) - (1- ks-,

Qls,A(2) ' (QU::Mg. U'S-

Proof.r k-I
a. Z1,Al - Quq,-~- ) A

1 u~sgiA4
tjMG

b. the second part is obvious.
Switching emphasis from the uls phase to the is one,

we can alternatively treat uls as a ls phase with k random.

It may be of interest to keep track of the number of

defects found while screeningi with this in mind, we have

Theorem 8. Splitting sc into HO and sc', we obtain

SH0,SC" = q/(z-p), 0Qsc.,,to (p/ (Z-1.) (1-(q/z)1l

and Osc',,A (q/z) . j

693

S. . . .--- - .



Proof. Treat sac as i- and us,. induction; rest is
triviia =.

Because of the complexity involved in evaluating Q0 z)
one might be led to considering the following variation, (

so" .. •LQH1 -000 I
q q q q

Then we easily have:
66c",,A~z) -(oi 0,)...(1IA

z-p
Thus

QSOs,A(n) a I (z- ndz " -l (I) (pn-I)
s(z-p)

--- a result which speaks for itself. Furthermore,

6sc,,,A(1) - 1 which implies that sc" included in any sampling

plan, in place of sc, would still yeild an irreducible MC

(or SMC). By considering the polynomial ;(z) - l-Iq( 1 -1 ) +

(I-1)q , we can show that, for 0<q1l, c(q)>0= that
Usc" < 1sc.

Throughout the above analysis, , and •s,u-s

have been regarded purely function-theoreticallyl in Chapter

2, Qij' i # j, has a natural probabilistic definition given
within the context of a SMC. It is reasonable, therefore,

to search for a corresponding interpretation for Q within

some similar stochastic framework. Such a framework exists--Sit is a MRP. This MLRP is just (Yn IWn)' where Wnrecords

the nth renewal. Hence if self-transitions are allowed,
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(t) = P[W (j) - W0 (j) = t W0 (j) = 0]

As noted in Chapter 2, if Qii = 0 for all i, a MRP is
equivalent to its correaponding SMC; that is, while its
introduction leads to some important. renewal theoretical
ideas which are useful in studying a SMC (see Chps. 4 & 5),
it is otherwise superfluous. Moreover, if there exists
only defective self-jump p.d.f.'s, the MRP can still be
looked upon as only a prior necessary formality since an
unique SHC can be derived from it with the following Q*1s
[Ref 7.121: If Ai i(+-) <1, for all i, we have

(SMC*): QtJ * , if Q'i #i 0

Qi.j' if i - 0

In contrast to the two previous cases, if there is a j such
that Ajij (+o) - 1, there is then no longer a uniquely

derivable SHC; for example, a one dimensional renewal
process leads to a trivial SMC -- but a trivial S14C leads
to any 1 dimensional renewal process. In other words, a
SHC -[esn't record self-jumps; a MRP does. This is the
essential difference between the two concepts. Proposition
4.1 further shows that, as far as the constructive technique
considered in this paper is concernod, the distinction be-
tween the two processes is irrelevant.

4.0 SAMPLING PLANS AND FI(N). CSP-l and (generalized)
CSP-2, the first two moments of the FI(N) functional
defined on them for the Job Shop entry case, and the
connections between the intercalation of self transitions
into these plans and Markov Renewal Theory are investi-
gated in detail. Other standard but more complex plans
are then briefly treated. However, to more fully
appreciate the practical results of this chapter as well
as to gain further insight into the basic method, some
general statements are first demonstrated.
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4.1 Preservation of properties. Since we are at last
ready to deal with MC's in their entirety, rather than
just selected pieces of them, the preservation of certain
properties in the construction of a SMC from a given MC
becomes a primary concern. We first prove

Proposition 1. Given a MC from which two SMC's are
constructed: SMC' is constructed using self-transitions
for one MC-state (or phase); SMC, on the other hand, is
constructed in same manner as SMC' except without self-
transitions. Then the two SMC's are equivalent in the
sense that their sample paths are the same (and the
transitional probabilities are equal).

Proof.

a. Let j be a non degenerate MC state with possibly
multiple entries and exits. Given any exit MC state k for
j (k # j), we then have

ilOk - O. j JFk

or

where, &,j (1) < 1 since the MC is irreducible.

I" o J,J (II{j :•hP•j+I0(-•b. 1 Of , A,j + O PT + if,

or P-",J+-" ) =+fh,,j~jj,h hi 0 j

A 
0j ~Aor E~ _3, El-& + H0 (1_E

or , Q P. + J by a..
£Qij,h hei
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Similarly,

mn n for m and/or n not equal to j.
rn,n m,h h,n

c. The primed quantiti.es bear the same relationships
among themselves, via the Q's, as the unprimed.

r Theorem 1. The four principal properties of time-
homogeneity, finiteness of states, irreducibility, and
aperiodicity are preserved.

Proof.

a. All four properties are trivially true for the
given MC.

b. By taking in account the SMC method and the concept
of filtration [Ref 7.6, Chp 8], it is obvious that, once the
term "canonical" is dropped, one can construct a multitude
of SMC's from the MC which in turn can be considered to be
the basic SMCr in other wordsf from the MC, a primitive SMC
can be constructed by treating each MC state as a degenerate
SMC state regardless of phase segmentation; in particular,
if a MC state has self-transitions, then self-jumps must be
introduced for this state; by Proposition 1 and a., the
resulting SMC (MRP) is equivalent to the original MC.

c. Any other type of SNC constructed from this MC
is a filtration of the primitive one.

* d. According to [Ref 7.6, Chp 8], filtrations pre-
serve all four of the properties.

Corollary. Let i be a state of an (irreducible) SMC
constructed from a given (irreducible) MC; let Mi be the

1
MC states contained in i but also considered as degenerate
SMC states in the original MC. Then

I srMi s
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Proof. a. Proposition 1 implies that a. is self-
transition independent. b. The equality follows from a.
and Theorem 1 on the filtration of a SMC.

Before proceeding to the next section, we prove a
statement on the rapidity of convergence of a isolation to
a certain type of renewal equation.

Proposition 2. Given three sequences (a n, {bn -1, and

{c nsuch that (i) cn - (a*c) n + bn (ii) an , bn > 0 for
all n, and (iii) g.c.d (k/ak > x0 1- 1. Then, if

Enkb < + and Enk+lan
n n

we have
(H*b) (n)n- (H0ft.ti5)-(HT + 0nk

where <a>(n) - na(n).

Proof. [Ref 7.10, esp. Thm. 4].
S4.2 Sampl ing plans.

4.2.1 CSP-l. Upon setting sc = 1 and uls - 2, CSP-l has
the follTowing SMC transitional diagram:

11G I

with states (11 Q1 2  (2; Q2 1 (z)); the SMC diagram

above should be carefully distinguished from the box one
in Figure 5, Chapter 2 which is a MC transitional diagram.

t Since Q12 (1) - 1 - 021 (1), the corresponding embedded MC
has the transitional matrix

1

21 0
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which is periodic with period twop however, the SMC itself
is aperiodic by Theorem 3.3 since supp (O2 - (I+A/A-O to-).

From Theorem 2.2, we can easily write down the Z-transformed
(F.S.) for CSP-l:

-2i rl" ' -12"

where

5(z) - 1 - 612621

Because of the simplicity of CSP-1, the above system can be
twritten down directly from combinatorial principles.

The eigen-vector equation, eT - e *for CSP-l yields

a - (1/2,1/2) as a solution; therefore, using PA and P

from Theorem 3.5 we have, by Theorem 2.41

;" Ps () " e " f (l-qI

Be Be f(l-ql)+q

SP~ule (' uls f•l-q,)+qTl

results which can also be obtained directly from the
Z-transformed (F.S.) through additional use of 1'Hospital's
rule. Prom Proposition 2.3, we also have:

S12"012F' 21"()21• -11"012()211

and F•22 Q21 12 (OF11 ).

An application of Proposition 2 is found in

Theorem 1.

P12 (n) - H0*Q2l*32(n) + o(n-k),

for arbitrary k.
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Proof.

a. P12 - Q12 *P+22

P 2 2 M -21*P12+J2

P 1 2 - (012*Q21)*P 1 2 +Q21*J 2

F F11*PI12 +021 *J2

b. Enk (Q21*J2) (n) < + -

En lF 11 (n)

which follows from Theorems 3.1 and 3.2 along with repeated
differentiation of the transforms to obtain the highermoment*.

c. We are done by a., b., and Proposition 2.

Corollary. (1'Hospital's rule from a renewal eq.)Limr P (n) - -zD I-3.

12 -ZDzFll(z

where b(n) - Q21*J2(n).

Proof.
a. Cn = a*cn+bn with conditions of Proposition 2

holding for k - 0, then, if H0*a(-) - 1, we have

Sz1-a(z)

b. Therefore, from a.,,

Lim Z-1 (Z) Lim z-1 6(z)
. -y z) - zl z1-(z)

- Lim B(z)[ z+1 . az ( )za (1))

Z-1

S(z) Iz-1
-za7(z)
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c. But c(-) - the limit on the L.H.S. in b. There-
fore we are done by lotting a - F

Of importance in analyzing the FI(N) function is the
monotonicity of P1 2 (o) and P22(") We prove

Theorem 2. (Monotonicity) P1 2 (n)

or P22 (n) is monotonically nondecreasing or nonincreasing
respectively.

Proof.

a. A P (n) - P 1 (n+4l)-P. (n)

_Q - 1 (n) + r rj-l -~ )*

b. r (J) (n) - r(j)(n)
11 12 11
M P[wj(1) + T1 , 2 - n] - PIWj(1) - ni

S- P[Wj(1) + TI 2 - n and T12 0 0]
> n

c. Thus AP1 I(n) < 0 from a. and b.

d. P12 (n) -(H 0 - P11 ) (n) and c. imply AP1 2 (n) > 0.

In the same way we can show that P2 2 (n) ._ 0 which
finishes the proof.

Before moving on to CSP-2, we prove a statement
concerning the roots of the fundamental polynomial(F.P.) of CSP-l.

Proposition 3. The denominator of rational function

1-612 (z) Q21 (z)
is FP(z) -

(-)zI px1-1 p 1-2 Pq1-1(z-q) (zI - pz - pqz2 - .. p-T).
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Proof. FP(z) - (z) - 6q (z-q)from T•eorems 3.1 and 3.2.

In [Ref 7.11, FP(z) is obtained directly as
z (z-B)+V, 0 = fpq1  8 = 1-6; thus the SMC approach gives
some insight into the root distribution of FP(z).

4.2.2 CSP-2. Upon letting 1 - sc, 2 - uls, and 3 - is#
CSP-2 has the following SHC transitional diagram:

k

1 2 3

with states (1U; 1 2 (z)), (2; 02 3 (z)), and (3; 63 1 (z), 0 3 2 (z));

once again the SMC diagram should be carefully distinguished
from the one in Figure 5, Chapter 2. Since, in addition to

012(1) = 1 - Q21(1), we also have 831(1) - l-qk and 032(1) = qk,

the embedded MC has a transitional matrix

1 2 3

1 0qk1
T= 2 0 1

3 qk

which is however aperiodic; again the SMC is aperiodic for
exactly the same reasons it is for CSP-l.

Because of the increased complexity of CSP-2, we
proceed to derive the basic transitional probabilities
more formally than with CSP-l.

Proposition 4. Transitional pr.-'abilities of CSP-2
(first row).
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1 0 (l-Q 1 2 )(1- Q2 3 32 )I

12

A A3 a-

11 where G -1- 023(032+631612).

Proof. (F.S.) for CSP-2, Z-transform, and Cramer's
rule forlinear algebraic systems which holds since there
exists an R such that lzl > R -(s)ý' 0.

upon solving the eigen vector equation for the embedded
MC in the CSP-2 case, we obtain

c_ --- -c--

"( (l e 2 , e 2 ) ,

kwhere c - 3-q . Combining this result with Theorems
3.1, 3.2, 3.3, and 2.4, we have

Psc () - asc f(l'q k) (l-'q)

Puls uls 'D

ils (')" Ls

kk Iwhere D - (f)(1-qk) (1-qI) + (2-q (qI).

For future use in studying the FI(N) functional for
CSP-2, we now give an example of the uses of filtration
to combine SMC states 2 and 3 into one (super) state
with and without self jumps.
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Case 1i self-jumps.

kk

In this case, we are allowing the events 2+2, 2-1, and
1-2 to filter throughl thus the filtered set is just
{3). The corresponding states of the filtered S4C, whose
transitional diagram appears above, are (Ty Oi ,Z)and

(if 62 3 0 3 1 , 62 3Q3 2 )
where

QT,7 " Q2 3 Q3 1

•,:r" 623^32,
and

S•0

The transitional matrix of the filtered SMC's embedded MC is

1 0 1
q k II

LL

case 2: No self-jumps.

In this case, we are only allowing the events 2.1 and 1.2
to filter throughl thus the filtered set is again (3).
However, the corresponding states of this filtered BlC
are now

7014
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(7 Q•) and (, l-Q23 3 2
1-_Q23032

since , -23( 0 (3223) J631'

Again for future application to the analysis of FI(N),we usee Case 1 to prove

Theo~rem 3. (Expansion theorem)

Pwer (n)- ((I)PI,2*(8O +iR2 2 3 )*S)(n)
where

S(n) - E Wl)((A( ( 1 )PI 2 ))*IR2 2 3 }(j)
j-0

12 , 1which converges for 1.PI+PI
"(1)" is CSP-1, 1 - sc, 2 - uls, and

R223(n) - P[x(n)-31 x(n-l)-2, x(0)-2 and x(k)#l, 0<k<n-1].

Proof. For convenience, let dab M Xab and ;- rab
if the latter is different from the former.

a. Using this notation, we have, from the (F.S.) for
the filtered SMC,

S 1"- (x1 2 ý2 1 -+2 2 ) .

b. 1 "2 - x125,-1

l-x 2 2  x 1 2 x 2 3 x 3 1

1- x 22 "x 1 2 ' 2 3 (x2 3-F 2 2 )
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- (1-•22) -12x23(1-'22)+(1-x23)

- (1-x 2 2 ) (1-x 1 2 x 2 3 ) + (1-x 2 3 )x 1 2 x 2 3

- (1-•22) (l-x x (1+1)

x (-) x12lx23) 23where a - x).(l-• 1 2 •2 3 ) 1-k 2 2

c. x1 2 ('- (x2 1 +x22 )) - x1 2 (-x 2 3 )(+x 31 )

since x 3 1 -x 2 3 - x 2 2

d. a., b., and c. therefore give

0 •x 1 2 1"x 2 3) (l+x 3 1) 1

PT7 " (1-x 1 2 x 2 3) (1-2) +a

,(1 + 23 )( 1)
1-SE22 '+

which is just the Z-transform of the assertionj we finish
this part by noting that 023 - 621 for CSP-1.

e. This factored expression approaches

2 1 1
(1 --+ ) ) )

l1•12 I-q 1+ P2 H 1_

however we also have, for the third factor,

Lim - Lim .z l - (f-l (a))
(Z ) H ( a(z) z+
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Lim f-Lz
Z 0

b(-), endpoint property.

- H0 *a(-)

"M2 1_q

> a(n), for all ny

thus the cony. criterion suffices.

4.3 FI(N) functional. Before embarking on a detailed
examination of the moments of FI(N), the following funda-
mental theorem is proven to illuminate the analysis of
variance.

Theorem 4. Let (a ) and {b n) be two positive sequences

such that (i) a + or A and (ii) bn + or + B as n4-. Then

N
E (a*b) (k)
k-0

N 2 , +.AB.

Proof. We will only prove this for an+A and b nB.

a. Eta-A)*(b-B)
N2

Ea*b (11 *a)(N)
N (N2

(H2 *b) (N) H30(N)
+ 0N2 (A) - 2 AB,

N N

where lkf - HO*---*1 0 k times.

7O7



b. 0 (a-A) (b-B)

N

Z (a-A)) ((b-B))
- N N

which approaches zero as N-m since ordinary convergence
implies Ci cony.

2,'
(H *a) (-N)0.•

* (1.+i) H0 *a(N) H <*qp> (n)

but H0* <a> (n)

N
NN

•. Ena,
N
NN

2N
+ En(an-A)

EN (an -A)AN(N+1) (n

2N2 N

- (1+ )+ - --

' d, "oe 40> M"
Id,

,: N

Z r
0

N

N (N+l)T ÷I1/2 as N...

2N
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therefore

3~ 2

(N) 1 110 (N) 110* > (N)

from c. and the hypotheses, :7:;:;.

f. Thus the whole expre~ssion appr'oached

2 N 2j
N N

tJ

-- + j-0 0,S

14A by2 1/2d, ans N1a.

HFI(N) .1N)

0 SN

es (1 = [N N 2ls A

NN

HObN H~cusJ 0 <b> (N)SN

N orW- N A,

fowmver snctheh

NP (j)

EIN ( -EX
sc ~ ~ = 2 JIL~SNUJIN
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t.- ,5unning -up, keeging the monotonic growth property of
s•s,ulS(-) in mind, we hNc

Theorem 5.

AFI(N) =1- - E-- ;P't N ,.r l

--- I. ,,•,•'., N) + Vu aas0  5:÷:r ' 13[W(" [

Since Var(l-W) - Var'W) Var(w) 'E[V]-It,,
'we wll henceforth gee.erally'.resttict thi discAssio-i to

. second moments. of W. To'deal with the varLiance of t.I(N)
'in the MC case requires that the following expression be
considered%

•• ~EH IM NI,)Ms lJ+k) I A pJ • k~i..

""HO[-- "M SN HOSN SNSN
0 < j,k -e N. However, since the varJiance for CSP-l, J-S
entry,, ils treated from this view point in [j7,11,, we will
use the 2 state SMC for CSP-1 -- 'relating the results to
those obtained for the MC model; for a treatment of
variance which uses a three state SMC (i.e., so, SN, and
SI), see Chapter 5.

Proposition 5. Letting sc 1 1 and uls - 2,

E1 [X2 (n)X 2 (n+k)J P1 2 (n) P2 2 (k).

Proof.

a. P[X(o)=l, X(n)=2, X(n+k)-21

" i P(M(o)=HO, M(n)aSNVSI, M(n+k)-SNVSI]

- P[M(n) -SNVSIS M(o)=HOP[M(n+kI-=SN VSI IM(n)-SNVSI]

P1 2 (n) P2 2 (k).

b. The result can also be seen by treating 2 as
degenerate such that at each step either 242 with prob-
ability 0 or 2+1 with probability d.

T-1
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Let Us Consider

zux2 (J) 2El((-- J'-) EILW2].

Using the convolution and proposition 5, we have 
-2p

"" 2*p)*p. (N) - UMN

where - E1 [l-W]. Now, we further have

n n +fpn

SNPSI,SN ( SI',SN SXSm ()
fl l- + u n1 ) fl n1SI SN , SISN SN,SN HOSN

W _•n-1 +Pn-i
•SN VSI,SN 1101(o SN (2)

Therefore, substituting (2) into (1), we havePn = n f_•n-1 fn-1
PSNVSI,SN UsNSN + fSNVSISN + fPPHO,SN

or

uP 2 2 (n) - UPn + fquP (n-1) + fPup (n-1)

or

2,2 - fqP2 2 (n-l) - fPPI,2(n-l) p (3N)

Thus from (3) we have

2v
N (H0 *P1 2 *p 2 2 (N) - (fq)H 0 *P2 P22(N-1)

- (fP)H0 *PI 2 *PI 2 (/.I)) -

N
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SEHO[(l-FI(N)) ]. Thus bounds can be developed for the

2-state SMC and then translated into bounds for the MC

or primitive SMC; Theorem 5 also shows the proper con-
vergence (hence the factor 2).

4.3.2 CSP-2, J-S entry. For this plan, the NC formula
is

1 N k-i N
S1 X MBN (a) + z z K5, N (s)).

s-O j-o 0-o 0N'

Because of the fact that we can consider 7 as being
randomly entered at each step, given tha. it is entered,
we have

Proposition 6. Letting ' - sc and 2- uls for the
self-•ump filtration of CSP-1, we have

k-l,
U31 (X7 (B)I Z E BHO[NSNj (s) I HO[+SN C)I.

Proof.

k-1 nuP 11 7 (S). " K uPT
i--i "

k-i n
- P

where SN(-l) - SN. Thus we have

Theorem 6. For CSP-2,

N
AFI(N) - 1 - E P (0).

PTY(s) can be expanded in terms of (1)PI 2 (s) by Theorem 3

and therefore (2 )AFI(N) can in turn be expanded in terms

of ()I (N).

T32
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To deal with the variance for CSP-2, we will split
the is state (phase) into k new (sub) states in order to
make use of the convolution as in

Proposition 7. Letting a-l-sc, (SN-SI)-u!I--I, and
(SNj-SIj)J, weahave

P[X(o)-a, x(n)-J 1 , X(n+s)-J 2  -Paj 1 C 2

where J, (J 2 ) range from -1 to k-i.

Proof. As in Proposition 5.

Proceeding as in the CSP-I case, we can express the variance
-in terms of the states a, and J, -l<j<k-i. Thus we will
restrict our attention to

N
k--i x (a)

1 lk-1 2
"E a Ea( I D )

U- ED D )2]D

" " E+ 2 + 2N N i

Use of the convolution and Proposition 7 gives

1 2 2H 0*P ai*P Ii(N) H 0 ±ii~ (N
"2 N

7Ea [DjDjD] - ŽE DD]

NOP 2~ (N) + 0 * N 2 NN2 N2

since Pjjd(0) pjj (0) - 0 if j J-.

T 13
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Bumming up, we have

Theorem 7.

Ea [(1-F I (N)) 21

Sk-l
Z (2Ho *P ( + (o 2 1 Pai *P (N)

a j-il 0ii r 0a -,
+ 2H 0 *P P 1 , 1 N - H-*P (N)).

0 ... . .u a ,, J ,
We note that as N.., the expression in Theorem 7 approaches

k-i 2
E m +2 Em,,

i.--i j'"iJ

k-i 2
S(kz mj) by Theorem 4.

Readjusting notation again, sc-a, uls-b, otherwise
the same, we can rewrite the non-negatiye terms ofTheorem 7 as follows (factoring out 2/N')

k-i(Z Pb
H 0 * 1-0 Pbj + Pbb)

+

k-i
HO*Pa*(jEoPj + Pab)

for 0s<.k-1.

Letting Us - ZPsJ + Pab, including s-b, we have the
following equations.S
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Pa(b) .. • Pak1) (Uk l) with states a, b, o .. ,Sab ' ' a (k-1) -
"(k-i) and transformed p.d.f.'s Yo o -

Ya = Qj,a 6 6/(z-u) for O<jk-l y 0 fj,j+l q/(z)(or Ocjýk-l) - Ok-l,b.

Using the Z-transform, we obtain the following relation-
ships among the Us's above.

- b " yoUo + 'o (.-yo

' -- M YUI +-Hoi(-y--ya) + YaA

Ukl Ylob + fto(l-y-ya) + ya i

k-l
where A - Z. Paj + Pab" We also haveJ-O

i - z/(z-) ONII

H: ~1 -y-ya) -z/(z-u) - AjF4 I hhI N
aI

where 1allN - H0 *a(N).

Using this system, we can progressively get bound's onthe Uj'a and therefore eventually on the variance for
FI(N). For instance, letting k-1, we would have:IlUbli. N. (-,O) IIJUoIN + ON

U N p(luN) uN

ilo11 N_ q(1-" lUb 1 N + ÷pc-" I111 N +
Working out a full-blown ei:pression for a bound on the
variance is extremely tedious, but now possible.
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4.4 Other sampling plans. Setting l-sc, 2=uls, 3=ls,
and 4-ck, the BHC transitional diagram of CSP-3 is:

}i I- k

with states (l1 Q12 ), (2; 6240 (3; ' 3l' 3 321' and
• (4; Q410 0431"

Sample solution is

0 ̂1 2 (1-Q2 4 )

12 I-G(ZW

where

2403z3 A 12Q24641 + 12024043^31*

The eigen-vector solution for its embeddcd MC is

- (eI, •2, e3, B4 )

(e C 1 C '

where c 3 + qm( 1-qk).

Other plans, like the multi level ones, feature
phases of the type already met but with different
sampling parameters for the same typesi for example.
iS(k 1 , fl), Is(k 7 f 2 ), etc.
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5.0 ARBITRARY ENTRY CASE. In elementary (continuous)
renewal theory, the introduction of a delayed p.d.f, is
necessary for dealing with the equilibrium case. If
F(x) is the distribution function of the ordinary process,
u the (long-run) mean time between renewals, W(x) the
delayed p.d.f., and me (x) the mean number of renewals
in time x for the equilibrium process, it can be shown
[Ref 7.81 that

f (x) - (l-F (x)) ....

and Sm*(x) - .

In Cinlar's paper [Ref 7.63, analogous results are also
shown to hold.

Following Cinlar [Ref 7.6, Chp 91, with modifications
for the discrete time case, we have on. the one hand

Definition 1. Letting ijj(t) be the delayed p.d.f.,
we have

ai,j (t) - H- ( *(qi Ij) 60 - Qi,j) (t)

On the other hand, for the Arbitrary Entry case of
a MC model of a CBP, using either the MC or SIC methods,
the initial probability vector for a given phase i is
now given, overtly dependent on the structure of the
entire MC, by

01 s ... ..I s , o ), sa

where a is the long-run probability for SMC state i andasis the analogous long run probability for SMC state awhich arises from that filtration of the primitive SMC

which forbids SMC-state self-transitions. Thus, we can
also define a delayed p.d.f. as in
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Definition 2. Letting Uj be the delayed p.d.f.r
then we define it as

C1 t
Ui, J (t). - G s,A(j)'

t
where, once again, f sA(J) is the first entrance probability

(at time t) into phase j starting initially from state s in
phase i with probability as/sis.

Two points concerning Definition 2 should be made. In
contrast to the J-S case, wi is "ustid just once" since any
Jump to J returns the process to the J-0 case. Secondly,...
even through wi appears to be plan dependent, it is shown
later in this chapter that it is not; intuitively this is
reasonable since a a / can be interpreted as the relative

. .time spent in phase i starting from s.

Below a. the ?,j'* are constructed for all canonical
phases considered in the J-S casel b. definitions one and
two are proven equivalent by elucidating the relationships
between the primitive SPC and any filtration of it (thereby
showing wi to be plan independent)l c. any SMC (or MIP) is
shown to be stationary if its initial p.d.f.'s are given
by Definition one; and d. the steady state B!4C is derived
for CSP-l and a bound on the variance of FI(N) is obtained.

5.1 Definition equivalence. Extensions of the techniques
used here to include variations from the four standard
phases are straight-forward. In Theorems one through four
below, , shall have the meaning assigned to it by
Definition 2.

Theorem 1. Definition equivalence for mc.

Proof. a. Again letting 11K-K, we have from the
basicJMiystem for cc,
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, qI-k £jSI k p1k-l pqzk-2 ..... k- )

Iq-k 002)--qf
where

00Mkz) " z(Z-1) + Yk' Yk . P
and

O(z) -0M.

b..We now proceed to split so into. three consecutive
subphasess sc(k), H(k), and R(k). Thus, letting 1 - sc(k),
2 u II(k), and 3 - R(k) for simplicity, we have:

2 3 a

where a is the next state of the plan. This splitting yields
the following transitional matrix for the embedded MC
obtained from this variant SMCt

1 2 3 a ---

1 0 1 0 0 ---
2 p 0 q ---
3 l-qr 0 0 qr---O V
a- -
- * - * *

0 0

where r - I-(k+l). Letting e_ (e1, e , e, e, --- ),
we obtain the eigen vector equation

e,*T' - e.

This equation in turn leads to the following algebraic system:

Pe, + ( 1 -qr))e + v el

2 (EO)
qe 2  3qre' + u e'

719
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where v - e" . co'I, u - _.: . and col. is obtained

from the i- column vector by setting its first three
components equal to zero; the rest of the induced algebraic
system is the same as the one gotten from the original SMC.

c. From Theorem 3.1 and Corollary 1 to Theorem 3.6,
we have for the mean values of SHC states 1, 2, and 3

i •i " • ' •2 " i and P3

"d. From b., c., and- Theorem 2.4,.

- s 1- , 2, and 3),
S~E

s-1,2,3 eIk + 8 eU a
other

D 1 + D2

where, by (E0 ) in b. and c.,

1-
D.- e F + - + q

e jl+ ~)ql-k

"pq I-k

e. Returning to the original SMC, we now consider
the transitional matrix for its embedded MC:

sa a

Ssc 0 1
*] T

a

720
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This matrix induces the following linear system via eT ei

+cUe a auec

"where v = e • cole(, u - e i .. , c is obtained from
co by setting its first component equal to zero. However

from (E0 ), we also have

U W a- - qi-kel
U~a (Eci

V W -i-k. a2)vq e . ..

Therefore from (E I and (E2 ), we have

i-kea e ) J(E 3)

(We also know that ej - eJ for JO(1,2,3)).

f. Therefore, from (E 0) and(E 3 ), we get

O- ascIkso, --D' a D.

Thus finally from d. and the above,

4 ~e scq k-I

Hl(k) = D
or

1 Ic-I
11(k) i •o-)(q-)%s ?

I-1
As a check, we have E aH(k) 'sc-

0

g. From a. and f., we have

ftH(k) - 1 00~)
Sfk,A -U • .('SC s•

T21



hi. Since

- k(Z) =z( Z zk- z k + (1-q I

k=O 0 0

1 Il Il•- (z.rT I (z-1) q- (z-l)),

we have with g.,
!I-' qk , H l_ €zi (Z-1)-qg €'-l)• ,•...
k-0 Qsc k, a c

- {1- }
so

The proof is finished by noting that QsCA(1) - 1 and

qI(z-q)/P(z) - &scA(z).

Theorem 2. Definition equivalence for uls phase

Proof.

a. From Theorem 2.4,

OP (t)sM - P aS(t) M SN U01 ul

fP aul(t) PaSI(t) OSI feuls

b. u±lsfSN,A + 3u- SI,A
auls fS, uls

f SNA + S,A ' from a.

fuls7A
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5 6 ,z-l•

- .5-
Uuls z-_ -

Z- 0

or

Ifi
(1 - usA) Quls,A

which, along with b., fnnishes the proof.

Theoram 3. Definition equivalence for le phase

Proof. a. Break is into (SN-SI) blocks as followas

, ~~0t h- . hl.ok

1 2 3

Since all the blocks are structurally equivalent, we haveI from Theorem 3.3,

M 1 I
SuI = , P2 - n 3 -0E

where r - k - (h+l).

b. In the split system, we can put the three segments
of is first in the corresponding transitional matrix of theembedded MC:z

1 2 3 a b

1 0 qh 0
2 0 0 q
3 0 0 0
a 0 a
b * , T`

0 0
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( -Then e'T" e' induces

v 0'
2I e W,1

qe" = e5
" 3 0 {

-Therefore, Ze - (1 -qk) from (E0 ) and (El).

Therefore, D1 = ejPis and hence
•h

(-(q h/f)e'

D2 - Fejuj j # (1,2,3).

c. In order to get the necessary relationships between
the primed and unprimed systems, we need some additiondl
conditions on exits and entrances| we assume the usual
"CSP-2" type:

qk
s b , a - sc or ck

b - is or uls

1-q 1

Using the above assumptions, we can now fill in the a and
b columns of T

1 2 3

b;( 0 0, 0, qr, r )t

where vt is the transposed vector of v. The resulting
"augmeited" matrix leads to the systema (E2):

2
(1-q h )e' + pe' + (1-q r)ee + u e'

(l q ) 1 2 3 aq(:r(E2)
q e' + w e'

372
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where u - cl • , w - cl'O, and co-i.) is derived
from col by settinq the first three components equal to

zero. Then

(EL) and (E2 )e' - e'(1-q )

so {W 9 Mieq k J (3)
d. The standard transitional matrix T is

1s a b

ls 0 l-qk qk .

b

*ooF

From eT - e, we get

(l.q~e V 61
(1-qklels + u -ea (E4)

qkels + w eb

t where v - e • col1s, u _ e * , w e col', and

col'.) is gotten from col(.) by setting the first component
equal to zero. Finally, from (E2 ) and (E4 ), we get!.9

e1  lve1
a• a 5•s

-e er
b b

e. Thus from (E5 ) and the last part of b.,

0(h) a 2
(qh/f) els

D
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or

(h) h %is

f. As in Theorem 2, sSNh - h and aSlh fah which

together imply that

k-i B~ k-1 h

Sf SN + E - sf I,A E fh-O 1l0 h-0 *is -h s

g. From e. and f.

fh,Al (z) - (q)k-h

fh,A(1) (z) Z (1- (-4 -)
f-Z (-A -) C (z -u

Therefore, sum for A(2)

1 k-i qh (-. h) (•q._)k

T17 ~h!O q q z-U

1- ( j-U k
1 ki- ~ i 1 (*'= • { 'f-z~u "'} _

=- (z_u

h. Letting x = 6/(z-0) and x' - (fq/-v)•, and
again using e. and f., the sum for A(l) is

k-i Oh fE - f )
h-0 'ls

= (x - (q-x )x)

1 "is -r- x qkx + xx x + X)S•"is l11

T26



- ...i((lqk) (X) (,,-l+ 1 x + Xxxi

Pin
Hi - (l-qk) x(1-x'))

" ls,A(I)(1) - Qls,AC1)(z))

since ((z-l)/6) + 1 - 16- l/x which finishes

Theorem 3.

Theorem 4. Definition equivalence for ck phase.

Proof. a. Splitting ck into its MC components and
using i-nuction along with the C-K equations, we have

~CjA(b) " - )

oci cm-1

rCJ,A(a) - zm- J

and

f-CS,A(a) " •j O<Jm-.2

where a and b are defined through the following diagramt

a

b. The transitional matrix T' is too bulky to write

down here, but we do order the states as: CO, ... ,

Cm.I, , C. ,, a, b, ... in what follows. From the

eigen-vector equation, we get

72T
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60 -
0.

-- r

0j PJ+1 - ~ I H1

OIj crn-2J Ojm3 J
a ;k%-1 +.-2

-b W + q*;1  J2)

where e" e-*j v a, co u . . a, A
j -cj Wj Uj ~ 0 -W- !.~dp a

(COV (.00a ) )j, if j ,d M-i1m

and oi)jm 0.ohrie

0, otherwise.

From (E)and (Ewe got

But now, again from Theorem 2.4,

where
rn-1 m-2-

D'i E 00 + ZEj~
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Again z eE a.lA--i
0

o pk e m( )

Therefore D' - me'.

c. From the transitional matrix of the original
process, we got

"(1"qm)e k + u - e (E4)
qmeck + w - eb J

From (E2 ) and (E4 ). we finally get

e0 eck
b b C 5)

oa -a

d. Thus c. and b.-'--"-

a(3*"q1 +j) a
Uck Ck

"and

uCj ck) Ock

e. From d. and a.,

J=O *ak cjA(b) J!O 'ck o q

•I = iw~~~~ck =Zm-l.__ _m
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HI

m
- (q-QokA(b)()Uck

(qe ak,A(b)(M.

f. Once again using d. and a.,

rn-is A m-2 Af a + E :'c,A(a

- ( mj -2 (Cl...g+l) . .. 1. ..j-O Jp~ack 0- ro + E

J=O Pak • M'j J-O Oak

.-1 r-1 mn-2 + m-2

0ck zm 0 0 0 0
{($.qm) + rni(qz)i - r rn-

S-E(q 2 )J + (l-q ) Z)
•ukm

Mk1 1 1

1 ( 1 .qm) ,E.l,9km

"- .. ((l..qm) "-Oo A~a z

~~ck Qck,A(a)()•ck

Corollar (to Theorems 1-4)

4 /ai is plan-independent.

Proof. (clear).

5.2 Equilibrium sampliuig plans. Having shown the equiva-
lonce or the two delInLtIons in 5.0, we can now turn our
attention to the fundamental SMC system for delayed p.d.f.'s
("•" and "-" have been replaced with a prime symbol).
Since a first transition returns the equilibrium system
to the ordinary non-delayed one, we haves
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$ (F.S kP,kt) j *Pkt) + ikJt)

where

V- H (1A-,

For this system we have-

Si

*. Proof.

as -j H0 (l-EQ'
m

be But,

' •ZQ -J 'k•
Wm ,m Zk Jk '

#M A

a. Thus, since H0/Z - HlII we are done by a. and b.

Theorem 5. (Stationarity) Given a CSP,

- (, .. n is a stationary distribution for

Proof.

a. Statement of Theorem is equivalent to

i ajP3,k(t) - k, (tPO)

or

jpj,k 'k0

731
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b. L.H.B, of last equation in a.

Sj iJ.s ark + k k

w + w f20 or (F.S.)'

•1 ,, ' -);(q -
ak

H1
( (E ( a e )p s

a; j

- (E 0jn psk) + (Eej) -Okjk) + *kj3c

(the last two te-rms summing to zero since Eel - 1)

espo ei r~ •k+akk

;,d. By the leima,

A I

w 
. 2 k •

iHi

AH Jk

T32
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e. a. and d.-

W 
A

1 + W2- klo

which completes the proof.

