PROCEEDINGS OF THE TWENTIETH CONFERENCE ON THE DESIGN OF EXPERIMENTS IN ARMY RESEARCH DEVELOPMENT AND TESTING

PART 2

Approved for public release; distribution unlimited. The findings in this report are not to be construed as an official Department of the Army position, unless so designaied by other authorized documents.

Sponsored by
The Army Mathematics Steering Committee
on Behalf of
U. S. Army Research Office

ON THE DESIGN OF EXPERIMENTS
in Army Research Development and Testing (20th).
sspoutored byithe Army MathewraticsaSteeringinomitutee

HETH-

$/ 4 \ell d$ Army Operational Test and Evaluation Agency and
ass. Army Engineer Center at Fort Belvoir, Va;, EN 23-25 october 1974- Fart'2.

Approved for public release; distribution unlimited. The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park, North Carolina

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

1 If this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.

TABLE OF CONTENTS

Parts 1 end 2
(Part 2 starts on page 463)
Title Page
Foreword ii1
Table of Contents v
Program ix
Samuel S. Wilks and the Army Experiment Design Conference Series Churchill Eisenhart 1
The Information in Contingency Tables Solomon Kullback 49
Multi-Dimensional, Non-Gaussian, Random Processes with Specified Covariance and Probability Density Functions James W. Wright 55
Design of Experiments for the Evaluation of Materiel Performance in Worldwide Environments
Bob 0. Benn 81
Short Pulse Testing of EEDs and the Bruceton Problem
Famie H. Thompson and Burton V. Frank 207
Target Visibility and Decision Optimization Timothy M. Smali 127
Optimizing a Froduction Line for Cost and Guantity Eileen M. R. Weigand 243
An Application of the Neibull-Gnederko Distribution Zunction for Generaiizing Conditional Kill Probabilities of Single Fragment Impacts on Target Components
William P. Johnson 155
Decision Theory Approach to Grading Binomial Populations
Paul Williáns 171
Pseudo-Bayesian Intervals for Reliability of a Series System Given Weibull Component Data
Ronald L. Racicot 181
The Unique Application of Bayesian Statistics to High Reliability Testing
Charles A. Pleckaitis and Erwin Biser 195
Robustness Studies for Bayesian Developments in Reliability Chris P. Tsokos and A.N.V. Reo 273
A Bayesian Approach to Reliablilty Oronth Analyais John C．Mardo 303
Experisental Coliection of Statistice by Couputer 8imalation：The dutoron Retrork Egon Marx 323
An Anelyais of Buffers in a Production Syatem Arton Hauschild 331
Statiatical Model for Controjler Performance Measures for an Af Traffic Automed Syatem（ATMAC） Ervin Biser 339
A Plexible，General Purpone Corayiance Computer Program Clifford J．Maloney and Lucille A．Carver 403
Computation of Moments of a Log Reyleich Distributed Randore Variable HIlliam L．Skapherd 442
type II Error of the $2 x 2$ Contingency Table Chi－Squere Statistic Robert L．tenner 449
Daniel Avarded the 2974 Samel 3．Wilks Mesorial Model Frank E．Grubbs 459
λ_{∇} l entert－ ．
Procress zo Dete on Computing Recresilon Based Estimates ofClimatic Changes Following Volcanic Eruptions；John Bart Wilburn463
－Principai Component Regression Analyais； John Bart Nilblern 487
Prediat az ：Setautasis of Erucleated Small Cphthamma Yelanomas by Disc：uminar：Sinここうon； ＂raiter L．Fozter 525
Forecastirg rodeis cre iosq：ito popuiation BeraviorStepinen Smeach and Chris P．Tscios531
Curve Fi：ting of Discrete Points by Legendre Poynomials Oskar M．Essenwanger 543
Fire Control Sensitivity Analyais Uaing a Programable Calculator Thomas 0 ．Metntire 56：
Moplicetions of Sequential Sensitivity Test Strategies and
Eatimation lising a fieibull Response Function for Extreme Probabilities and Percentage Points；$\gg 1+\cdots(\cdots)$ Gertride i＇intraub 579
 in Crtencoul Commaications
B. D'Accards and I. B. Eempett 601
Multivariate Date Aachraie lerbert solamo 609
skip-Lot Procedure Pormilation Uning the 8implifiod mator Chisf Method
RLchard M. Bruceer 649
Cgeal Markor Chalns Appiled to Markor Chain Mecele of Coatimuone 8 mpling Plans; David L. ASp 657
Tracken mellability Orowth
Latry A . Crou 742
G Mindman Varience Bolution of a Polynenial function of Tro Moley Ramoce Fariablea; Orea M. Deltan 755
The Probeblilty of Motor case Pupture; ind
Bonald 8. Dovns and Pall C. Cor 801
On the Ionaxiatance of Some Incomplete BLock Desipns Alen W. Bentor 825
Bom Usen of Order Statistics
H. A. David 833
Optimal Resource Allocation :or Maximizing System Reliability Gereld J. Lieberman 845
Simple Statistical Alternativas to the Kethod of Leat Squares for the Letermination of X-intercept and Slope
Josepn F. Hannigar and :'ary L. Povera 857
A Statistical ipprosch to Loading and Failurs of Stracturas Ronald G. Merritt 875
Strain Gage Instrumentation for Ammantion Testing
Paul D. Flynn 89%
Statistical Investigation into Pulso Charging of Mickel- Cadmium Batteries
Walter Kasian and Erwin Bien 889
Optical Characterization of Surface Roughiese Eugene L. Church and John M. Zavada 913
Ranking and Selection Procedures Robert E. Bechhofer. 929Masimu Information Fron Field ExperimentsMarion R. Erymon951
Saple size Trade-offs and The Constrained Maxiadzation of Information
Wlille S. Mallion 963
Attendees Lint for the Twentieth Conference on the Desim of Exparimants 977
progress to date on computing regression based estimates OF CLIMATIC CHANGES FOLLOHING VOLCANIC ERUPTIONS

John Bart Wifiburn
US Amy Electronic Proving Ground Fort Huachuca, Arizona 85613

Abstract

Report and invite comments on: Problem addressed, method of analysis, and results to date.

Intent of project is to produce regression based estimates of saconal temperatures and precipitation at several locations by: Perfonning a multivariate analysis of Tree Ring data from selected sites in North America and perform a subsequent multivariate regression of the Tree Ring data against meteorological data.

The purpose of this project is to detect tree growth anom dies following valeanic eruptions by andyzing tree ring growth patterns and using modern meteorological data with coincident tree ring data to dovelop transfer functions for reconstructing climate anomolies following volcanic eruptions.

Thase climate anomoly patterns can be compared with other derived palecclimate anomolies for further understanding of the environment.

PROCEDURE:

The procedure involves soveral steps of analysis. First the analysis of tha tree ring data to detect statistieally significan: responses of tree sites to volcanic eruptions. The volcanic eruption data was selected from H. H. Lamb (1969), Volcanic Dust in the Atmosphere. (1) The tree ring data were selected from Schulman (1956)(2) and were restricted to Douglas Fir trees with good intercorrelation, high sensitivity, and with sufficient length of semple to incorporate most of the volcanic data. The tree ring data was selocted from ten sites (fig. 1) to epan asignificant portion of the Western North American Continent so as to obtain a good sumple of a lorge scale climatic condition. $\left(29^{\circ} \mathrm{N} \cdot 52^{\circ} \mathrm{N}, 105^{\circ} \mathrm{W}-121^{\circ} \mathrm{W}\right)$.

These tree ring data (percent of normal growth) were then arranged into a 14 -year laged array. That is to lst column in years 1 (referenced to the beginning of the chronotogy) to 14. The second columns are years 2 to 15 and so on to the last row of $\mathrm{M} \cdot 13$ to m for a chronology of m years. This array is referred to as The Total Ring Data array. From this array, for each site, was extracted a subset referred to as The Ring Signal Data Array.

A second subset is crasted by implication of the first. That second subset is the remainder of the Total Ring Data and is referred to as The Background Ring Data array. Thasa arrays
 Background Array.

The D^{5} are picked from D^{t} in the following manner. The volcanic eruptions are parameterized by date of eruption in years, location in latitude and longitude and magnitude of eruptions denoted by dust vail index (d.v.i) devised by H. H. Lamb. (pp. 471473)

A class of eruptions is specified by bounds on these parameters. The dates of the eruptions within these bounds are translated to column numbers of D^{t}. These columns of D^{\prime} selected in this manner are extracted from D^{t} and comprise the array D^{5} of N rows and the number of columns determined by the number of eruptions in the specified class called for.

The test for significant responses is a twofold test. First. © CHI-SQUARE test was performed as follows: A CHI-SQUARE test was performed on the row averages of $D S$ against the hypothesis of being indistinguishable from the row averages of (a) D^{t} and (b) D^{D}. At the came time. © CHI-SQUARE test was performed on the row averages of D b
THE WORLD 1:135,000,000

ageinst the hypothesis of being distinguishable from the row average of (c) D^{\prime}. and $=$ CHI-SQUARE lest on the row werages of D^{t} against the hypothesis of being distinguishable from the average of the fotal tree ring chronology (d). If all hypothesis are rafected, that is the protability of 0^{5} being a chance variation of $D D^{\prime} D^{D}$ is low while at the same time the probability 0 ! D^{b} being a chance variation of D^{t} is high and that rows of D^{\prime} are al chance variation of the total rime werage, then the set D^{5} is labeled as a candidate for the second test.

An example of this first test is seen below (fig. 2). The error terms are standard deviations. The exemple picked is the Tree Ring chronology from the Fraser River Basin. The volcanic criteria was: Magnitude $500-5000$ d.v.l., latitude $200 \mathrm{~N} \cdot 90^{\circ} \mathrm{N}$, longitude 0° to $135^{\circ} \mathrm{W}$.

The second test invalved an eigenvactor comparison. The software which bullt the Arrays D^{\prime}, D^{s} and D^{b} and computed the CHI-SQUARE test was extended to perform a correlation matrix calculation and an eigenvector extraction. An example of the printout is seen in figure 3 for the corralation matrix $C^{\dagger} M N=\frac{1}{M}, D_{N M} D^{\prime}$ MN , the eigenvector set E : and the eigenvalues Λ^{\prime}. This computation wasperformed for corralation matricas and itheir associated set of eigenvector/eigenvalues, for variance about the row averages of each of the arrays. That is, the data for D^{t}, D^{s} and D^{0} were normelized with respect to their own row averages.

There were some iriteresting developments from these eigenvectors as saen in figures 4, 5, and 6. These vectors are from D^{t}, the total ring array. Each eigenvector appaers to be a composite of alnusoids of inerassing complexity. The first and second vectors being predominately half woves of a fundamental and increasing from there on. The explanation of this behavior is not settled as yat.

Some comments on what is being done as an aid in interpratation are due here. The matrices, D t, s well is the others, are correlated by rows.

That is, we are looking at the correlation of a pattern of grow th beginning in ong yaar and running sequentially with a pattern of growth beginning in another year and running sequentially. In short, we have a type of autocorrelation. In this context, however, we might explain it as the corralatioll of growth sequence with any set of previous growth conditions of each edement of the sequence. The eigenvectors depict the relative contribution of the respective rows to the total variance of D taccounted for as indicated by the relative magnitude of their asociated aigenvalues, or the mode of variance associated with that eigenvalue.

The notion of the mode of variance in years following the year of the first row is particularly usaful when we are interpreting the average growith $\overline{\mathrm{d}} \mathbf{5}^{\mathbf{5}}$ and eigenvector of the Ring Signal array $D \mathbf{S}$. This is because now we are talking about modes of variance in years following an eruption in a specific class of volcanic eruptions.
VOLCANIC CRITERIA SLP=O VOLCANIC CRITERIA
LONG

Figure 2

－00	ふ	
$-00{ }^{\circ}$	O	
 －0000	g	
-00000	안	
－ 000000	응	
 -0000000	$\hat{\varphi}$	
g4N－m888989888 －00000000	$\stackrel{\sim}{\sim}$	
4씊888888898 -000000000	饣̣̂	
M๓－ 99888988888 -000000000	$\frac{N}{N}$	べッツへのベすべがかへへ
교9898909808889－ －00000000000 근	\hat{n}	
м 88989889898888 n MOOㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ․	$\bar{\sim}$	
$88888888888888 \$$ -0000000000000		

Figure 3

Figure 4
469

Fipures
470

Figure 6
471

This brings us to the second test for shnificance . . the comparison of elpenvectors. The Ring Sinnal arpas $D^{\text {! }}$ were andyzed a secend tivne. This there the row averapes of D^{I} ware wbtracted from the dements of identical rews of D^{s} and then acovariance metrix was computed from the new array D^{8} and the eigenvectorl extrected from the covariance matrix. To insure that we were not comparing unreleted quantities, the eigenvectors of the covariance matrix of D^{t}, O^{S} and D b were recomputed using their own row evereges of their respective errays as used previously for the correlation matrix computation. The eigenvectors computed from the covariance matrix were meaty identical with those from the corralation matrix. This wes to be expected since variances of the row variables are neerty the seme.

The rationste behind this move was the following. The eigenvector extracted from the correlation matrix of DS using lts own row averages comprise a description of the modes of variance about the response sifnal of the trees to volcanos, if there is one; whereas, the dearrectors extracted from the covarience motrix of DS using the row averages of D t comprise a description of the varlance of the response signal of the troes about the backepround shanal of trae growth. Based on this ressoning, it the two sets of elpanvectors are nesily the seme, then the array DS i labeled as a typel error and rejected. There are more rigorous statistical techniques fer com paring the eipenvectors (4) but the situation here does not sem to werrant that deqree of rijor. If the two sets of eigenvectors are sinnificantly different, then the array O^{s} in Iebeled as a significant response signal to volesnoes and the efenvectors of the coveriance matix are considered as the modes of varianee of the response. Note that becoust the variance is indicated by the square of elpenvector component, a mirror imese is comilderad as the sami mode.

An exemple of this compericon ts men in figure 7 which thows the everme growth $\left({ }^{-5}\right.$) of the Frmer River Chronology for 14 yoers following an aruption specified by the cless $500 \cdot 5000$ d.v.l., $0 \cdot 135^{\circ}$ Lom, $20 \cdot 90^{\circ} \mathrm{N}$ Lat, and the algenvector, Ev, extracted from the covariance matix and the elgenvector, Ey, extracted from the corratation matrix.

The results of these tests were the sulection of four sties, one with two cases, maxime a total of five cmes. The sites and their case wore:

Fraser Alver Basin:	$\begin{aligned} & 500-5000 \text { d.v.l. } \\ & 20^{\circ}-90^{\circ} \mathrm{W} \text { lat. } \\ & 0^{\circ}-135^{\circ} \mathrm{w} \text { long. } \end{aligned}$
Saskatchewan River	$500-5000$ d.v.i.
Bexin:	$\begin{aligned} & 20^{\circ}-90^{\circ} \mathrm{N} \text { lat. } \\ & 0^{\circ}-135^{\circ} \mathrm{W} \text { long. } \end{aligned}$
Missouri River Basin:	$500-5000$ d.v.l.
	200-900 ${ }^{\circ} \mathrm{N}$ let.
	$0^{\circ}-135^{\circ} \mathrm{W}$ long.

FRASER RIVER $500-5000$ d.v.i.; $20^{\circ} \mathrm{N} \rightarrow 0^{\circ} \mathrm{N}: 0^{\circ}-135^{\circ} \mathrm{W}$ LONG.

473

Big Bend: $\quad 500$ - 5000 d.r.i.

$$
20^{\circ}-90^{\circ} \mathrm{N} \text { lat. }
$$

$$
0 \quad-\quad 135^{\circ} \mathrm{W} \text { long. }
$$

$$
0-500 \text { d.v.i. }
$$

$\pm 20^{\circ} \mathrm{N}$ lat.
$\pm \quad 180^{\circ} \mathrm{W}$ long.
Note that with four of the cases, a latitudinal dependance m ay be investigated.
Their average growth curves ($\sigma^{\mathbf{5}}$)) and their first aigenvector ($E v$) are shown in figures 8 and 9 respectivaly. There does not seem to be anything consistent in the growth curves but the eigenvectors indicate a deflnite similarity of modes of variances between Fraser River and Saskatehewan River and between Missouri River and Big Bend chronologies. One must remember that the growth curves depict the result of change from previous sat of initial conditions of growth and climate, whereas the eigenvectors depict the mode, or machanism, of that change.

METHOD

The next part of the project was to use these chronalogias from the four sites to estimate the masonal temperature and precipitation at or neer the trea sites during the 14 years following the eruptlons. Because of the nature of the tree growth physiology, the seasonal date was ruferenced to the preceding year, For example, preciplation during the winter season preceding the yoar of the tree growth (8). The seasons were divided into: (a) preceding year ending 30 May; (b) preceding summer consisting of manths June, July, August and September; (c) preceding winter consisting of months October, November. January, and Fabruary; and (d) the preceding epring consisting of months March, April, and May.

The regression based estimate was performed by a regression analysis technique referred to as, "Prineipat Componant Regression Analysis." It is deseribed in detail In a peper (5) to be published separately and is included as an appendix in this elinical report.

The essence of the principal component regression analysis is that it allows the physical phenemens, considered as asyem, to be partitioned into indepandent and arthogonal modes of variance, or principal components, and then to allow only those modes of variance of the regressand phenomena which corralate wall with all of the allowed modes of variance of the regressor phenomena to be used in the estimate of the regrascand. This technique further allows a selective reduction of error in the regressand estimate.

All of the properties mentioned above are consequences of the orthogonality and independence of the principal components of original data.

Quantitativaly, the ragression rationale is as follows in a briof outiline. We have a sat of tree ing data $D^{t} \mathrm{NM}_{\mathrm{M}}$ from which a complete set $\mathrm{D}^{t} \mathrm{NU}$ can be selected which matches, chronologically, a set of meteorological data $F_{\text {NU }}$ also formatted into a lagged array. The meteorological data is from a station at or near the tres site. From these two sets of data are

AVERAOETREEGROWTH

Figure 8

475

PLOT OF IST EIGENVECTOREV

Figure 9
computed the correation matrices $C^{d}{ }_{\text {NN }}$ and C^{\prime} NN and exbrequently the eiponvector sets are extrected satisfying the equations:

$$
\begin{aligned}
& C_{N N} E_{N N}=E_{N N} \Lambda_{N N} \\
& C_{N N}^{\prime} G_{N N}=G_{N N} \Omega_{N N}
\end{aligned}
$$

The unitary transformation of D and F into their respective principal componants is performed by:

$$
\begin{align*}
& X_{N U}=E_{N M}^{\prime} D_{N U}^{\prime} \\
& Y_{N U}=G_{N U}^{\prime} F_{N U} \tag{1}
\end{align*}
$$

Now then, from $X_{N U}$ we select a apecified number of comporrents a accounting for the amount of varlanee requested. This it determined from the knowiedge of the fact that the amount of variance accounted for by the $i^{\text {th }}$ principal component, $X_{i U}$, ts given by

$$
v_{U}\left(x_{I U}\right)=\frac{\Lambda_{\perp}}{t r \Lambda_{N N}}
$$

Thus all have a set $X_{q} U$ accounting for a specified emount of varience given $b y$:

$$
v_{u}\left(x_{Q u}\right)=\sum_{i=1}^{g} \frac{\lambda_{1}}{\operatorname{tr} \Lambda_{N M}}
$$

A set of regression equations $\dot{\beta}_{\mathrm{Na}}$ are calculated weh that wir hove a raprasion model of

$$
\begin{equation*}
\dot{Y}_{N U}=\dot{\beta}_{N Q} X_{Q U}+\epsilon_{N N} \tag{2}
\end{equation*}
$$

It is worth noting that because the $X_{\text {wu }}$ are all independent, the a coefficionts of the $\mathrm{N}^{\text {TH }}$ equation are complately independent. Also, the multiple correlation conficionts, $R^{2}{ }^{2}$ are unambiguous because the joint confidence region of the ragression equation is unambiguous. In any case, recalling the transformation (1), (2) can be restated as

$$
\begin{equation*}
F_{N P}=G_{N N} \beta_{N Q} E_{Q q}^{\prime} D_{Q P}^{S} \tag{3}
\end{equation*}
$$

Those equations $\hat{\beta} \mathrm{Nq}_{\mathrm{q}}$ which fall an F-test egainst the hypothesis $C \beta=0$ are set to zero. This amounts to a kind of stepwise rapression except that the variables refected are those modes of variance of the system of F which have an inslgnificant statistical rolationthip with any combination of all of the modes of variance of the syitem of D.

The confidence bounds (80\%) of the ostimate, $\mathrm{F}_{\text {NP }}$, indicated by $\delta \mathrm{F}_{\mathrm{NP}}$ aro computed from the conflence bounds of $\beta_{\text {Na }}$ indicated by $V^{K}{ }_{q Q} ; K=1, N$. The

Figure 10

$$
\begin{equation*}
\delta F_{N P}=G_{N N}\left\{t(p-q-1,1-\alpha / 2)\left(C_{G q}\left\{\left.D^{5}{ }_{N N} E_{N Q} V_{G Q}^{K} E_{Q N}^{\prime} D_{N P}^{s}\right|^{H 2}\right\}\right\}\right. \tag{4}
\end{equation*}
$$

Summarizing, the estimation of $F_{N P}$ from $D^{S}{ }_{N P}$ cen be performed by transfer function $T_{N N}$

$$
T_{N N}=G_{N N} \beta_{q Q} E_{Q N}^{\prime}
$$

and the calculation of the confldence bound of the estimate $F_{\text {NP }}$ can be performed by an operator function of $\delta F \mathrm{NP}^{\circ}$ on D^{5} NP as indicated in (4).

This analysis was implemented in the manner indicated by the flow chart hown in figure 10.

The results to date are for data selected from the Fraser River Chronology for the class of eruptions specified by $500-3000$ d.v.i., $0^{\circ} \cdot 135^{\circ} \mathrm{W}$ Long, $20^{\circ} \cdot 90^{\circ} \mathrm{N}$ Let. The mateorological data tested was the prosummer precipitation from Kamloops, Alberta, Canada.

The regression basad estimates of the presummer precipitation in Kamioops, Canada was made by using the best estimates for each of the 14 years selected from the regrescions specifying: 80 percent, 90 percent, 95 pereent and 100 percent of the variance of the Tree Ring date system and accepting the ragression equations which pass the 90 pereent confidence F.test.

Figure 11 (Plate 10) of Appendix A is an example printout of the principal camponant regression compiter program run of a CDC 6500 for the case of 80 partent variance requested. Note the program computes the ostimate twice; once before the F-test rejection and then egain incorporating the F-test rajection.

Fkure 12 lllustrates the eatimates of the pre-summer procipitation. These estimates are the composite of the best results of all four cases ($80 \%, 90 \%, 95 \%$ and 100% of Tres Ring data variance).

Fleure 12 (Continued)

$$
0
$$

0

0

(i)

Figure 12 (Continuad)

Ragression based estimates of summer precipitation in Kamloops, Canada during: (a) 1533.1566, (b) 1600.1613. (c) 1624.1637, (d) 1659.1672 . (c) 1720.1733, (f) 1754.1767 () 1765.1778 , (h) 1782.1798, (i) 1844.1857, (j) 1885.1878.

Figure 13 is the plot of the average of the regressian based estimates of the presummer precipitation. This average is avaraged over the ten chronalogies for asch of the 14 years following the eruption. The error bases are the root-mean square of the errors of each of the ten values in the average.

Figure 14 compares the curve plotted in figure 13, renormalized, to the normalized, average growth, d^{-5}, of the Fraser River Basin tree ring chronology. Note that since the precipitation estimates are of the preceding summer of the ring growth indox, onty 13 values are plotted. The striking fasture of this plot is that the curves seem to have a high corrolation. It H , in fact, 0.88 which suems to imply that the assumption that the tres growth in any one year is dependent on the preciplation in the eummer preceding the growing sasen rather than on the summer of the current growing sason is not strictly true. In fect, the dependence is on both and when one considers trees in the northern latitudes. the dapandence on precipitation of the current growing easson increases. This can be tested by repeeting the experience using summer precipitation from the current growing season and then see which regression produces estimates with the himest pre:ision. However, due to the ampling nature of the decomposition of the data systems into principal componants, the components which heavlly weight the first row of $\mathrm{D}_{\mathrm{NP}}^{\prime}$ will not correlate highly with the similar component of $Y_{\text {NP }}$. For that reason, when one deals with a leged array, a mistaken assumption on time coincldence does not cause a complete miss on tha regression analysis.

The eurves of figures 12 and 13 ore interpretable a follows. The curve in figure is is a general etlmate of the summer precipitations fallowing an eruption of a lare votcano. wheress the curves of figure 12 are specific estimates. The estimater are given by year with 90\% conflidence bounds. As one can see, some of the estimates have confidence bounds so large is to constitute esuntidly no estimate at ell. Within the confidence bounds calculated for eech point, the curve in figure 13 areas with most of the eurves in flgure 12.

$$
\bar{F} \pm \delta \bar{F}
$$

Figure 13

Figure 14

REPEREMCES

(1) Lamb. H.H., Voteanic Dut in the Atmosphere, Roy. Soc. A., 286(1173), pp 425.533, 2 July 1970.
 Prosen Trenen, Artoons, 18:3.
 2.7.
(4) Morrisea, D.F., Mufturarina Statitied Mathods. MeG raw-Hill Book Company, 1837.
(5) Wrimera, J.B., Primeipel Component Requescion Anelysis. (in Preperation).
(6) Fritts, H. C., Bristhecone Pine in the White Mountains of Calfornis. Growth and Rim Width Charactaristics. Papers of Leberatory of Trea-Ring Reseprch, No. 4. Uaimersity of Arizons Prew, Twason, Arkon, 1969.
(7) Moterolagical Data supplied by the Leboratory of Troe-Rimg Remereth, University of Arisome, Tweson, Arteme.
 1971.

APPENDIX ${ }^{\text {© }}$

- The next article in these Procetdings is the appendix to the paper entitled "Progress to Date on Computing Regression Based Estimates of Climatic Changes Following Volcanic Eruptions".

John Bart Wilburn
United States Army Electronic Sroving Ground Fort Huachuca, Arizona 85613

ABSTRACT: Development of the mathematical rationale of multivariate regression between sets of principal components with a demonstration of a compurer program implementing the rationale.

The intent of this paper is to propose a user-oriented method of multivariate linear regression which will reduce the uncertainty of the user by eliminating the unwanted effects of intercorreation of variables and to enable the user to eliminate unnecessary variables with predictable results.

Procedure:

The situation is that of two sets of data: Regressor data, $D_{\text {NM }} ; ~ N$ variables and m measurements and regressand data; $F_{N M}$ also of N variables and M measurements. In general, the sets D and F will not be of the same number of variables, but for purposes of development, they will be considered the same without any loss of generality.

The user supposes that he has two systems, D and F. adequately described by the variables in each. The user further acknowledges that the sysiems are very likely noisy and that he has observed them long enough to have a representative sample of the variance in each and also that normality can be assumed. Having satistied these assumptions, the user may proceed as follows:

First, compute the variance/co-variance matrices of the two normalized data sets

$$
C^{D}{ }_{N N}=\frac{1}{M-1} D_{N M} D_{M N}^{\prime}
$$

and

$$
C_{N N}^{F}=\frac{1}{M-1} F_{N M} F_{M N}^{\prime}
$$

Next, perform the eigenvalue/eigenvector calculations

$$
C^{D}{ }_{N N} E_{N N}=E_{N N} \Lambda_{N N}
$$

$$
c_{N N} a_{N M}=a_{N N} \Omega_{N N}
$$

where I and G are orthonormal sets, ent.

$$
\sum_{i} \alpha_{11}^{2}=1 \text { and } \sum_{1} \alpha_{11}=1
$$

The elgenvector wots are uned to compute the prinelpal compenents by the unfiery transformation of:

$$
X_{N M}=E_{N M}^{\prime} D_{M M}
$$

and

$$
Y_{N M}=a_{N N}^{\prime} F_{N M} .
$$

Users from the phystes ectenew will recopnite this as analogous to a primelpe axis tranaformation.

Eech of them prineipal component sots consists of wetors which ere independent and orthoponal. Furthemere, esch of the wetors represents a speelfic "mods" of variance of the system which is independent and orthogonal to the other N - 1 medes. The time-mdependent modes themsetwes ere represented by the olpenvecters asoeisted with the principel compenent In question Indicating the relotive contribution of esech of the original M variables in D ar F to that mode.

The following operation demonstrates the ortheyonality propertias of the principal components and also one other very useful property.

We will use the sut X but the ceme applies to Y. Compute the variance/covarlance matrices of the principal compenents

$$
\frac{1}{M-1} X_{M M} X_{M N}^{\prime}=\frac{1}{M-1} E_{N M}^{\prime} D_{M M} D_{M N}^{\prime} E_{N N} .
$$

The righthand side of the equation can be seen to be

$$
E_{M N}^{\prime}\left(\frac{1}{M-1} D_{N M} D_{M M}^{\prime}\right) E_{N N}=E_{N M}^{\prime} C D_{N M} E_{N N}
$$

$$
E_{N M}^{\prime} C^{D}{ }_{N M} E_{N N}=\Lambda_{N N}
$$

Thus the principal components are orthoyonal and now wa can see that the variance of each of the principal components is given by the eigenvalue associsted with the eigenvector used to compute that particular componem. Viawed in this way, the total variance of the original data, $D_{\text {MM, }}$ is pertitioned by the eipenvectors $E_{\text {NN }}$ wht the relative amount of the variance accounted for by the i ${ }^{\text {TH princlpal component given by }}$

Renetive Var. $\left(X_{1 m}\right)=\frac{\lambda_{1}}{i_{P} \Lambda_{N M}}$.

H should be neted here that If the variables in D and F are of the same units and variance, the corrclation metrices C computed from the normalised data can be repleced by the co-variance matrix computed from unnormalted data. This may appeal to some users. However, under those conditions of equad variance and untte, this writer's experience has been that the einemwectors are very mearly the same as those from the corralation matrix. It is when the variances are not the same that the sampling propertias of the elaenvectoris differ depending on whether they are extracted from the corpdetion motrix or from the coverianee matrix. It is my feeling that the corrolation matrix is bext for peneral use.

These propertive, orthoganality, indmendence, and the pertitioning of the variance will be seen to be very usetul in the following devalopment of the represion poctulating the model of

$$
Y_{N M}=\beta_{N N} X_{N M}+e_{N M} .
$$

From the above comments, we now know that both the $X_{\text {NM }}$ and $Y_{\text {NM }}$ are distributed eccording to $X_{N M} \sim N\left(O, \Lambda_{N M}\right.$ lend $Y_{N M} \sim N\left(O, \Omega_{N N}\right)$.

Thus, the extimate of $\beta_{\text {NNO }} \beta_{\text {WN }}$ is found by:

$$
\beta_{N N}=Y_{N M} X_{M N}^{\prime}\left(X_{N M} X_{M N}^{\prime}\right)^{-1}
$$

which reduces to

$$
\dot{\beta}_{M N}=\frac{1}{M-1} Y_{N M} X_{M M} \Lambda^{-1} M N
$$

We can incerperate the factor $\frac{1}{m-1}$ inte the rolationstip by metting

$$
\Lambda_{N N}^{*}=(M-1) \cdot \Lambda_{N N}
$$

and simillarly

$$
\Omega_{N N}^{*}=(M-1) \cdot \Omega_{N N}
$$

The motrix of the reldual sum of sauses $\Sigma_{\text {MN }}$ of the rapresion etimated by the maximum likelinood method is athonted by $\overline{\boldsymbol{\Sigma}}$ NM cempuied as follows:

$$
\Sigma_{N M}=\frac{1}{M}\left\{\left(Y_{N M}-\dot{\beta}_{M M} X_{M M}\right)\left(Y_{M M}-\dot{\beta}_{M M} X_{M M}\right)^{\prime}\right\}
$$

from which follows

$$
\dot{\Sigma}_{N M}=\frac{1}{M}\left\{Y_{N M} V_{M M}^{\prime}-\dot{B}_{M M} X_{N M} X_{M N}^{\prime} \dot{\beta}_{N M}^{\prime}\right\}
$$

this reduces to

$$
\dot{\Sigma}_{N N}=\frac{1}{M}\left\{\Omega_{N N}^{*}-\dot{\theta}_{N N} \Lambda_{N M}^{*} \dot{\beta}_{N N}^{\prime}\right\}
$$

An unbiesed extimate of $\Sigma_{\text {NN }}$ is efiven by

$$
\dot{\Sigma}_{N N}=\frac{M}{M-N} \dot{\Sigma}_{N N} .
$$

From the above formulation, we can identity the total sum of gquares as the diegonal matrix $\Omega^{*}{ }_{N N}$ and the sum of gquares due to rearession as $\dot{\beta}_{W N} \hat{\Lambda}^{*}{ }_{N N} \dot{\beta}_{N M}$.

GEOMETRIC INTERPRETATION:

The matrix $\dot{\operatorname{D}}_{\text {NN }} \Lambda^{*}$ NN $^{\prime \prime} \dot{\beta}_{\text {NN }}$ is the matrix of the vector products of the reeression based estimates: $\dot{X}_{\mathrm{N}}{ }^{\text {. }}$.

This can be seen as

$$
\dot{Y}_{N M} \dot{Y}_{M N}^{\prime}=\dot{\beta}{ }_{N N} X_{N M} X_{M N}^{\prime} \dot{\beta}_{N H}^{\prime}
$$

where $X_{N M} X_{M N}^{\prime}$ is identified is $\Lambda_{N N}^{*}$. Viawed in the ceometrical context, the diagonal terms of $\dot{\beta}_{N N} \hat{A}^{*}{ }_{N N} \dot{\beta}^{\prime}$, wN the lengths of the vectors $\dot{\gamma}_{M M}$. The off diegonal terms are the vector product: $\dot{Y}_{I M}, \dot{Y}_{\mid M}: \mid \neq 1$.

Thus

$$
\dot{Y}_{i M} \cdot \dot{Y}_{j M}=\left|\dot{Y}_{i M}\right| \cdot\left|\dot{Y}_{j M}\right| \cos \phi .
$$

Thus the off diagonal terms may be negative if $\cos \phi<0$. However. since the vectors $Y_{N M}$ are ideally orthogonal, the angle ϕ is an error. By this argument, it is of no great consequence that the off-diagonal terms of $\Sigma_{N N}$ may be negative in the computation.

While interpreting the regression geometrically, consider $\bar{\beta}_{N N} X_{N M}$ as the projection into X space of $Y_{N M}$ in $Y_{\text {space. Then }}|\bar{\beta} X| / Y \mid j s$ the cosine of the angle between $Y_{N M}$, and its projection $\bar{\beta}_{N N} X_{N M}$ Graphically, this would appear as follows considered in two dimensions.

Figure 1
where

$$
|Y| \cos \theta=|\bar{\beta} x| .
$$

Thus

$$
\cos ^{2} \theta=\frac{\dot{\beta}_{N N} X_{N M} X_{M N}^{\prime} \dot{\beta}_{N N}^{\prime}}{Y_{N M} Y_{M N}^{\prime}}
$$

or

$$
\cos ^{2} \theta=\frac{\dot{\partial}_{\sim} N \Lambda^{*} N N^{\dot{\beta}^{\prime}}{ }_{N N}}{\Omega_{N N}^{*}}
$$

this can be identified

$$
R_{N N}^{2}=\frac{\bar{\beta}_{N N} \Lambda_{N N}^{*} \dot{\beta}_{N N}^{\prime}}{\Omega_{N N}^{*}}
$$

Since the vectors $\bar{Y}_{N M}$ are not, in aeneral, completely orthogonal, and that the matrix $\Omega^{*}{ }_{N N}$ is a diagonal matrix. the off-diagonal elements of $R^{2}{ }_{N N}$ may be negative. However. we are actually only concernad with the diagonal elemenis; therefore, we can compute

$$
R_{N N}^{2}=\beta_{N N} \wedge_{N N} \dot{\beta}_{N N^{\prime}} \Omega_{N N}^{*} \delta_{N N}
$$

The quantity $R^{2} N N$ is interpretable as the square of the multiple correlation coefficients of the regression equations $\dot{\beta}_{\mathrm{NN}}$.

An F - test against the hypothesis $C \bar{\beta}=0$ can be provided from R^{2} by

$$
\frac{R^{2}}{1-R^{2}} \cdot \frac{M-N}{N-1} \geq F_{N-1, M-N} \quad(\gamma)
$$

which is equivalent to

$$
\frac{\dot{\beta}_{N N} \Lambda_{N N} \dot{\beta}_{N N}^{\prime}}{M \dot{\Sigma}_{N N}} \cdot \frac{M-N}{N-1} \geq F_{N-1 . M-N}(\gamma)
$$

Note that for the off-diagonal elemeats, the F - ratio is negetive.

The multiple correlation coefficient squares, interpreted as the amount of variance of $Y_{\text {im }}$ explained by $\dot{\beta}_{I N} X_{N M}$, can be transformed into the coordinate system of $F_{N M}$ so that the amount of variance of F variables explained oy the D variabiss can be estimated. The transformation is simply the diagonal terms of

$$
V(\dot{F})=\frac{1}{t_{r} \Omega}\left\{G_{N N} \Omega_{N N}\left(t_{N N} R^{2} N N\right) G_{N N}\right\}
$$

However, it is not clear just how useful this information is. What is useful to the user is a regression transformation from D to F and an expression for the confidence intersals on the estimates $\dot{F}_{\text {NM }}$.

The transfer function for computing F is simply

$$
\dot{F}_{N M}=\left(G_{N N} \dot{\beta}_{N N} \quad E_{N N}^{\prime}\right) D_{N M}
$$

where the expression $G_{\text {NNN }} \bar{\beta}_{N N} E_{N N}^{\prime}$ is identified as the transfer function

$$
T_{N N}=G_{N N} \bar{\beta}_{N N} E_{N N}^{\prime} .
$$

The calculation of the confidence intervals proceeds as follows and will illuminate some very useful consequences of the independence and orthogonality properties of the principal components.

The variance/co-variance of the regression equations can be computed by the following procedure:

$$
\begin{aligned}
& V\left(\hat{\beta}_{i j}\right)=\xi\left(\beta_{i}-\bar{\beta}_{j}\right)\left(\beta_{j}-\bar{\beta}_{j}\right)^{\prime} \\
& V\left(\dot{\beta}_{j j}\right)=\xi\left\{\sum_{\alpha}\left(Y_{i \alpha}-\dot{Y}_{i \alpha}\right)\left(Y_{j \alpha}-\dot{Y}_{j \alpha}\right)^{\prime} X_{N \alpha} X_{\alpha N}^{\prime} X \Lambda_{N N}^{*} \Lambda^{-1} \Lambda_{N N^{-1}}\right\} \\
& V\left(\dot{\beta}_{1 j}\right)=\xi\left\{\sum_{\alpha}\left(Y_{1 \alpha}-\dot{Y}_{1 \alpha}\right)\left(Y_{j \alpha}-\dot{Y}_{j \alpha}\right)^{*} \wedge_{N N}{ }^{-1}\right\} \\
& V\left(\dot{\beta}_{i j}\right)=\sigma_{i j} \cdot \Lambda^{*}{ }_{N N}{ }^{-1}
\end{aligned}
$$

For $i, j=1, N$ this becomes

$$
V\left(\dot{\beta}_{N N}\right)=\dot{\Sigma}_{N N}^{*} \times \Lambda_{N N^{-1}}
$$

Where $\dot{\Sigma}_{\text {NN }}^{*}$ is the unbiased estimate of $\Sigma_{\text {NN }}$.
Recalling the previous argument regarding the off-diagonal elements of $\dot{\beta}_{\text {MN }} \mathcal{A}_{\text {NN }}^{*} \dot{\beta}_{\text {NN }}^{\prime}$. we may ignore them in which case $V\left(\dot{\beta}_{N N}\right)$ is a diagonal matrix of dimension $N^{2} \times N^{2}$. 1 . is worth noting that, in general, the off-diagonal elements are usually at least one or more orders of magnitude down from $\dot{\beta}_{11} \Lambda^{*}{ }_{1,1} \beta^{\prime}{ }_{11}$.

The matrix $V(\dot{\beta})$ can be partitioned as:

$$
V(\dot{\beta})=\left[\begin{array}{llll}
v^{\prime}{ }_{N N} & & & \\
& v^{2}{ }_{N N} & & \\
& O & & \\
& & & v^{N} N_{N N}
\end{array}\right]
$$

Where the submatrix $v^{K}{ }_{\text {NN }}$ is a diagonal matrix for the $K^{T H}$ row of $\dot{\beta}_{N N}, \dot{\beta}_{K N}$. The submatrices are found by
where $\sigma_{K K}$ is the $K^{T h}$ diagonal element of $\Sigma_{N N}^{*-1}$ and λ_{j}^{*-1} are the diagonal elements of $\Lambda_{N N}^{*}$. Thus, it is clear that

$$
\operatorname{cov}\left(\dot{\beta}_{K l} \cdot \bar{\beta}_{K M}\right)=0, \quad \ell \neq M
$$

as a consequence of the orthogonality of X_{MM}. This implies that the joint confidence rogions of each of the regression equations are entirely unambiguous. This is vital to the interpretation of the confidences intervals of the estimates; \bar{F}_{NM}, as legitimate intervals. We can also see how the variance of the $\dot{\beta}$ increases for the less important components of X for any given component in $\dot{\mathbf{Y}}$.

The independence of the $\dot{\boldsymbol{F}}_{\text {in }}$ for any given i, is of great help in the application of the regression analysis. This comes about when one recalls how the principal component transformation, in addition to its properties of independence and orthogonality, also possesses the property of having partitioned tha variance of D ind F into modes of variance which form a decreasing series of relative contribution to the total variance of the original data, D and F. Of concern here is the set D leading to X. If the see $X_{N M}$ is too large in the dimension N as to be undesirable one can select those comiponents which contain a prescribed amount of variance less than 100 percent. Thus, $X_{N M}$ is replaced by $X_{P M} ; p<$ N. The assumption that the principal components have to be sorted has been made.

This selection of p components will cause the regression equation $\dot{\beta}_{N N}$ to be $\dot{\beta}_{\text {Np }}$. What is important here is that the remaining P coefficients are unaffected by the rejection of the last $N-P$ coefficients. Of course, the $R^{2}{ }_{N N}$ is lowered, but then the F - ratio may be increased because of the change in the degrees of freedom involved. The price paid for this reduction in the number of variables in X is that one may not know a priori which modes of variance in X will correlate with any one of the modes of variance in $Y_{N M}$. The decision must be made on the results of seeing all, or at least those allowed by computer limits tried first. For this reason, an interaction of the user is required in the use of this analysis. Also the F - test (as will be seen later) can be used in conjuction with the selection of p to improve the confidence inter, calculation. The set $Y_{\text {NM }}$ may also be reduced leading to $\dot{\sigma}_{\text {qp }}, q<N, q$ $\stackrel{?}{=} p$. However, this would preanpt the F - test and therefore shor'd be used only to satisfy the computer limits.

This confldence interval calculation proceeds as follows. We start with the confidence interval calculation of $\bar{\beta}$ NN :

$$
\operatorname{Conf}\left(1-\alpha, \dot{\beta}_{M N}\right)=t(M-N-1,1-\alpha / 2) \cdot \sqrt{V(b)} \cdot
$$

For an individual row of the regression matrix this becomes

$$
\operatorname{Conf}\left(1-\alpha, \bar{\beta}_{K N}\right)=t(M-N-1,1-\alpha / 2) \sqrt{U^{K} N N}
$$

This can be expanded to compute the confldence Interval of the results if an operation indieated by $\xi_{1 m}$ is performed to convert the $m \times m$ inatrix computed by

$$
\operatorname{con}\left(1-\alpha_{1} \dot{Y}_{K M}\right)=t(M-N-1,1-\alpha / 2) \cdot\left[x_{M N}^{\prime} v_{N N} \quad x_{N M}\right]^{-1 / 2}
$$

Into $1 \times \mathrm{M}$ matrix correspending to the $K^{\text {TM }}$ row of $Y_{N M}$.
That is

$$
\operatorname{conf}\left(1-\alpha, \dot{Y}^{k}, m\right)=t(N-N-1,1-\alpha / 2) \cdot\left\{\xi_{1 m}\left[X_{M N}^{\prime} v_{N N}^{K} X_{N M}^{\prime}\right]^{1 / 2}\right\}
$$

which can be rewrititen as

$$
\left.\delta Y^{K}{ }_{1 M} \cdot t(M-N-1,1-\alpha / 2) \cdot\left\{\xi_{1} B_{M N}^{\prime} E_{N N} v^{k}{ }_{N N} E_{N N}^{\prime} D_{N B A}\right]^{1 / 2}\right\} .
$$

If this operation is done $K=1$. N tinnes, $\dot{O}^{\boldsymbol{K}}$ imbecomea a matrix $\delta \hat{\mathbf{Y}}_{\mathrm{NM}}$ of confidence Intervals of \dot{Y}_{Nm}. Note that $\delta \mathrm{Y}$ decreases as the rank of $v^{\boldsymbol{K}}$ NN decreases. This matrix of Intervals ean then be trensformed back inte F-space by $G_{N N}$. Thus we get tie : $-\alpha$ confidence intervals of F rum by

$$
\dot{S i}_{N M}=G_{N N} \delta \dot{\mathbf{Y}}_{N M}
$$

If the calculation of $\delta \dot{\mathrm{Y}}_{\mathrm{N}} \mathrm{m}$ is performed using independent deta, D * Na as would be appiled to $\mathbf{T}_{\text {MN }}$. the calculation wouid appear as

$$
\dot{F}^{*}{ }_{N Q}=T_{N N} D_{N Q}^{*}
$$

and

$$
\delta \dot{F}_{N Q}^{*}=G_{N N} \delta \dot{Y}_{N Q}^{*}
$$

where

$$
\delta \dot{Y}_{N q}^{*}=\left[t(M-N-1,1-\alpha / 2) \cdot\left\{\xi_{1 M}\left[D^{*}{ }_{q N} E_{N N} v^{k}{ }_{N N} E_{N N}^{\prime} D^{*} N q\right]^{1 / 2}\right\}\right]_{K=1, N}
$$

Note that E and G are from the calibration data, D and F, used to compute $T_{N N}$ and $v\left(\dot{\beta}_{N_{N}}\right)$. The condition on $D^{*}{ }_{N Q}$ is that it comes from the same distribution as did $D_{N M}$ NM. Note that if E and G come from the correlation matrix, then the estimates $\dot{F}+\delta \dot{F}$ are in units of standard deviations.

A further refinement in the accuracy of the regression (over that of eliminating unnecessary components in $X_{N M}$) can be introduced by using the F-test to reject (suppress to zero) entire regression equations. This has the effect of setting to zero components of \dot{Y} NM which have insufficient probability of being more meaningful than zero. This amounts to a kind of stepwise regression except that the elimination of some of the components estimated in $\gamma_{N M}$ leaves the remaining components unaffected since they are independent.

The application of the F-test ejection involves the calculation of $R_{N P}^{2} ; p<n$ according to the amount of variance desired by the user based on experience. From the $R_{N D}^{2}$, the F-ratio is calculated. Those F-ratios failing the minimum value (95% confidence level) cause the corresponding rows of $\hat{\beta}_{N N}$ and submatrices $U^{k}{ }_{N N}$ to be set to zero and the calculation of $T_{N N}, \dot{F}_{N N}$, and $V\left(F_{N N}\right)$ is repeated. The user can then manipulate $p=p$ ($\%$ var. F) until the confidence intervals of $\bar{F}{ }_{N N}$ appear to be optimum. It -houid be noted that in most cases the values of $t(M-N-1,1-\alpha / 2)$ do not change to much for changes in N to p amounting to a few integers, if M is several times as large as N. The value of the F-ratio, $F_{M-p, p-1}(\gamma)$, can be estimated from a simple polynomial in (M. $p)$ with sufficient accuracy for use here.

The $\operatorname{Var}(F)$ can be estimated as mentioned earlier compounded by the amount of variance corresponding to the number of principal components $\hat{\mathrm{V}}^{*}{ }_{\text {sq }}$ passing the F-test rejection.

It is important to realize the physical implication of the means by which the accuracy of the regression is improved. By the initial assumptions about the data $D_{N M}$ and $F_{N M}$, we claim normality and a representative sample of the behavior of the observed phenomena for all time. Further, we postulate a modal nature of tne behavior or variance of the system as described by the N-variables. The modal nature of the variance is further postulated to be multimodal with modes numbering up to N and, in general, being of differing relative magnitude which linearly add up to comprise the total variance of the system.

With these observations in mind, we can now understand what is happening in the regression situation. When one or more of the least important principal components of $X_{N M}$ are omitted, we are rlaiming that those modes of variance of D have an insignificant statistical relationship to any of the modes of variance of F. When we reject any of the regression equations by the F-test rejection, we are claiming that the mode of variance of F represented by that regression equation has an insignificant statistical relationship to all of the modes of variance of X used in the equation. It is important to reaffirm that one cannot say a priori which components of X will correlate higuly with which components of Y. This will be clearer upon inspection of the demonstrated regression following. In any case, we can now understand that we are using as many as possible of the modes of variance of X that seem to have some significarit statistical relationship to at least one of the modes of Y which passes the F-test. Further, we are allowing only those mejes of variance of Y to be estimated which have a significant probability of not haying been estimated by chance to be used to reconstruct the regressand. F. In this way, we can see that it may well be possible that the modes of variance of X and Y that have a significant statistical relationship may or may not be the dominate modes in each and in any case the regression based estimate of F is a composite of significant modes estimated in Y without the interferance of the insignificant ones. It may be possible to further improve the estimate by selectively eliminating the components of X for each regression equation in which the associated regression coefficient is insignificant. However, this would cause the degrees of freedom for each estimate $\bar{Y}_{\text {im }}$
to be, in general, different than for the other estimates. This would cause a rather cumbersome complication in the software and it is not clear just how beneficial it would be since the primary impact is on the confidence interval and not the estimate. Perhaps further work on the problem may answer these questions.

APPLICATION:

The regression analysis described in this paper has been implemented into two matching software packages: CORMAT and REGRESS. Attendant to these packages are two subroutines; CLEAR, which simply zero's out an array, and a CDC library subroctine MATRIX which performs matrix operations. The programs CORMAT and REGRESS are written so as to be used as subroutines themselves in a parent program which reads and formats the data $D_{N M}$ and $F_{N N} \cdot D^{*}{ }_{N G}$ is selected and formatted by another subroutine: SIGNAL.

The program CORMAT computes the correlation, or co-variance, matrix, depending on how it is called and also the eigenvalues/eigenvector and the principal components. The number of components computed is determined by the amount of variance requested to be accounted for. The maximum number of components is limited by the length of data and the size limitations of the machine. It is worth noting that the program CORMAT will compute the co-variance matrix about a mean value given to it which may be other than the mean value of the data supplied. In this way, one may investigate the modes of variance about a mean value from another distribution.

The output of CORMAT is the correlation, or co-variance, matrix, the list eigenvalues, the sat of elgenvectors and the set of orincipal components computed accounting for the prescribed amount of vaiance of the input data. CORMAT writes the principal components, the reduced (if variance accounted for $<100 \%$) set of eigenvectors and the list of eigenvalues used on a random aecess file and then returns. The number of eigenvectors used to compute the principal comporient are transferred betweon subroutines.

Subroutine REGRESS uses the principal component sets, the eigenvector sets and the independent regressor data (reforred to as signal data) to compute the regression confficients, the transfer function, the multiple corrolation coafficients, the F-ratio and the regression based estimates of the regressand from the signal data. Subroutine REGRESS also performs the F-test rejection computation.

For an example application, the situation is the ragression of tree ring data, the regressor, taken from the Fraser River Basin against matching precipitation data; the regressand, occurring during the summer months at Kamleops Metcorological Station, Kamloops, Alberta, Canada. The calibration data runs for 49 years from 1896 to 1944 . The two data sats are lageod by 14 years. That is, the first column contains years 1 (raferred to 1896) through 14, the second column years 2 through 15 and so on to column $\mathbf{3 6}$ containing years 36 to 49. The signal data, $\mathrm{D}^{*}{ }_{\mathrm{Nq}}$, is composed of columns selected from D NM , the tree ring data dating from 1500 to 1944, such that the tree ring indicies in row \mathfrak{i} correspond to years in which a large volcano erupted in the region prescribed by the limits of long 0° to $135^{\circ} \mathrm{W}$, latitude $20^{\circ} \mathrm{N}$ to $90^{\circ} \mathrm{N}$. In appendix A are copies of the printout of the program with the conditions on percent of variance accounted for and F-test as described in the printout. Two other celculations were performed requesting 100% and 80% of the variance in $D_{\text {NS }}$. The effect can be seen in Figure 2 where the plots of $F_{\text {NS }}+\delta F_{\text {NS }}$ for the estimated precipitation in years $1783-1796$ are shown as an example. The curves are: (a) 100\% variance, with no F-test, (b) 100\% variance with F-test, (c) 95% variance with F-test, (d) 90% variance with F-test and (a) 80\% variance with F-test.

Upon inspection of Figure 2 we can see several effects at work, all of which involve the user as a student of the phenomena being analyzed rather than as a puraly detached statistician.

Fipure 2
499

First, one sees the changing nature of the estimate $\dot{\vec{F}}$ is asfewer modes, or principal components, of X are altowed in the regic. sion. Secondly, one notices that the 90% confidence bounds, $\delta \dot{F}$, of \dot{F} vary from one element to another within each of the rows of \dot{F} for each case (variance accounted for in X). This is co be expected when one recalls the modal nature of the decomposition of the data into principal components. For any given mode of variance some of the variables may be emphasized and others may not. This is evident upon inspection of the associat sd eigenvectors. This is equivalent to identifying which variables are contributing significant amouints of variance to a particular mode and which are simply supplying noise.

On the other hand, if the noise is evenly distributed among the variables and if the entire mode is essentially a noise mode with none of the variables containing any significant amounts of signal, then noise of the elements of the associated eigenvector will be prominent. If the noise is not eveniy distributed, some of the elements may be prominent in a noise mode. However, remember that noise is random and unlikely to correlate with another sef: of data. Thus the coefficent $\hat{\beta}$ will be small and the variance $V^{K}{ }_{N N}(B)$ will be large.

When one remembers that the modes are themselves partitioned with respect to the variance of the original data, it is easy to see how a variable contributing mostly noise in a dominate mode (dominated itself oy signal) may still overpower the contribution of that same variable contributing mostly signal in a lesser mode.

Another fact which must be considered fially when inspecting the estimates \dot{F} is whether or not the noise evidenced by $\delta \dot{F}$ is caused by uncertainty in $\bar{\beta}$ or by the physical phenomena itself. This problem is largely self correcting to be one and the same when one assumes that the noise should be highly uncorrelated between the sets \mathbf{D} and F and also recalls that the $\bar{\beta}$ are independent within each regression equation. Thus, the regression coefficients should be essentially zero for noise and this in turn will cause $V^{K} N_{N}$ to be large. Therefore, by disregarding an estimate in one case (variance accounted for) because of a large $\delta \dot{F}$, one is always su:e of not overlooking a valid signal and by the same argument, keeping an estimate $\dot{F}_{i j}$ from one case because of a small $\delta \dot{F}$ and plotting it with another similarly good estimate $\dot{F}_{i k}$ from a different case, each with their original $\delta \dot{F}$'s, one is simply combining good estimates of \bar{F} from D and disregarding noise. In a sense, one is simply keeping those components of X and Y which contain mostly signal and discarding those which contain mostly noise.

Using these arguments, the final regression based estimate of $\mathrm{fre-summer}$ precipitation in Kamloops, Canada, for 14 years after the Icelandic zolcano eruption in 1783 appears as shown in figure 3. The units are standard units of deviation about the mean and the error bars are 95% confidence bounds.

Before leaving the topic of inspection of results, note the transfer function itself (plates 6, 7 and 10). The reader will note the occurrence of "ridges" and "valleys" running diegonally from rows 1 and 6 and column 6 .

Inspections such as this of the transfer function and also the olgenvectors, can reveal the likellhood of physical relationship batween and within the auts F ard D worthy of fulure causal investiqutions.

This work was funded by the US Army In-House Independent Rescorchi program at Fort Huschuea, AZ. The writer wishes to thank Dr. H.C. Fritts and T. J. Bazine of the University of Arizona for their many long and illuminating conversations on this subject.

REFERENCES:

1. Hotelling, H. . Analysis of a Complox of Statistical Veriables into Principai Components; J.E.P., 1933
2. Anderson, T.W. - An Introduction to Multivariate Statistical Analyaiss John Wiley, 1958.
3. Hoel, P.G. - Introduction to Mathematical Statistics; Wiley, 1947.
4. Fritts, H.C. at al - Multrivariate Techniques for Specifying Tree Growth and Climate Relationship and for Reconstructing Anomolles in Palegciunatef Jnl. App. Mot, Vol. 10, No. 5, Oct. 1971.
5. Sellers, W.D. - Climatology of Monthly Pracipltation Patterns In Weatern United States, 1931-1966, Mon. Wew. Rev., Vol. 96, No. 9, Sep. 68.
6. Box, G.E.P., et al - Some Problams Associated with the Analysts of Mutiresponse Data, Technometrics, Vol. 15, No. 1, Feb 73.
7. Draper, N.R, and Smith, H. - Applied Regression Analysis, Wiley, Now York, 1968.
8. Schulman, E. - Dendroclimatic Changes In Semiorid America, Univ of Art. Press, Tucson, Az, 1956.
9. Meteorological Data Supplied by the Laboratory of Tree Ring Rewereh. University of Arizona, Tucson AZ.
10. Lamb, H.H. - Volcanic Dust in the Atmosphere With a Chronology and Ascessment of its Meteorological Significance, Royal Phil. Soc., Vol. 266, A, 1178,2 Jul 1970.
11. Morrison, D.F., - Multivariate Statistical Methods, MeGraw-HIII, Now York, 1967.
12. Wiburn, J.B. - Multivariate Analysis Techniques Applied to Equipment Testing, Microelectronies and Reliability, Vol. 12, pp 535-53., Pergamon Press, 1373, Great Britain.
 :

en
0
37.3 27.527

	t	
	$\stackrel{m}{6}$	
	$?$	
	8	
	∞	$\Rightarrow \text { matmonghtsest }$
	3	
	8	
	6	$\begin{gathered} 40 \\ \circ \end{gathered}$
	$\underset{\sim}{0}$	
$\text { Bnin } \operatorname{Hin}_{4} 8888888888$	\cdots	
${ }_{4}^{4} 7888888888888$	6	
	$\begin{aligned} & \text { N } \\ & \stackrel{N}{N} \end{aligned}$	
78888888888888	$\underset{0}{n}$	

PRINCIME COMAOMNTS maner of nous $=14$
icounte 3
-.24
 N上fnoño

 merent

A. 3

oryctine compacints

告
 ECounta 6－ 6
 \therefore
 ジ年 1
8
1
1
1
1
SII:MML CATA
19.5
17.5
19.0
19.0
19.0
19.0
19.5
19.0
19.5
17.0
PLATE S)

A. 7
aterace for back mon of owiginac data

 stemal data from momacized total

MATE : CONTINUED)

> sYo. UEy for Each mow of oniolmal oara $32.024 \quad 31.063$ 31.t77 31.073 31.87

Eyyyymognon

	$7 \pi 82488484 \leq 88$ ii．0．0\％ioi	
	Mag mingernigs	－ HiOMO_{i}
	ilipioi Yioi	
$\stackrel{N}{\mathbf{y y}}$		
8	홍	
$\begin{aligned} & \text { 亭 } \\ & \text { 震 } \end{aligned}$	 	MッM.

	$7 \pi 82488484 \leq 88$ ii．0．0\％ioi	
	Mag mingernigs	－ HiOMO_{i}
	ilipioi Yioi	
$\stackrel{N}{\mathbf{y y}}$		
8	홍	
$\begin{aligned} & \text { 亭 } \\ & \text { 震 } \end{aligned}$	 	MッM.

NEGMESSIOM CORFACIENTS
A． 9

A-12

M. INCIME COMPONEMTS

vantamce or nconession cocrficiemtsmonacoma

 .04
 10
 - ㅇ․ㅇ․․ 0 영 ! $\%$ $\%$! \% $\stackrel{\sim}{a}$ θ

COMECTED IY F-TEST MEJECTION

?

\%
号

3: 3 :

A-19
521

VAMIAMCE MF MEGRLSSIOM COEFFICIENTS-0IAC-OWAL

PREDICTING METASTASIS OF ENUCLEATED SMALL OPHTHALMIC MELANOMAS BY DISCRIMINANT PUNCTION

Walter D. Foster
Ian W. McLean (Maj, MC, USA) Armed Forces Institute of Pathology Washington, D. C, 20306

ABSTRACT. Malignant melanomas of the uveul tract of the eye are tumore with a significant risk of metastaic. To reduce this risk, it hae been the practice of ophthamologiats, after making a clinical diagnosis of malignant meldioma, to recommend immediate enucleation of the eye. The objective of this etudy was to earch for ariterion by which the riak of metastasis could be estimated.

Over 300 cases of enucleation for mall malignant melanomes have been referred to the Ophthalmic Pathology Division of the Armed Forces Institute of Pathology (AFIP) for investigation and research. Of these casen, pathologiste recorded 16 characteristics on each of 72 eyes, together with informá tion on whether the tumor had matastasized. Analysis by stepwise diacriminant function was employed to aggest which of these characteristics might be predictive of metastasis and the degree of their ffectiveness. An unexpected dividend in the use of the discriminant function was che redefinition of some of the characteristics and the review of the original data for others, in medico-statistical dialog in the refinement of the capability for prediction. The following table show che degree of success of the anaiysis for the body of data at hand:

Table 1. Comparison of Clasification by Discriminant Function with Actual Behavior in 72 Casea of Small Ophthaleic Malanoma

Correct	Incorract
Prediction	Pradiction

Actual moup Nonmetatesizing (40) $34 \quad 6$ Metastadizing (32)

27 5

1. INTRODUCTION. A major ophthalmic problem is concerned vith the deciaion whether to advise enucleation of the ay when amall intraocular melanoma has been dien covered. The deciaion to remove the eye dependa heavily upon the risk of metastasis. In the case of amali tumors of the choroid, the surgeon is faced with the difficult decieion of whether to remove the eye or continue to ob-
serve the lesion until there is greater certainty that it is malignant. The purpose of this research was to discover whother there is a basis for estimating the risk of metastais.

The Ophthaleic Patholozy Diviaion of AFIP has the largest known collection of eyes enucleated for small malignant mela-nomas-over 300 cases. After defining 15 characteristice as posidble predictors of metastasis, pathologists selected 76 tumor-containing eyes enucleated prior to 1945 becauac all neaded data were available; 34 tumors were known to have iresulted in retastasis, and 42 pationts were free of metaatais at the last known etatus 7 or more years after enucleation.

Fisher' linear discriminant f, tion was chosen as the etatiatical function for the clasai cation of these melanamas on the basis of the 15 predictors. Analysis by etepvise discriminant function to order the predictore in terme of their relative predictability was enviaioned an process for identifying the most meningful set of predictore to be compared with the list of predictors selected by pathologiste frotmedical experience for intriocular melanomas of all sizes.
2. DISCRIMINANT FUNCTION. To define the linear discriainant function,

Let X_{1} i-th characteristic, e.g. eize; $1=1-15$,
Let $H_{i}=c o e f f i c i e n t$ of X_{1} to be etimated.
Set $Z_{1}=\Sigma B_{1} X_{1}$ for the nonmetastasizing melanoman
and $Z_{2}=E B_{1} X_{1}$ for che metastasizing.
Let $D=z_{1}-z_{2}$ and $d_{1}=\bar{X}_{1 n}-\bar{X}_{1 m}$ so that

$$
D=\sum B_{i} d_{1} \text { and } V(D)=\Sigma \Sigma B_{1} B_{j} a_{1 j}=s
$$

For analogy with the univariate case, just as wish to maximize

$$
t=\left(\bar{X}_{1}-\bar{X}_{2}\right) / s\left(1 / n_{1}+1 / n_{2}\right)^{1 / 2} \text { or its square, }
$$

In the diacriminant function the B_{i} are estimated by maximizing $D^{2 / S}$:

$$
\begin{aligned}
& \frac{\partial D^{2} / S}{\partial E_{i}}=0 \text {, whose reailiting equatione have the colution } \\
& B_{1}=(S / D) \Sigma d_{i} a^{1 j} \text { where } a^{1 j} \text { is an element of the }
\end{aligned}
$$

inverse of the variance-covariance matrix of the X_{1}; pooled over the two groups under the assumption of homosedasticity.

The constant S / D has no meaning as far as the diecriminant function is concerned and can be arbitrarily equated to unity for simplicity.

The assumptions for the probability statements implicit in the use of the discriminant function required that the predictor variables be continuous and have a joirt multivariate normal diftribution and that the variance-covariance uatrix for each group bequal. Therefore, the following list of propoaec predictors (characteristica) wan examined in terms oi its marginal distribution properties.

Predictor Predictor
Number

```
    Age
    Duration
    Enucleation date
    Size
    Volume
    Area
    Sex
        Pogterior margin
        Anterior margin
        Eye
        Ce11 type
        Pigment
        Fiber
        Scleral extension
        Optic nerve"
```


Univariate properties

Continuous, approximately normal Continuous, skewed to risht Continuous, skewed to left Continuous, skewed to right Continuous, skewed to right Continuous, akewed to right Two-clasa, uniform Nine-class, skewed to right Nine-class, skewed to right Two-class, uniform Four-class, skewed Four-class, skewed to right Five-class, skewed to right Four-class, skewed to righ Four-class, skewed to right:

Three results were immediately obvious. Not only was the assumption of multivariate normality invalid, but it albo was clear that the covariance matrices of the two groups, metastasizing and nonmetastasizing, were not equal. Moreover, the additive.model was at best a first approximation. Nevertheless, it was felt that an fmperfect approach could be tried and judged on $1 t 3$ performance. The UCLA BMD program, sfepwise discrininant function, was utilized. This program selects as the first predictor and as successive predictors in turn that one for which the likelihood ratio expressed in terms of the f-statistic is a maximum. The
 tors is ordered and can be truncated at any point by the experimenter. Further, in this study it offered a comparison of predictors selected in thia fashion to those previously selected,y the pathologista from experience.
\therefore MEDICO-STATISTICAL INTERACTIVE DIALOG. The results of ou first run with the stepwise discriminant-function program are given in Table 2. It was clear from this run

$$
y=\cdots y \quad 2 \% \text { 多 }
$$

(1)

528

that, of elio 15 orlginal predictura, no more than 8 were witective in combination. An antuonding finding was the faliure of predictor 11. cell type, which was the leading choice by pathologiata' experience, to be included in the liat of effective predictors. Also unexpected were the negative signs for the coefficiente for predictor \boldsymbol{K}^{2}, duration, $\quad 1$, age; 3 , enucleation date; and 6 , area. In effect, the data were contradicing the notion that the probability for metastasis increases with increasing age. duration of the melanome, area of the melanome etc. The error rate for false positives, for, defined as nonetastasizing cases erroueously claseified by the function as metastatic, was 5/42, or . 12, while that for false negatives, Fa, defined as metastatic cases erroneousiy clasilfied as monmetastatic, was $11 / 34$, or . 32 , for a total erfor of $16 / 76$, or .21 . Our review of these results included a detailed examination of those casee that were misclassified by the discrininant function. This review revealed Inconsiatent criteria for cell type and three cases that should not have been included in the study.

The second run, with the value for cell type revised by th* coneenave of three pathologists, selected the predictora in the order shown in Table 2. The review of run 2 found yet another case erroneously included in the original set of data. It was of interest that the refined definition of cell type, predictor il, wat included in che group of meaningful predictors. Only fiber content as a predictor in the pathologista' list failed to be included in the group of meaningful predictore in run a, although it was noted that age continued to have a negative coefficient. At this point, it was decided to add a $16 t h$ predictor, mitotic activity, for the next run.

Run 3, shown in rable 2, did include the new predictor, mitotic activity, but unexpectedly dropped cell type. The total error rate stayed about the same as before despite a sight aift in the ft and F- rates. Pathologists' opinion did not agree that 1 (age), 2 (duration), and if 3 (enucleation date) were physicaliy meaningful and recomended that these as well as loptic nerve extension) be dropped as predictors for the uext run.

Run 14 did not discriminate as wellas rung 2 and 3. fts urerall crior rate was 15/72; With Ft as $7 / 40$ and Fas 8/3\%. It also dropped both cell type and mitotic activity as meaningful predictors. It did continue to show an acceptable level of discrinination.

Abstract

With these me the reeults thus far, we raninded oureelves that it has been the thruet of thia preliminary paper not so much to list medical findings or implications (vhich will be reported eleewhere) as to ugeat the value of the continuing medico-statiatical interacife dialos in the winnowins process of finding and redefining meaningful predictors. 4. CONCLUSIONS. The diecriminant-function approsch appeare to offer considerable promise to serve as abse for estimating risk probabilities as a help to medical practice in evaluating mall ophthalmic malanoman. Futura investigation in thia specific direction vili inciude (1) the use of this discriminant function on a new population to estate srue error rates and to improve overall pradictive ability, (2) the reformulation of the prediction function to allow greater flexibility than offered by the linear terns, ach as "product" or "reciprocal," or epecial reiationehipe among the variables, and (3) poseible use of transformations toward achieving norality.

The opinions or agertions contained herein are the private views of th athors and are not to be construed as official or ar reflecting the view of the Departaent of the Aray or the Department of Defenee.

PORECASTING MODELS FOR MOSQUTTO POPULATION DEBAVIOR

Steph in Smaach and Cliris P. Tsokos
Department of Mathematice
University of South Plorida
Tampa, Floridis 33620

ABSTRACT. The object of this paper is to develop atatistical modele to forecast mosquito denaitios up to apecific desired time in advance.

It is shom that the mosquito series is a non-atationary stochantic realization. A procedure is presented in modeling the mosquito denaitites for the purpose of forecasting one, two, three., k days ahead. Autoregressive, moving average and mixed autoregressive-moving avarage models. have been utilized for the purpose of predicting mosquito density behavior.

In addition, the technique of utilizing the formulated models in a simulation study to determine the influance of eeveral pesticide application etrategies is briefly discuased.

1. INTRODUCTION. Aside from the nuisance factor associated with the presence of mosquitos in the human environment, it is of interest to develop control strategies for mosquito populations since they serve as easential links in the life cycles of a number of human parseites. The incidence of such parasites can be controlled by reducing the population density of their moquito vectors. Control techniques can take the form of peaticide apraying etrategies and alteration of the mosquito larval habitata. The development of accurate statistical models to predict future mosquito denaities cen be uced to advantage by scientiats studying control of mosquito-related diceames. Such atatistical models could be used to simalate population denaity behavior under various control strategies and hence sarve as an avaluation of control strategies, findependent of field tests.

In the present investigation, statistical models are formulated to predict mosquito population densities up to four days in advance. The procedures uned are those developed by C.P. Tsokos [2] for use in formulating forecasting models from non-atationary time series. The data used in this inveatigation conaists of three yeare of light-trap capture data of adult female mosquitos (Culex taraalia) collected at two day intervals from light trap stations ia Malvern, Iowa during 1969, 1970 and 1971. Hacker, Scott and Thompson [1] have analyzed this data using a somewhat different approach. Professor Thompson discuased their investigation with the present authors and kindly provided the data for our independent malyeis.

We shall be coacerned with sn importent clame of statistical models, viz, the autoregressive process, the moving average process and the mixed autorigressivemouing average process. These processes have been widely used for describing
staclonary time aerias (i.e., those time meries chat are in statistical equilibrium about a constant man level). However, much biological data is non-atationary, One can transform non-btationary data in such manner that it can be treated as a stationary series. Such transformations consist of applying an appropriate filter to the observed time series to "filter out" non-atationary conponents. In the present investigation, applications of firat or second difference filters remove the non-stationary components of the data. Once we have obtained a model for the filtered, stationary series, we must employ the appropriate "backward" filter to replace the non-stationary components. The rasult will be a model that can be used to obtain forecast values of the original non-stationary time series.

In action 2, the autoregressive, moving average and mixed processes are defined and a procedure for obtaining the "best" gtatistical model among them is explained in greater detail. In section 3, this procedure is applied to amoothed-data version of the monquito population density data and forecesting models are developed. The smoothing procedure is that employed by Backer et. al. [1]. In seetion 4, the procedure developed in section 2 Is applied to the original, non-smoothed mosquito population data and forecasting modals are developed. Finally, in section 5 we discuss the approach used in this investigation as compared to the approach used by Hacker et.al. and describe further research being contemplated in this area.
2. PROCEDURE. A discrete m-order autoregressive process derived from a purely randon procese is given by

$$
\begin{equation*}
x_{t}-\mu=\alpha_{1}\left(x_{t-1}-\mu\right)+\alpha_{2}\left(x_{t-2}-\mu\right)+\ldots+\alpha_{m}\left(x_{t-m}-\mu\right)+z_{t} \tag{2.1}
\end{equation*}
$$

where $X_{\text {, }}$ is the autoregresaive series; $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are parameters of the procesaf and μ is the expected value of the geries $X_{t}{ }^{[}{ }^{\circ}$ Such a process assumes that the current value X_{t} of a series can be expressed as a linear sum of past valuen plus an independent error term Z_{t}, not connected with the past.

A finite moving average process of order q is given by

$$
\begin{equation*}
x_{t}-\mu=Z_{t}-B_{1} Z_{t-1}-\cdots-B_{q} Z_{t-q} \tag{2.2}
\end{equation*}
$$

where X_{t} is the moving average series; $B_{1}, B_{2}, \ldots, B_{q}$ are parameters of the process; and μ is the expected value of the series. This process is interpretad as a weighted um of a random eeries, Z_{t}.

A mixed autoregressive-moving avehage process of ordar (m, q) is given by

$$
\begin{equation*}
x_{t}-\mu=a_{1}\left(x_{t-1}-\mu\right)+\ldots+a_{m}\left(x_{t-m}-\mu\right)+z_{t}-\beta_{1} z_{t-1}-\ldots-\beta_{q} z_{t-q} \tag{2.3}
\end{equation*}
$$

where the value of q is independent of the value of m and 11 other symbols are al dafined above.

The procedure used in the present investigation to determine an appropriate statistical time series model is that procedure developed by Tsokos [2] and is mumarised below:
(1) Test the original series for stationarity. A trend test such as Kendall's T is used to tent for atationarity. If the original serias faila this tent, a first difference filter is appliad to the original series to croate a new sarien. The tanting procadure in repeated and first difference continue to be appiled as mecasary until a time sories is obtained that paeses the stationarity test. A second order difference filter is umally mufficient to filter out non-stationary components.
(ii) Determine the "best" statistical time series model. Using the time series obtained in step (i) a computerized searching procedure is initiated to deterine the model and its order from among the models discuased above that best fite the data. The criterion for aelecting the best model for the filtared aeries is based upon estimates of residual variances. One proceedo by eatimating the parameters of the different models for differant orders. The residual variance antimatee are then computed and recorded against the orders of the procesces. The minimum residual varimee will corraspond to the order and type of procese which bast fits the filtered serias.
(iii) Apply an appropriate backward filter. If the original time series were non-stationary, then the model chosen under stap (1i) was appropriate for the filtered, stationary series. Hence, at this step a backward filter is applied to replace the non-atationary componenta. For example, if a first difference filter, $y_{t}=x_{t}-x_{t-1}$
had been appliad to the original series and the appropriate model for the filtered series had been of order $(1,1)$ then the model has the form

$$
\begin{equation*}
y_{t}-\hat{\mu}-\hat{\alpha}_{1}\left(y_{t-1}-\hat{\mu}\right)+z_{t}-\hat{\beta}_{1} z_{t-1} \tag{2.4}
\end{equation*}
$$

where $\hat{\mu}_{,} \hat{\alpha}_{1}$, and $\hat{\beta}_{1}$ are estimates of the parameters based upon the filtered series (see Tsokos [2]). Writen in terms of the $X_{t}{ }^{\prime \prime}$. oquation (2.4) becomes

$$
\begin{equation*}
x_{t}=\left(1-\hat{a}_{1}\right) \hat{\mu}+\left(1+\hat{a}_{1}\right) x_{t-1}-\hat{a}_{1} x_{t-2}+z_{t}-\hat{\beta}_{1} z_{t-1} \tag{2,5}
\end{equation*}
$$

the process of going from equation (2.4) to equatiun (2.5) is called "applying the appropriate backward filter". It is equation (2.5) that is then used in tep (iv) to forecast future values of the X_{t} process.
(iv) Fonecast values of the original time series ℓ-days ahead. We desire to forecast a value $x_{t+\rho}, \ell \geq 1$ when we arc currently at time t. For example, as discussed in Tsokos, the generalized mixed model under the influence of a first difference filter has minimum variance ℓ-day ahead forcast given by

$$
\begin{align*}
\hat{x}_{t}(l)=\phi_{0} & +\phi_{1} x_{t+l-1}+\cdots+\phi_{m+1} x_{t+l-m-1} \\
& -\hat{\beta}_{2} z_{t+l-1}-\cdots-\hat{\beta}_{q} z_{t+l-q} \tag{2.6}
\end{align*}
$$

where $\dot{x}_{t}(\ell)=E_{t}\left[x_{t+\ell}\right]$, i.e., the expected yalue, at time t, of $X_{t+\ell^{\prime}}$ The constanta ϕ_{i} are functions of $\hat{\mu}$ and the $\hat{\alpha}_{i}{ }^{\prime} s ;$ the $\hat{\beta}_{1}$'s are defined previously; and $z_{t}=X_{t}-\hat{X}_{t-1}(1)$. Due to the recuraive property of the mixed, autoregressive-moving average process, when we forecast with a lead $\ell \geq 2$, our forecast is dependent upon the previous forecasted value (s).

In addition to the procedures discused above, one could proceed to compute confidence intervals for forecasted values and to employ updating methods for use in the modal as new time series observations are obtained. These techniques are not discussed here but are well documented in the paper by Tsokos.
3. TIME SERIES MODELS FOR THE SMOOTHED DATA. Because of the (apparent) high noise level in the raw light trap data, Hacker at, al. [1] amoothed the data using a cubic-apine-integration method that is described in their paper. Figures 1 through 3 below are graphs of the original population data (solid 1ines) and the smoothed data (dotted lines) for the year 1969, 1970 and 1971 respectively, collected during the months May through October.

Figures 4 through 6 show the smoothed data (solid ine) and the 4 -day ahead forecast values (dotted line) for each of the years 1969, 1970, 1971. As can be seen by inspection, the agreement is very good except for the lag between the two curves which is characteristis for time series work. All threc years data required first difference filters for stationarity and were best fitted by order 3 woving average processes. The models for 1969, 1.970, 1971 are presented as equations (3.7), (3.8) and (3.9), respectively.

$$
\begin{align*}
& \hat{x}_{t}=.0083+(.9) z_{t}-(.1) z_{t-1}-(.5) z_{t-2} \tag{3.7}\\
& \hat{x}_{t}=-.0278+(.9) z_{t}+(.2) z_{t-1}-(.3) z_{t-2} \tag{3.8}\\
& \hat{x}_{t}=.0431+(.9) z_{t}+(0.0) z_{t-1}-(.3) z_{t-2}
\end{align*}
$$

oricinal time serifis

Fis. 2. Obnerved series vs. ©ioothed series for 1970 data

OHLCPNII
TIME SGRLC

Fis. 3 Observed seriee ve. TMEMOOthed derfer figy 1971 data.
ORIGINAL TIME SERIFS

TIME IN a DAY 「ERIOMS
Tis. W Observed an 4-day ahead forecast series for 1969 gmoothed data.

ORIOLNAL TIME SERIFS

TIME IN 2 DAY PERIODS
Fig. 5 Obsarved ve. 4-day ahead forecatt serfes for 1970 anoothed data.
ofiginal time serifs

TIME IN 2 DAY PERIODS
Fis. 6 Observed vs, 4-day ahead forecaut series for 1971 anoothed data.
4. TIME SERIES MODELS FOR RNI DATA. A data-smoothing technique such as that applicd by hacker et.al. Is a reasonable approach to use if one can demonstrate that the sample population density data is more erratic than that expected for the true denaity behavior und if one can identify the sources of noise in the data. However, to the knowledge of the present authors, this has not been done. Hence, the nagging possibility remains that smoothing techniques may remove banic, essential components of the data. In this gection we avoid the problems inherent in the use of smoothed values to predict smoothed values by formulating statistical time series models for the raw data itself. The following graphs show the resulte of applications of the procedure discussed in Section 2 to the three sets of raw data.

In Figure 7, the raw data collected during May through October, 1969 is shown, along with the one day ahead forecast generated from the moving average model of order 3:

$$
\begin{equation*}
\hat{x}_{t+1}=-(.08)-(.83) x_{t}-(.71) x_{t-1}-(.34) x_{t-2} \tag{4.0}
\end{equation*}
$$

Again, the agreament is quite good except for the characteriatic time lag.
Pigure 8 is a visual display of the atationarity test of atep (i). If a serice is stationary, then its sample autocorralation function, $r_{x x}(k)$, should dampen out to sero fairly rapidly where

$$
\begin{equation*}
r_{x x}(k)=\frac{\sum_{t=1}^{n-k}\left(x_{t}-\bar{x}\right)\left(x_{t+k}-\bar{x}\right)}{\sum_{t=1}^{n}\left(x_{t}-\bar{x}\right)\left(x_{t+k}-\bar{x}\right)}, \text { for } k=0,1, \ldots, n-1 \tag{4.1}
\end{equation*}
$$

As can be seen, $r_{\text {(}}(k)$ does not dampen out quickly for the original series (solid line) but Xx application of a second difference filter, $y_{t}=x_{t}-2 x_{t-1}+x_{t-2}, r_{y y}(k)$ for the filtered series does dampen out quickly (dotted line).

Figures 9 and 10 show the 1-day ahead forecasts for the raw data collected during May through October, 1970 and 1971, respectively. For the 1970 data, a first difference filter was raquired for stationarity and the forecasts were generated from the second order moving average process.

$$
\begin{equation*}
\hat{x}_{t} \quad=-(.014)-(.20) z_{t-1}-(.30) z_{t-2} \tag{4.2}
\end{equation*}
$$

The 1971 raw data required a second order difference filter for stationarity and the forecasts were generated from the third ordor moving average process.

$$
\begin{equation*}
\hat{x}_{t}=(.056)-(.99) z_{t-1}-(.09) z_{t-2}+(.18) z_{t-3} \tag{4.3}
\end{equation*}
$$

The graphs for the sample autocorralation functions are not included here alnce they are qualitatively similar to Figure 8.

ORIOINA TIME SERIES

Yis. 7. Observad saries va. 1-day ahead forecast for 1969 raw denalty data.
SAMPLE RUTOCORREL.ATION FUNCTION

Fig. 8. Semple autocorralation for obaerved ve. second difference filtered eerien for 1969 rew data.

ORIGINAL. TIME SERIES,

Fig. 9. Observed serite ve. 1-day ahead forecast for 1970 rat denaity data.

ORIC.INFIL TIME SERITS

Fis. 10, Obsarved seriee ve, 1-day ahead forecaat for 1971 raw density data. 540
5. COUCLUSTON. It has been shown in previous sections that the techniques disiunsed here can provide adequate forecastinf models for non-stationary thereserlesi, even if those serfer have suspected, but maccounted-for noise components. 'lhis seems to be an important improvement over the smoothing, approach used by ilacker ct.al. If the source of the noise is not identified, tion one can not be sure that smoothing the data will lead to a set of data that is more representative of the true state of nature. The technique developed in the present investigation avoids this problem by formulating time series models using the raw data itself. (It should be pointed out that the complete procedure discussed in the previous sections is contained within : software computer package developed by the authors.)

Further research along the lines of the present investigation is now being contemplated. Hacker et.al. discuss a method for using their model equations to develop simulation studies useful in evaluating various control strategies for mosquito populations. Their method consists of adding the (previously suppressed) error term, ε_{t}, assumed to be normally distributed.
They then can sample independent random normal variates with the same variance as that estimated from the data, and use these values to drive the process. It turns out, however, that using a random walk of this type occasionally yialds pseudo-observations outside the range of those observed in the Malvern study. To remedy this, they employ a mathematical condttion that reflects the process away from the boundaries of negative values and overly-large values. The present authors are considering application of this simulation approach to the models developed here, which we believe are more representative models of actual behavior of mosquito population densities.

In addition to the simulation studies, the present authors are initiating a spectral analysis approach to the study of this problem. Such an approach will give a better understanding of the intricate details and inter-relationships between the essential variables involved in the study of the behavior of mosquito populations.

ACKNOWLEDGEMENT

The authors wish to thank Professor James Thompson, Department of Mathematical Sciences, Rice University for supplying us the data and for his fruitful discussion with us concerning this problem.

REFERENCES

[1] C.S. Hacker, et.al. "A Forecasting Model for Mosquito Population Data", J. Med. Ent., 10, (1973), 544-551.
[2] C.P. Tsokos, "Forecasting Models from Non-stationary Time Series; Shortterm Predictability of Stocks", in Mathematical Methods in Investment and Finance, (Szego and Shell, eds.) North Holland, 1972.

Curve fitinig of discrete points by legendie polyiomials

Oskar M. Essenwanger
Physical Sciences Directorate
US Army Missile Command
Redstone Arsenal, Alabama 35809

ABSTRACT. It is well known that the Legendre polynomials render the least square fit, while Tchebycheff polynomials provide the minimum of the maximum deviation from the observed points. Therefore, it should be assumed that the selection of the desired type would depend only on the primary goal of the analysis.

Legendre polynomials are in widespread use in mathematics, but their application to statistical problems is rarely found. This can not always be attributed to the differences in goals between statistical and mathematical analysis. One of the reasons may be the difficulty of adjustment of Legendre polynomials to discrete point curve ficting as necessary in statistical analysis. While the Tchebycheff series is orthogonal for discrete points, the orthogovality of the Legendre series is based on the continuous type and does not hold up for a small number of discrete points.

The author has attempted to display first the fitting of discrete points by Legendre polynomials and compare the results with the Tchebycheff series. Furthermore, examples are given for the calculation of the coefficients of the Legendre series from discrete points, and their relacionship with the left variance. Finally, the most advantageous utilization of Legendre polynomials in statistical analysis is a fitting to $N>50$ where the Tchebycheff series becomes difficult to handle.

1. INTRODUCTION. Although certain types of polynomials such as the Legendre polynomials are in widespread use for curve fitting in mathematics, their application in statistical analysis can rarely be found. It is a well known fact that individual polynomial types serve a special purpose and have particular properties. Among orthogonal polynomials the Legendre polynomials render the least square fit while the Tchebycheff polynomials provide a solution where the maximum deviation is a minimum.

It may be apeculation that thic latter property is a praferred coal in statistical aralysia, and tharefore the Tchebychaff series is matiy utilized. This fact is contridicted, hemever, by various articles these authors hove amployed apirtesi polymoalals. Thus one would think least aquare solutione should the foved mers the desired conlyisle goals, and owe could discover legendse polywaisl fite in atatistical amalyis.

De it will becons clear from the aubcoquant diecuacion, ose mandble seacon for the chacece of Legendre polyomal fite my be the iffficulty of adjuetios Legendre polyromials to diecrete point fittims. Maxy data in otatistical analyais are given or propared in the tore of discrate pointe rather than the continuous sype of aolution which are wually illustrated in machemeical texts, although a limited meber of discontinuities in the observations (step functione) have bean accopted in mumarical analysif.

The fitting of Legendre polyooniels to diecrete points bes, cherefore, been atudied in details in the subsequent gections. De we ahall learn the major problem is not the praperation of legendra polyocuiala for diacrete point fitting. The difficulty lies in the deterninacion of the proper coefficient: for the seried from diserete points. Although the Legendre series is orthogonal in a continuma, the series loses its orthogonality for a mall number of discrate pointe.

As will be outlined coefficients from integrale can be calculated by numarical methods, but dieadvantages atill remain with respect to the left variance. The Tchebycheff and the Legendre aeries are fitted to wind profile data and the reaults are comparabla. It will be laarned, however, that the Legendre series would be most advantageounly used for the number of points greater than 30 , aven better for more than 50 points where no cable values for the Tchebycheff series are readily available, and the orthogonality of the Legendre sariea is restored. It should be added that orthogonalized sets of discrete lhegeadre polynomials for faw pointa aseume the same numarical valuan as found for the Tchabycheff series.
2. TEE LEGENDRE SERIES. As can readily be found in various texts (e.8. Boas, 1966; Abramowitz and Stegun, 1964; Essenwanger, 1975a, etc.) the Legendre polynomials comprise an orthogonal system over the interval $-1 \leq x \leq 1$. For details of their analytical oxpressions the reader is referred to the literature. Let us denote here the Legendre polynomial by $P_{n}(x)$, where n represents the order.