Defining M(t) as the number of recurrences of the

state k in (0, t3, we have an analogous result concerning
the mtationarity of the renewal functions RIj.

Theorem 6.

Sa 'Mk.. .

Proof.

a'. EE RAk(t)- Mi±Rk(t).
QAk~) A A

Now -i R'# ~ok {Zi-k) + ( +i,k)k

or Ao G k(HO'3"i)
-k- I

A A A

b. But Jj Ho H0 Qj

H J, - io1tYoo
*"0 ~k 0-110+11O'0i

!!0 k
1101 "1-60
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3 jH elk) lottingc. b. and a. Be [Ik(t)I 0- 1

a~r H0H1, we have

n nz
a(n) - f" -nd- -n

(z-1) 2

xml~k(flh~ (-)n.

"5.3 Variance for CSP-1 and FI(N). We conclude this chapter
with an application of Theorem 5 (and Theorems I through 4)
in obtaining an upper bound to the second moment of (1-1I(N))..
for CUP-i. To avoid repetition of Chapter 4. we split uls
into its two nondegenerate subphases thereby dealing with
a SIC with 3 states. Analogous methods can be applied to
CSP-2 as well. Letting S(N) - 1-PF(N), we have

H *PI. *P (N)0 ScjaN SN,aN

aC N2-

+

H *PA *" ,a(N)
E[ (S(N)) 2 - 2. 0 H aN,OSN -SN

SN

SN H0*PSISN*P SNBN (N)

N2H0 QSNN% S(N

SN
S- 2W - SN-

W N P)N - O * (sc ,cOSN + aSNPiN,SN + aSIBPI,sN)*PSN,SNlr)

1,
SE(GSNHO)*PSNSN(r)

*This corrects formula 4.33 in reference 7.1.
tU
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(11 2 *P(N
- ~ 0 SN, S N)

SN ~N2
2
HS H(N) If *P~ S(N)

since H 0 and H 0*P SN,,SN are monotonically nondecreasing,

-1 (+1 H 0* SNSN(N
*T SN (N g-

Thus
H * N (N)

[ (S (N) 2 SN (+ N H0  - )_

But P SNOSN 6 SNSI PSISN +JiSN

P S1#SN 0BISN PSNjSN + 0 Sill P lSN

A ~ BN.SI Sil~l 1SN BN

-N ,SSN

Now, simplifying
8

All)- 3(M- 0)

which implies
(. n-1)

H *A (n) -10-n > 1 (
0 10 ,n Z 02

Bn (Z) - (z-fq)/(z-o)

which impiies
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H- 1 ( ÷ + (-u)3 (E3 )

(E0 ), CE1 ), ( E2 ), and (E3 ) -

2H 0 *A*P1 sN(N) H0 *B (N) aI E a [ (o ( N ) ) 2 ) . -- aS N ( 1 1 0) 1 1Nl 0 - N )

( )0{*PA)) 10SN (N):) H*B(N) 55Na- " NI + -- ){(H0*A (N)) A - + N -

SN N oaNN

"sCl + )) ((o 'l)(lAPI(N)) + -L (1+ -(1 -"N)) " SN

6.0 CONCLUDING REMARKS. We conclude this paper with two
examples of the direct use of SHC theory followed by a
short sumary.

6.1 CSP-l in tandem. Consider two CSP-l plans arranged
in tandem; i.e., the output of the first is the input of
the second. This kind of sampling procedure (along with
further iterations) can practically arise when each pro-
duction unit is being inspected for 2 (or more) defects.
An example of what is involved in a two dimensional MC
model of this situation is now given.
For 0 < Jl(J2) < I1 - 1(I2-1),

(H(jI+l), H(J 2 +1))

p 1 0

(HO, HJ2 )4.-- (Hjlp HJ2)1 ,

N (H(jl+l), HO)
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Upon working out all the remaining transitional probabilities,
Ji it quickly becomes clear that such a model is time homogeneous.

Let us now consider collapsing the two dimensional
model into a one dimensional one; the result is non-
Markovian (the reverse process, constructing a MC model
out of a non-Markovian one through additional variables,
thereby yielding higher dimensional states, is called the
method of supplementary variables). Specifically, we
obtain a non-homogeneous SNC__or instance, during the
time interval (k, k+l), ¶+ ÷•-Iwith probability

PT,3 R(kk+l) - (Pll(k)ql + P12 (k) 01)q 2

where the first factor is derived from the first plan.
However, if we consider the first CSP to be steady state,
the result is a time homogeneous 9MCs for instance,

(P +4 n-2S(P 1 1+02 1 )P qlq2 , n>l

(ql'1 +01a2 )q 2, n-i

6.2 Downstream inspection. Another example of the direct
use of SaC techniques in downstream inspection in a CSP-I
setting: if upon inspecting, a defeat is found in the
uls phase, go to an intermediate one and inspect, ot 100%,
the I previous units; if no defects are found, transfer
back to ulsj otherwise go to scl then proceed as in CSP-l.
1!hib modified CSP-l can be modeled directly with the

*: following SMC without the intermediate stagel the model
has the following SMC transitional diagram:

T
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S--

Iq

n1 I
•:withn-

2,1(n) 0 (6)(1-qI)

n-l
,2 -((n)(q).

It should be noted that if sampling downstream were in-
stead sampling upstream, we would essentially have a
"partial" CGP-3 since operational time is measured by
the flow of production units -- each counted once!

6.3 Summ•ary. A simplified method, with some of its
ram1ficat3ons and variations, of dealing with the
standard MC model of a given CSP has buen considered.
The essence of the technique is the partitioniny of
the MC into natnrally defined segments. This blocking
out of (relatively) many microstates into few (relatively)
macrostates has been accomplished here within the
natural context of SMC's. However, this approach does
not obviate the need for the MC model in favor of some
directly given SMC since the former is initially likely
to be the more intuitive and easier of the two to con-
struct. For a more practical explication on the basic
method for the steady state case not explicitly involving
SMC's, references 7.3 through 7.5 are highly recommended
(where the mnethod is called "A Simplified Markov Chain

Approach").
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TRACKING RELIABILITY GROWTH

Larry H. Crow
U. S. Amy Materiel Systems Analysis Activity

Aberdeen Proving Ground, Maryland

ABSTRACT. It Is common practice for a complex system under
development to be subjected to a test-fix-test-fix process. During this
process, the system is tested until a failure occurs, design and/or
engineering modifications are then made as attempts to eliminate the
failure mode(s) and the system is tested again. This process is continued
until the desired reliability is attained. Because of these changes in
reliability and the fact that test data may be limited in quantity, it is
often a difficult task to directly estimate the growth of reliability and
relate this to the final reliability goal.

A popular, "common sense" procedure used for the tracking of
"reliability is not satisfying because of several major drawbacks. This
paper gives improved, yet simple, techniques for tracking the system
reliability through this development process, along with appropriate
confidence bound and goodness of fit procedures. Application of these
techniques to an Army system is discussed.

1. INTRODUCTION

Invariably, development programs for sophisticated, complex
systems require considerable resources such as time, dollars and man-
power, to achieve a level of system reliability acceptable tu the
user. The reliability requirements for many systems are high, and to

obtain these high goals it is common practice to subject the system to
a test-fix-test-fix process. During this process, the total system or
major subsystems are tested to failure, system failure modes are
determined, and design and/or engineering changes are made as attempts
to eliminate these modes or, at least, to decrease their rate of
occurrence. If this process is continued, and design and engineering
modifications are made in a competent manner, then the system reli-
ability will increase.

It is advantageous, of course, for the program manager to
track this increase in system reliability during the development pro-
gram. lie may then determine as early as possible whether or not the
system reliability is growing at a sufficient rate to meet the
,'equired goal and allocate available resources accordingly. In this
regard, a program manager wishes to determine from test data the
current reliability status of the system, estimate the rate of growth,
and obtain projections of future expected reliability.

Since the system configuration is contintially changing under
this test-fix process, there is usually limited test data available on
the system for a fixed configuration. Consequently, direct estimates
of system reliability for a fixed configuration would generally not
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enjoy a high degree of confidence and may, therefore, have little
practical value.

hcause of these difficulties with the direct estimation of
system reliability, mathematical reliability growth models are often
employed. Most reliability growth models considered in the literature
"assume that a mathematical formula (or curve), as a function of time,
represents the reliability of the system during the development pro-
gram. The central purpose of most reliability growth models includes
one or both 9f the following objectives:

a. Inference on the present system reliability,

b. Projection on the system reliability at some
future development time.

SIMany reliability growth models are parametric. That is,

these models have certain parameters which are unknown and must be
estimated from test data generated during the development program.
This paper considers a popular parametric reliability growth model
which is widely used in government and industry. Background on the
derivation of the model will be discussed along with some major draw-
backs with a "common sense" technique for estimating the unknown
parameters. We show how these drawbacks can be avoided by applying

estimation, goodness of fit and confidence interval procedures devel-
Soped at AMSAA. Recently developed tables for computing exact con-
fidence intervals an system failure rate and MTBF are given and an
application of these techniques to an actual Army development programI is discussed.

2. THE W•IBSULL RELIABILITY GROWTH MODELt In 1962, J. T. Duane of General Electric Company's Motor
and Generator Dopartment [see Duane (3)] published a report in1* which he presents his observations on failure data for five divergent
types of systems during their development programs at G. E. These
systems included complex hydromechanical devices, complex types of
aircraft generators and an aircraft Jet engine. The study of the
failure data was conducted in an effort to determine if any systematic
changes in reliability occurred during the development programs for
these systems. His analysis revealed that for these systems, the
observed cumulative failure rate versus cumulative operating hours
fell close to a straight line when plotted on log-log paper. Similar
plots have been noted in industry for other types of systems, and by
the U. S. Army for various military weapon systems during development
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[see Crow (2)].

For a mathematical interpretation of these straight line
plots on log-log paper, let N(t) denote the number of system failures
by time. t, t ' 0. The observed cuwulative failure rate C(t) at time t
is, therefore, equal to C(t) - N(t)/t. The plots on log-log paper
imply that log C(t) is approximately a straight line. That is,
I"o C(t) w 6 + y log t. Equating C(t) to its expected value and
assuming an exact linear relationship, we have log (E[C(t)1) =

a " y1ol t. Taking exponent ials gives EIC(t)] a Aty, A -

-Henc, e(N(t)] '-' AtI, for * 1, since E[C(t)] a e[N(t)j/t. Thus,

the expected number of system failures by time t is AtA.,

'The instantaneous failure rate, r(t), of the system is the

thahge per unit time of E[N(t)]. Thus, r(t) a .E(N(t) t0

which is recognized as being the Weibull failure rate function. It is
important to note that since the system configuration is changing, the

.- data are not homogeneous and, therefore, the usual theory for a
Welbull distribution will not apply. In fact, it has been shown by
the author [see Crow (1)) that when the configuration of the system
is changing, and failures are governed by the failure rate

r(t) * X|t 1 , then the system failure times follow a nonhomogeneous
Poisson process with Neibull intensity function r(t).

At time to the Weibull failure rate is r(to) - oto6 '1 . if

no further system improvements are made after time to, thnn it is

reas•mAble to assume that the failure rate would remain constant
at the value r(t 0 ) if testing were continued. In particular, if the

system were put into production with the configuration fixed 'as it was
at time to, then the life distribution of the systems produced would

be exponential with mean time between failure (MTBF) M(t0 ) 0 [r(t 0 )])
Itt1-' /Ao. Hence, for ,0 < 0 g 1, the MTBF M(t) in'cresses asth

development testing time t increases, and is proportional to the

Thus, 0 is a growth parameter reflecting the rate at which reli-.
ability, or NTBF, increases with development testing time.

If this Weibull model is determined to sufficiently repre-
sent the occurrence of failures for a particular system during devel-
opment testing, then it can, of couvse, be used to monitor and
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project the growth of system reliability. To do this, however,
would require estimating from test data the two unknown parameters

X and 0 by say A, B. One would then estimate the failure rate

function by r(t) a Ait' and the WrUF function by M(t) - (;(t)]"-

t' If the system is tested to time T. say, then N(T) would
estimate the current NTWa, and M(t), t 1 T would project estimates'of
system MaF into the future.

Consider a "common sense," often used procedure for estimat-
in# A and B. Suppose the system I5 tested to time T, and lot
0 -c T T2  * ... TK - T be a partition of (0, T]. The observed

cumulative failure rate at time Ti is C(Ti) a NCTI)/Ti, where N(T1 ) is

the number of system failures to time Tit i a 1,...,K. Recall that

log I[C(Ti)] s log A + (0-l)log Ti. -Hence, if we plot log C(Ti)

versus log T.on coordinate paper and fit a line by linear regression,

we could use y, the slope, to estimate 0-1 and 8 the intercept at

t a I to estimate log A., The estimates of A and 0 would be A •
0 a y + 1, respectively.

There are several points to be made about the above
techniques for estimating A and 0. Firstly, the estimates are
dependent on the choice of Ti, i a 1,...,K, and, of course, may differ

for different choices. Thus, this method is subjective, yielding
results perhaps not susceptible to rigorous analysis. Secondly, the
values C(Ti), I - 1,...,K ore not independent since N(T1 ) I N(Tj) for

I 4 J. Moreover, the variances of the C(T1 )'s are not equal. In

particular, Var[C(T1)] a ATi If the system reliability is in-

proving (0 < 0 < 1), then Var[C(T1 )] is decreasing as Ti increases.

Hence, since the C(T i )'s are not independent with equal variances,

usual normal regression theory will not apply to yield confidence
bounds on the parameters A, 0, and the functions r(t), M(t). Finally,
in practice, the criteria for using the Weibull model and this
estimation technique would probably depend on the subjective appraisal
of whether or not the plotted points appear to lie nearly on a.straight line.
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It is apparent that improved goodness of fit, estimation
and confidence bound procedures are nteded for this highly important
task of monitoring and projecting the growth of system reliability
during development. Using the result that the plots on log-log paper
imply that the successive failure times of the system Collow a certain
stochastic process (i.e.. the nonhomogenoous' Poisson process with

Weibull Intensity A•tI') we have derived a variety of useful stýtis-
04 cal pR6cedures for this model. Some recent results will be dis-.
6ussed in the following sections.

3. ESTIMATION AND GOODNESS OF FIT PROCEDURES

If the successive times of failures are being recorded for
a system undergoing development testing, then a statistical goodness
of fit test can be performed to determine if the Welbull retiability
grewth model is appropriste. If the model is acceptable, then closed
form maximum likelihood (ML) estimates of A and 0 may be used to
estimate and project system MTBF. Using these procedkires developed by
the author in (1), one can avoid the aforomentioned 'drawbacks asso-
ciated with estimation from log-log plots.

Suppose that a system has experienced N failures during
development testing. Let Xi be the age (time on test) of the system

at the i-th failure i l,...,N. If testing is stopped at the N-th
failure time, the data are said to be failure truncatod.

The ML estimate of 0, the growth parameter, is

(3.1) NN N-
log I-

and the ML estimate of A is

(3.2) A.
p, X0

Thus, calculating , 04 one may estimate the failure rate

function r(t) A ABt 8' by r(t) - Ato"I. The MTBF function M(t)
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[r(t)]' is similarly estimated by ac) (t], nd Mart), t ~r
the current estimate of the MTBF Is M(XN) - XN/NiBadit). .

projects expected future growth of system MTDF.

To determine the appropriateness of the Weibull model for
representing the reliability growth for this systemo one may c*Iculato
the statistic

CA1 1 21.1 8

where U. N - 1. A - J(L-l)/NJ0. Critical values of the C2 statistic

for N a 2 thru 60 have been determined at ANSAM from Monte Carlo
uimulation, using k5,OOO samples for each value-'of M. Various

critical values are given In Table' 2 of (1).

value-, then the Weibull model is rejected at the designated signifi-

canoe level. If 2CA is less than this critical value, then the Weibull

model is accepted and may be used to track the system reliability
growth.

Suppose that K ), I systems have been simultaneously tested
to time T, where T $: not a failure time. In this case the data are

¶ time truncated. If design and engineering modifications are made on
all K systems, at the same time, then at any time during the testing '
the systems will have basically the same configuration. In this
situation, we may combine the failure data on these K systems to
obtain estimates of A and 0. These estimates and other related pro-
cedures are given in (2).

4. CONFIDENCE BOUJNDS FOR ruTBF

In this section we shall give recend'vy developed procedures
for placing confidence bounds on current and projected failure rates
and ?'fBP. These procedures apply to the single system, failure

truncated situation. Similar developments for time truncated test- .
Ing will appear in a future AMSMA report when completed.

If a system undergoes development testing until the N-th
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failure occurs, then r(XN) IM(XN)] is the current failure rate [MTBF].

It can be shown that the ratio UN Nr(XN)/(N-I)r(XN) is
Afa 0-1independently of A and 0, where r(XN) is the ML estimate ABXN of

r(XN). Percentage points of this ratio were obtained at AMSAA from

Monte Carlo simulation for N w 2 thru 60. These percentage points
are presented in Table 1. Exact 100(1-a) percent confidence bounds

an r(X) are of the form[Cr(XNa(N-l)/N, r(NX)b(N-I)/N], where a

and b are from Table I such that Prob(a c UN b). 1-aa. Equivalently,

100C1-a) percent confidence bounds on M(X) a [r(XN)]'l are of the

form ([r(XN)b(N-I)/N]", [r(YN)a(N-I)/NJ ).

For N : 60, 100(1-*) percent confidence bounds may be

calculated from the approximate relat2f.nships: a" 1' Z 47R

b A I+ A z 0 /2' where Z/2 i-s the u/2-th percentile for the
standard normal distribution.

For N moderately large, we may also use the percentage
points in Table I to place approximate confidence bounds on future
failure rates and MTBF. In particular, suppose we wish to place
approximate 100(1-a) percent confidence bounds on r(T), T * XN.

These approximate confidence bounds will again be of the form

IrO)a(N-l)/N, r(T)b(N-I)/N], where r(T) - A^T"I is the ML estimate
of r(T), and a and b are the appropriate percentage points from
Table 1. Approximate 100(1-a) percent confidence bounds on M(T), the
NTBF at time T, are derived, as before, from the bounds on r(T).
These bounds become exact as N - -.

S. NUMERICAL EXAMPLE

Suppose that a system undergoing development testing
recorded the following 40 successive failure times; .7, 3.7, 13.2,
17.6, 54.5, 99.2, 112.2, 120.9, 151.0, 163.0, 174.5, 191.6, 282.8,
35S.2, 486.3, 490.5, 513.3, 558.4, 678.1, 688.0, 785.9, 887.0, 1010.7,
1029.1, 1034.4, 1136.1, 1178.9, 1259.7, 1297.9, 1419.7, 1571.7,
1629.8, 1702.3, 1928.9, 2072.3, 2525.2. 2928.5, 3016.4, 3181.0,
3256.3. That is, the system was of age .7 when the first failure
occurred, of age 3.7 when the second failure occurred, etc. At age
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3M6.3 the system had the 40-th failure. Pro, these data, and

equations (3.1).and (3.2) we find that A u 0.761, S * 0.490.

To determine if the Weibull model my be used to track this
systim's reliability growth, we calculate the goodnesi of fit

statistic C2 given by equation (3.3) where N w 39, 1 - (38/40)5
* 0.461. This gives C2 w 0.077. Next, we find in Table 2 of (1) that3.
for N a 39, the critical value at the .OS significance level is 0.218.
Since C2 1 0.218, we accept the Weibull model.39

Using 1, 0, the failure rate function is estimated by

r(t) - At@' and the MT'F function is estim-ted by M(t) a [r(t)]"'.

The current failure rate r(3266.3) is estimated to be r(3256.3) *

0.006, and the estimate of current HT1F is [.006] * 166.7.

To place 90 percent confidence bounds on the current MTBF
N(3256.3), we refer to Table 1, N - 40, and find a - 0.664, b a 1.40.
Using the formulas in the previous section, we get 90 percent con-
fidence bounds (0.004, 0.008) for r(3256.3). Hence, 90 percent
confidence bounds on N(3256.3) are (125.0, 250.0).

Suppose we wish to place approximato 90 percent confidence
bounds on future MTBF, say at T a 4000. Usinig r(4000) a 0.005, we
calculate these bounds to be (0.003, .007). Approximate confidence
bounds on M(4000) are, therefore, (142.8, 333.3).

6. APPLICATION

In this section we shall discuss an application of the
Weibull reliability growth procedures to an Armyodevelopment program.
Two major points concerning the application of this model are
demonstrated. Firstly, the model may be applied to discrete data.
Secondly, as in any mathematical model, care should be exercised, in
its use. In particular, the importance and usefulness of the goodness
of fit statistic in Section 3 is demonstrated in this application.

Recently, AMSAA conducted a reliability growth study of a
missile system. The purpose of the study was to use historic data on
the first 801 valid flight tests to determine the growth curve, and
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also to ascertain in retrospect how these data could have been used
to track and project system reliability during development.

In reliability growth considerations, it ir configuration
changes on the system which are of prime importance. Consequently,
in this study the 801 valid flights were ordered according to manu-
facturing date, since this should reflect the sequence and conse-
quences of system configuration changes during development. The data
consisted of the flight numbers at which a missile failure occurred.
Observed that these are discrete data as opposed to continuous data
in the model. However, it can be shown that for a large number of'
data points, the discrete failure process can be approximated by the
continuous model. This approximation improves as the number of data
points increases.

The interpretation of r(t) for this type of application is

that r(i) = AM 0-1 is the probability of failure for the i-th missile
produced, 1 - 1,2, .... Hence, R(i) a l-r(i) is the reliability of the

i-th missile. Analogous to WTIF, M(i) - [r(i)]" is the mean flight
between failure.

The first step in determining the reliability growth curve
was to use the failure results for the 801 flights, and equations
(3.1) and (3.2) to estimate the parameters of the Weibull model. The

goodness of fit statistic C2, given by equation (3.3), was then cal-

culated to determine if the model and data were compatible. The
value of the statistic was highly significant (very large) indicating
that the model did not reasonably represent the data. This implies
that a single, smooth, Weibull curve would not reflect the decrease
in failure probability of this system.

Further investigation revealed that the development program
experienced a major re-emphasis on reliability improvement after the
200-th flight. Thus, the parameters of the model were estimated
separately for the first 200 flights (see Figure 1) and for the
remaining 601 flights (see Figure 2). In both cases, the goodness of
fit of the model to the data was acceptable. The horizontal lines in
Figures 1 and 2 are the average failure probabilities over 100 flight
intervals. The smooth curves are the estimated Weibull failure

probabilities Xei° 1. These curves are solid up to the end of the
data, and the dash lines indicate the estimated future decrease in
failure probability if the current rate of improvement were continued.
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From the two curves the reliability R(i) w l-r(i) is
estimated. The resulting reliability growth curve is shown in
FPigur 3 with a jump at 200. The magnitude of the jump was calcu-
lated by parametric and nonparametric means, and consultation with
the progrm office.

We next considered how the Weibull model could have been
used to track and project system reliability during development,
Using •the first 200 flights, the estimate of the current reliability
was .68 and the projected reliability at flight 800 was .74
(Figure 1). This projection indicated that the system reliability
requirement would not be met if the present trend were continued.
There wa a major re-emphasis on reliability, and based on the next
100 flights (201-300), an estimate of the reliahility at 300 was .89
and a projection to 800 was .94 (Figure 4). This projection was very
close to the current estimate of .9S for system reliability obtained
using all the data.on flights 201-800 (Figure 3).

jThus, the estimation procedures provided a good guide as to
when additional emphasis should be placed on reliability, and also
provided accurate estimates of future system reliability for each
phase of the development program.
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MIJ4IMU(Ii VARIA, LL SOLUTIOd OF A POLY,1O4OAL FUN4CTION

OF TWO AOISY RANLUOM VARIABLES i

Oren ,4. Da Iton
4athernatiLdl Services Branch

Analysis and Computation Division
White Sands 'lissile Range, ;New Mexico

ABSTRACT j

The multivariate analysis problem involvinq two random vector

variables, one a dependent and the other an independent variable,

eaclh variable noisy, has not been solved in general. However, if the (

two covdriance matrices for the vector variables are independent and

known, a maximum likelihood solution is possible in certain non-
Euclidean spaces. This paper discusses an iterative technique for finding .
the miflimum variance solution to a problem in which the independent

variable is an mtth degree polynomial function of the independent variable,

and both are normally distributed. The data is assumed to have high-

noise content and to have been obtained, manually, from a graph

using a ruler. Because of the nature of the data, problems of stability

may arise. A method in which control of the excursions of the initial

estimates of the polynomial coefficients by mean- of an ad hoc

Bayesian covariance matrix, is included in Lhe derivations, and a way

to convert a diverqent problem to a convergent problem by means of

scaling is illustrated. The results for the minimum variance solution

of a third-order polynomial math model, for mutually independent

measurements using data from manual measurements from a graph, is

included.

I
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I. IRODUCTION.

Ve have the problem of estimatnoi the parameters fw a math nodel relating

two random variables, each subject to noise. That is, let Ct and ni

repesent two inla ate

Ci X Ci÷z

where C. and 61 represent noise, and such that

Yi - f(x 1)•

Tar the purpose of this paper, we asam thatf(x/ )is anmth denve polvacial.

Thusm fr 6y it

7 a P0 + Pix + P2X2 + ... + Pa i

The problem as stated has not been solved in Rumezrel E1l. but If certain

rstr•i•tions are assumed a aminium varia solutian cam be ubtained. These

restricticms are the Independence criteria, well-knotn to puectitiamera of the
ars
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E'fi I V E{6 I = 0

C 7

ii

•: v V"i 5 3i = -(i 'j : :'

CoY(c 1l.5,) =0,

and the assumption that the 1 9a aft kneem. (This assumption ca be
C

relaxed [2]. in that the varimaces can be estimated. It is &esumed here, that

such estimates, if necessary, have been made.)

ror the polynomial in x, we note that if m.1, a fairly straisht-forward

derivation produces a quadratic eauation for p,. for example see [lep. 255-60).

There arm, however, several complications which may arise even in this simple

came which are enumerated in considerable detail by Worthing and Geffner

(3, pp. 375-91]. Additional difficulties arise when m1, and a short disscussion

of some of these problems are also discussed by Worthing and Geffner [3,pp.

409-13], based mainly- on the work of "eary [4].

On the other hand, it was shown [5] that most distributions commonly used

can be classified in less than half-a-dozen equivalence classes described by

non-Euclidean spaces, to the limit of a parameter; anythinp true for one

member of the class if true for other members, or is true elements in spaces

derivable from such spaces. Thus, the non-Euclidean space described as the

"ae-lo" space includes such distributions as the Chi-riquared, Naxwell,a-mMa,

Rayleight and Normal; the parimensic spaces derivable from this include the

Ita, Student-t and fisher (M]; the derivable LUniform m04oa includpq the Uniform,
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3rplmential or PoLson, Logistic and Cauchy.

The empositLim in this paper is conoesnod w!th Normal varlates, but fr the

above statements, it can be shown by extension (5J and (B], that the results

ae applicable to any of the other diRtributions. (Order statistics, since

the range of the distribution depends on the variates, are, perforce, ruled

out.)

1.1 NONEMCLATURE AND DE"N!TTONS.

1. A vector will be represented as:

be The Direc bra "< ' and ket " o n will only Indicate rowo colum

vector* reap. Fumctions involving these sywhols have no other Implication I
than standard matrix operations. Thus, fto A. a matrix, -xAdv La a bilinear

form for vectore x and y.

2. f() represents a functional of the variables in the vector,

3. Matrices or vectors may be defined as arrays whose elements are,

themelves, arrays. Thus:

a•

A,> #

.A >
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represents an wm arrvy, each of whose elements is a vector. If each A1  has

kL elements and if k. then the total size of A In terms of

scalar quantities is, perforce, mlcxm.

J, AI represents thp absolute value of the determinnmt of a matrix, A.

5. *- , represent a vector or matrix of seres, reap. Subscriots

If applicable, will indicate dimension.

S. I or Ia represent unit matrices- the dimension is specified in the

7. Soae operators

&a 1'(o) indicates the diaKonal matrix whose diaaRonal elements are

the components of X . Thus, if

x 1x 2

X• zX

1m1

then

Xxl

x 2

r(iE) ,-

Xn
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b. IDk(s) is the rntow for the kth derivativ of the polymnmial

10 M. (NOtW: -Dk(xo) implies the kth derivative vetor of x eve•luated at

Roo) Th1s

1) <D(x) W [l x X2 .. a]

2) <D (x) (0 1 2x a • x

I, Etc

G. D k(') is the matrix, each of whose rcm Is the kth derivtiv
of the c•mespoudful compoment f *. Thuas

<Dk(xi)

0 .) -( 2)

D (k,)

(Dk(xo ) Is deflied tisislly to that in "e", abow.)

III* THE PROBLEM DEFINITION,

Ve 8mm that we have two ue ruement veatoral ' no each with
a oseu eamte, meaured indepedently, where

yl) + c
4 +
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cov(c<E} E(E><E} q

Cov(6><61 m Ef6'81) w-

and both and hove a Mormal distr4tbution. Further:

Yj pu+p xi+ P2x + p

* Thus we can bwriti:

pp

LO P::
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Salso • sume that we ha•e a prior distribution which describes or faith

In the Initial estimates of the pai . -tars In P o &Lao smo J, y dstributed. P.

This ad hoc "Bayesian" adjunct is used to control the excursions on the

adjustownt of the parameters. The danxer in its use lies in the fact that

for my "small" variance on a parameters, we muat be sure that particular

parameter is well-known. On the other hand (7], this "control functionm

am force convergence in an, otherwise, divergent probleu.

te am then write the liklhood function as

K - 2r)- &P)

vhere P' will represent the initial estimates of the parameters, and

will be chosen as a diat;onal matrix whose diagonal cogonents are the

variances assumed foxr the parameters in p. It has been found that one

parameter is more likely to be known than any of the others. In this problem

the bias (i.e.: po) is likely to Le best known, so Var (p ) vwil be small.
12 0The varianoes of the other terms in P will be set to 10 . The effect of

this procedure (throuFh net on a polynomial) was documented in [7].
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Thus, our minimization function, 1, can be written EIi n

a <QC' *l CO + <4 >+%p*Q 0

IV. OCRIVATION Or T14C NLW!IZAT!CON rMICTIONS.

The approach toward minimization will be by the method of steepst descent

usming an iterative procedure. That in, we will odd adjustments to the variables

until the magnitede of the adjustments epnroachos zero. A smemntos reflection

(91 Indicates that we will adjust the independent variable, x , and the

parowertm vector, I), until the residuals Eand t minimize 1. Sinee we are

assuking analyticity in a neiphborhood of F) , E* and' ý0 ,we can expand
xand P' In a Ta',lor.o expansion, and since the nothod of steepest descent

Is a first-arder process we will write:

X Xn + AX
0

4* 4y y Ay

ad since
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where It LI understood that the "a" subscript (except on jo) "fer to the

value of the variable during any iteration.

roe the remainder of this section we will assum that n measurements have

been made of the variables n and ýi so that nq,y,x and Ax

m a-coqmonents vectors. The definition of the order of the polynomial will

be chanpd to m-i so that pipPoPo, , and 6p are a-couponent vectors.

t. Chaawaterisation of

We expand e in a Taylor's series retaining the first two terms. Thuns

)o % + r>t Ax÷ + *<C) P

16 Brivaition of

"t Do ROO) Then

(g) * fl>I - J..1•

hom vhioh, using the method developed by Dalton in E8, Appendix C•] for forming

the partial derivative of arrayu with respect to arrays we can write:

><t 4n L <pjT) - PjT
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5x yl

nI n

n~xn

whom.

No$since

<j [ x~ X2x

we have that

Dx~* roy[
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- 4D1 (xl )p,

c~cD 1(z3)pb

r- -r[D1(x)p']

Um the term La r[is)Pl L

qid slams ~wehwI
1~* 0
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IThe term <D (xd) 1a be written as:

, "[0 1 2x 3. . m-2

= 0 1 2(x1 o+Ax ) 3(xio+Ax 1 )2 "' (M-1XXi 0+Axj)m-21I
I

= 0 1 2x +2Ax 3X n+3"2X1 AX "

(m-1-)xo 2 + (m-1)(M-2)xo 3 %x
io l0 -x

<D (x Ax<D
1 io) 1 2 (Xo)

Trom which

<D (x )p> =<D (x)po> + <D (x )Po>Ax
1 i 02 io 0 ±

÷+ Dl(xio)ap> + <D (X o)aP>'X&

If we define

Axl

A Ax2

Ax>A

then under the aexis of the assumption of analyticity in the neighborhood of X0

167
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we can drop sacond-oradr term and wr teo

+ rED (-X )p >Ir[&1X~

uJ +Ji

respectively. Thust

ax XP xpo iPi XP2

2. Der'ivation of i))

ýP ~ -P>< pY

B. Ohmaraterization of

In a minnow similar to that above, we have the followinot:

a 4. >a~ <6 )TAX) + >< T &2
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__• >< -= .•'-(c - cx) u -I

ax n

C. Charaaterization of J

Dia•e J - D (0) expanding this similarly to the one done above for

TX > )we have that

J D() ( (X) + I[/A]D(x)
y 0 0 0 10X

y yo + Aiy , resp,

D. Reformulation of the MinimizaticnFunctional, I

We can write c and I as:

C> - - r[ D1 (x)py>Ax> - JyAp ,

ac - J Ax> - JyAp>

6>a60 > X
8:' * I - AX'

Thus;

S- (QiC) + (6< +T6 -14c.o <Ai<A x QX ,

I: + P: ) : + I<80 -0 x)> 1
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2 Ax- 2 <e Q~lj AP>

* txJxp lJX AX> + 2 <AxJ PW1 J Ap>
X~j p xy y

Tl -1-+ <ApJ; qL7 JyAp) + -16.4.1 5>

-2<6.Q
1 axý + <AxQ1'Ax>

p 2 <p Q 1p 6>+<p AP>

Since we wish to keep terms of' no higher tban second-order we have:

1.~4C c A' 1j Ax> + <i A
0yxp o0. xpo 0 ; xpi

o <roy xp 2 &x>

2. -C>i' p +'o0 lp

3.<AJQ~1JAx <4x J 0 Q ,YJ Ax>

3I. <AxJ xQ'j xAP> (A2JQQ;J 0 p>

5. x 'pJ 7 j Ap> < APtJ;QJ 0 P

xiýyxo(ýOP

T -1 T.-iP P <p p
y y y o 77y



9?• Make the following definitions:

K 0 o•-iCO> + <6oQxl~o> + <p •IP>

C >

6> A
-A >

Then:

UK 2' K - 2 Jxpo AVx - 2.<A .Xp1 Ax -
2 <CAJxp 2 AX>

-. 
2 <A, IT p> - 2<c Ai Ap> + <AxJ iJ AX>

+ 2<AXJ PQ ; yo yo YO6AAX>

-41
+÷ <AxQ n -x> + <p + <4 >

r l.F. Minimization or: I

S~I will be a minimum when

S'•x ~~> t>•' and •--•

TAX 771
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1. Derivation Of 31 >I
ell~

> J> E: E>
7a-x xpoEA> xp2 A

- ~ >xp2}C [(A,}CA> C AP >~

+ 1 j A> + Jý('Jop> - 2 lX.

We note that the diagonalizirig function rVJ) has the following

Thu wecanwrite:

a.jxpo 2. D1(,*0) 0 >] A>

r C-r'AIIA, (-X"0)p 0>

b. J C r[D (-" )Ac Al r[E D )

. Xpl A ~ 1 r[(Op

j >~ r[D (-* )p ]1['X1
xp2 A20X0 A

1[ 4)o>r4A]x
j 712



d. ) AI
1 >jxp2 }x2 {AX}2A>

- i > r[ > L[ •]]f(D (Xo)P >]nX>jc >

Define e > as the Ith orthonormal vector. That is, a vector with all

zeros except the i h component which is a one. Then if:

a. I >j k(A)

S -.
•,~~~ . l{ >xp2 ¢2 lA>

Y4

(E r(D (Xo)po >]Ax> [ p>]x,]
1 - 0 0• n 2 0oo]A

F 1 th
E r[D (x° )po>]Ax> AI <D2 ( )P°> + row

41 Mi X > >xp2})C2{ X}Ax

•!.-•: • ~<D (Xl )po>Axl.'

<D: • 2 (X 2o )Po0>AX 2

*• I =

<D' (X >6)

LL

a ,

cD2(x1= r((o)pr[Ax1r

•,: - (•Ir[c:D~po )pxx2 20 A

LU

W C )(p >>]7>

A 220no
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1 aft 1 (2 A~~

1IA I Jo 2

<D 1(x1  )ap> D1( 2 ,P

r[ AIl L <D 1(xo)hp>

I~~~ IE (XApcA

If we make the following definitions

R A r[ -" ]D ( + )p > + 8

A 0

I + ~r[D (x )p 0 >] 1 D>( +p 0>

S -2(+ + 1 p +[ BAX'* -l x>

8 -26*i[ (" -

2-- - -2-- - - ->1.+. .