The Legendre polynomials are orthogonal, i.e.

$$
\int_{-1}^{+1} P_{h} P_{k} d x= \begin{cases}2 /(2 n+1) & \text { for } h=k=n \tag{1}\\ 0 & \text { for } \quad h \neq k\end{cases}
$$

Any function $Y(z)$ would be represented by Legendre polynomials with the transformation $y(x)=Y(z)$. Then

$$
\begin{equation*}
Y(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x) \tag{2}
\end{equation*}
$$

The coefficients must be determined from

$$
\begin{equation*}
a_{n}=[(2 n+1) / 2] \int_{-1}^{+1} Y(x) P_{n}(x) d x \tag{3}
\end{equation*}
$$

and here begins the difficulty in practical work with discrate points. If $Y(x)$ is a function which can be expressed in analytical terms, and the integral can be solved explicitly, the representation of any function by Legendre polynomials is trivial. Such examples can be found in almost any text on mathematics or numerical analysis where polynomials are covered. In the atmospheric sciences or other branches with statistical analysis we are mostly interested, however, in expressing a discrete function $Y(z)$ by polynomials. While the coefficients for the Tchebycheff series are simple to calculate even in this case, the usual procedure of replacing the integral by the summation sign is insufficient for a small number of points, i.e. we cannot merely state

$$
\begin{equation*}
a_{n}=[(2 n+1) / 2] \sum_{x=-1}^{1} y(x) P_{n}(x) \Delta x . \tag{4}
\end{equation*}
$$

This replacement would be a permissible approximation for a large number of points, say probably for about 30 or more and the number of terat $a \ll 30$. For amall number of points, i.e. seven, this formula senerally does not provide the coefficients a_{n} accurate enough to be of value.

We may evaluate the success of engaging eqn. (1) by calculating two polynomial characteristics, the variance Var $_{p}$ and an integral, which we may call $S_{L_{1}}$. The two parameters have analytical solutions depending on n and $\begin{aligned} & \text { are defined by }\end{aligned}$

$$
\begin{equation*}
\operatorname{Var}_{P_{n}}=\int_{-1}^{+1} P_{n}^{2}(x) d x=2 /(2 n+1) \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
S_{L_{n}}=\int_{0}^{+1} P_{n}(x) d x & =\sum_{\nu=0}^{n / 2}(-1)^{\nu} \frac{1 \cdot 3 \cdot 5 \ldots(2 n-2 v-1)}{2 \nu v!(n-2 \nu)!} \frac{1}{(n-2 \nu+1)} \\
& =0 \text { for even } n \neq 0 . \tag{6}
\end{align*}
$$

Against these expected values the empirical counterparts can be obtained.

$$
\begin{equation*}
\operatorname{Var}_{P_{n}}^{\prime}=\sum_{i=1}^{s} P_{n}^{2}\left(x_{i}\right) \Delta x \rightarrow \quad \underset{s \rightarrow \infty}{2 /(2 n+1)} \tag{7}
\end{equation*}
$$

The summation

$$
S_{L_{n}}=\sum_{x_{1}=0}^{x_{n}=1} P_{n}\left(x_{i}\right) \Delta x
$$

is somewhat more difficult to calculate due to considerations in the marginal class intervals. If the two border points $x_{i}=0$ and $x_{i}=1$ are utilized, the $P_{n}\left(x_{i}=0\right)$ and $P_{n}\left(x_{i}=1\right)$ must be.multiplied by
$\Delta x / 2$. Otherwise, $\sum_{x_{i}=0}^{x_{i}=1}\langle x=1$ is not fulfilled.

Transformation from the z to the x system is based on the Qqualisation of the ranges and references, i.e. $x_{r}=z_{s}$. Consequantly

$$
\begin{equation*}
x / x_{r}=\left(x-x_{0}\right) / z_{r} \tag{9}
\end{equation*}
$$

(the reference equivalent to z_{0} is $x_{0}=0$).
Since most of the observed discrete variables can be arranged in steps of class intervals, two versions of the transformation must be accomadated. Let us assume that 7 points $Y\left(z_{i}\right)$ are given. We number the variate z from $z_{1}=1$ through $z_{7}=7$ (with unity steps). If other scales are given, they can be reduced to this basic form (see later Table 1). The transformation in this case can be written (with $x_{r}=2$ and $x_{r}=z_{7}-x_{1}=6$

$$
\begin{equation*}
\frac{x}{2}=\frac{1}{6}(z-4) \tag{10a}
\end{equation*}
$$

$$
\begin{equation*}
3 x+4=2 . \tag{10b}
\end{equation*}
$$

We shall call this version one.
If we consider $z_{1}=1$ with a lower class boundary of $~_{1}=0.5$ and the upper boundary of z_{u} as $z_{r_{u}}=7.5$, the $z_{r}=z_{r_{u}}-z_{1}=7$, and $\frac{x}{2}=\frac{1}{7}(z-4)$
or $3.5 x+4=z$.
This may be called version two. The resulting Legendre polynomials for these two interpretations are given in Table 1. The respective Var' and S_{t}^{\prime} parameters axe listed in Table 2 for four different number of points.

It is self-evident that the expected $V_{a r}$ and S_{I} are best approximated for the largest subdivision, namely 31 points. The second version renders a slightly better approximation than the first version. The deviation increases with ascending polynomial order. In other words, at least about 30 points are needed to calculate the coefficents accurateiy enough by mere sumation.

It will be further seen that the discrete Legendre polynomials for a mall number of points are not fully orthogonal (see Table 3).

Toble 1. Legeadre Polymenal Tans for 7 Discrate Rolate.

			Lea 1,	$\Delta x=$				$\begin{aligned} & \text { Vecsien } 2 \\ & \text { (x at } \end{aligned}$	$2, \Delta x=$ Mpoist	lit clacs)	
1	${ }^{1}$	$\underline{x}=\mathrm{P}_{1}$	${ }_{2}$	P_{3}	1	P_{5}	1	5	$1{ }_{5}$	\mathbf{P}_{4}	F_{5}
1	1	-1.0	1.0	-1.0	1.0	-1.0	-0.07	0.600	-0.289	-0.019	0.260
2	1	-0.667	0.167	0.259	-0.487	0.306	-0.571	-0.010	0.391	-0.385	0.081
3	1	-0.333	-0.533	0.407	0.012	-0.333	-0.086	-0.378	0.370	0.098	-0.347
4	1	0	-0.500	0	0.375	0		-0.500	0	0.575	0
5	1	0.333	-0.333	-0.407	0.012	0.351	0.286	-0.378	-0.370	0.096	0.347
6	1	0.667	0.167	-0.839	-0.427	-0.306	0.571	-0.010	-0.391	-0.383	-0.081
7	1	1.0	1.0	1.0	1.0	1.0	0.857	0.602	0.289	-0.019	-0.260

Table 2. Bumation of Bqn. 7 and 8. (Bee Text.)

	∇_{a}^{1}					2				
	P_{1}	2	5	P_{4}	${ }_{5}$	${ }_{1}$	P_{2}	Ps	${ }_{4}$	P_{8}
True value	$2 / 3$	2/5	2/7	2/9	2/11	1/2	0	-1/8	0	1/16
for interral	0.667	0.400	0.226	0.222	0.182	0.500	0	-0.125	0	0.0625
* 7 points	0.653	0.360	0.213	0.130	0.111	0.490	-0.010	-0.135	-0.033	0.0016
811 pointa	0.661	0.384	0.254	0.175	0.124	0.496	-0.004	-0.129	-0.013	0.0571
21 pointa	0.665	0.395	0.277	0.208	0.161	0.499	-0.001	-0.126	-0.007	0.0554
- 31 pointa	0.666	0.398	0,282	0.215	0.172	0.499	-0.0005	0.126	-0.001	0.0593
7 pointe	0.704	0.509	0.489	0.502	0.470	0.500	0.028	-0.056	0.091	0.176
m 11 pointa	0.680	0.440	0.363	0.343	0.340	0.500	0.10	-0.100	0.033	0.1052
881 pointa	0.670	0.410	0.306	0.254	0.229	0.500	0.003	-0.119	0.008	0.0734
51 pointe	0.668	0.404	0.295	0.237	0.203	0.500	0.001	-0.112	0.004	0.0673

3. Dergentrnation or the constants. As can be readily seen from Table 3, the diacrete series of Legendre polynomials for a amall number of points is not fully orthogomal. In an orthogonal syecemonly the diagonal of the matrix would remain nom-zero. Thue the calculation of coefficients is problematic by replacing an orthogonal syotem and the integral by sumation. The coefficiente of a non-orthogonal system can be properly calculated at outlined for linear systame (see Ensemparger. 1975a). This is equivalent of convertins the "covariance matrix" (left) into the "coefficient matrix" (right):

This convarsion hee been treated in many texts or by the muthor (1975\%, eaction 3) and isequivalent with the diagonalisation of a eatrix.

This technique does not provide "Legendre coafficienta" uniese the matrix contains a sufficient number of terme (1.e. ordere of P_{i}). E.e. the following coefficients are obtainad for an approximation of $y(x)$ being a third plun fourth order Tchebycheff polynomial of 7 pointe (ame Table 8). The lat row in each variion of Table 4 is identical with the Legendre coefficiente.

Table 3. Covariance matrix for 7-point discrete Lageadre polynomials.

Table 4. Coefficients for 3, 4 and 5 term of the dincrete Legendre polynomials.

${ }_{0}$	Veraion 1				Veraion 2				
	4	a_{2}	a_{3}	${ }_{4}$	\%	4	${ }^{\text {a }}$	${ }_{3}$	${ }_{4}$
0	0	0	\cdots	-	0	0	0		-
0	-0.8	0	1.8	-	0	0.20	0	2.86	
-1.3	-0.8	-6.5	1.8	10.8	0.71	0.20	4.42	2.86	20.01

We luarm trom this table that the "Legoadre coeffielenta" (leat rew) are not the moet advantagaous confficiente for an incomplete system, but the solutione converge with the inciusion of a aufficiant muber of (er all poesible) terme. Some reeders my profer this mathod of caiculating coefficianta aince it is mathemetically exect and it costainly prove sedvantageous once the number of term in the serfes has been decided upon. As in any mon-orthogonal ayaten, the cdilition of tarne requires a recalculation of coefficiente, however.

It is also posaible to uedlise numerical solution for calculation of Iategrals, such as Gregory's or Elimpeon's rule (see Escemmanar, 1973a, or Abremowtita and 8tegun, 1964). The author (1973a) hee developed an itarative procesi, which in combimation with Grugory'a or 8iapson'e techaique, works reasonably well. This comblastion is necessary since Gregory's or 8impeon's approximation becomes less afficient for the hither order terme while givan correct eatrien for the lomer oxder terme the iterative stepa leed to good approximations (see Tables 5 and 6).

As evident from Table 4, the coefficiente from the covarience matrix are not identical "Leganere coafficiants" as thoy would be obtaimed from analytical solutioas of the coefficient integraln (eqn. 3). The two sets converge only efter a mufficiant number of tarm in carrice.

In the utilimation of numerical methode for calculation of integrala, howevar, the "hagardre confficienta" are obtained directly, if posible, without furthar modification (see Table 5). The reader ay akk wather it would be deairable to calculate legendre polynomial coafficients under these circuantances because they do not provide the beat fit for an inaufficiant aumbr of terme.

It my be raplied that generally curve fitting is of liftle value unlese at leate 80 to 90% of the variance has been explained. In these cases the coefficienta from the solution via the cevariance matrix and numerical methods from integrale merge (see also later the example, caction 6). The question ehould be rephrased: Do the Legendre polynomials fulfill any need aince the orthogonal aystem of Tchebycheff polynomials is available? The anewar will be given aftar some further diecuesion.

Table 5. Coefficiente of the Legendre Polynomial Series for a fourth exder Tchabyebeff tesm with 7 points.

Versiea 1

© - Cregory, 3 = 8iapen, It = Iteration

Table 6. Recomputed fourth order Tchabycheff polynomial tera for 7 pointe for the coefficients as given by Table 5.

1	$x(x)$	c	Verston 1			$a_{0}^{+a_{2}}$	Yereion 2	
			5	Only			*/0	
1	3	15.2	15.2	2.2	2.5	3.0		
2	-7	-12.2	-12.3	-6.4	-7.0	-7.0	-3.8	-6.6
3	1	1.2	1.2	2.3	1.1	1.0	1.0	1.7
7	6	10.6	10.6	7.5	6.2	6.0	3.7	6.4
5	1	1.2	1.2	2.3	1.1	1.0	1.0	1.7
6	-7	-12.2	-12.3	-6.4	-7.0	-7.0	-3.8	-6.6
7	3	15.2	15.2	2.2	2.5	3.0	-0.2	-0.3

 smeder may ask whether the discrete hagandre polyoonials could be orthogonalised. Wrthout doubt, orthogonalisation is technically feapible, and the author hat produced an orthogoralised cet of polymoniala for the 7opoint hageodre polyocolale which rare given La Icble 1. Thie orthofomalized aet is exhibited in Table 7. Ie omet be raported firat chat version 1 and version 2 merged to ouly one set after this orchogomaliation procedure.

A cleser perusal of the orthogonalised oet rovale that the colume of Table 7 are now identical with the Tehelycheft 7 -polat polymonials axcapt for rounding and a multiplicetion fector. This has been found for other number of points, too. Identity with the Tehebycheff ayster implies, howovar, that thie orthogosalised aet her also casumed the properties of the Tchabycheff pelyounals. Gomeequently there would be mo reacon why the Thebychaft polymentale could not be eaployed a' priori, aince the original purpoee of utilising the Legendre series is defeated of th the change of proparties. Consequently for amill number of pointa the discrete legendre series would not be vary edvantageous while ite application for a larger (e.s. $\$>30$) should prove ueful.

Tab1e 7. Orthogonalised set of discrete Legendre polyaondale of Tabla.

P_{1}	P_{2}	P_{5}	${ }_{4}$	P_{8}
-0.5669	0.5455	-0.4083	0.2417	-0.1092
-0.5780	0	0.4083	-0.5641	0.4363
-0.1890	-0.3273	0.4083	0.0806	-0.5457
0	-0.4365	0	0.5641	
0.1890	-0.3273	-0.4083	0.0806	0.5457
0.5780	0	-0.4083	-0.5641	-0.4363
0.5669	0.5455	0.4083	0.2417 .	0.1098

Thia atatement is aven more valid for $\mathrm{N}>50$ becauee most table valuas of Tchebychaff polynomiale discontinue after $\mathbb{N}=50$. Since for larger N the integral in eqn. (3) can be replaced by the sumation sign with sufficient accuracy, and the legendre eystem becomes orthogonal again, the difficulties encountered for fow pointe dieappear.
 proviongy poiated out that the geal in curve Ilttios can aleo to cleseletial a em ettempt to deseribe the varianse of the fumetion y Y a methmatical maprecoloa, If tom mateh is perfoek, tho vertanees
 ldentieal. Ho ema, therulore, matinntically formulam a eriterion of the suecese in curve fitting by definios a left veulame

$$
\begin{equation*}
\left.\frac{x}{z}=x y_{1}-y_{a 1}\right)^{2} / m \tag{x}
\end{equation*}
$$

The explaime varlacee is then

$$
\begin{equation*}
\frac{1}{2}-d_{y}^{2}-\frac{k}{L} \tag{13}
\end{equation*}
$$

Ine meature

$$
z_{z}^{2}=\frac{e_{2}}{2} / \sigma_{y}^{2}=1-\alpha_{z}^{2} / \sigma_{y}^{2}
$$

cean be called reduction, and

$$
z_{2}^{2}=\frac{2}{2} \cdot 100 \%
$$

Is then the percentage reduction.
As illustrated in detail (Escemanger, 2975a) the left variance can be written as

$$
\begin{equation*}
\alpha_{a}^{\infty}=\gamma_{y}^{2}+\left(a_{0}-\bar{y}\right)^{2}+n_{z} \tag{15}
\end{equation*}
$$

me dalte
 1973a). Furchervore, a $a^{-} \bar{y}$ and

In a mon-orthogonal bytam aqn (15) cannot ba raduced to aimple term. Becaute a ta not necensarily $\overline{\mathrm{y}}$ in a mon-orthogonal eystem, wo could detila
and

$$
\begin{align*}
& \varepsilon_{y}^{2}+\sigma_{y}^{2}+\left(a_{0}-\bar{y}\right)^{2} \tag{17}\\
& 2^{2}=1-c_{2}^{2} 18^{2} \tag{14c}
\end{align*}
$$

Let use assume that the given data are the two term

$$
y=\theta_{s}+\theta_{t}
$$

for the Tchebycheff polynomials for seven polite. This example hae bean selected because the coefficient of the Legendre polymoalale cartes can be calculated by integration. The following cable reaulta.

Table 8. Given y and coeffleleate.

1	a_{3}	v_{4}	y	Pret Version	a_{1-1}
1	-1	3	2	-1.3	a_{i-1}
2	1	-7	-6	-0.8	0.709
3	1	1	2	-6.5	-0.204
4	0	6	6	+1.8	4.424
5	-1	1	0	10.8	2.858
6	-1	-7	-8	0	20.008
7	1	3	4		0

The $y_{4}=a_{0}+A_{1} P_{1}+a_{2} P_{2}+a_{3} P_{3}+a_{4} P_{4}$, with the coefficients of Table 8 , and y_{a} is identical with the data y_{1}. Thus we have a perfect match. Mow $y=0$ and $\sigma_{y}^{2}=160 / 7=22.857$ where $\sigma_{0}^{2}=617$ and $\sigma_{0}^{2}=22.0$. Hance $z_{3}^{2}=3.8 \%$ and $x_{4}^{2}=96.2 \%$ for the Tchebycheff aeries.

The matrix M_{z} (veraion 1) bacomes for the \boldsymbol{o} (x coefficients a through a_{5} :

$$
H_{z}=\left(\begin{array}{ccc|c|c|c}
0 & 0 & -1.71 & -44.00 & 0 & -45.71 \\
0 & 2.82 & 0 & -6.20 & 0 & -3.38 \\
0.28 & 0 & -0.28 & 0.0 & 0 & 0 \\
\hline 0 & 15.26 & 0 & -16.67 & 0 & -1.41 \\
\hline-0.28 & 0.0 & 1.14 & 0 & 0 & 0.86 \\
\hline 0.0 & -16.67 & 0 & 41.76 & 0 & 25.00 \\
\hline 0.0 & 0.0 & 0 & 0 & 0 & 0.0 \\
\hline
\end{array}\right.
$$

The sumation of all elements of $M_{z}=-24.55$. Consequently,

$$
E_{L}^{2}=22.86+1.69-24.55=0
$$

1s confirmed.
The left variance of the individual term sequence is

$$
\begin{aligned}
& \epsilon_{\alpha_{L}}^{2}=5\left(y-a_{0}\right)^{2} / N=24.55=22.86+1.69 \\
& c_{L}^{2}=4\left(y-a_{0}-a_{1} P_{1}\right)^{2} / N=24.83=24.55+0.28 \\
& \epsilon_{Z_{L}}^{2}=X y-a-a_{2} P_{2}-a_{z} P_{z}{ }^{\prime}=24.83+18.06=42.91 \text {, etc. } \\
& \varepsilon_{s_{y}}^{2}=41.76 \\
& \varepsilon_{L_{1}}^{2}=0 .
\end{aligned}
$$

The corresponding numbers for version two are 23.36, 23.37, $26.83,25.96,0$. It leads to the percentage reduction as displayed in Table 9.

Table 9. Percentage Reduction.
Part A. Cumlative Value.
TEA

		IEA					
		0	1	2	3	4	5
Version	with σ_{y}^{2}	-7.4	-8.6	-87.7	-8e.7	100\%	100\%
1	vith 5^{2}	0.0	-1.2	-74.8	-70.1	100\%	100\%
Version	with σ_{y}^{2}	-2.2	-2.3	-17.4	-13.6	100s	100\%
2	with 5^{2}	0.0	-0.1	-14.9	-11.1	100%	100\%

Part b. Individual Terma.

		0	1	2	3	4	5
Version	with σ_{y}^{2}	-7.4	-1.2	-79.1	5.0	182.7	0
1	with S^{2}	0.0	-1.2	-73.6	4.7	170.1	0
Version	with σ_{y}^{2}	-2.2	-0.1	-15.1	3.8	113.6	0
2	with ${ }^{\text {f }}$	0.0	-0.1	-14.8	3.8	111.1	0

The positive reduction begins in toth versions with the chird order term. Although the actual percentage contributions of the chird and fourth order tens are not completely idencical with the numbers from the Tchebycheff system, the important features run parallel; namely a gatll rrati:ibutioa from a third order term and a sonsiderable dominance of the fourth order term. It may be furcher concludad that a representation including only the three coffficients a through a is inadequate. In fact, the asamption of zero for these three coefficients above mould leave a maller left variance than the actual value (see matrix coefficienta Table 4). For more detaile see Essenvanger (1975a).
6. AN EXAMPLE FOR WIND PROFILE REPRESENTATION. Two wind profiles at 2 km altitude level intervals were arbitrarily selected, Jenuary 1, 1957 and 1958 at Montgonery. The following Table 10 exhibits the empirical data and the approximation by polynomials up to the fifth order. Siace the correct coefficients for Legendre polynomials cannot be determined a"priori, the effect of the approximation cannot be directly show. It may be inferred, however, that the reconstructed curve from the Legendre polynomials should have a smaller sum of the squared deviations from the analytical data than for the Tchebycheff approximation. As can be readily checked, however, both sums are about the same. This may be seen as a confirmation of an earlier conciusion that for less than about twenty points the advantage of the Legendre series over the Tchebycheff series may not show up in practical work.

As an added feature, the percentage reduction is displayed. No problems are apparent for the Tchebycheff series, whereas the chird order term in version 1 is negative which demonstrates a slight increase of the left variance on both dates. The percentage reductions for the individual terms have been calculated by eqn. 14 a. Winle S_{y}^{2} is the basis for the reduction in version 1 , tne $a_{0} \equiv \bar{y}$ version 2 and $s_{y}^{2} \equiv \sigma_{y}^{2}$.

Although differences in the percentage reduction between the three systems exist, the numbers are equivalent and imply the same integrated effect. The second order term dominates considerably. Besides this second order term, a fourth order term contributes to the 1957 fate and a fifth order term for 1 January 1958. The other components may be considered to have minor influence.
7. CONCLUSION. As has been pointed out in the beginning, the Legendre series is different from the Tchebycheff series in its theoretical approach to curve fitting. Some difficulty arises when ci.e legendre series is applied to a discrete function $y^{\prime}(x)$. For a small number of points (e.g. $N<30$) the discrete Legendre polynomials are not fully orthogonal and the coefficients cannot readily be calculated from the regular coefficient formula in replacing the integral by a summation sign. Some outlines for an approximation are given, and more details can be found by Essenwanger (1975a).

It was pointed out that in the sequence of this non-orthogonal system for a small number of points the coefficients are not independent, and the contribution to the left variance by the individual term may become negative. Thus the contribution by the individual order cannot be readily judged by cuatomary methods for an orthogonal system.
a. Incomputed Wisd Profile (Montgonery).

15 sen 97						158					
(x) ${ }^{\text {a }}$ Tehe		Legendre		Matres		$N(x)$ Tche		Lequedre		Mattix	
									72		v
6	5.7	3.1	6.1	5.8	5.8	5	3.7	0.7	6.1	3.1	3.7
12	13.2	12.5	12.7	13.2	13.2	14	18.3	18.9	17.8	18.3	18.3
23	20.8	20.5	20.4	20.8	20.8	23	21.0	21.9	20.2	21.0	21.0
28	30.1	29.5	30.1	30.1	30.1	31	24.7	24.6	24.3	24.7	24.7
4	39.5	38.9	39.8	39.5	39.5	27	32.7	31.8	32.7	32.7	32.7
4	45.7	45.5	46.2	45.7	45.7	10	42.5	41.3	42.7	42.5	42.5
47	45.7	45.8	46.2	45.7	45.7	51	48.4	47.6	48.9	48.4	48.4
38	37.8	38.2	38.4	37.8	37.8	46	45.5	45.4	46.2	45.5	45.5
85	23.9	24.1	24.4	23.9	23.9	34	32.2	32.8	33.4	32.3	32.3
11	10.5	10.4	10.4	10.5	10.5	12	14.8	24.8	15.2	14.8	14.8
11	11.1	11.0	8.5	11.1	11.1	10	9.1	6.7	6.1	9.1	9.1

C. Rercentage Reduction.*

	\$	4	4			8	\$	2	1	
Let	0.9	0.9	0.9	± 0.8	0.9	4.2	4.1	4.2	4.1	4.0
208	86.9	82.7	86.9	84.0	86.6	76.2	76.2	76.1	76.5	76.2
3rd	0.3	- 0.8	0.2	- 1.1	0.1	5.7	-0.1	5.8	0.1	4.9
4et	9.0	13.0	8.9	12.9	9.2	0.7	0.2	0.6	0.8	0.7
5th	2.1	3.0	1.9	3.5	2.3	8.1	13.7	7.3	13.3	9.0
Porad	99.2	98.8	98.8	99.1	99.1	94.9	و. 1	94.0	94.8	94.8

VL - Version 1

- Pescantage reduction for S_{y}^{2} (see equ. 17).

As che Legendre polynomials for discrete pointe become simpler tc handle with increasing numbet of poincs, they should prove to be a useful replacement for the Tcheoycheff polynomiale in solutions of problems where the practical application of the Tchebyct.uff polymaial method apparently shows a weaknese such as for $\boldsymbol{7} \mathbf{5 0}$.

It is difficult to evaluete a priori, whether the calculerion of coefficiznts via the covariance matrix is more cost effective than the approximations of the "true" Legendre coeficients. It 10 self-evident that the calculation of the covariance merix adds to the computer costs in the matrix solution while the mor part of the costs for the "Legendre coefficient" reanins with the approximation and iteration.

2. TREREICES CITED:

Abramowitz, M. and Stegun. I. A., (editors), 1964. Handbook of Mathematical Functions. Matiomal Bureau of Standards, iOl4 pp.

Boas, M. Ln, 1966. Mathomatical ethode in cie phyaical aciences. Hiley \& Sons, Mew York, 778 pp.

Easemanger, O. M., 197ja. Applied statistice in atmonpheric science, Vol. I, frequencies and curve ficting. In print by Cleevier, Amsterdan-Hew York.

Eesemanger, O. M., 1975b. Elements of statistical analysis in climacolony. In publication by Elsevier, Amerdan-New York.

Acknowledgement: i wish to express wy gratitude to Dr. Dorathy A. Stavart for her critical review of the manuscript. Mrs. Brooks desesves the credit for painatakingly typing the text and tablea.

METHODOLOCY AND IMSTRUNEMTATION DIVISION
 MATERIEL TEST DIRECTORATE
 U.S. ARMY YLTA PROVIMG GRONRD, YUMA, ARIZONA 85366
 FIRE CONTROI. SENSITIVITY ANALYSIS USING A
 programanale calculator

THOHAS O. MCINTIRE JANUARY 1975

CONTENTS

| 1. INTHODUCTION | 6. | GENERAL FLOW CHART |
| :--- | :--- | :--- | :--- |
| 2. CALCULATOR PROGRAM DESCRIPTION | 7. | "LOOP" FLOW CHART |
| 3. FIRE CONTROL SENSITIVITY ANALYSIS | 8. | DATA SCALIMG ROUTINE |
| 4. MALLISTIC FIRE CONTHOL EQUATIONS | 9. | SAYPLE PROGRAM LISTIMG |
| 5. LINE OF SIGHT (LOS) CONVERSION | 1n. | SAMPLE PLOTS |

1. INTRODUCTION

Fire Control Senaitivity Analysis (the etfect of a change in conditions on the ain of a meapon aystem) is norally accomplished on highspeed computers because of the extensive calculation required. These computers are, however, expensive to program and operate when only a short or l-tise progran is needed. Since the purpose of the analysis herein was for pre-test information there was no inherent need for fast computarions. Since a programable calculator was available the analysis was programad on it.

It was soon apparent that the physical linitations of the memory and conputation epeed demanded special techniques. The first of these techniques was to minimize the number of calculations which needed full preciaion. The second technique wat to put the answers after each run onto a casmette tape to free manory for the next run. The third was to code the output answers, which has a large dyanic range, into integers, theraby reducing the amount of cassette tape required. The fourth technique wan to write an iterative routine which automatically varied the routines and controlled the output onto tape. This technique allowed the unattended opcration of the calculator.

The unattended eperation of the calculator is the most significant feature of the program. It allowed in this case 150 hours of operation tie during nights and weekends. The sole operator requirement was to load and unload cassette tape at the end and beginning of the work-day. The detail of the apecific program shown herein is to illustrate the very exteneive calculations which can be performed even by mall and sinu calculators. It mut be noted that even more extensive programs can be and have been implemented by dalsy-chaining the output of one prograra into the input of another program.

2. CALCULATOR PROGRAM DFSCRIPTION

Equipmeat: Hevlett-Packard 9830 with 3808 word memory
Program: Mon-critical variables vritten in single (6-digit) or integer (+215) precifion notation. Mermory capacity avallable only for a single run. Output data scaled as integers and stored along with the scaling actor on cansette tape. A typical program in included as Section 10.

Operating Conditions: Computation tiee of single derivative was 30 seconds. Mumber of derivatives calculated was 11 instead of 21 because the rate of change of derivatives did not warrant more. Computation was therefore approximately 5 minutes per run. (900 valid runs were calculated for the analysis.) The program was typically set up with indexing for 162 runs which required approximately 15 hours of computation. The program and data tape was normally lander at the and of the day and retrieved in the morning. The only printed output generated was a single line listing tha rritical information contained in each of the 162 files.

Output Processing: Output data from the progran was stored on six cassette taper. A plotting routine read nine files and decoded them into mory. The plotter was then used to generate plots as shown in Section 9.

Comente:

1. The progran generates $L O S$ angles which are independent of balliatics and are better outputed eeparately.
2. The operating and storage requirements are based on 21 -point runs inatead of the 11 actualily uged.
3. Changing the program to accommodate Comments 1 and 2 would allow more runs to be in mewory. This would reduce output requirements considerably, tape requirements by 3 and files by 9.
4. Coment 3 was not implemented because the savings did not warrent programing multiple plotting routines for different output formate.

3. FIRE CONTROL SENSITIVITY ANALYoIS

1. Weapon ballistic data ic generally given with respect to the weapon IIne of sight (LOS) coordinate system. Aircraft position is given in terms of pitch, roll and heading.
2. From the aircraft viewpoint, the conversion into the LOS cuordinates is straight-forward because the $L O S$ angles relative to the air-frame are known. From the sensitivity analysis viewpoint, however, the LOS angle are unknown and must be calculated.
3. A conversion routine from the aircraft data into the LOS system was developed for this analysis. The conversion matrix and its development is shown in Section 5 of this paper.
4. The second major part of the program is the iterative solution of the fire control equation in the LoS systcm. The fire control equations and the iteration technique is siown in Section 4.
5. The sensitivity (partial derivative) of the fire control solution was then determined by chanc ${ }^{\dagger} n g$ a single parameter and determining the change in the solution. It should be noted that if all 12 parameters were used in this analysis technique, the output would approach infinity (12 sets of 3 values each equal 531,441).
6. Because of this, only pitch, roll and heading are changed for the analysis of each value. The other parameters were chosen either a maximum (i.e. ringe) or were determined to have small ilnearized reaponses (i.e. effects would be additive).

The parameters used were heading ($0,45,135 *$), pitch ($-20,0,10$), roll ($0,30,60$), range $40 \mathrm{~mm}(1500 \mathrm{M})$, $30 \mathrm{~mm}(300 \mathrm{GM}), 7.62 \mathrm{~mm}(2000 \mathrm{M})$, airspeed (100 MPS), wind speed cross- and head- (0) Yaw angle** (0), alticude (0) rate of climb (0), air density (1.0), muzzle velocity standard.

[^0]
4. MALIISTIC FIRF CONTROL EQUATIONS

$$
\begin{aligned}
& B_{L}=-\left[\left(U_{A_{L}}+G_{L} G_{P}+A_{5} T O F\right) / U_{B}\right]+A_{f}\left(T / X_{S}\right) W_{L} \\
& +A_{8}\left[B_{S}\left(U_{A_{M}}-U_{M}\right)-B_{M}\left(U_{A_{S}}-H_{S}\right)\right] / V \\
& B_{M}=-\left[\left(U_{A_{M}}+G_{M} G_{P}\right) / U_{B}\right)+A_{Z}\left(T / X_{S}\right) / W_{M} \\
& +A_{8}\left[B_{L}\left(U_{A_{S}}-W_{B}\right)=B_{S}\left(V_{A_{L}}-W_{L}\right)\right] / V \\
& \text { TOF Vac }=X_{S} /\left\langle U_{B_{S}}+U_{A_{S}}+\left(.5 G_{S} X_{S} / U_{B_{S}}+U_{A_{S}}\right)\right) \\
& \Delta T=T O V_{\operatorname{vac}}\left(0 / \rho_{S}\right) V\left(A_{1} X_{s}+A_{2} X_{S}{ }^{2}\right) \\
& \text { TOF }=\mathrm{TOP}_{\text {vac }}+\Delta \mathrm{T}
\end{aligned}
$$

These equations cannot be explicitly solved because the right-hand expression contains terms dependent upon the value calculated. This makes the solution iterative, with the previously calculated values being used in the equation. Because of the nature of the equation, the convergence to a epecific value is extremely rapid. It can be shown that the error due to truncating the iteration ia lean thin the change due to the last iteration.

Since there are two equations to be solved, the updating of values was also done between the solution of the two equations.

Derivatives of the Sanaitivity Program were calculated by changing one of the parameters and calculating the change in the baliistic equations. The convergence check in the program was set to allow errors of less than 0.01 milliradias.

Definitions

B Unit vector along barrel (or launcher)
G Gravity vector
$\underline{L} \quad$ Unit vector in the direction of axis about which elevation of S is measured
M Unit vector $\underline{L} X \underline{S}$ (up is positive)
S Unit vector in direction of launcher to target
S , $\underline{M}, \underline{L}$ Line of sight coordinate system
TOF Time of filght
TOF vac Time of filght in vaccum
U_{A} Aircraft velocity
$U_{B} \quad$ Projectile velocity relative to barrel
$v \quad$ Projectile velocity relative to air
V. Windspeed
$\underline{x} \quad$ Position vector of target
$\rho / \rho_{\mathrm{s}} \quad$ Actual/standard air density

5. derivation of line of sight (Los) conversion routine

1. Profect Aircraft Attitude Unit Vector onto a vertical plane normal to 0 heading vector. $R=$ roll, $P=$ pitch, $\psi=$ heading

Upon examination we can obtain:

$$
\begin{aligned}
Y & =\operatorname{Cos} P \operatorname{Cos} \psi \\
1 & =\operatorname{Cos} P \operatorname{Sin} \psi \\
Z_{P} & =\operatorname{Sin} P
\end{aligned}
$$

2. Examining roll projection and using the fact that Z_{R} is in the plane; we obtain:

$\mathrm{Ht}=\mathrm{K} \operatorname{Tan} \mathrm{R} \operatorname{Cos} \mathrm{P}=\mathrm{Z}_{\mathrm{R}}$
$N=K \operatorname{Tan} R \operatorname{Sin} P$
$\Delta Y=N \operatorname{Cos} \psi$
$\Delta X=N \operatorname{Sin} \psi$
Becauce Z_{R} is in plane we further obtain:
$Y=K \operatorname{Sin} \psi-\Delta Y$ or $K \operatorname{Sin} \psi-K \operatorname{Tan} R \operatorname{Sin} P \operatorname{Cos} \psi$

- $X=K$ Cow $\psi+\Delta X$ or $K \operatorname{Cos} \psi+K \operatorname{Tan} R \operatorname{Sin} P \operatorname{Sin} \psi$
$K=\frac{\operatorname{Cos} \psi \operatorname{Cog} F}{\operatorname{Sin} \psi-\operatorname{Tan} \bar{R} \operatorname{Sis}_{2} \overline{\mathrm{P} \operatorname{Cos}} \psi}$
$1 / K=\frac{\operatorname{Tan} \psi-\operatorname{Tan} R \operatorname{Sin} P}{\operatorname{Cos} P}=A^{*}$
*Circled items are computer program names
$L=\operatorname{Sin} \psi C o s P=K(\operatorname{Cos} \psi+\operatorname{Tan} R \operatorname{Sin} P S 1 n \psi ;(1 / K)(L)=H 3 * \operatorname{Sin} \psi C o s P+$ $(\operatorname{Cos} \psi+\operatorname{Tan} R \operatorname{Sin} P \operatorname{Sin} \psi)=3$

3. The Aircreft Unit Vector and pointa Z_{R} and Z_{p} describe a plane which can be described by the angles A and B as shown.

We have by inspection:
$\operatorname{Tan} A=\left(Z_{P}-Z_{R}\right) / L$
$\operatorname{Tan} B=(2 p-\operatorname{Tan} A 1) / y$
$=(\operatorname{Sin} P-\operatorname{Tan} A \operatorname{Sin} \psi \operatorname{Cos} P) /(\operatorname{Cos} P \operatorname{Cos} \psi)$

Dividing top and bottom of $\operatorname{Tan} A$ by K we have:
$A=A T A S{ }^{\prime}(H 3 \operatorname{Sin} P-\operatorname{Tan} R \operatorname{Cos} P) / \pi 4=$ (HS
$B=(30)=A \operatorname{Tan}(S \ln P-\operatorname{Tan} H 5 \operatorname{Sin} \psi \operatorname{Cos} P) /(\operatorname{Cos} P \operatorname{Cos} \psi)$
4. Conversion from the vertical pane angles to the Line of Sight. Q5 angle from horizontal of the LOS to target.

$\mathrm{H} 5=\operatorname{Sin} \mathrm{Q} 5-\operatorname{Tan} \mathrm{H} 6 \operatorname{Cos} \mathrm{Q} 5$
$\operatorname{Tan} T=\frac{\text { Cos Q5 (Tan H5) K }}{1-\operatorname{Sin} 2 Q 5+\operatorname{Sin} H 6 \operatorname{Cos} Q 5 \operatorname{Sin} Q 5}$
$\operatorname{Tan} T=\frac{K(\operatorname{Tan} H 5)}{\operatorname{Cos} Q 5+\operatorname{Tan} H 6 \operatorname{Sin} Q 5}$
Apparent angles $M=A \tan \frac{\operatorname{Tan} H 5}{\operatorname{Cos} Q 5+\operatorname{Tan} H 6 \operatorname{Sin} Q 5}$
5.

Rotating by angle M around LOS 1 the positions of the unit vector 1,2 and 3 become:

1. $X=\operatorname{Cos} Q 5, y=0, z=\operatorname{Sin} Q S$
2. $X=\operatorname{Sin} M \operatorname{Sin} Q 5, y=\operatorname{Cos} M, Z=-\operatorname{Sin} M \operatorname{Cos} Q 5$
3. $X=-\operatorname{Sin} Q 5 \operatorname{Cos} M, y=\operatorname{Sin} M, z=\operatorname{Cos} M \operatorname{Cos} Q 5$

Which expressed in MATRIX FORM is:

$\operatorname{Cos} Q 5$	0	$\operatorname{Sin} Q 5$
$\operatorname{Sin} M \operatorname{Sin} Q 5$	$\operatorname{Cos} M$	$-S i n M \operatorname{Cos} Q 5$
$-\operatorname{Sin} Q 5 \operatorname{Cos} M$	$\operatorname{Sin} M$	$\operatorname{Cos} M \operatorname{Cos} Q 5$

6. GENERAL FLOW CHART

7. "LOOP" FLOW CHART

8. data scalimg routime

```
Ni.. 
    4.\because,%!4,0,0,0,400,1
    ~H:OJE = ":, "MLTITUDE="XE
```



```
    : A, j.e.
```



```
            Hi/:LLE VEL="P1,"AIE NE!SITY= P2
            105
    r:!!
```



```
\H0 - - 4!
        < - 103
2a - ini 103
```



```
ZS ra,u S[1]:E[z],B[3],L2,M2
Z4E \therefore \becauseTGEE
St% G?: OF <e0, 200,300
"0
20, }=
    \ddots!:10
        f. OF 3%%:3\div6:360
    \therefore---3
    #%0) 3-4
    \square:-
    \because!1% %
    \therefore-:%
```



```
    gil: a!品
    \therefore
    110+34
O& :- - % 
\becauseGOUGO
```



```
## % ! O
\because-%0
```



```
\square\therefore%%0
```



```
    50%
\because, ...-#.
    \because, %-u-i1.c
```

```
5,O F:%
```



```
GG ES--firtug4
BnB IL!,1]=00:01
Gj! ju I : }\because=
6.01 TIf 1,: %=+511101
50, %1, 1 1:51HD1*51402
```



```
E0日 1, &+17=-10502+5I401
A% ! \therefore \becauseJ-51HOZ
```



```
EO il: %l1Q%
TB IG
719![1:1]=[2
\because0F[1:2]=[1
FOGF1:S]=0
```



```
700 FIOG1-0
77! [! %1]:=01
```



```
アGG [!-, #]=1
```



```
6.40 :!:H=H7HC(H2-HJ`,H4)
```



```
870 &[1:1]=00SM5
6g% [ [1:2]=0
8"4 K[1,3]:=%:N05
%B6 &!z:1]=+5INGB5):SINM
910 1:[z:2.7=00%4
```



```
#5t[[3, 1]=-SIH(1!5)%EOSM
40 fO2y]:+EINM
O50, % ]-504My+00S(05)
40, H+, %=|HU<LO
```



```
B% #11; ,1:1,%
901 !1F| - =-1+i%
```



```
#114 L":HTULL4:
```



```
1H.10. 1.%=7THC1.E%
```



```
!9%1% OT, 11%0
```



```
ibO, %=MTHOLE,
```



```
1)31.11 J=13
```



```
1/5is r_[:]=-4.E
116g U[SJ=07
170 U[ }:]=06+5[11(08+03
```



```
ING i|l < 1--4%SIH!u
12|H ||! }\because1:
#
```



```
:2\sigma! :HIT T=R,N
```



```
iご目 !1A7 1-i+i
```



```
; sinit T< T T *F 2*(R1*以1+R2*XI*X1)
1310 TE=T1+T2
:301F:T:(2++iFO*V*T3*(A3+A4*&1))
```



```
1340:1=1.1+HF%(B[{]*iI[ 3]-T[ 3])-E[3]*(I[17?-T[1]))/V
1345 il (B; 3)\+L;T2:)1 THEN 1451
1S50][:[1]:G0% (1-F[ 3]+E[3]-L1*L1)
```



```
13:2 iF iM1!2+1_1+コ)>! THEN 1461
!\because!1 E:[1:1-_BP(1-M1*Mi-L_1*L1)
!2:4] NJ;=,10%\M1-E[3])
```



```
141! !!SFMM:L
```



```
14.4! 1:1 ? l-M1
```



```
4E1 \because1.2P+iI-1)+7*(E-1)+3*(B-1)+H
```



```
140% 1.1:% 2350
14%1:V %=: THEH 1680
\4:4 :%%%4
1+4! i, 椋,
1Snा5 : 
cms, f1._![ ] ]
!:11 11: 111
```



```
15!1:0, !! + + 
ci4! 1.t!in i0.0ib
```



```
1%% | : F \therefore-7. H1
```



```
1:-11 :1-F1 i !. H1:
```



```
i.40! R:=1
!-5,N}R=
16t.4 1,170 530
15%G 1. -1.1
```



```
1Pam t,urg lany
1710 N[01+1:1]=126-B.5
i:20 (10T! 1;014
\because:O5. IIr 0:: 1 1:0%-0.5
1%%! FIT! 1SGB
i75u if 1!+1, i ]=P2-4!.b@S
:B!B FHT! :HM
i=74 4!1 1+1, 11= 1 1+(5.545)
17!84 ja!T0 1:00%
1790 il[0+1, 1]=00-51.5
18010 11[n+1,2]=L1-L2
19:0 H[n+1:3]=M1-H2
18直 |H[T+1:4]=(.+TH(L1/B[1])-ATN(L2/M4))*0.9174533
183G N[1+1:5]=(ATN(M1/B[1])-RTN(M2/M4))*10.11:45:3
1840 IlSP N[N+1,1],N[0+1,2],N[0+1,3],N[O+1,4],N[0+1,5]
1856 HE:OT 0
1864 N[22. 1]=Q3
18.0 |!22.2]=斤2
1890 M[2こ,3]=Q1
1830 II[2<゙;+]=$1/10
1940 Pll %3.5]=\2
13!5 1i! ミ. 1]=06
1520 7!2こ.2]=07
1330 ill 2F,3]=08
1940 NT 23,4 ]=09
1950 H[23,5]=Q0
1260 IIT 24:1]=P1
197% r!2^.2]:= P2*100@
1GEV, \H=zこ+(n-1)+9*(C-1)+3*(B-1)+A
19G(1:%=AESNN[1:2];
20(10 F:5=HBS(H[1:3])
2b1@ Fri=fRG(N[ 1;4])
202b F7=FBSON[1,5])
2n30 FnP S=1.10 21 STEP 2
2[40 IF (HES(H[S.2])<P4) THEN 2日60
205G F4=AES (NL5:2]%
2贝6n [F (PBS\N[S;3])< F5) THEN 2089.
20%以 :5=116S(N[S.3])
2bgat If iGES(N[S:4])\P5) THEH 21B0
20#G FS=FLG(N[E,4]:
E1H| !F (HES(HIS.5]:PT) THEN 2120
2110ト\because=4E:SN[5,51%
212r HE:\becauser s
21307FFIIIT S9,F4,F5.F5,P7
2140 [:: - IllT(LGT(P41.1E-12))
2150 H%=\cdotsI|T(L.GT:P5+1E-12))
2166 గ::-INT(LGT(PG+1E-12))
2176 E:4=-IHT:LGT(PT+1E-12))
```

```
\because`.| ||| \ddots-1 {1| \because| GTEP 2
```



```
\therefore\becauseGM[5:E]=30日g+14[S,5]*10184
2己*! IIE:OT
```



```
C55% #1[ 25.2]=3000%P5*10+E2
2.0 :1:2T.3]=3ng0%F5*101E3
```



```
22\mp@code{1% :[%5,5]=%.%}
```



```
25=0 :1% % , = 7=[:3
C230 :11 こ6,4 ]=84
23.10 -7OFE IIATA X9:M
23SE NTXT H
Z3G HE:T E
23TG NEXT C
2380 NE%T D
23%0 Ell!
```


Best Available Copy

LEAD $\times \mathbb{Z E}-R!$

SUPEREEL \times SE-AI

ALTITUDE $=$ 月 \quad FIR DENSITY=1.gR
PITCH=2R- 日...... IR- -
10. SAMPLE PLOT

Best Available C....