2. Derivation of' >

yo QpPi > AoA

S Oberve"e ~ll~inaterms:

aAp A pDA A10

b. AjT T

y CA > D - 0

tMaking the followIing definiitions:

k DT (X )c1( > +

V0rAD n Ax'

3.T -1~i
~e a v e t v e q a t o n s i v o u k l vnqi .3 4~



S I P> + S 2Ax> R 1 > :44

S3AP> + S 2Ax> O R2>

31 2>

in which S2 aund S3 have inverses. Make the following definitions:

A 2 3

A 2

T S
i • VA> STA R2

then:

Ap> a Q•IVA >

AX> a RA> - SAAP> A

V. INITIALIZATION.

The "best" initial estimate for p is obtained (unless additional
information is available) from the normal equations. Thus
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VI, AN ADDITIONIAL METHOD rOR CONTPnLLI~r, DIVtRCENCE FOP THIE CASE: 0 = 0 = Ix v

The algorithm derived in the previous papas was based on a linear approximation

for the error In an assumed analytic neirhho.hood of the true solution. Inamuch as

both the dependent and independent variables are adjusted to achieve a minimum, the

aleorithm is usually sensitive to noise and the large excursions of the dependent

variable. Indeed, in the form shown there is definitely a tendency for the alporith"

to be unstable and to diver"e with unbecomLnr frequency.

A larpe number of empirical studies were made for various kinds of polynomials

under variouL candltiome of noise content (in which the basic promise for which the

study was intendend, namely: n a 0 V a, was assumed) and comparisons where made

among those which diverged and those which converped. The criteria which distinpuished

the convergnt polynomials from the divergent ones suprised this author. At this

writinp, the author has not studied the theoretical aspects and cannot supply the

reasons. (One might suspect that an investipation similar to that einloyed which

demonstrates the reesan for the instabilities of Milne's interration method, might

help toward an understanding of this problem.)

Early, it was found that if the input were randomized, formerly diverpent problemn;

would converge, though nqt always. I igures 1 to 4 show a study in which the algorithm

diverged after randomization. (It diverged before randomization, but this result is

not shown.)

1. All work was computed in double precision.
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A number of additional studies involvinc polynomials of various shapes disclosed

the rather suprising fact thatapr'arently, the only criterion neeoed to insure con-
vergence "as that the (scaled) blope of a line based on the total heluht oF the First
ard last points of the variables mut be less than 45 0  I f the terms in the independ-

ant variable were monotonically nondecreasing.

SA ucalin criterion was introduced which coared with In 3n o,.

If ' < the data in n was replaced by s.m here x 0.9 /• /s. ripures S to 10

demonstrate the effect on Identical data of thm divergent problem (firuresl to 4) sub-

Sject vo this scalin, criterion. In this case, the almorithm convereed.

8

The data for the above studies were renerated from the polynomial:

V u 22.5 + 2.125 x - 0.5 x2 + 0.03125 x3

iI Sto which zero-mean Gaussian noise wtth a variance of 0.02 hA('. been added to each of t~e

the noise was increased to 4.0, which is the name size as th'. first point oP the inde-

pendent variable, and the domain of the independent variable was decreased so that it

ranged through the valued': 4.0,4.2, ... , 13.8 . The alrorithm still converged when the

independent variable was rescaled, but not suprisinply, the number of iterations increas-

ed substantially. These results are not shown.

1. It might be of interest that the first attempt at rescalint was to mike

and ' each a unit vector. This didn't affect the divergence or convergence

tendency at all.
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Figur8es 1 to 15 show the oonvervenos of the al"orithm based on the oolno•ials

1yu 2.0 7. x- 0.2 x - 0.1 x3

in which the variance wae again 0.02. This curve Is dome-shard and so constructed

that Yl and y• are sufficiently close toRethor that the data wyas baely , retoil@ed.

This demmnatretes the, apqre.ulvt sufficient criterion that the slope based on the

first and 'eat polat determine whether the alwozithm wtll onvw~e or not.

Finally, ?t'uree 16 to 19 show the convervemae of the alMorithm fr data obtain-

med anually usla, a ruler and a strip chart. Furthermore, the curve fram which the

masurements were .btaimead iftterad over a width of about 3/8 of em inch. Such data

is crwk by my stu•ao'ds for computer work, hut, heartenLnplys the alsorithe can-

verxed nicely. Setxral other studies usini' data obtained in a similar maner fromsimilar sources &Ia had a convermnt alporLtho when the resaling criterion was

employed,

VIZ. RESUTS AnD CONCLUSIONS.

This paper ha discused tbo prblms of a minimum varince iterti firt-or
solution f~or two noisy vector variables, a dmr~mdent and an independent one. In which

thdependmt variable Is related to the independent variable b- a polmnorial. A

nuaber of studilo were made using a variety of polynomial shapes, of Cetree three.I t wN aesumaid that the noise on each independent observation was (auasim with

a sero nem. The variamne of the noise was varied from 0.02 to 4.0, the latter of

the sm ordCM of .ftnttude a the independent variable.

I Two critertia for ssisting algorithm converpenoe have been intxoduced:

'i) An ad Meo Daps•am dLstribution which coutrolled the excusiouns of the

polynomial soefficleets,

S80



(ii) RescalinR the d2pendent variable so that the slope based on the first and

last data point was less then 45°,

Of the three criteria no studies haew been pesented usins criterion 1i), but

the effectivnmes of this method has heen discussed in [7J.

Rather complete studies based on criterion (it) were made usinp, a 3 order
Polynomial in Uhlch u 1 * =. That is, a least squares solution, ror all cases

I, .,, tried, the alprgithm converned everytime. At on,.nt, because of the oririna1 oeuls
of•the problem, the use of (iWA as a converpenoe criteria is deemed adequate for the

r'quirwmets of the project.

I T81

___ ___.__



1. KeIdal, N.G. O Stuart, A., The Advanced Thee" of .tatistics, Chas

Griffin aid Co., Ltd, London, Vol 2, 1961.

2. Nolenms D.F., Nultiweiate Statistical Methods,. Nore - Hill Dook Co.,

"KY, NY, My 17.

3. Worthima, A.G. mid Geffner, J.9 Treatmant of Ew•. isiontal Data, John Vile

Smand Sons, Inc., NY, NY 1950.

4. Gearyq, RC. Ncm-linear r'uctIonal Re]ticonishLp Betwe. Two Variables

When One Wwlibl. is .trl. *4d J. Amr. Statsit ASS., 0I, 94, 1953.

5. Dalton, O.., T. Trwsfowmations Throu.h a Mom-Eucl|dean Spae in a Linear

Trauisforeaitio Context. Application of rirst-degee-affine Trmaformation
to Probability Density Functioms in the &-Log_ SpacePqm presented at the

19th confern" e an the Design of rqxp in ArwE Res., Dv. aid Testing, Rock

Islamd, Il, Oct 1973, to be published.

6. Aiderwmo, TJV., fn Intuzoduction to Multivariate Statistical Analis

John Wiley md Sons, NY 1958.

S.7. Dlo•,. ., ,iniaiticm Procedure for Assessing tuIns u ,atlmm._anmd
Geoerinhi*4e LcantLon I.m Errow #%aport No 90 92.0q-502, TRW, Space Tech-

noloay Lob. Redon" beach CA, July 1963.

SD. 3 . D.C. A Treat•m• t of Analticml Poto m , RCA Deta Red. Tech.
l, laplort No. 30. 1,0 Aug 1957.

9*Daltton 0 *K., Int - lod in 'to "Iniftization P less and Kalwmmi-%cv
riltee TechnLques, TechnLwal Peport, An and CoW. Div., WS•I, Nm, I June

1967.

10. }alton, O.N., 21hU .ai. NR-AM-1, USAWSMA, VSMR, NM l9714.

752



I U~~t4#,;^ a=% i 4.. 0 I.r..

*a~a~a ~ =2!1 flOo 0

"0 * 0 0 0 0 0 0 . 4 6 . . f

vi.-! Iii

*4. ftIf" . 0

4- 9OI0 MO

1604 oft:40 U 4 .444 4

#6 ai
a a m

4 w VI Vwee *4s
if I

oi :
00 w-

l'* Is0 4 4 9 U~ .~A.

oft "I** I * r ** O *** 0 4 & *esA .
-8*0 2~IP 00,Ui1 "a46. *44 ft t t

0p14 P.t no4 O 66 VOO -04 fta. V f 49

783 1.



~Ze e4 ftft- O
don sohft . C

aft4e v Oat f

:A *1 I
oba

00

~ ~Pb 31 ; ro oo!tz

How - jim

T4



a 0U r 0

aN @ IWO ~ t -or'13t f

06. 0 44- 0~e 46

aW -use
4I -1024.a %

mi8 t ;& W
woat w

"00 opf 41

ub w.~ 06-0e Goo. 0

it a *mp; -. ae f @ N -000 0 0

-a0 aa fe
,,a i J -. w

b a O
a4

785



@a~eq cc ~ a.. -4 0%

mum'10, a**9 a 44f P .

ft"A~t" M" mo 0.

04 m P 0 0. 4 S

0 .0 F4 a" .09t - P

FY IU: 4
786



.:I ,111 4j 4

- I I I n--I~

"-lR e. &' e•i Rjfte..

aolr 1manlt 01 .. 19

ft P fd fMa

241.p-q q ci

,my. .II

fl oft ft)

ON -0 A

II. 1111 0 1 ", ; , L6 1LL 0

0I O: . % OR A *A a fft is ••lae• i •q

ZO& : & 0 :,

i~h.

II
VA 44a 4

Item4 a8 Id 44 ai n~ n

5 w :U: : %wei5in~t

it If w 5a em k.
1
4

06 00 -i

I-d J 5

w@4 as a a.- .ý

0. a-- .a0i ; I 0 490 p oo 0 0va04, 0v v
,; ;; Go of

IT87



"e t p. P4(45Ili e#N 4

* 0 1144 0 1. 0%..?
A. a. -

- % - IP T

.1 ...... ..

IsI
Pb a 4

00, ". 00 i

(FASE6

T8



Ib 'br Aa

-5444 '0 u~i4 a 0%" .0%

n 0A a~e 0 w ".s f ..10 a~

91 11 W H "0 00 4 a a4 
f e 

a

6A1
u

4p0Ok4doII 

'4t 
..~g~.%~ US4 

.@~t, ~~~q.I 
~ . b404SC 

PtF

S.T 9



7,i
Id0*I

00 : * .J-u0 0

0 04PC04 * S0".Il*09a 0 4i 24 4 44 6 r .f pd - 0

S. 7I0aA 04- t * "

a b.

01GL RE 8)
7)0



@%t I

of #4@d0 oftWm~ * e* j * lhbDt4M-am4. *4

I~ Ae 0-%e-e- 4 10 10 ft .

B-: J~ *3p

10' 00 Itc CI0 Cl0 0 013 0 0a00a C

ItI

W, I-

it 2.

'(F RIM I

79~jf L



I. j
I '1
I I

he,

hiU- '1
U,

Si -
a U 8-

U a *1
- 0h.

a
0 -

S. U*

8-0 48- U,
4 4

.JI B
- -

VS. VS Ii
I hi VS

hi hi
z p.

5- S.
b

* a *

.8 U VI

2he'4 4 hi
- 5-

- U 4
VI 4 .8
hi hi
* 'U-a
hi .8 Z
K - U U

S. hi
U * S Z

4 S

a * .1 1 S.
hi,�. 0 0 S. I

2 *
S S VS *1 hi

* 6 3; 4
4W 4 hi

U

-. -a
4 4
2 -
S
hi 0

ULI - S ii
2* S.8-.1

S. VS U
K thl VS

5-



~ 9.~ u *009.0 -044 .@ 0U.

aa

W, mg4- l. o 4 o #
a ba 0, ; III& 0M ft00 Uf 44v 0 0%Ir

w 1 4

a,-~h .~~a W-u UaF. -

A. VI W . 11Aw A

at 0.

"I

am 4 4 a

1.k -w o a

-~a u asO a- s0 P 44

0.i haUWI4 w .

4414 4f" 440 W %

hiQ- d T93



vpms W0 k wo e" ft t f

Zo.U 0 on.

0f eeqw. ft p f

444 0 f*0 P. ft
intf a fm t f

94



. ,

hi-U .S.i - ..
Oil

of a 0 i• pb Is .

r a w U .

L 4

IL Im 1.aI

-4 ILtf f tf

OLO

& rq go "s IN I 1 IS
w o- t ft "401

0 "e F%11 u 40h 3

0 0 U o -P. a.I

4 IN i a

I- d9
a. I l.mu .:., Sie L u

(F~tlUE 13)

795

- U ni n i n ....- n -m.. . . . nm



.01 .wS, 1.0* *UU.U af~tf 4
0S~~~*U fttto" ft4W *w.ft

eMUM UWinU MU U UU UU Uto~tft U D .~ w

dW i

4%fto4 o fm 060 6

00 *06. *e.Uft weft~f *qf-fS o4

o *0 0' 3. 6 0065 0*90660 a 66a600 0 60 0 4e . 0 0 0

.8 ~ ~ ~ ~ ~ ~ ~ ~ . .~ .. .W 
.

.W 
t 

.660 .S U .9ft .

A8.8

14e 10 468 41 P.II on *
1

ldl *1  .
mflP6 

0p~t ~ ~ fmf 40wo ftP.ft ftn6 4

la P. P. vC 0419 ftgo
V-0 Mo a a P. p S, Sa we 00 mo *0 onr

4."1 78

I n8 )



IIA

w i 0

* ad
a ILVO V

E -,
794.

a° 0

hi .
a

a
hi

-
q9

* hi
. -- , - , . _ .

S ; ' . , •. . , . . , " .. ,, ,. i•. 'S : ' : . . .... i ' .,



J" i m lI.,i j,0 .0c 00000'0040it 0 0 l0a0aac o o
00 0I 0

so...

a b. x

a a 0 C
4 I I C I I116 ' 'imj .I r 'ftW .44 ft P4 q. N 40"et1 tX. da 'o

J'~ 4109~

~ B J ~ o S0 o ~ 0 0O 0 00 0

-w 00 0000 0a0

UIt1

;46 waa* j~.! ~46

a 0a30 a~ 0 0
601 aW 0 6a090 09

ing. -a0 w 0 ) 03

a qpq k*ftr V .; 4
t W f

SW.F- Ias,798
ANA"~ ~goto



- I i ii

w w
U U1

n I

.11
iii

* S

u 4 • 4 - 1 . . '"



9L~ 41Sa PbaSft v ftv 0 *3 :0 4, -'

j N 0 -we #UA AAN~N A @ N 4 U n .

Uh* -4e 0SNV S

woo II4b t at i " 0

*r~p aN*..%ai *rq*A

WIIJI v I woo no64 no~ M fma iSA N

4b

a- aa at -C064ft Oý o

7 .70, " . 6 4 0 a a.. -- 0 N S0 N
ftflp N4VN

daa

v~stp'dom4 je ls jto W

Won 4 0.0 w 0%ft 0 aIn r

1804



THE PROBABILITY OF MOTOR CASE RUPTURE

RONALD S., DOWNS
PAUL C. COX

QUALITY ASSURANCE OFFICE
US ARMY WHITE SANDS MISSILE RANGE

WHITE SANDS MISSILE RANGE, NEW MEXICO

AB ST RACT

Statistical Procedures are studied for the evaluation of
the probability that a motor case may rupture as a result
of excessive pressures exerted by the propellant. Normally,
this study is based upon two sets of data. The first consists
of data indicating the pressure required to burst a motor case
(X), and the second consists of data indicating the maximum
pressure exerted by the motor (Y). These data are obtained
from two separate tests; the sample sizes for each test are
usually different; and while X is usually tested under a fixed
set of conditions, Y is frequently tested under a variety of
environmental conditions and therefore makes use of a designed
experiMant. This may be recognized as a special case of the
problem of estimating component reliability from sample
measu-ments taken of the stresses applied and the strength
of the component.

Four tonhniques were studied for the evaluation of the
probability of motor case rupture. All required independence
for X and Y; the first Vequires normality for (X-Y), the
second requires normality for X and Ys and the thtrd and
fourth require few assumptions concerning the distribution
of X or Y. The procedures are:

1. One-Sided Statistical Tolerance Limits.

2. The Church-Harris-Downton (CHD) Procedure.

3. Birnbaum - McCarty Procedures.

4. The Chebycheff Inequality.

The last two methods either provide unacceptable results or
require an unacceptably large sample size. Either of the
first two methods can provide acceptable results with a
reasonable sample size if the assumptions of normality can
be considered valid. Of these first two, the CHD method
appears to give the narrower confidence limits, but the
tolerance limit method may be preferable for small samples.
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Actual test data was used to test the assumptions underlying
the various methods. From this data, it was concluded that
X may be distributed almost as the normal, but there is some
evidence that Y and (X-Y) may deviate from normality. Thei implications of these deviations are discussed.

THE PROBABILITY OF MOTOR CASE RUPTURE

1. INTRODUCTION.

a. An important problem when evaluating the safety of a
missile or rocket system is the determination, at a suitable
level of confidence, that the probability of the motor case
rupturing is less than some pre-determined small value.
Normally, an estimate 6f the probability of case rupture will
be obtained from two tests each limited to relatively small
samples. The first test will be to determine the maximum
pressure (Y) exerted by the motor.. The second test will be
to determine the pressure (X) required to burst the motor case.
The maximum pressure tests will frequently be conducted under
a variety of environmental conditions and will, therefore,
make use of a designed experiment, while the motor case tests
will nearly always be conducted under a fixed set of environ-
mental conditions. The first point is mentioned, because, for
most maximmn pressure tests, the degrees of freedom cannot be
expected to be one less than the sample size.

b. The case rupture problem is a special case of the
well-known problem in which the reliability of a component
Is estimated by determining the probability that the strength
(X) of the component exceeds the stresses (Y) which are exerted
on the component. The main difference lies in the fact that
the examples and supporting data of this report will be related
entirely to the motor case problem.

c. The following methods for solving this problem are
discussed;

(1) The Statistical Tolerance Limits.

(2) Church-'Harris-Downton (CHD) Procedure.

(3) Birnbaum - McCarty Procedure.

(4) The Chebycheff Inequality.

The advantages and disadvantages of each procedure is discussed
and actual test data is used to evaluate the assumptions of
these procedures.
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2. STATISTICAL TOLERANCE LIMITS.

a. A procedure which bs been used for some time for the
solution of case rupture problems has been that of statistical
tolerance limits. If it can be shown, at the y% level of
confidence, that (X-Y) < 0 no more than et of the time, then it
is clear that at the y%-level of confidence, the probability
of case rupture does not exceed £%. Making use of a table of
one-sided normal, tolerance limits, such as Reference a, this
can be determined if.

(1) X-Y is normally distributed

(2) 2-7 is known

(3) nxy can be determined
yI

(4) S can be determinedx-y

(5) Degrees of Freedom: fx-y can be determined

b. If the assumption of normality is valid, the required
information is available from the following formulae:

(2) S = Sxa + S y F(2)

Sx + S• (_

nn ny

(Note Appendix 2 for discussion)

S 2)2
(4) f z X -2. F(4)

x-y

(Note Reference b)
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c. Referring to Example As Appendix 1$ the following
can be computed:

(1) - =2500

(2) S V(250)2 + (450)2 514.78

(3) (r-Y)/S xy = 4.856

(4) n xy = 9.22

(5) fx-y = 14.31

d. Referring to pages 180 and 182 of Reference a, and
performing several interpolations, it can be determined that
at the 90% level of confidence, the probability of a case
rupture does not exceed 3.30 x 10-1.

e. Formulas F(M) and F(M) frequently provide fractional
answers. One may proceed by rounding the fractions to the
nearest integers and computing the desired probability, or
the fractions can be retained and the solution can involve
extensive interpolation.

f. Advantages.

(1) At a given level of confidence, low probabilities
of case rupture can be obtained with relatively small samples.

(2) If suitable tolerance limits tables are available,
the procedure is relatively simple to apply (especially simple
if f and n are integers).

g. Disadvantages.

(1) The procedure is sensitive to deviations from
normality.

(2) As will be shown in Section 3, the Church-Harris-
Downton procedure generally provides lower probabilities of
case rupture than the tolerance limit procedure.
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3. THE CHURCH-HARRIS-DOWNTON (CHD) PROCEDURE.

a. The Church-Harris-Downton (CHD) Procedure evolved
through three journal articles, References c through e, and
was developed to determine, at a suitable level of confidence,
the probability that X > Y. It was specifically developed to
evaluate the reliability of a component babed upon its strength
and the stresses it must undergo.

(1) The confidence limit statement:

Pr{9(V-''(l-a/2)M8 V<R<#[V+t'(l-a/2)6 v]) 1-a F(5)

r V

(2) V 40 (V) R (the point estimate) F(6)

(3 C~ 2(S+S) +l _Yx + y) FM7
nx my x ÷ Y

, 4 b, The following explanationa of F(5) through F(W) are
given:

(1) F(5) is for two-sided confidence limits. For one-
sided, replace a/2 with 0.

(2) t refers to the cumulative nozmal and *-1 to the
inverse cumulative normal. Selected values of 0-1 are provided
in Appendix 3.

(3) Cn is a constant depending upon nx and Cm on ny. These

constants were developed by Dr. F. Downton, Reference 3, and may
be found in Appendix 3. The constant. could be replaced by one
without greatly affecting the results.

a. To solve Example A, Appendix 1, by the CHD Method:

(1) V a5.01922 and ov +l.075= 1.037
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(2) For 90%, one-sided confidence limitso, 2-1 (1-a)=
1.28155

(3) P {0[5.019 - 1.282 x 1.0371 < R} 90%
Pr{3.6P 0 ) < R) = 90%

r

P (.999888 4 R} = 90%

90% confidence that the probability of case rupture < 1.12 x 10-4.

do Advantages.

(1) At a given level of confidence, low probabilities of
case rupture can be obtained with relatively small samples.
The CHD method generally appears to provide narrower confidence
limits than the tolerance limit method. Pdragraph 2 of Appendix
1 gives the results for five examples and it can be seen that
in each case the CHD method gives probabilities ranging from 1/2
to 1/3 of those obtained by the tolevance limit method.

(2) Aside from the complexity of Formula F(7), the CHD
method is relatively simple to use. Aboeit the only tables
required are Tables of Cn and good tables of the cumulative
normal.

et Disadvantages. '

(1) The CHD method is sensitive to deviations from
normality.

(2) The CHD method uses the asymptotic normal approximation I
of a given statistic, and requires substitution of the population
means and standard deviations by their observed sample values.
For these reasons, the method of statistical tolerance limitsmay be Preferable when dealing with small samples.

4. BIRNBAUM - McCARTY STATISTICS.

a.. Birnbaum - McCarty statistics provide a non-parametric
procedure for determining, at a given level of confidence, that
X(Y. This procedure is relatively simple and involves computing
P = IVI/X4y ), where U is the number of pairs of x and y for
which x<y. It is then possible to make the following statement:

8o6
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SPpj_+cl>y, where E depends upon nx, ny, and y, and can be
obtained from the Tables on pages 323 and 324 of Reference f.

b. To illustrate this procedure, Example A of Appendix 1,
will again be used. It will be assumed that the smallest x in
the sample is larger than the largest y, resulting in U & 0 a 0.
From page 323 of Reference f, it can be seen that 6 * 0.609 for
nX = 10, ny a 9, and y : 90%. Thus, Pr [(Y<X) < .6093 > 900,
which is to say that at the 90% level of confidence, the
probability of case rupture is less than 60.9%. (Note Pars 2,
Appendix 1, for other examples.)

c. It is of further interest that if Birnbaum -McCarty
statistics were used to verify, at the 90% level of confidence,
that the probability of case rupture did not exceed .005, it
would require nx ny = 140,111

d. Advantages. The only requirement is that X and Y must

be independent random variables.

e. Disadvantages.

(1) To provide probabilities which are at all useful,
completely unrealistic sample sizes are required.

(2) Regardless of how widely separated X and Y may be, as
long as the two samples do not overlap, it does not improve
the probabilities.

5. THE CHEBYCHEFF INEQUALITY.

a. Since Birnbaum - McCarty statistics do not appear to
provide a reasonable solution for the motor case problem, the
Chebycheff Inequality is offered as a possible procedure when
there is reason to belive that the assumption of normality may
not be valid.

b. This procedure is discussed below, and Example A is
again used to illustrate the method.

(1) To Chebycheff Inequality is given by F(8) and F(9)
below. The procedure for converting the inequality from a
well known form to F(N) is provided by Appendix IV.
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P(X>Y) > 1 - ./K' F(e)

K - F(9)IlI
(2) Using the data for Example A from Appendix 1, and the

values nx_y z 9.22 and fx 3 16.31 from Para 2c, the following

is determined: .
(a) 95% LCL for'--p - :.

!-.t9 5 6 1  -.. ~ 2500 -('1.7439)(82.333)z

2356.642

(b) 95% UCL for ax-y

T ," 1 63088- 265,000 726,809

(c) 90 LCL for = 2356.642 3.242

Cc) 9% LC forK - 6.38ff 2500 2.0

(d) 90% LCL for Prob (Y<X) = 1 - 1/K2 : 1 - 1/(3.242)1
1 - .0951 2 .905.

(e) Assuming (X-Y) is continuous, unimodal, and symmetric,
90% LCL for Prob (Y<X) a 1 - 2/9K' : 1 - .0211 : .979

c. Advantages.

(1) Except for the application of t and XI tests, the
procedure is completely distribution free.

(2) The procedure is relatively simple to apply.

(3) Referring to the Table in Para 2 of Appendix 1, it
appears that the Chebycheff procedure provides better results
than Birnbaua- McCarty, and if (X-Y) is -ontinuous, unimodal,
and symmetric, it is possible to improve even more.
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d. Disadvantages.

(1) The t and X2 procedures are based upon the assumption
of normality.

(2) While the results are better than Birnbaum- McCarty,
they are still not adequat'e for most applications.

(3) If it is desired to use the further refinement of
continuity, unimodal, and symmetry, this will be about as
difficult to verify as normality, and it'really'doesn't buy
nearly as much as the assumption of normality.

6. OTHER PROCEDURES. The four methods determining motor
safety, which arO discussed in this report, are far from
exhaustive. Three additional methods are briefly discussed
below:

a. Reference m uses the Chebycheff inequality and the
Van Dantzig upper bound for the variance' of the Ma'xn-Whitney
statistic U to provide distribution free confidence intervals
for the probability (Y<X). This method generally gives better
results than Birnbaum-McCarty statistics but not as good as
the Chebycheff procedures of Section 5 of this report.

b. Paragraph 4 of Refer ence I provides a procedure which
can be used if X and Y are independent and both are normally
distributed. This method provides results which are about
the same as the Tolerance Limit Method, but has the following
limitations: "

(1) ax and ay must be equal.

(2) nx and ny must be equal.

(3) The published tables do not go below 10 or above
100 for sample size.

(4) The published tables do not provide probabilities
of less than one percent.

c. Reference 1 provides procedures based upon similar
concepts to those discussed in 6b and provides some additiontal
methods for solving the case rupture problem.
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7. TEST FOR NORMALITY.

a. The methods of "Statistical Tolerance Limits" and
"Church-Harris-Downton" are both based upon the assumptions
of independence and normality. The assumption of independence
for X and Y appears to be perfectly reasonable, but the
assumption of normality requires careful study. If X and Y
are both normal and independr.it, then X-Y is also normal with
P, 2 and a a - 4. 4 oa.. Therefore, thp matter

or normality for X2 Y, and X-Y will all be investigated.,

b.e In addition to tooting for.normalityp it may also
be useful to compute the coofficiepts of skewness (y) and
kurtosis (y ).

(1) The following drawings illustrate why the distributions
of X and Y appear less likely to overlap if y WX) is positive
and y-(Y) is negative. Similarly, the distribution of (X-Y)
appears less likely to overlap zero if y (X-Y) is positive.Y. (_ 6

- 0

(2) Kurtosis: If the coefficients of kurtosis (y) for
't and Y are both negative, there appears to be less likelihood
of their distributions overlapping, than if y is either zero
or positive. Furthermore, if y is negative, a narrower

confidence limit for the variance can be expected than if y
is zero or positive. Note pages 51-56 of Reference h.
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c. Actual Test Data.

(1) A search was made for actual test data, and while
all the data that was located was classified$ burst pressure
data WX) was located from three tests and maximum generated
pressure data (Y) was located from 20 tests. Table 1 provide&:
sample size; the coefficient of skewness (y ); the coefficient

of kurtosis (y );and the significance level using the Shapiro-a

Wilk procedure to test for deviations from normality. (Note
Reference i for a diecussion of the Shapiro-Wilk Test.)

(2) From Table 1:

(a) Burst Pressure Data.

1. Neither y nor y is significantly different from zero
for any of the three tests.

2. y is small in all cases and positive for two.

3. Y is negative for all three tests.

4. The Shapiro-Wilk test gives no indication of deviation
from-normality.

'5. For burst pressure, the assumption of normality appears
reasonable.

(b) Maximum Generated Pressure.

1. For Test #5, y is significantly different from zero

at the 5% level and y at The 1% level. Neither y nor y is

significantly different from zero for any of the other 19 tests.

2. From the Shapiro-Wilk Test, #5 deviated significantly
from-normality at the 1% level while tests 11 and 14 showed
deviation at the 10% level. For the other 17 tests, there was
no indication of a significant deviation.

3. The signs for y and y2 are about evenly divided between
positive and negative. 1

4. There is little indication that (Y) data deviates
signTficantly from normality, but there is enough questionable
data that further study appears desirable.
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TABLE 1

-ROPeRMS OF 3 SWLES FOM MT PFSWE (X)
AND 20 SAMPLES~ FOR !UMX14 GENEiA PFSM~ (Y)K

TM OW,.2w MD. SIZE W= 7w

BE= FRm3 (x) M1- 7 -0.070 -1.13 .90.
2 10 0.162 -0.291 .50
3 10 00118 -0.505 .98

MAX •1i3 (Y) 1 7 -0.86 0.723 .27
2 8 -0.17 0.162 .61
3 12 0.088 -1.124 .27

04 12 .681 0.245 .0,
5 10 -1.8149w 5.263"s .0160
6 12 0.285 -1.330 .35
7 10 -0.394 -1.502 .27
8 4 o.84o 2.289 .36
9 5 0.992 2.466 .32

10 6 1.053 2.727 .34
1 5 0.405 -3.034 .096
12 6 0.1145 -0.908 .98
13 6 0.447 0.454 .59
14 4 1.047 3.1484 .08s
15 4 0.317 -0.849 .81
16 4 -0.771 1.916 .42
17 4 0.000 1.500 .57
18 8 -0.331 1.6314 .75
19 6 0.088 -1.900 .57
20 6 -0.105 -1.900 .25

Siljn'fcane at 10% level.

**viflewme at 50 level.

OS1gntMiance at 1% level.
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(3) The small samples associated with the tests in Table 1
provide a serious handicap in evaluating normality. Therefore,
the following was performed in an attempt to obtain a look at a
larger sample:

(a) The data from the three "burst pressure" samples were
transformed to provide samples with IsO and S:l. The data

was then combined to form a-single sample with n a 27, 0,
and SX a I.

(b) The data from the 20 "maximum generated Rressure"
samples were transformed to provide samples with f -- 0 and
Sy- z 1. The data was then combined to form a single sample

with n a 139, 9 * 0, and Sy a 1.

(c) The data discussed in Para (a) was again transformed
such that 7 z 4000 and S = 300. The data in Para (b) was
transformed to have 7 a 2000 and S a 75. Then a sample of 200
values of X-Y was obtained by randomly matching values of X
and Y and computing their differences.

(d) The sample size, mean, standard deviation, coefficient
of skewness, coefficient of kurtosis, their standard deviations,
and normality test information are provided in Table 2 for the

j combined samples of X, Y, and (X-Y).

TABLE 2

PROPERTIES OF SIMULATED SAMPLES FOR BURST PRESSURE (X),
MAXIMUM GENERATED PRESSURE (Y), AND (X-Y)

TYPE
OF SAMPLE ST. TEST FOR

DATA SIZE MEAN DEV. Ia Ia NORMALITY'

X 27 .0002 0.961 .0887 .471 -. 0811 .578 .43

Y 139 .0008 0.923 -. 124 .208 -. 568 .408 .11

X-Y 200 2026 287 -. 004 .17? -. 978'e' .342 .025**

**Significant at the 5. level.
***Significant at the 1% level.

'The Shapiro-Wilk Test was used to test for normality of X.
The Xs test was used to test for normality of Y and X-Y.
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(4) It is possible that the procedures introduced in
developing the samples of Table 2 may have introduced some
biases in the above statistics, but the following may be
drawn from this Table.

(a) Burst Pressure Data (X)

1. Both y and y are, small and have the desired sign.

2. The'Shapiro-WilkT est indicates no significant

deviation from normality.

3. The assumption of normality appears to be valid.

(b) Maximum Generated Pressure (Y)

i. is small and possesses the desired sign.

2. Y differs from zero at about the 17% level of
significance. y possesses the desired sign if not zero.

3. Y deviates from normality at the 11% level of
signTficance, using the X2 test for, goodness of fit.

4, While y and yI possess the desired signs, there

remains some concern about the assumption of normality and
the behavior of the distribution in the region of the tails.
Fortunately, the variance of Y is usually significantly
smaller than the variance for X.

(c) (X-Y)

1.y is essentially zero.

2. y is large and differs from zero at the 1% level of
significance. This may reflect the procedure used instead of
the behavior of the distribution of (X-Y), Fortunately, y is
negative.
fo3. U ing the X2 test for goodness of fit, (X-Y) deviates
-fromnormality at the 2 1/2% level of significance. This can
"be attributed to the large negative value of y,
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4. There may be considerable question concerning the
normility for (X-Y), especially since normality for Y is
questionable. This apparent lack of normality appears to be
caused by the large, negative value for the coefficient of
kurtosis, and this may be caused by the procedure for

.constructing the sample rather than the actual behavior of
(X-Y). While a negative value for the coefficient of kurtosis
may be preferable to a positive value, there still remains
the question of the behavior of the distribution in the
vicinity of the tails.

.. CONCLUSIONS.

a. Birnbaum-McCarty and Chebycheff Inequality procedures
are desirable because of their distribution free characteristics.
However, each provides either unsatisfactory confidence limits
or requires unrealistic sample sizes.

b. Both the statistical tolerance limits and the Church-
Harris-Downton methods require assumptions of independence
for X and Y and normality for each. If the above assumptions
are valid, either can be expected to provide satisfactory
confidence limits with a reasonable sample. Of the two, the
Church-Harris-Downton method appears to prol-ide narrower
confidence limits, but may be less suitablo for small samples.

c. A study of actual data suggests:

(I) The assumption of normality appears to be reasonable
for pressure required to burst the case (X).

(2) The assumption of normality may be questionable for
the maximum pressure (Y) and the difference (X-Y) thus suggesting
considerable caution when applying these procedures.
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APPENDIX 1

EXAMPLES

1. The following examples are used for illustratiVe and
for. comparison purposes. Example A is used for demonstrating
how the four procedures of this report are applied. Note
that for Example A, a designed experiment was used .to evaluate
the maximum pressure exerted by the propellant, resulting in
a sample of 10 with 17 degrees of freedom. rIn all other.-
examples, the degrees of freedom are (n-l).

PRESSURE REQUIRED MAXIMUM PRESSURE

TO BURST CASE EXERTED BY PROPELLANT

Example A

a =6000 psi 7:3500 psi

x x •50 psi Sy :250 psi

nx 2 9 ny =10

. X : 8 f y 17

Example B

.- a 6000 psi 7:3500 psi

S -z400 psi Sy = 400 psi

:x z 16 ny z 15

f 1x x 4 f y z 14

Example C

T: 6000 psi 7:3500 psi

Sx z 400 psi S ' =200 psi

nx a 10 ny 2 25

f a9 f 224
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Example D

S6000 psi 7 3500 psi

S 450 psi S y 250 psi

n. 25 n y 10

fx 24 f :9

Example E

- -:6000 psi 7 3500 psi

S: 500psi S : z125 psi

n. 8 n a :8

x y

2. The following table provides 90%, one-sided confidence
limits that the probability of case rupture will not exceed
the listed value for each procedure.
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PROCEDURE

2/9 x
TOLERANCE CHURCI-HAMIS BINBAtU•- CHE1YCHP CHEYCEFF

EXAMPLE IMMTS DOWNTON MCA1F' MNUALITY ir aM2

A 3.30 x•10- 1.12 x 10-" 6..09 x 10-1 9.51 x 10-" 2. 12 x 10-

B 2.92 x 10-4 1.10 x l" 4.83 x 10-' 10.24 x 10"- 2.28 x 10.