APPLICATIONS OF SEQUENTIAL SENSITIVITY TEST STRATEGIES AND ESTIMATION USING A WEIBULL RESPONSE FUNCTION FOR EXTREME PROBABILITIES ATD PERCENTAGE POINTS

Certrude "eintraub
Concepts and Effectiveness Division Anmunition Devalopment and Fingineering Directorate
Picatimy Arsenal
Dever, New Jersey

1. Abstract

Two applications of Dr. Einbinder's sequential sensitivity teyt stratagy and astimation methodology for reliability assessments are discussed. Principal interest is in the determination of reliability at extrem low or hirh probability of response regions with a minimum number of teste. Bmpirical tast data topether with analysis and interpretation of the results of analysis are presented and conclusions drawn.
2. Introduction

Dr. S. Einbisder of Plestinny Arsenal devised a sequential sensitivity test strategy and estimation methodology. This procecture appears to be more efficient than other sensitivity mothods in determining extrene percentage points of a response function.

Application of a One-Snot Transformad Response otratesy and an Op and Down Transformad Peaponse stretegr to empirical problemas are diacussed.

The basic characteristics of a sensitivity test are: a stimalus, a test specimen and a response (0 or 1). Associated fith each test is a critical stimulus or strength such that if the stimulus exceeds the strength, the specimen responds and vice-versa. The distribution of strength is called the rasponse distribution or the response function. Based on quantal response data, we want to estimate the response function, the extreme percenta; points and the probability of response at a critical level of the strass variahle.

There exist several well knon statistical techniques for treating a quantal response, but the method in (1) which is the relbull Sensitivity Model and has been employed in the applications which follow has a number of advantages over the standard procedures. These advantages are the following:

1) Pobust to unknown true response distribution.
2) Minimizes the need for variable transformations.
3) Gapable of assuming a wide variety of distribution shapes which allows the approximation of many response curves, includinp the normal, over local regions and over the entire domain of the response function. The main disadvantage of the Neibull sensitivity model is that it is a 3 parameter distribution, and the location parameter is sometimes difficult to estimate.

Two of the vetter knorn and frequently used sequential sensitivity test methods are the IP and Dow Test (2) and the Lanplie One Shot Test Strategy (1). For the Up and Down Test one Item is tested at a time starting at the best initial estimate of the 50, response point. The
test lovel is moved up one stop after each nofative response and down Ons step after esch positive response. The step size is fixed and muth be determined in adyance of the test. This mothod tends to concentrite the observations near the mean of the distribution. As a result, the method is generally good in estimating the mean or 508 point of a symetric distribution but does not do too well with extrome percentage points.

Lanplie developed a sequential test strategy that overcame the difficulty with the Up and Down method in predetermining the step size. This stratepy makes use of continuously variable stress levels and is insensitive to the starting level and doen not require spocifying a prior step size. The analysis is based on a normal response distribution and has been shown to ve more efficient than the Up and Down in estimating the mean and standard deviation of the response distribution.

Often, however, the experimenter is interested in the response function at the extreme ends of the distribution. This generally requires data to be obtained from the local region of interest.
\because 'etherill (4), in 19;3, published the results of an investifation of sequential test methods for the estimation of general percentage points of a quantal response function. He found available procectures like the Up and Down to be unsuitable for estimation of extreme percentage points. He proposed a rule for transforming the response in an Up and Down Teat $s 0$ that observations would be concentrated in the tail areas. In Dr. Einbinder's test strategy, the Wetherill transformation is applied to the Langlie One-Shot teat algorithm. This procecure is referred to as the One-Shot Transformed Response Strategy (OSIR for short).

The applicitions I shall describe fenture an example of the ip and Coun Transformed pesponse Stratefy (UJTh for short) and the Langlie OneSint Transformed Pesnonse Stratery. Tstimition of the extreme percontage poists is accomplished usim a veibull distriontion as a response function. The basic rationsle for the now test stratery and estimation methodology include testinf; in or :lose to the region of interest, usinf a variable level strategy, usinf, a sequential stratery, usirf; a locally best approximation if the response mode] is not known.

Tho new tent strategy involves a trunsformation procedure which is defined in Tanles 1 and 2. The transformation is defined by the value of No which determines the response quantile around which the test levels tend to concentrate. This quantile is called the transformed median percenti e (TMP). For NO 3 , the $T M P=79.32 \%$ The response transformation is desipned to make an increase in stress easier than a decrease. The greater the difficulty in decreasing the stress level, the greater will be the transformed median percentace. For P>. 5 as shown in Table 1, a positive response is denoted by an $\{$ or l and a negative response by 0 . A tijpe D response which requires a reduction in stress level is allowed to occur after . No confirmations of 3 positive response. For $\mathrm{P}<.5$ the U's and D's are redefined as shown in Table 2.

A change of response type is said to occur when an alternation of response occurs. Wotherill proposed a stopping rule based upon a specified number of changes of reaponse type rather than on a fixed number of trials. Basec upon Wotherill's results, and ur experience with this strategy, a minimum of 5-6 changes of response is advocated. The rumber of observations required in an experiment is a random variable with
.7071
.7937

9
0

$X \rightarrow$ RESPONSE
$0 \rightarrow$ NO RESPONSE

20 ~ \quad.

唯罯是白票

明々ニュ

this stopping rule. The expected sample size with a particular number of changes of response increases with No or the farther out in the tails of the response curve in which testing takes place.

3. Discussion

Next, we describe two actual applications of this new sensitivity test strategy.

3.1 Objective

Daring the process of accoptance testing of an artillery fuse, it was found that the fuze armed at a distance of 10 foet from the gun masele. This condition was unsatisfactory since the fuze specifications required that no fuze arminf occur at a distance of 10 feet from the mazzle.

A test program was subsequently undertaken to examine the fuze arming distance distribution in the lower tail in order to determine the following:
a. If the fuze specification acceptance test criterion for arming was reasonable for the fuse design.
b. If not, to decide on a suitable alteration which would provide the desired quality control on safe arming.

3.2 Recommended Test Plan

In order to accomplish the desired objective, a statistical test program was designed, tailored to the new sequential sensitivity test strategy.

The objective was to determine the distribution of distances at which fuze arming occurs or conversely the distribution of target ranges at which fuse functioning does not occur. Primary interest was in ascertaining a safe gun-to-target distance which involved finding a distance at winich a small probability of functioning would be expected to occur.

A One-Shot Tranaformed Response Sequential Sensitivity Teat plan using an No:Il, was selected and implemented. Since fuze surety was the prifcipal probjem we were interested in defininf the lower tail of the response distribution as accurately as possible within the limitations of time, nardware and cost. Using an No=ll response stratepy tendsd to concentrate the teste in the neighborhood of the lower ; ; rerion of fure arming. simulation data previously conducted to estimate the required sample size indicated that about 150 tests would probably be nceded to obtain 6 chanpes of response. Puze function at a given range was defised as a positive response. One (1) ropresents fuse function and sero (0) is non-arming or non-function. The response mast be defined such that an increase in stress level results in increasing the probability of a response. Then to obtain a type U response, we hest to observe 1 ll teats conducted at a given target distance without araing, i.e., 14 zero responses before increasing the rampe to the targat. If a fuze function was obtained at a fiven stress level or target range hefore a sequence oi 14 zeros was completed, then a type D response is said to have occurred which raquired a decrease in tarpet ranfe.

Test limits were set at 0 and 100 feat from the gun. The first test level was set at 50 feet from the gun and terting contimed until a fuze function occurred. The response was classified as type U or D according to the criteria described above. Testing was contimed by setting each subsequent level of test halfway between a D and U response. If such an alternation did not occur, the procedure consisted of going back in the sequence of outcomes until an equivalent mumber of D 's and $\mathrm{U}^{\prime} \mathrm{s}$ were found. The next test level is the average of the stress levels corresponding, to these outcomes. Whare U's and D's could not be averaged (1.e., where
an equivalent number of D^{5} end $\mathrm{D}^{\prime} \mathrm{s}$ were not obtained) subsequent levels wore averaged if vaing the lowar limit for a type Dreaponse and the upper limit for a type U responsen Teating continared until all of the 150 rounds wore tested. Thase results are shown in Table 3.

Analysis of test data from the 150 rounds showed the point estimate of probability of arning to be . 002 at 10 feet and the upper 95% confidence level of probability to be. 010. With these probabilities of arming in mind, the fire ongineers decided to test fire an additional 40 rounds at 10 feet, hoping to gat no arming. Much to thair diamer, 2 rounds out of 40 teated at 10 feet, ware found to arm. This result is not considered to be inconsistent with the previous performance estimates resulting from analyeis of the teat data from the 150 rounds. Trus, if the probability of functioning is .010 as estimated from the 150 rounds, the probability of observing 2 functions out of L0, given that the probability af Iunctioning is . $010,10.060$.

Test data from the 40 rounds were subsequantly aggregated with the othar 150 data vaiues and revised probabilities were obtained. The eatimate of the probability of aruing at 10 feet was eatimated to be .015 as a point estimate and the upper 95% confidence leval of probability was estimated to be .037.

The following conclusions were drawn from the analysist

1) The current fuse design cannot meet the Mil-Standard non-arming requirement at 10 feet, with ang high dogree of reliability.
2) Bither the arming distance acceptance test requirement has to bo changed or the design modification to accommodate a 10 foot arming distance characteristic.

$\begin{aligned} & \text { ST mminus } \\ & (\mathrm{ft}) \\ & \hline \end{aligned}$	RESPONS	$\begin{aligned} & \text { APSPONBE } \\ & \text { TYPE } \\ & \hline \end{aligned}$	NOBER OR CHANOTS
50.0000	0		
50.0000	1	D	
25.0000	0		
25.0000	0		
25.0000	0		
25.0000	0		
25.0000	0		
25.0000	0		
25.0000	0		
25.0000	0		
25.0000	0		
25.0000	0		
25.0000	0		
25.0000	0		
25.0000	0		
25.0000	0	0	1
37.5000	1	D	2
31.2500	0		
31.2500	0		
31.2500	0		
31.2500	0		
31.2500	0		
31.2500	0		
31.2500	0		
31.2500	1	D	
15.5250	0		
15. 2250	0		
15. 2250	0		
15.9250	0		
15.6250	0		
15.5250	0		
15.6250	0		
15.5250	0		
15.6250			
15.5250	0		
15.5250	0		
15.5250	1	D	
7.8130	0		
7.8130	0		
7.8130	0		

1 = Function
$0=$ Non-Function
$U=14\left(O^{\prime} \mathrm{s}\right)$
$D=13\left(O_{1} \mathrm{~s}\right), 1$ etc.

TABLE 3 (CONT'D)

JETFREON PMOUDN GHOUND

I	ST Dutus (ft)	RESPOMS	$\begin{aligned} & \text { RESPONES } \\ & \text { ITFE } \end{aligned}$	$\begin{aligned} & \text { minest of } \\ & \text { CHAMGSS } \end{aligned}$
81	29.4930	1	D	4
82	25.4890	0		
83	:5.4890	0		
84	25.4890	0		
85	25.4890	0		
8 ;	25.4590	0		
37	25.4890	0		
89	25.4890	0		
90	25.4890	0		
91	25.4890	0		
9 ?	25.18890	0		
93	25.4 .390	0		
94	25.4890	0		
95	25.4890	0	\mathbf{U}	5
96	27.4950	0		
97	27.49:0	0		
98	27.4950	0		
99	27.4950	0		
100	27.49 j0	0		
101	27.49 0	0		
102	27.490	0		
103	$27.49 \times$	0		
104	$27.49 \% 0$	0		
105	27.49%	0		
105	27.49%	0		
107	27.49%	0		
108	27.4950	0		
109	27.4950	0	U	
110	38.7980	1	D	6
111	33.1470	0		
112	33.1470	1	D	
113	29.3180	0		
114	29.3180	0		
115	29.3180	1	D	
11.5	20.5190	0		
117	20.5190	0		
118	20.5190	0		
119	20.5190	0		
120	20.5190	0		
$1=$ Function 0 - Non-Function				
$\mathrm{U}=$'s)			

I	$\begin{aligned} & \text { SPRmas } \\ & (f t) \end{aligned}$	R2x03s	$\begin{aligned} & \text { RESPGUE } \\ & \text { TYPR } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WHBER OF } \\ & \text { CHANOSS } \\ & \hline \end{aligned}$
121	20.5190	0		
122	20.5190	0		
123	20.5190	0		
124	20.5190	0		
125	20.5190	0		
126	20.290	0		
127	20.5190	0		
128	20.5190	0		
129	20.5190	0	0	7
130	24.9190	1	D	8
131	22.7190	0		
132	22.7190	0		
133	22.7190	0		
134	22.7190	0		
135	22.7190	0		
135	22.7190	0		
137	22.7190	0		
138	22.7190	0		
139	22.7190	0		
140	22.7190	0		
141	22.7190	0		
142	22.7190	0		
143	22.7190	0		
144	22.7190	0	\%	9
145	23.8190	0		
145	23.8190	0		
147	23.8190	0		
148	33.8190	0		
149	23.8190	0		
150	23.8190	0		
151	10.0000	0		
152	10.0000	0		
153	10.0000	0		
154	10.0000	0		
155	10.0000	1		
155	10.0000	0		
157	10.0000	0		
158	10.0000	0		
159	10.0000	0		
150	10.0000	0		

1 . Punction
0 - Non-Punction
$v=14$ (0 's)
$D=13$ (018), 1 otc.

M503 FUZE TEST RESULTS - April 1974 (Continued)

I

151
162
163
164
265
166
167
168
169
170
171
172
273
174
175
176
177
178
179
180
181
182
183
184
185
106
107
188
189
190
$\underset{\substack{\text { (ft) } \\ \text { STIULUS }}}{ }$

RESPONSE
RSSPONSE
ManBer or TYPS changes

0 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 20.0000 10.0000 10.0000 . 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

[^1]3) Without having conducted the fuse tests in the prescribed sequentinl manuer, the arines response dietribution at the lower ond could not have been deterudned with the sam precision weing the iinited sample sise.
\therefore In the nost application α sensitivity teating, the objective was to dotecreds the mindrun quantity of propellant charge required to eject a projectile from a gan tribe. An Up and Down Tranatorned Rooponse (ULCR) mat utilised, sime a lindted muber of projectiles wro arailable for teat, and it wes inpractical to vay the toat levels in a contimens maner.

A eaquential sonsitivity test progran mas conducted by varying the levels of propellant charge volum for low son firing. Interent was focused on predicting the probability of projectile stioleing when a complote low gone propellant charge is amployed.

In the loading of a projectile into a gun tube, the projectile is ramad into the tube after which a propeliant charge in employed to oject the projectile from the gan tube. When the propellant charge is insufficient to expel the projectile, the latter aticks in the gun trube causing an msafe and undesirable condition.

Our probien was to ornlunte the probability of aticking for a standerd projectile and a modified version of the standard projectile whon a complete low sone propellant charge is used. The staudard projectile aerved as a baseline for comparing the nw projactile.

3.3 Test F1an

A sequontinl sensitivity test plan was desicued to vary propellant charge volume by a dalta of 10 os. starting at approximatoly $1 / 2$ low sone propellant charge volume.

An Up and Down Transformed Response (UDTR) sequential sensitivity test procedure was implemented. The response strategy of No= 4 for ; changes of response, requiring approximately 30 rounds was utilized in the interest of expediency and limitations on hardware. A type D response consisted of the outcomes (1111) while a type U response consisted of (1110), (110), (10), or (0) where $0=$ a sticker and $1=$ non sticker.

Tables 4 \&f 5 show actual test results obtained during the test propram from teats conducted on projectiles 1 and 2. Tests on projectile 1 were conducted in accordance with an No=4 strategy and 6 changes of response stopping rule. The delta used was 50 oz . instead of the originally intended 1008 . and close to the end of the test program the delta was reduced to 2.5 oz . in order to obtain an overlap region of test results (1.g. sticker and non-sticker). Teats on projectile 2 did not conform to the prepared test strategy but rather to an invarse sampling procedure (where several tests were conducted with a given charge volume before decreasing charge volume for subsequent tests). The test data resulting from these tests consisted of quantal responses which were amenable to analysis using our Weibull model.

Results of analysis of test results from projectiles 1 and 2 are shown in Figure 5. The curves show the 90% percentile of non-stick to be 32 oz . or 38% of full charge volume for projectile 2 vs. 58 oz or 68% of full charge volum for projectile I (full charge was 85%). The modified design (Projectile 1) showed a greater propensity to sticking at less than full charge volume. However, extrapolating the estimated response functions to full charge volume, the probability of sticking at

		prisur nata	
ROL:! ${ }^{\text {P }}$:			RESPONSE
1		85	1
2		85	1
3		85	1
4		05	1
5		62.5	1
6		36.5	1
7		36.5	1
8		31.7	1
9		30.4	1
10		30.4	1
11		30.4	3.
12		30.4	1
23		30.4	1
14		30.4	1
15		30.4	0
16		30.4	0
17		30.4	0
28		29.2	1
19		29.2	1
20		29.2	0
21		29.2	0
22		29.2	0
23		26.8	$1{ }^{\prime}$
24		26.8	0
25		26.8	0
26	$\begin{aligned} & 1=\text { Non-Sticker } \\ & 0=\text { Stioker } \end{aligned}$	26.8	0
		596	

full charge for each of the protectiles was oftimited to be 1 in a villion. ilearly, to varify such small probability would require in extremely liarfe mumber of tests at full charge (in tle order of 22,000 tests with no stickers in order to validate a probability of stick of 1 in 10,000 .
4. Sunmary and Conclusion

The two applications referred to herein represent actual axamples of the successful immlementation of the Watherill (UDIR) and Einbinder (OSTR) serqential sensitivity test procedures and the iveibull response model. The OST? procecture has also been applied to evaluate fuze detonator safety by determining the distribution of out-of-line distances for non-propagation of the explosive train.

Other applications of the test procedure have been inplemented. For example, it has recently been used for estimating ballistic limit dictributions of penctrators. In this connection, the procedure was used to estimate hasard velocity levels for plastic fragments in terms of perforating 1 cme gelatin blocks.

In summary, similar sequential sensitivity test programs have been used rather successfully in quantitatively assessing the effect of environmental treatments and desipn changes on munition functioning and safety. In each instance, the effect of a single variable is assessed by allowinf, that variable to vary by discrete levels and obtain responses at each level of test.

Particularly has this new method been helpful in estimatine the response function locally over some 1 ow or high region of interest. It also affords estimates of percentape points of the response distribution
and probabilities of reaponse at apecified levels of a stress. Our computer program produces point estimates and confidence level estimates of rellability and percentage points.

REFERENCFS

1. Einbinder, S. K. "Reliabli.ity Models and Estimation In Terms of Strenm -Strenpth"- Doctoral Dissertation, June 1973.
?. Dixon, W.J. and !ood A.M. "A Method for Obtaininf and Analyeint Sensitivity Datn, "T. Amer. Statist. Assoc. Vol 43, nn. $109=126,1048$.
2. Lanclie, Il.J. "Reliability Test Method for 'One-Shot' Items," Proceedinps of the Eiphth Conference on the Desipn of Fixperiments in Army Research Development and Testinf, ARO-D Renort 63-2, nn. $145-165,1963$.
3. Wetherill, (., B. "Seouential Estimation of Quantal Response Curves." T. Roval Statistical Soc.; B, Vol. 25 pn. 1-48, 1963.

STATISTICAL AHALYSZ: AND MODELTMG CF SEWSITIVITY AUGMETATTC:

 in CUTAREOIS COMAMiCATIOEST. D'Accardi and H. S. Bempett

US Army Electronics Comand, Port Yormouth, iiew Jersey

Abstract

ABSTPAC-. Since about 2065, the US Arnj Electromics Comand has sury sereial investigations dealing with a nes nethod of comuricaticns by which information transfer takes place thrcugh exciaaion of the perfipheral nerve ondings located in the dermis. The systen involies skin stimulation. by an eiectrical pulse transmitted in a Yorse code-like pattern. Two sme:: electrode pins monnted in a plastic holder attached to the subject's icreaprovided the signal mechanism. One type of caia ras obtained reten a cutaneous "cuinf" signal was used as a precursor in the standarc Fairbanks phyme eudio test in orier to test fis ability to fncrease aural acrify.

The object of this presentation is threeroid. First, ve discuss the desior. of the experimert, classification of subjects, and techniques for sensitivity augmentaition (electrical excitation of the peripherai aerre andiacs fre the dermis). Secondiy, we present statistical estimates of (n) the effects of the controlled variables (i.e., level of avareness, and audio noise lerel. ;por. response, and (b) the independence of these estimated erfects. Thirdir, we present a realistic twodimensional characterizaticn of aurnl acuity with cutaneous "culng." over a range of values, for a prescribed ievel of conifier.ce. within which valid values of the model parameters may be :ound.

Among other thinss, sutaneous comunication is interded to stremenen nne entiance present audio and risual electronic comunications by "aieritis" comminicators in a tactical environment to the ract tbat a stardard audic or visual nessare will collow. In this regard, the $:$: formeten obtained from the statistical anslysis or the effects of "cuing" showid provide useni information on =an-machine-interface characteristics for liture desien of such "cued" commication systems.

INTRODUCTION. The general gal of cutaneous comuntcations is to pronide an effective means of improving and supplenerting preseat tactical cormunications, especially in a noisy environment. A system ot itis nature could be used for:

1. Karning sigrals
2. Aiertine or cuine signals
3. Coded message traffic
4. Friority ne-way cormanication

It can be applied to sentry operations, Airborne or Airmobile operations, Army Aviation support, small unit Reconnaissance, and Armored Operations where noise and distractions from a tactical environment may adversely affect the performance of radio operators and comcenter personnel. In rapidly developing situations and reconnaissance where privacy, radio ailence, or back-up communications links are demanded, pre-coded messages can te used in lieu of normal radio means for comand and control of small units or individual soldiers. Cuing signals used as a precurcor to standard message formats can be of use to armor and helicopter uperations which by their very nature ara "noisy". Commuications personnel can, therefore, be alerted to messafe traffic which can save time and decrease the probability of operator error.

In developinf, the concept for cutaneous communication, several problems had to be resolved." Work by Bennott, Hennessy and McCray(1) determined these parameters throurh a series of pilot experiments which were designed to determine the effectn on sensitivity levels when electrode configurations, puise width, pulse frequency, and pulse type were varied. Other experiments were conducted to (a) determine if one could detect individual pulses of various word rates; (b) determine effects of different metals on threshold feeling and ilscomfort; (c) determine the use of "shadow signals" to enhance individual acuity; and (d) determine, optimally, the lowest possible sianal power to produce sensation on the akin. The results of their work are well documented $(2,3)$ and they show the optimal signal which proved the most efficient, both from the viewpoint of minimization of power and acuity of response, was a bi-phasic rectangular pulse of 0.25 msec duration applied at a 300 pps rate, using a pin-type electrode of surfical steel with constant surrent in the .33 to 0.5 ma range at 10 to 30 volts excitation. With this information, a eeries of experiments were conducted using a cutaneous "cuing" signal as a precursor signal to the nuditory Fairbanks Rhyme Test. These experiments were concerned with the effects of two variables (level of awareness, and acoustic noise) at several levels. The level of awareness (cuing signal) was compared with the recornition of a random selection of phonemes both in the presence of masking electrical ncise, and in a noise-free environment. It remained to determine whether or not "cuing" improved the accuracy of phoneme reccgnition in the presence of noise. This paper is concerned with the analysis and modeling of these effects.
"In order to be "optimal" such a system had to excite the double layer of Nat and Kf ions which surround the nerves in the dermis. This means that parameters such as electrode configuration, optimal power requirenents, pulse shape, and pulse duration have to be determined before the system becomes a reality.

 se:sions and right data ecguisition sessions iaken over a ívecay fe:ín. A1: subjects were screened for normaify of binaural searing anc for other "onical requirements as prescribed by the staf: at Patterson Army yospital. The familiarization sessions consisted of electrocutaneous ouine and auci:cry reseption and transcription of 250 phonemes. tata acquisition sessions consisted of the zame process accompanied by several treatments or zevels of "excitation" and "noise". The first ramiliarization sessions conditions vere equivalent to a "no-noise" environment. The second as a "noisy" erviror-er:. For each of the ten sesjions, the cutaneoias sensation threstioid ievel. (Csel), of each subject was decermined prior to testing. Arter eact page of 50 phonezes, the threshold was rechecked and reset if necessary. Thus, for each session o: 250 phonemes, for each subject, there are rive distinct thresholc =easurements from which the level of the variable, CSIL, was calculates.

The Fairbanks Rhyme test was "taped" and administered to simiate both the "No-noise" and "noisy" enviroments. Therefore, in the preliminary anaiysis of the data, we were concerned ifith the effects it two rarfabies at two levels, where the combination or two levels of CSI and roise are comarad using the correct phoneme recogrition as the fotrt response variabie for ai: subjects. The experiment was well suited tan the 2^{2} factorial desige with replication. A possible model for this rarkconized desigen is:

$$
\begin{equation*}
Y_{i j}=\mu+A_{i}+B_{j}+A B_{i j}+E_{i j} \tag{2}
\end{equation*}
$$

where: $A_{i}=\operatorname{CSTL}$ (cuing ractor at $08 \operatorname{CSTL}$ and at $1258 \operatorname{CSTL}$),
$B_{j}=$ Environmental factor (nomoise and noizy).

$$
A B_{i j}=\text { Interaction of main effects, }
$$

$$
E_{\text {ij }}=\text { Experimental error, and }
$$

$Y_{i j}=$ Correct phoneme response for all subject:.
The subjects were livided into two eroups of four each. Each group was prepared with one familiarization session, and tested with four sezstons of 250 phonemes. At the " 0 " noise and -5 dB noise leveis, informetion was recorded once per session giving a replication of four otserpations. The results herein pertain to the group ii subjects.

ABALYSIS OF VARIANCF:. The group il data was used to determane if picreme recognition is improved in the presence of enviromental (acoustic) moise with cutaneous cuine. As preriously mentioned, two levels of CSEL were chosen, i.e., 0% CSTL and 125\% CSTL, to simulate cue and no-cue condftions. iikerise, two levels of environment were defined, E.e., two S / K ratios corresporine to
nu-noise and noiny conditions respectively. The response variable is cr.rrect phoneme response, $1 . e .$, recognizing the phoneme B, given E as the ctimulus, etc. The model chosen for this randomized desien is:

$$
Y_{i, j}=n+A_{1}+B_{j}+A B_{i j} \pm E_{i j}
$$

where the variables are jefined as in equation (1) above. The effect of each factor is definel as the change of response variable produced by either a change in the levels of A_{i}, B_{j}, or both.

Tatie 1 shows the treatment combinations and the associated measured responses.

CSTL - Cuine Level				
0%			125%	Totals
$\begin{aligned} & \text { 曷 } \\ & \text { 苞 } \end{aligned}$		$\begin{array}{ll} 6.0 & \\ 60 & \\ 6.2 & \\ 54 & 236 \\ \hline \end{array}$	$\begin{array}{ll} 56 & \\ 62 & \\ 62 & \\ 48 & \\ & 228 \\ \hline \end{array}$	464
$\begin{aligned} & \text { M } \\ & \sum_{0.0}^{2} \end{aligned}$		$\begin{array}{r} 52 \\ 38 \\ 54 \\ 44 \\ \hline \end{array}$	$\begin{array}{ll} 54 & \\ 50 & \\ 56 & \\ 56 & \\ \hline \end{array}$	404
		424	444	868

Table 1 - Treatment Combinations
The respunses have been normalized to indicate the percentage of correct phoneme response to the nearest per cent. From this data, the following AHOVA vars calculated:

Source	Degrees of Freedom	Sum of: Squares	Mean S, tre Error	$\begin{gathered} F \\ \text { Ratio } \end{gathered}$
CSTL	1	25.0	25.0	0.84
Finvironment	1	225.0	225.0	7.58
Interactions	1	81.0	81.0	2.73
Error	12	356.0	29.67	---
rotal	15	687.0		

From this information at the 95" level of sienificance, usine $r_{1,12}(.95)=4.75$ from the standard F distribution, it is obvious that environment is sienificant and has a stronk effect on correct phoneme response. From the interactions, it is apparent that the various combinations of environment ard cuine, are not sipnificant. This is interpreted as an indication that at least a: dB improvement in effective s/a ratici is realized. In other wordm, performance remins essentially the ame in a noisy environment with and without cuing, whereas with no-cuing there is a sienificant deterioration in performance observed when going from a no-noise to a noisy environnent.

REGRESCION MODEL. In an arespt to arrive at a realistic trodimensional regression model which would ciercribe any possible sub-liminal affects, i.e., chancea in performance a: auy 50% and $75 \% \mathrm{CSTL}$, the following linear model was considered:

$$
Y_{t}=B_{0}+B_{1} X_{1_{t}}+B_{2} X_{2 j}+B_{3} X_{1_{t}} X_{2 j}+E_{i j}
$$

where $Y_{t}=$ correct phoneme response
$x_{1_{t}}=$ level of CSTL
$x_{2_{t}}=$ level of environmental noise.
The level, X_{2}, was designated either 0 or 1 to correspond to low and high levels of noise, and $X_{l_{t}}$ levels are $0.00,0.75,1.00$, and 1.25 reapectively. The purpose of this model was to establish a mathematical relationship to describe the effect of varyinp. CSTL in either environment. That is, to determine reaponse as X_{1} is varied from 0 , to 1.25 in the steps indicated. The intent was to map any possible sub-ilminal effects occurring below the threshold of sensation. Assuming the true relationship betiveen enviromaent, cuing, and response is linear, then the failure of the observed values to lie on the straight line is a function of experimental errors. If the differences are alco the result of an inadequate model, then a higher order model would have to be formulated. Assuming the linear model adequate, the least squares estimates of the parameters, the respective 95% confidence bounds for B_{i}, and estimates of standard error are:

1	\hat{B}_{i}	C.I.	SA	S_{i}
0	56.6	± 3.7	2.1	-
1	2.5	± 4.8	2.8	-
2	-24.3	± 5.3	6.2	-
3	17.0	± 5.9	6.9	-
	-	-	-	5.6

This provides the model:

$$
\hat{y}_{1}=57.6+2.5 x_{1_{t}}-24.3 x_{2_{t}}+17.0 x_{1_{t}} x_{2_{t}}
$$

Testing for linearity, the sum squared error and respective d. f. (lack of pit) for the variation of \hat{Y}_{1} from atraight line is 8.9 .7 and df $=2$ respectively. If the model is correct, the residual mean square has the expected velue of σ_{y} ?. Using $S^{2}=\sigma_{\varepsilon}=31.78=M S_{e}$, the " F " ratio:

$$
F=\frac{M S_{L}}{\overline{M S}_{e}}=\frac{14.36}{31.78}=0.45
$$

and is not significant since it is less than unity. Thus, on the basis of this test at least, ve have no reason to doubt the adequacy of the model and one can use $\mathrm{S}^{2}=31.78$ as an entimate of $\mathrm{o}_{\mathrm{y}}{ }^{2}$. Further, in examining the residuals, $\left(\hat{Y}_{1}^{e}-Y_{1}\right)$, and plotting them againat \hat{Y}_{1}, one can see that no abnormality is indicated, that $1 s$, (a) $\varepsilon_{1} \sim N\left(0, \sigma_{\varepsilon} 2\right)$, (b) the variance is fairly constant and there is no need for weighted least squares or transformations on the Y_{1}, and (c) model appears adequate. See figure (1).

Figure 1 - Residuals
Therefore, a valid conclusion is that this linear tro-dimensional model adequately describen response as a function of the two independent variables, $X_{1_{t}}$ and $X_{2_{t}}$. This technique is presented to show the feasibility of simple lehst squares regression in dealine with this type of man-machine interface problem.

A more sophisticated modeling approach will be attemped at a later time when more data becomes available.

REFERENCES

1. J. M. MeCray et al, "Cutaneous Commuications", Us Army Electronics Command Technical Report $\#$ ECOM-3303, F't. Monmouth, N.J., June 1970.
2. Bennett, II. S., et al, "The Role of Skin Impedence in Cuteneous Compunications", Proceedings of the 29th Conference on Engineering in Medicine and Biology, San Francisco, Calit., Kov. 1966.
3. Bennett, H. S., and J. R. Hennessy, "The Charecteristics of the Cutancous Communcations Channel". IEEE International Conferance on Comanications, Minneapolis, Minn., June 1967.

Herbert Solomon
Stanford University

1. Introduction

There has alway been a newd to achieve parefmonioun yet operaclomally meaningful accounts of wht ig going on in nature and in human behavior. We are avare of attenpta by blologiate to claceify flora and faum, and even that dichotomy mas a major atep forward. It is in the physical and life aciencea that we find the firat quantifiers at work on auch matters. Later we find social anthropologiats and paychologiats eacagiag in etudies on how groupinge can be accomplished. Today we find mantical tasowong parvalive in practically every field of atudy. Thia has beea opurred by increased activity in data collection and developseate in computar techeology. Multiple meacuremente on clemente, isdividuale, or variables abovad nowadaye, and cee scee inveatigatore scurrying about to apply diseriminant analyais, clansification or clustering techniques, miltidimanional contingency table analysis, factor amalyele, and with good reacon. He will return to these topics.

Even though we regard classification in social sciencea as rather new, it is difificult to tarink of its sounterpart in physical eciences as very old unleas nife thinke of a iew hundred yeare in the course of mankind as a very loag atep. It was just ewe or threa hundred yeara ago that may phyoical alimante ware labeled "conoumption", becauee thay were charactarised by a "masting amey of the flacuee". Uader thia pere
lumped such disessen as leproay, tuberculosis, diabetes, and others. It was not until some time later that acmeone noted that the urine of some of these sufferers was aweet and that of others mas not. of courne, the subsequent discoveries of two different bacilli for leprosy and tuberculoais mugested finer groupings that obviously were more meaningful in connection with epecific troatmenta.

There is a leacon here for all of us, mandy that the clasification and grouping of individuale or elements besed on date analyees of sets of variablea can lead to manade group concoctiona that are artificial and cometime misieading. What should be kept in mind is that when this is done, grouping has some maning to the investigntor. For the last forty feare or eo, berrant mental behavior has bean aubjected to clanaification and groupinge produced on the basis of obcervations ande on any maber of variables. For an individual placed in one of theee groupinge, some treatmant is mugeated. I inagine one doem not feel as confortable hare in a dingrosis as in the cane of diabeten or tubarculonis groupinga at precent; and rishtfully so. Yet treatent will be undertaken bueed on a diagmostic category to which an individual is acaigned. This bhould give us pause vica clacoification to attenpted by date amalyole in the newer investigations auch as those that occur, for exprple, in the reoulistinat decision in the axmed arrvicen.

2. Matory

It is in the late $19 t h$ century that we find a bleononding of imquiriea into claadfication through the alection and appropriate use of manfent variablen. quite often a omedimanional ladox tiat
incorporates all pertinent variables was sought so that a technician could aseign an individual to one of several groups based on his responses to the variablen employed. For axample, the coefficient of racial likeness was an index developed at the turn of the century to distinguish different national or tribal groups on the beais of a set of phyaical masuremants. Inquiries on association of crininal types with physical mancurents of individunis also received attontion in this period by such investigatora as Lombroso.

Much of this inquiry took place in the British commanity of scholare. In a way it efght be viewed to have begun at least in a larger aence with Charlea Darwin's vast collection of data ariairg from hie travala around the world. His diariec precented may obeervation on thenimel kingdom and sarved as beee for atudy by may who can later in the 19th ceatury.

It was with these investigators in the last quarter of the 19th century that wave tha beginninge of statistical contributions to classification. In fact, it is the claselfication problen that in a way motivated and created statistical infereace an area of seimetific inquiry. The modern discipline we now call atatistice mes brought about by the anthropometriste, biologiate, and paychologiste of that ara. Such initial contributore to modern atatiatice as Francie Gelten and Karl Paarson stea from that pariod.

Galton memed to be perpetually engaged in data analyais. Ek and hia cousin, Darwin, and others revolved in an ase of acieatific isquiry that ampasised apiricien. Feareon, loas with others, Iater attenpted quantification and mathmatisation from the empirical malyoa provided
by their colleagues. Galton, whom we ragard as the founder of regression analysis through his study on relationships between children's heights and parents' heights, also initiated and developed the notion of correlation prior to 1885. The correlation coefficient serves as a basic sumarization in multivariate data analysia and consequently in studies that go into techniquee of grouping. Fsom ite very nature, obviously a high correlation coefficiant would indicate that the two variables belong in a group and a low correlation would suggent that they do not.

In one of his papers in 1888, Galton became interested in the classification problem. He pointad out that 12 measures proposed by Bertillon to be used for classificstion of criminals vere not Indapendent and auggented that the observed maaurementa be transformad Into met of independent manarea. He also suggesced the method of tranaformation, which wa can now viaw an simpla or unveighted ammation in factor analyade. Thus quite aciy we the interaingling of claseification analysis and factor analyais - and of course this is atill quite current. We will raturn to factor analyaie and its place in clasaification amalyoie.

Pearson was engaged in etudies that were obviously related to clasaificatiou. In an intereating paper in 1901, he diacusaed mathematical representations of lines and planes of closeat fit to syatema of points in space. This geonatrical way of looking at the claseification problem my present a neater view of the problem to some In affect, the multidimeneional obearvationo at hand, e.s., age, IQ, achooling, number of dependente, rank, leagth of anlistmant, ate., for ash maber of a
population of N members up for reenlistment decision can be viewed as N points in a 7-dimensional space. Moreover, each point cannot be reached by traveling along 7 perpendicular axes, for the 7 variables can and usually have degrees of association which must be taken into account.

This effort is a fundamental problea in multiveriate data analyala, mamely finding a grid of orthofonal axes to replace the frid of corralated axes (naturally the points remain where they ara). If the number of dimensions can be reduced to two or threa, some sase is achiaved since elements can be grouped by eye. In fact, this is related to ose of the central problems in factor analysis and is pertinent to the use of factor analysia an a classificution technique.

3. Asaignment Procmduree and Discriminant Analyais

It is now inportant to be opecific about the tern "clanaification". For our purponen, we wll samue that the term comprisan both the clustering of data into groups and the ascignant of data to previounly specified groups. Actually, the latter can be valued as a absat of the former. In the formar category, we require tha data to produce both the number of groupinge or cluster and the aasignment of each element or individual to these groupings. In the intter category, the number of groups or clustert is predetermined. Each group is labeled, and rules are designed on the basis of which an asaigneant of each element is made to one of the fixed groups.

We do not wish to convey a eharp diatinction between clustering and assigmant procedures. If a claneification procedure is not producing meaningful groups through the assisments that are ade, then chames are called for, namely reviaing the predetermined groupinge either in
number or in shape or in both on the basis of the new information. This sequentlal revision of groups on the basis of the data available at different times eugeste that one is indirecily engaging in clustering procedures. On the other hand, it ia wise to keep in mind the conceptual differences fust mentioned between attenpte at cluetering and attempts at aselpanent.

An easential step in classification procedures in the representation of the relationchips asong the variables on which data han bean collected. Anong other fuportant and prior ateps, there are the procasene of developing number to mamure phomoma, making decisions on the employmeat of nominal, ordinal or continious data, and subsequent coding of this data for analyais. In thia paper, wa do not review these iseuse, but were mindful of thair impact on the data analyais that will undergo investigation. Thum, maturn quickiy to clustering and aseigmont techniques and the basic mamarizations of data for these purposes.

The clustering and asalgament problam, even though they mare recognized for som time, did not poasese any cechniques until zather recently. The aselpmant problen received the firat thrust. The amiysis was provided by one of the great avanta of modern atatiatical inference, manely R. A. Fiober. In a paper in 1936, we find wat is now Fishar'a clamaic work on diecrindmant analysis. It is entitied The Use of Maltiple Maamurementa in Taxomonic Problema" and mac publiahed in The Anmals of Iurenicg. a he author man to eay somewhat later that the paper man writeas to cmody the working of a practical numerical example ariaing in plant taxonomy in which tha concept of a discrininant function eam to be of imediate service. Thia in a simple but faccimatiof etatement, because
it demonstrates once again that when there is a problen requiring solution sone strides can be made. Too of ten we find solutions looking for a problem, and this is something we should be especially concerned with in classification problems.

In his paper, Fisher also listed the basic data he analyzed. Thia 1s rarely done by authors, and so we find the Fieher data and just a few othar data bases refarred to time and tire again by absequent authors who are experimenting with new asgignment or clustering techniques. In this way, an anchor is provided againnt which the reaulte of other techniques can be asseased.

The data employed by Fiaher was appliad by a botanist, and it represented measuraments on the irises of the Garpe Poninsula. This data wes previcusly published in the Bulletin of the American Iris Society and was therefore not a likely contender for best seller. Since it is a classical piece in the statiatical literature, let us look at it in soma detail. Four measurements on each of fifty plants in each of three iris categories were obtained. The categories are: Iris Virginica, Iris Versicolor, and Iris Setom. For each of the 150 plante already asaigned to one of three categories, there are measurements of sepal length, sepal breadth, petal length, and petal breadth.

If we refer back to our geometrical reprementation, we have 150 pointe scatered in a four-dimenaional space, axcept that each point is elready labeled as belonging to one of three groupa. The question is whether in some neat and oimpie way we can eeparate the 50 pointa belonging to any one group fron the other two acts. This is compounded by the fact, In thia cate, that two of the irises, namely Veraicolor and Virginica,
actually bave a specific gametic relationahip and obviouely, then, do have some overlap. In other words, Fichar is looking for hyperplanes that particion the four-dimaniogel apece, and after partitioning, bopefully leave each group inviolate. Algebraically, he is anking for a lisear function of the four manaurmants (later called the diacrintment function) that aceonplishen this. Ae a reacomable inder for deternialing the coefficicate of the lisear function, be augsente owe that will madrise the ratio of the difformee between the mang to the standard
 the differcmee in the obeorved mans.

Then for an limear function, X, of the macurcmente, meoly

$$
x=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{3} x_{3}+\lambda_{4} x_{4}
$$

the differcmea betmen the amon of I in the two apecies io

$$
D=\lambda_{1} d_{1}+\lambda_{2} d_{2}+\lambda_{3} d_{3}+\lambda_{4} d_{4}
$$

chile the vartamee of X within apecies is proportiogal to

$$
s=\sum_{F=1}^{4} \sum_{T=1}^{s} \lambda_{P} \lambda_{Q} s_{\mathrm{Pq}}
$$

whare S_{Mq} 10 the of of aquares or producte ta X_{p} and X_{q}.
The particular ismar function that boet diecrindentee the two -apelea will be one for which the ratio $D^{2} / 8$ io greateat, by variation of the four confficimete $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$. Geonetricelly we are locating the myperplean that beat acparatea two groupe of pointe in the comee that the dietamee botion the four-dimmaional ceatrelde is greacent. Brea though thare are three grompe of irimea, In effact Fioher acte as
if there are two groups, since Iris Versicolor and Iria Virginica are genetically tied together. Note that the variations within apecies is asamed to be the mane in this development.

The index that in employed to provide the delineation ia tied at first to the multivariate normal etructure aseumed for ash species. Yet it is very siallar to the indexan mugested by strict multivariate data analyeic as we will mee in the nest aection. Hare we are maxinizing the difference between the cestroids of the twi apeciee of irises, or, In othar words, maximisint heterogenalty between groupa. This theme will carry throush all of our attempts of claanfication. Either we wil maxinize heterogematy between croup or mininise the scater (1.e., seak homosenalty) within groupa.

As a result of the analyais, Fisher arrives at a limear discriminant function that accomplishes a nice separation. For axample, Iris Setoma 1s enparated completely from Versicolor and Virginica. It turne out that only one of the four maguremente is really necesenry to do this, manely petal leasth, and this can probably be sean by just looking at the 150 sets of meamuremats. This ahould be something for un to bighlight, eapecially when we get into data sets for which maninge are not so specific and manarements are not mo commensurate. Thie will obviously be so in any numbr of studies in crininal juotice.