C 2.91 x I0-s 8.54 x 10-* 4.88 x 10-1 8.0 x 10- 1.80 x 10-2

D 5.05 x 10-2 2.00 x 10-5 4.88 x 10-' 7.86 x 10-2 1.75 x 10"'

E 9.18 x 10- 4.28 'x 10-4 6.62 x 10-1 16.46 x 10-2 3.66 x 10-2

'When applying the BHirrwar-Wcrty procedure, It is assumed that the
smallest X in the sample is larger than the largest Y In its sample.

'Using 1/9 of the Chtbyohef" values is Justified if (X-Y) is continuous,
unimda1, ard synmetric.
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* ~APPEN~DIX 2

scum= Sw SIZE PM 7M STATI ICAL 70LERANCE LUUT ?EMM

1. 1*an aplying statistical tolerance limits to determine the probability
that X-Y>O, it is necessary to determine a sanple size, nx.ys to be used in

the ecoputation. If nx - ny,, then simply set nx_y - nx - ny. If nx 0 ny,
a safe procedure is to set nx-Y to th, smaller of (nx, ny). However after

now oosideration, P(3) was decided upon:

a +S
N * 2 1(3)

x+ -
n xny

2. 7he procedure used In determining (3) was as follows:

a. T t test for the equality of two mean. with unequal variances:

t z(-Y)- (px - *)
Sb. If n.- n. = n, the fotrnla obviously becomes:

(I-?(') " -• " •)

0. RqatIng the two and solving r n gives F(3).

3. 7t1 above procedure cannot be considered more than a plausible reason
fbr P(3); however, P(3) does have the following desirable attributes:

at ItI 1f n.0then flxy Y1 1  nly

b. If S1 .,~ then nxY Is the haumonic mean of rx nn..

a. ra1 .,1s botsded by n.and n..

d. Ift sx Sy .then nx- wil be closer to nx than n 1, and this s
duuirsble stnce the larger S has the greater influence on S3 in the
ftodrla:
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APPENDIX 3

TABLES REWIRED FOR THE CMRCHf-HARRIS-DIM(INN (CIID) PCMJRE

11. Values of Cn, ta ken fr p. 55 of Refer•ioee, am listed balmw.
n n

Sncn ncn n. cn

4 0.9955 17 0.9560 30 0.9719

5 0.9456 18 0.9578 31 0.9727

6 0.9334 19 0.9595 32 0.9734

7 0.9314 20 0.9610 33 0.9741

8 0.9328 21 0.9625 34 0.9748

9 0.9355 22 0.9638 35 0.9754

S10 0. 9384 23 0.9651 36 0.976-ýi

11 0.9414 24 0.9663 37 0.9766

- 12 0.9443 25 0.9674 38 0.9772

13 0.9470 26 0.9684 39 0,9777

14 0.9495 27 0.9694 40 0.9782

15 0.9519 28 0.9703 - -

16 0.9540 29 0.9711 - -

Fotr lare n, cr•, 1 1/n + 6/n' 60i/n + 0(nf-")
' I n

V 'This Table has been inci•bd with the permission of the author.
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2. Values for ý-$ (Inverse Cumulative Norual)

CONFIDENCE ONE TM
LEVEL SIDED SIDED

0.70 .6745 1.0364

0.80 .8461 1.2816

*0.85 1.0364 2.4395

0.90 .1.2816 1.6449

0.95 1.6449 1.9600

0.975 1.9600 2.2482

0.99 2.3264 2.5758

0.995 2.5758 2.8130

3. For values of 0, any table of cumulative norul should be adequate.
The tables on p. 3-10 and on p.13 of Reference f could be useful since
these cover values of 0 fr-I 0-500.

4. Using the above, V mid a v rn easily be compLuted, note Exanple A,
Appendix 1.

a. V - 6000-3500 5.01922 F(6)
n x+ S 4.9355(450)1 + .9384(2,0,z

_ _ (c ns, x c,s \

b. S 1 + (+ -S F(7)
cnsx M n~y [X n (n2 )

1 [L450 2 ( 250)2
(.9355)(450)2 + (.9384)(250)2 L9 8

+ (2500)1 ( 172 ) = 1.0817
2{(.9355)(350)2 + (.9384)(250)2}2

o = 1.0400
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APPENDIX 4

V E CHIBYCHEFF INEQUALITY

1. The usual statement of the Chebycheff Irequalfty:

a. PCIz - Pzij > b] I cz2/b ".

b. P[-b< (Z-uz <b]l1--az2 /b 2

0• c. PZ -z >-b] 1 - z2/b"

Since the inequality has changed from two-sided to one-sided it would
appear reasonable to write the right side of Ic as 1 - a'/2b1 ; however,
this does not appear to ba justified since there is no asms'ance of
symmetry.

2. Letting Z - X-Y, ic can be written:

a. Pf[(X-Y) - (px-py)] > -(Px-py)) >_1 - Ox y

b. Subtracting (ipx -p,, ) from both sides of the inequality within the
braclets and letting

K - +ayF '(9)

:: P[(X-Y) > 03 > 1 - I/K2

c. P(X>Y) > 1 - I/K 2 or F(8)

d. P(X<Y) < 1/K2

3. According to Reference k, page 293, when (X-Y) is continious, unimodal,
and symemtric,, and since this is a one-sided Inequality, 2d could be written:

P(X.Y) <_ 2/9K2
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On ra NNXIIS OF 0S
INCI=OLlI BLOMK DESIGN5

Alan W. Benton
U, S. AM Materiel System Analysis Activity

Aberdeen Proving Ground, Maryland

AISTPACT. When considering a randomized complete block design, it
my turn out that the blocks available are not large enough to
accommodate all of the treatments. We are, thus% naturally lead to the
consideration of incomplete block designs (130); incomplete in the sense
that each block does not contain a complete set of treatments. Although
the prameters which define an IBD may satisfy the necessary parametric
relations usually used for this purpose, the configuration may not exist.
A development of nonexistence proofs, utilizing tte Hasse-Minkovski
invariant, is presented which leads to som necessary conditions for
symstrlical balanced incomplete block designs (SBIBD). Some necessary
conditions are worked out for the existence of intra- and inter-group
balanced incomplete block designs.

1. IMTiDUCTION. In order to pave the background for the
formulation of the problen it will be necessary to provide a few
definitions.

Let v denote the number of treatments,
b denote the number of blocks,
r denote the njmber of replications of a treatment,
k denote the b'lock size, i.e., the number of treatments

in a block.
An IBD is an arrangement of v treatments in b blocks such that no

* treatment occurs nore than once in any block, each treatment occurs in
exactly r blocks and each block contains exactly k distinct treatments,
kcv.. A BIRD is characterized by the parameter A which indicates the
number of times a pair of treatments occurs together in a block. If
Srb then the design is said to be symmetric and this design is denoted
by 583D.

The five parameters which define a BIRD are not algebraically
independent. They are integers subject to the following restrictions:

vr - bk (1)

A(v-l) - r(k-l) (2)

I
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With every design is asso;iated. unique (0,I) matrix called the
incidence matrix, where l And 0 indicate the presence or absence of
a treatment in a block, respectively. The matrix for a BISD is
written as

N a (fnje), i-.,2,..*,v and J-l,2,...,b

It if VC 3 e

0 if Vi 0 B,

where VY, V2. " Vv are the treatments and Bit 52, % are the

blocks.

Of considerable interest in the theory of IBDs is the matrix NH',
which consists of v rows and v columns and provides a description of the
treatment structure of the design. For example, for the design
vwbw3, r-k-2, Awl

N"~ 0

and

HNN 1 2 1 Cr-A.)I ÷XJv (3)
I v vv

11 2i 3

where I is the .identity matrix of order v and Jvv a matrix of order

vxv of whose elements are 1.

In the remainder of the text we will make use of the properties of
the Legendre symbol (b/p), the [filbert norm residue symbol (a,b) , and

the Hasso-hinkowski invariant' of a matrix A, C (A). Shrikhande [i] andr

Chowla and Ryser (2] were the first to use these as the main tools in
nonexistence theory. Only the definitions will be provided, properties
and preofs can be obtained from Uspenskey and Heaslet [9], Jones (4]
and Pall [7).

Let p be a primo. If p does not divide b, and X a b mod•p has a
solution X(med p), then b is a quadratic residue (QR) mod p, otherwise

/82826
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it is a quadratic nouwuidue (qNt) d p.

The property of QR and QMR may be expressed in terms of the
Logendre symbol (b/p) by the rules

1.1 if b is a QR
•' (b/p) (- 1

-1 if b is a QdR.

A geeralization of the Legendre symbol is the Hilbert norm re-
sidue symbol (a~b) which is #1 or -1 according as the congruence

ax +by2 1I od p

has or has not, for each value a, rational solutions x and y. p is
any prime and a and b are rational numbers.

Two symmetric and nonsingular matrices A and B of the saw order
n, vith rational elements, are rationally congruent if there exists a
nonsingular and. rational matrix C of the sam order such that C'AC a B,
where C' denotes the transposed matrix of C. This relationship is
denoted by A % A. The symbol % will also be used to denote that the
square free parts of two tntegers are the same.

Let Dip D 2*, Dn - JAI denote the leading principal minor

determinants. Define Do 0 1. Then for Di # 0 the Hasse-Minkowski

invariant of a matrix A is given by

n-1C (A) .0 (-, i1pj (Dj÷I,-D i) p (4) _

for avery prime p and is invariant for all matrices rationally congruent
to A.

A fundamental theorem on rational congruence due to H. llasse (3]
and one to which we shall appeal is

Theorem 1. Two syinmetric and rational matrices, A and B, of the
Sam order are rationally congruent if and only if IAbIB18,

index A u index 1, and C p(A) w Cp () for all primes p.

2. A NECESSARY CONDITION 1FOR 11E EXISTENCE OF A SaIBD. From
equation (4) we1 ind that



anid that dot (NIn) a r h)v- V...1 (Y-1)]Jrk(r-A)v '.O
Itmy be shownthat NMIN''I. Alsosince the rank of Nis v, index

NMI - index Ivv For a intwix of the form AseI*af+02, then (Ogawa.16j)

where £ *e~f. Using this result we find

*1 and

v(v-1) /2
Cp(N'I) p -. i (-I,r-A) p(v. r- P,

Hence, we obtain

Theorem 2. The necessary conditions for the existence of a SBIBD
with parameters v.r.A are that

(7 -x)V I .%

and if so, then

(-lvrl) / 'Ev 1 '(r-A) a +1 (5)p p
for all primes p.

The design with parameters vnb=29 rskm&, Wm satisfies equations
(1) and (2). Using the theorem (8-2)26 % 1, but using (5)

(-1.6)29'£/(29,6)p a (29.6)p a (29,3) p 4 'JP

But for pw3, (29,3),(29,2) -1 which implies that the design does not
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exist.

3. INTRA- AND INTIrR-G,)UP BALANCED INCO•PLET IBLOCK DESIGNS. Nair
and Rio [S] defined incomplete block designs for experiments involving
several groups of treatments which are known as intra- and inter-group
BIBD*(I-IBIBD). In such designs one is interested in achieving equal
accuracy for comparisons between all pairs of treatments belonging to
the same group.

An I-IBIBD is defined as follows:

(a) The experimental material is divided into b blocks of
k units each, different treatments being applied to
the units in the same block.

(b) Therem are a groups of treatments consisting of
V.1,V200*,", treatments.

(c) Tfoatments belonging to the i-th .group are replicated rj

times, i=l,2,....m.

(d) Every pair of treatments in the i-th group occur together
in A blocks (i-l2,..m), and every pair of treatments

one of which belongs to the i-th group and the other to
the j-th group occur together in Ai, blocks

;,! C(i'J ,i ,Js,2, ..*•,m).

The numbers vi, b, k, riA 1j(ii-l,2,...,m) are known as the

parameters of the I-IBIBD m-group design. The parameters must first
satisfy the following relations in order for the design to exist.

m mis
V iE Jvrir bk (6)

By arranging the treatments within a group in order and the groups
of treatments in order we obtain

82
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I A2  •.

nMnl Bm2 . . . An

where A, (rAli)VI'v V1+A iivivoi0jiji vilvil ij and 0ilBij If

in particular r or, A ii-i, Xij-A2 then the design reduces to a group

divisible design.

Consider the case for m*2. Then

[ (A 
B )NN 21 A21j

Oince A2 i1 nonsingular, the determinant may be evaluated from

detCNN') - det(A2 )det (A-BI 2A2 B21

After sow manipulations we find

dot(NN') ' (r 2-- 22) 2 (rl-I)' 1 (((r2 *22 (V2 1))

' CrlX iC 1')))-vV 1 X2)
12 2

"Let pi a ri +x ii(vil), PiNO(ri i-X) i and Ri a pi/viiwl,2. In

order to evalueto tho Uiasse-Rknkowski invarimit of NH' for the 2-group
design we note that the leading principal minor determinants may be
put in the form
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whoen P2  ("t'. A 22 ) 1 V 2 x and

Using the definiton for the Hasse-Ninkowski invariaiit we obtain

C(NMI) a(-l.-l)p in (j+ID

p-1 p 0 0iso ( 2 - )P G( VIP. l d

O( D + # -vl p * 9(D 4 , D v +V-D 1 )

1 p 1 1 v4 2 1

PS ( d)C(A )(P18 D4)[(4.4-),ul(Dj, ,-Dj j P

The term in the~brackots ore of a form similar to a Hasse-Minkowski

invariant for Dv 2 Noting this we write

C NN') PS-,-1 (A )CPD (2 )(P150,,2 ) P

If v1.v2 a b and if dot (t#4')-O. then MNN reIv+, and we obtain

Theorem S. tdeC09aray conditions for the existence of a 1-IBIBO
I-with V *v2 ab and dot (NMI4).%O are that
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P IPF2CPIP 2-v1v2, 2) 1

and iL so them

S(DvP2)CPIDv) -P 1

for all primes P.

For a design with parameters viaS,ri-k=6, s vl.A2 2 0SA 1 2 n2, 4jblO

the initial parametric equations, (6) and (7), are satisfied,
dot (N1')N1, but for pal 3 it may be shown that

$C(A,) C; (D2) (P, 11P) 2 ) -P

which implies that the design does not exist. It may be noted that this
design is also a group divisible design. Utilizing Bose and Connors
[1] results for GD designs, the product is also -1. confirming our result..
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GO0E UMi OF ORDER STATISTICS1

H. A. David
Department rf Statistics

Iowa State Udiversity, Ames

ABSTACT. Various uses of order statistics (OS), particularly in
reliabilt=y studies and robust estimation, are first briefly reviewed.
A more detailed treatment is then given of three further uses of 08,
namely in data ecmpression, selection procedures, and in some double
sampling situations. Concomitants of 08 aLre defined and applied to the
lasttwo areas. It is shown that considerable savings may be possible
in the estiastion of the mean of a random variable Y, which is expensive
to measure, if a correlated random variable X can be cheply detezrined.
Tables are provided to allow Imeadiate application of the techniques
described.

1. INTRODUCTION. If the random variables X1, X2, ... , Xn are

rearronged in ascending order of magnitude and then written as

1(1) < ... < X(n)

we call X (r) the order statistic of rank r or simply the rth order statis-

tic (r -- 1, 2, ... , n). In this paper we concentrate on the commonly
occuirig• case when the (unordered) XI (i = 1, 2, ... , n) are independent
r.v. 'a with cannon cumulative distribution tunction (c.d.t.) P(x). It

then follows at once that
Sr[(n) <S x1 = Pr [.a." Xi <S x) PAW~x -)

and

Pr x( 1 ) > x Pr (all x i > x] [l - P(x)J. (2)

These results have interesting interpretations, for if X is the lifetime

of the i crmponent in a parallel system of n like components, then X(n)
it the lifetime of the last component to fail, i.e., X(n) in the lifetime

of the system. Likewise X( 1 ) is the lifetime of a aeries system. Thus,
kowiring the probability distribution of component lifetime. we can from(1) and (2) deduce the probability distribution of a parallel or series

oyutem consinting of n such components. Indeed, if the components are

unlike and X has c.d.f. Pi(x), eqs. (1) and (2) are easuilv modified to

ork supported by the Amay Research Office - Durham.
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Pr [X(n) <x- P1 (x) P2 (x) ... Pn() (3)

Pr (X(,) > x1 Li - P-() [1 P2 (x)] ... 011 - (i,)

There in an obvlo'is connection with problems of relitbility. If Ri(x) i.-,

the probability that the ith component is still functioning at time x,
then Ri(x) 7- 1 - P1 (x),and (11) gives the well-known result that the
reliability of a series sy.'tem is the product of the component reliabili-
ties, it being asstmed that the componenta ftail inlependently.II

C'ioeely related are problems of life testing; for if n like items
(e.g., light bulbs) are put on test simultaneously the life test will
take time X(n) to completion. We may wish to terminate the test earlier,

say as soon as the rth item has failed (Type II censoring). The test
"then lasts time X(r) and we are led to study the behavior of X(r),

especially its expected value i and its variance 02 n As a matterSIr:n rn
of fact, we will usually be able to observe the order statistics X

X(, . the lifetimes of all failed items. If we can assume

an appropriate distribution of lifetime, such as the normal N(ýi, oa),
then it is easy, with the help of tables, to construct linear functions

r r
of the order statistics (OS) ei X(i) and E b X M which are respec-

: tively estimators of p and a having minimum variance in the class of
linear unbiased functions of the 0.

These and many other applications of 00 are treated in come detail
in [10] and [(4. Among other applications we maf single out the use of
OW in the construction of distribution-free confidence intervals and
toLerance intervals, the use of the rane (t X(n) - X( 1 )) as an esti-

m'ttor of -catter especially in quality control. probhability plotting',
tests ror outliers, and extreme-value theory. In re.cent years thr•v haI
been particular interest in finding robust entimators, i.e., estimators.
which are not too greatly affected by the presence of spurious observa-
tions or by our failure to assume the correct underlying distribution.
00 play a prominent rAle in ouch robust estimators uince the more central
observations in an ordered sample are less liable to be affected by both
.purious observationn and failure of assumptions than are the more

"extreme ones. Thus a very simple robust estimator which is imbineed
for the mean of any symmetric population is the midmeanI

ltd . , X(i) (n a. mUtiple of 14)n I
i 16
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which is generally more efficient (although not quite as robust) than
the familJar sample median

M X (n odd)
• ( ½ (n,,.))

( + (x (n even) .
S•' (•2 n) 2½-1

Both NK and M are examples of trimmed means; M is an extreme example,
at the other extreme being the untrimmned mean 7, not a robust estimator.
Many other types of robust estimators have been proposed, the more
elaborate 'adapting' themselves to certain features of the sample in an
attempt to produce an estimator particularly appropriate for that sample(:.*ee e.g. I11]).

We turn now to a more detailed treatment of three further uses of
00, namely in data compression, selection procedures, and in some double
sampling situationo.

of n2. rAk COMPRESSION. If the observations in a large random sample
of n from a population of interest are arranged in ascending order, then
it is possible to estimate the population mean (and other parameters)
from a small number k of OS, and to do so with remarkably little loss of
information if the OS are suitably chosen. For k 2 the optimal esti-
mator of the mean V of a normal population turna out to be, from large-
sample theo.y,

7 (z(o.27o8) . z(o.7292))

where e.g. Z(o.2708) stands for the order statistic with rank equal to
the integral part of O.2708n 1 1. Thus if n 1 100

• .(x(28) ' '(,73))

The efficiency of p is 0.81 (for any large n), so that its variance in
samples of 100 is equAl to the variance of the best estimator, the sample
mean, in samples of 81. For k • the optimal estimator is

, .1918 [ Z(. 1068) + Z(. 8932) +.3o82 [Z(. 3512) + z(. 6488)]

with efficiency 0.92. It should also be noted that * is much more
robust thani the sample mean, since it does not involve the more extreme
00. Table I gives p * for k - 2(2)12.

An interesting application of p* and related estimators has been
iadtte in space flights F0]. A Large sample of, say, p&2ticle. counts takien
on a space craft may be rep]aced by enough OS to allow (a) satisfactory

835



estimation on the ground of peawueters of Interest, such as thie now
count, and (b) a test of the assumed umderlyin distributional form,.
by means of probability plotting.

3. SELECTION PROCEDURES. Suppose we wish to select the top k
scorers in a certain test Iaken by n individuals (k < n). Ho.v much
better than average do we expect the selected group to beY More pre-
cisely, we are really interested in the 'selection differential'

A(k, n) = E [D(k, n)],()

where D(k, n) is the averag scaled difference between the seleed 06
and the mean score p, vim.

D(k, n) E-• . (--lo (6)
i-n+l-k

where a- is the s.d, of the test score X which for definiteness we take
to be normaily distributed. &(k, n) is readily evaluated with the help
of the important Table 2 giving the expected value g(ijn) of the ith
largest order statistic from a standardized normal distribution, viz.

•(ixn) -E( (-7

Ecample 1. A(l, 20) 9(112o) = .867

A(5, 20) = (1.867 + 1.408 + 1.131 4 0.921 + 0.745) = 1.214
5

If p 100, a = 16, typical values for IQ tests, we see that the
expected score of the best in 20 i.s

E X(20 ) U ,- , (1120) bY (7)

Loo + 16(1.867) - 13o

and the expected average score of the five best is

1oo + 16(l.214) = 119.4.

Very extensive tables of the expected values of OS from normal,
exponential, Weibull, and gama distributions are provided in [6]. A3 useful approximation to & civering also non-normal distributions, is
given in [2].

Sometimes we may also be interested in the variance of D(k. n).
From (6) it is clear (see [1i'' for explicit results) that this can be
found from tables of variances and covariances of OS:
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13rrt :n -- v aO (7 (r(8r)-

(r 1, 2. ... , n; r' = 1, 2, ... n; r ý r, gives variance).
The means, variances, and covariances of OS in samples of n < 20 have
been tabulated not orly for the standard norn'al distribution (Lio], p.
200 or [9], Table 10) but for a variety of other distributions which
depend only on a location and a scale parameter (for a listing see
p. 226). For larger samples approximations are available.

Often we are interested in how individuals selected because of their
good scores on X may be expected to score on Y. a r.v. to be measured in
a later test. We shall assume that Y is linearly related to X except
for an independent error term Z:

Y i = ILy 'ý 13(X, - pX) 4- Zi, 1 , 2, ... , n( )

where p - E(X), 1, ' E(Y), 1 cr/odXr being the correlation coeffi-

cient between X and Y which have respective standard deviations a and

ay; without essential loss of generality we take I) > 0. From (9) it

follows that PZ = 0 and Z= (l-o 2 )0 An important special case of

(9) occurs when X and Y are bivariate normal (when Z must also be normal).

Now if we order the X's, eq. (9) gives

Y [r] = "Y + P(y(X(,) - PX)/cX + Z[r] r = 1, 2, ... , n, (10)

where Y[r and Z[] denote the r.v. 's Y and Z associated with Xr.
Because of the mutual independence of all n X's and n Z's in (9), ordering
of the X's does not affect the distribution of the Z's, so that the
Z are,like the Zi,n independent r.v. 's with mean 0 and variance 02.

The Y are the r.v. 's of interest and we call Y I the concomitant of

the rth order statistic.

On taking expectations in (10) we have

E(Yr) P • + Pa" E (Xr• •

or (11)

Y[r] - ) (

This result may be described by saying that for the r.v. YFr the selec-
tion differential of X is attenuated by the factor o.

Best Available Copy
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triM (10) wohave &U.o

and or a= 1, 2, '.1. n (s r i)

cov(Y[r], Y[s]) Y P2 Or s:n (13)

4•. DOM ,W M We are all too frequently faced with the

probmofUng al pouatio mean, JA may, fro amples smller

then we would Like because of the high cost of observin Y which m,
for eample, involve destructive testing. Suppose n Item we available
to us and we are prepared to ame-are Y on k of them (k < n). Now if It
is possible to measure cheaply fcjr each of the n items a quantity X,
correiated with Y, then such auxiliary measuremnts can be used to improve
the estimtion of p Y- We shell assume that X maid Y hae a bivariate nor-

mal distribution (possibly after suitable transfomtions) although the
method below is applicable to the more general model (9).

Instead of the mean Y of k randomly chosen observations on Y wek
propose the following estimator:

1 
k

where Y rl is the concomitant of X (r the r.y. of rank rj among the X's.

Table 3 gives the values of rl, r 2 , ... , rkwhich minimize the variance

(obtainable through (12) and (13)) of the unbiased estimator Y[k] for

various n and k. Our double smapling procedure is therefore as follows:

(i) Arrange the n measurements on X in ascending order of magnitude.
(ii) Then measure Y on those k items having X-ranks r , r. r .

(iii) Take the average of these k Y-values to obtain l 2'"

Note that we actua.Lly need to know only the ranks of the X's to find
Y[k]" If the nimnerical values of the X's are availabe, then it is also

possible to use regression estimates with randomly chosen Y's 13) or,
better still, with selected concomitants but it turns out [7] that the
simple Y[k] is generally quite efficient. Table 4 gives the variance of

Y~k as a finction of IpI for n =19and 49 w .nd 4mand 1. For r 0,
?t•] is quiaent to-k. Etries for 1pI > 0 therefore indicate the

reduction in variance dae to the use of the auxiliary variables.
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Table .I plz wmk ' * - l~k]
n1 n o. or MUCliIrq vJariblesp k- n *o.' at- im

(a) k 2

1? i 'I 1
4 1 10 6 33 9 "Q 13

82 2 31  10 47. 13

9 3 22 6 33 10 48 13

10, 3 23 .7 36 10 49 1ii
1. 3 .24 7 37 10 50 14

13 4 26 7 39 11 70 19
14 '4 27 8 '40 11 00 22
15 4 28 841 3.1 90 25
16 5 29 8 42 12 100 27

__________ - - (b) k J31)1Q _______

kmw 3 k-li k=5 k-6 k-7
n j r,  r21 F r 1  r2  r 3 j r*r

9 2 2 4 1 I
29 6 4 11 4 9 3 8 13 3 7 11
39 8 6 15 5 12 4 10 17 3 9 14
49 9 7 19 6 15 5 13 22, 4 18 25

k=8 k-9 k 10
fl r, r2  r 3  F4  r, r2 r 3  F4  r I r2 r 3 FJ4  r,

19 2 4 6 9 2 4 6 8 1 3 5 7 9
29 2 610o13 2 5 9 12 2 5 8 11 14
39 3 8 13 18 3 71U16 3 6 10 14 18
'49 410o16 22 3 9 14 20 3 8 13 1P 23

*(from 71))
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Table 14. Variance of ) (as a fncioto

k,1. k 10

, 9 a .9 n -19 a .9

"0 .2500 W.200 .1000 .1000
0.1 .2481 ..2477 -W.995 09o
.00.29 .o09.1 .06Oi 3 .2W o,23 :00 .0.oe o

0.4 .21D0eT
0.5 =6 130071.F50 .6 .1803 Y& .3 o:074o

0. "51 .1384 .077o .632
0.8 L.261 .10o42 .0701 .0h
0.9 .0932 4655 .0622 O3
0.93 .0753 .044 .90286

1 .0%4 o . ,22 .033 .0209

.4 ..
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I i II i -i....r -:- - - ...... '7 -.. .. [... - - ] ... "I84II4



OPTMAL RBSOWW ALLOCATION FOR MAXIMIZING0 SYSTEM RELIlABILITY

Gerald J. Lieberuan
Department of Operations Research and Department of Statistics

Stanford University, Stanford, California

0,. ARIUM•T. In the design of a now system, or the maintenmnce of
an old system, allocation of resources is of prime consideration. In
allceating resources it is often beneficial to develop a solution that
yields an optimal value of the system measure of desirability. In the
context of the problems considered in this paper the resources to be
allocated are components already produced (assembly problems) and money

* (allocation in the construction or repair of systems). The measure of
desirability for system assembly will usually be maximizing the expected
number of systems that perform satisfactorily and the measure in the
allocation context will be maximizing the system reliability.

1. IQTRODUCTION. This work on the optimal resource allocation

for maximising ,ypytem reliability represents a sumary of research in

this area conducted by Cyrus Derman, Sheldon Ross and Gerald.J. Lieberman.

The basic proble" is to allocate resources in a way that yields an

optimal value of the system measure of desirability. Specifically the

problems considbred can be categorized as shown in thu following table.

Resources to be Measure of
Allocated Type Problem Desirability

Money Allocation of funds
"in the construction Maximizing the
or repair of systems system reliability

Components Maximizing the
already Assembly of systems expected number of
produced systems that perform

_......_satisfactorily

II. ASSEMBLY PROBLEMS.

II.1. General Formulation. Resources consist of a stockpile of

components, and these components are to be arranged in some fashion into

a set of working systems. This problem was treated by Drman, Lieberman,

and Ross in two papers, "On Optimal Assemble of Systems", NLRQ, Vol. Ir,

No. hj, December 1972, and "Assembly of Systems Having Maximum Reliability",

NLRQ, Vol. 21,# No. 1, March 1974. in particular, assume that a single

system has m different types of components. Associated with each com-

ponent is ai numerical value. Let (bi), i = 1, 2, ... , m, denote this

set of numerical values in the m components. Let R(blIb 2 ... ,hm)

denote the probability that the system will perform satisfactorily, i.e.,

845
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' .... la~b1  b2  . . .
R m(b b eat ba) is the'reliability of the system. For example,
let b denote the probability that the i th component will work
when component performances are independent. if all components must

work then the reliability isjust R b 1. b2 ... b . aevwrtheless,
this formulation allows for the component perfornmnes to be dependent.
Now suppose that there are n units of each component with corre-

spodig i bi biSsponding b 1, b ,.. 0 for every i. The problem considered
is to arrange the nu units into n systems, to maximize the expected
number of system that perform satisfactorily, i.e.,, maximize R(N),

where N is the number of systems that work. Of course this criterion

is equivalent to maximizing the sum of the n reliabilities.

11.2. "Series' Results. If R is a di.tribution function

(includes a series system of independent components) and if
i i ib, <b 2 5 <b nfor i =1, 2, ... 9in then the n oyster~s

represented by the partitions (b 1, b,2 ... ), Pb2  )

is the optismal arrangment� i.e., put the "worst" together, the second
"worst" together, ... , and finally, the "best" together. Furthermore,

if R(b1, ... , bm) > 1/2 for every permutation of the units, then

this same arrangement also minimizes the variance of the nunber of

systems that perform satisfactorily. Finally, if

R(b1, b2, . bm) = b1 b2 ... bm

where

b P(ith component workz]

then this same arrangement maximizes

P(N > r)

for eachi r.
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11.3, Parallel Systems Having independent Components - Formslation.

Prebeem is to arrange the am units into n systems to maximsie the

expected number of systems that work. E(N). in this case,

b "' bo) 1I-L (1-b0) ml- fla

where

i th
a P(t component fails) ,

so that
Sn 0 n Is

TE(K)w (1- IL a ) =n- z a
j=l i=l jul i.1 J

This formulation requires that each (parallel) system contain exactly

m components, and such a requirement may degrade the performance

measure in that E(N) may be larger if we allow for the possibility

that some systems contain less than m units while others contain

more. This more general parallel problem is treated as follows:

1I.4. Parallel Systems Having Indpendent Components - More

General Formulation. A set of t units is to be partitioned into n

disjoint parallel systems. After completion of a partition the number
thof units contained in the j system (j = 1, 2, ... , n) ts denoted

by mj, with the added restriction that n m = t. For a given

partition, the reliability of system J, Rj, is given by

iR aj

all i
units in
system j

s14 that

n
E(N) X, R : v- . a

units in
system J

847r
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11.5. Results for Parallel Systems. The solution to this problem,

i.e., the arrangement that maximizes X(N), attempts to make the reli-

abilities of each system as equal as possible. Indeed, if a partition

exists that makes the reliabilities equal, it is optimal. Unfortunately,

such an arrangement may not exist. However, bounds are available so

that the maximum expected number of systems that perform satisfactorily

will be within these bounds; the bounds being a function of an arbitrary

chosen partition. Finally, an improvement algorithm is also available.

* Essentially, this algorithm looks for pairwise interchanges of units

which make two systems have "more equal" reliabillitie. Incidently,

* all the results obtained for this problem carry over to the original

I problem where euch system is required to contain exactly m components.

11.6. Another Application of Assembly of Systems Model. A version

of the target assignment problem can be related to the general parallel

system assembly formulation. Manne's "A Target Assignment Model",

Operations Research, Vol. 6, No. 3, 1958, treats essentially the follow-

ing target assignment problem. There are t weapons to be assigned

against n targets. Let be the probability that the ith weapon

will destroy the j target if it alone is assigned to it. The objective

is to minimize the expected number of surviving targets. If x denotes

the probability that the ith weapon is assigned to the j target, then

the x are sought that minimize

in t

J-l i=l " xj

subject to

n
I ~~~ ~ 1-I) ii=I 2, ... , I

J~l

and

NX 
0
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II.7. Results for Target Assignment Problem. Manne points out

that this is a nonlinear problem and an exact solution is not known.

However, by making some simplifying assumptions he presents two

approximate solutions (one due to himself and one due to G.B. Dantzig).

The analogous concepts in the assembly model version would a;sume that

xA is zero or one. The ith weapon corresponds to the ith unit. The

Y jt target corresponds to the jth system. Whereas P jJ depends on

both the weapon and target, the probability of a unit working in the

assembly context is assumed to be independent of which system it is

placed in and hence is denoted by pi' This would imply that the ith

weapon has the same probability of destroying each target. Under
this assumption (which is less stringent than those proposed by Manne)

6 the system assembly results are relevant.

11.8. Other Work on System Assembly. An independent and earlier

discussion of the assembly problem with other application can be

found in Abe, "Multi-Stage Rearrangement Problem and its Application

to Multiple System Reliability", Journal of the Operations Research

Society of Japan, Vol. 11, No. 1, November 1968. He uses somewhat

different techniques, particularly in the parallel case. In the

reliability context he always assumes independence of components,

and his version of the parallel system problem requires each system

to contain m units. However, for this case he obtaltis some suffi-

r cient conditions for optimality weaker than equal reliabilities. He

also points out that the assembly model can be used in search and

assignment contexts.

III. ALLOCATION PROBLEMS.

III.1. General Allocation Problem. Lot A denote a fixed

amount of money to be used to build a single system consisting of

In components. Define P (xi) as the probability that component i
will work If x1  is allocated to its production. The problem is tL

Choose X x, .2.' , x1 so as to maximize the probability that Lte

system works, i.e.
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maximize

RP 1 (X1 ), P'2 (x), ... , Pn(xn)J J I

subject to

SxL A,

where R is the probability that the system performs satlafactorily.

11.. Special Cases of General Model.

A. System can be represented by n independent mL)dular subsystems -1

connect in parallel and/or series: in such cases R has an indentifiable b

simple form, Budin, in his paper, "Optimization Procedures for the j
Analysis of Coherent Structures", IBM Data Processing Division Report

No. 320-5509, July Nq68, has done some work on this problem. He

developed some algorithms, but essentially, the solution is still unknown.

B. In order to get some insight into this general problem, a

simple version is considered by Derman, Ross, and Lieberman in a

series of papers, (i) "Assembly of Systems Having Maximum Reliability",

Naval Research Logistics Quarterly, Vol. 21, No. 1, March 197h, (ii)

"Optimal Allocations in the Construction of k out of n Reliability

Systems" Management Science, Vol. 21, No. j, November 197)h, and (iii)

"A Stochastic Sequential Allocation Model", Technical Report No. 169,

Stanford University, September 161,1'(4 . Theae papers assume that4

Pi(x) P(x) for all components, and the system has a special

structure, i.e., it is a k out of n system. However, another

facet is added, namely, in some of our models allocation decisions

can be made sequentially.

111.5. An Allocation of Money Resources Model. Suppose A

denotes a fixed amount of money to build a single system consisting

of n components. Define P(x) as the probability that a component

will work if amount x is allocated to its production.

850
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A. Non-Seguential Version: Choose x,, x2 , ... , xn in

order to maximize R(P(x1 ), ... , P(x)), i.e., the probability

that the system woks.

B. Sequential Version: x1  is allocated to produce the

first component. Using the information as to whether the first

allocation produced a working or non working component, X2  is

then allocated to produce a 2nd component. We proceed in this

manner, making no more than n allocations. The problem is to

chuose x.l, x2, up to Xn, if necessary, sequentially to maximize

the probability that the system will work.

It is assumed that an n component system will work if at

least k of the components function.

111.4. Results for an Allocation of Money Resources Model.

(i) k I (parallel system) - sequential or non-sequential version.

If log(l - P(x)) is convex. then the x's are chose so that

A
x 1 = X 2  " Xn

If log(l - P(x)) iv. concave, then the x's are chosen so that

nIxI1 : AP x 2 0, , X. •n 0 .I

(ii) General k (note k n is series-system) - sequential or

non-sequential version.

If log(l - P(x)) is (strictly) convex then if one wants to

sequentially build k working components in at most n attempts,

n -> k, then it is (uniquely) optimal to allocate A/n at each stage

when A is the total resource available. Thus, it also follows

that the same allocation is optimal for the non-sequential model.