Fisher's work has bean extended to assign an elemant to any one ox k groupa, and computer programe exist in Computer Center librarian $c o$ accomplioh mitiple ilmear diacriminant analyain. Attached to this cubject is the queation of how many variables should be uned in a diacriminant function. It is obvious ther the more variablee one usen, the better the diecrimination uhould be, but it ia also obvious that the
marginal gain in using additional variables can decrease sharply and therefore some variables can best be omitted in the interesta of parsimony. Thus we seek the best discriminating variables.

We might also ask what one would do if one were faced with the $\mathbf{1 5 0}$ irises and did not know thair groupinga; that is, if we had only the four measurements on asch, and we wished to see whet nuber of groupinge as well as asaignments could be made. Here we are no longer faced with the asaignment problem alone, but with the cluetering problea or grouping problem, which of course subsumes an asaignont problem. It is to this topic that we now turn.

4. Data Sumarization

It is important in talking about grouping to consider whether we are grouping meazurement variablea or individuals or clemante of a population. For the iris data, ware groupiag elemente of a population. Quite often, one is interented in grcuping measurament or teat variables. The basic date sumarization in multivariate data analyais will depend on whether we are grouping variablea or elementa. We wll reaolve thit in subsequent diacusaion by first going in som detall into the data sumarization question.

There are several ways to bagin the daca summarization. All give a picture of data interrelaiionuhip, but aach hae apecial reasong for ite empioyment by an inveatigator. One representation is chat of the scatter matrix. Here we portray the total ecetter or dispersion dieplayed by n individuala or elements anch measured on p variables (n pointa in a p-dimanaional apace) by matrix with p rowe and p colume where an clament in the $1^{\text {th }}$ row and $1^{\text {th }}$ colun, aey $t_{1 j}$ " is
the sum of the croan producte of menourmants (taken around the man) on variable x_{1} vith menroments (taken around the man) on variable m_{J}. In bricf.

$$
t_{i j}=\sum_{k=1}^{p}\left(x_{1 k}-z_{1}\right)\left(t_{j k}-E_{j}\right), t_{1 j}-t_{j 1} \cdot E_{1}=\frac{\sum_{k 1^{2}}^{n} x_{1 k}}{n}
$$

Let ue label this metix T. Maturally an olement in the main diagonely eav $1^{\text {th }}$ row and $i^{\text {th }}$ colump, 1 e the ata of the equares of the deviations of x_{1} from ite man. If $p \cdot 1$, then T is acclar, mandy

$$
\sum_{k=1}^{n}\left(z_{k}-c\right)^{2} \text { where } c=\frac{\sum_{k=1}^{n} n_{k}}{n}
$$

If each elemant in the acter merix T is divided by n, the resultine metrix is the coveriance matrix with call entries i_{11} and we label this K. How if we aleo divide each olement, $i f_{\text {if }}$ in K by the atanderd doviations of x_{1} and x_{1}, the rasultins eleamt $x_{11}-\varepsilon_{1 j} / n_{1} n_{1}$ is the correlation coafficient between x_{1} and x_{j} and the reoulting metix in now the corcelation merix which we label A.

An important advantage of T is the manar in which it can be decomposed into two meticen that are especially pertinent in clustering and classifieation atulies. In a cimesficstion atudy, the n elames w11 be aselgind to k predeternined groups. Each group with, any, n_{1} elements can be viewed as anivarse with ite own ecatter motrix formed an befort and labeled W_{1}. If we an all the W_{1} ecatter merices, wet $W=\sum_{i=1}^{5} U_{1}$ and let thia reprecent the withia scater
or homgeneity of the groupinge. Likerise, if for each of the k groups, we compute the group mean (a p-dimansional vector where the $r^{\text {th }}$ coordinate is the mean value based on the n_{r} observations for x_{5}) and then produce the ($p^{x} p$) mantrix that we label B, for it expresces a meacure of the "betweenaens" or heterogenelty of the k sroups. The central point in this develogent is the existence of the fundmmental metix equation

$$
\mathbf{T}=W+\boldsymbol{B}
$$

This reault suggeste imadiately an index by which clasafficetion (predeternined number of groupa) can be evaluated and, by extencion, how cluntering can be torminated at some cluster size. For any fiven data set: T is fired. Thus mesures of "eroupinesa" or "clusterimees" as functions of W and B are thrust forth for exanimetion.

For $p=1$, the eatrix equation reduces to an equation about acalare, Thus a good grouping index is one wich minimiges W or equivalenty Exinise D. We my also congider maxinizing either the ratio B / W or T / W " $1+M / \mathbb{M}$. An added benefit is that this ratio is invariant under linear tranaformations of the data. Statisticians have long exploited this fact, for B / W mitiplied by an approprinte conetant is the fandiar F ratio in the analyeis of variance.

Whan the numer of measurmants per element is two or more (p) $>$), grouping criteria are not eo atraightforward. Several poseibilities euggent themelves and have been developed und atudied by invactigators. One criterion mugented by eeveral authore that is a quite metural index is the minimiantion of the trace of W (aun of all elemants in
the main diagonal of the matrix) over all posaible partitions into k sroups. This is equivalent to mainising Trace 1 because

```
Trece T = Trace W + Trace B .
```

Howover, Trace W if invariant oaly uader an ortbogomel tranaformation and not under mon-aimquiar linear tramaformatioas.

Another criterion that may be employed for $p>1$ ia the ratio of the det.eralmente

$$
|x| /|w|=\left|1+w^{-1} s\right| .
$$

We can une $|T| /|W|$ as a critarion for grouping and aelect that grouping for which this index is gaximized, or equivalentiy $|W|$ is minimised. Also we may moloy $\log (|T| /|W|)$ since it is a monotonic function.

Abother criterion for groupligg is the erace of W^{-1} and we eelect the grouping that maxinises this index. This index has been used as a test atatiatic in miltivariate atatiatical analyaia as bat the ratio $|w| /|T|$. The latter was employed by Wilks to teat whether groups diffar in mean values, and the former has been put forth by botelling In some aituntione and by Reo at a gemaralization of the Mahalanobis distasce between two groups for $k>2$ groups. We will shortly define and diecuss the implicationa and uses of the Mahulanobis diatance in clustering procedures.

Both Trace $\left(W^{-1} \mathrm{~B}\right)$ and $|\mathrm{T}| /|W|$ may be axpreseed in terne of the eigenvalues, λ_{1}, of the matrix W^{-1}. We write

$$
|T| /|w|=\prod_{1=1}^{p}\left(1+\lambda_{1}\right)
$$

and

$$
\text { Trace } W^{-1} 1=\sum_{i=1}^{p} \lambda_{i}
$$

where λ_{i} are the roote of the deterninamal equation, $|D-\lambda H|=0$. The characterigation of these ratios in term of aigervalues is helpful In data representation eapectally when the affecta of some reduction In dimensionality in deaired. All the efgenvalues of this equation are iavariant under non-aingular lisear tranaformationa of the date. It can be proved that theme elgenvalues are the oaly invarimate of W and B under non-singular inmear tranaformations.

5. Distance Matrix

Thus far we have diecuesed aome sumarisations of maltivariate data in metrix form, alther T (ecater), X (covariance), or R (correlation) and the kinds of grouping criteria that are augeated by the I format. Intuitively, we that any grouping criterion is a fuection of homogencity within groups and heterogeneity betwem groupa and the indexes already deacribed are apecific quantities abodylat thees notions. We shall diecuge other indexes as we proceed, but each will be a function of homogemity within groupa and haterogenaity between groups in which attompt: will be made to ainiaise the former, maximise the letter, or in effect do both. For the correlation coefficient index, large valuee irdicate homogemaity; mall values indicate heterogemeity.

Aaother method of oumarizing data that is more appropilate on occasion is to find the distance between eech pair of the poiste In the p-dimaniomel apace. This leade to a reprecontation in metrix
form of an $n \times n$ matrix whare anch alemant, in the $i^{\text {th }}$ row and the $j^{\text {th }}$ colum, say ${ }^{d}{ }_{i j}$, is the distance in the p-dimensional apece betwean the $i^{\text {th }}$ element or individual and the $j^{\text {th }}$ element or individual. All the elemente in the main diagoal are sero. The diatance matrix is akin to the correlation metrix in that both may be viswed as similarity natrices - the jumplag-off plece for cluatering attempte.

The deciaion as to whathar correlation matrices or diatase antricea are to be aployed is usually daternised by the problem at hasd. If a Isdividuals or a clemate are te be grouped an the beole of p maecurcmente on each, then the m diotance metrix is the matural cumarisation; if the p macurremeat vartables are to be grouped on the basif of the meacuremeate on a individuals or a elemante, then the pxp correlation metrix is the matural ovmariantion of the data. This latter merix is the matural beginaine point in factor analyais where paraimony is the muber of latent magurmant variables is a deatred goal. We will return to factor analyais and ita place is cluatering In aubsequent sections. In some tasonomic situctions the question of which meaure of oinlarity to employ, whethar it in of the association or distance type, will require come thought. While we will touch on thace pointe, thece inquiriee will not be featured in this expogition.

The notion of a diatance metrix will be placed in aharpar focur, and this will be done by nome diecucsion of appropriate distance mazures. Becauge we will mormily think of our date beses for ciuatering individuals or elamant as a pointe in a p-dimensional apece, the dietance masurea nevally appropriate and availeble ere Euclidean distance and Mahalanobie distance. The Eucildean dietance betwean iodividuale or elements with
respect to all p masourment variebles may be writton in vectox motation

$$
d_{i j}^{2}=\left(P_{i}-P_{j}\right){ }^{\prime}\left(P_{i}-P_{j}\right)
$$

where $d_{1 j}$ is the Euclidenn distance batwean individual 1 and individuni j, P_{i} and P_{j} are critum vectora ach with p rowe iletimg the p meamuremente on the $i^{t h}$ and $j^{\text {th }}$ individuale respectively. The product of the differance row vector $\left(P_{i}-P_{j}\right)^{\prime}$ by ite tranapose is a selar. This is the distance function with whek most of un are faniliar. The Mahalanobin diotmace my be vritten es in the notation above ne

$$
d_{1 j}^{2}-\left(P_{1}-P_{j}\right)^{\prime} w^{-1}\left(P_{1}-P_{j}\right)
$$

where W^{-1} is the inverse matrix of $W=\sum_{i=1}^{k} W_{1}$ and H_{i} is obtained for each of the $1=1,3, \ldots, k$ groupa by

$$
u_{1}=\sum_{m 1}^{n}\left(P_{m 1}-C_{1}\right)\left(P_{m i}-C_{1}\right)^{\prime}
$$

Note that grouping of elemente is neceseary to compute W_{i} and consequantly W. Thus the Mhalanobia dietance cakes into account the aseociations or interrelationahipe in the measuremant variables. If two masurement variablee are highly corralated, the kuclidean distance can be minleading because of the equal weight it imposes inaccurateiy on each meacurcment variable, but thit will not be so with the Mamianobis distance. The Mahalanobis dietance is more tedious to compute and for
a lons time it mas avolded for thin reacon alone, but the computer has brought it within raach. dctually if ach of the correlations betwenn the measurmant variables is low, the error in aploying the lucildean distance is not danging. As a rule of thunb, correletions at high at 0 - 5 will not produce Puclidena dietances that leed to operational difficultion.

Other distasce meagures appecr in the 1iterature. The Mirionmid distance is the mam applied to all diatance manares thet are of the form

$$
d(1, j)=\left\{\sum_{i=1}^{p}\left|x_{i n}-x_{j, 1}\right|^{n}\right\}^{1 / a} .
$$

We have diacusead the cace $n=2$. When $n=1$, the label "city-block" distance is sometime aployed and it my be relevant for som diatance eituations.

6. Clunterint

He now look at the clustering alde of clagaification asalysis. Our atin emphasis will be on cluctarins an an exploratory device. Development Of aesignmat procedures is for thoce who alrandy enjoy the lurury of knowing the groupa that exist. We will place ouraelves in the aituation whera a body of mitidimancional data has bean collected by some invasisator and he wishee to dacipher what kind of atructure, if any, undarliea the date collected. A wide variety of techan, as hive beon mugented and atterpted. They rua the gemat fron looking at all posaible partitioninge of the data to trying to saro in on an optimal partitioning without heving to look at teo much of all the poasibilitien. The former method is a "dub" procedure which

Is workable if the computer can quickly look at everything, and of course thi is not so eved for a mall number of observacions in amall number of dimensions. Thus weacrifice optimal partitioning for what we hope are auboptimal partitions that can be achieved much nore cheaply.

Let us consider one genaral way of looking at the problem considered by eaveral authore. We start with any given partition into g groups. Consider moving a single object into every group other than the one it is 1n. If no move will create aptition for which 1 slustering criterion is ineraaced, leave the object where it is. Otherwise, move it so that the maximum increase in the criterion occurb. Naturally, we are asuming the existance of a reacomble criterion. Woing the partition thun created, we procese the sacoud object in the aame way, then the third, etc. After eeveral pasees, one vill reach a point at which no move of a aingle object Erom the group it is in to a different group will cauce an increase in the cricerion function. At this poinc wa ay we have found a "local maximum" of our criterion function. This rarely takes more than a reacomable time on a compucer. This hae been labeled che "hill-cilmbing" pase algorithm by Friedan and Rubin.

They and others have euggested modifications. For example, wa start with the beat parcition yet known. Than procesc one group at a time, in sequance, by plactag each object of the group being processed into the outalde sroup with meareat center of gravity, racalculating the criterion function after each move. Thie is done in order, the object nearest an outelde group belag aned firet. Although the criterion initialiy decreasas, it my at coment during the procesm achieve a value higher than previousiy found. This will apecially be the case if the groun
being processed consists of two clusters widely separated in space. After processing all the objects of one group, we restore the best partition yet found, and proceed to process the next group. This has been labeled a "forcing pass" algorithe. It ia defined as the application of this procediure once to each group, in eequence. Forcing passes are repeated until they produce no improvement. These pasees are relatively fast, compared to hill-climbing, since we need not evaluate every possible move for an abject.

Still another procedure proposed by Friedman and Rubin and other: involves starting with a partition Q (we wee the best partition currently known) and reassigning each object to the group with nearest ceater of gravity. The value of the newly formed partition is then calculated. With either of the other two criterda just diacussed, we use the matric defined by the matrix W^{-1} couputad from the partition $P-1 . e$. . $d\left(P, C_{k}\right)=\left(P-C_{k}\right) W^{-1}\left(P-C_{1}\right)^{T}$. The centers of gravity C_{k} HiN the ecatter matrix W are maintained as those of the original partition Q until all a obfects have been reassigned, at which time new values for \mathcal{C}_{k} anc W are computed. This contrusts with hill-climbing, for wich the partitior. and the derived W change with each move of an object.

The reassignment of each object in the above manner is termed a "reassignment pass". Reassignment passes are repeated until a partition with higher value is no longer schieved. Sets of forcing paceet and reassignment passes are alternated until neither produces improvement, anc then hill-cilmbing is resorted co for \& atw local maximum. Ocher modifications are also applied, but when it proven impoasible to reach a higher local manimum, che procedure is cerminated. If one is willing and
financially able to apend the computer tine, oae can repart the entire procedure using anothar starting partition choaen at randon or, 08 we will soon see, obtalned by a quick atep-alse method. The forcing and reamalgament passes are fast, but only occasioally belpful. Restarting from ench of everal randen partitiona or the eteq-aime molution is alow but provides more coafidance in the reault.

7. Initial Partitionint

There is a mach simpler mey of initinting clustering. It ma propooed by Ring and in effect siven a quick initial pertitioning of the data whether it be meacurement variable groupinge or deliseation of isdividuala In a population. Either something of intereat and use to the investigator appears quickiy, or what does amerge can earve as the firat step for thoat algorithas that require a atart upon which variou kisds of iteration are atterpted. These mare just demeribed in the provious enction.

The procedure propeed by Lint in a step-wise clusterint procedure. This ia its priseipal asaet becamee it leads to a aimple and quick alporith that involven ($n-1$) semminge of a correlation merin baced on n variables. At each ecanning or paes, the variables are eorted into a numer of groups that is ane lese than at the previous pase. In this way. we obtain ($n-k$) Eroups of variables at the th scanaing. The ($\mathrm{m} \times \mathrm{n}$) matrix can also be dictance matrix. In chat caee, weort individuala or elmenta into groupa.

The procedure operates as follows. We will employ the correlation Entrix a our sidiarity matrix for expository purpocas, and brime in the diatemee metix when appropriate to hishileht diffaremeen.

As a utart, we can view the n variables as n groupt, one variable to each group. Now scan the correlation matrix for the maximum cell entry (naturally without regard to sign). In a distance metrix we would seek the minimu distance cell entry. Suppose the maximum correlation is between variables X_{1} and X_{j}. Label it $r_{1} \prime^{\prime}$. . We place X_{1} and X_{j} in the aate group, and we now have $(n-1)$ sroupa $x_{1} x_{2}, \ldots,\left(x_{1}, x_{j}\right), \ldots, x_{n-1}, x_{n}$. This produces an $(n-1) \times(n-1)$ correlation matrix, all pairs of correlation coefficients over the original ($n-2$) variables plus the correlations obtained by pairing each of these with the concocted variable $X_{i}+X_{j}=Y_{i j}$. Escencially, we are representing the group of two elements by its centrold.

On the second pase of what is now an $(n-1) \times(n-1)$ correlation metrix, a third variable may join the group of twe variablas formed on the firet pase if the correiation betwaen it and $X_{i f}$ is maximam, or the maximu correincior vaiue in the raduced correlation matrix my again involve two individual variables. Thus we would get either one group of chree variables and ($n-3$) groupa ach containing one variable, or two groups each containing twc variablea and (n-4) groupe each containing one variable. In aitiec situation we merge variables and revise the correlation matrix as on the first pase. In the former case, the cencroid of the group of three variables represeats its group, and in the latter case, each group with two variables is represeated by ite centroid. Recall that we do not have to divide the an of the variaioles by the number of variables to obtain the centroid because the correlation coefiricienc 16 Invariant when one variable of the pair in almey multiplied by the ame constent.

Thus, at each pase, the two groupe with the highest cerrelations are merged and the totel muber of groupe to that point is reduced by one. After a variable has joined a group of variables, it casoot be removed from that sroup. In this way it is posaible to mise an opeime crouping. This is very sinilar to celection of prediceore in step-ulee ilsear regression. It abould also be mationad that a group can loge ita identity by metsing with asocher group on a later paes. Iy the tim all the scanaing is completed me buve produced muccessively ($n-1$), ($n-2$), ($n=3$) ,,3,2 sroupiase.

The clustering isdax employed by King for masuring the vorth of the grouping is thet of ainima correlation (or maximel distasce) between the group centroide wea the seaning has placed the variablea into two Eroupe. This leavee comething to be desired because it doea not look ac the effectiveanas of the frouping whan more chan cwo groups are imvolved. He alco review another index, mugested orisimally by wike for teacing the mutual independence of k eubeata of a mitivariate mormal randon variables. In terme of what we described earliar in the paper, the iodex 1s the racio of the deterninance

$$
z=\frac{|T|}{\frac{k}{\pi}\left|u_{i}\right|}
$$

where T is the scatter estrix dafined previously and ach H_{1} is cime wcatter estix for each of the k groups.

This index hat ane nice geonetrical and scatiatieal propertias. Por example, when $k=?$,

$$
z=\frac{|r|}{\left|w_{1}\right| \cdot\left|w_{2}\right|}=\pi\left(1-r_{1}^{2}\right)
$$

where r_{i} is the $i^{\text {th }}$ canonical correlation between the two sets of variables. Thia inder may be viewed as "generalized alienation coefficient" aince it is an extension of $1-R^{2}$, where R ia the mitiple correlation coefficient occurring when two groups have one variable in one group and $(n-1)$ in the other. However, it is not too useful in sone data malyses, especially in socisl selence, because a number of data seta lead to quasi-singular correlation matrices and truncation arror can give ridiculous resulte. For this reason, and poseibly others, negative determinanta appear and make it imposaible to employ the Wilks indox.

Let ue look ac the king mathod for two particular date baces. The firat is in connection with a penalty jury decielon in California, and the wecond is the iris dete we discuseed previousiy.

Individuals convicted of Eurder: 238 individuals convicted of firat-degret murder in California over a recent cen-year period were studied on the basis of $2 S$ masurements each as to whether an association existed between their 25-dimensional descriptions and the penalty deciaion that reaulted 1n 1ife inprisonment for 135 and capltal punishment for 103. Theea 25 variablea consisted of biographical information on the individual, deacription of the crime, informetion on defence councel, the prosecution, and the judge. A King step-wise clumering procedure was employed to cluster the 238 individuals and then aeck a subacantive ascociation, if any, between the characteriatica of the individual, characteriatica of the crime, judicial process, and the pamalty deciaion. My thanke for the dace under analyais go to several Law Review studenta at Staford with whom I worked on thie atudy. One of their ajor concerns was to see $1 f$ there were any ansociation between the penalty decided upon by a jury, which
under the law is given no ingtruc:ion on atandards to be eployed is arriving at a decision, and socio-aconomic characteristics or racial and ethaic background of the individual. The clustering printout did not reveal any aignificant associations between penalty and whether the dafendant was bla:k, Mexican-American, or white; or whether the defen?.it was a blue-coller worker or not. At the 58th pase, there mas one significant group that contained 18 members, all of whon had received the iffe penalty. As the number of passes incrased, this group ramained the principal sroup until the last few pasces. At the 75 th etep the sroup cintained 34 membere, of whom 30 received life impriserment. At. the 100 th step the group contained 42 11fe cases out of 62 mabere, and at the 125 th atep, the sroup contained 63 11fe cases out of 102 mamberea 62 to 38 percent mixture for all 238 saces. What we meen to be getcius 1s clustering indicating vary little or no association of pealty with defamant and judicial characteriatics. Thie may aleo heve judicial implications; for a penalty jury 1s, in effect, tomatas for each defendent a coln which lande head or tall in a 55 to 45 percunt ratio. Irisen: In Fisher's well-knom paper on the linear diacrininant function, he amployed three groupe of irises, each containing 50 manert. Sepal wdth and leagth, petal width and length were obtained for each of the 150 iricee-50 Irie Setom, 50 Irie Virtinice, 50 Irie Versicolor. We wil asovere only that wave 150 irises represented as pointe in a fourdimanional opace which wo widh to cluater by the king etep-wisa cluntering achean. The reoults are interesting. The Irie setose are quite different frow the other twr, which overlap a creat desi. Thw we figd at the 137 th pase that there ia a cluster of 48 mabars, cach an Iria sutoas; there ap
four clusters containing $23,24,17$, and 26 mabera reapectively, with 12. 4, 16, and 10 Iris Versicolor respectively, all demonetrating the natural overlap between Iris Versicolor and Iris Virginiea. At the very maxt pase (138 th) the two groups with 24 members each merge into a group wth 48 gmbers, 22 Iris Versicolor and 26 Iria Virginica. Thus when there Is raal and decidod overlap the atep-ate eluntaring selmen reflecta 1t; but if we did not know of the original three groups, wo vould be hard presed for a deciaion, and ebviouriy would have to recort to additional techalques, or expertine. ar both.

These data bese and several sthere are discuaced in a paper by soloman [11]. In that paper come computer printouts for the rine procedure are diaplayed.

6. Data lepramentacton Techatruan

An interesting idea in multivariate data abalyaia has been propoced by Cheraoff [1]. It 1e araphteal data repracentation techaique. In hia procudure Chermoff tranefores maltidimenolonal vectora into muman faces. Thun, for axmple, averal muodred vectore are tramefurned into several muodred facen and the facan are then clacalficd into groups acrording to the almilarity parcalved by the clacalfier. the thean bere 1s that we are very faniliar through axperimacen in ife in ciasetfying faclal charactarlatica. In his papar Chernoff praseate a competer progran which madiea up to 10 -dimanional vectorn. The reader is refarred to his peper for more detalle.

Up to this point, wave mationed factor analyals but mot eald much about it. Thare is an exteanive literature oa tho moject. Ite curreat uce in mitivariate date analyoie is from the reprasmention polit
of view. Computer libraries have factor analysia prograns which can take large order correlation matrices and obtain principal component solutions. In this way a larse number of meagurent variablea, say 50 to 100, can be Eransformed into many fewer variables, may on the order of 5 to 10. Classification and clustering can then be applied to mitidimmaional vectora of bery enall order. A real payoff occure when the largent two or three factors are employed, becauce a graphical diaplay can then be arranged. Whan this occurn, clustering or clansification of the data pointe can be achieved by eye. See Solama [11] for more detaile.

9. Multidimanional Contingmey Table analyals

A mitivariate data analyais techaique which is receiving more attention these days is that of multidimananal contingency table amalyais (logiatic reaponet analysis). A numer of authore (e.s., Kullbaciz [8,9] and Goodenan [6], anons others) have dose fundaneatal work on this techaique. We will discuse this moded by illustratins its use to atudy reenlistment decision in the arma services. The data atens from some recent Marine Corpa analyces.

In this eection che etructure underlyine contingency table analysis 1s diacussed, and the mechance of obtainim odde and probabilities for the reealistenc deciaion are illustrated. The reenlistment analyaia 10 baead on a large numer of categorical variables. Regreasion andyais and aimilar mulcivariate techaiquet for sontiquou variablea become inefficient and inappropriate for his stitution. Multidimanioni contingency rable analyale, which we now explore, is more suitable.

We are interested in accounting for the variation in reenilstmants in a paratmonious way and with manimgul factors. Consider a simple canple with two factors, reenlistment decision and rank. Assume rank is categorized into two levels, l.e., high rank or low rank. The reanlistment decision and rank of forty individuale might produce the tabla

	Hish Rank	Low Raak
Reronlistment	10	10
No Reenilstment	10	10

which yielde probarility esimates

Hieh Rank	Lov Rank	
Reenlistsent	.25	.25
No Reenlistmanc	.25	.25

or more generally

Reenliatment
No Reenlistment

High Rank	Low Rank
P_{11}	P_{12}
P_{21}	P_{22}

The overall probability thac a person reenilete is $P_{11}+P_{12}=.5$. The probebility that a reeniletment io of high rank is aleo 5 for

$$
\frac{P_{11}}{P_{11}+P_{21}}=\frac{.25}{.25+.25}=.5
$$

In this example, the probabilities of reenliatment are the ame reardlean of rank. Thie cable sugente remiletment deciaion and rank are indepondent.

A related manure denoted as an "odds" measure han an interpretacion well known to bettora. In the above axmple, if one mapers that a person salected at random prenists, the overall odds, l.e.. the odde of reenlistment regardlegs of rank are one to one or even. knowledge that the bet ia on the high rask group or low rank group doas not change the odds. Realigtically, however, the probability and odde that atgh rank and a low rank will remilst are not the eam. As an illuatration, conalder the table

Reanlistment
No Reanlietment
Mirh leak
15
5

This given probability ectimes

High Rank	Zov Rank	
Reenliatment		
No 2eardistent	.375	.125
.125	.775	

Prom thic cajo cine overall probability of a pereon reenlinting. $.375+.125=.5$, raning the ane buc che probaioility that a bigh rank ceanlisce is

$$
\frac{.357}{.375+.125}=.75 .
$$

Thie differe eubacantially from the ovecall probability of 0.5 witch no longer dumarises the dacs. Tine ocic will chage an mil, being three to one for high rank, one to three for low rank. The information contained in this and the preceding table io described in term of three
characterlstica: the overali probebility that a person will reenlist, the probability that a low rank will reenjist, and the probability that a high rank will raenlist.

The basic objective in a more complex cable is to identify the Alnimum nuber of probabilifies that must be specified to adequateiy describe the table. The specification of probabilities given in the last example can be uned. However, recent research has devaloped a more formal degri!ptive model aimilar to analyaie of variance or regreasion models. Instead of dealing directiy with cell probebilities, it is convenient to deal with their logarithes. Theoe nce variables, the logarithas of the cell probabilitien, have charecteriatics aimilar to meacurement data, and they can be incorporated into a ifmar model vhose parameters indicate the contribution of the veriou factore and thair interactions to the cell probability.

The ilnear model for estimaring logaritho of $P_{\text {th }}$ (for our analysis whr we fix and amploy only the marginala) is
$\operatorname{lop}_{t k}=\mu+\alpha_{t}^{T}+\alpha_{k}^{K}+a_{t k}^{T K}$.
$t=1,2$,
$k=1,2$
where $\ln p_{t k}$ is the metural logarith of $P_{t k}$. The constant u is a general mean indicating the average value of lap tk. The parameter α^{2} indicates the "effect" of reemiletment decieion on lnp tk independenc of rank; α^{K} neasurea the effect of rank on lay ${ }^{k}$ ik independent of reanliatmant deciaion. The parameter $a^{T K}$ meanures the interaction effect of reonlistment deciaion and rank on laptk. For the firat example cited, where all the Pek (and concequeatly all the lap ek_{k}) are equal, a^{T} and a^{K} are zero alnce lapte doee not vary with either
reanlistment deciation or rank: and for this reacom, too, $a^{7 X}$ is sero. Hence, Ptk ia equal to the anti-los of μ, whelh fa thie cace ia the .verall probability that a person reenilists.

The model in (9.1) allow the atep-by-atep cemputation of cell probabilitiea aimiler to ragreasion analyais. For ammple, if remaliatment deciaion is cososidered as a function of remk, the ode of remilatsurt (t - 1) to mon-remalietment ($t=2$) for a siven ramk are

$$
\frac{P_{1 k}}{P_{2 k}} \text {, any } k-1 \text { for high reak, } k=2 \text { for low remk. }
$$

Uaing the model in (9.1) to obtain theee odds in loyaritiate form (denoted hereafter an the lof odds), we get
(9.2) $\ln \frac{P_{1 k}}{P_{2 k}}=\left(\mu+a_{1}^{T}+a_{k}^{K}+a_{1 k}^{T K}\right)-\left(\mu+a_{2}^{T}+a_{k}^{T}+a_{2 k}^{T K}\right)=2 a_{1}^{T}+2 a_{1 k}^{T K}$
where $a_{1}^{T}=-a_{2}^{T}$ and $a_{1 k}^{T K}=-a_{2 k}^{T E}$.
since the α parmeters measure deviationa fres a geacral mean, a deviation from the sam at oae level leadn to a deviation in the oppoaite direction at the other 1eval. Replacing 20_{1}^{T} and $20_{12}^{T M}$ by g^{T} asd $\mathrm{B}_{\mathrm{k}}^{\text {TX }}$ to almplify the motation in (9.2) yielda
(9.3) $\sin \frac{P_{1 k}}{P_{2 k}}=\beta^{4}+\beta_{k}^{T K}, k=1$ for high rank, $k=2$ for low rank.

Frem (9.3) the loe odde of recolistmeat to mon-rcealistment are coen to
 tlonahip betmen rank and remilietmat deciulore.

To further illustrate theee ideas, let us coasder another axnmple. Ascum that reenlistmat is dependeant on two variableas leagth of enlistment, L, and the prasesce of abseace of dependeate, D. Then Peld represente the probability that a apecified reenlistomat decialom is made given an individual's leagth of calietmeat and dependemey atatus. Pollowing the proviove arample, the logaritim of the odde of recenlisting to not reenliatias an a function of the predictor variablea caa be written as

$$
\begin{equation*}
\ln \frac{P_{1 \ell d}}{P_{2 l d}}=\beta^{T}+\beta_{l}^{T L}+\beta_{d}^{T N}+\beta_{2 d}^{T L D} . \tag{9.4}
\end{equation*}
$$

Rech one of the 8 permeters has the eane interpretation given proviously. B^{T} is a geceral man for the 10 odds. The $B_{l}^{\mathrm{TL}}, \ell=1$ (two year enlistment), $\ell=2$ (thrce year anlstmant), $\ell=3$ (enilatseat of four or more yeare) are numerical meagures of the fmpect on recolistment of calistment leagth. Sinilarly, the $\beta_{d}^{T D}$ are memerical measures of the impect of dependente on reenliatment where the subucript d 1dentifiea the number of dependeats, $d=1$ (00 dependents), $d=2$ (one or more depeadente). The parameters $B_{l d}^{\text {TLD }}$ are tatersction terms. It may be, for exmple, that the presence of dependente my influence the reenlistmant decision of four year enistees differeatly than that of three or two year enlisteen. Pirat, dependente are more comon among four year onlistees and thay tead to mave more of them. second, four year callateen who earve to and of term tapd to be older at the time they mat decide whether to remaliot. Inace the impetwe to reenliat my be greater among memere of this group thea mould be indicated by ading
the separate effects of dependency atatus and langth of anilstment.
The presence of a joint interaction effect of length of enlietmant and dependency atatus on reenilstment implies a non-zero B $_{32}^{\text {TLD }}$.

By exponentiation of each side of the log-1inear model (9.4), the odde of reenliating to not ramilating (hareafter referred to eimply as the odds of reculistmant) cen be written in the for

$$
\begin{equation*}
\frac{P_{12 d}}{P_{2 d}}=\delta^{T} \delta_{l}^{T L} \delta_{d}^{T D} \delta_{l d}^{T L D} \tag{9.5}
\end{equation*}
$$

where the $\delta^{\prime} s$ are the anti-lozt of the B^{\prime}. In this form of the godel, δ^{T} can be intcrpreted as the ovarall mean odds of reenilatmant which ia modified by more detailed informetion about the levele or valuea of the predictor variables and thedr interactions.

For the full model, the overell odde δ^{T} is eatimated au

$$
\hat{\delta}^{T}=\hat{\beta}^{T}=e^{-2.60}=.074
$$

that 1a, the odds are .074 to one in favor of reanliatment. ${ }^{(1)}$ If the odde of reenilatment are decired for Marinea who enlist for four years, we need to compute

$$
\delta^{T} \mathrm{~g}_{3}^{\mathrm{TL}}=(.074)(2.46)=.182
$$

[^2]Thus, the odds of reenlistment increase from . 074 to .182 for Marines who enlist for four years.

The calculation can be extended, for example, to Marines who enlist for four yrars who have one or more dependents by the end of their enlistment period. If these independent variables entered linearly in the model, the estimated odds for reenlistment would be given by $\delta^{T} \hat{\delta}_{3}^{T L} \hat{\delta}_{2}^{T D}$, but since dependency scatus and length of enliatient are found to interact jointly on enliscment, che odds of enlistmant for chis group of individuals are given by

$$
\begin{equation*}
\hat{\delta}^{\mathrm{T}} \hat{\delta}_{3}^{\mathrm{ILL}} \hat{\delta}_{2}^{\mathrm{TD}} \hat{\delta}_{32}^{\mathrm{TLD}}=(.074)(2.46)(1.72)(1.46)=.457 . \tag{9.6}
\end{equation*}
$$

where the last term measures the interaction effect of L and D. Note, the odds of reenlistment for four year enlistees with one or more dependents would have been substantially underestimated if the first order interaction effect had been onitted frow the calculation.

As can be seen from this example, the estimation of a sall number of $\delta^{\prime \prime} s$ peruits the somputation of odds of reenlistment for individuals having very diverse characteriatics. It should be noted that as in the case of regression analysis, the coefficients of the linear model (9.4; (and consequently the $\delta^{\prime} \mathrm{s}$ in (9.6)) show the effect of a change in a varlable holding all the other variables constant. Thus $\hat{\delta}_{\ell}^{T L}$ measures the direct effect of lengin of enlistment on the odds of reenlistment. If an indiract effect with dependency atatus is also present, this is weazured by $\hat{\delta}_{\ell d} \mathrm{lLD}$. Zoth the direct and indirect effects of length of enlistment are net of the effacts of other variables such as rank,
education, race, etc. That is, the effects of variation in the later variables on the odds of reenlisiment are taken into account in the computation of $\hat{\delta}_{\boldsymbol{\ell}}^{\text {TL }}$ and $\hat{\delta}_{\boldsymbol{\ell}}$ TLD.

Given the odds of reenifstment for individuale with a given set of characteristics, it is a simple mater to compute the probability of reenlistment for the group from the relationchip
(9.7) Odds of reenlisteent $=\frac{\text { probebility of reanileting }}{\text { probability of not reenlisting }}$.

For example, if the probability of reenilsting, P, is .07 , then the probability of not reenlisting, 1-p, ia .93 , and the odds of reenlistment are .074 tc one. Solving for p in (9.6) yields
(9.8) Probability of reenliating $=\frac{\text { odda of reenlistmant }}{1+\text { odds of reenlistent }}$.

In these calculationa it is important to distinguish between individual δ^{\prime} a referred to ae "odda factors" (e.g., $\delta^{\mathrm{TL}}, \delta^{\mathrm{TD}}, \delta^{\mathrm{TLD}}$) which indicate how the overall mean reenlistment odds, δ^{T}, is modified and the product of $\delta^{\prime} \mathrm{s}\left(\mathrm{e} . \mathrm{B}_{\mathrm{g}}, \delta^{T} \delta^{\mathrm{TL}} \delta^{\mathrm{TD}} \delta^{\mathrm{TLD}}\right.$) which measuren the odds of reenlistment for individuals with a specified set of characteristics. Since (9.8) converts the odds of reenlistmant for a given group of individuals to the probability of reenilatment for that group, it cannot be applied to the individual $\delta^{\prime \prime} \mathrm{s}$:

The above diacussion makes clear that large number of parameters may enter the contingency table model, thus raising the problem of identifying which parameters are to be included in a model and which are to
be excluded. Statistical distribution theory and a maura I^{*}, which is efillar to R^{2}, the multiple correlation coefficient in regremaion analysis, is used to resolve this problem.

In regression anelyeis the axplanatary value of a at of pradictor variables is meacured by the percentage of varietion in the dependent variable explained by the predictor variables. The base mancure of variation in regreseion analysis is the aum of squaree about the man of the dopendent variable, 1.e., $\Sigma\left(Y_{1}-Y\right)^{2}$. As predictor variables are added to the model, the predicted values of the dependent varieble, $\hat{\mathbf{y}}_{1}$, are used to masure the asount of variation, $\Sigma\left(Y_{i}-\bar{Y}\right)^{2}$, explained. The percentage of base variation expladned 1.9 then

$$
100 n^{2}=100 \frac{\Sigma\left(Y_{1}-\bar{Y}\right)^{2}-\Sigma\left(Y_{i}-\hat{Y}_{1}\right)^{2}}{\Sigma\left(Y_{i}-\bar{Y}\right)^{2}}
$$

One method of masuring the contribution of any particular variable is the change in R^{2} when that predictor variable is added to the model.

For contingency tables, the base masure of variation is computed either as the chi-square statistic*

$$
\Sigma \frac{(0-E)^{2}}{E}
$$

or the informetion masure

$$
2 \Sigma 0 \ln \frac{0}{E}
$$

*The symbol 0 stands for the observed cell count and 5 the entimated cell count. Tho anmation is over all cells in able.
under the hypothang that all 6 paranatera in (9.6) except the caneral man are zero. I^{*} is then the percentage of baee variation explained by the introfuction of come collection of B paranetera into the model, 1.e.0

$$
I=\frac{\left(\Sigma 0 \ln \frac{0}{B} \operatorname{Inca}^{\cdots}\left(\Sigma 0 \ln \frac{0}{T}\right)\right. \text { nodel }}{\left(\Sigma 0 \ln \frac{0}{E}\right) \text { Ease }} .
$$

In practice, an I^{*} of 70 parcent or better is deaired. Somatimes a lover velue ia ecceptable becauge increasing $I^{\boldsymbol{*}}$ requires the adition of may interaction parameters with the coneequent difficulty of interpretation. The prime objective is to find the mot important paramaters. When the number of observations is large, paranatare eignifyiag eargimal Impuct will be etatietically aignificant. Thus we my adopt a convention, may, of axcluding parametars when they increase I. by leas than two parcentage pointe.
[1] Chernoff, R. (1973), "The Use of Faces to Represent Pointe in kDimensional Space Graphically," J. Amer. Statist. Asmoc. : 68, pp. 361-8.
[2] Fisher, R. A. (1936), "The Use of Multiple Measuremants in Taxononic Problens," Annala of Eurenics, Voi. VII, Pt. II, Pp. 179m8.
[3] Fortier, J. J. and solomon, H. (1966), "Cluatering Procedures," Multivariate Analysin, Pp. 493-506 (ed. Irishnaiah, Pa R.), New York: Acadenic Press.
[4] Priedman, H. P. and Kubin, J. (1967), "On Some Invariant Criteria for Grouping Date," J. Amer. Statist. Assoc., 62, 1159-78.
[5] Galton, Francis (1888), "Co-relations and Their Meamuremente, Chiefly from Anthropometric Data," Proceedines of the Royal Society, Vol. 45, pp. 135-40.
[6] Goodman, L. A. (1971), "The Analysis of Muitidimensional Contingency Tables: Stepwise Procedures and Direct Estimetion Methode for Building Modals for Multiple Classifications," Technometrics, 13, pp. 33-61.
[7] King, B. F. (1967), "Step-olse Clustering Proceduren," J. Amer. Statiat. Aseoc. , 62, pp. 86-101.
[8] Ku, H. H. and Kullback, 8. (1968), "Interaction in Multidimansional Contingency Tables: An Information Theoretic Approach," Journal of Research of the National Bureau of Standards-Mathematical Sciencer, 72B, pp. 159-99.
[9] Kullback, S., Kupperman, M., and Ku, H. H. (1962), "An Application of Information Theory to the Analysis of Contingency Tables, with a Table of $2 \mathrm{n} \ln \mathrm{n}, \mathrm{n}=1(1) 10,000$, "Journal of Research of the National Bureau of Standards-B. Mathematics and Mathematicai Physics, 66B, pp. 217-43.
[10] Pearson, Kar1 (1901), "On Lines and Planes of Closent Fit to Syetams of Pointe in Space," The London, Edinburgh, and Dubin Philonophical Measine and Journal of Science, Vol. 2 (6 th Ser.), Pp. 559-72.
[11] Solomon, H. (1971), "Cluster Analyais," Mathematics in the ArchaeoIorical and Historical Sciencen, Bdinburgh Univerity Prese, pp. 62-81.

SKIP-LOT PROCFDURE FORMULATION USING THF SIMPLIFIED MARYOV CHAIN METHOD

Richard M. Brugger
US Army Armament Command Product Assurance Directorate RAM Assessment Division
Rock Island, Illinois

Abstract

Skip-10t procedure formulations have previously been carried out by usins complicated and tedious Markov chain methods. This paper describes a very short formulation method using a simplified Markov chain approach which was developed by the author for continuous sampling plan formulations, but which has application to the akip-lot problem also.

It is common practice in quality assurance to use a sampling plan to determine whether a lot of units should be accepted or not. For example, we might have a lot of size 100, and draw a sample of size seven. From this sample, we will make an inference about the lot, thereby enabling us to make a decision about what we should do with the lot; should we accept the lot or should we reject? The sampling plan will help us make this decision by providing us with the decision criteria. For example, we might have an attributes-type plan, whereby some characteristic of the unit of product, its paint job, for example, is judged to be either good or bad. Perhaps the samping plan permits one of the seven units to be defective with the lot stiJ. 1 being acceptable, but specifies that if two or more units are defective we must reject the lot.

Another general kind of plan is a variables plan, whereby some dimensional property of the unit, for example, diameter, is determined, and this measurement is included with other measurements to determine perhaps a sample mean and standard deviation, with which suitable tables can be consulted to determine whether the lot should be accepted or not.

In what will follow, we are not especially concerned about what kind of lot sampling plan we are dealing with, since our discussion will apply to any lot sampling plan. We don't care if it is by attributes or variables, nor whether the plan is single, double, multiple, sequential, or what have you, with the sole requirement that it must be a plan whereby a decision is made on a lot from an inference reached in a sample.

Now let's take a look at a skip-lot procedure. Figure 1 provides an example of a very simple one, patterned after the continuous sampling plan CSP-1 of Harold nodge [4, 5]. Note that the rules of the procedure tell us that if five consecutive lots are accepted, we may thereafter use some probabilistic device such as dice or random number to determine whather we should inspect lot; we want the probability that a lot will be inspected in this axample to be one fourth. Note that we have also provided the cautionary statement "provided there are no indications that factors are present which would have caused homogeneity to be lost". Obviously, if we found that a serious machine malfunction had developed while a lot was being run through it, we would not want to skip the inspection on the lot. If homogeneity is lost, or if a lot is rejected, we return to the 100 phase, after which the cycle goes on and on.

In this example then, we see what the skip in skiplot means - we skip the inspection or testing of some lots. Why do we want to do this? The economic factor is usually the sigmificant reason. For example, in using a skip-lot procedure for ballistic testing, over seven and one half million dollars were saved by the Army in the period from 1966 through 1973. This is described by Charles E. Stine [11]. Since skip-lot procedures are analogous to continuous sampling plans, much of the mathematical theory of continuous sampling applies also to skip-lot procedures. The first work in continuous sampling was carried out by Dodge. As the types of plans generated over the years became more and more complicated, the direct algebraic approaches of Dodge were not sufficient for determining such properties of interest as average fraction inspected curves and average outgoing quality curves.
figure 1

aprovioed there are no indications that
factors are present which would cause
homogeneity to be lost.

These problems were overcome with the introduction by Lieberman and Solomon [8] of the theory of Markov chains into the continuous ampling plan area. Markov chain methods were thereafter used a great deal in problems in continuous sampling plan theory; their methods then lugically carried over into problems of skip procedure theory. As a matter of fact, Allon Endres [6], an employee of mine at the time, presented a paper at the Thirteenth Conference on the Design of Experiments using Markov chains to determine the mathematical properties of a rather complicated skip procedure. Two recent papers by Perry [9, 10] in the Journal of nuality Technology make use of Markov chain methods to describe skiplot procedures.

While the Markov chain method permits solution of complex problems, it still involves quite a bit of work. In 1970, after working for several years in the area of plan development and problem solution in continuous sampling plans, the author developed a simplifying algorithm [1]. Although it is described in terms of a continuous sampling plan, it applies also to a skip-lot procedure. The necessary derivations and justifications are provided in [1], so there is no need to go through all of it here. Instead, I'd like to give a short philosuphical explanation of what the simplified Markov chain method is about, and a short example of how it works.

For our example, let's use what perry [10] called the 2 L .2 procedure, which he made analogous to a continuous sampling plan investigated by Guthrie and Johns [7], who obtained the plan from a family of plans developed by Derman, Littauer, and solomon [3]. This is shown on Figure 2.

The rules of the procedure are as follows: Start with normal inspection, inspecting every lot. When i consecutive lots are accepted on normal inspection, switch to skipping inspection at rate f_{1}. If we now have 1 consecutive lots accepted, we go to rate f_{2}, but if a lot is rejected, we return immediately to normal inspection. While we are at rate f_{2}, we return to normal inspection whenever a lot is rejected.

The next step in the usual Markov chain approach is to set up the transition probability matrix, by considering each lot to be represented by a state in a Markov chain. for example, Perry's transitional probability matrix is ghown in table 1 , where

NR denotes lot rejection on normal inspection.
NJ denotea number of consecutively accepted lots during normal inspection is $j(j=1,2, \ldots, 1)$.
slaj denotes number of consecutively inspected and accepted lots during skipping inspection at rate f_{1} is $j(j=1,2, \ldots, i)$.

SlR denotes lot rejected during skipping inspectior at rate f_{1}.
SINj denotes lot skipped during skipping inspection at rate f_{1}, and previous number of inspected and accepted lots on skipping inspuction at rate f_{1} is $j(j=0,1, \ldots, i-1)$.
s2A denotes lot inspected and accepted during skipping inspection at rate f_{2}.

S2R denotes lot rejected during skipping inspection at rate f_{2}.

S2N denotes lot skipped during skipping inspection at rate f_{2}.

The simplified Markov chain approach restructures the problem by defining what the Markov chain represents. Under the old Markov chain method, each lot is represented by a state in a finite Markov chain. Under the simplified method, we might imagine that we have collected all lots occurring consecutively in any given phase of the procedure in big boxes, where the size of the box is uniimited. The labels on the boxes represent the phases of the procedure. The states of the Markov chain represent the labels on the box. In our example, since we have only three kinds of labels, normal, first skipping level, and second skipping level, we have a Markov chain with only three states. Our concern a little later will be with the expected number of lots in a box with a given label.

Table 2 shows the transition probability matrix using the simplified Markov chain approach.

TABLE 2
TRANSITION MATRIX FOR SIMPLIFIED MARKOV CHAIN

	N	FSL	BSL
N	-	$1 *$	-
FSL	$1-\mathrm{P}^{1}$	-	P^{1}
SSL	1^{*}	-	-

*For P<1
The resulting state probability equations are

$$
\begin{align*}
N & =\left(1-P^{i}\right) \text { FSL }+S S L \tag{1}\\
\text { FSL } & =N \tag{2}\\
S S L & =P^{1} \text { FSL } . \tag{3}
\end{align*}
$$

Solving for each of the state probabilities in terms of one of them, we have

$$
\begin{align*}
\mathrm{N} & =\mathrm{N} \tag{4}\\
\mathrm{FGL} & =\mathrm{N} \tag{5}\\
\mathrm{SSL} & =\mathrm{P}^{i} \mathrm{~N} . \tag{6}
\end{align*}
$$

Our interest now is in the coefficients in the resulting equation. These are brought over into column one of our working table, Table 3.

TABLE 3
WORKING TABLE

	$\begin{gathered} 1 \\ \text { COEF. } \end{gathered}$	$\stackrel{2}{\text { SIMP. }}$	$\mathrm{EX.}^{3} \mathrm{NO} .$	$\begin{gathered} 4 \\ \text { SIMP. } \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \text { PROD. } \\ \hline \end{gathered}$
N	1	1	$\left(1-P^{i}\right) / Q P^{i}$	$f_{1} f_{2}\left(1-P^{i}\right)$	$\mathrm{f}_{1} \mathrm{f}_{2}\left(1-\mathrm{P}^{1}\right)$
FSL	1	1	$\left(1-P^{i}\right) / f_{1} Q$	$f_{2} p^{i}\left(1-p^{i}\right)$	$\mathrm{f}_{2} \mathrm{P}^{\mathbf{i}}\left(1-\mathrm{P}^{\mathrm{i}}\right)$
SSL	$\mathrm{p}^{\mathbf{i}}$	$\mathrm{P}^{\mathbf{i}}$	$1 / f_{2} \mathrm{Q}$	$f_{1} \mathrm{P}^{\mathbf{i}}$	$f_{1} \mathrm{P}^{2 i}$

This is our working table needed to complete the solution. Column one lists the coefficients we just mentioned. Column two provides for simplifying column one by clearing denominators or dividing by common factors. Any operation carried out on one element of a column must be carriod out on each of the other elements simultaneousiy. In this case, there is nothing that can be simplified, so column two is the same as column one. Column three contains expressions for the expected number of lots contained in the boxes with the respective labels. Expressions for the various kinds of phases one would expect to encounter are contained in [1]. Column four serves to simplify column three, in the same way that column two is intended to simplify column one. In this case, we see that we can clear the denominator by multiplying each element in column three by $f_{1} f_{2} Q^{1}{ }^{1}$. Column five is the product of columns two and four.

Let the sum of the column five elements equal D. Then

$$
\begin{align*}
N & =f_{1} f_{2}\left(1-P^{i}\right) / D \tag{7}\\
\text { FSL } & =f_{2} P^{i}\left(1-P^{i}\right) / D \tag{8}\\
S S L & =f_{1} \mathbf{p}^{2 i} / D \tag{9}
\end{align*}
$$

We are now ready to determine our long-run operating characteristic curve, which is defined in terms of stationary probabilities as
$P_{a}=P\left[N+f_{1} F S L+f_{2} S S L\right]+\left(1-f_{1}\right) F S L+\left(1-f_{2}\right) S S L$
Notice that we are saying that inspected lots are accepted with probability P while all skipped lots are accepted.

Substituting expressions for N, FSL, and SSL and carrying out a few algebraic operations leads to Perry's solution

$$
\begin{equation*}
\left.P_{a}=\frac{f_{2}\left[P^{i}+f_{1}\right.}{\left.f_{2}\left[P-P^{i}\right)\right]+\left(f_{1}-f_{2}\right) p^{2 i}}\left(1-P_{1}\right)\right]+\left(f_{1}-f_{2}\right) P^{2 I} . \tag{11}
\end{equation*}
$$

1. Brugger, R. M., "A simplification of the Markov chain approach to continuous sampling plan formilation", QEM 21-230-12, Ammunition Procurement and Supply Agency, March 1972.
2. Brugger, R. M., "Responsiveness propertics of continuous sampling plans", Proceodinqs of the Ninetcenth Conference on the Desiqn of lixporiments in Nrmy Rescarch, Development and Testing, to be published.
3. Derman, C., Littauer, S., and Solomon, H., "Tightened multi-level continuous sampling plans". Annals of Mathematical Statistics, Vol. 28 , No. 2, June 1957. pp. 359-404.
4. Dodge, H. F., "A sampling plan for continuous production". Annals of Mathematical Statistics, Vol. 14, No. 3, September 1943, pp. 264-279.
5. Dodge, K. F., "Skip-lot sampling plans", Industrial Quality Control, Vol. 11, No. 5, February 1955, pp. 3-5.
6. Endres, A. E., "The derivation of the operating characteristic curve of a slip-lot sampling plan", Proceedings of the Thirteenth Conference on the Design of Experiments in Army Research, Development and Testing, pp. 31-42.
7. Guthrie D. and Johns, M. V., "Alternative sequences of sampling rates for tightened multi-level continuous sampling plans", Technical Report No. 36 , February, 1953, Applied Mathematics and Statistics Laboratory, Stanford University, stanford, CA.
8. Lieberman, G. J., and Solomon, H., "Multi-level continuous sampling plans, "Annals of Mathematical Statistics, Vol. 26, No. 4, December 1955, pp. 686-704.
9. Perry, R. L., "Skip-lot sampling plans", Journal of Quality Technology, Vol. 5. No. .3, July 1973, pp. 123-130.
10. Perry, R. L., "Two-level skip-lot sampling plans operating characteristic properties", Journal of Quality Technology, Vol. 5, No. 4, October 1973, pp. 160-166.
11. Stine, C. F., "Project SKIP - An idea takes hold", The Army Logistician, Vol. 6, No. 3, May-June 1974, pp. 30-31.

SEMI MARKOV CHINS APPLIED TO MARKOV CHAIN MODELS OF CONTINUOUS SAMPLING PLANS

David L. Arp
Navil Weapons Center
China Lake, California

ABSTRACT. A method is presented for overcoming some of the complexities of analyzing time-homogeneous, irreducible, and finite state Markov Chain (MC) models of Continuous Sampling Plans (CSP's), with potential applications to other processes, by constructing from any such MC a unique Semi Markov Chain (SMC). To this end, a class of MC models is defined in terms of four different basic blocks of MC states called phases which are naturally and unambiguously defined by the MC structures considered. For a phase of a given type, a time-of-sojourn probability density function (p.d.f.) is derived for each possible exit. Any phase, together with its p.d.f.'s, that occurs in a MC is then treated as a SMC state. If self-jumps of phases are forbidden, the SMC so constructed induces and is induced by a unique Markov Renewal Process (MRP); otherwise the MRP induces the SMC but not conversely.

This constructive technique, the $Z-t r a n s f o r m ~ c a l c u l u s$, and Renewal Theory are used to analyze at length, for the Job Shop and Arbitrary Entry cases, the two most common CSP's and the first two moments of the Fraction Inspected functional defined on them. Variations in phase types and; or their p.d.f.'s are considered resulting in, for a given MC, variant SMC's which are in turn studied using the concept of filtration.

For the Arbitrary Entry case, delayed p.d.f.'s are defined by a renewal-theoretical way and by an intuitive constructive way using an initial probability vector which overtly depends on the entire MC model. These two definitions are shown to be equivalent thereby proving the latter, along with certain probability ratios, to the purely phasetype dependent. Using these delayed p.d.f.'s, it is demonstrated that the resulting SMC and MRP are stationary.

Other more complex standard and non-standard plans are also dealt with briefly.
1.0 IMTRODUCTION A prevalent classical treatment of a class of Continuous Sampling Plans (CSP's) has been the study of certain functionals defined on finite-state, ergodic, and time-homogeneous Markov Chain (MC) models which distinguish different types of groupings, called phases, of the states involved -- screening (sc), undimited sampling (uls), limited sampling (1s), and checking (ck) phases being the usual types [see Refi. 7.4 and 7.5]. These phases are in turn hooked together in various ways and in varying numbers, in accordance with sampling frequency criteria, to generate the plans making up this class. Moreover, time is operational and is discretely measured by "number of production units". Of primary importance in measuring the effectiveness of such a sampling plan is the functional Fraction Inspected which can be defined as follows:

$$
F I(N)=1-\frac{1}{N}{\underset{j=0}{N} \underset{(S N)}{\Sigma} M_{S N}(j), ~(j)}^{N}
$$

Where

$$
\begin{aligned}
& N=\text { number of units (or run nunuber), } \\
& { }_{M_{S N}}(j)=\left[\begin{array}{l}
1 \text { if } M_{S N}(j)=S N \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

and SN varies over all the non-inspection states of the corresponding MC model. In deriving formulas for the moments of $F I(N)$, only two starting conditions are of practical importance; the Job Shop and the Arbitrary Entry. In the former case, the components of the initial probability vector are 1 for the starting state of a sc phase and zerc for ail other states and, for the latter case, the components are the steady state or long run probabilities.

To date, only the first moment of this functional has been derived in the Job Shop case for an infinite run and, since the long-run probabilities are also stationary, in the Artitrary Entry case as well (independent of N). In
an earlier paper by the author [Ref. 7.1], in order to obtain, for the simplest and most heavily used of these plans (CSP-1), the mean and variance of the above functional in the short-run Job Shop case and its variance for the Arbitrary Entry case, advantage was taken of the sparseness and regularity of the transitional matrix of the corresponding model to generate difference equations for the salient transitional probability functions which were in turn solved for by the Z-transform method.

Unfortunately, for plans more complex than CSP-1, this method becomes less feasible because of the increased difficulty in deriving the basic difference equations. This situation arises from the accretion of MC state relationships as the plan complexity increases despite the fact that the transitional matrices still remain relatively sparse. In addition, increasing complexity makes it harder to (1) obtain bounds on the moments of FI(IV), (2) to study the growth properties of and relationships between the transitional probability functions and quantities derived from them (which is hard even for CSP-1), (3) to obtain closed expressions and asymptotic expansions for these quantities, and (4) to quantitatively analyze structural differences among the various plans. It seems, therefore, that the difficulties enumerated above would, at best, force a piecemeal approach to CSP's in general with each plan having to be laboriously analyzed from scratch. However, in 1971, R. Brugger [Ref. 7.3] presented a unified and simplified scheme of deriving the mean of FI(∞) in the Job Shop case and of $F I(N)$ in the Arbitrary Entry case for sampling plans of this class (with obvious extensions to stili more general classes). It is his systematic treatment that stimulated the approach given in the present paper.

In this paper, the drawbacks to using the difference equation, z-transform approach are partially (and in some respects completely) sidestepped by the introduction of Semi Markov Chain (SMC) models. In these models, each phase is considered to be a SMC state; the time from entrance to and exit from a given phase to another is treated as the time-of-sojourn in that state
until that particular transition first occurs. Furthermore, the probability density functions (p.d.f.'s) of these sojourn times are obtained in essentially two different but equivalent ways; formulas for the first entrance probability functions are derived either from an absorbing MC or an absorbing SMC setup in which the given MC states of a phase are regarded either as transient MC cr transient SMC states respectively and in both approaches, the possible exit phases are regarded as absorptive states (all other remaining phases being deleted). Because the original MC mode] of any plan in this class is time homogeneous, irreducible, and finite, the SMC model conseructed from it is alsc -- a circumstance which eventually leads to a finite system of easily solved, linear convolution squations for the desired probabilities and quantities derived from them.

The SMC method of obtaining the p.d.f.'s for the canonical phases by splitting them into new one-mC-state subphases, obtaining the corresponding p.d.f.'s, and then reassembling the pieces at the end is really just a variation of the basic idea of constructing a SMC from a MC. Elaborating on this observation, similar departures from the prescription "canonical phase \rightarrow SMC state" afe also considered to aid in the analysis of CSP's: combining two or more canonical phases into a new (super) phase, splitting a canonical phase into two or more new (sub) phases, and/or altering the p.A.f.'s of the phases by the introduction of self-transitions. Thus the word "canonical" (or "basic") should be considezed only as a handy reference term. This added flexibility broadens the applicability of the constructive technique to include MC models in general: for example, weapon-effectiveness and acquisition-of-target models, skip lot sampling procedures [Ref. 7.5], or CSP's with either different types of phases than those considered here or with two or more of the same type which are, however, described by different parametric values. Moreover, as will be seen, the SMC that results from any coalescing of phases is a filtered SMC of the original. Hence, using the variant techniques suggested by the SMC method, we now can associate with or construct from a MC model not just one SMC, but rather a partially ordered set of SMC's with order relation: $S M C_{1}<S_{2} C_{2}$ iff $S M C_{1}$ is a filtration of SMC_{2}.

Some troubles do arise in two situations due to the non Markovian nature of a SMC and in a third setting due to the relationship between a Markov Renewal Process (MRF) and a SMC. The first difficulty occurs in the derivation of the second moment of $F I(N)$; the troublesome point is resolved by the introduction of the concept of filtration (in this case, phase segmentation). The second problem lies in the meaning of stationarity for a SMC and arises specifically here in the treatment of the Arbitrary Entry case. This latter complication is overcome by the introduction of delayed p.d.f.'s, which are equivalenc to the delayed p.d.f.'s in Markov Renewal Theory. The third difficulty involves the proper handilng of self-transitions: a MRP will record such jumps while the induced sMC will not. If a probabilistic interpretation is to be maintained, this snag is handled by treating the MRP as the primary object, the SMC as secondary.
1.1 Notational idiosyncrasies. Throughout the rest of this paper, certain notational idiosyncrasies are observed. (a) In dealing with transfer functions like $\hat{Q}(z)$ say, many times the explicit argument is deleted especially in complex formulas. (b) Many of the proofs altarnate between the convolutional or sequencial notation and the equivalent transfer functional one in order to provide some varietyl the transfer or "hat" notation greatly predominates however because of greater ease in manipulation. (c) CSP is sometimes used synonymously with MC model, sometimes not; the context makes the usage clear. (d) Since the MC states are, by tradition, symbolized by upper case letters, the phases by lower case ones, a minor inconsistency arises whenever any of the canonical phases are split; for example, uls can be split into its component MC states SI (Sampling Inspected) and SN (Sampling Noninspected) which in turn can be looked upon as (variant) phases. For simplicity, this "dual" system is retained here; for instance, when necessary, we shall talk about the phase SN rather than the phase sn.
1.2 Acknowledgements. I would like to thank Mr. Richard M. Brugger specitically for his questions concerning self transitions for the sc phase. His queries led me to consider this topic not only for the sc phase but also the uls phase as well. Also, I would like to thank Mrs. Carmen Ill for the valuable assistance she provided in the preparation of the manuscript.

2.0 PRELIMINARY DEFINITIONS AND RESULTS.

2.1 E-transform. Throughout this paper, the z-transform method will be used exclusively; it is however formally equivalent to the generating function method, the transformation $w=1 / z$ being the bridge between the two techniques. Below, NN is the set of natural numbers and $R R$ is the set of real numbers.

Definition 1. Given a sequence $\{a(j)\}$ considered as a function

$$
\text { "a: } N N+R R^{\prime \prime} \text {, }
$$

its z-transform is

$$
\hat{a}(z)=\sum_{j=0}^{\infty} \frac{a(j)}{z^{j}}
$$

To retrieve the sequence a(*), contour integration is used:

$$
a(n)=\frac{1}{2 \pi I} \oint_{\Gamma} \hat{a}(z) z^{n-1} d z
$$

Where Γ is the path $l z l=R(a)+\varepsilon$; in any subsecuent use of this formula, the following abbreviation will be used:

$$
\frac{1}{2 \pi i} \phi_{\Gamma}=\int^{0}
$$

In definition $1, \hat{a}(z)$ is a function of a complex variable z, analytic in a neighborhood of infinity; i.e.. $\hat{a}(z)$ is analytic for $l z l>R(a)$ whose size, in turn, depends on the growth properties of $a(j)$ as $j+\infty$.

We next define two heavily used standard sequences, the operation of convolution between two arbitrary ones, and the Z-transform of these results.

Definition 2. The Dirac sequence at k,

$$
\begin{gathered}
" \delta_{k}: N N+\{0,1\} " \text { for } k \in N N, \text { is defined via: } \\
\delta_{k}(j)=\left\{\begin{array}{l}
1, \text { for } j=k \\
0, \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

Definition 3. The Heaviside sequence at k,

$$
\begin{gathered}
{ }^{\prime} H_{k}: N N \rightarrow\{0,1\} " \text { for } k \in N N, \text { is defined via: } \\
H_{k}(j)=\left\{\begin{array}{l}
1, j>k \\
0,
\end{array}\right) \text { otherwise. }
\end{gathered}
$$

Proposition 1.
$\hat{\delta}_{k}(z)=\frac{1}{z^{k}}$ and $\hat{H}_{k}(z)=\left(\frac{1}{z^{k-1}}\right)\left(\frac{1}{z-1}\right), k \in N N$.
Proof. Clear from the definitions.

Definition 4. Given two sequences $a(\cdot)$ and $b(\cdot)$, their convolution $a * b(\cdot)$ is a new sequence given by

$$
(a \star b)(n)=\sum_{k=0}^{n} a(: 1-k) b(k) .
$$

Proposition 2. Letting $R M=\operatorname{Max}(R(a), R(b))$, $\widehat{a} \hat{b}(z)=\hat{a}(z) \hat{b}(z) ; \hat{a}+\hat{b}(z)=\hat{a}(z)+\hat{b}(z) ;$ and $\widehat{r a}(z)=r \hat{a}(z)$ for $l z l>R M$ where appropriate and $r \in R R$.

Proof. The preceding definitions and the Cauchy product for the multiplication of two power series.

We next state a useful property of the 2 -transform.

Theorem 1. (End point property) if a(.) is a bounded sequence, then $\hat{a}(z)$ converges at least for $121=R>1$ and

$$
\operatorname{Lim}_{z+1} \frac{z-1}{z} \hat{a}(z)=a(\infty) .
$$

Proof. See reference 7.2 , chp. 11.
2.2 Semi Markov Chains. We next define the concept of a SMC. Given a finite get S, numbered from 1 through r, an outcome space Ω (of sample paths), and a family of random variables $\{X(t)\}, t \in N N$, from Ω to S, we have

Definition 5. $X(\cdot)$ is a finite state, time homogeneous Semi Markov chain iff for each $i \in S$, there exists a family of functions from $N N$ to $[0,1]$,

$$
\left\{Q_{i, j}(t)\right\}, j \in s_{i} \subseteq s,
$$

such that

1. $0 \leq Q_{i, j}(t), j \in s_{i}$
2. $\sum_{j} H_{0}{ }^{*} Q_{i, j}(\infty)=1, j \in S_{i}$
3. $P\left[X(t)=j \mid X\left(t^{-}\right)=i, 0 \leq t^{-}<t\right]=Q_{i, j}(t)$
4. $Q_{i, j}\left(t^{\rho}, t+t^{-}\right)=Q_{i, j}(0, t)=\Omega_{i, j}(t)$.

The following interpretations can be given to the four steps in definition 5. A SMC can be looked upon as a MC in which transitions take place at random times; for $i \in S$, $\left\{Q_{i, j}(t)\right\}$ is just the family of defective p.d.f.'s of the time to transition to some possible exit state; depending on i, and starting initially from i; i.e., the functions are just the time-of-sojourn p.d.f.'s. Step 2. of the definition guarantees that a transition will occur with
probability one. Step 3. is just a more symbolic restatement of the interpretation for the functions $Q_{i} j$, explicitly linking them to $\mathbf{X}(\cdot)$. Finally, step 4. is the time homogeneity criterion.

In proparation for the next major theorem, we list, for convenience, some abbreviations in definition 6. To emphasize some of the short hand notations, one should note that $H_{0}^{*} a(t)=\Sigma a(j), j=1$ to t, and $\left(\delta_{0} * a\right)(t)=a(0)$.

Definition 6.
a. $H_{0}{ }^{*} Q_{i, k}(t)=A_{i, k}(t)$
b. $\sum_{k}^{\Sigma Q_{i, k}}(t)=Q_{i}(t), k \in S_{i}$
c. $\sum_{k}^{\varepsilon A_{i}, k}(t)=A_{i}(t), k \in S_{i}$
d. $H_{0}{ }^{*}\left[\left(q_{i, k}\right) \delta_{0}-Q_{i, k}\right](t)=J_{i, k}(t)$
e. $H_{0}{ }^{*}\left[\delta_{0}-Q_{i}\right](t)=J_{i}(t)$.

Some comments on definition 6 follow. In $a_{i}, A_{i, k}(t)$ is the (defective) distribution function (d.f.) for the transition $i \rightarrow k$. Q_{i} in b. or A_{i} in C) is the (non defective) p.d.f. or dif. respectively of a transition from i. In d. $J_{i, k}(t)$ is the (defective) d, f. of no transition from i to k and finally, summing this quantity over all possible exit states from i, we get J_{i} which is the d.f. of no transition from i. In the future, for convenience, we let $Q_{i, k}(t)=0$ if $k S_{i}$ thus eliminating the need for additionai notation. Having definition 6 , we can now state

Theorem 2. (Backward equations) If we define

$$
P_{i, j}(t)=P[X(t)=j \mid x(0)=i],
$$

we then have

$$
\text { (F.S.) } P_{i, j}(t)=\sum_{k}\left({ }_{i, k}+\Gamma_{k, j}\right)(t)+\left(\delta_{i, j}\right) J_{i}
$$

$k \in s, \delta_{i, j}$ is the ordinary Kronecker δ.

Proof. Time homogeneity and conditioning on the time of first transition starting from i; also see [7.9 and 7.11].

Associated with any SMC is its embedced MC; we define this in
Definition 7 . Let W_{n} be the time for the nth transition: let

$$
Y(n)=X\left(W_{n}\right) .
$$

Then $Y(\cdot)$ is the Embedded MC associated with $X(\cdot)$.
Clearly,

$$
\left[A_{i, j}(+\infty)\right]=\left[q_{i, j}\right]
$$

is the transitional matrix for $Y(\cdot)$; it is time homogencous since $X(\cdot)$ is.

Letting $F_{i, k}(t)$ be the first entrance probability of i into k, which exists since transitions take place at Markov points or epochs (i.e., the W_{n} 's), conditioning on the first entrance, and using the z-transform, we have

Proposition 3.
a. $P_{j, j}(t)=F_{j, j}{ }^{* P_{j, j}}(t)+J_{j}(t)$.
$a \cdot \quad \hat{F}_{j, j}=1-\frac{\hat{J}_{j}}{\hat{P}_{j, j}}$ and $\hat{P}_{j, j}=\frac{\hat{J}_{j}}{1-\hat{F}_{j, j}}$
b. $P_{j, k}(t)=F_{j, k}{ }^{*} P_{k, k}(t)$.
$b^{\circ} \cdot \quad \hat{F}_{j, k}=\frac{\hat{P}_{j, k}}{\hat{P}_{k, k}}$ and $\hat{P}_{j, k}=\hat{F}_{j, k} \hat{P}_{k, k}$.
Letting $W_{n}(k)$ be the time of occurrence (waiting time) of the nth entrance into k by $x(\cdot)$, we have

Definition 3.

$$
\begin{aligned}
& N_{k}(t)=\operatorname{Max}\left\{n \mid W_{i}(k i \leq t\}\right. \\
& E_{j}\left[N_{k}(t)\right]=E\left[N_{k}(t) \mid X(0)=j\right]=R_{j, k}(t) \\
& N(t)=\sum_{k} N_{k}(t), k \in S \\
& \underline{N}(t)=\left(N_{k}(t)\right), k \in S .
\end{aligned}
$$

Proposition 4.

$$
\begin{aligned}
& P_{k, k}(t)=R_{k, k} *\left(\delta_{0}-Q_{k}\right)(t) \\
& P_{j, k}(t)=R_{j, k}^{*}\left(\delta_{0}-\Omega_{j k}\right)(t)
\end{aligned}
$$

Proof.
a. $\sum_{n=0}^{\infty} H_{0} * F_{k, k}(n)(t)=1+\sum_{n=1}^{\infty} P_{k}\left[W_{n}(k) \leq t\right]$

$$
\begin{aligned}
& =1+\sum_{n=1}^{\infty} P_{k}\left[N_{k}(t) \geq n\right] \\
& =1+\sum_{m=1}^{\infty} m P_{k}\left[N_{k}(t)=m\right] \\
& =F_{k}\left[N_{k}(t)\right]
\end{aligned}
$$

b. © taking z-transforms, we have

$$
\frac{\hat{H}_{0}}{1-\hat{F}_{k, k}}=\hat{R}_{k, k}
$$

Similarly, we also have

$$
R_{j k}=F_{j k}^{* R_{k k}} \quad \text { or } \quad \hat{R}_{j k}=\hat{F}_{j k} \hat{R}_{k k}
$$

c. From b, and Prop $3 a^{\circ}$ and $3 b^{\circ}$,

$$
\begin{aligned}
\hat{P}_{k k} & =\frac{\hat{H}_{0}\left(1-\hat{Q}_{k}\right)}{1-\hat{F}_{k k}} \\
& =\hat{R}_{k k}\left(1-\hat{Q}_{k}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{\mathbb{P}}_{j k} & =\hat{F}_{j k} \hat{\mathrm{P}}_{k k} \\
& =\hat{F}_{j k} \hat{R}_{k k}\left(1-\hat{Q}_{k}\right) \\
& =\hat{R}_{j k}\left(1-\hat{Q}_{k}\right)
\end{aligned}
$$

As in a findte MC, we can define recurrent state, communication of states, irreducibility, and periodicity. With these topics in mind, we state

Theorem 3. A (finite) SMC is irreducible iff its embedतedMC is. A SMC is aperiodic iff there exists $j-S_{i}$ such that support $\left(Q_{i j}\right) \leq\{\lambda t\}, t=1$ to ∞ provided that the SMC is irreducible.

Proof. (a) First statement see [Ref 7.6, Chp 5], (b) second statement see [Ref 7.7, Chp 2].

The proofs are straight forward but lengthy,
If $i S_{i}\left(i . e ., Q_{i}, i=0\right.$ for alli) for all i, then an irreducible SMC induces a uniquely defined MRP and conversely. The MRP can be taken to be $\left\{\left(Y_{n}, \tau\right), \tau\right.$ is the time spent in X_{n} since the last transition] [Ref 7.6, Chp 7]: in older terminology [Refs 7.11, 7.12]. N(t), definition 8 , is defined as the associated MRP since $\left\{\left(K, W_{n}(K)\right), K \in S\right\}$ can be looked upon as a multiple markov renewal process. Conversely, the MRP induces the SMC via: $X(t)=Y_{N(t)}$.

Closing the section, we give the basic theorem on irreducible SMC's.

Theorem 4. If u_{s} is the iong-run mean time-of-sojourn in state s, then, given that the SMC is irreducible and finite with $\mathbf{e}=\left(\varepsilon_{1}, \ldots, e_{\gamma}\right)$ as the corresponding eigen vector of the embedded MC matrix with eigen value one, we have
a. $\operatorname{Lim}_{t \rightarrow \infty} P_{i, j}(t)=P_{j}(\infty)$
$=\alpha_{j}$
$=\frac{e_{j}{ }^{\mu}{ }_{j}}{\sum e_{s}{ }^{\mu_{s}}}$
b. $\quad \operatorname{Lim}_{z+1}\left(\frac{z-1}{z}\right) \hat{P}_{i, j}(z)=P_{j}(\infty)$
c. An ergodic theorem holds:
if F is a functional, then

$$
\frac{1}{N} \sum_{t=0}^{N} F(X(t))+E_{\underline{\alpha}}[F] \quad \text { [a.e.]. }
$$

where

$$
\begin{aligned}
E_{\underline{\alpha}}[F] & =\sum_{s} F(s) P_{s}(\infty) \\
& =\sum_{s} F(s) a_{s} .
\end{aligned}
$$

Proof. b. is just the end-pt. property of the z-transform. a. and c. follow from some straight-forward renewal-theoretical arguments found in [Ref 7.6, Chps 7, 8].
2.3 Sampling Plan Phases. In the following descriptions, the box diagram for each phase is given first followed by the MC description; in passing from the former to the latter, the assumption of a constant probability of defective, p, is assumed. Furthermore, practically speaking, upon finding a defective, one either discards it or, less realistically, replaces it with a non-defective unit. In Figures 1 through 4, $q=i-p, f=$ sampling frequency, $v=1-f$, and the transitional probabilities are written beside the corresponding arrows.

Upon entering the screening phase (abbr. sc), inspect the production units at 100% until I Consecutive units are defect free; then exit.

Figure 1

MC Model of Sampling Phase.

$(1,1)$

Upon entering the unlimited sampling phase (abbr. uls), sample at random with frequency f until a defect is found (durirg inspection); then exit.

Figure 2

MC Model of Unlimited Sampling Phase.

(1, 1)
one entrance and one exit.

SN $=$ Noninspection State SI $=$ Inspection State

Upon entering a limited sampling phase (abbr. ls) sample at frequency f until, condition $1, k$ units are sequentially found to be defect free or, condition 2 , a defect is found before condition 1 is satisfied; then exit to the condition-dependent next phase.

Fig̣ure 3
MC Model of Unlimited Sampling Phase.

Upon entering the checking phase (abbr. ck) inspect at 100% the next m units discarding (or replacing) ail defective units found; if the m units are all defect frec exit one way or another different way if one or more defects are found.

Figure 4
MC Model of Checking Phase.

one entrance and two exits.

2.4 Sampling Plans Having defined the sampling phases, it is now an easy matter to describe the two most practical ones, CSP-1 and generalized CSP-2, as well as one which contains all four phases -- generalized CSP-3. The diagrams in Figure 5 are selfeexplanatory; also, as indicated by the diagrams, the terms CSP and MC model will be used interchangeably unless otherwise stated; the use of the word "generalized" is necessitated by standard usage which requires $k=I$ for the $1 s$ phase and $m=4$ for the ck phase.

Figure 5
Sampling Plans.

3.0 SAMPLING PLAN PHASES.
3.1 Phases as SMC states. In Theorems one through four below, two essentially different but equivalent methods of proof are used: the MC method and the SMC method. Before launching into a description of these two approaches, we make

Definition 1. A phase is completely ordered iff its states are well-ordered by the phase regime from entrance to exit; it is quasi ordered jff its states are totally ordered by the phase regime from entrance to exit.

In the MC method, for a given phase, an absorbing MC is constructed whose transient states or absorptive states correspond to the phase MC states or exit phases respectively. Using an initial probability vector whose transient components are equal to the individual phase MC state entrance probabilities conditioned by the event of initial phase entrance, the formulas for the firgt entrance probability functions into the various absorptive states are then derived. Specifically, for a given absorptive state, the first entrance p.d.f. into this state starting from each of the transient states is obtained; then a weighted sum of these functions, each weighed by its initial entrance probability, is taken. The result is the desired p.d.f. for this particular exit phase.

In the SMC method, a given phase is broken up into its constituent $\overline{M C}$ states by treating any state with selftransitions or no self-transitions as a non-degenerate or degenerate MC (noncanonical) phase respectively. proceeding according to the MC method, the appropriate p.d.f.'s for each of these (noncanonical) MC phases are then obtained thereby constructing from each such state a "mini" absorbing SMC whose absorptive SMC states are equal in number to the possible exit MC states - - exclusive of the state itself (i.e., no self-transitions are allowed in the SMC). These "mini" absorptive SMC's are then amalgamated into a composite absorbing SMC whose transient states are now the corresponding "mini" transient SMC states and whose absorptive staies are, once again, the relevant exit phases. Finally, since a first entrance occurs at an epoch in a SMC, one can proceed to mimic the MC method to derive the first entrance
probabilities. In particular, for a canonical MC phase which is either completely ordered or can be subdivided into subphases which are (e.g., the 1 s phase), this method can proceed inductivel.y -- the absorbing state or subphase at step h being the $(h+1) s t$ state or subphase respectively.

Thus, in the end, with either method, we have constructed from a giver phase an absorbing SMC with one transient state and absorptive states equal in number to the possible exit phases. Moreover, though the setup given in Chapter two for an absorbing SMC can be formally used for the amalgamation in the SMC method, the proofs below which use this method will be given more conetructively and, hopefully, more intuitively. Noretheless, the absorbing SMC apparatus will always lie in the background. Furthermore, outside of the context of any irreducible SMC, we shall hercafter refer to a phase with its p.d.I.'s either as a potential SMC state, for eventual inclusion in a CSP (irreducible SMC) or as a tranaient SMC otate in the constructive sense of the SMC method; both viewpoints are mathematically equivalent, the nuances different.

In Theorems one through four below, $A(\cdot)$ will always stand for an absorptive state; for instance, if a phase has only one possible exit, the symbol "A" alone will be used, if two or more exits are possible, the symbols " A_{1} ", " A_{2} ", or "A(1)", "A(2)", ... will then be used,

Theorer: 1. The screening phase is a potential SMC state with b.a.f. given as:

$$
\hat{Q}_{S C, A}(z)=\frac{q^{I}(z-q)}{z^{I}(z-1)+\gamma}, \gamma=p q^{I}
$$

Proof. (MC method)

a. Absorbing MC is given by:

	HO^{1}	H1	H2	H3	---	H(I-1)	A
H0	p	q	0	0	---	0	0
H1	p	0	q	0	---	0	0
H2	p	0	0	q	---	0	0
-							
-				-			
H(I-1)		0	0	0	---	0	q
A	0	0	0	0	---	0	1

b. Initial probability vector $=(1,0,0, \ldots, 0)$.
c. From the Chapmann-Kolmogorov (C-K) equations, we get. fram a. and b., the following system (letting $\mathrm{Hj}=\mathrm{j}$):

$$
P_{j, A}^{n}=p P_{0, A}^{n-1}+\tau P_{j+1, A}^{n-1}, 0 \leq j<\tau-1
$$

and

$$
p_{I-1, A}^{n}=p p_{0, A}^{n-1}+q H_{1}
$$

since

$$
\begin{aligned}
& P_{A, A}^{k}=P_{A, A}^{k-1}+\delta_{0}(k) \\
& P_{A, A}^{k}=I_{0}(k)
\end{aligned}
$$

d. Because of b., we want to obtain
(1) $f_{0, ~}^{n}$
which is just $Q_{s c, A}(n)$.
e. But

$$
\begin{aligned}
\mathbf{E}_{0, A}^{n} & =\left(E_{0, A}{ }^{\left.* P_{A, A}\right)_{n}}\right. \\
\hat{E}_{0, A} & =\hat{E}_{0, A} \cdot \hat{\mathbf{P}}_{A, A} \\
& =\hat{f}_{0, A} \cdot \hat{H}_{0} .
\end{aligned}
$$

Thus, $\hat{\mathrm{f}}_{0, A}=\left(\hat{H}_{0}\right)^{-1} \hat{\mathrm{P}}_{0, A}$.
f. From c. we obtain by substitution:

$$
P_{0, A}^{n}={\underset{j=0}{I-1}\left(p q^{j}\right) P_{0, A}^{n-(j+1)}+q^{I} P_{A, A}^{n-I}, ~}_{\text {I }}^{n-1}
$$

or

$$
\hat{P}_{0, A}=\sum_{j=0}^{I-1}(p q j) \frac{\hat{P}_{0, A}}{z^{J+1}}+q^{I^{I}} \frac{\hat{H}_{0}}{z^{I}}
$$

Simplifying and using geometric series summation, we finally have

$$
\hat{P}_{0, A}=\hat{H}_{0}\left(\frac{q^{I}(z-q)}{z^{I}(z-1)+\gamma}\right)
$$

g. Thus from f., e., and d., we have

$$
\hat{Q}_{\mathrm{BC}, \mathrm{~A}}(z)=\frac{q^{I}(z-q)}{z^{I}(z-1)+\gamma}
$$

Second Proof. (SMC-method).
a^{\prime}. Since the sc phase is completely ordered, we can proceed by induction. For $I=1$,
$\xrightarrow[\mathrm{HO}]{\mathrm{P}} \mathrm{q}_{\rightarrow A}$ yields $\hat{R}_{0, A}=q /(z-p)$

$$
\begin{aligned}
& =q(z-q) /(z-p)(z-q) \\
& =\frac{q(z-q)}{z(z-1)+\gamma_{1}} .
\end{aligned}
$$

$$
\hat{Q}_{s c j, A(j+1)}(z)=\frac{q^{j}(z-q)}{z(z-1)+r_{j}}, r_{j}=p q^{j}
$$

by induction.

$$
\begin{aligned}
& \hat{Q}_{j+1, A(s c j)}(z)=\frac{p}{z} \\
& \hat{Q}_{j+1, A}(z)=\frac{q}{z}, \text { where }(j+1)=H(j+1) . \\
& \text { c. Amalgamate }(j+1) \text { and sci. }
\end{aligned}
$$

$$
\text { Thus } \hat{Q}_{\text {sCj }, A}=\left\{\sum_{n=0}^{\infty}\left(\hat{Q}_{\operatorname{scj},(j+1)} \hat{Q}_{(j+1), g C j}\right)^{n}\right) \hat{Q}_{\operatorname{scj}}(j+1)^{\hat{Q}}(j+1), A
$$

$$
=\frac{\hat{Q}_{\mathrm{BCj}}(j+1)^{\hat{Q}_{(j}}(j+1), A}{1-\hat{Q}_{\mathrm{SCj}},(j+1)^{\hat{Q}}(j+1), \mathrm{scj}}
$$

$$
=\frac{q^{j+1}(z-q)}{z^{j+1}(z-1) p q^{j} z-p q^{j} z+p q^{j+1}}
$$

$$
=\frac{q^{j+1}(z-g)}{z^{j+1}(z-1)+\gamma_{j+1}}
$$

Third Proof. (SMC method - no induction) This third proof is given to further elucidate the SMC method.
a". Mini states: $\{j\}_{j=0}^{\mathrm{I}-1}$; all are degenerate except for 0 . Working with the corresponding mini-absorptive SMC's, we have

$$
\left.\begin{array}{l}
\hat{Q}_{0, A(1)}(z)=\frac{q}{z-p} \\
\hat{Q}_{j, A(j+1)}(z)=\frac{q}{z} \\
\hat{Q}_{j, A(0)}(z)=\frac{p}{z}
\end{array}\right\} \begin{aligned}
& 0<j \leq(I-1)
\end{aligned}
$$

$$
\text { where } A(I)=A \text {. }
$$

b". Upon amalyamation, we have an absorbing SMC with I transient states
$\left\{\left(j ; \hat{\cap}_{j, j+1}(z), \hat{o}_{j, 0}(z)\right)\right\}_{j=1}^{I-2} \quad$.
$\left\{\left(0 ; \hat{Q}_{0,1}(z)\right)_{2}\left(I-1 ; \hat{o}_{(I-1), A}(z), \hat{\Pi}_{\left.\left.(I-1), 0^{(z)}\right)\right\},}\right.\right.$
and one absorbing state $\left(A ; \hat{\underline{O}}_{A A}(z)\right)$ where $\hat{Q}_{A A}(z)=\hat{H}_{0}(z)$.
$c^{\prime \prime}$. Given the (assembled) absorbing SMC in $b^{\prime \prime}$ we have
$\sum_{j=0}^{I-1}\left(\delta_{0, j}\right) \hat{F}_{j, A}(z)=(1) \hat{F}_{0, A}(z)=\hat{X}_{B C, A}(z)$.

Theorem 2. The unlimited sampling phase is a potential SMC stace with p.d.f. given by

$$
\hat{X}_{\mathrm{uls}, A}(z)=\frac{\delta}{z-B},
$$

where δ (unadorned) $=f \mathrm{p}$ and $\beta=1-\delta$.
First Proof. (MC method)
a. The absorbing MC is given by
SN
SI
A $\quad\left[\begin{array}{lll}u & \text { SI } & A \\ u q & f q & 0 \\ 0 & 0 & 1\end{array}\right]$
b. Initial probability vector $=(u, f, 0)$.
c. Again from the $\mathrm{C}-\mathrm{K}$ eqs. and a. , we have:

$$
\begin{aligned}
& \mathrm{P}_{S N, A}^{n}=U \mathrm{P}_{S N, A}^{n-1}+f \mathrm{P}_{S I, A}^{n-1} \\
& \mathrm{P}_{S I, A}^{n}=u \mathrm{IP}_{S N, A}^{n-1}+\mathrm{fqP}_{S I, A}^{n-1}+\mathrm{pp}_{A, A}^{n-1}
\end{aligned}
$$

which implies

$$
\begin{aligned}
\hat{p}_{S N, A} & =\left(\frac{f}{z-v}\right) \hat{p}_{S I, A} \\
\hat{p}_{S I, A} & =\frac{u q}{z-f q} \hat{p}_{S N, A}+\frac{p}{z-f q} \hat{H}_{0} . \\
\text { Since } \hat{p}_{S N, A} & =\hat{f}_{S N, A} \hat{H}_{0} \\
\text { and } \hat{p}_{S I, A} & =\hat{f}_{S I, A} \hat{H}_{0}
\end{aligned}
$$

we have upon simplifying:

$$
\hat{f}_{S N, A}=\frac{\delta}{z(z-B)} \text { and } \hat{f}_{S I, A}=\frac{p(z-U)}{z(z-B)} .
$$

d. From b., we want to obtain
(u) $f_{S N, A}^{n}+(f) f_{S I, A}^{n}=Q_{u l s, A}(n)$.
e. Transforming d. and using the last two formulas in C., we have

$$
v\left(\frac{\delta}{z(z-\beta)}\right)+f\left(\frac{p(z-v)}{z(z-\beta)}\right)=\frac{\delta}{z-\beta} .
$$

f. Thus $\hat{\Omega}_{\mathrm{Uls}, \mathrm{A}}(z)=\frac{\delta}{z-\beta}$ from e, and d.