I
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(iii) Special case of P(x) x - sequential case - k I and 2.

Since og( l-x) is a concave function, the results presented under I
(I) htold for k 1, i.e., x1  A x = 0- ... , xn ` 0. Exact

results can also be obtained for the caoe of k 2 2. The optimal

policy it* can be described ai f•llows. Wher, the present amount

available is y and at most v additional components can be built,

then

a) if only one additional working component is needed, n allocates

min(y, 1), and

b) if two additional working components are needed, 0 aliocates

I ny if Y<•-

(iv) Special case of P(x) . x - sequential case - general k.

For the general case (any k), it is conjectured that the optimal

policy (,xx is such Lhat when the present amount available is y

and if k additional working components are needed with at-'most nx

stages to go, then t*x calls fur allocating

Yn if y n.t(k-l)

y -(k- 1) i.f y_ 1 (k-1)

(v) Special case of P(x) x - non-sequential case.

Che optimal allocation x* 2 ... , xn) is such that all

of the non-zero elements of xX are equal. It is not clear how

many non-zero elements are presented in an optimal allocation,

althoutgh some indications are available for A near k or zero;

for A near k the number of non-zero elements is small while
ror A near zero the number is large.
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III..). A Stochastic Sequential Allocation Model (SSAM). The

following model is dcscribed in terms of an investment problem,

although several ocher interpretations are available for this model.

We have D units available for investment. During each of N time

periods an opportunity to invust will occur with probability p. As

soon as an opportunity presents itself we must decide how much of

our available resources to invest. If we invest x, then we obtain

an expected profit P(x), where P is a nondecreasing continuous

function. The amount x then becomes unavailable for future invest-

ment. The problem is to decide how much to invest at each opportunity

so as to maximize the total expected profit.

111.0. Other Applications of SSAM.

A. Target Assignment Application of SSAM. Suppose that there

are D units of ammunition available, and for each of N time units,

say days, the target may be under attack. During each of the N

days enemy planes will attack with probability p. As soon as planes

appear, we must decide how much of our ammunition to expend. If x

units of ammunition are expended then P(x) is the expected number

of enemy planes that will be downed.

13. Allocation of Research Effort Application of SSAM, A

proposal is received and sent out for review. From past history

the fraction of those receiving favorable reviews are p (p may be

thought of as the probability of the referee recommending funding).

iHowever, the review comes in as ruconuiending approval or rejection.

If the review is positive, how much should be allocated to each

proposal. We have a total of D dollars available, if x is

allocated, then P(x) is the return of the investment. We have

N proposals to be sent for review and decisions must be made

sequentially. Another interpretation is for p to represent the

probability of a favorable report being received in each of N

given days.
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1II... Results for SSAN Model. When P(x) is convex, it is

easily sheoi that the optimal policy in to invest everything when

an opportunity presents itself. When P(x) = log x, and if there

are n time periods Lo go and A doilars available then the optimal

amount to invest ar this tiie, xn(A), is given by

XA 
A

Sn (A) ] •(n-1) p

Another case where thc optimal policy can be made explicit is when

P(x) x` 0 < a - I

_lJ.H. Further Results for SSAM Model. When P(x) is a general

concav tfunction, it is only possible to describe the structure of the

optimal policy. In particular, if V(n,A) denotes the supremeal

expected additional profit attainable when there are n time periods

to go, A dollars available, and an investment opportunity is at hand,

and x (A) is the optimal amount to invest at this time, then

(i) V(nA) is a concave function of A,

(ii) x n(A) is a nondocreasing function of A, and

This structitre can be used to simplify the necessary computations,

but does not yield a closed form expression for the optimal value to

invest.

IIl.(). The Sequential Stochastic Assignment Problem. It is

assumed that there are n men available to perform n jobs. The

jobs arrive in sequential order with each job being categorized

before a man is assigned to it. It is assumed that the category C:J
th

of the .t job is determined by a probability measure over all possible

categories and that :. (j 1 ... n) are independent with the
th

same probability iteasure. The i man has a value xi (0 < x I,
thi, .... n) associated with him. If the i man is assigned to
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the t job the (expected) rpturn is a known function P(xi

After a man is assigned to a Job, he is unavailable for future

assignments. The objective is to assign the workers sequentially

to maximize total expected return. This problem was treated by

Derman, Li.4berman, and Ross in "A Sequential Stochastic Assignment

Problem", Management Science, Vol. 18, No. 7, March 19712.

111.10. Relationship of SSAM to the Sequential Stochastic

Assignment Problem. In the stochastic sequential allocation model

the possible categories are two in number. The first category,

which occurs with probability 1-p, corresponds to P(x, 01) 0 0

(no occurrence of an opportunity); the second, which occurs with

probability p, to P(x, 02) P(x) (occurrence of an opportunity).
The n men each having a value xI (i - 1, ... , n) iS equivalent

to a predetermined division of the total resources i, xi D and

the problem is simply that of assigning the predetermined values.

The allocation problem requires instead of a sequential assignment

of values a sequential division of the resources. Beyond occurring

or not occurring the present allocation model does not permit a

more refined weighing of the return function since P(x) is assumed

to be the same for each occurrence.

IV. CONCLUBIONS. Are results relevant for solving the general

allocation problem.' Can they be used La aid in the design of a new

system or in the maintenance of an old system. Obtaining an explicit

solution to the general allocation problem requires intimate knowledge

of cost functions and %ystem performance. Similarly, this information

also appears to be necessary for obtaining explicit solutions to the

"simplified" nmodels considered in this paper -- with one important

difference -- namely, most solutions lead to qualitative results.

Admittedly, the "optimal solution" to the general allocation problem

is still open, hbt the tesulLs presentud in this paper are ut•,oful in

enhancing "engineering intuition" for the purpose of getting "good"

answers to a most difficult problem.

I
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Finally, the models presented, usually in a reliability context,

are quite broad so that they are useful in other areas, e.g., the
•' assembly of parallel systems and the stochastic sequential allocation

model are related to target assignment problems.
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SIMPLE STATISTICAL ALTERNATIVES TO Trin: METHOD OF LE,;AST SQUARES FOR THE
DETERMINATION OF X-INTERC[lPT AND SLOPE

Joseph F. Hannigan and Mary L.. Powers
Research Institute

U. S. Army E;ygineer TopographiQ Laboratories

Fort Belvoir, Virginia

ABSTRACT. It is standard procedure to use the method of least squares
to obtain the best straight line fit to a given set of data samples which
are known or believed to represent some physical quantity having a linear
characteristic. There are two reasons for seeking simple alternatives to
the method of least squares. The first is that some eield applications
require only a determination of the X-intercept. The method of least
squares determines the slope and Y-intercept from which the X-intercept is
then calculated. The second reason is that in some field applications only
limited amounts of data can be retained, stored, or manipulated because of
restrictions on the ADP systems. This paper examines several alternatives
for reducing the amount of data used and a method of determining the X-
intercept. Of course, the slope appears in the calculation. However, it
is not determined explicitly and the Y-intercept is not determined at all.
For this investigation, a set of 100 data samples are used. These data
samples were obtained from a random number generator then normalized and
applied to the "Y" coordinate appropriate to 100 "x" coordinates for the
line y - -x + 50. Results are evaluated in terms of closeness to the
original X-intercept (i.e., x - 50).

1. INTRODUCTION. The purpose of this paper is to present the results
of an investigation which explored a statistical alternative and a statistical
variation on the method of least squares. In addition, the effect of simply
reducing the number of data samples was examined. These latter results are
presented in Appendix A simply to show the effect of loss of data. The loss
could be deliberate to reduce the amount of data for simplicity or it could
be accidental due to equipmen:' malfunction.

The method of least squares has many applications from massive batch
reductions, such as simultaneous adjustments of large geodetic networks,
to the relatively simple, straight forward determination of the "best"
straight line fit for data which are known or believed to represent a
physical quantity having a linear characteristic. "Best" fit in the
latter case means the equation for the straight line which comes closer to
all the data points than any other straight line. In other words, it
usually means the line for which the deviations between the given or-
dinate values of the data points and the corresponding ordinates of the
llne are a minimum. This is the specific application being considered in
this investigation.

4
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There are two reasons for seeking alternatives to the method of least
squares. The first is that some field applications require only a deter-
mination of the X-intercept. The method of least squares determines the
slope and Y-intercept from which the X-intercept is calculated. The second
reason is that in some field applications only limited amounts of data can
be stored, retained, and manipulated because of restrictions on the size
and capacity of the ADP systems being used.

A specific application to illustrate the above is the potential use of
an FM discriminator to determine a particular frequency. The discriminator
(hore used in the generic sense) could then be used in the field as a cheap
replacement or a backup for the more expensive frequency counter. A dis-
criminator has a well known linear frequency versus voltage characteristic.
This is apparent in data and fiqures presented in Appendix B. A disadvantage
of the discriminator is that it does not have the resolution of the more
expensive frequency counter. However, a discriminator can be sampled every
few milliseconds compared to the usual second or more for a frequency
counter. The sampling rate for a discriminator is limited only by the settling
time of the sampling and data storage circuits while a frequency counter must
count for a specific time interval in order to obtain the desired resolution.
Compared to a frequency counter a discriminator can provide a very large

number of data samples. The method of least squares is recognized as a
good, standard prucedure to use to determine the best straight line to fit
for such data. A specific frequency or frequencies can then be determined
from the equation of the line so obtained.

An experiment was conducted at the Research Institute, U. S. Army
Engineer Topographic Laboratories, Fort Belvoir, VA, to determine the fea-.
sibility of using discriminators for the purpose of determining a specific
frequency (e.g., 300.000 kilocycles). Details of the experiment are planned
for inclusion in a separate USAETL report. As background information for
this paper, Appendix B contains a block diagram of the experiment, tables
of representative data, and plots of the data.

2. INVESTIGATION. The approach taken in this investigation was
analytical and empirical rather than theoretical. The investigation used
both experimental data (shown in Appendix B) and hypothetical data.

The hypothctical data was based on the line Y - rX + b where the slope
m was chosen to be -1 and the X-intercept was chosen to be +50. A hundred
data samples (X, Y values) were obtained using equally spaced absissa values
from 0 to 99 and calculating the corresponding ordinate values. These
ordinate values were then changed by the application of "normalized" random
numbers. The distribution is shown in Figure 1. These numbers were obtained
from a random number generator and then "normalized." The "normalized"
random numbers are shown in Table 1. One hundred data samples are not
enough ti show a good normal distribution, hence the quotes on normalized.
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However, this is the number of samples which would be expected in a specific
£ application and it is more than actually desired from the data storage and

"manipulation standpoint. In a real case, even thouqh the physical quantity
would be expected to have a normal distribution unde'r long term conditions,
such distribution might not actually appeaz in a limited number of samples.
Hence, it is believed that the values used are reasonable for what would be
obtained in a real situation.

It seems appropriate at this point to illustrate briefly what is in-
valved in determining the X-intercept by the method of least squares.

DATA MrQUIRED

NORMAL EQUATIONS

I Y- mEX+ bN

EXY a mEX 2 +bEX

Where m is the slope, b is the Y-intercept, and N is the number
of data samples. The slope and Y-intercept are obtained by the
simultaneous solution of the NORMAL EQUATIONS. The X-intercept is then
determined by equation:

bX--

It is significant to nbte that as the data samples (X, Y) are
put into the ADP system, they are summed; they are multiplied and
then summed; and the X values are squared and then summed. These
operations require either a certain amount of memory to store data
while the arithmetical operations are performed or a parallel ADP
capability to perform the multiplication, squaring and summing
operations simultaneously as the data samples are put into the ADP

system.

The next thing to note is that the NORMAl. EQUATIONS must be
solved simultaneously for the slope (m) and the Y-intercept (1).
From these values the X-intercept is then calculated from a third
equation. Physically, the Y-intercept has no significance in our
experiment, however, the slope gives the rate of change of the fre-
quency. The slope could be used to extrapolate the data in the event
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of a malfunction which prevents getting enough data samples to include
the desired frequency. Although it is not expected to give a high de-
gree of accuracy, extrapolation might be better than no answer at all.
Although the slope is of secondary interest, it is included in the findings
since it does have some physical significance.

3. FINDINGS AND RESULTS. The investigation was performod with the
hypothetical data first and then the experimental data. The impressive
finding was the extremely good results obtained by simple statistical
averaging of consecutive data samples to form new sets of data. This
gave a reduced number of new data samples which reduces the amount of
storage required. It even eliminates the method of least squares when
carried to the extreme. For example, by dividing the data into halves,
then averaging each half to obtain two average X coordinates and two
average Y coordinates, the X-intercept can be obtained directly from thelinear equation :

x = (X2 - X) (-Y1 ) + (Xl)

The above equation is derived from the equation of a straight line
between two points. Note that the X-intercept is obtained immediately
and that the slope, although present, is not derived explicitly.

The results obtained by reducing the data by simple statistical
averaging of consecutive data samples are shown in Table 2 for tke
hypothetical data and Tables 3 and 4 for the experimental test data.
The X-intercept and slope obtained by the method of least squares using
all the data samples are shown in Table 5 for comparison purposes.

4. CONCLUSION. Based on the empirical and analytical approach taken
in this investigation, it is concluded that simple statistical averaging of
the data samples so as to obtain two average data samples (i.e., one
average sample for each half of the data) and the application of the
single equation for the straight line between two points provides an
alternative to the method of least squares for the determination of the
X-intercept and slope. The accuracy obtainable with this procedure is
believed to be acceptable for many applications, especially in view of the
simplicity of the calculations.

It is also concluded that statistical averaging of consecutive data
samples provides a variation to the method of least squares which has an
accuracy that would be acceptable in many applications. The averaging of
consecutive data samples could bnr used to reduce the data storage re-
quirements or possibily permit parallel arithmetical operations.

It is recognized that these conclusions are based on limited amounts
of data. However, intuition tends to support the logic of these con-
clusions and the numerical results tend to verify them.
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TABLE' 2. POVIILTICAL DATA

MAST SQUARES SOLUTION USING STRAIGHT LINE BVTMEEN
TWO END POINTS SOLUTION USING

Averages of Each of 10 Averages of Eacli of 20 AVERAGES OF EACH HALF

Conuecutive Samples Conserutive 5ain3es (End Points of Line)
iY: I Y I Y I V

4.5 4S.58"89 9.5 40.42934 24.S t5.51836
14.5 35.27179 ,,.5 20.46093 74.5 -24.51836
24.5 25.87178 49.5 .61302
34.5 15.05009 69.5 -19.47466
44.5 5.81243 69.5 -39.52864
54.5 -4.58638
64.5 -14.43884
74.5 -24.51048
04.5 -34.61079
94.5 -44.44648

X-Intercept slope X-Intercept Slope X-Intercept Slope

49.99992 -1.00015 50.00037 -. 99926 49.99963 -1.00073

TABLE 3. TEST SET NO. 1

lEAST SQUARES SOLUTION USING STRAIGHT LINE BETWEEIN
TWO EN POINTS SOLUTION USIAG

Average. of Each of S Averages of Each of 10 AVERAGES OF EACH HALF
Consecutive Samples Consecutive Samples (End Points of Line)

Frequency voltage Frequency volt runcy voltage

299.910 37.6 299.923 32.0 299.9475 21.5
299.935 26.4 299.972 11.0 300.0475 -21.95

S299.960 16.0 300.022 -10.9
299.985 6.0 300.072 -33.0
300.010 -5.6
300.035 -16.0
300.060 -27.0
300.065 -39.0

* X-Intercept Slope X-Intercept Slope X-Intercept Slope

29".99698 -433.60938 299.9969" -433.79977 29".9969" -434.50000

2 863 AWi"



TABLE 4. TEST SET NO. 2

LEAST SQUARES S'LUTION USING STRAIGHT LINE BETWEEN
IWO END POINTS SOLUTION USING

Averages of Each of 5 Averages of Each Half
consecutive samples (End Points of Line)

Frequency Voltage V

299.920 33.6 299.94500 21.90000
299.970 10.2
300.020 -5.6 300.04500 -16.70000
300.070 -27.8

X-Intercept Slope X-Intercept Slope

300.00150 -400.00002 300.00174 -386.00000

TABLE 5

Least Squares Solution Using All Data Samples

Hypothetical Data

X-Intercept Slope

49.99981 -1.00039

Test Set Number 1

299,99691 -434. 63343

Test Set Number 2

300.00117 -405. 58409
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APPENDIX A

LEAST SQUARES SOLUTION
HYPOTHETICAL DATA + RANDOM NUMBERS

x X-INTERCEPT SLOPE

0# , 1,2,. 99 49.99981 -1.00039 100
0,2,4, ...... 98 50.04974 -. 99684 50
1,3,5f.....,99 49.95376 -1.00389 50
0,3,6,......,99 51.48230 -1.09439 33
0,5,10 ..... ,95 50.15983 -1.00213 20
0,10,20,...,90 49.85273 -. 99125 10

Least Squares Solution
Hypothetical Data + Normalized Random Numbers

X -0, 10, 20, ..... , 90 Omitted
N - 99

Omit X X-intercept Slope

0 50.00038 -1.00042
10 50.01663 -1.00121
20 50.00284 -1.00050
30 50.00769 -1.00058
40 49.99136 -1.00029
50 50. 01514 -1.00039
60 49.98716 -1.00055
70 49.99263 -1.00056
80 49. 98575 -1.00090
90 50.01784 -0.99953

Least Squares Solution
Hypothetical Data and Normalized Random Numbers

Randomly Selected Point Omitted
N -99

Omit X X-intercept Slope

56 50. 00985 -1.00031
46 49.98573 -1.00033
29 49.98723 -1.00008
14 50.00161 -1.00047
12 50.00397 -1.00058
97 50. 00648 -1.00002
17 50.01115 -1.00084

4 50.00923 -1.00092
79 50.00599 -1.00017
60 49. 98716 -1.00055
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LEAST SQUARES SOLUTION
HYPOTHETICAL DATA + RANDOM NUMBERS

OMIT SERIES OF FIVE VALUES
N = 95

Omit x X-Intercept Slope

0-4 49.99346 -. 99998
10-14 50.01240 -1.00101
20-24 50.00259 -1.00049
30-34 50.03673 -1.00119
40-44 49.98093 -1.00025

50-54 50.00376 -1.00040
60-64 49.96250 -1.00093
70-74 49.98099 -1.00090
80-84 50.02216 -. 99949
90-94 49.97216 -1.00188

Least Squares Solution
of

Sets of Sequential Points
Hypothetical Data and Normalized Random Numbers

x X-Intercept Na N

0-30 50.30710 -. 99269 31
39-59 50.09299 -1.03749 21
34-64 50.15715 -. 98349 31
44-54 50.07964 -1.12965 11
69-99 49.78529 -. 99515 31
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Table 1. Frequency (5 cycle Interval) and voltage data obtained with
a Phase Lock Loop Discriminator.

Frequency (kc) Voltage (my) Frequency (kc) Voltage (mv}

299.900 + 42 300.000 - 1
299.905 + 40 300M005 - 4

S299.910 + 37 300.010 - 6
299.915 +36 300.015 -8
299.920 + 33 300.020 - 10
299.925 + 31 300.025 - 12
299.930 + 29 300.030 - 14
299.935 + 26 300.035 - 16
299.940 + 24 300.040 - 18
299.945 + 22 300.045 - 20
299.950 + 20 300.050 - 22
299.955 + 18 300.055 - 25
299.960 + 16 300.060 - 27
299.965 + 14 300.065 - 29
299.970 + 12 300.070 - 32
299.975 + 10 300.075 - 35
299.980 + 8 300.080 - 37
299.985 + 6 300.085 - 39
299.990 + 4 300.090 - 41
299.995 + 2 300.095 - 43

300.100 - 46

r
8

i

I
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Table 2. Frequency (10 cycle interval) and voltage data obtained with
a Phase Lock Loop Discriminator.

FreLuency (kc) Votae (mv)

299.900 + 42
299.910 + 39
299.920 + 34
299.930 + 29
299.940 + 24
299.950 + 20
299.960 + is
299.970 + 10
299.980 +5
299.990 + 1
300.000 + 0
300.010 -0
300.020 -4
300.030 - 10
300.040 - 14
300.050 - 19
300.060 - 23
300.070 - 28
300.080 -32
300.090 - 37
300.100 -42

I )I
)I

I

I
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Table 3. Frequency (100 cycle interval) and voltage data obtained with
*a Pulse Type Discriminator.

Frequency (kc) Voltage (volts)

499.000 5.*068
499.100 5.069
499.200 5.070
499.300 5.071
499.400 5.072
499,500 5.073
499.600 5.074
499. 700 5.075
499.800 5.076
499.900 5.077
500.000 5.078
500.100 5.079
500 .200 5.*080
500.300 5.081
500.400 5.082
500.500 5.083
500.600 5.084
500.700 5.085
500.800 5.086
500.900 5.087
501.000 5.*088
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II

A STATISTICAL APPROACH TO LOADING AND FAILURE OF STRUCTURES*

Ronald G. Merritt

U. S. Army Corps of Engineers
Construction Engineering Research Laboratory

Champaign, Illinois

ABSTRACT. It is becoming increasingly important to examine available
data on structural behavior in the assessment of design criteria. To this
end a rationale for examination and selection of loading criteria based upon
available data is proposed. The rationale is based upon examination of both
structural load date and structural failure data. This paper examines in
some detail the assessment of structural failure data and extends some of the
same ideas to structural load data. In order to extract information content
from collected data, a class of statistical methods applicable to the data

has been selected. A matrix correlating data parameters with statiatical
method is developed. A method for assessing the overall information content
of the collected data is proposed. Finally recommendations are made for
future collection and correlation of load and failure data.

1. INTRODUCTION. A fundamental problem of structural engineering is
the examination and selection of loading criteria. It is imperative that
any solution to the problem center around a rationale that relates informa-
tion available on loading to selected criteria. Such available information
is generally in the form of data. It is the purpose of this brief paper to
abstract the problem and outline preliminary work on a rationale for ad-
dressing the problem,,

The paper begins by defining the general nature of the problem. Solu-
tion to the problem is related to consideration of available information
in the form of data. The next three sections of the paper discuss the
initial stages of a rationale for consistent examination and selection of
loading criteria. The first of the sections examines available information
on structural load and the second examines available information on instances
of structural failure. Classes of statistical methods are discussed in the
third section. This section also includes discussion of a proposed method
for assessing the overall information content of the available data. Finally,
an illustrative example of application of a statistical method to
loading, data im presented and the paper concludes with a discussion of future
extension to this preliminary work.

"The views of the author do not purport to reflect the

position of the Department of the Army or the Department of Defense."
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2. GENERAL NATURE OF THE PROBLEM. Examination and selection of loading
criteria involves the consideration of a statement S with quantifiers that
relate variables useful in description of the load. This may be written gen-
erally as

s: C - C(F,-a) (1)

for

S - loading criteria statement
C - load function
r - time vector
Y - space vector
K - parameter vector

The statement S has as quantifier the load function C which is expressable
in terms of time, space and a finite met of parameters. The expression is
general enough to allow for several components of time, space and parameters
as denoted by the vector notation. The problem may now be stated in terms of
examination of the validity of S.

Validity of 5 is usually established through mome subjective and
objective evaluation of available information related to S. In order to
be consistent in this evaluation of information a rationale for carrying
out this evaluation must be set forth. The preliminary outline of the
rationale proposed in this paper centers upon a means of assessing
available information related to S by use of statistical techniques,
correlating this information and obtaining quantitative factors upon which
the validity or invalidity of S my be established. In a real sense this
rationale in part already exists in that statistical interpretation of
collected data is comon place in examination of load data. The
discussion to follow extends this rationale. However, it is important to
note here that "all" available information is to be examined in evaluating
the validity or invalidity of S. This includes consideration of load
information for one. In addition, since the invalidity of S tacitly implies
possibility of structural failure because of load, one must also consider
structural failure information. It is the general nature of these sets of
information that provides the basis for this preliminary work on development
of the rationale.

3. LOAD INIOPHATION. Load information is obtained in a quantity termed
a datum. Such datum may be in a raw form or in a summary fons. The raw form
consists of the most basic unit and results from direct quantization of the
phenomenon under observation. The summary form results from a transformation
of the raw datum.

Upon collfiction of data on loading e.g., wind loading, it becomes apparent
that some way of classifying individual pieces of datum needs to be devel-
oped. Once classified then groups of datum within any one designated category
could be examned for consistency and theit relationship to the proposed loading
criteria. The discussion to follois defines the datum classification system and
the example in Section 6 illustrates application of a statistical technique to
a piece of datum within the system.
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,.• The requirements on a load data classification system art very basic.

First, a single piece of datum must be recognzed as such in the system
and second a piece of datum must be classifiable within the system. In order
to facilitate this a "generalized random process", L, is defined whose "sample
functions" consist of pieces of datum described by a set of parametersS~~related to the load phenomenon1. This in uost easily expressed as *

•~~~~~~~~ LFea')=((,~a' 'T, Felt, KRA)' (2)

where

- generalized random process

- a piece of datum
r - time related description of the datum
T - tire indexing set
S- space related description of the datum
R - space indexing set

a - parmter related description of the datum
A - parameter indexing set.

It is assumed that every piece of datum related to a load phenomenon belongs
to L(E,,F,i and that each piece of datum is uniquely defined through an ordered
triple of vectors (E,•,-).

The advantages of such a means of classifying data by evaluation of
T, 7 and W are readily apparent. First, in evaluation of Y, F and X datum
sets are established within L(F,7,a-) that relate similar information about the
load phenomenon under investigation. Second, correlation of information
through evaluation of r, f and Tallows one to assess the overall information
content of the available data. Third, ready evaluation of data within a
given datum set in possible and links amongst datum sets provide a key to
links amongst data within different datum sets. Finally, th-.. approach lends
itself well t9 either the synthesis approach or the analytical approach to
criteria selection. In the ovathesis approach all data is structured into
a description of the load phenomenon and criteria are selected from this
description. In the analytical approach the datum is checked against the
proposed criteria for consistency and selection of criteria i* based upon
this check, In either case the pertinent datum is easily identified.

A total of twenty-two parameters that must be evaluated for each piece
of datum are selected. The twenty-two parameters may be divided into five
groups. Brief mention of these five groups will suffice for the present
discussion. Thr first group consisting of two parameter3 uniquely identifies
the piece of datum. The second group consisting of five parmters identifies
the datum by defining the overall load phenomenon properties, e. g. static,
deterministic, stationarity, source, spatial extent. The third group con-
sisting eight parameters describes the piece of datum in terms of the time

E Elevated numbers denote references.
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history information available. The fourth group consisting of five parameters
describes the datum in term of the spectral information available. Finally
the fifth group of parameters consist nga of twoparamsters gives a brief narra-

tive description of the piece of datum along with a source reference.

This general scheme of datum referencing permits a consistent examination
of structural load data and allows for easy construction of a structural load
data bass.

4. STRUCTUUAL FAILURE INFORMTION. The consideration of data on instances

of structural failure in the preliminary stages of development has provided for
some most interesting ideas on structuring of data from diverse and complex phen-
omenon. In the case of structural load data, the content of individual pieces
of datum is described in terms of a set of parameters and the rnw or susmary
form data is contained within each of the random process sample functions. Data
analysis was rasumed to take place on a "level below" the datum structure,
L(tF,a-). For the case of structural failure the nature of the available data
awd information desired from the data requires that the description of the datum
i.e., instance of structural failure, be complete enough for data analysis on
the datum structure level. That ise the analogous structural failure "generalized
random process" should contain all the available information concerning the
structural failure. This approach to structural failure datum is the product of
several considerations. First, quantitative structural failure data is difficult
to obtain since few instances of structural failure are instrumented. Second,
unless the failure is controlled in some manner, quantitative data tends to be
meaningless because of the complex load-response path that usually describes
the failure. Third, any one case of structural failure is but one of many
possible structural failures and it may or may not share properties in comon
with other cases of structural failure. Fourth, detailed quantitative data
from instrumentation of a structural failure would present a prohibitively
high collection and reduction cost to information ratio. Finally, detailed
reduction of quantitative data obtained during or after structural failure
would, tend to de-emphasize the overall characteristics of the structural failure.
Thus, structural failure data is considered in the following way.

It was hypythesized that structural failure may be considered a "generalized
random process" . Thus, it may be represented by an expression

SCF,•,i-) - {s(,?,a-); W•T, •, ae'A} (3)

S(VF,a) - structural failure generalized random process

s(a F,i) -structural failure sample function
S- time vector
T - time indexing set
F - spatial vector
R - spatial indexing see*
a parameter vector
A - parameter indexing set. *
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All instances of structural failure belong to S(.,ra) and every failure is in

S(F,f,-) either explicitly through collected data and parameter evaluation or

implicitly in cases where the structural failure is unrecorded but the indexing

sets are broad enough for the description. The problem of structural failure
data structuring now becomes a matter of defining T, R and A and evaluating

F, F and 7 from collected data on structural failure.

Forty-five parameters are considered adequate to define the structural
failure random process, i.e., forty-five parameters are considered sufficient
to describe any instance of structural failure. Obviously, only the overall
gross characteristics of an Instance of structural failure are considered

appropriate for description and most pertinent to the overall rationale.

The forty-five parameters fall into nine major categories. For the

sake of brevity these nine major categories will be listed with a few
comments regarding the parameters within each category.

1. identification - This category includes information on the source

and information content of the structural failure data available.

2. structure characteristic information - This category includes all
information related to the structure that experienced the failure.

The dates of construction and failure are recorded along with the
general structural, material and functional characteristics of the
structure. The geometrical dimensions of the structure along with
those of the failed portion of the structure are also recorded.

3. general failure description - This category describes the cause
of the failure, the extent of the failure both in qualitative
and quantitative terms, the nature of the failure in terms of
its possible progressive or nonprogressive characteristics, hori-
zontal or vertical characteristics, the total time of the failure
and the stages of the failure.

4. global failure description- For failures in which a major portion
of the overall structure has failed the failure takes on a global
nature. This is subsequently described by three parameters naming
elements of the structures that failed, modes of failure, and mat-
erial composing the failed elements of the structure.

5. local failure description - A failure of a structure may include a

small portion of the overall structure in which case the failure
takes on a local nature. The sam three parameters as for the
global failure description provide for the local failure description.

6. global load description - Loading on a structure that is over a
large portion of the structure may be termed a global load. Tt

is described in terms of four parameters including identification,
general dimensions, a general statement and estimated value if
this is available or able to be deduced.
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7. lr*al load description - Loading on a structure that in over a
small portion of the structure any be termed a local load. The
same four parameters as in the case of global load description
describe the local load.

B. load - failure relationship - In most instances of structural
8.failure there exists a general spatial relationship between load

and failure. This relationship may be expressed in terms of local
load - local failure, global load - local failure, local load -

global failure, global load - global failure. This parmeter
provides insight into the nature of the extent of the loading
and the corresponding failure.

9. general statement - This final parameter group consisting
of one parameter is a general statement about the failure and
its cause.

Here again it is well to take note that structural failure does not relate
well to phenomenological description because of its complexity. The categories
of parameters and the parameters themselves provide for an overall view of the
structural failure process. Given data on structural failure the parameters

of S(jEa-') can be evaluated and S(rFWW) better defined. The statistical
techniques to be discussed in tha next section are applied directly to the
parameters of SCEY,-).

5. BASIC CONSIDERATIONS FOR STATISTICAL ANALYSIS. The nature of the
problem under consideration and the number of statistical techniques appli-
cable to the problem make it possible to consider only a few topics in re-
lating statistical methods to the datum within the framework of the load
and failure generalized random processes discussed above.

One of the first considerations in applying statistical methods to data
defining the processes above is an examination of the way in which the data
is measured. There exist four a1ceptable statistical data measures by which
the measure of data is defined ' . Listed in order from least to most power-
ful they are as follows: nominal, ordinal, interval and ratio. A brief
description of each is in order. The nominal measure applied to data implies
the date may be categorized according to a set of mutually exclusive conditions.
The ordinal data measure applied to data implies there exists an order relation-
ship amongst pieces of the datum. The interval data measure applied to data
implies a relationship of the form

e -y > O0  x - y- 0 or x-dy < 0 (4)

exists between any two Pieces of datum. Finally, the ratio data measure applied
to data implies numprical relationships for the datum are available and for
y 0 0, x/y is a meaningful expression between any two pisces of datum.

Although there are a numaber ot ways of dividing statistical methods into
categories for purposes of this discussion, perhaps the categories distribution
and distribution free will suffice. Distribution relaLed statistical methods
in general correlate with instances in which distribution functions with a finite
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number of parameters may be utilized in the statistical analysis of the
data. Distribution free related statistical methods in general corre-
late with instances in which lesser restrictions are imposed upon condi-
tions that must be satisfied for application of the method to a given
set of data. These statistical methods may be further subdivided into
methods concerned with point estiastes of parameters, confidence regions
for parameters or significance tests for parameters.

In the illustrative example to follow a distribution free statistical
method is applied to a piece of load datum. In general distribution related
methods apply well to load data because of its tendency to be describable in
terms of the ratio data measure and distribution free related statistical
methods apply well to structural failure data because of its tendency to be
describable in terms of data measures loes powerful than the ratio measure.

In work to date emphasis has been placed on consideration of structural
failure data. It has become important to consider categorical distribution
free statistical techniques for use on parameters of the structural failure
random process. Categorical techniques are most applicable because structural
failure data is for the most part of a categorical nature. Distribution free
techniques are most applicable because of the difficulty in determining the
distributions and their related parameters resulting from unavailability of
large amounts of data.

It is found useful when considering the structural failure generalized

random process to construct a statistical method - process parameter matrix
whereby statistical methods applicable to given process parameters are corre-
lated one to another. Table 1 below provides a segment of this matrix.

S•M 1 2 3 4 5 Key:

F'Failure Parameter (FP) Statistical Method (SM)

6 X X X 6 descriptive name 1 hinominal test
7 X X K 7 construction date 2 chi-square test for
8 X X X 8 failure date goodness of fit
9 9 structural 3 Wald - Wolfowitz rum teE

4 quancile test

Table 1: Statistical Method - Failure Process Parameter Matrix

The construction of the matrix in Table 1 leads naturally to an assess-

ment of the overall information content of a set of data based upon an eval-

uation of fa tore useful in defining the overall characteristics of a statis-

tical methodt. Table 2 lists factors useful in evaluating the effectiveness

of a statistical method along wlth proposed weights for these factors. The

overall information content of a set of data is determined by associating a

set of statistical techniques with the data and proceeding to tabulate weight

values for the various factors. A relative measure of information content
amongst sets of data is obtained.
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statistical data measure (10)
nominal 2
ordinal 4
interval 6
ratio 10

sample size 10
data transformation and restrictions on

data parameters 2
level of computational effort 2
extent of use of symmetry 2
sensitivity of procedure to assumptions 4
precision level (10)

exact 10
theoretical approximate 7
judgment empirical 4

efficiency of method 10
Sconsistency of method 10

sensitivity of procedure to assumptions and
difficulty in verifying assumptions 10

population properties and importance amongst
other data groups 5

Table 2: Factors for Evaluating the Effectiveness of a Statistical
Method with Weights

There exist several major weaknesses in the approach. First, not all
statistical methods may be accurately evaluated in terms of these factors.
Second, it presumes that one has selected an optimal set of statistical
methods to operate on a given set of statistical data. Third, it presumes
that data information content is related to abstract measures on the statis-
tical method independent of the data. Finally, it assumes the weighting
factors are accurate and constant over the ranges of statistical methods.
Despite these weaknesses a matrix relating statistical method versus weight-
ing factor provides for a crude measure of the relative informatlon content
of a set of data to which the statistical method mey be applied.

6. AN ILLUSTRATIVE EXAMPLE. The example in this section of the paper
is illustrative in the sense that (a) it is not based upon all the data that
is available and (b) it presents a rather new approach in the reduction of
civil engineering data. The first point is a result of the preliminary nature
of this work and ability to reduce only a portion of the data available. The
second point refers to the use of distribution free statistical techniques on
the selected data. In general, measurement distribution oriented statistical
techniques are used on numerical data resulting from a well controlled experi-
ment. The results of the statistical analysis are then presented in some con-
c.se form. Distribution free statistical techniques are often times related
to a statistical hypothesis test that may or may not be associated with para-
meters describing the data e.g., trend or randomness of data may be under inves-
tigation.
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"I It is also well to point out that the conclusions drawn from the

illustrative example may seem trivial, however, each example conclusion

presents only a minute piece of information exterding that which is al-

ready known about the case under investigation. That is to say, the

effectiveness in use of techniques in this way comes by way of construc-

tion of an overall view of the case by means of statistics. This implies

application of matty statistical techniques ii many different ways to the

data available. Fortunately, once a data base has been constructed and

the statistical techniques selected, this becomes a rather simple and

automatic procedure.