Second Proof. (SMC method)

$$
\left.\begin{array}{rl}
a^{\prime} \cdot \hat{\theta}_{S N, A(S I)}(z) & =\frac{f}{z-u} \\
\hat{\theta}_{S I, A(S N)}(z) & =\frac{u q}{z-f q} \\
\hat{Q}_{S I, A}(z) & =\frac{p}{z-I q}
\end{array}\right\}
$$

Thus we have two non-degenerate mini sic states and two mini absorbing SMC's with the following embedded MC's:

SMC (SN) :		SN	A (SI)	
	SN	0	17	
	A(SI)	0	1	
		SI	A (SN)	A
SMC (SI) :	SI	0	$v \chi^{\prime} /(1-f q)$	$p /(1-f q)]$
	A (SN)	0	1.	0
	A	0	0	1

b^{\prime}. Now once again assemble the two mini absorbing SMC's into one aggregate absorbing SMC. The result is an absorbing SMC with two transient states (SN ; $\hat{\mathrm{O}}_{\mathrm{SN}, \mathrm{SI}}(\mathrm{z})$) and (SI; $\left.\hat{n}_{S I, S N}(z), \hat{n}_{S I, A}(z)\right)$; one absorptive state ($\left.A ; \hat{n}_{A, A}(z)\right)$; and an embedded MC given by
SI
$S N$
$A I$$\left[\begin{array}{ccc}S N & A \\ 0 & u q /(1-f q) & p /(1-f q) \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
c^{\wedge}. Hence, we now want:
$(:) \hat{F}_{S N, A}(z)+(f) \hat{F}_{S I, A}(z)=\hat{Q}_{\mathrm{Uls}, \mathrm{A}}(z)$
by d. We can write down expressions for the \hat{F} 's directly: $\left.\hat{F}_{S N, A}=\hat{Q}_{S N, S I}{ }_{n=0}^{\infty}\left(\hat{\varrho}_{S I, S N} \hat{S}_{S N, S I}\right)^{n}\right\} \hat{\Omega}_{S I, A}=\frac{\hat{S}_{S N, S I} \hat{\varrho}_{S I, A}}{1-\hat{Q}_{S I, S N} \hat{饣}_{S N, S I}}$

$$
\begin{aligned}
\hat{F}_{S I, A} & \left.=\sum_{n=0}^{\infty}\left(\hat{Q}_{S I, S N} \hat{Q}_{S N, S I}\right)^{n}\right\} \hat{Q}_{S I, A} \\
& =\frac{\hat{Q}_{S I, A}}{1-\hat{Q}_{S I, S N} \hat{\hat{S}}_{S N}, S I}
\end{aligned}
$$

d-. From c^{\prime}. and simplifying,

$$
\begin{aligned}
\hat{Q}_{\mathrm{uls}, \mathrm{~A}}(z) & =\frac{\left(\cup \hat{\mathrm{Q}}_{\mathrm{SN}, \mathrm{SI}}+f\right) \hat{\theta}_{\mathrm{SI}, \mathrm{~A}}}{1-\hat{\mathrm{O}}_{\mathrm{SN}, \mathrm{SI}} \hat{Q}_{\mathrm{SI}, \mathrm{SN}} .} \\
& =\frac{\delta}{z-\beta} .
\end{aligned}
$$

Theorem 3. The limited sampling phase is a potential SMC state with p.d.f. \bar{s} given by:
$\hat{Q}_{15, A(1)}(z)=\left(\frac{\delta}{z-\beta}\right)\left(1-\left(\frac{f q}{z-u}\right)^{k}\right)$
$\hat{Q}_{1 s, A(2)}(z)=\left(\frac{f q}{z-v}\right)^{k}$.
First Proof. (MC method)
a. Ordering the states of 1 s as: $\mathrm{SN}_{0}, \mathrm{SI}_{0}, \ldots$. $\mathrm{SN}_{\mathrm{k}-1}, \mathrm{SI}_{\mathrm{k}-1}, \mathrm{~A}_{1}$, and A_{2}; we have an initial probability vector $\underline{v}=(u, f, 0,0,--\infty) ;$ i.e.e $v_{\text {SN }}=u$ and $v_{S I O}=f_{i}$ the matrix corresponding to the absorbing MC can be easily written down if one desires.
b. For convenience, we combine SN_{0} and SI_{0} into $\mathrm{SN}_{0} \mathrm{~V} \mathrm{SI}_{0}=\mathrm{S}$. Then, using the $\mathrm{C}-\mathrm{K}$ equations again, we have

$$
\begin{equation*}
p_{S, A(2)}^{n}=q p_{S, S I(k-1)}^{n-1}+p_{S, A}^{n-1} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& p_{S, S I(k-j)}^{n}=(f q) P_{S, S I(k-(j+1)}^{n-1}+(f) P_{S, S N(k-j)}^{n-1} \\
& (1 \leq j \leq k-1) \\
& P_{S, S N(k-j)}^{n}=(u q) P_{S, S I(k-(j+1))}^{n-1}+(u) P_{S, S N(k-j)}^{n-1} \\
& P_{S, S N O}^{n}=U P_{S, S N O}^{n-1}+(u) \delta_{0}(n) \\
& F_{S, S I O}^{n}=f P_{S, S N O}^{n-1}+(f) \delta_{0}(n) .
\end{aligned}
$$

c. Letting $a=\hat{P}_{S, A(2)}, b_{j}=\hat{P}_{S, S I j}$, and $c_{j}=\hat{P}_{S, S N j}$, then, using the z-transform in b. and simplifying yields:

$$
\begin{aligned}
& a=\left(\frac{g}{2-I}\right) b_{k-1} \\
& (1 \leq j \leq k-1) \quad\left\{\begin{array}{l}
c_{k-j}=\left(\frac{q u}{z-u}\right) b_{k-(j+1)} \\
b_{k-j}=\left(\frac{f q}{z-v}\right) b_{k-(j+1)}
\end{array}\right. \\
& \therefore b_{j}=\left(\frac{f g}{z-u}\right) j_{b_{0}} \text { for } 1 \leq j \leq k-1 \\
& \therefore \quad a=\left(\frac{q}{z-1}\right)\left(\frac{f q}{z-u}\right)^{k-1} b_{0} \\
& b_{0}=\frac{f z}{z-u} . \\
& \therefore a=\hat{H}_{0}\left(\frac{f q}{z-v}\right)^{k} ; \quad \text { using } a_{0}, \hat{o}_{1 s, A(2)}(z)=\left(\frac{f q}{z-v}\right)^{k} \text {. }
\end{aligned}
$$

For exit to $A(1)$, we have:

$$
P_{S, A(1)}^{n}=\sum_{j=0}^{k-1} P_{S, S I j}^{n-1}+P_{S, A(1)}^{n-1} P_{A(1), A(1)}
$$

Which implies

$$
\hat{p}_{S, A(1)}=\frac{\mathrm{pb}_{0}(z)}{(z-1)}\left(1-\left(\frac{f g}{z-v}\right)^{k}\right) \frac{(z-u)}{(z-\beta)}
$$

Again using a. and multiplying through by $\left(\hat{H}_{0}\right)^{-1}$, we have:

$$
\hat{Q}_{1 B, A(1)}(z)=\left(\frac{\delta}{z-\beta}\right)\left(1-\left(\frac{\tilde{q}}{z-0}\right)^{k}\right)
$$

Second Proof. (SMC method)

$$
(j+1) \text {, for } 0 \leq j \leq k-2
$$

a. Let $A(j+1)=$

$$
A(2), \text { for } j=k-1
$$

are all structually equivalent, in contrast to the sc phase where HO differed from Hj, $0<j<I-1$, we could use the inductive method applied to 2-state subphases; however, it is easier to use the SMC method directly applied to 2-state phases thereby skipping one logical step in the amalgamation procedure.
b^{\prime}. For given $k \geq 1$, we have

$$
\begin{aligned}
& \hat{Q}_{S N J, S I j}=f /(z-u) \\
& \hat{Q}_{S I j, A(j+1)}=q / z \\
& \hat{Q}_{S I j, A(1)}=p / z \quad(0 \leq j \leq k-1)
\end{aligned}
$$

Therefore for subphase j, we have

$$
\begin{aligned}
& \hat{Q}_{j, A(j+1)}=U \hat{n}_{S N j, S I j} \hat{\varrho}_{S I j, A(j+1)}+f \hat{S}_{S I j, A(j+1)} \\
& =\mathrm{fq} /(z-u) \\
& \hat{\hat{n}}_{j, A(1)}=(u) \hat{\Lambda}_{S N j, S I j} \hat{X}_{S I j, A(1)}+(f) \hat{\Lambda}_{B I j, A(1)} \\
& =f p /(z-v)
\end{aligned}
$$

c°. Hence we obtain mini absorbing SMC's which have one transient 3MC state (two-MC-state) and two absorbing states for each J. Amalgamating as before, we get k transient states

$$
\left\{\left(j ; \hat{\Omega}_{j, j+1}, \hat{Q}_{j, A(1)}\right)\right\} \hat{f}_{j}^{k-2}\left\{\left((k-1) ; \hat{Q}_{(k-1), A(2)} \cdot \hat{Q}_{(k-1), A(1)}\right)\right\}
$$

and two absorptive states $A(1)$ and $A(2)$. Its embedded MC is:

	0	1	2	\cdots	$(k-1)$	$A(1)$	$A(2)$
0							
1							
-							
-	0	q	0	\cdots	0	p	0
$(k-1)$	0	q	\cdots	0	p	0	
$A(1)$	0						
$A(2)$	0	0	\cdots	0	p	q	

d ". The initial probability vector is now = (1, 0, ... 0). Thus we now want
(1) $\left(\hat{F}_{0, A(1)}\right)=\hat{\AA}_{1 B, A(1)}$
and
(1) $\left(\hat{F}_{0, A(2)}\right)=\hat{\Omega}_{18, A(2)}$.
e^{\cdot}. Once again using a constructive derivation, we have

$$
\begin{aligned}
\hat{F}_{0, A(2)} & =\left(\hat{O}_{0,1}\right)\left(\hat{C}_{1,2}\right) \cdot \cdots \cdot(\hat{K}(k-1), A(2)) \\
& =\frac{\pi}{k}\left(\frac{f q}{z-U}\right) \\
& =\left(\frac{f q}{z-U}\right)^{k},
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{E}_{0, A(1)}= & \left(\hat{R}_{0, A(1)}\right)+\left(\hat{Q}_{0,1}\right)\left(\hat{Q}_{1, A(1)}\right)+\cdots+ \\
& \left(\hat{Q}_{0,1}\right)\left(\hat{Q}_{1,2}\right), \cdots \cdots \cdot\left(\hat{Q}_{k-1, A(1)}\right) \\
= & \frac{f p}{\left.(z-v)^{i} \sum_{j=0}^{k-1}\left(\frac{f q}{z-v}\right)^{1}\right\}} \\
= & \frac{f p}{(z-v)}\left\{\frac{1-\left(\frac{f q}{z-v}\right)^{k}}{z-\left(v+\frac{1}{q}\right)}\right\}(z-v) \\
= & \left(\frac{\delta}{z-\beta}\right)\left(1-\left(\frac{f q}{z-v}\right)^{k}\right) .
\end{aligned}
$$

Theorem 4. The checking phase is a potential BMC state with p.d.f.'s given by

$$
\begin{aligned}
& \hat{Q}_{\text {Ck, } A(2)}(z)=(q / z)^{m} \\
& \hat{Q}_{C k, A(1)}(z)=\left(1-q^{m}\right) /\left(z^{m}\right) . \\
& \text { First Proof. } \quad(M C \text { proof })
\end{aligned}
$$

a. The absorbing MC trangitional matrix is easy to write out from Figure 2.
b. Ordering the states $C 0, C 1,-\infty, \overline{C O},--A_{1}, A_{2}$, we have $y=(1,0,0,-\infty, 0)$ as the initial probability vector.
c. Proceeding as before, we have
$p_{C 0, A(2)}^{n}=P_{C O, A(2)}^{n-1} P_{A(2), A(2)}+\delta_{m}(n) q^{m}$
$P_{C 0, A(1)}^{n}=P_{C 0, A(1)}^{n-1} P_{A(1), A(1)}+\delta_{m}(n)\left(1-q^{m}\right)$.
d. z-transforming c. and solving we obtain the result.

Second Proof. (SMC method)
a- Since we neither have a possible reentry to an initial state at any step nor a natural segmenting of ck into (oj, CJ), we use the SMC method directly.
b*. The functions
$(0 \leq j \leq m-1)\left\{\begin{array}{l}\hat{Q}_{c j, A(j+1)}(z)=\frac{q}{2} \\ \hat{Q}_{c j, A(j+1)}(z)=\frac{p}{z},\end{array}\right.$
where $\overline{A(m-1)}=A(1)$ and $A(m-1)=A(2)$, and
$(0 \leq j \leq m-2) \quad \hat{Q}_{\overline{C j}, \vec{A}(j+I)}(2)=\frac{1}{2}$.
where $\overline{A(m-1)}=A(1)$ again, make up the pieces to be assembled in the usual way.
$\mathrm{c*}$. We want $(1) \hat{\mathrm{F}}_{\mathrm{CO}}, \mathrm{A}(1)$ and (1) $\hat{\mathrm{F}}_{\mathrm{CO}}, \mathrm{A}(2)$. Letting $C j=j$ and $\overline{\overline{C J}}=\mathbf{J}$, we have

$$
\begin{aligned}
& \hat{F}_{0, A(2)}=\left(\hat{Q}_{0,1}\right)\left(\hat{Q}_{1,2}\right)=-\left(\hat{Q}_{(m-1), A(2)}=\left(\frac{q_{2}}{2}\right)^{m}\right. \\
& \hat{F}_{0, A}(1)=\left(\hat{\Omega}_{0, \delta}\right)\left(\hat{O}_{0, T}\right) . \cdots \cdot\left(\hat{\Lambda}_{-\infty}, A(1)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{p}{z^{m}}\left(\sum_{j=0}^{m-1} q^{j}\right) \\
& =\frac{1-q^{m}}{z^{m}} \text {. }
\end{aligned}
$$

The last four theorems clearly show that once the logical structure of a more intuitive MC model is know, SMC techniques can be vastly superior to the more pedestrian but, perhaps at first sight, more straight forward MC techniques.

Theorem 5. (A compendium on the four phases). The long run mean values for time-of-sojourn and (potential) transitional probabilities for embedded MC's associated with the four canonical phases are as follows:

$$
\text { Ec: } \begin{aligned}
\mu_{s C} & =\frac{1-q^{I}}{p q^{I}}, q_{B C, A}=1 \\
\text { uls: } \mu_{u l s} & =\frac{1}{1 p}, q_{11 B, A}=1 . \\
\text { 1s: } \mu_{1 s} & =\mu_{1 s, A(1)}+\mu_{1 B, A(2)} \\
& =\left\{\frac{1-q^{k}}{f p}-q^{k}\left(1+\frac{k}{f}\right)\right\}+\left\{q^{k}\left(1+\frac{k}{f}\right)\right\} \\
& =\frac{1-q^{k}}{1 p}, q_{1 B, A(1)}=1-q^{k} \\
q_{1 B, A(2)} & =q^{k} .
\end{aligned}
$$

$$
\text { ck: } \quad \mu_{c k}=\mu_{C K}, A(1)+\mu_{C k, A(2)}
$$

$$
=m\left(1-q^{m}\right)+m q^{m}
$$

$$
=m ; q_{c k, A(1)}=1-q^{m}, q_{c k, A(2)}=q^{m}
$$

Proof. If $\left\{a_{n}\right\}$ is a probability sequence, then its mean is given by

$$
\left(-z D_{z} \hat{a}(z)\right) \mid z=1
$$

where $\hat{a}(z)$ is its Z-transform. Secondly, H_{0} * (∞) $=\hat{a}(z) \mid z=1$.
3.2 Self jumps and MRP's. The SMC method suggests the following considerations. If a given phase is completely ordered with a possible return to the initial MC state at each step or is only quasi ordered with possible random reentries to each of its MC states at each step, then corresponding variant, transient SMC states can be con* structed by this method by adding the phase itself as one of the exit phases. In either case, due to the alterations in the p.d.f.' B , the resultant SMC state now has selftransitions -- a fact that necessitates defining the MRP as the primary object, the induced SMC as secondary, in contrast to the "no self-jump" situation where they are equivalent. Below, this approach and some of its implications are examined for the sc and ups phases.

Theorem 6. If self-transitions are allowed for se, we have:

$$
\begin{aligned}
& \hat{Q}_{\overline{B C}, \overline{B C}}(z)=\left(\frac{p}{z-q}\right)\left(1-\left(\frac{q}{z}\right)^{I}\right) . \\
& \hat{\phi}_{\overline{B C}, A}(z)=\left(\frac{q}{z}\right)^{I}
\end{aligned}
$$

Proof. a. HO is now treated as a degenerate MC state and any return to it is considered to be a (self) transition of $\overline{\mathrm{BC}}$. Letting $\mathrm{f}=\mathrm{Hj}$ and $\overline{\mathrm{BC}}=\mathrm{A}_{1}$, we therefore have the following system:

$$
\begin{aligned}
& p_{j, A_{1}}^{n}=p p_{A_{1}, A_{1}}^{n-1}+q p_{(j+1), A_{1}}^{n-1}(0 \leq j<I-1) \\
& p_{I-1, A_{1}}^{n}=p p_{A_{1}, A_{1}}^{n-1} .
\end{aligned}
$$

b. The system in a. implies, upon Z-transforming,

$$
\begin{aligned}
\hat{P}_{0 A_{1}} & =\hat{H}_{0}\left(\frac{p}{z}+\frac{P q}{z^{2}}+\cdots+\frac{P q^{I-2}}{z^{I-I}}\right) \\
& +\left(\frac{q^{I-1}}{z^{I-I}}\right)^{\beta} I-1, A_{1}
\end{aligned}
$$

$$
\text { where } \hat{P}_{I-1, A_{1}}=\frac{p}{z} \hat{H}_{0}
$$

Thus $\hat{P}_{0, A_{1}}=\hat{H}_{0}\left(\frac{p}{2}\right)\left(\sum_{j=6}^{1-1}\left(\frac{q}{2}\right)^{j}\right)$
Letting $A(\overline{B C})=A_{1}=\overline{B C}$, we have

$$
\begin{aligned}
\hat{Q}_{\overline{B C}, \overline{8 c}}(z) & =\left(\frac{p}{2}\right)\left(\frac{z}{z-q}\right)\left(1-\left(\frac{q}{2}\right)^{I}\right) \\
& =\left(\frac{p}{z-q}\right)\left(1-\left(\frac{q}{2}\right)^{I}\right) . \\
\text { c. } P_{0, A_{2}}^{n} & =q^{I} P_{\lambda_{2}, A_{2}}^{n-I} \Longrightarrow \\
\hat{X}_{\overline{B C}, A}(z) & =\left(\frac{q}{z}\right)^{I} .
\end{aligned}
$$

Corollary 1. If $\overline{E C}$ denotes the screening phase with self transitions as defined in Theorem 6, we have
$\mu_{\overline{s c}}=\frac{1-q^{I}}{\bar{q}}, q_{\overline{B C}, \overline{E C}}=1-q^{I}$, and $q_{\overline{G C}, A}=q^{I}$.
Proof. $\mu_{\overline{B C}}=\mu_{B C, \overline{B C}}+{ }^{\mu} \overline{B C, A}$
$=\left(\frac{1-q^{I}}{p}-I q^{I}\right)+I q^{I}$
$=\frac{1-q^{I}}{p}$ by
differentiation of the z-transform; rest is trivial.
Corollary 2. Letting $\overline{\mathrm{sc}}$ be as above;
$\hat{Q}_{B C, A}=\frac{\hat{\phi}_{\overline{B C}, A}}{1-\hat{o}_{\overline{B C}, \overline{B C}}}$.
Proof.
$\hat{Q}_{B C, A}=\left\{_{n=0}^{\infty}\left(\hat{O}_{B C, ~}^{B C}\right)^{n}\right)_{\overline{B C}, A} \quad$ and
fact that $\hat{\sigma}_{\overline{B C}, \overline{B C}}(1)=1-q^{\mathrm{I}}<1$.

The expansion in the proof to Corollary 2 above can be given the following interpretation:

$$
n\left(\hat{Q_{\overline{s C}},}, \overline{s C}\right)^{j} \hat{\mathrm{Q}}_{\overline{\mathrm{sC}}, \mathrm{~A}}{ }^{n}
$$

means j defects before transition. However, though the use of $\overline{s C}$ leads to a probabilistically natural expansion for $Q_{s c, A}$, it is not necessarily the most practical (except perhaps for small N) due to an accumulation of factorial terms; more practical complete formulas useful for all N , can be developed by considering purely analytical expansions [see Ref 7.1]. Secondly, sc throws some light on the requirement of continued inspection after a defect is found in the ck phase, ck would be a "onemtime" se if inspection were stopped and a transition made at this point in contrast to the usual requirement made above.

We how turn to solfmjumps for the uls phase. Having in mind the situation that occurs in the SMC proof of Theorem 3 for the ls phase, we have

Theorem 7. If uls were to be allowed self-transitions which mimic any SN-SI blosk of the ls phase, then

$$
\hat{Q}_{\overline{u I s}, \overline{u I s}}(z)=\frac{f q}{z-U} \text { and } \hat{\partial}_{\overline{u I s}, A}(z)=\frac{\delta}{z-U} .
$$

Proof. Consideration of the following diagram provides the proof:

Corollary 1.
$\hat{Q}_{u 1 s, A}=\frac{\hat{Q} \overline{u l s}, A}{1-\hat{Q}_{\overline{u l s}, \overline{u I S}}}$.
Proof.

$$
\hat{Q}_{u l 8, A}=\left\{\sum_{n=0}^{m}\left(\hat{Q}_{\overline{U 1 E}, \overline{U 1 B}}\right)^{n}\right\} \hat{Q}_{\overline{U 1 E}, A} .
$$

Corollary 2.

$$
\begin{aligned}
& \hat{\underline{Q}}_{1 B, A(2)}=\left(\hat{Q}_{\overline{u I B}, \overline{u I B}}\right)^{k} .
\end{aligned}
$$

Proof.

$$
\text { a. } \dot{Q}_{1 s, A(1)}=\left\{\sum_{j=0}^{k-1}\left(\hat{Q}_{\overline{U I S}, \overline{U 1 s}}\right)^{n}\right\} \hat{Q}_{\bar{U} I}, A
$$

b. the second part is obvious.

Switching emphasis from the uls phase to the $1 s$ one, we can alternatively treat uls as a ls phase with k random.

It may be of interest to keep track of the number of defects found while screening; with this in mind, we have

Theorem 8. Splitting sc into to and $3 C^{\circ}$, we obtain

$$
\begin{aligned}
& \hat{Q}_{H O, s C^{\prime}}=q /(z-p), \hat{Q}_{s C^{\prime}, H O}=(p /(z-q)) \cdot\left(1-(q / z)^{I-1}\right), \\
& \text { and } \hat{Q}_{\mathrm{sc}}+, A \\
& =(q / z)^{I-1} .
\end{aligned}
$$

Yroof. Treat sc as $\overline{8 C}$ and use induction rest is trivial.

Because of the complexity involved in evaluating $\hat{Q}_{B C, A}(z)$. one might be led to considering the following variation, ${ }^{\text {si, }}$.

q

9
q

Then we easily have:

$$
\begin{aligned}
& \hat{Q}_{s c} n, A \\
&(z)=\left(\hat{Q}_{0,1}\right)\left(\hat{Q}_{1,2}\right) \cdot \cdots \cdot\left(\hat{Q}_{I-1, A}\right) \\
&=\left(\frac{q}{2-p}\right)^{I} .
\end{aligned}
$$

Thus

$$
Q_{B C}{ }^{n}, A(n)=\int^{\prime} \frac{q^{I} z^{n-1}}{(z-p)^{I}} d z=\binom{n-1}{I-1}\left(q^{I}\right)\left(p^{n-I}\right)
$$

--a result which speaks for itself. Furthermore, $\hat{\Omega}_{s c "}, A(1)=1$ which implies that sc" included in any sampling plan, in place of sc, would still yeild an irreducible MC (or SMC). By considering the polynomial $\zeta(z)=1-I q^{(I-1)}+$ $(I-1) q^{I}$, we can show that, for $0 \leq q \leq 1, c(q) \geq 0 \Longrightarrow$ that $\mu \mathrm{sc} " \leq \mu \mathrm{sC}$ 。

Throughout the above analysis, $\hat{Q}_{\overline{s C}}, \overline{8 c}$ and $\hat{Q} \overline{\mathrm{uls}}, \overline{\mathrm{uls}}$ have been regarded purely function-theoreticallys in Chapter 2. $\hat{Q}_{i, j}, i \neq j$, has a natural probabilistic definition given within the context of a SMC. It is reasonable, therefore, to search for a corresponding interpretation for $\hat{Q}_{j, j}$ within some similar stochastic framework. Such a framework exists-it is a MRP. This MRP is just $\left(Y_{n}, W_{n}\right)$, where W_{n} records the $n^{\text {th }}$ renewal. Hence if self-transitions are allowed,

$$
Q_{j, j}(t)=P\left[W_{2}(j)-W_{0}(j)=t \mid W_{0}(j)=0\right]
$$

As noted in Chapter 2, if $Q_{i, 1}=0$ for all $i, ~ a ~ M R P$ is equivalent to its correaponding SMC; that is, while ita introduction leads to some important renewal theoretical ideas which are useful in studying a SMC (see Chps. 4 \& 5), it is otherwise superfluous. Moreover, if there exists only defective self-jump p.d.f.'s, the MRP can still be looked upon as only a prior necessary formality since an unique SilC can be derived from it with the following $0^{*}{ }^{*} s$ [Ref 7.12]: If $A_{i, i}(+\infty)<1$, for all i, we have

$$
\left.\begin{array}{rl}
(S M C
\end{array}\right): Q_{i, j}^{*}=\frac{Q_{i, j}}{I-Q_{i, i}}, \text { if } Q_{i, i} \neq 0 .
$$

In contrast to the two previous cases, if there is a j such that $A_{j, j}(+\infty)=1$, there is then no longer a uniquely derivable SHC; for example, a one dimensional renewal process leads to a trivial SMC -- but a trivial SMC leads to any 1 dimensional renewal process. In other words, a SMC doesn't record self-jumps; a MRP does. This is the essential difference between the two concepts. proposition 4.1 further shows that, as far as the constructive technique considered in this paper is concerned, the distinction between the two processes is irrelevant.
4.0 SAMPLING PLANS AND FI (N). CSP-1 and (generalized) CSP-2, the first two moments of the FI(N) functional defined on them for the Job Shop entry case, and the connections between the intercalation of gelf transitions into these plans and Markov Renewal Theory are investigated in detail. Other standard but more complex plans are then briefly treated. However, to more fully appreciate the practical results of this chapter as well as to gain further insight into the basic method, some general statements are first demonstrated.
4.1 Preservation of properties. Since we are at last ready to deal with MC's in their entirety, rather than just selected pieces of them, the preservation of certain properties in the construction of a SMC from a given MC becomes a primary concern. We first prove

Proposition 1. Given a MC from which two SMC's are constructed: SMC' is constructed using selfwtransitions for one MC-state (or phase): SMC, on the other hand, is constructed in same manner as SMC except without selftransitions. Then the two SMC's are equivalent in the sense that their sample paths are the same (and the transitional probabilities are equal).

Proof.
a. Let j be a non degenerate MC state with possibly multiple entries and exits. Given any exit MC state k for $j(k \neq j)$, we then have

$$
\hat{Q}_{j, k}=\left\{\sum_{m=0}^{\infty}\left(\hat{Q}_{j, j}\right)^{m}\right\} \hat{Q}_{j, k}
$$

or

$$
\hat{Q}_{j, k}=\frac{\hat{Q}_{j, k}}{1-\hat{Q}_{j, j}}
$$

where, $\hat{Q}_{j, j}(1)<1$ since the MC is irreducible.

$$
\begin{aligned}
& \text { b. } \hat{P}_{j, j}=\underset{h \neq j}{\sum} \hat{Q}_{j, h} \hat{P}_{h, j}+\hat{Q}_{\dot{j}, j} \hat{P}_{j, j}+\hat{J}_{j} \\
& \text { or } \hat{P}_{j, j}\left(1-\hat{Q}_{\hat{j}, j}\right)=\Sigma \hat{Q}_{j, h} \hat{P}_{\hat{h}, j}+\hat{H}_{0}\left(1-\hat{Q}_{j}\right) \\
& \text { or } \hat{p}_{j, j}=\Sigma \frac{\hat{Q}_{j, h}}{\left(1-\hat{Q}_{j, j}\right)} P_{\hat{h}, j}+\hat{H}_{0}\left(1-\Sigma \frac{\hat{Q}_{j, E}}{\left(1-\hat{Q}_{j, j}\right)}\right) \\
& \text { or } \hat{P}_{j, j}=\Sigma \hat{Q}_{j, h} \hat{P}_{h, j}+\hat{J}_{j} \text { by a. . }
\end{aligned}
$$

Similarly,

$$
\hat{P}_{m, n}=\varepsilon \hat{Q}_{m, h} \hat{P}_{h, n} \text { for } m \text { and/or } n \text { not equal to } j \text {. }
$$

c. The primed quantities bear the same relationships among themselves, via the $\hat{Q}^{\prime} s$, as the unprimed.

Theorem 1: The four principal properties of timehomogeneity, Einiteness of states, irreducibility, and aperiodicity are preserved.

Proof.

a. All four properties are trivially true for the given MC.
b. By taking in account the SMC method and the concept of filtration [Ref 7.6, Chp 8], it is obvious that, once the term "canonical" is dropped, one can construct a multitude of SMC's from the MC which in turn can be considered to be the basic SMC; in other words, from the MC, a primitive SMC can be constructed by treating each MC state as a degenerate SMC state regardiess of phase segmentation; in particular, if a MC state has self-transitions, then self-jumps musit be introduced for this state; by Proposition 1 and a., the resulting SMC (MRP) is equivalent to the original MC.
c. Any other type of SMC constructed from this MC is a filtration of the primitive one.
d. According to [Ref 7.6, Chp 8], filtrations preserve all four of the properties.

Corollary. Let i be a state of an (irreducible) SMC constructed from a given (irreducible) MC; let M_{i} be the MC states contained in i but also considered as degenerate SMC states in the original MC. Then

$$
\alpha_{i}={ }_{s \in M_{i}}^{a_{s}}
$$

Proof. a. proposition 1 implies that a_{s} is selftransition independent. b. The equality follows from a. and Theorem 1 on the filtration of a SMC.

Before proceeding to the next section, we prove a statement on the rapidity of convergence of a soiution to a certain type of renewal equation.

Proposition 2. Given three sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ such that (i) $c_{n}=\left(a^{*} c\right)_{n}+b_{n}$ (ii) $a_{n}, b_{n} \geq 0$ for all n, and (iii) g.c.d $\left\{k / a_{k}>x^{0}\right\}=1$. Then, if

$$
\Sigma_{n} k_{b_{n}}<+\infty \text { and } \Sigma_{n}^{k+1} a_{n}<+\infty
$$

we have

$$
c_{n}=\frac{\left(H_{0}^{* b}\right)(n)}{\left(H_{0}^{*}\langle\Delta)(n)\right.}+0\left(n^{-k}\right)
$$

where $\langle a\rangle(n)=n a(n)$.
Proof. [Ref 7.10, esp. Thm. 4].
4.2 Sampling plans.
4.2.1 CSP-1. Upon setting sc $=1$ and $u l s=2$, CSP-1 has the following SMC transitional diagram:

with states ($1 ; \hat{Q}_{12}(z)$) and ($2 ; \hat{Q}_{21}(z)$); the SMC diagram above should be carefully distinguished from the box one In Figure 5, Chapter 2 which is a MC transitional diagram. Since $\hat{Q}_{12}(1)=1=\hat{Q}_{21}(1)$, the corresponding embedded MC has the transitional matrix

which is pariodic with period two; however, the SMC itself is aperiodic by Theorem 3.3 since supp $\left(O_{\perp 2}\right)=\{I+\lambda / \lambda=0$ tom $\}$. From Theorem 2.2, we can easily write down the z-transformed (F.S.) for CSP-1:

$$
\begin{aligned}
& \hat{p}_{11}=\frac{\hat{J}_{1}}{S(z)}, \quad \hat{p}_{12}=\frac{\hat{Q}_{12} \hat{J}_{2}}{S(z)} \\
& \hat{p}_{21}=\frac{\hat{Q}_{21} \hat{J}_{1}}{S(z)}, \quad \hat{p}_{22}=\frac{\hat{J}_{2}}{S(z)}
\end{aligned}
$$

where

$$
s(z)=1-\hat{Q}_{12} \hat{Q}_{21} .
$$

Because of the simplicity of CSP-1, the above system can be written down directly from combinatorial principlek.

The eigen-vector equation, $e^{T}=$ e for CSP-1 yields $\underline{e}=(1 / 2,1 / 2)$ as a solution; therefore, using $\mu_{B C}$ and $\mu_{u l s}$ from Theorem 3.5 we have, by Theorem 2.4:

$$
\begin{aligned}
& P_{\mathrm{BC}}(\infty)=a_{\mathrm{sc}}=\frac{f\left(1-q^{I}\right)}{f\left(1-q^{I}\right)+q^{I}}, \\
& P_{\mathrm{uls}}(\infty)=a_{\mathrm{uis}}=\frac{q^{I}}{f\left(1-q^{I}\right)+q^{I}},
\end{aligned}
$$

results which can also be obtained directly from the z -transformed (F.S.) through additional use of l'Hospital's rule. From Proposition 2.3, we also have:

$$
\hat{F}_{12}=\hat{Q}_{12}, \hat{F}_{21}=\hat{Q}_{21}, \hat{F}_{11}=\hat{Q}_{12} \hat{Q}_{21},
$$

and

$$
\hat{F}_{22}=\hat{Q}_{21} \hat{Q}_{12}\left(-\hat{F}_{11}\right) .
$$

An application of Proposition 2 is found in
Theorem 1 .

$$
P_{12}(n)=\frac{H_{0}^{*} Q_{21}{ }^{*} J_{2}(n)}{H_{0}^{*}\left\langle\mathcal{F} D^{(n)}\right.}+o\left(n^{-k}\right)
$$

for arbitrary k.

Proof.

$$
\begin{aligned}
& \text { a. } \left.\begin{array}{rl}
P_{12} & =Q_{12}{ }^{\star P_{22}} \\
P_{22} & =Q_{21}{ }^{\star P_{12}+J_{2}}
\end{array}\right\} \\
& P_{12}=\left(Q_{12}{ }^{*} Q_{21}\right) * P_{12}+Q_{21} * J_{2} \\
& =F_{11}{ }^{* P_{12}}{ }^{+Q_{21}}{ }^{* J_{2}} \\
& \text { b. } \quad \mathrm{In}^{k}\left(\mathrm{O}_{21}{ }^{*} \mathrm{~J}_{2}\right)(\mathrm{n})<+\cdots \\
& \Sigma n^{k+1} F_{11}(n)<+\infty
\end{aligned}
$$

which follows from Theorems 3.1 and 3.2 along with repeated differentiation of the transforms to obtain the higher moments.
c. We are done by a., b., and Propozition 2.

Corollary. (1'Hospital's rule from a renewal eq.)
$\operatorname{Lim}_{n \rightarrow \infty} P_{12}(n)=\left.\frac{\hat{b}(z)}{-2 D_{z} F_{11}(z)}\right|_{z=1}$.
where $b(n)=Q_{21}{ }^{*} J_{2}(n)$.

proof.

a. $c_{n}=a^{*} c_{n}+b_{n}$ with conditions of Proposition 2 holding for $k=0$, then, if $H_{0}{ }^{*} a(\infty)=1$, we have

$$
\hat{c}(z)=\frac{\hat{b}(z)}{1-\hat{a}(z)} .
$$

b. Therefore, from a., .

$$
\begin{aligned}
\operatorname{Lim} \frac{z-1}{z} \hat{c}(z) & =\operatorname{Lim}_{z+1} \frac{z-1}{z} \frac{\hat{b}(z)}{1-\hat{a}(z)} \\
& =\operatorname{Lim}_{z+1} \frac{\hat{b}(z)}{-z\left(\frac{\hat{a}(z)-\hat{a}(1)}{z-1}\right)} \\
& =\left.\frac{\hat{b}(z)}{-z \hat{a}-(z)}\right|_{z=1} .
\end{aligned}
$$

c. But $c(\infty)=$ the limit on the L.H.S. in b. . Therefore we are done by letting $a=F_{11}$.

Of importance in analyzing the $F I(N)$ function is the monotonicity of $P_{12}(\cdot)$ and $P_{22}(\cdot)$. We prove

Theorem 2. (Monotonicity) $\mathrm{P}_{12}(\mathrm{n})$
or $P_{22}(n)$ is monotonically nondecreasing or nonincreasing respectively.

Proof.
a. $\Delta P_{11}(n)=P_{11}(n+1)-P_{11}(n)$

$$
=-Q_{12}(n)+\sum_{j=1}^{\infty}\left(F_{11}(j \nmid n)-F_{11}^{(j)}{ }_{*} Q_{12}(n)\right)
$$

b. $F_{11}^{(j)}{ }^{\left(Q_{12}\right.}(n)-F_{11}^{(j)}(n)$
$=P\left[W_{j}(1)+T_{1,2}=n\right]-P\left[w_{j}(1)=n\right]$
$=P\left[W_{j}(1)+T_{12}=n\right.$ and $\left.T_{12} \neq 0\right]$
≥ 0,
c. Thus $\Delta P_{11}(n) \leq 0$ from a. and b. .
d. $P_{12}(n)=\left(H_{0}-P_{11}\right)(n)$ and c. imply $\Delta P_{12}(n) \geq 0$. In the same way we can show that $P_{22}(n) \leq 0$ which finishes the proof.

Before moving on to CSP-2, we prove a statement concerning the roots of the fundamental polynomial (F.P.) of CSP-1.

Proposition 3. The denominator of rational function
$\frac{1}{1-\hat{Q}_{12}(z) \hat{Q}_{21}(z)}$
is $F P(z)=$
$(z-q)\left(z^{I}-p z^{I-1}-p q z^{I-2}-\ldots-p q^{I-1}\right)$.

Proof. $\quad F P(z)=g(z)-\delta q^{I}(z-q)$
from Theorems 3.1 and 3.2.
In [Ref 7.1], $F P(z)$ is obtained directly as
$z^{I}(z-\beta)+\theta, \theta=f p q^{I} \quad \beta=1-\delta$; thus the SMC approach gives some insight into the root distribution of FP(z).
4.2.2 CSP-2. Upon letting $1=\mathrm{sc}, 2=\mathrm{uls}$, and $3-\mathrm{ls}$, CSP-2 has the following SMC transitional diagram:

with states (1; $\hat{Q}_{12}(z)$), (2; $\left.\hat{Q}_{23}(z)\right)$, and ($3 ; \hat{Q}_{31}(z), \hat{\mathrm{Q}}_{32}(z)$); once again the SMC diagram should be carefully distinguished from the one in Figure 5, Chapter 2. Since, in addition to $\hat{Q}_{12}(1)=1=\hat{Q}_{21}(1)$, we also have $\hat{Q}_{31}(1)=1-q k$ and $\hat{Q}_{32}(1)=q k$, the embedded MC has a transitional matrix

$T=$| 1 |
| :--- |
| 2 |
| 3 |\(\left[\begin{array}{ccc}1 \& 2 \& 3

0 \& 1 \& 0

0 \& 0 \& 1

1-q^{k} \& q^{k} \& 0\end{array}\right]\)
which is however aperiodic; again the SMC is aperiodic for exactly the same reasons it is for CSP-1.

Because of the increased complexity of CSP-2, we proceed to derive the basic transitional probabilities more formally than with CSP-1.
proposition 4. Transitional probabilities of csp-2 (first row).

$$
\begin{aligned}
& \hat{\mathrm{P}}_{11}=\frac{\hat{\mathrm{H}}_{0}\left(1-\hat{\mathrm{Q}}_{12}\right)\left(1-\hat{\mathrm{Q}}_{23} \hat{\mathrm{Q}}_{32}\right)}{\hat{\mathrm{G}}} \\
& \hat{\mathrm{P}}_{12}=\frac{\hat{\mathrm{Q}}_{12} \hat{\mathrm{H}}_{0}\left(1-\hat{\mathrm{Q}}_{23}\right)}{\hat{\mathrm{G}}} \\
& \hat{\mathrm{P}}_{13}=\frac{\hat{\mathrm{Q}}_{12} \hat{\mathrm{Q}}_{23} \hat{\mathrm{H}}_{0}\left(1-\left(\hat{\mathrm{Q}}_{31} \hat{1}_{32}\right)\right)}{\hat{\mathrm{G}}} .
\end{aligned}
$$

where $\hat{G}=1-\hat{Q}_{23}\left(\hat{Q}_{32}+\hat{Q}_{31} \hat{\mathrm{Q}}_{12}\right)$.
Proof. (F.S.) for CSP-2, 2-transform, and Creamer's rule for linear algebraic systems which holds since there exists an R such that $l z I>R \Rightarrow \hat{G}(z) \neq 0$.

Upon solving the eigen vector equation for the embedded MC in the CSP-2 case, we obtain

$$
\begin{aligned}
\underline{e} & =\left(\frac{1-q^{k}}{c}, \frac{1}{c}, \frac{1}{c}\right) \\
& =\left(e_{1}, e_{2}, e_{2}\right),
\end{aligned}
$$

where $c=3-q^{k}$. Combining this result with Theorems 3.1, 3.2, 3.3, and 2.4, we have

$$
\begin{aligned}
& P_{s c}(\infty)=\alpha_{s c}=\frac{f\left(1-q^{k}\right)\left(1-q^{I}\right)}{D} \\
& P_{u 1 s}(\infty)=\alpha_{u l s}=\frac{q^{I}}{D} \\
& P_{1 s}(\infty)=a_{1 s}=\frac{q^{I}\left(1-q^{k}\right)}{D},
\end{aligned}
$$

where $D=(f)\left(1-q^{k}\right)\left(1-q^{I}\right)+\left(2-q^{k}\right)\left(q^{I}\right)$.
For future use in studying the $\mathrm{FI}(\mathbb{N})$ functional for CSP-2, we now give an example of the uses of filtration to combine SMC states 2 and 3 into one (super) state with and without self jumps.

Case 1: self-jumps.

In this case, we are allowing the events $2+2,2+1$, and $1+2$ to filter through; thus the filtered set is just \{3\}. The corresponding states of the filtered SMC, whose transitional diagram appears above, are $\left(\bar{I}, Q_{\overline{1}}, \overline{2}\right)$ and ($\overline{2}, \hat{Q}_{23} \hat{\mathrm{Q}}_{31}, \hat{\mathrm{Q}}_{23} \hat{\mathrm{Q}}_{32}$)
where

$$
\begin{aligned}
& \hat{Q}_{2, I}=\hat{Q}_{23} \hat{Q}_{31}, \\
& \hat{Q}_{2, \overline{2}}=\hat{Q}_{23} \hat{Q}_{32},
\end{aligned}
$$

and

$$
\hat{\underline{Q}}_{I, \overline{2}}=\hat{\underline{q}}_{12} .
$$

mac transitional matrix of the filtered SMC's embedded MC is

Case 2: No self-jumps.