The illustrative example presented here concerns itnestigation of

the relationship between the set of values from "collected data" and the

set of values assigned by a criteria statement. In the context of the

previouw discussion, Table 3 provides a statement of structural loading

criteria.

Criteria: Following table for average pressure coefficients shall be

used for calculating pressures on external surfaces of

buildings.

Location of Wall C

Windward wall 0.8

Leeward wall, both height-width
and height-length ratios ,> 2.5 -0.6

Other buildings -0.5

Side Walls -0.7

Table 3: Criteria for External Pressure Coefficients for Walls, C

Some of the data related to this criteria acquired from wind tunnel

testing is provided in Table 4. In this table the external pressure coef-

ficient on a structures wall is tabulated for two angles of incidence (0

and 450) to the building wall A with the unprimed letters representing data

for building sides of 0. of incidence and the primed letters representing

data for building sides of 45" of incidence.

0" O a O=
4 5*

Sh:b:L A B C D AA BA CA DA

1:1:1 .9 -. 5 -. 6 -. 6 .5 -. 5 .5 -. 5

CC' 2.5:2:5 .9 -. 5 -. 7 -. 7 .6 -. 5 .4 -. 5

2.5:2:5 .9 -. 5 -. 7 -. 7 .6 -. 5 .4 -. 4

2.5:2:5 .9 -. 5 ... 8 -. 8 .6 -. 5 .4 -. 4

'B 1:4:4 .9 -. 3 -. 4 -.4 .5 -. 4 .5 -.4

S1:8:16 .8 -. 5 -. 5 -. 5 .5 -. 5 .4 -. 3

•, 2.5:1:1 .9 -. 6 -. 7 -. 7 .5 -. 5 .5 -. 5
IDD' 2:1:2 .9 -. 5 -. • -. 8 .6 -. 5 .4 -. 4

.9 -.5 .6 -.5 .4 -. 4

1:2.4:12 .9 -. 5 -. b -.6 .5 -. 6 .4 -. 4

1:1:5 .9 -. 5 -. 6 -. 6 .5 -. 8 .4 -. 5

Table 4: Structural Configuration and External Pressure Coefficient C at

Angles of Incidence of O" and 456 pe
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For this illustrative example it is to be determined if there in a
significant difference between the numbers representing the criteria and
those derived from the small amount of available wind tunnel data. This
is perhaps better stated by inquiring of some statistical measure of the
representation of the wind tunnel data by the criteria. However, it is
important to note here that the numbers of Table 3 and Table 4 do not rep-
resent random sample values from a general population. For this illustra-
tive example it is assumed that there exist ton categories of structural
configuration defined by the h, b, L ratios of Table 4. In addition it 4
is assumed that initially a number of structures in each category are de-
signed on the basis of the data of Table 4. At a later date the sea num-
bar of structures in the respective categories are designed on the basis
of data of Table 3. There exists then a population of designs P 1 associated
with Table 3 and a population of designs P2 associated with Table 4. Suppose
then a random sample of designs is taken from P 1 and P 2 being careful to
select one and only one design from each category of the two populations.j In effect then the tabulation of design values for C., from population P2S~results in Table 4 and to each value of Table 4 corresponds a value of Table3. From this discussion, one may surmise that the example is quite artificial,

however, one must note the objective of the consideration is to determine in
some statistical way the difference between a statement of criteria and a
small amount of data available for evaluating the criteria. As a matter of
fact the small amount of available data may have boon used in engendering the
criteria.

The "statistical measure" for examining the difference in the artificial
constructed populations P and P 2 is the Wilcoxon signed rank test 2 , This
test is very likely not t e most effective test that might be applied in this
instance, however, it is easy to apply and should yield some information role-
tive to the question being asked. The test assumes samples of paired repli-
cates with a model defined by

S~~Zi n Y Xi + ai -ini ... ,n (5)

* where

Y- sample values from Population P2
XY - sample values from population P;

a - unknown parameter of interest ( treatment" effect)
a i - unobservable mutually independent random variables from a

± continuous population symetric about 0

The hypothesis to be tested is

SH : 0 - 0 against the alternative hypothesis IH, : e 0 (6)
0

If the hypothesis is accepted at a prescribed level the criteria of Table 3
will be considered an adequate representation for the data of Table 4 and if
the hypothesis is rejected the criteria will be considered inadequate for
representation of the data. It should be cautioned that (1) a level of sig-
nificance for the test is somewhat arbitrary.at this point and no specific
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guidance is available for selection of a levol that will provide a solid
confidence in acceptance or rejection 5l Ho and (2) the data is pot com-
plete. Utiliziang the test statistic T for small samples and TR for
large samples where

n

Ri- the rank of JZ 1i - 1,n
1 if ZI0i" if z• < 0

n - the sample size

and T+- [n (n+L)1/ 4 ]

Tm 1n(n+l) (2n+l) ? J t (tJ-l) (tJ+l)1/2411 (8)

g - number of tied groups
tj - sie of the tied group J.

Selecting the level of significance to be 0.01 and considering various combi-
nations of the data of Table 4 matched with the criteria of Table 3 the results
are tabulated in Table 5.

Criteria against n T or T+ Decision

A 9 45 reject HO
B 1 1 no table values
C 7 22 accept H
D 7 22 accept
A' 10 0 reject H
B' 4 4 accept H0
C1 10 55 reject H0

1D 10 55 reject H0
ABCD 24 3.34 reject Ho

A'BOC'D' 34 2.64 reject H°
0

Table 5: Tabulation of Statistics and Decision for the Wilcoxon Signed
Rank Test for a a 0.01 (two tail test) for Criteria and Data on the Ratetoal
Pressure Coefficient.

It will be noted that the criteria is apparently an adequate description
for C in three of the nine cases tested. Again some caution needs to
be eixicised in drawing conclusions from the illustrative example since
there is little guidance available on levels of test significance and the
limited amount of data.
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7. CONCLUSION. The above represents a very preliminary basis for a statis-
tircal examination of th& load and failure of structures and a rational approach
to examining available information related to loading criteria. The next stage
in the development will consider construction of a data base of available data
along with establishing a broader group of statistical techniques. This should
lead to the consideration of mathematical pattern language in the correlation of
collected data and in the utilization of appropriate statistical techniques on
thc collected data. In addition it is anticipated that more advanced mathemat-
ical techniques e.g., in the area of combinatorial methods will be used for
investigating general relationships amongst the diverse pieces of datum.

The ideas expressed above form a basis for a rationale for the examination
and selection of load criteria. The rationale is based upon a consistent and
thorough statistical analysis of available load data and failure data. Given
the statmient S representative of a statement of load criteria the validity
of S is deduced from the consistent and thorough statistical analysis of all
available data. Work to date described above is a first step in the rationale
development.
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STRAIN GAGE INSTRUMENTATION FOR AMMUNITION TESTING

Paul D. Flynn
Pitman-Dunn Laboratory

Frankford Arsenal
Philadelphia, Pennsylvania

ABSTRACT. In connection with a modernization program on the manu-
facture of small caliber amaunition, it was recognized that ballistic
pressure measurements would have to be automated in order to keep pace
with increased rates of production. Copper crusher pressure gages with
individual measurements of compressed cylinders would be too slow. This
paper deals with a feasibility study on the use of electrical resistance
strain gages for quality assurance testing of ammunition.

Although the method of using external strain gages to determine in-
ternal ballistic pressures is well known, a new arrangement of sLrain
gages was developed to measure directly the quantity (c + ve ) on the

z

outer surface of a test barrel (where ae, e are the circumferential and

longitudinal strains, respectively, and v is Poisson's ratio). From
Hooke's law, the combined strain signal was proportional to the cir-
cumferential stress in the barrel at the outer surface. Using Lami's
solution, this stress was related to the internal pressure. Thus, the
strain gaged test barrel acted as its own pressure transducer.

Experiments were designed to compare the results of ballistic firings
with three types of ammunition, two test barrels, and pressures at several
locations. It was concluded that the strain gage method is feasible for
acceptance testing of ammunition.

NOTE. Published by the Society for Experimental Stress Analysis in
its journal on Experimental Mechanics, Volume 15, 1975.
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STATISTICAL INVhi8TIGATION INTO PULýZ CilARGLi G
OFl NICGUM-CA~i.IUN, dATTERIES

Walter Ksian
Maintenance Directorate

and
Bmin Biser

Avionics Laboratory
U. 3. A=W Electronics Command

Fort Monmouth, Dew Jersey

AS8TRACT. The common methods of charging vented
aircraft nickel-cadmium batteries axe constant current,
constant potential and modified constant potential (current
limited). However through continuous recharging uy these
methods, nickel-cadmium batteries develop a "'memory effect"
caused by passivation of the battery's positive cell plate
material ( nickel-oxide) ana "fadeout" caused oy crystal
growth of the negative cell plate material (cadmium). These
two phenomena gradually and continually lessen battery
charge acceptance which in turn lessens the battery output.

Pulse charging, however, has shown a significant
effect in eliminatinu battery "fadeout" and "memory effect".
Thus pulse charging can eliminate the required periodic
cycling to rejuvenate the batteries and possible increase
the battery cycle life. The pulse charging of nickel-cawuiwn
b-utteries has been completed on two new and two used batteries
iin all possible combinations of the following charge vuri-
asles: three different pulse amplitudes, three different
oh'harge rates and tvwo cifferent per-cent overcharge rates.

This investigation entails analysis of the mean
Sresponse (oattery output) and response variability to
determrine the optimum combination of pulse amplitude,
c iarge rate and per-cent overcharge in charging new and
used nickel-cadmium uoatteries. Similar analysis is pe*r-
formed to determine the optimum combination of the variables
for greatest battery efficiency.

1. Ii-TRODUCTION. The Army nickel-cadium uattery,
on which this investi~ation was performed, is nomenclatured
as the ii-433()/U, is recharieaule and is rates at 34 ampere-
hours; that is, it is capuble of supplyinf 34 wiperes of
current at a constant rate for 1 hour at a nominal voltage
of 24 volts. This is just over oOO watts of power. The
aottery is used primarily to start Army aircraft and to
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supply power to airborne electronics eLqh.ip1iaent ano. the
Vulcan Air Defense System.

The reason an investie~ation ý-as perforwaed oa this
oattery is Uecause ofT its hiL~h density, approximately
5,000 of these uatteries are deployed ana. oecause of the
severe maintenance proole~ls encountered with these batterie,.-.
After every 100 hours of use, these oatteriLes have 46o comre

into maintenance shops for reconditionin,6 which cati ta~ke
axy~where from 20 to 30 hours if the oatteries -are
The reason for periodic jwaintenance, is necess-,taUed oy tihe
f-ict that the present recharen'ri techniques, constant
current and mod.*fied constant potent~ial., whether _'n a
battery operatin6, systeia or ;gaintenance s"'op ~&u~i
lessen battery char~e acceptanue which in turn lessens
battery output. i~uJ.se cha~rýin.-. how.ever eliminattac.; the
maladies associated with contant current ox const:4)t poterat-
jal charging, i.e., fadeout (catiaium cry-sLal t6ro-,th ontC
uittery negative plates) aia. uwciory efiect (pasi-vi:tioln o1'
the nic;*.cl-oxide on the uatie_-. positive lates).

The three uii'ferent char,,ing metuods --re de. icted inl
Fitiure 1. As conotant current iiaplies, a constaiLt current
is applied to the .uattery f.L'or a sjpecified¾Aime, usually
limited to the time thatt the 3attery receives its rzited
capacitj. In modified constant rpotential, zhe jnittery
dira..s current until it is cj.;,Ar!e to a cerz~ain speciified
volta,~e. Tihe maximum current is usually limitea. to the
oatter,9 rton~ In pulse cizar~in6, the inpixt J~ulsed carrerlt
can be ol: any aznplituue vith an average inj~ut value,, as in
this case up to Uthe oattezý' ratin.; of 341 amp'e-ývhours.

The pulse charkir6 of the ~3B-AS5O/ i-- dtepicteo. 'n
Fit~ure 2. The averabe main current (I,,)_im-,ut at aaj pulse
amil-itude is applied for a time T. . Tihis i; iLhe t-Lae
the uat~tery receives approxiaiatelý 100,-. 01' its cakacity.
lt is %.i1Cfl overcharbed at one-thirdthe wain current by a

ccr~~ui of the -time it uudei,*eixit its i.&ain chure..C In
this e:-se, at 2Q/6 and 40, overclvarte. jecause the xittery
is iot. 100,1- ejflicicnt, overchar-,in. is required so thlat
we can ootain' at least 100; of "%-he uatterj0 "s rate" out-..ut
011 dischirk~e. The utojizktic Adsle 0h:trter,, bOuel 300(0;,
developed uy Utah R~esearch ; 'inuI i)evclop.,enL 0foixpanv speei-
l'icaily& for the Ar~was -_:iplojed for all the wzilse

cki~iusitk this investi.,ijtion.

.~trchtr~lnb and a ifour hour rezst per.Zoc., t.*:C
ozet Leries wert' uiiscI.ar6ed at half tiieir rated capacity,
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II
17 amperes, to a battery end voltabe of 19.2 volts, the
point at which 10% of the jattery's capacity hIvs been
removed. All chare6ing and dischcarAing was aoni ored ay
external test equipment to provide data accuracy to 1/.
The jB-4ý3 discharto characteristic is Uepicted in Figure 5.

21 STRUOTUiU O TA&•I•JOIJ1. This experiment consisted
of trio rolIowtnC "aoor•t A = ejeak ikulse, z a Charge Current
C = % Topping or Overeharw~e and D w Sattery Type (new or usedS.

The factors and the levels of these factors are described in
Figure .. Since the levels of the factors are at fixed
values, the model is thus a fixed model. TLhe va.ues of the
output (ampere-hours) and efficiencies ootained from
B-#43's of two different manufacturers batteries #1 and

#2 of manufacturer X and battories #3 and #4 of manufacturer
Y) are shown in Fi•ures 5 throuth 8. Two oosezvations
were ootained for each combinat on of the dif'ferent levols.
BIfficiency was calculated as the ampere-hour output divided
ioy the ampere-hour input for each battery charge - discharge
cycle.I

The mathematical model adopted can be expres.ied as
follows

XIJKL(M) * U + AI + BJ + CK + DL + ABIJ + BGJK + ODEL +

ACIX + AIl + aJL + A'BCIJ + . + UDJKL 1
3IJKL(M)

IJ : o,1,2KS :09
where XJKL() = ooserved random variaule (output or efficiency)

U g grand aver e or e*'&eot due to the mean

A*,PjKD)L E effeet due to main effects
A3 A•Ij, . DJL - effect due to interactions

i JBIJI(L(I) = random error

Hypothesis tested:
H,: A, = 0 for all I
H2 :j M 0 for all J
H3: CK = 0 for all X
H4  wL • 0 for all L
H.5 AIj = O for all i and J

3Simlla Lly for the interactions bQok, OD•, etc.
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Consideration was given to confounding the 5222 desi. n.
Since we are limited to two observations per cell, we have,
altouether only seventy-two (72) observations. Confoundin,
would introduce unwarranted complications aiLd would be
counterproductive. Confoundin6 was thus avoidea.

The results of the analysiu of variance are shown in
Fifures 9 through 12. The results indicate that for the". output of batteries "l v..nd ff2o the only siLnificant diftsr-
once exists in the intreraction oetween factors C ( A over-
char[e) and D (battery condition; = 2.83. While•: F.95(9,4o)

FA for the efficiency, defined au per cent output. dividod oy
put in ampere-hour's times 100, of oatterios 1i and #2 he

interaction between factors C ania D was signifIcant and the
main effect C was ovenvhelminily si•ui:Aicant.

For the output of batteries #3 and #4, siGnificant
differences existed in the main effect C, main ei:ect D and
the interaction Detween effects C and D; F .95(9.0) = 2.83.

For the efficiencies of batteries 1r3 and#4, main effect C
(% overcharee) and the interaction Detween effects B (charse
rate), C (% overcharge) and 1) (battery type) showed
signzaficant differences at the 95,A; level.

"Thout;h the F test performed above may reject the null
hypothesis that the means are equal, it does not tell us which
means are siunificantly different from which. Scheffe.'
proposed a system of procedure for this problem which we
shall employ.

3e. iO';FZT O OR iiULTIPLý CO PA!:RIcaIl OF .JANS.-
Suppose U7 lbe avo es-aMMstis X, 0V true means!: = . 2 2" , i
variances a/A s aein5 tistimated with f degretes of
freedom. ':We a2e interested in contrasts, defined as

k

w~jere I eC = 0, The contrast 8 is estimated as

C (3.2)

with variarice 2 02

The estimated variance of H is

S892
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Scheffe's result is that we can construct (1 -a-) confidence
limits for all possible contrazts 8 ,

Pr(H S- W.'(ii H- 8 H + S /V'(] } . (i44.

where s2 - (k - •)1.,,•N_1,f).(.)

If for each experiment we perform? we conutruct confidence
limits according to (3.4), then, in a fraction (1 -ct)
of these experiments, all the confidence stateients w;ill oe
correct; in a fraction a , one or ,more of the stuteiients will
be incorrect. The Scheffe method, furthermore, uLlows for
comparisoas of means: when the numaer of ouservations, nit for
the means are different.

Example: Let us su•Pose the followint; mcens are obtained:
X1 = 24; x2 = 22, x 3 = 21; x 4 = 17; X 5 = 16 and n =4
replications; k = 5 treatments s2= 4.>O and number of degrees
of freedom = 12. Suppose vie wish to test the contrasts
xlx2tX versus X4X5,. Therefore;

H. 2x1 i = 2x 1 +x 2 + 2x 3 - 3x4 - 3x 5 =35 (Ec = O)
an v~)=(2 2 2 * 2 (32) s2/n = (30)(4.5/
33.75 and therefore = 5.81. To ij.rtnine if a c~ntrast
is siL.nificant, we wisn to know if" I /vV(H)_> S where 3 is
desr~ ui 3.5. !3ince J fl//V(H) = 6.02 and

3 3.61; 6.02 > 3.61 and therefore the J
contrast is jcasn. The 95, confidence interval for the
true value of the contrast, 9 , cc constructed usin6 equation
3.,. For our example the 95i, coni'once inte•val for the true
value of the contrast, e , will oe 1 .03.1c < 55.97. Thus the
difference oetween x,x ,x xand x4 ,xL will lie oetween the

Sinterval just calculitea,: at 9%'-cetfijenco.

Pibures 13 through 16 show the means, ", stanuard devia-
tions, a , and the nusoer of oosorvations, L4, of the different
levels for uoth the outy•ut and efficiency of oatteries #1 throubh
#4. These means are employe:• in the Scheiffe maethod to evaluate the
estimate, 1I, of the contrast and construct the 95. confidence
limits "or several contrasts. The results of the Schef±"ý methodare given in Jijure 17 and 16 for batteries J1 and #2 and
batteries #3 and #4, respectively. Batteries 4l aid #2 were
manuractured by General lectric and oatteries #3 und h4 were
manufactured oy Sonotone Inc. The astoriskod contrasts, H, in
[)iuxws 17 aI•d 18 indicated sinificant diff"eronces at 9•; also,
the 95,4 confidence limits for the contrasts are given.
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4. CiNCIU-S.OIS. For oatteries 41l ant~i ff2 (Geiieral1
:ýIecLr~ic), tkje 73chefLc results, Y4 6,re 17, ind~icate s-L- Jt
dtifferenice, on the avex-age, in output jetw%-een coja~inrations
oi'.- contrasts; however, a si6tiificant diIfference exiirts in
thu efficiencies as evidenced, in parti1cular, in contrasts
d nd 2. Thus, ana1lzing the SciicVff results, one can inj.eOT

Lhat for pulse chargin6~ thc use oi 4#0% overchar!.c d.oes not
5,nificantly increase oattery output out is si!ýnificantly

le~o efricient than 20% overchar.ý.in6 and tihus intai~caIt0iinir
lari.*e ch art~e curreaiV losses tkIrou~,h co'w.Lersio.a o1'. cha~r~e
enerey ijito hteat. ±.,o sitsnkficant ef~fect of factor A-h (.-.ulse
a:.;Ipli-tude) or factor B (charbe current) -'s noticed on
b:itter.- output or efficiency.

lFor batterie *4 and #4# (Sonotone), theicheffTe rt:-ults-
ior Pulse c1±x'~in6, digure 18, ind-icate a sin-ificzxutly
It~i-Iier averabe outp~ut at 4O,ý ov#.rcNAr:;e t.an at 420 -L'o r
identical contrasts as ffor the tiezneraL !-;lectr.-c outteries,
but still the 40.% overcharcge was significaintly less
of-Vic i ct than 20,0' overcha2rge. Also,, the me; ý;onutoxie
uat i;er.y had a oetter chart~e acceptance and therefore ,reater'
ol.it-ut t.ian the old 6atttr-y (con~ra--tz aria 6); yet
the uiu buttery had an Avarat~e output of 40*.70 aipcre-hours
(Fl sure 15, level dl). A.,A~n, factor A (pulse amplitua1e)

aiiu itictor d. (ckharte current) haa no sit irI:1ait effVect on
batter; output; or e.' ticiencJ,

in eo.ijpari:on, for the ,xea.ral iZlectric uotteries tI.e
..v-anci iiwan ror Ithe ouLjput was 313.16 ampere-hoars ana the
6I'Lcjvnc~y was Y.7,whlle fýov the Sonotone oatteries the
c i-ind ric~an for 'dhe output *Wa 4,2.04t amere-hours arid the
CI'.rCicfcLcV was '/4.67,01. (The nominal ratin_ of. tl.e
bo!ttericno is 34.0 atapere-1iours).

.,n srutiiarj, ior pulse cJhnrt~inb the Gvnerai -:lectric
W~ttCL-ies, on tl-c avcragee, provided l21.2; i~eater outt~ut
than its ratitit, while the Sonotone provixcd 23.K reate.-
oulj?~uL. lio noticeable oattery out;.-ut deC.zradatixon -.%s ooserved
ao each oattcry underwent 36 randon: pulse charL~e - d.-schar-ý,
cycle~s (1Viturcs :) and 7). ;iased on the F test;,4 tlc ScLet'fe

iW~Uat5 dc31<C practi call t, theo need :o!- a quick% oatte--
reehur!,e L]iiue, and I'rom tile stand~point of ener6 oncvý!-i
t',Ne or'ti.Lltn 111113V C.!r~ini, L!VeeIS WOulu ut: 1X0 arpervzý 11-ak
puLse 12( Mi auipcreop imain/il.>,- -vn.Jeras overc:,-ar,,e current at a
.10O( overcharie rate.

FPik~ure tests si..ould oe cot,%Aucted to ~.cte-L--;--ne iiiaividuai
S.,u-ArzinC efiects of these olti-mvm pulse char 6in~, levels on

B-3-;ý;- ouLterico after they have unuerf~ori 'he present .c'ielci
LCVJCQrechv rLe coniditions (,zori.-taat carrent, etc.).
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Ainslyals of Varlance table.
(Patterlm #I .ini A, output)

A 2 5-252-63140

3 2 5.3578.%A0157

c L.0iv±u 10.8190 0.6000

D 1 35.9128 35.!9328 19

AxB 14 142.1819 10-5455 0.5050

AxC 2 614.5=2 32.2db1 101910

AiD 2 T3.140145 37.TC%3 2.0915

ftC 2 15.83143 T.!Orf2 U.143AB

8D2 3.0390 1.5195 0.06143

*CiD I 103.14614 103.146141 5.7 396

AihO 14 55.14999 L3.3 8T50 0.71497

Ah 14 b1.odUII 15.14201 0.85514

AICXV 2 19 .5801 9.7TOQ 0.51431

ahCzD 2 22.2550 11.3 275 0.6173

t RNAL 140 721.o5A .~t

7ML 1 3290605

FIGURE~ 9
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Analyml of Varlow~e Table
(Batteries #f and #2, Xfielency)

SOUE D.. 88 ,M RATIO

I A 2 82.4559 41.2280 uas,43

B 2 8.3685 41.18043 0od(34

C 1 9595.5113 9595.5113 2o3.4A4

D 1 5.911 5.9111 0.1254

AxB 4 115.6990 28.9248 o.6134Am 2i6.23y6 T3,1198 1.5507

AxD 2 266.2553 133-.12T 2.8232

BXC 2 44.7T423 22.3'u12 0.4744

IBxD 2 0.3031 O.1516 0.0032

CxD 1 28.16o4 28.1604 4.8386

AXW. 4 183.2613 45.8153 o.9T736

AxWxD 4 132.6138 33.1535 0.7031

AxCxD 2 48.8554 24.42(( U. 51bU

B2 346.9326 173.4663 3.6787

RWXDU.AL 40 1886.1666 4T.1542

TOTAL 71 13165.4762

7RIGU 10jo-



AMnyal1 af Vari.a•ce Table
(3satterle #3 &M A Oia tWt)

80130 Dj'. 83 No RATIO

A 2 12.4191 6.2096 0.35T71

3 2 16,9933 8.4967 o.04to

C 501 -e2o1A3 507.26143 29.*65

D 1 9.739 129.73- M(.46u5

AXB 4 5A...55e 12.'T899 0.y354

AXC 2 7.T66W 3.-35 0.2233

AzD 2 3.569 1,T7830 o.(15

hC 2 30 -IYW ly.u 3 1.0989

,,2 25.1606 12.5803 0.7234

Sz 1 324. 11483 3214.1483 18.6397

Az i 141-361,( 1.0-34014 o.5946

A 9 17.4804 4 .3701 0.2513

AxCAD 2 9. 5661 14.7bs3i 0.2T50

ft=D 2 75. i22:, 3 # 0b15 2. I7(

n RMMAL 40 695.60w I ..390

ITMAL 73. 1956.11492

F"IGURES 11
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I 
,;

',. 2 .-, ,, ,

S ..•m.o

"'A'2 19;5 t;
1,377 .•03J9 .370.013973

Ax 2 58..5120 0.352

AXD 3 M36 0.0 •0

K LBXC 2 56 -%.OI280 o.35214

BXD 2 I68.7832 814.3916 .uou14

, CD 1 •,..8688 I.868 o.0235

AxxC 14 3141.14617 85.365.4 1.0r26

AX..D 14 359.21A o•.8o18 1.1284

AxCxD 2 1& .7353 81.3676 1.022

BixCXD 2 654-1355 32,r.06(40,,,

RSIDUAL 40 383.4'(76 79.58 69

TOTAL 71 ge46.1302

FIGUii 1221
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•I

c &I aor of

ao 39.33 5.T3 1.17 214

1 37".9T 4.01 o.82 .24

a2 37.25 2.2 0.o.5. 214

bo 38.-5 5.17 i.o6 214

bL 38.1h 5. 1.05 24
S37.- 

6 1.62 0.33 24

Go 37.19 3.57 0.60 36

3l 38.5 4.88 0.81 36

do 37.48 5.0o 0.84 36

63. 38.83 3.27 0.55 36

Grzand mea = •8.16

FIGURIE 13
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(Batteris t1 am )

*standard

. - .- ., ,. ,

ao -236 12.58 2.051 24

b0  78.3T 16.04 3.27

- b2 Tr5.96 12.96 2.65 24

co 88.41 ,0 1.08 36. -
al 65.32 7.21.20 36 .'

d 7T.15 11.99 2.00 36
0.36

al 76.5,8. 15.24 2.436

Grand mean = 76.87

iIGL1.10; 14.
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NSun Outpat nespa I(ARW*. - NoWO ) I(attwrles #3 and A4)
i 8•m~aa'rd

" .2..63 6.39 1.26, 21,
al 41.76 1..55 u.y3 21'

.a 41.T3 5.05 1.03 2

bo42.18 5.4.9 1.12 21.

-2.55 5.79 1.8 24

.41 .3.•.9•.93 24.

co 39.39 5.4,8 0.91 3

J1 4.7o 3.36 o.56 36

40 43.38 2.20 0.3'( 36

1O.jt0. 6.8: 1.15 36

i4

Gra(ki mearl 42.04

1PIGURk 15
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Imen sEficlemy (%M .aau
(Datsioris~ #3 am A

Standard
R " .of w

73.-6 •11.66 2.33 24.

a7 73.53 10.87 2.22 214

S77.01 11.81 2.41. 24"

b7 72.7r 11.61. 2.38 214

bl 75.30 12.61 2.57 24.

72 4•.69 13.09 2.67 214

81.90 8.00 1.33 36

ci 67.43 9.61 1.60 36

110 '.5050 11.4 1.91 36

62. 73.83 11.49 1.91 36

Grand mean ='1.67

SIGUMi 16
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OPTICAL CHARACTERIZATION OF SURFACE ROUGHNESS

Eugene L.. Church and Joh n.'W Zavada
Pittmn- Dunn Laboratory-

.rankford Arsenal
Philadelphia, Pennsylvania

AB "RACT. There is considerable Army interest in developing non-sontact
techniques for quantifying surface roughness. HeRe we consider light scattering
a ac tool 'for deducing statistical properties of surface microtopography vith
the aid of a suitable electromagnetic scattering formalism. For slightly rough
surfaces the solution to the inverse scattering problem my be written in terms
of the power spectrum of the surface roughness viewed through a .;%ndou covering
the nominal vavenumber range from the reciprocal wavelength of light on one
extreme, to the reciprocal diameter of the probing bern on the otber. As .illus-
trations of the method we consider the characterization of two types of residual
roughness on laser mirror surfaces: one-dimensional periodic roulhiassa left by
single-point diamond turning, and isotropic random roughneos left by more con-
ventional polishing techniques. '

1. INTRODUCTION. The Army manufactures many high-quality optical compon-
ents for laser and passive systems. The performance aid usability of these
components depends critically on their surface quality and structure. There is
a need for quick and meaningful ways of testing these surfaces during manufacture.
and before use. Surface microroughness is a very important parameter in deter-
mining the quality of such surfaces; and this paper reviews the background and
design of experiments to explore light scattering as a tool for measuring such
surface microroughness.

Figure 1 indicates this need more fully. There are two principal methods
of characterizing the residual microroughness of optical surfaces nov in use:
visual observation and stylus measurement. However, these methods have limita-
tions as shown. What is needed is a method that is fast and objective, vhich can
be used by unskilled personnel or automated, amd which can measure roughnessee
in the submicroinch range - down to 10 to 100 f r;s. Light scattering, as we
will describe it, offers a possible means for doing this.

Figure 2 shows an artist's conception of how such a light-scattering device
might work. It consists of a laser light source on the left, a photomultipliar
detector on the right, and the sample under test in between. The laser light
reflects and scatters from the sample, but a mask over the detector blocks out
the specularly reflected light and only allows the scattered light to reach the
sensitive area of the detector. The output of the detector goes to a meter. A
good surface will scatter little light and give a low readin% a bad surface will
give more scattering and a high reading. In principle, the meter reading can be
related quantitatively to the roughness parameters of the surface, such as the
surface variance.

913
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Although it is easy to conceive of a device such as this, we do not know
enough about the roughness characteristics of real surfaces at this time to
make such a device meaningful or reliable.

The purpose of this paper is to describe the design of a series of experi-
ments which we are setting up at Frankford Arsenal to generate the necessary

.data base on various types of reel surfaces,, t, armit us to design and build
and use light-scattering devices for surface test and evaluation. 1

2. LIGHT. SCATTERING. We have chosen light scattering as a technique be-
"cause it provides a functional test of surface performunce; it is an extremely
sensitive way of measuring small deviations of an optical medium from its average
behavior. The monst familiar examples of this is -Raylaigh scattering, which
results from the scattering of sunlight from microparticles and density fluctua-
tions in the atmosphere, and is responsible for the color of the blue sky and red
sunset. The scattering we will consider today differs from simple Rayleigh
scattering in two ways: first we consider the random deviations from a plane
surface - a two-dimensional mirror - rather than a three-dimensional volume; and
second, we include the possibility that the adjacent scattering centers are
correlated with each other. In effect, then, we will be examining "opalescent-
scattering" effects of the surface layer.2

-I Figure 3 sketches some of the underlying physics involved in the light-
scattet'ing process. Consider light incident on a sinusoidal, grating-like sur-

•-.face. In this case the scattered light is bunched into a series of discrete
Sdiffraction orders, whose angular positions are determined by the familiar

$rating equation shown, where et is the angle of incidence and es is the angle
I.of scattering or diffraction. In the case of normal incidence, 9 0, and the

grating equation reduces to the form shown en the second line, where the integerm - + 1, ± 2 ---- is the diffraction order.

The positions of the various diffracted orders is independent of the depth
of the grating, but their intensities depend strongly on the depth. For a weak
grating - one where the depth is much less than the wavelength of light, which
is the case of interest here - only the two first-order diffraction linesI(m - + 1) appear with any significant intensity. They appear at the symmtric

-I.angles shown, and their intensities relative to the incident intensity - the

agrating efficiency t - is shown below in the Figure. Here k is the wavenumber
of the incident light and oF is the variance of the surface roughness.

We now see the shape of things to come - there are two roughness length
scales in the scattering problem: vertical and horizontal. The vertical rough-
ness scale determines the intensity of the scattering, while the horizontal
roughness scale determines its angular distribution.
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Real surfaces are not simple sinusoidal gratings. However, we can generate
realistic surfaces by making a Fourier superposition of elemental gratings such
as considered here; by summing the scattering due to a large number of gratings
with various wavelengths running in various directions over the two-dimensional
surface, In the case where the rm depth of the grating is much lees than the
wavelength of light, the scattering of such a composite surface is simply propor-
tional to the two-dinenaional spectral density of the surface roughness. This

is true whether the surface is described statistically or deterministically. 3

"Figure 4 sketches the notation we will use in describing an arbitrarily
rough surface. The-average surface is the x-y planee, and O (x,y) is the 'dviation

of the real surface from that average, with variance of. The power spectrum, W,
is the average square of the two-dimensional Fourier transform of 4 , and is it-
self the two-dimensional transform of the surface autocorrelation function A.
If the roughness is described as a stationary random function, A is then a
function of the separation parameter, p. Specific examples of W and A are given
in a later figure.

Figure 5 gives the form for the differential scattering intensity of a
rough surface in term of its power spectrum, W, for the illustrative case of

3
unpolarized radiation normally incident on a perfect conductor. The scattering

intensity is proportional to k4 - which reflects its relationship to Rayleigh
scattering. The factor I + Coss 8 is the polarization factor for electric-dipole,
scattering, which helps honey bees find their way home to the hive in the blue-sky
version of this formula. The final factor is the two-dimensional power spectrum
of the roughness, which contains all the information about the surface that is
necessary to predict the scattering. It is a function of the two wavenumbers, p
and q. However, for an Isotropic surface W is a function only of the Pythagorean
combination of the two wevenumbers p and q, which equals k Sin e - which is, in
turn, the transverse momentum imparted to the scattered photons by the surface
roughness.

The top formula in Figure 5 gives the differential scattering per unit solid
angle. The total integrated scatter, or TIS, is the integral of this over the
whole hemisphere. In the case where the scattering occurs principally at small
angles, 0, the TIS can be written in terms of the integ:al over W itself, which

is just the surface variance, oa. In that case the TIS assumes the simple form
given on the bottom of the Figure. This well-known formula is often used to
estimate the variance of the surface roughness from measurements of the TIS, using
an integrating light sphere. In the experiments we are considering, however, we
will look at the differential light scattering intensity, which gives information
about the form of U itself and not Just its integral.

The expression for the TIS given on the bottom of Figure 5 has another
significance in the present context - it is the expansion parameter used in the
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perturbation theory which is used to derive the form for the scattering intensity
given on the first line. In other words, the TIS must be << I for this form to
be valid. This in the mathematical definition of a slightly-rough or a weakly-
rough surface as we use it here. In practice the TIS is of the order of 17. or
less, which is one of the reasons we choose to look at the scattered light.
directly, rather than the corresponding reduction of the specular intensity.

The results shown here are a special case of a more general electromagnetic
scattering formalism which was originally derived for radar scattering from the
surface of the sea and various terrains. That general formalism includes the
dependence of the scattering on the angle of incidence, the initial and final
polarizations, and the complex dielectric response of the surface material. The
only change that we need make in going from those radar results to our optics
problem is to change the wavelength scale from meters to microns, and to use the

4
appropriate optical-frequency dielectric response of the surfaces under study.

3. PARTICULAR SURFACES. Figure 6 gives the power spectra for two idealised
optical surfaces: a random, isotropically rough surface, and a deterministic,
periodic surface. In the case of the randomly-rough surface we derive the form
of W from the exponential autocorrelation function shown, where 1 is the trans-
verse autocovariance length. This form Is suggested by the Ornstein-ZernLke
analysis of critical opalescence. W is then the two-dimensional Lorentzian showr.

For the purpose of designing our experiments, this first form for W is taker
to represent the surface generated by random polishing techniques. It predicts E

continuous distribution of scattered intensity peaked about the specularly re-
flected beam. The longer the correlation length A, the sharper the peaking; until
finally, when A becomes of the order of the size of the probing beam spot, the
scattered light collapses into the diffraction cone of the specularly reflected
beam. Cotyversely, the shorter the correlation length, the broader the scattering
distribution, until in the limit where A << X, the results go over into the
simple Rayleigh scattering from a layer of independent scattering centers lying
on the surface.

The second form of W shown is a deterministic form representing a periodic,
a corrugated, surface; expanded in a Fourier series. The corresponding power
spectrum is then a sum of products of various delta functions corresponding to
the standing waves of the fundamental and harmonics that make up the corrugations.
This type of roughness does not lead to a continuou3 scattering distribution, but
rather, to a series of diffraction peaks - one peak for each harmonic - at the
positions determined by the grating equation. In the special case of a single
sine-wave component, these results reduce exactly to those of the simple grating
already given in Figure 3. For the purpose of designing experiments, this second
form of W is taken to represent the residual roughness on a surface generated by

3the single-point diamond turning.
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One important feature of slightly-rough scattering is illuotrated by this
second form for the power spectrum W: the scattering is insensitive to the oigns
and phases of the original Fourier decomposition. This means that even in the
case of a deterministic surface, the most careful measurement of the scattered
intensity will still not allow us to solve the ivwerse scattering problem exactly,
and to reconstruct the parent surface uniquely. This is the price paid for
exploring surface coughowis with a light probe whose wavelangth is much greater
than the vertical scaLe of the roughness. Although the power spectrum does not
tell us everything about the avirface roughness, it does tell us all that we need
to know to predict light scatteriun, and, therefore, it recomands itself as a
natural quantity for characterizing the residual roughness of optical.surfaces.

Now that we have defined forms of W correspondIng to two types of optical
surfaces of practical interest, the next step is to substitute these results
into the previous expression for the scattered intensity and to evaluate the net
result in cames of interest.

4. ILLUSTRATIVE RESULTS. Figure 7 illustrates typical results for a raidont
surface wAth an exponential autocorrelation function. The rms roughness is takov
to be 50 X and the correlation length, 20 pm. These are typical values for

polished metal mirrors. The differential scattering intensity is plotted
versus the scattering angle in degrees. There are two curves - one for the HeNe
laser wavelength of 0.6328 pm, and one for the CO2 laser wavelength of 10.6 i•m.

In this case of normal incidence the HeNs crossection peaks at zero scattering

angle, and falls off essentially as 1/03. The CO2 crossection also peaks at 00
but is generally much smaller in magnitude because of its bmaller wavenumber, k.

Figure 8 illustrates the corresponding results for a corrugated surface - the
particulaK periodic surface shown in the upper corner. The half height is taken
to be 87 X to give the sam TIS as the surface in the praceeding slide; that is,
about 1%. The period is 5 P.m, which is typical for micromachined surfaces.

The scatteriag here is in the form of a series of delta functions, each
corresponding to a harmonic of the roughness: n - 1, 3, 5, 7. unly odd harmonics
appear because of the vertical symitry of the corrugations, and only the first
four of these appear in scattering because n = 9 and higher have wavelengths
shorter than the HeNe laser, and do not diffract. Only HeNe results are given

2• ~in this Figure since the CO2 wavelength is 10.6 •m, which is already larger than
the 5 pm fundamntal, so that there is no diffraction at that wavelength and the
surface appears perfectly smooth.

The Intensity of the diffracted peaks falls off rapidly with increasing
angle. This is not due to an inherent inefficiency of the diffraction process
at large angles, but because the Fourier coefficients of the particular shape we
have chosen fall rapidly with a. In particular, they go as 1/nI, so that the
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diffraction intensity shown here falls off as I/n 4 .

The results shown in Figures 7 and 8 have a double value; they can be used ai
a basis for designing specific experiments, and they illustrate the types of data
that we hope to extract about real surfaces. To repeat, differential light scatter-

ing gives us information about the two-dme-nsional power spectrum of the residual
roughness. These power spectra may be more complicated for real surfaces.
However, for ease in comparison they are usually described by two length pare-
meters - a and A, in Figure 7, or h and d in Figure 8 - which represent the verti-
cal and horisontal structure of the roughness.

As a final result, we consider the nominal ranges of these two length para-
meters that are spanned by the light-scattering experiments. These are shown in
Figure 9. The shaded area is for the HeNe-wavelength laser and the dashed area
for the CO The squares represent - in effect - the windows through which light

scatterinK allows us to view the surface roughness parameters; a kind of transfer
function for the scattering process. The dot and the cross represent the two
particular examples we considered before: the isotropically rough and periodic
surfaces, respectively. As shown, they fall nicely in the HeNs window.

The limits of o are determined from the intensity of the scattering; here,

somewhat arbitrarily, by taking TIS - 10 4 and 100. The limits on I are deter-
mined by angular considerations. A maximum scattering angle of 900 determines
the minimum value of A w X. A mtnimum angle of 10 milliradians, or -• 4, deter-
mines the maximum of I - 10OX. This minimum angle of - ho is typical detector
resolution for the experiments we have in mind. If we had a detector with infini-
t( ly good resolution, the upper limit for £ would be limited by the diamter of
the probing beam spot.

5. CONCLUSION. We are now setting up an experimental light-scattering
facility at Frankford Arsenal based on the principles and results described sbhve.
This facility will be used to measure the scattering from a variety of r-al
optical surfaces - metal mirrus and the metalimed surfaces of trarmissive
optics - obtained from the Frankford Arsenal OpLL.al Shops, industry, and other
government laboratories. We plan to use the data generated by these experiments
as a base for developing specific test and evaluation devices to satisfy the
Army needs.

6. REFERENCES AND FOOTNOTES.

1. Details are given in: The Design of Experiments for the Characterization of
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2. See, for example, L. Rone~sefld, Theory of Electrons, North Holland Publishing
Company, 1951.
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Ithaca, New York 14853

1. Introduction

In recent years statisticians have become increasingly concerned with the

meaningful formulation and solution of certain multiple-decision problems which

arise in experiwmntation. Thus, for exmwple, when an experimenter conducts tests

to cowpare the perforummnces of several compsting categories. of items, his ulti-

note objective often is to select the category (or categories) which is (em)

best, goodness being measured in terms of a particular parameter (e.g., the

population man or the population variance).associated with the random variable

being observed. To accomplish this the experimenter requires a statistical

decision procedure which will tell him how many observations to take, how to

take these observations, and based on these observations which population(s) to

choose; the decision procedure should have the property that the probability of

an incorrect selection (or more generally, the risk or expected loss) in con-

trolled at momn specified level.

in response to the need for such decision procedures, research statisti-

cians have been studying various possible appropriate formulations of thesm

problem, and have developed a body of statistical methodology to cope with

them. The procedures have come to be referred to as ranking and selection

procedures. The purpose of this paper is to introduce the reader to these

procedures, to describe some of them and the philosophy underlying their use,

and to discuss their properties.

In Section 2 we will pose the normal means problem, and use it as a

vehicle for motivating some of the basic Ideas. The two most commonly adopted

formulations of ranking and selection problems, namely the so-called

indifference-ione approach and the subset approach, will be described. The

attributes of single-stage, two-stage, and sequential procedures devised for

the normal means problem, under different assumptions concerning the population

variances, will be assessed. In Section 3 we sketch some analogous results for

the normal variances problem, and in Section 4 we mention results for parameters

of other distributions.

*This research was supported in part by the U.S. Army Research Office-
Durham under Contract DAtIC04-73-C-0008 and by the Office of Naval Research
under Contract N00014-67-A-0077-0020.
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The number of research papers written on subjects in this field is now

vast;• it is hoped that this brief introduction will stimulate the reader to

explove the literature, and to apply the procedures where appropriate.

2. The normal means problem

A very important problem which arises frequently in applications is that

of selecting the normal population which has the largest population mean. Thus,

for example, the ordnance engineer might be conducting firing programs to com-

pare the ballistic performance of different types of projectiles (in which case

his objective might be to select that type which, on the average, travels the

greatest distance), or the medical research worker might be studying the response

of patients to different kinds of analgesic drugos(in which case his interest

might lie in selecting that drug which produces, on the average, the longest

period of time without'pain), or the agronomist might be conducting field trials

with different varieties of grain (in which case his purpose might be to select

that variety which produces, on the average, the largest yield per acre). In all

of these cases lrge values of the means are deemed to be desirable; however, in

other cases small values of the means might be considered desirable. The proce-

duwes that we will describe can, with minor modifications, handle these latter

cases as well.

In Sections 2.1 and 2.3.1 we shall state the statistical assumptions

which underlie the procedures that have been developed. Then we shall describe

several approaches to the selection problem.

2.1 Statistical assumptions

We shall assume that we have k sources Hi (lUicjc) of normally

distributed data, the ith source having population mean ui and population

variance a," population I (l•k) should be thought of as being associated

with the ith category. The pi are assumed to be unknown. Let 0,1) 10[2-

... a- L[k] denote the ranked values of the pii; it is assumed that the pairing

of the 3, with the p (11,0jZQ) is completely unknown. Possible .'ssump-
2tions concerming the ai (l;i$)k) will be discussed in Section 2.3.1. Thro%4nout

this paper X1j (l.i•)k,Jjl,2,...) will denote the Jth observation from Hi,

all observations being assumed independent.
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2.2 Some formulations

The two most-commonly used formulatiahs of the selection problem are

due to Bechhofer [1954] and Gupta [19561, [1965]; these are referred to as the

indifference-zone approach and the subset approach, respectively. The approaches 0

are described below.

2.2.1 The indifference-zone approach

The goal and probability requirement associated with the

Indifference-zone approach are:

Goal. "TO 'select the population associated with [k"r" (2.1).

It is assumed that prior to the start of experimentation the experimenter can

specify two constants (6*,P*) (Oc68*<-l./k(P*<l) which are then incorporated

Into the following probability requirement:

Probability reguirement!

Prob(Selecting the population associated with V[k]
(2.2)

whenever 0[k] - UCk-.1 - 5"

The experimenter then restricts consideration to procedures which guarantee (2.2).

(In (2.2) the specified quantity 6* can be thought of as the smallest difference

"worth detecting" between the population mean of the "best" and "second best"

population; P* is specified strictly greater than l/k since a probability of

1/k can be achieved by choosing one of the k populations at random.)

2.2.2 The subset: approach

The goal and probabi ity requirement associatod with the subset

approach are:

Go•l: "To setect ai (non-empty) subset of the populationH (2.3)

which contains the population associated with V~k]'

It is assumed that prior to the start of experimentation the oxperivmnter can

specify a constant (p*) (l/k4P*<l) which is then Incorporated into the follow-

Ing probability requiremant;
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,:"i :"i: Probability ,.requirent: ,•

Prob{Selected subset contains the population asspciated with P*k] p
regardlesa of the values of the l (...t"<1). (2.1)

The experimenter than restricts consideration to procedures which guarantee (2.4).

Remark 1: It is to be noted that the experimenter plans his experiment assuming

*" , :that the population means are not all equal, this is a very reasonable assumption

in almost all real-life situa ions'. He is interested in identifying the "best"

population -- in this 'case the population with the largest population man. Goal

(2.1) leads to a k-decision problem since the experimenter must choose one of the

k populations based on the outcome of his experiment (i.e., his possible daci-

sions are: 1 1 is best, or 2 is best, or --,, or Ik isbest). Similarly,

goal (2.3) leads to a (2k-l)-decision problem since the experimenter must choose

one of the 2-1 non-empty subsets of the k populations based on the outcome

of his experiment (e.g., for ku3 his possible decisions are: only fl, is in

the subset, only nl2 is in the subset, only fl3 is in the subset, R1 and 12

are in the subset, Rl jad U. are in the subset, R2 and 13 are in the

subset, Hl and n2 and 13 are in the subset). These multi-decision approaches

are in marked contrast to the classical 2-decision test-of-homogeneity approach

afforded by the Analysis of Variance; in that approach the experimenter tests the

(usually completely unrealistic) hypothesis that the k population means are

equal, and decides based on the outcome of the experiment either to acceEt the

hypothesis or to reject the hypothesis.

Rewark 2: As noted above, goal (2.1) leads to a k-decision problem. However,

depending on the practical situation under consideration, the experimenter can,

using the indifference-zone approach, pose more general goals. For example, he

may wish to select the t (1.,t<.tc-1) best populations with regard to order, or

he may wish to select the t (ltk-l) best populations without regard to order,

t being fixed before the start of experimentation. (Doth goals :reduce to (2.1)

when tl.) These more general goals lead to a [k1/(k--t)I)-decislon problem

and a [kl/tl(k-t)I1-decision problem, rempectively. Such general goals and

others are discussed in Uchhofer [1954J and Hahamunulu [1967J.
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Remark 3: For goal (2.1) and the Indifference-mone approach, the experimenter

always ends up by selecting a s population. For goal (2.3) and the subset

approach, the experimenter ends up by selecting 1 or 2 or ... or k
populations, depending on -the outcome of the experiment; thus for this latter

approach the number of populations in the selected subset is a random variable.

2.2.3 Other approaches

Santner [1975) has proposed a restricted subset approach in which
the experimenter selects 1 or 2 or o_ r c populations, depending on

the outcome of the.experiment, where c (lUSkJ) is decided on and fixed before

the start of expeOrimentation; his approach can be regarded as bridging the
indifference-sons and subset approaches since if col his approach reduce@ to

the Indifference-sone approach while if c-k it reduces to the subset approach.
Other approaches in which more general "loss functions" are used have been pro-

posed by Somerville (1954) and Fairweather [1968. An approach in which the pi

are assumed to have prior distributions has been considered by Dunnett [19603

while a similar Idea from a Bayeslan point of view has been proposed by Raiffa

"and Schlaiffer [1961) and Deely and Gupta [1059]. However, for brevity we will

"not discuss these or other approaches.

* 2.3 Assumptions concerning the variances

2.3.1 Possible assnumptios_
In order to devise procedures which will guarantee (2.2) or

(2.4) for the norml means problem, it is necessary to make an assumption con-
2cerning the values of the U (l<.ilJ<). Iich assumption it is appropriate for

the experimenter to make in any particular practical sltuatior, depends on the

information available to him at the time that he plans his experiment. The foul,
most comMon assumptions are that:

a) The values of the ov (0,1$0) are known, and all are2 1 (2.5a)
Sto a (way).

b) The valuoe of the Y2 (l.ik) are known, but, not all

are equal. (9.5b)

2=. c, 6) Tite values of the aI (1,<itJc) ari unknown, but it is"' • "'•(2 (2.50)
known that they have a common value a (say).

t d) The values of the o2 (lU<i,) are completely unknown. (2.5d)
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2.3.2 The variance assumption and associated procedures

Once the experimenter has adopted one of these assumptions he then

must choose a selection procedure which was derived under that particular asump-
tion.
ti• t Thus, for example, if he wishes to guarantee (2.2) and adopts

assumption (2.5sa) or (2.5b), then he can use a single-staine procedure (Bechhofetr

[19543), a two-stage procedure (Ala. [19701 or (Tamhane [1975)), an open sequn-

tial procedure without eLimination (Bechhofer, Kiefer, Sobel [1968]), or a closed

sequential procedure with elimination (Paulson [1964.). If be wishes to guarantee

(2.2) and adopts assumption (2.5o), then he cannot use a single-stan procedure

(see Dudewicz [1971]) although he can use a two-stage procedure (Bechhofer,

Dunnett, Sobel [1954)) or a sequential procedure (Paulson [1964]); similarly,
if he wishes to guarantee (2.2) and adopts assumption (2.5d), then he cannot use

a single-stage procedure although he can use a t procedure (Dudewicz and

Dalal [1971) or Rinott [1974)). Finally, If the experimenter wishes to guarantee

(2.4), and he adopts assumption (2.5a) or (2.5c), then he can use a single-stage

proceoure (Gupta (1956), [1965)).

When the experimenter has adopted a particular assumption and as a

consequence has the option of choosing among several competing procedures, each

one of which will guarantee his probability requirement, he then chooses one of

these procedures on the basis of various possible operational or cost criteria.

An indication of such criteria will be given in our later discussion. In the

next section we shall describe certain selection procedures. Our emphasis will

be on procedures which can be used with the indifference-zone approach to

guarantee (2.2).

2.4 Procedures for use with the indifference-zone approach under the

assumption of common known va~riance

In this section e shall describe three procedures, each one of w.ich

will guarantee (2.2) when assumption (2.5a) is made; m~inor modifications of these

procedures will guara'-tee (2.2) when a&sumption (2.5b) is made. The procedures

will be introduced in the order of their historical development, each being

deasigned to affo-,d different opti.onn to the experimenter.
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2.4.1 Sinale-stame l MOed

The easiest type of procedure to Im1..ea t Is a aingle-stage one.

The following sinale-stage procedure was proposed by Dochhofer [194•3; constants

ckp, (sen a), below) necessary to implement this procedure ame given in-Table I.

"a) Take a csowno nusew H of observations from each of the k

populations where N is the smallest integer greater toan or

equal to (ckp*O/6*)2

N

b) Calculate X I Tx i/N (1140), and let ,[1J<7 E2) N
denote the ranked values of the " (2.6)

c) Select the population which yielded 1[k] as the one associated

with 11 .

Note.a The constgnts ark,p, e a computed under the assumption that the

Pi (L<_k) are in the so-called least-favorable (LF) -configuration, i.e.,
P113" P[k-1 z "[4 - I•S.

Table I

Values of akp*

k

2 3 4 5 7 10

0.99 3.2900 3.6173 3.7970 3.9196 4.0861 4.2456

0.95 2.3262 2.7101 2.9162 3.0552 3.2417 3.4182

0.90 1.8124 2.2302 2.4516 2.5997 2.7972 2.9829

0.80 1.1902 1.6524 1.8932 2.0528 2.2639 2.4608

0.60 0.3583 0.8852 1.1532 1.3287 1.5583 1.7700

The values in this table are abstracted from Table I of Bechhofer

[19541) where values for other k and P* are also given. Addi-
tional values for k = n*l = 2(1)51 and PA = 0.99, 0M75, 0.95,

0.90, 0.75 are contained in Table I of Gupta [1963); Gupta's values

must be multiplied by r in order to obtain the ckp, - values

required in (2.6).
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2.4.2 Open-ended sequential procedure without elimination
The single-stage procedure of Section 2.4.1 Is conservative in the

sense that tho constants ck ,p* necessary to implement it are computed under

the assumption that the population mans are In the LF-configuration; however,

it has been shown (Hall (1959]) that the probability requirement (2.2) cannot

be guaranteed with a smaller N If the. experLmenter restricts consideration

to single-stage procedures. If this restriction is eliminated, and multistage

procedures are permitted, then certain gains can be achieved. What is desired

is a multi-stage procedure which not only will guarantee th4 probability require-

men. t (2.2) when the population mans are in the LF-configuration, but also will

require a smaller number of observations per population, on the average, than

the N of (2.6) when the population means are in very favorable configurations--

in particular when (M[k] " 4[k- l])/ is largq. The following sequential

procedure, which pormesses these attributes, was proposed by Bechhofer, Kiefer,

and Sobel [1968], pp. 258-9, 264-7.

"I&a) Take one observation from each of the k populatlons at
Im

each stage of experimentation. Let . X denote the

cumulative sum from R1 (l<,<) at the mth stage of
I m m m

experimentation, and let • XEI]j ' L X <2J1 <...< E X
j 1 jul Jul

denote the ranked values of the • Xij.

b) At the mth stage of experimentation (m~l,2,...) compute

m

k- I X Ck~j - CL

Then proceed as tollows:

i) If Z <_ (1-P*)/P*, stop experimentation and select the
M m

population which yielded I X k~ j as the one associated
with "[k]' J=l
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. ) If Z, > (1-P*)/Pb, take another observation from each of'

the k populations and cowpute

Continue in this manner until the rule calls for stopping."

Remark 4: For (2.7) the observations are taken in vectors, each vector consti-

tutLng a stage, there being one observation from each population in every vector.

The number of stages (i.e., number of observations per populat on) necessaryto

terminate experimentation Is a random variable. The *xpected number of stages to

terminate experimentation has been shown .(B-K-S [1968],, Tab]es 12.8.2 and 12.8.3)

to be less than N for many configurations of the pL (1j.);, -in particular,

If (A[k] -"A[k-1])0 is large, then with high probabiliiy experimentation will

cease after only a small number of stages. Regardless of the configuration of

the P (<i.Jc) experimentation will cease with probability one after a finite

number of stages.

2.4.3 Closed sequential procedure with elimination

The sequential procedure of Section 2.4.2 has two possible drawbacks:

i) It is openended, i.e., before the start of experimentation it Is not possible

to give a finite upper bound on the number of stages to terminate expez-ientation,

and ii) It does not eliminate "non-contending" populations, i.e.,. it continues to

sample from populations which, based on observations obtained in the aarly a4tages

of experimentation, would appear to be out of contention for being selected as

"best." The following sequential procedure, which overcomes these drawbacks

of (2.7), was proposed by Paulson [1964]; like (2.7) it guarantees the probability

requirement (2.2) when the population means are in the LF-configuration, and

also tends to cease experimentation early when the population means are in very

favorable configurations:

For fixed A (0<A.40/2) let ax A [ 2 /(d*-X))log[(k-l)/(l-P*)), and

let WV the largest integer less than a /A. Paulson's procedure is actually

a family of procedures which depend on the choice of A; in Remark 9, below,

we shall make some comments on the role of X.

"I"T~ke one observation from each of the k populations at theI. first stage of experimentation. Eliminate from further considera-

tion any population Hi for which a - X < max Xsl - XIl. If

937

- i'. . . . .I". .I.I.



all but one piopulation 1-i .Ulmlhakl4 ait*ei tfia. irst stasse, $top''

experimentation an' -select the reianing hs.ati.n as theo'n.

r associS.d •4ith o[k]. Oth~ .se, Sgc on to the se"nd stale 'A, take

one observation from ep.h population not yet eliminated. At stage
m (2.pi<W,) take one obaervatiaii from each population A'ot eliminated

after the, ,m-')jgi staLe, and then, eliminate,ý from further. *onsidewa,.
.tio' any rmsain~ng pop•ulation Itl fOr• which ', , ,

II

a -- , m,,max(K I X X
.5 j~lJul

where ihe sum are only fop' populations left after the (Im-list

stage. If all but one population is eliminated after the uth

stage, stop eAperimentation and select the remaining pop'ulation

an the one associated with " o[kJ; Qtherwine go on Lo the AW+.+)st

stage. If more than one population remains after stage, ,

terminate experimentation at the (W +l)et stage by.selecting

the remaining population with the largest sum of the (WA+÷)

observations as the one associated with uck3'"

Remark 5: The procedure (2.8) never requires more than W +1 stages to terminate

experimentation.

Remark 6: The procedure (2.8) peranently eliminates apparently non-contending

populations; thus the number of observations taken at the mth stage of experi-
mentation is less than or equal to the number of observations taken at the

(m-l)st stage of experimentation.

Remark 7: The cost of experimentation using procedurea (2.7) and (2.8) can be

mscoured in terms of expected number of stages to terminateexperimentation,

and/or expected total numbor of observations to terminate experimentation.

Which one is an appropriate measur( will, depend on the practical situation at

hand.

Remark 8: Ramberg [1966) has demonstrated using Monte Carlo sampling methods

that

938

VV



max E(MumbeW of stages to terminate experimentation)

and

max E[Total numbei, of observations to terminaze experimentation)

are less for (2.8) than for (2.7) when P* is high (i.e., close to unity) but

the. inequali~ty is rever's~d If P* is sufficiently small-, Porng C;9691 hal"
studied that quawtion ahalytcailly. This resut •Is of prarttical interest

since it compares the perfrmanoe of (2.7) and.(2.8) when u 1 ]# "i.e.,

when, unknown to'the experimenteil, all of the population means are equal and

thus the expected number of stages and the expected total number of observations

are at their maxima.

Remark 9: Fabian [1974,] pointed out the advantage of choosing A 0 6*/2, and

recrgmended for that chdcie of X that l-P* in aX be replaced by 2(1-P*)

yielding a' /2- = [22 /1•*log((k-l)/2(1-P*)1 - b (say); then b replaces

aX and 80/2 replaces A in (2.8). This modified procedure still guarantees

thv proh.sIlity requirem,%nt (2.2) when the population means are in the

LF-configuration. It uniformly (in the p) reduces the expected number of

Sand expected total number of observations relative to the ones that

would have been obtaiiied with the unmodified procedure employing X a 0/2;

in addition$ in either the family of unmodified Paulson procedures or in the

family of modified Paulson procedures the choice X = 0/2 has the property that

max EtTvtal niinber of observations to terminate experimentation) is

approximately minimized for P* close to unity.

2.4.4 Two-stage procedure

The sequential procedures (2.7) and (2.8) have the drawbacks that

they may not be appropriate for use in certain types of experimentation. For

example, in agricultural experimentation where yields can be obtained only

once per year (or per grciing season), and thus only one vector of observations

can be obtained per time period, multi-stage experimentation is impractical.
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In such situations two-stage experimentation would appeai' to be appropriate.
Alam (19703 and Tamhane [19753 have developed two-stage procedures which guarantee
the probabilitt:requirement (2.2) when the population meins are In the L.-
configuration; their procedures screen out the apparently non-contending popu-
lations in the first stage, and concentrate sampling on the remaining populations
in the second (terminal) stage. Tamhane's procedure has the added virtue of
possessing a minimax property similar to that ,achiieved by Fabian's modification
of (2.8) when A s,0/2.

2.5, Procedures for uae with the indifference-sone approath under the
assumption of commUn, umknown or dompletely unknown ,.ariance.

As was mentioned in Section 2.3.2V if the experimenter wishes to
guarantee (2.2) and adopts assumption (2.5c) or (2,5d) then he cannot use a
mingle-stage procedure. In this section we shall consider two-stage procedures
which accomplish these objectives.

2.5.1 Two-stage procedure for the common unknown variance case
The following two-stage procedure for the common unknown variance

case was proposed by Dechhofer, Dunnett, and Sobel [1954]; constants hkP*9n
(see c), below) necessary to implement this procedure for P* a 0.95 are

givea in Table II.

"a) In the first stage take an arbitrary common number N0 > I
of observations from each of the k populations.

"b) Calculate S2  (Xij. 0 XIN) 2/n which is an
izi jul i J j1 0

unbiased estimato of a2 based on n = k(N0 -l) degrees of

freedom.

c) Enter the appropriate table (e.g., Table 1I, below, for
p* a 0.95) with n a k(N0 -1) and the specified P*, and

obtain a constant hkP*,n = h (say).

d) In tho second stage, take a common number N-N0  of additional
observations from each of the k populations where
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N = Of 2(0hS/60) 2  N 0

N =2(hS/4*)2J if 2h9/601) 2 : NO,

(2.9)

and [y] denotes the smallest integer equal to or greater than y.

e) Calculate the k over-all (first-stage plus second stage) sample

sums X 1 (li 1.I<c), and let Xlj 4 ... '

IK N

x k3 denote the ranked values of the *~x 1
Jul Jul

N
f) Select the population which yielded Ixk1j as the one

assozLsted with PEW"

Note: The constants h- 0 are computed under the assumption that the V

(lik•c) are In the LF-configuwation.

Table II

Values of h k,P,n for P* u 0.95

k
•n - - -

2 3 4 5 7 10

5 2.02 2.44 2.68 2.85 3.08 3.30

6 1.94 2.34 2.56 2.71 2.92 3.12

7 1.89 2.27 2.48 2 62 2.02 3.01

8 1.96 2.22 2.42 ý..55 2.74 2.92

9 1.83 2.18 2.37 2.50 2.68 2.86

10 1.81 .2.15 2.34 2.47 2.64 2.81

15 1.75 2.07 2.24 2.36 2.51 2.67

20 1.72 2.03 2.19 2.30 2.46 2.60

30 1.70 1.99 2.15 2.25 2.40 2.54

-0 1.67 1.95 2.10 2.21 2.35 2.48

* 1.64 1.92 '2.06 2.16 2.29 2.42
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The values in this table are abstracted hom Table is of

Dunnett [1955]; Table lb of Dunnett (1955] gives corre-

sponding values for P* a 0.99; Dunnett's p equals

our k-1.

Note: The value of h given for the n row of Dunnett E1955], Table Il,
- k,P*,n

in the same as the value given by Gupta [1963], Table I, for the sme k-I p s n

and P* a 0.95 z I-a.

Remark 10: The total number of observations N required by the two-stage procedure

is a random variable since its value depends on the value of S2 ; no additional

observations am taken in the second stage if S2  is sufficiently small.

Remark 11: Paulson [1964J, Section 5, proposed an open-ended sequential procedure

which permanently eliminates non-contending populations; his procedure is appli-

cable in situations in which the common variance is unknown.

2.5.2 Two-stage procedures for the completely unknown variance case

Dudewics and Dalal [1971J, and also Rinott [1974], proposed two-

stage procedurar for the completely unknown variance case. Like (2.9), the

common number of observations in the first stage for each of these procedures

is arbitrary (>I), while the total number of observations per population is

a random variable.

2.6 Procedure for use with the subset approach under the assumption of

common (known or unknown) variance

As was mentioned in Section 2.3.2, if the experimenter wishes to

guarantee (2.4) and adopts assumption 2.5a) or 2.5c), then he can use a single-

stage procedure. The following single-stage procedure was proposed by Gupta

[1956], [1955J for use under assumption 2.So); constants d kP,n (see c), below)

necessary to implement this procedure are given in Table III. (Under assumption

2.5a, the random variable S in d) of (2.10) is replacad by a, and the value

of d for n - is used.)

k,P*,n
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"a) Take a comon arbitrary number N i 1 of observations from

each of the k populations.

b) Calculate 7, x,.,/IN (l, k) and let..*1 1: < Y (2]3 < ("'. <':k3

denote the ranked values of the XI; also calculate

S2 * I (XLJ - • X11/N))/n A which Is an unbLaced estimate
1.1 Jul jil

of 02 based on n s k(K-l) degrees of freedom. (2.10)

.0 Enter the appropriate table (e.g., Table III, below, for

P* z 0.95) with n u k(N-l) and the specified P*, and

obtain a constant dk,P,,n a d (say).

d) Retain the population f1 (Wli•k) in the selected subset if

and only if S-. -

Table III

Values of dkP*,n for p= 0.95

k

2 5 10

15 2.48 3.34 3.78

20 2.44 3.25 3.67

30 2.40 3.19 3.59
60 2.36 3.12 3.50

The values in this table are abstracted from Table I of Gupta

and Sobel [1957] which gives many additional d-values for
P* : 0.75, 0.90, 0.95, 0.975, 0.99.

Noteo: dk,,P * 9 " hkPsn where hkPen is given in Table II.

Remark 12; The width of the "yardstick" In d) of (2.10) is dS/Y9 which decreases

with N; thus the largar the value of N, the smaller the expected number of

populations that will be included in the selected subset. Also, for fixed N
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I the move favorable the configuration of the population mans (e.g., the larger
the value of (lak] - I ~kl]/o). the amuller the expected number of populations

that will be included in the selected subset. (This expected number always lies

between unity and kP*.)

Remark 13: In practice the subset approach is often used fo, screeninA purposes,

since It tends to eliminate "non-contending" populations (i.e., those with small

i-values) from the selected subset. The populations retained in the subset can

then be subjected to further study in an independent follow-up experiment in

which the indifference-sone approach (say) is used.

2.7 Factorial experiments involving means

The statistical model given in Section 2.1 Is appropriate for single-

factor experiments. In a two-factor experiment we have rc normal populations
11 (lii<, l<Jc) with population means mij and population variancesa 2

" r cii

It is sometimes appropriate to assume that ij4 a M + 4 + 0 ( I ai a 11 Oj 0),

i.e., that there is no interaction between the factors, and that oa2 a
ii

(l...., lJ.<.c). Here the a and the 8 are referred to as the "effects" of

the first and second factor, respectively. It is assumed that p, the *it

the 0J. and a2 are unknown. Let a[l]3 <[23 I...a[r3 and

$I[] I O[2] * [c] denote the ranked values of the ei and the Oj; it

is assumed that the pairing of the A with the a[i3 and 0[] (lir, l.<c)

is completely unknown.

In the above setup It is possible to consider geals such as

Goal: "To select the 'level' of the first factor associated

with Qir), and simultaneously to select the 'level' (2.11)

of the second factor associated with 8]"
(cc]

with associated probability reqgirements. Such problems are treated for the

indifference-zone approach in Section 4 of Bechhofer [1954). The virtue of

conducting factorial experiments in this situation is discussed by Bawa C19723.

The indifference-zone selection procedures of Sections 2.4 and 2.5 can be used

in multi-factor experiment; it is only necessary to make appropriate modifica-

tions in the px'octjdurý,.
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It is also possible to conduct singl~e-factor or multi-factor ranking .
and selection experiments using the stand"r experiment-al designs such an ran-
domized blocks and Latin squares, and these designs play the came type of role

here as they do in classical hypothesis-testing situations.

2.8 Means vs.a fixed known standard

In Section 2.4.1-2.4.4 and 2.5.1-2.5.2 the selection procedures

proposed were devised to select the category associated with the largest
P-value. However, in certain glasses of experiments even the "best" one of

the competing categories, i.e., the category with the largest )A-valms, my not

be good enough to warrant the experimenter'c. selecting it. For example, If the .
competing categories are drugs, the '-,st one may not be worthy of consideratioks

unless the expected period of i~munixy obtained with that drug is at least some

specified period of time; or if the cv.mpeting categories are types of host

treatment of steel, the best one may not be deemed satisfactory unless the

expected tensiliv strength resulting from that type of treatment Is at least

some specified minimum value. Such types of problems involving comparlsons
of means with a fixed known standard are considered by Bechhofer and Turnbull

[1974], [1975a]; in the first paper a single-stage procedure is proposed under

assumption (2.5a), and in the second a two-stage procedure in proposed uinder

assumption (2.5c). These procedures arm generalizations of Bechhofer (1954)

and Bechhofer, Dunnett, and Sobel (1954]. Gupta and Sobel E.1958) proposed a

single-stage procedure for this problem using the subset approach.

Secion2 daltwith the normal means problem. Corresponding procedures

exis fo th nomalvariances problem. Ranking and selection problems involving

varince arseforexample, when the ordnance engineer is Interested in

selctig tat ypeofprojectile which yields the smallest dispersion of'

V range, ot' when the laboratory technician Is Interested in selecting that *
Vmeasuring instrument which has the highest precision (e.gk., that scale which

has the &Leatest reproducibility). An analogue of the single-stage procedure
given In JBochhofer [19541 for normal means is given in Bechhofer and Sobel

[191114l for normal variances; factorial experiments involving variances are

treated in Bechhofer [1968aJ and [1968b] using a model proposed in Bechhofer (1960).
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S Bechhofer and Turnbull g1975bJ to the counterpart for variances of Bechhofer and

Turnbull [1974]. An analogue of the procedure given in Gupta 119563 for normal

means is given in Gupta and Sobel [1962) for normal variances.

4. The Bernoulli p, problem, and other problems

Ranking and selection problems involving Bernoulli p's (i.e., probabilities

of "success" on a single trial) arise, for example, when a consumer is interested

in selecting that producer whose product has the smallest fraction defective.

An analogue of the procedure given in Bechhofer (1954] for normal means is

given-in Huyett and Sobel [19573 for Bernoulli p'., while the counterpart of the

procedure given in Gupta [1956] for normal means is given in Gupta and Sobel

[1960] for bernoulli p's.

Sobel [19543 proposed a sequential procedure for selecting the exponential

population with the largest mean; his results have applicability in reliability

studies. Bechhofer, Kiefer, and Sobel (1968], p. 63 considered sequential

procedures for ranking parameters of certain stochastic processes such as the

Poisson process and the Wiener process. Various research workers have proposed

procedures for many other ranking and selection problems involving parameters

of distributions arising In practiae.

5. Closing remarks

The ranking and selection formulation of statistical problems involving

inferences concerning k .2, categories has wide applicability in the solution

of problems arising in experimentation. In this paper we have sketched only

a small number of the relevant ideas and procedures. The interested reader

is referred to Sechhofer. Kiefer, and Sobel [1968) for references up to that

date, and to Gupta and Panchapakesan [1972] for references to the latter date

concerning the subset approach. Additional and more recent references are given

by Wetherill and Ofosu [1974]. The writer would appreciate learning of experi-

mental situations in which some of the procedures described herein have proved

helpful.
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MAXIMUM INFORMATION FROM
FIELD EXPERIMENTS

Marion R. Bryson

US Army Combat Developments
Fxperimentation Command

Fort Ord, California 93941

ABSTRACT. The constraints of limited time, limited resources, and
large inherent sample variance characterize army field experimentation.
For these reasons the significance level, the power, or both, of tests
of hypotheses are usually not as high as one would desire. The decision
must be made as to whether low power or low significance is less undesirable--
or. perhaps, we can eat our cake and have it, too.

This paper briefly describes the US Army Combat Developments
Experimentation Command and its mission to perform field experiments.
It then discusses a typical example which brings out the major problems
in this type experimentation. Methods of dealing with a large number of
sources of variation are discussed.

r 1. INTRODUCTION. The process known as combat developments

inludes the planning of the future army; how it will b e equipped, how it
will be organized, how it will fight. The specific products which are
produced to address these topics are materiel need documents, tables of
organization and equipment, and field manuals. Oftoen in the development
of these products, a concept or a piece of equipment must be tested with
troops. It is the mission of the Combat Developments Experimentation
Command (CDEC) to design and conduct field experiments in these areas.
The players in these experiments are trained army troops, the equipment
is operational or prototype hardware, the environment is a realistic combat
environment. CDrC deals in small unit experimentation, usually smaller
than company size elements on each side.

The sources of variation in field experimentation are more difficult
to handle than in many types of experimental, situations. This is caused by
the necessary freedom given the players to behave as if they were in a
combat environment. Dealing with this variation is the major subject of
the paper.

951

'1



2. THE CDEC MISSION. It is quite apprupriate that repra.sentatives
of CDEC should participate in the Army IDesign of F!xperiments Conhrrence..
We are one of only two organizations in the army with the word experiment
(in some form) in their title. CDEC is unique in the Army. DOP. and
probably in the world. Its sole mission is to perf rrm field experimcnt',
in which the equipment is put in the hands of the trotlps to 1e us•d in an
operationally relevant environment. This is as distinguished from field tests,
engineering tests, and operational tests in which the major concern is
the operation of the equipment rather than the interaction of the equipment
with the personnel and the environment.

CDEC is a service organization. With rare exceptions the requirements
for experimental data comes from an organizat.ion outside of CDEC. This
organization tasks CDEC through its higher headquarters, the Training and
Doctrine Command (TRADOC); and acts as proponent for the experiment.
The major customers for the CDEC product are the TRADOC schools and
centers -- the Combined Arms Center. Armor, Infantry, Artillery, Aviation.
and Air Defense schools. CDEC provides data to satisfy one of three
requirements. The first is to compare two or more alternatives. Thet.,
alternatives may be hardware systems. strategies, or organizations. The
second is to compare one or more alternatives with a standard vy.tenm.

The third is to provide data for use in computer models, simulations. or
war games. The data may be used for model validation or for data input.

CDEC is a subordinate command of TRADOC. The staff section in
TRADOC responsible for CDEC is the Deputy Chief of Staff for Combat
Developments. The Operational Test and Evaluation Agency (OTEA)
monitors the work of CDEC as well as all operational tests throughout the
army. The Commander of OTEA chairs the Test Schedule and Review
Committee (TSARC) which meets twice yearly to review the army test pro-
gram. The TSARC, a general officer committee, manages the Five Year
Test Program. This program consists of all army operational tests, joint
tests, and force development tests and experiments.

Within CDEC, the exerimentation mission is performed by three
major divisions. The first is responsible for developing the overall CDEC
program, working with the proponents in identifying the problems. and
designing the experiment. The second division performs the experiment.
analyzes the data and writes the report. The third division maintains and
operates the highly complex system of instrumentation necessary to collect
the data.
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The instrumentation system at CDEC consists of five major categories
of hardware.

a. Instrumentation Control. This is a system of computers which
include a GE M605. an XDS 930. and two XDS 9101s. CDEC is currently in
the process of changing over to a new computer control system.

b. Position Location System. This system consists of a series of
movable transmission towers which can be located anywhere on the range.
a series of small transponders which automatically send and receive
messages, and two relay stations --hich interface with the computer. The
computer, by sending messages to a :d receiving messages from the trans-
ponders via the transmission towers, can compute the location of the
transponders en a second by second basis. Each player element carries a
uniquely coded transponder to identify his location to the computer. A
continuous location record is kept of all players by the computer.

c. Simulated Lire. The simulated fire system consists of 60 small
laser generators. These eye safe lasers can be bore sighted with a
weapen and wired so that when the trigger is pulled a coded laser beam
is emitted rather than a projectile. When a laser beam is emitted, a
message to that ef fect is sent to the computer through the trarnsponder,
automatically. If the laser beam strikes a target, a laser sensor on
the target is activated. This message is sent to the computer through
the transponder on the target. This "hit" does not necessarily mean
the target was "damaged," or "killed" by the exchange. The computer
now possesses the fol•owing knowledge f rom the engagement: who fired.
the weapon type. the location of the firer, who was the target. and the
location of the target. The computer then determines the range of
engagement and the aspect and speed of the target. Then using prob-
ability of kill functions resident in memory, the actual probabilityV o kill
is computed. A random number is drawn by the computer to determine
whether damage or a kill has been inflicted by the engagement. If the
target is assessed as a casualty it is sent a message to that effect and
the laser weapon of that player is deactivated by the computer so he
can't shoot any more. The target also detonates a smoke grenade and
displays a distinctive panel to inform the other players in the game of his
.1 tus.

d. Live Fire. There are two computer controlled live fire ranges.
",iWe offensive and one defensive. The man-sized targets can be programmed
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to come up in an exposed position on any preassigned schedule, to fire
blanks, to duck for a programmed time if a bullet comes close, and to
fall down and stay down if hit.

e. Support Instrumentation. The s5) tems represented ui the support
instrumentation are additional data gathering and storage systems and
control systems. There are two radar systems for target tracking,
there are cameras to record, manuafly cr automatically. what is taking
place, there are several multiple channel voice r ecording system'5 to
record by radio or telephone all that goes on in a trial, arnd there is a
master timing system. This tining system simultancously tim-e tags all
records kept of the experiment for the purpose of cross checking redundant
data records.

The geographic area used in CDEC experiments is Hunter Liggett
Military Reservation at Jolon. California. This reservation has 166,000
acres consisting of all terrain types from flaZ treeless plains areas to
heavily forested rugged mountains. The weather is mild and rainy in the
winter, hot and dry in the summer. CDEC controls the air space over
Hunter Liggett to an altitude of 10,000 feet.

3. LEVELS OF DATA REFINEMENT. CDEC recognizes six levels of
data refinement. The hierarchy represented in these levels is valuable
in discussing the form and nature of experimental results desired by the
proponent. The six levels are defined here:

a. Level I - Raw Data. Data at Level I are data in their original
form. This includes data on:

(1) Data collection forms (ised by a controller or data collector.

(2) Magnetic tape. This refers to the original tape used
during the conduct of the experiment.

(3) Camera film, unedited.

(4) Voice Recording System tape (VRS), unedited.

(5) Punch cards or hard copy print-outs of the contents of (2).

At this level no data purification has taken place except the elimination
of data which are obviously invalid, such as that caused by an instrumen-
tation malfunction.
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b. Level 2 - Reduced Data.

Data at Level 2 have been taken from the r#.w data form and
conmolidated for evaluation of data quality. This Cirst level of data refine-

ment is performed soon after the data are coblected, usua~ly within -

one day.
SI

c. Level 3 - Ordered Data. Data at Level 3 have been checked for
accuracy and placed in logical order. Data at this level may be produced
in onw or more of the following forms:

(1) Ordered computer print-out.

(21 Typed listing.

(3) Purified and ordered tape.

(4) Edited camera film.

(5) Edited VRS tape.

(6) Punch cards.

Data in this form will have been thoroughly purified. Invalid data will
have been identified and eliminated. The data may be ordered on any of
several dimensions such as:

(1) Measurement taken, e.g., time to detect total exposure time,
range to target, or crossing velocity.

(2) Trials.

(3) Player elements.

(4) Time of day.

No arithmetic operations, with the possible exception of counting. are
applied to data at this level. Data at Level 3 are distinguished from data
at Level 2 by the terms "edited" and "ordered."
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d. Level 4 - Descriptive Data. Data at Level 4 have been subjected
t-1 any of several elementary statistical and mathematical operationm.

,ata in thi2, form will usually consist otf:

(1) Frequency distributions. Such distributions may be in
tabular form, histograms, or curves smoothed by eye.

(2) Computed means, variances and standard deviations of
distributions.

(3) Computed medians, mode s. ranges, quartiles, deciles. etc.

(4) Computed percentages,

(5) Computed correl.' Lion coefficients.

Processing of data to Level 4 does not include drawing inferences.
Signif icancc of the difference between any of Ihe mieasurements is not
,ivt n. Data at this level differ from those at Level 3 in that they are
ý.ummarized and combined into more concise measures. Data at this
level should not go beyond what may be called "data descriptive of
what happened in the experiment."

e. Level 5 - Inferred Data. Data at Level 5 have undergone statistical
tests of hypothesis and/or interval estimation. The design of the experi-
ment is constructed so that the specific planned tests and estimates can
be made. Although there are many tests of hypothesis in the literature,
those techniques which will most often be used at this level of data
refinement are:

(1) "Student's" t test.

(2) CHi square test.

(3) Snedecor's F test.

(4) Analysis of variance.

(5) Regression analysis.

(6) Any of several s9andard non-parametric tests.
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Hypotheses to be tested wi include testing whether:

(1) An observed sample represents a sample from a standard
or known distribution.

(2) Two (or more) observed samples are both (all) samples from
the same, perhaps unknown distribution.

(3) A sample parametric estimate such as a mean. median,
stanviod deviation, or regression coefficient differs from a given fixed
value.

(4) Two or more independent sample parametric estimates differ
from each other.

Data at this level do not include statistical inferences on ex post facto
questions generated either from an outside source or by the results
themselves. Level 5 data are limited to preplanmnd statistical analysis
of the data generated in the experiment.

f. Level 6 - Analyzed Data. Data at Level 6 have received a more
thorough and detailed analysis than at Level 5. Analysis at this level is
characterized by two f-atures:

(I) It answers questi-ns or investigates areas not planned for
in the original experiment or,

(2) It combines the results of the experiment with data obtained
elsewhere in order to generalize the conclusions which may be drawn.

A classic example of Level 6 analysis is the inserti-on of experimentally
derived data into a combat model to, generate new information to help
answer force mix questions. A second example is the use of experimen-
tally derived intervisibility data to determine the probability that a
target is available when a tube launched guided projectile arrives.
Another way to distinguish analyses at Level S and Level 6 is that data
at Level 5 are pure data, are derived by deductive reasoning, and concern
themselves solely with the quantitative nature of the population from
which the oxperimental sample was drawn. Data at Level 6. on the other
hand, answer operational questions, require inductive reasoning, and use
the experimental results to assist in shedding light on the key military
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Although CDEC reports to the proponent on data at Level 3, the

subject of the remainder of this paper concerns analyses at Levels 4 and

5. Analysis at Level 6 is generally done by an analytic organization

rather than an experimentation organization.

4. A TYPICAL EXPERIMENT. In this example will be described some

design problems which are characteristic of the type of experiments con-

ducted at CDEC. A general solution to most of these problems will be

indicated. The following paper by Dr. Mallios will discuss some specific

techniques that have been used to solve some of the more trouble:'Ime

problems.

This example is hypothetical (barely). Barely, only because it has been

simplified to its basic important elements. It is very typical. Let us

say there are two helicopter mounted target acquisition devices the

proponent wants to compare. He also wants to compare the devices at
two ranges, i.e.. he suspects a device range interaction. (Generally there

are many other independent variables he is -.tt_ -- -d in such as the size of

the target, is the target moving or stationary. -: the target hot or

cold (IR emissions). is the helicopter hovering -- ovinx, etc.) Let us say
further in our 2 x 2 experiment that we have tu -, money. fuel. etc..

for exactly 48 trials. The dependent variables is "time to detect."

One would likely propose such a design and model as is shown in Table 1.

TABLE 1 - BASIC DESIGN

DEVICE
A B

1. 12 12

RANGE
2. 12 12

MODEL: y=m+d+r+dr+e (1)

ANALYSIS OF VARIANCE
d.f.

Devices (d) 1
Range (r) 1
Interaction (dr) 1

Error (e) 44
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Fine--it will work. But we must have players. How many players"

Certainly at least 1 and at most 48. Let's look at those two extremes.
A proposed model for the case of one player would be,

y m+d+r+dr+ t+e (2)

where t is the learning effect. Certainly he wouldn't have the same
expected behavior on the first trial as on the 48th trial. This learning effect

is neither linear nor random. Dealing with it presents a significant problem.

Moreover, one must keep in mind the population about which we are making

inferences. In terms of people, that population is the group of people who
may use the device to detect targets in combat. Certainly, making infer-
ences about that population with a sample of one player is poor procedure.

The 48 player proposition `es not suffer from either of these short-
comings. It is shown in many experiments that the greatest single cause
of variation in experimental results is the difference between players.

The postulated model for this case is,

y =m +d + r +dr +p+e (3)

The player effect (p), is conf ounded with the error. It occurs as a term
in the expected mean square of all four sources of variation shown in the
ANOVA of Table 1. Since the player variance is so large, it overpowers
the F ratio and nothing but the most obvious treatment effects show up as
significant. (This is apart from the logistical problem of finding and train-
ing that many qualified players.)

Now that we have disposed of those two options let us look at another
and a more reasonable player option. Let us use four players, each one

playing in three trials in each of the cells of the design in Table 1. Since
each player plays in 12 trials, each of the cells can contain one of each
of the player orders: 1, 2, ... 12. A model for this design is,

y m+d+r+dr+p+t+e (4)

where all interactions except the device X range interaction are assumed
away. 7his design is better. We can isolate the player and learning effects,
but the.e is still the question of sample size. Is a sample of 4 from all
possible soldiers an adequate representation?
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A final, and best alternative we will consider is one which uses 12

players, each one playing once in each of the four cells. Again we can
balance the order effect within the cells. The postulated model is the
same as in equation (4), however, the analysis of variance would have re-
distributed degrees of freedom and different coefficients in the expected
mean squares. The analysis of variance is shcvn in Table 2.

TABLE 2

ANALYSIS OF VARIANCE

Source of variation d.f.
Devices I
Range I
Interaction I
Players 11
Order 3
Error 30

Since "Players" would normally be a random factor, more correctly the
error term for the main effects of range and device would be their inter-
action with player. We have assumed this to be zero which makes
"error" the denominator of all F ratios. If one is unwilling to assume
zero interactions, the player interactions can be computed and used as
error terms. In this case, the player X device X range interaction is
confounded with order so no legitimate test exists for the range X device
interaction.

All of the foregoing is merely the peak of the iceberg. The real
problems in field experimentation center around dealing with such factors
as:

a. Carry over effect. This effect is that influence the treatment
combination experienced by the player in trial i has upon his performance
in trial i + 1.

b. Environmental factars.

(1) Dust.

(2) Wind.

(3) Atmospheric attenuation.
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(4) Light level.

(5) Sun angle.

c. Target location factors.

(1) Target to background contrast.

(2) Background clutter. f
(3) Shape contrast.

It is clearly impossible to control all of these sources of variation.
Each one may have an effect on the measurement of interest in a given trial.
One solution is to balance on these factors, i.e., assure in the design
that whatever the level of these factors is, that level occurs with equal I

frequency in each of the four cells in Table 1. This can be achieved
physically by having a single target and four observers, two at each range
with one of the devices at each range. Perform the detection task
simultaneously. Then, as nearly as possible, we can say that the differences
in detection time are due to the difference in the main effects and their
interaction (plus random error). We perform a sequence of 12 such games
with the proper player and order design. Now the analysis shown in
Table 2 is valid, or is it? When the main effect mean squares are compu ted,
to be sure, the variance caused by the above mentioned sources is absent.
But when the error mean square is computed it shows up in all of its glory.
What happens, then, is that the expected mean square of the den.minator
of the F ratio contains terms not found in the numerator. This leads to
small, inappropriate F ratios.

This brings us to the last straw. To avoid the problem of inappropriate
F ratios and still have degrees of freedom left for error, we can ran-
domize the assignment of treatment combinations to target locations,
days, and times of day. The terms mentioned above then occur in all
expected mean squares and the result is valid F ratios.

5. COUP DE GRACE. In real life, do we reaLly randomize? This only
leads to tests of very low power. Whici, is more important, to get the
very best estimates possible of the behavior of a system, or to get
estimates of the behavior of a system which can be subjected to valid
statistical tests? We think the former. It is for this reason that we favor
balancing rather than randomizing. We still do tests of hypotheses but
recognize clearly that these tests are often very conservative. In other words,
we are more interested in obtaining the most accurate data possible at level
4 of refinement at the expense of doing rigorous level 5 analyses.
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SAMiPLE SIZE TRADE-OFFSr , AND

TIHE CONSTRAIIlrD MAXI,!IZAIlO1J OF INFORMATION

WilliaI i S. Mallic.s
The BVM Corpcro.tion

Monterey, California

ABSTRACT. Cost effectivcnen;s is applied to sample size determination
for field trial experimentatior,. Compound distributions are used In es-
tablishino trade-offs between simple size combinations and expected Infor-
miation. These trade-offs are usnd in :na-imlzing Information under cost
constraints.

1. INTROOUCTION. This writing illustrates the use of sample size
trade:of-fs i: the design of field trials. Trade-offs are possible when
sample size has marc than one dimension. For example, a two dimensional
sample size occurs when responses are to be drawn from each of a number
(n) of experimental units in each of a numbpr (N) of trials per fixed en-
vironment*'--units are netted in trials, and trials are nested in environ-
wents. Since a number of (nN) selections can give rise to approximately
the same level of information, an appropriate selection is one which costs
least, assuming othe•r constraints have not been violated.

Sample size trade-offs provide a basis for answering the following
questions regarding the design of field trials.

Now was prior knowledge used in the design of the proposed ex-
periment?

How much information Is to be gained for a given expendi- (1.1)
ture?

What is the loss (gain) in Information as the expenditute is
decreased (increased)?

Experimental objectives and information level (I.L.) are related as
follorxs. Model specification is dependent on the objectives, while I.L.
Is inversely proportional to the variability associated with the model. "
Key to this relation is the model which reflects the objectives and dic-
tates the design and method of analysis. In turn, variability can be
quantified in terms of a variance, a generalized variance (the determi-
nant of a covarlance matrix associated with the model), or other appro-
priate measures.

Our use of I.L. is directed at quantifying information on the state
of knowledge, not the state of uncertainty as in the Shannon formulation
of Information; see Pierce (1q61). Thus, I.L. is more attuned to tihe |
definition of intriinsic accuracy (see Fisher (1950)) in describing the
amount of Information yielded by each member of a sample regarding a

* When environments are random, sample size becomes three dimensional.
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distributional parameter. However, with the diversity of definitions of
"information", I.L. is left in general terms so as to allow for flexibil-
ity and further experimentation in applying the quantity. For examole,
a generalized variance (as the reciprocal of I.L.) is proportional to the
square of the volumv of the concentration ellipsoid (see Cramer(1946)),
the geometrical representationw of a distribution about its center of
gravity. Or, if the objectives are formulated in tcrms of a linear com-
bination of variables, the covariance matrix is reduced to a single
variance as the inverse of the I.t. required, say, to attain a confidence
interval of a certain width or to test for a certain difference between
expectations. Regarding our loose definition of I.L.. it should be re-

called that Fisher (1950) tempered his definition as follows: '1 am more
inclined to examine the quantity (information) as it emerges from mathe-
"matical Investigations and to judge of its utility by the free use of

common sense, rather to impose it by formal definition".

Sample sizes should be based on the model, but oftentimes this is
no easy matter. Consider, for example, a proposed field experiment where

a yes or- no response is to be measured from each of n units in each of
N trials per environment. In addition, trials are to be quantified, if

possible, on an ad hoc basis through measures of prevailing meteorologi-
cal (met) conditions, and it is anticipated that the probability of re-
sponse will vary between trials within environments. Our recourse to
this problem involves, firstly, utilizing distributions which account
for varying probability of response, secondly, getting prior esti..ites
of the distribution's parameters, and thirdly, establishing trade-off%
between sample sizes. Regarding the varying probabilities. comp(,und dis-
tributions are applied. As to prior estimates, these can be obtaiined
through analyses of data from exploratory trials, from past experiments
of a similar nature, from computer simulation studies, from combinations
thereof, or, as a last resort, through a good guess.

Section 2 contains background material on data collected in previous
field trials in one particular environment. In Section 3, these data are
used In establishing sample size trade-offs in maximizing i.L. under cost
constraints. The aspects of model derivation, parameter estimation, and
goodness of fit are considered in the appendices.

2. RESULTS OF DATA ANALYSIS FOR AN AIR POLLUTION EXPERIMENT. Con-
sider an environment with an inversion occurring at a few hundred meters
In height, the Inversion defined as an atmospheric layer, of limited ver-
tical extent, in which temperature increases with height. Beneath the
inversion windflow is light and variable, with pollutant plumes emanating

continuously from a fixed point source (say, a smokestack). The pollu-
tant does not penetrate the Inversion so that the plumes are dispersed by
the winds and turbulence. These conditions can lead to large ctuicentra-
tions or ground level pollution, all of which mandate useful predictions
of concentrations from proposed or existing -,ources in such environment..
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Prior to proposed field experimentation, data were analyzed from an

experiment in a similar environmcnt. Therein, air samplers were located
near ground lev.! within an area of size 1200 meters by 1000 meters --
concentratiori.s at varyinq heights dbove ground level were not considered.
Diseminfati(,n of a pollutant simulant was from a fixed point source loca-
ted at the cvnter of the grid with responses drawn front r, 35 samplers,
arranged in a uniform pattern, in each of N-22 trials. The response from
each sampler was concentration or the number of particles cumulated over
a fixed span following dissemination.

Better known model,., based largely on the normal distribution, are
aimed at predicting concentration at given grid coordinates; e.g.. under
the Gaus!.ian plume modul, the effluent Is assumed to expand normally in
the horizontail and vertical directions as It moves downwind with a pre-
vailing wind; see Panofsky (1969). However. these models are known to
be inadequatc when eddy sizes are sufficiently large to move the effluent
along a meandering path. as was the case in these previous trial.. In-
stead of prediction%, at qiven grid cuordinates (see Mallios (1969)), al-
ternative conideration Was given to models which prtedict percentaqe, of
the grid area subjected to given rantles of concentration and which ac-
count for between trial varlatioki in these percentaqes. Accordingly.
based on comipliance with experimental objectives, sampler responses were
categorized, on a per trial basis, to one of the four particle number
ranges ranges C:(0.99), c2:10,99), C3 :(10o0.9999), c4:(>t0,000); (2.1)

e.g., samplers with particle counts between 100 and 999 were assigned to
category C2. With x ii denoting the number of sampler responses assigned

to category Ci in the j-th trial, we have E x " 35. The data are
presented In Table I. I-I1 j

Subjecting these data to a contingency table analysis leads to the
obvious result that the multinomial distribution does not account for
the between trial variation of x - (x ; i.e., assuming x.

-ý_j 1j, . .j) _-J
follows the multinonial distribution with probability p. n (pi .01)

A 22 22,1. 
'

and setting Pi1 Z x I) / t
Ji lj 1j'

the hypothesis H: p j-P Is rejected in view of the value of

Z (xij -" / n -1 . 175.4,
i,J

2
which, under H, follows the X distribution with 63 degrees of freedom.

Readings of meteorological (met) Instrumentation, operational during
these trials, were evaluated in attempting to classify trials into met
regimes within which the multinomial probabilities were approximately con-
stant. It was found that the instrumentation could not identify differing
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Table I. A per trial grouping of sampler responses.

Categories

C1 : (0.99) c2 . (100,999) C 0: (1000,9999) C1 : (>10,000)
Trial % (No.) % (No.) 2 (No.) % (No.)

1 67 (23) 11 (4) 11 (4) 11 (4)
2 49 (17) 23 (8) 14 (5) 14 (5)
3 74 (26) 14 (5) 6 (2) 6 (2)
4 37 (13) 20 (7) 32 (11) 11 (4)
5 66 (23) 23 (8) 8 (3) 3 (I)
6 63 (22) II (4) 6 (2) 20 (7)
7 34 (12) 14 (5) 34 (12) 18 (6)
8 60 (21) 18 (6) 11 (4) 11 (4)
9 14 (5) 34 (12) 29 (10) 23 (8)
10 37 (13) 43 (15) 6 (2) 14 (5)
11 29 (10) 52 (18) 8 (3) 11 (4)
12 37 (13) 3.4 (12) 11 (4) 18 (6)
13 37 (13) 41 (14) 8 (3) 14 (5)
14 43 (15) 29 (10) 14 (5) 14 (5)
15 18 (6) 18 (6) 33 (12) 31 (11)
16 57 (20) 0 (0) 40 (14) 3 (1)
17 34 (12) 18 (6) 34 (12) 14 (5)
18 37 (13) 17 (6) 23 (8) 23 (8)
19 49 (17) 26 (9) 8 (3) 17 (6)
20 11 (4) 52 (18) 23 (8) 14 (5)
21 40 (14) 17 (6) 23 (8) 20 (7)
22 43 (15) 14 (5) 26 (9) 17 (6)

Totals (327) (184) (144) (115)

Average 42.5% 23.9% 18.7% 14.9%
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regimes under these cnnditions, so that the 22 trials were taken as charac-S~teristic of one met regime. An area-coverage distribution applicable to

this regime is obtained by compounding the multinomial and multivariate
beta distributions. The result, given by

h(x; n, 2) =n! (ai+x 1 , a 2+x 2 (,3 +x 3 c 4+x 1)/W(ai1 7 3  a 11) x., (2.2)

is termed the multinomial-multivariate beta (MMB) distributinn, ;..crc the

a >l are parameters of the quadrivariote beta distribtition; see Appendix I

k for the moments of (2.2), Appendix 2 for estimation of the .i, and Appen-

dix 3 for goodness of fit of (2.2) the data in Table I.

It should be noted that (2.2) is a conglomerate distribution in that
it should account for the between trial variation in x even if the poilu-
tant source were varied between trials and/or if there were substantial
measurement error and/or if trials could be classified into distinct met
regimes and/or if samplers were positioned varying heiqhts above ground
level. However, the more the sources of unidentified variation, the
greater the variability and the less the I.L., so that one should always
Isolate sources of variation when possible.

3.- INFORMATION CONTOURS AND OPTIMAL SAMPLE SIZE SELECTIONS. efo(re
addressing the questions in (1.1), we first quantify the change in I.L.
as the sample size is varied. Thereupon, an optimal (n,N) combination,
say (no,No), Is that which maximizes I.L. under constraints of fixed costs.

In this problem, I.L. could be taken as the inverse of the general-
Ized variance of a, the maximum likelihood estimate of.%; I e., under
fairly general con-ditions, it is known that variance a - 4*1 /N, where

* ""-E(a 2 log h/a)ai 1 i.)

and h denotes MMB distribution. I.L. Is then estimated by N1#1 after a
is substituted for ,i. Alternatively, I.L. could be taken as the inverse
"of variance (L'x) -"I'VL, where V w variance (x) and X'x is an appropriate
linear combination of the xl; e.g., the Li might be defined 3S the mid-

points of the four categories given In (2.1). As a matter of illustration,
we take the former as the measure of I.L.

Figure I contains contours of fiAed I.L. - NI*(a ,)I values, rang-

Ing from .3xlO"3 to IOOOxlO"3. for varying values of n and N. If, for
example, n w 30 and N is Increased from 6 to 10, the I.L. is increased,

roughly, from 5xWO to 50xO" 3 , a 900% Increase in I.L. For this appli-
cation, this Is to illustrate the N should be increased at the expense
of n and that large n adds little to I.L. when N is held constant; e.g.,
If' the area of Interest were saturated with samplers and trials were few
In number, then a great deal would be known about these few trials, but
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little would be known about trials In general (which form'a major soorce
of variation).

To maximize I.L. subject to fixed costs, we employ the simple cost
model

C S CB + CL + NCT + nNCS, (3.1)

where C denotes total funds available; C is the base cost; CL is the

expected loss in funds due to mo'terialized risks; C. is the cost per !
sampler and CT the cost per trial. Substitution of

C = 200, CB - 15, C1 " 5, CT 1 I0, and CS - 1/2 into (5.1) yields

180 - ION + nN/2. (3.2)

We could introduce a Lagrangian multipler, X, and differentiate
Ni-I-X(180 - ION - nN/2) with respect to N, n, and A in determining
(n .N). However, a graphical approach is the easiest recourse, i.e.,

superimposing (3.2) onto the contours In Figure 1, we choose (oNN) as

that combination corresponding to that maximum value of I.L. on the Lurve
(3.2). From the plot of (3.2), given in Figure I, It is seen that (20,9)
is an adequate approximation to (n ,N ).

4. CONCLUDING REMARKS. Now we are in a position to answer the
questions in (1.1). Firstly, prior knowledge has been utilized in the
form of the depiction in Figure 1. Regarding the second question, an

I.L. of approximately 15xO- 3 is to be gained for a fixed expenditure of
C - 200. Relating I.L. to center of gravity (see Section 1) means that

-3
I.L. - 15xlO is to be interpreted on a relative basis. Had I.L. been
equated to the Inverse of k Vt (as discussed in Section 3), absolute
Interpretations could have been given; e.g., in this case, the cxpcndituve

of C - 200 would give rise to an I.L. which, say, would lead to a confi-
dence Interval of a certain width.

The third question In (1.1) is answered by varying the value of C
in (3.1) which, in turn, shifts the cost curve in Figure I up or down.
In this manner, one can determine the loss or gain in I.L. as the budget
is Increased or decreased. If, for example, the budget is decreased to

the extent that I.L. is deemed Insufficient to anser the experimental
objectives, thought should be given to whether the experiment should be
conducted.
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APPENDIX I

THE HKB DISTRIBUTION

Let the multintinial distribution,
r r rnn (i/x )) : () - .' X n,1; p.- 1f(x;n,p_) - n ~i, (W i/x 0 ' E x) - , (I K:I,, j n ,),I P a

1 11 1 ml ii I
describe the vithirn trial variation of x (x,,... X r) If p. is con-

stant between tr;alk, then this distrihution also accounts for the be-
tween trial variation in x. However, p2 nmay vary between trials, even
when environmantal conditions are closel;, monitorvd and the scheduling
of trials itý arranged such that these conditions are as homogenous as
possible. Such variation in p might be described by the multivai'late
beta distribution,

r
g(-p;c) '. -1 /0 (a . . A 0

where
r r

o(a) - wrG rG (1)zr a1 )"

Compounding f(x;n,p_) and g(p;a) (see Feller (1957)) and letting r-/i for

the appllcation in Section 2, we have ! iIi
I I:P l-p -p 1-pi-p 2 -p3

h(x;n,a) - I fo 110 dP 2f" dp 1(x;np)g(p; a)d

which, after Integration, reduces to (2.2). This Is an extension of a
result of Skellam (19148) who compounded the binomial and beta distribu-
tions. From the general case (given by Molseman (1962)), it fol lows that
the (kI, k2 , k3 )-th factorial moment of h(x;n,a) for r - Jiiis

3
( It k1 )

p(kl,k 2 ,k'k - n I-I O(kI+•IIk2+12,k3+a)/•(fla2,,3,U4).

Hence,
E(xI/n) a el/z a1

ver(Ni/n) 2- I/(, * Ia)n (1 I

(Q a '-a)(n + I a.) a

I II.19 1~ La La. 1&
cov(xi/n,xi./n) - -ala i A aI + n)/( c a)(M + L )n

In summary, h(x;n,ca) is Intended to account for the between trial variation
in K when p_ varies between trials. In general, when a contingency table
with mixed borders (see Cramer (1946)) leads to a significant X2 result and
when an alternative to the multinciiial distribution is desired, application
of the MlIM distribution is a natural recourse.
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APPENDIX 2

MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS OF THE MMB DISTRIBUTION

In fitting the MMB diktribution to the data in Table I through maxi-
mum likelihood (m.I.) estimation, the log likelihood function is given by

log L - constant +

4,22 4 4
E log r(Q +x ) -22 log r(r a + 35) + 22 log r(z a )Si,J i j -I Ii-l

- NE log r(a)

The function log r(o) is approximated by (i)log(2n) + (0-*) log O-e +

1/12o - 1/360o3 + 1/126Oe5 - l/16807 for e > 5. Repeated use of r(o) =

(o- I)r(o- 1) Is made when 6 < 5 (see Caratheodory (1958), page 297).
The m.l. estimate of cc, say, a, Is.obtained by taking partials of log L,
equating a log L/aif to zero, and solving for that value which maximizes

log L. To calculate a by iterative methods, an Initial value, say a(0),

is required and can be obtained through method of moments estimation as
follows. From (A.1.1) we have

Rilv E(xi)/E(xi.) - e1/01, (A.2.1)

R {E(x)- E(x 1)/(E(k2,) '-E(xi,)} - (at +a Ma .+C1~

These two relations can be used In Identifying four equations In the four
unknown a after

22 22
E" x./E x

J-2 2 (A.2.2)
2 22 .122 2 22

SZ . , E., I. xz - x1.

are substituted for R1 ii and R2 iI

Except for the case r-2, a number of a(0) values may have to be con-
sidered, since repeated application has shown that many of these moment
estimators lie nowhere In the neighborhood of a-- in which case, non-con-
vergence or covergence to a relative maximum may result. Among several
possible values for a (0), the appropriate one Is that which minimizes

'9I
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;:: r
r 2 ogL/i (0)

(0 H(O), where H.1(0) 1ogL/ I- a . Additionally, it is anticl-

patoed that the MMOI distribution, as it relates to the data in Table 1, will
(0)

have a unique mode, in which case, a >I. Using these criteria to eval-a(O) - -()

uate differing values of _ as defined by (A.2.2), we choose a (0)

(lo.648, 5.993, 4.072, 3.804)'. For this value, H1I -. 262, H2 - -. 255,(0)
H , -. 608, H 4 - -. 34,9, so that 1( appears to lie in the ncighborhood of a.

Convergence to a utilizes a modified Newton-Raphson procedure as

follows. The correction to a(t) the value obtained in the t-th iterativecy l sc (t) -+r _d t - -Icycle, Is cd (t) - G(ti)(ti) G(t) is an rxr matrix with

typical element 2 log L/aiaoi-la_ _ (t), and 1 (t) is an rxl vector with

typical element -Hi(t); c takes the values .1, .2. .... l.0 with the
() r

selected value of at) taken as that for which E H.2 (t) Is minimized.
I-I I

Values of o t) through six Iterative cycles are as follows:

a(l). (7.73646, 4.35829. 3.46059, 2.95983)

a(2). (7.90812. 4.454411, 3.54099, 3.05283)

a(3). (7.89936, 4.44951, 3.53670, 3.04752)

a(mu. (7.90126, 4.45056, 3.53759, 3.04854)
a;5)- (7.90155. 4.45074. 3.53774, 3.04876)
a (6), (7.90148. 4.45071, 3.53773, 3.04877)

Substitution of a(6)n a for a and 35 for n in (A.1.1) leads to (.417, .235,
.181, .161) as ti. estimate oýf E[(l/n)x_] and

.0187, -. 0075, -. 0052, -. 0060
.0138, -. 0034, -. 0029

.0117, -. 0023

.0104
as the estimate of variance [(l/n)xi.
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APPENDIX 3.

GOODNESS OF FIT

Goodness of fit Is Illustrated through the distribution of

h

Y- Z' x, where

I *I

h(yi) - nl(C a 1i+Yi., n-a-yI)/ylI(n-yi 1lB(X a,., ai)

and
y , n -iy,

f(Yi) - in(I-Pal Pi 1i(n'Y i

for the MMS and multinomial distributions, respectively. Table 2 presents
groupings of observed and expected yi, I - 1,...,4, for f and h. Ranges
for ech yi were selected for demonstrating the greater spread of the MMB
distribution, so that the goodness of fit statist;c is applied loosely.
For, not only are most observed cell frequencies quitt small, but In three
cases there are no degrees of freedom, i.e., for the MMB distribution, there
Is a loss of five degrees of freedom, four for the estimation of the aI
and one due to the restriction that L xij - 35; for the multinoolal

I

distribution, four degrees of freedom are lost, three for estimating

PIo P20 P39 and one due to EI xij 35.
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Table 2. Goodness of fit of tht MItB and Multinonila! (M)

distributi.ns to the data in Table 1.

Ranges F ×pected Ranjcs Expected
for y, Observed MMII M for Y2 0bserved MMB H

0-Il 1 .576 .036 0-19 2 .785 .084
12-17 5 5.378 3.997 20-22 2 1.988 1.132
18-zl 5 7.381, 10.855 23-25 3 4.446 5.748
Z2-26 8 7.049 6.831 26-29 9 8.934 12.279
27-30 2 1.501 .279 30-32 5 4.787 2.647
31-35 1 .112 .002 33-35 1 1.060 .110

-7 2z.oo 22.000ooo 22.000 22.000

x2 value 8.476 538.042 2.364 56.078

Degrees of Freedom 1 2 1 2

Rangeb Expected Ranges Expected
fur y, Observed M*B H for Y4 Observed MHB M

0-21 1 .748 .061 0-24 1 1.365 .234
22-214 4 2.044 1.028 25-29 8 7.627 9.156
25-28 5 7.199 9.677 30-33 11 10.830 12.063
29-32 9 9.596 10.598 34-35 2 2.178 .547
33-35 3 2.1113 .636

x2 value 2.809 343.340 .144 6.608

Degrees of Freedom 0 1 - 0
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