In this case, we are only allowing the events $2 \rightarrow 1$ and $1 \rightarrow 2$ to filter through; thus the filtered set is again \{3\}. However, the corresponding states of this filtered sse are now
(1; $\hat{\mathrm{O}}_{17}$) and ($\mathrm{Z}, \frac{\hat{\mathrm{Q}}_{23} \hat{\mathrm{Q}}_{32}}{1-\hat{\mathrm{Q}}_{23} \hat{\mathrm{O}}_{32}}$)

Again for future application to the analysis of $F I(N)$. we use Case 1 to prove

Theorem 3. (Expansion theorem)

$$
P_{\Gamma, 2}(n)=\left\{\{1)_{1,2}{ }^{*}\left(\delta_{0}{ }^{+} R_{223}\right) * S\right\}(n)
$$

where

$$
S(n)=\sum_{j=0}^{\infty}(1)^{j}\left\{\left(\Delta\left({ }_{(1)^{P}} P_{12}\right)\right) *_{1} R_{223}\right\}(j)
$$

which converges for $\frac{\mu_{2}}{\mu_{1}+\mu_{2}}\left(\frac{1}{1-q k}\right)<1$.
"(1)" is CSP-1, $1=s c, 2=u 1 s$, and
$1^{R}{ }_{223}(n)=P[x(n)=3 \mid x(n-1)=2, x(0)=2$ and $x(k) \neq 1,0<k<n-1]$.
Proof. For convenience, let $\hat{Q}_{a b}=x_{a b}$ and $\hat{\delta}_{a b}=\bar{x}_{a, b}$ if the latter is different from the former.
a. Using this notation, we have, from the (F.S.) for the filtered SMC,

$$
\begin{aligned}
& \hat{P}_{\bar{I}, 2}=\frac{\hat{H}_{0} x_{12}\left(1-\left(\bar{x}_{21}+\bar{x}_{22}\right)\right)}{1-\left(x_{12} \bar{x}_{21}+\bar{x}_{22}\right)} \\
& \text { b. } 1-\bar{x}_{22}-x_{12} \bar{x}_{21} \\
& =1-\bar{x}_{22}-x_{12} x_{23} x_{31} \\
& =\quad 1-\bar{x}_{22}-x_{12} x_{23}\left(x_{23}-\bar{x}_{22}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(1-\bar{x}_{22}\right)-x_{12} x_{23}\left[\left(1-\bar{x}_{22}\right)+\left(1-x_{23}\right)\right] \\
& =\left(1-\bar{x}_{22}\right)\left(1-x_{12} x_{23}\right)+\left(1-x_{23}\right) x_{12} x_{23} \\
& =\left(1-\bar{x}_{22}\right)\left(1-x_{12} x_{23}\right)(1+\hat{a}) \\
\text { where } \hat{a} & =\frac{x_{12}\left(1-x_{23}\right)}{\left(1-x_{12} x_{23}\right)}\left(\frac{x_{23}}{1-\bar{x}_{22}}\right) \\
c . & x_{12}\left(1-\left(\bar{x}_{21}+\bar{x}_{22}\right)\right)=x_{12}\left(1-x_{23}\right)\left(1+x_{31}\right) \\
\text { since } x_{31} & =x_{23}-\bar{x}_{22} \\
d . & a \cdot b_{1}, \text { and c. therefore give } \\
\hat{p}_{\overline{12}} & =\frac{\hat{H}_{0} x_{12}\left(1-x_{23}\right)}{\left(1-x_{12} x_{23}\right)} \frac{\left(1+x_{31}\right)}{\left(1-\bar{x}_{22}\right)}\left(\frac{1}{1+\hat{a}}\right) \\
& =(1) \hat{p}_{12}\left(1+\frac{x_{23}}{1-\bar{x}_{22}}\right)\left(\frac{1}{1+\hat{a}}\right),
\end{aligned}
$$

which is just the z-transform of the assertion, we finish this part by noting that $\hat{Q}_{23}=\hat{Q}_{21}$ for CSP-1.
e. This factored expression approaches

$$
\left(\frac{\mu_{2}}{\mu_{1}+\mu_{2}}\right)\left(1+\frac{1}{1-q^{k}}\right)\left(\frac{1}{1+\left(\frac{\mu_{2}}{\mu_{1}+\mu_{2}}\right)\left(\frac{1}{1-q^{k}}\right)}\right)
$$

however we also have, for the third factor,

$$
\operatorname{Lim}_{z+1} \hat{a}(z)=\operatorname{Lim}_{z+1} \hat{H}_{0}^{-1}\left(\hat{H}_{0} \hat{a}(z)\right)
$$

$$
\begin{aligned}
& =\operatorname{Lim}_{z \downarrow 1} \hat{H}_{0}^{-1} \hat{b}(z) \\
& =b(\infty), \text { endpoint property. } \\
& =H_{0} a(\infty) \\
& =\left(\frac{\mu_{2}}{\mu_{1}+\mu_{2}}\right)\left(\frac{1}{1-q^{k}}\right) \\
& \geq a(n), \text { for all } n ;
\end{aligned}
$$

thus the conv. criterion suffices.
4.3 FI(N) functional. Before embarking on a detailed examination of the moments of $F I(N)$, the following fondamental theorem is proven to illuminate the analysis of variance.

Theorem 4. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two positive sequences such that (i) $a_{n}+$ or $\downarrow A$ and (ii) $b_{n}+o r+B$ as $n \rightarrow \infty$. Then

$$
\frac{\sum_{k=0}^{N}\left(a^{\star} b\right)(k)}{N^{2}} \rightarrow \frac{1}{2} A B
$$

Proof. We will only prove this for $a_{n}+A$ and $b_{n}+B$.

$$
\begin{aligned}
& \text { a. } \begin{array}{l}
\frac{\Sigma(a-A) *(b-B)}{N^{2}} \\
=\frac{\Sigma a \star b}{N^{2}}+\frac{\left(H_{0}^{2} \star a\right)(N)}{N^{2}}(B) \\
+\frac{\left(H_{0}^{2} \star_{b}\right)(N)}{N^{2}}(A)-\frac{H_{0}^{3}(N)}{N^{2}} A B,
\end{array}, l
\end{aligned}
$$

where $H_{0}^{k}=H_{0}{ }^{*-\cdots *} H_{0} k$ times.

$$
\text { b. } \begin{aligned}
0 & \leq \frac{\Sigma(a-A)^{*}(b-B)}{N^{2}} \\
& \leq\left(\frac{\Sigma(a-A)}{N}\right)\left(\frac{\Sigma(b-B)}{N}\right)
\end{aligned}
$$

which approaches zero as $N+\infty$ since ordinary convergence implies $\mathrm{C}_{\hat{i}}$ conv.
c. $\frac{\left(H_{0}^{2} *_{a}\right)(N)}{N^{2}}$
$=\left(1+-\frac{1}{N}\right) \frac{H_{0}^{*} a(N)}{N}-\frac{H_{0}^{*}\langle a\rangle(n)}{N^{2}}$;
but $\frac{H_{0}{ }^{*}<a>(n)}{N^{2}}$
$=\frac{\sum_{n=0}^{N} n a_{n}}{N^{2}}$
$=\frac{A(5 n)}{N^{2}}+\frac{\operatorname{Ln}\left(a_{n}-A\right)}{N^{2}}$
$\leq \frac{A N(N+1)}{2 N^{2}}+\frac{\Sigma N\left(a_{n}-A\right)}{N^{2}}$
$=\frac{A}{2}\left(1+\frac{1}{N}\right)+\frac{\Sigma\left(a_{n}-A\right)}{N}+\frac{A}{2}$.
d. $\frac{\mathrm{H}_{0}{ }^{*} \mathrm{H}_{0}>(\mathrm{N})}{N^{2}}$

$$
\begin{aligned}
& =\frac{\sum_{i}^{N} r}{N^{2}} \\
& =\frac{N(N+1)}{2 N^{2}}+1 / 2 \text { as } N+\infty:
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \frac{H_{0}^{3}(N)}{N^{2}}=\left(1+\frac{1}{N}\right) \frac{H_{0}^{2}(N)}{N^{2}}-\frac{H_{0}^{*}\left\langle H_{0}\right\rangle(N)}{N^{2}} \longrightarrow \\
& \quad 1-1 / 2=1 / 2, \text { as } N \rightarrow \infty . \\
& \text { e. }\left(1+\frac{1}{N}\right) \frac{H_{0}^{* a}(N)}{N}-\frac{H_{0}^{*}\langle a\rangle(N)}{N^{2}} \longrightarrow A-\frac{1}{2} A=\frac{1}{2} A \\
& \left(1+\frac{1}{N}\right) \frac{H_{0}^{*} b(N)}{N}-\frac{H_{0}^{*}\langle D\rangle(N)}{N^{2}} \longrightarrow B-\frac{1}{2} B=\frac{1}{2} B
\end{aligned}
$$

from C. and the hypotheses, as $N \rightarrow \infty$.
t. Thus the whole expression approaches

$$
\begin{aligned}
& 0+\frac{1}{2} A B+\frac{1}{2} A B-\frac{1}{2} A B \\
& =\frac{1}{2} A B \text { by e., d., and } a . .
\end{aligned}
$$

$$
F I(N)=1-\frac{\sum_{j=0}^{N} M_{S N}(j)}{N}
$$

Thus here we want $E_{(H O)}[F I(N)]$ which is

$$
\begin{aligned}
& 1-\frac{1}{N} \sum_{j=0}^{N} P_{H O, S N}^{j} \\
& =\operatorname{AFI}(N) .
\end{aligned}
$$

However, since
we $\underset{\text { have }}{u}=P[S N \mid u l s]$.

$$
\mathrm{UP}_{\mathrm{BC}, \mathrm{Ula}}(\mathrm{j})=\mathbb{P}_{\mathrm{HO}, \mathrm{SN}}^{J}
$$

or

$$
E_{B C}\left(U X_{2}(j)\right)=E_{H O}\left[M_{S N}(j)\right]
$$

Sumnirg up, keaping the monotonic growth property of $P_{\text {sc, ulja }}(\cdot)$ in mind, we hayo

Theirem 5.
$\operatorname{AFI}(N)=1--_{N}^{L} \sum_{j=0}^{N} F_{s c, u l s}(j)$;
$\mathrm{NFI}(N)+\mathrm{Va}_{\mathrm{uls}}$ as $\mathrm{N}+\mathrm{m}_{\text {。 }}$
Since $\operatorname{Var}(1-W)=\operatorname{Var}(W)$ and $\operatorname{Var}(W) \approx E\left[W^{2}\right]-(E[W])^{2}$. we will henceforth genarally restrict the discissioi to second moments of W. To deal with the variance of $\mathrm{FI}(\mathrm{N})$ in the MC case requires that the following expression be considered:

$$
E_{H 0}\left[M_{S N}(j) M_{S N}(j+k)\right]=P_{H O, S N}^{j} P_{S N, S N}^{k},
$$

$0<j, \dot{k} \leqslant N$, However, since the variance for CSY-1, J-S enEry, is treated from this view point in [7.1]., we will use the 2 state SMC for CSP-1 -- relating the results to thosa ohtained for the MC model; for a treatment of variance which uses a three state SMC (i.e., sc, SN, and EI), see Chapter 5.

Proposition 5. Letting sc $=1$ aná uls $=2$,

$$
E_{1}\left[X_{2}(n) X_{2}(n+k)\right]=P_{12}(n) F_{22}(k)
$$

procf.

$$
\begin{aligned}
& \text { a. } \quad P[X(0)=1, X(n)=2, X(n+k)=2] \\
& =\quad P(M(0)=H 0, M(n)=S N \bigvee S I, M(n+k)=S N V S I\} \\
& =P[M(n)=S N V S I \mid M(0)=H 0] P[M(n+k)=S N V S I \mid M(n)=S N V S I] \\
& =\quad P_{12}(n) P_{22}(k) .
\end{aligned}
$$

b. The result can also be seen by treating 2 as degenerate such that at eacin step either $2+2$ with probabilit:y E or $2 \rightarrow 1$ with probability δ.

Let us consider

$$
E_{1}\left[\left(\frac{\Sigma u X_{2}(j)}{N}\right)^{2}\right]=E_{1}\left[W^{2}\right]
$$

Using the convolution and proposition 5, we have

$$
E_{1}\left[W^{2}\right]=\frac{2 u^{2}}{N^{2}} H_{0}{ }^{*} P_{12} * P_{22}(N)-\frac{u n_{N}}{N^{2}}
$$

where $m_{N}=E_{I}[1-W]$. Now, we further have

$$
\begin{align*}
p_{S N Y S I, S N}^{n} & =u P_{S N, S N}^{n}+f p_{S I, S N}^{n} \tag{1}\\
p_{S I, S N}^{n} & =q\left(f P_{S I, S N}^{n-1}+u P_{S N, S N}^{n-1}\right)+p p_{H O, S N}^{n-1} \\
& =q P_{S N Y S I, S N}^{n-1}+p P_{H O, S N}^{n-1} \tag{2}
\end{align*}
$$

Therefore, substituting (2) into (1), we have

$$
p_{S N V S I, S N}^{n}=u P_{S N, S N}^{n}+\operatorname{fqP}_{S N V S I, S N}^{n-1}+f p P_{H O, S N}^{n-1}
$$

Or

$$
u P_{2,2}(n)=u P_{S N, S N}^{n}+\operatorname{fqup}_{2,2}(n-1)+\operatorname{fpup}_{1,2}(n-1)
$$

or

$$
\begin{equation*}
p_{2,2}(n)-f_{q P_{2,2}}(n-1)-f_{p P_{1,2}}(n-1)=P_{S N, S N}^{n} \tag{3}
\end{equation*}
$$

Thus from (3) we have

$$
\begin{aligned}
& \frac{2 U}{N^{2}}\left(H_{0}{ }^{*} P_{12}{ }^{* P_{22}}(N)-(f q) H_{0}{ }^{* p_{12}}{ }^{* P_{22}}\{N-1\rangle\right. \\
& \left.-(f p) H_{0}{ }^{* P_{12}}{ }^{* P_{12}}(N-1)\right)-\frac{u M_{N}}{N^{2}}
\end{aligned}
$$

$=E_{H O}\left[(1-\mathrm{FI}(N))^{\mathbf{2}}\right]$. Thus bounds can be developed for the 2-state SMC and then translated into bounds for the MC or primitive sMC; Theorem 5 also shows the proper convergence (hence the factor 2).
4.3.2 CSP-2, J-S entry. For this plan, the MC formula

$$
F I(N)=1-\frac{1}{N}\left\{\sum_{g=0}^{N} M_{B N}(s)+\sum_{j=0}^{k-1} \sum_{\sum=0}^{N} M_{B_{N j}}(s)\right\} \text {. }
$$

Because of the fact that we can consider $\overline{\mathcal{Z}}$ as being randomly entered at each etep, given that it is entered, we have

Proposition 6. Letting $I=$ ac and $\bar{\Sigma}=u l s$ for the self-jump filtration of CSP-2, we have

$$
U E_{I}\left[X_{\Sigma}(s)\right]=\sum_{j=0}^{k-\sum_{H 0}}\left[M_{S_{N j}}(s)\right]+E_{H 0}\left[M_{8 N}(s)\right] .
$$

Proof.

$$
\begin{aligned}
U P_{I, F}(B) & =\sum_{j=-1}^{k-1} u P_{I, j}^{n} \\
& ={ }_{j=1}^{k-1} P_{I_{1, S N j}}
\end{aligned}
$$

where $S N(-1)=S N$. Thus we have
Theorem 6. For CSP-2,

$$
\operatorname{ArI}(N)=1-\frac{U}{N} \sum_{s=0}^{N} P_{I, F_{2}}(s) .
$$

$P_{Y_{1}, F^{2}}(B)$ can be expanded in terms of (1) $P_{12}(s)$ by Theorem 3 and therefore (2) API (N) can in turn be expanded in terms of (1) AFI (N).

To deal with the variance for CSP-2, we will eplit the $1 s$ state (phase) into k new (sub) states in order to make use of the convolution as in

Proposition 7. Letting $a=1=8 C,(S N-S I)=u .1 s=-1$, and (SNj-SIj)=j, we have

$$
P\left[X(0)=a_{n} X(n)=j_{1}, X(n+s)=j_{2}\right]=P_{a j_{1}}(n) P_{j_{1}, j_{2}}(n)
$$

whare $j,\left(j_{2}\right)$ range from -1 to $k-1$.
Proos. As in Proposition 5.
proceeding as in the C8P-1 case, we can express the variance in terms of the states a, and $j,-1 \leq j \leq k-1$. Thus we will restrict our attention to

$$
\begin{aligned}
& E_{a}\left[\left(\sum_{j=-1}^{k-1} \frac{\sum_{i=0}^{N} X_{j}(s)}{N}\right)^{2}\right] \\
& =E_{a}\left[\left(\frac{1}{N} \sum_{j=1}^{k-1} D_{j}\right)^{2}\right] \\
& =E_{a}\left[\frac{\Sigma D^{2} j}{N^{2}}+\frac{\Sigma D_{j} D_{j}}{N^{2}}+\frac{\Sigma D_{j}{ }^{N} D_{j}}{N^{2}}\right]
\end{aligned}
$$

Use of the convolution and Proposition 7 gives

$$
\begin{aligned}
& \frac{1}{N^{2}} E_{a}^{\left[D_{j}^{2}\right]}=\frac{2 H_{0}^{\star P_{a j}{ }^{\star} P_{j j}(N)}}{N^{2}}-\frac{H_{0}{ }^{\star} P_{a_{f}} j^{(N)}}{N^{2}} \\
& \frac{1}{N^{2}} E_{a}\left[D_{j} D_{j}-\right]=\frac{1}{N^{2}} E_{a}\left[D_{j} \cdot D_{j}\right]
\end{aligned}
$$

since $P_{j j}(0)=P_{j}(0)=0$ if $j \neq j$.

Suraning up, we have

Theorem 7.

$$
\begin{aligned}
& E_{a}\left[(1-F I(N))^{2}\right] \\
& =\frac{1}{N^{2}} \underset{j=-1}{k-1}\left(2 H_{0}{ }^{*} P_{a j}{ }^{*} P_{j, j}(N)+2 H_{0} * P_{a j} * P_{j j}(N)\right. \\
& \left.+2 \mathrm{H}_{0}{ }^{*} \mathrm{P}_{2 j}{ }^{*} \mathrm{P}_{j \cdot j, j}(\mathrm{~N})-\mathrm{H}_{0}{ }^{*} \mathrm{P}_{\mathrm{a}, \mathrm{j}}(\mathrm{~N})\right\} .
\end{aligned}
$$

We note that as $N \rightarrow \infty$, the expression in Theorem 7 approaches

$$
\begin{aligned}
& {\underset{j=-1}{k-1} m_{j}^{2}+2}_{j}^{\sum_{j}} d_{j}^{m_{j} m_{j}} . \\
& =\left(\sum_{j=-1}^{k-1} m_{j}\right)^{2} \text { by Theoren 4. }
\end{aligned}
$$

Readjusting notation again, sc=a, uls=b, otherwise the same, we can rewrite the non-negatiye terme of Theorem 7 as follows (factoring out $2 / N^{2}$)

$$
\begin{aligned}
& \text { k-1 } \\
& H_{0}{ }^{*} P_{a b}{ }^{*}{\left.\underset{j=0}{k-1} P_{b j}+P_{b b}\right)} \\
& \begin{array}{l}
+ \\
+ \\
+
\end{array} \\
& H_{0}{ }^{*} P_{a s}{ }^{*}\left(\sum_{j=0}^{k-1} P_{s j}+P_{s b}\right)
\end{aligned}
$$

for $0 \leq 8 \leq k-1$.
Letting $U_{g}=\Sigma P_{g j}+P_{s b}$, including $s=b$, we have the following equations:
$\hat{\mathrm{p}}_{\mathrm{ab}}\left(\hat{\mathrm{U}}_{\mathrm{b}}\right), \ldots, \hat{\mathrm{P}}_{\mathrm{a}}(\mathrm{k}-1)\left(\hat{U}_{\mathrm{k}-1}\right)$ with states $\mathrm{a}, \mathrm{b}, 0, \ldots$. $(k-1)$ and transformed p.d.f.'s $y_{0}=\hat{Q}_{b, 0}=\delta /(z-\beta)$; $y_{a}=\hat{Q}_{j, a}=\delta /(z-u)$ for $0 \leq j \leq k-1 ; y=\hat{X}_{j, j+1}=E q /(z-u)$ (for $0 \leq j \leq k-1)=Q_{k-1, b}$.

Uaing the Z-transform, we obtain the following relationships among the $\mathrm{U}_{\mathrm{g}}{ }^{\prime} \mathrm{s}$ above.

$$
\begin{aligned}
\hat{U}_{b} & =y_{0} \hat{U}_{0}+\hat{H}_{0}\left(1-y_{0}\right) \\
\hat{U}_{0} & =y \hat{U}_{1}+\hat{H}_{0}\left(1-y-y_{a}\right)+y_{a} \hat{A} \\
& \vdots \\
\hat{U}_{k-1} & =y \hat{U}_{b}+\hat{H}_{0}\left(1-y-y_{a}\right)+y_{a} \hat{A}
\end{aligned}
$$

where $\hat{A}=\sum_{j=0}^{k-1} \hat{\mathbf{p}}_{a j}+\hat{\mathbf{p}}_{a b}$. We also have

$$
\begin{aligned}
& \hat{H}_{0}(1-y)=z /(z-\beta)=\hat{J}_{b} \Longrightarrow\left\|J_{b}\right\|_{N}=\beta^{N} \\
& \hat{H}_{0}\left(1-y-y_{a}\right)=z /(z-u)=\hat{J} \underset{s}{\Longrightarrow}\left\|_{B}\right\| N=u^{N}
\end{aligned}
$$

where $\|a\|_{N}=H_{o}^{* a(N)}$.

Using this system, we can progressively get bound's on the U_{j} 's and therefore eventually on the variance for FI(N). For instance, letting $k=1$, we would have:

$$
\begin{aligned}
& \left\|U_{b}\right\| N \leq\left(1-\beta^{N}\right)\left\|U_{0}\right\|_{N}+\beta^{N} \\
& \left\|U_{O}\right\| N \leq q\left(1-u^{N}\right)\left\|U_{1}\right\| N+P\left(1-u^{N}\right)\|A\|_{N}+u^{N} \\
& \left\|U_{1}\right\| N \leq q\left(1-u^{N}\right)\left\|U_{b}\right\| N+P\left(1-u^{N}\right)\|A\|_{N}+u^{N}
\end{aligned}
$$

Working out a full-blown eapression for a bound on the variance is extremely tedious, but now possible.
4.4 Other sampling plans. Setting l=sc, $2=u l s, 3=18$, and dEck, the SMC transitional diagram of CSP-3 is:

with states ($1, \hat{Q}_{12}$), ($2 ; \hat{Q}_{24}$), ($3, \hat{Q}_{31}, \hat{Q}_{32}$), and (4) $\hat{Q}_{41}, \hat{Q}_{43}$).

Sample solution is

$$
\hat{\mathbf{p}}_{12}=\frac{\hat{H}_{0} \hat{Q}_{12}\left(1-\hat{Q}_{24}\right)}{1-G(\overline{2})}
$$

where

$$
G(z)=\hat{Q}_{24} \hat{\mathrm{Q}}_{43} \hat{\mathrm{Q}}_{32}+\hat{\mathrm{Q}}_{12} \hat{\mathrm{Q}}_{24} \hat{\mathrm{Q}}_{41}+\hat{\mathrm{Q}}_{12} \hat{\mathrm{O}}_{24} \hat{\mathrm{Q}}_{43} \hat{\mathrm{Q}}_{31}
$$

The eigen-vector solution for its embedded MC is

$$
\begin{aligned}
\underline{e} & =\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \\
& =\left(\frac{1-q^{k+m}}{c}, \frac{1}{c}, \frac{q^{m}}{c}, \frac{1}{c}\right)
\end{aligned}
$$

where $c=3+q^{m}\left(1-q^{k}\right)$.
Other plans, like the multi level ones, feature phases of the type already met but with different sampling parameters for the same types; for example. ls $\left(k_{1}, f_{1}\right)$, ls $\left(k_{2}, f_{2}\right)$, etc.
5.0 ARBITRARY ENTRRY CASE. In elementary (continuous) renewal theory, the introduction of a delayed p.d.f. is necessary for dealing with the equilibrium case. If $F(x)$ is the distribution function of the ordinary process, μ the (long-run) mean time between renewala, $f(x)$ the delayed p.d.f., and $m_{e}(x)$ the mean number of renewals in time x for the equilibrium process, it can be shown [Ref 7.8] that

$$
f(x)=\frac{1}{H}(1-F(x))
$$

and

$$
m_{e}(x)=\frac{x}{\mu}
$$

In Cinlar's paper [Ref 7.6], analogous results are also shown to hold.

Following Cinlar [Ref 7.6, Chp 9], with modifications for the discrete time case, we have on the one hand

Definition 1. Letting $\boldsymbol{X}_{i, j}(t)$ be the delayed p.d.f.,

$$
\boldsymbol{Q}_{i, j}(t)=\frac{1}{\mu_{1}} H_{1} *\left(\left(q_{i, j}\right) \delta_{0}-Q_{i, j}\right)(t)
$$

On the other hand, for the Arbitrary Entry case of a MC model of a CSP, using either the MC or SNC methods, the initial probability vector for a given phase ifs now given, overtly dependent on the structure of the entire MC, by

$$
\underline{w}_{i}=\left(\frac{a_{1}}{a_{i}}, \ldots, \frac{a_{2}}{a_{1}}, \ldots\right), s \in 1
$$

where is the long-run probability for SMC state i and α_{s} is the analogous long run probability for SMC state which arises from that filtration of the primitive sMC which forbids SMC-state self-transitions. Thus, we can also define a delayed p.d.f. as in

Definition 2 . Letting $\bar{X}_{1, j}$ be the delayed p.d.f.i then we derine it as

$$
\bar{Q}_{i, j}(t)=L_{i} \frac{a_{B}}{a_{i}} f_{m, A(j)}^{t}
$$

where, once again, $f^{t}, A(j)$ is the first entrance probability (at time t) into phase j etarting initially from state in phase i with probability a_{m} / α_{1} 。

Two points concerning Definiticin 2 should be made. In contrast to the J-S case, ${\underset{W}{i}}$ is "umed just once" since any jump to f returns the procese to the J-8 case. Becondiy, even through \underline{w}_{i} appears to be plan dependent, it is shown later in this chapter that it is noti intuitively this is reasonable since a_{g} / a_{i} can be interpreted as the relative time apent in phase i starting from s.

Delow a. the $\bar{\chi}_{i, j}$'s are constructed for all canonical phases considered in the J-S case; b. definitions one and two are proven equivalent by elucidating the relationships between the primitive sMC and any filtration of it (thereby showing w_{1} to be plan independent)/ c. any SMC (or MRP) is shown to be stationary if itt initial p.d.f.'s are given by Definition one and d. the steady state 8MC is derived for CSP-1 and a bound on the variance of FI(N) is obtained.
5.1 Definition equivalence. Extensions of the techniques used here to include variations from the four mandard phases are straight-forward. In Theorem one through four below, $I_{s, A}$ shall have the meaning assigned to it by Definition 2.

Theorem 1. Definition equivalence for ac.
Proof. a. Again letting $H K=K$, we have from the basic MC system for ac,

$$
\begin{aligned}
f_{k, A} & =q^{I-k} \frac{(z-q)}{\rho(z)}\left(z^{k}-p z^{k-1}-p q z^{k-2} \ldots \ldots-p q^{k-1}\right) \\
& =q^{I-k} \frac{p_{k}(z)}{\rho(z)}
\end{aligned}
$$

where

$$
g_{k}(z)=z^{k}(z-1)+\gamma_{k} r_{k}=p^{k},
$$

and

$$
\phi(z)=g_{I}(z) .
$$

b. We now proceed to split ac into three consecutive subphases: $\mathrm{sc}(\mathrm{k}), \mathrm{H}(\mathrm{k})$, and $R(k)$. Thus, letting $1=8 \mathrm{E}(k)$, $2=\pi(k)$, and $3=R(k)$ for simplicity, we have:

Where a is the next state of the plan. This splitting yields the following transitional matrix for the embedded MC obtained from this variant siC:

where $r=I-(k+1)$. Letting $e^{-}=\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{j}^{\prime}, e_{a}^{\prime},-\infty\right)$, we obtain the eigen vector equation

$$
e^{-} T^{-}=e^{\wedge} .
$$

This equation in turn leads to the following algebraic system:

$$
\left.\begin{array}{rl}
{ }_{\rho e_{2}^{i}}+\left(1-q^{r}\right) e_{3}+v & =e_{i}^{i} \\
& =e_{i}^{i} \\
e_{i} & =e_{3}^{i} \\
q_{2}^{r} e_{3}+u & =e_{a}^{i}
\end{array}\right\}\left(E_{0}\right)
$$

 from the i Eh column vector by setting its first three components equal to zeros the rest of the induced algebraic system is the same as the one gotten from the original SMC.
c. From Theorem 3.1 and Corollary 1 to Theorem 3.6, we have for the mean values of SMC states 1, 2 , and 3

$$
\mu_{1}=\frac{1-q^{k}}{p q^{k}}, \mu_{2}=1 \text {, and } u_{3}=\frac{1-q^{x}}{p}
$$

a. From b., c., and Theorem 2.4,

$$
a_{s}=\frac{e^{\prime} \mu_{g}}{D^{2}}(s=1,2, \text { and } 3) \text {, }
$$

$$
=D_{1}+D_{2}
$$

where, by $\left(E_{0}\right)$ in b. and $c .$,

$$
\begin{aligned}
D_{1} & =e_{i}\left(\frac{1-q^{k}}{p q^{k}}\right)+e_{i}^{j}+\left(q e_{i}^{j}\right) \frac{1-q^{r}}{p} \\
& =e_{i}\left(\frac{1-q^{I}}{p q^{I}}\right) q^{I-k} \\
& =e_{i} \mu_{s c} q^{I-k} \quad\left(E_{0}^{\circ}\right)
\end{aligned}
$$

e. Returning to the original SMC, we now consider the transitional matrix for its embedded MC:
$\left.\begin{array}{cccc}\text { sc } & a & \cdots \\ a \\ 0 \\ 0 & 1 & * \\ * & * & \\ 0 & & \end{array}\right]=T$

This matrix induces the following linear system via eT $=$ es

$$
\left.\begin{array}{rl}
v & =e_{s c} \\
e_{s c}+u & =e_{a}
\end{array}\right) \Longrightarrow\left\{\begin{array}{l}
v=e_{B C} \\
u=e_{a} e_{B C}
\end{array}\left(E_{1}\right),\right.
$$

 $\mathrm{col}_{\mathrm{a}}$ by setting its first component equal to zero. However from (E_{0}), we also have

$$
\left.\begin{array}{l}
u=e_{a}^{-}-q^{I-k_{e}} \\
v=q_{i}^{I-k_{e}}
\end{array}\right\}\left(E_{2}\right)
$$

Therefore from (E_{2}) and $\left(E_{2}\right)$, we have

$$
\left.\begin{array}{l}
e_{g c}=q^{I-k_{e}} e_{1} \\
\left(e_{a}=e_{a}^{\prime}\right)
\end{array}\right\}\left(E_{3}\right)
$$

(We also know that eff $=$ oj for $j \neq(2,2,3)$).
f. Therefore, from (E_{0}^{-}) and $\left(E_{3}\right)$, we get
$D_{1}=e_{A C} \mu_{A C} \Longrightarrow D^{\prime}=D$.

Thus finally from d, and the above,

$$
\alpha_{H(k)}=\frac{e_{B C} q^{k-I}}{D}
$$

or

$$
a_{H(k)}=\left(\frac{1}{\mu_{s c}}\right)\left(q^{k-I}\right) a_{s c} ;
$$

As a check, we have $\sum_{0}^{I-1} \alpha_{H(k)}=\alpha_{8 C}$.
g. From a. and f_{i}, we have

$$
\frac{a_{H}(k)}{a_{s c}} \hat{f}_{k, A}=\frac{1}{\mu_{8 c}} \frac{\Phi_{k}(z)}{g_{(z)}}
$$

h. since

$$
\begin{aligned}
& {\underset{\Sigma}{\Sigma=0}}_{I-1} \emptyset_{k}(z)=z\left(\sum_{0}^{I-1} z^{k}\right)-\left(\sum_{0}^{I-1} z^{k}\right)+\left(1-q^{I}\right) \\
& =\left(\frac{1}{z-1}\right)\left(z^{I}(z-1)-q^{I}(z-1)\right) .
\end{aligned}
$$

we have with g.,

$$
\begin{aligned}
\underset{k=0}{I-1} \frac{a_{k}}{a_{B C}} \hat{f}_{k, A} & =\frac{\hat{H}_{1}}{\mu_{8 C}}\left\{\frac{z^{I}(z-1)-g^{I}(z-1)}{\rho(z)}\right\} \\
& =\frac{\hat{H}_{1}}{\mu_{B C}}\left\{1-\frac{q^{I}(z-q)}{\rho(z)}\right\}
\end{aligned}
$$

The proof is finished by noting that $\hat{Q}_{8 C, A}(1)=1$ and $q^{I}(z-q) / \varnothing(z)=\hat{Q}_{s C, A}(z)$.

Theorem 2. Definition equivalence for ils phase Proof.
a. From Theorem 2.4,
$\left.\begin{array}{l}u P_{a, u l s}(t)=p_{a, S N}(t) \\ f p_{a, u l s}(t)=p_{a, S I}(t)\end{array}\right]\left\{\begin{array}{l}a_{S N}=v a_{u l s} \\ a_{S I}=f a_{u l s}\end{array}\right.$
b. $\frac{a_{S N}}{a_{u l s}} \hat{f}_{S N, A}+\frac{a_{S I}}{a_{u l s}} \hat{f}_{S I, A}$
$=\overrightarrow{U \mathbf{f}_{S N, A}}+\hat{\mathbf{f}}_{\mathrm{SI}, \mathrm{A}}$, from a.
$=\hat{\mathbf{f}}_{\mathrm{ulB}}, \mathrm{A}$

$$
\text { c. } \begin{aligned}
\frac{\hat{f}_{1}}{\mu_{u l s}}\left(1-\frac{\delta}{z-\beta}\right) & =\left(\frac{\delta}{z-I}\right)\left(\frac{z-1}{z+\beta}\right) \\
& =\frac{\delta}{z-\beta} \\
& =\hat{f}_{u i x, A},
\end{aligned}
$$

or

$$
\frac{\hat{H}_{1}}{H_{u l s}}\left(1-\hat{Q}_{u 1 E, A}\right)=\hat{Q}_{u 1 \varepsilon, A}
$$

which, along with b., firishise the proof.
Theorem 3. Definition equivalence for is phase
Proof. a. Break 18 into (SN-SI) blocks as follows:

Since all the blocks are structurally equivalent, we have from Theorem 3.3,

$$
\mu_{1}=\frac{1-q^{h}}{1 p}, \mu_{2}=\frac{1-q}{1 p}, \text { and } \mu_{3}=\frac{1-q^{r}}{I q}\left(E_{0}\right)
$$

where $r=k-(h+1)$.
b. In the split system, we can put the three segments of la first in the corresponding transitional matrix of the embedded MC:

Then $e^{-T^{\prime}}=e^{-}$induces

$$
\left.\begin{array}{rl}
v & =e_{1}^{\prime} \\
q^{h} e_{1}^{\prime} & =e_{2}^{\prime} \\
q_{j} & =e_{3}^{\prime}
\end{array}\right\} \quad\left(L_{1}\right)
$$

Therefore, $\sum_{s=1}^{3} e_{s}^{\mu_{s}}=\frac{e_{j}^{\prime}}{f p}\left(1-q^{k}\right)$ from $\left(E_{0}\right)$ and $\left(E_{1}\right)$.
Therefore, $D_{1}=e_{1}^{\prime} \mu_{1 s}$ and hence
$\alpha_{(h)}=\alpha_{2}=\frac{\left(q^{h} / f\right) e_{1}^{\prime}}{D_{2}+e_{1}^{\prime}{ }_{1 s}}$,

$$
D_{2}=\varepsilon e_{j} \mu_{j}, j \neq(1,2,3)
$$

c. In crder to get the necessary relationships between the primed and unprimed systems, we need some additional conditions on exits and entrances; we assume the usua? "CSP-2" type:

Using the above assumptions, we san now fill in the a and b columns of T :

$$
\begin{array}{cc}
1 & 2 \\
a:\left(1-q^{h},\right. & \left.1-q, 1-q^{r}, *\right)^{t} \\
b:(0,0, & \left.q^{r}, *\right)^{t}
\end{array}
$$

Where v^{t} is the transposed vector of v. The resulting "augmented" matrix leads to the system $\left(E_{2}\right)$:

$$
\left.\begin{array}{rl}
\left(1-q^{n}\right) e_{1}^{\prime}+p e_{2}^{\prime}+\left(1-q^{r}\right) e_{3}^{\prime}+u & =e_{a}^{\prime} \\
q^{r} e_{3}^{\prime}+w & =e_{b}^{\prime}
\end{array}\right\}\left(E_{2}\right)
$$

 from col (.) by setting the first three components equal to zero. Then

$$
\left(E_{1}\right) \text { and }\left(E_{2}\right) \longrightarrow\left\{\begin{array}{l}
e_{a}^{-}-u=e_{i}^{\prime}\left(1-q^{k}\right) \tag{3}\\
e_{b}^{-}-w=e_{i}^{\prime} q^{k}
\end{array}\right\}
$$

d. The standard transitional matrix T is

From er $=$ e, we get

$$
\left.\begin{array}{rl}
v & =e_{1 s} \\
\left(1-q^{k}\right) e_{1 s}+u & =e_{a} \\
q^{k} e_{l s}+w & =e_{b}
\end{array}\right\} \quad\left(E_{4}\right)
$$

 col (\cdot) is gotten from col (.) by setting the first component equal to zero. Finally, from $\left(E_{2}\right)$ and $\left(E_{4}\right)$, we get

$$
\left.\begin{array}{l}
e_{i}^{\prime}=v=e_{1 s} \\
e_{a}^{\prime}=e_{a} \\
e_{b}^{\prime}=e_{b}
\end{array}\right\} \quad\left(E_{5}\right)
$$

e. Thus from (E_{5}) and the last part of b.,
$a_{(h)}=a_{2}$

$$
=\frac{\left(q^{h} / f\right) e_{1 B}}{D}
$$

Or

$$
a_{(h)}=\left(\frac{1}{\mu_{1 s}}\right)\left(\frac{q^{h}}{f}\right) a_{1 s} .
$$

f. As in Theorem 2, $a_{\mathrm{SNh}}=v a_{h}$ and $a_{\mathrm{gIh}}=\mathrm{fa} \mathrm{h}_{\mathrm{h}}$ which together imply that
g. From e. and f.

$$
\begin{aligned}
& \hat{f}_{h, A(1)}(z)=\left(\frac{\frac{E g}{z-v}}{}\right)^{k-h} \\
& \hat{f}_{h, A,(1)}(z)=\left(\frac{\delta}{z-\beta}\right)\left(1-\left(\frac{\left.\left.\frac{f g}{z-v}\right)^{k-h}\right)}{} .\right.\right.
\end{aligned}
$$

Therefore, sum for $\mathrm{A}(2)$

$$
\begin{aligned}
& =\frac{1}{F^{\mu} 1 s}\left\{\sum_{h=0}^{k-1} q^{h}\left(\frac{z-v}{I q}\right)^{h}\right\}\left(\frac{f q}{2-v}\right)^{k} \\
& =\frac{1}{Y^{\mu}{ }_{1 B}}\left\{\frac{1-\left(\frac{z-u}{I}\right)^{k}}{f-z+u}\right\} \quad\left(\frac{f q}{z-u}\right)^{k} \\
& =\frac{\hat{H}_{1}}{\mu_{1 s}}\left\{q^{k}-\left(\frac{f q}{2-v}\right)^{k}\right\} .
\end{aligned}
$$

h. Letting $x=\delta /(z-\beta)$ and $x^{-}=(f q /(z-u))^{k}$, and again using e. and f., the sum for $A(1)$ is

$$
\begin{aligned}
& {\underset{h}{\Sigma}=0}_{k-1}^{\alpha_{h}} \hat{f}_{h, A(1)} \\
& =\left(x-\frac{\hat{H}_{1}}{\mu_{18}}\left(q^{k}-x^{\prime}\right) x\right) \\
& =\frac{\hat{H}_{1}}{\mu_{1 s}}\left(\frac{\mu_{1 B}}{\mu_{1}} x-q^{k} x+x x^{-}-x+x\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\hat{H}_{1}}{u_{18}}\left(\left(1-q^{k}\right)(x)\left(\frac{z-1}{\delta}+1\right)-x+x x^{-}\right) \\
& =\frac{\hat{H}_{1}}{\mu_{18}}\left\{\left(1-q^{k}\right)-x\left(1-x^{-}\right)\right\} \\
& =\frac{\hat{H}_{1}}{{ }^{H} 18}\left\{\hat{Q}_{1 s, A(1)}(1)-\hat{Q}_{1 s, A(1)}(z)\right\}
\end{aligned}
$$

since $((z-1) / \delta)+1=(z-\beta) / \delta=1 / x$ which finishes Theorem 3.

Theorem 4. Definition equivalence for ok phase.
Proof. a. Splitting ck into its MC components and using induction along with the $C-K$ oquations, we have

$$
\left.\begin{array}{l}
\hat{\mathbf{f}}_{C j, A(b)}=\left(\frac{g}{2}\right)^{m-j} \\
\hat{f}_{C j, A(a)}=\frac{1-q^{m-j}}{2^{m-j}}
\end{array}\right\} \begin{aligned}
& 0 \leq j \leq m-1
\end{aligned}
$$

and

$$
\hat{f}_{\overline{\mathbf{C}}, A(a)}=\frac{1}{z^{m-(j+1)}}, 0 \leq j \leq m-2
$$

where a and b are defined through the following diagrams

b. The transitional matrix T^{\prime} is too bulky to write down here, but we do order the states as: C_{0}, $c_{m-1}, c_{0}, \ldots, \bar{c}_{m-2}, a, b, \ldots$ in what follows. From the eigen-vector equation, we get

$$
\begin{aligned}
& \left.\left.\begin{array}{c}
e_{0}=v \\
q e_{j}^{j}=e_{j+1}^{j} \\
0 \leq j \leq m-2
\end{array}\right\}\left(E_{0}\right), \quad \begin{array}{c}
p e_{j}=\bar{\sigma}_{0} \\
\bar{a}_{j}+p e_{j+1}=\bar{e}_{j+1} \\
(0 \leq j \leq m-3)
\end{array}\right\}\left(E_{1}\right), \\
& \left.\begin{array}{l}
c_{a}=u+e_{m-1}+\varepsilon_{m-2} \\
q_{b}=w+q a_{m-1}^{j}
\end{array}\right\}\left(E_{2}\right) \\
& \begin{array}{l}
\text { where } e_{j}^{\prime}=e_{c}^{\dot{c}}, \bar{e}_{j}=\ddot{c}_{j}, v=e^{\prime} \cdot \operatorname{col}_{0}, u=e^{\prime} \cdot \operatorname{col}{ }_{a}^{\prime} \\
w=\underline{c o l}_{b}^{\prime \prime}
\end{array} \\
& \text { and } \\
& \left(\operatorname{col}_{a}^{-}\right) \mathrm{j}=\left\{\begin{array}{l}
\left(\operatorname{col}_{\mathrm{a}}\right) \mathrm{f}, \text { if } \mathrm{j} \neq \mathrm{m}-\mathrm{l}, \mathrm{~m} \\
0, \text { otherwise. }
\end{array}\right. \\
& \left(\underline{c o l}_{b}^{m}\right) j=\left\{\begin{array}{l}
\left(\text { (col }_{b}\right) j, \text { if } j \neq m \\
0, \text { otherwise. }
\end{array}\right. \\
& \text { From }\left(E_{0}\right) \text { and }\left(E_{1}\right) \text { we gat }
\end{aligned}
$$

But now, again from Theorem 2.4,

$$
a_{c_{j}}=\frac{\bar{a}_{j}}{D^{2}} \text { and } a_{c j}=\frac{e_{j}}{D^{\eta}}
$$

where

$$
D^{-}=\sum_{0}^{m=1} e_{k}+\sum_{0}^{m-2} \bar{e}_{k}^{\prime}
$$

Therefore $D^{\prime}=$ med $_{0}$.
c. From the transitional matrix of the original process, we get

$$
\left.\begin{array}{rl}
v & =e_{c k} \\
\left(1-q^{m}\right) e_{c k}+u & =e_{a} \\
q^{m} e_{c k}+w & =e_{b}
\end{array}\right\} \quad\left(E_{4}\right)
$$

From (E_{2}) and (E_{4}) we finally get
$\left.\begin{array}{l}e_{0}^{0}=e_{c k} \\ e_{b}^{-}=e_{b} \\ e_{a}^{-}=e_{a}\end{array}\right\} \quad\left(E_{5}\right)$
d. Thus c. and b.
$-\quad a_{c j}=\frac{\left(1-q^{1+j}\right)}{\mu_{c k}} a_{c k}$
and

$$
a_{c j}=\left(\frac{q^{j}}{\mu_{c k}}\right) a_{c k}
$$

e. From a. and a.,

$$
\begin{aligned}
&{\underset{j=0}{m-1} \frac{a_{c j}}{a_{c k}} \hat{f}_{c j, A(b)}}=\frac{m-1}{\Sigma=0} \frac{q^{j}}{\mu_{c k}}\left(\frac{q}{2}\right)^{m}\left(\frac{z}{q}\right)^{j} \\
&=\frac{1}{\mu_{c k}}\left(\frac{z^{m}-1}{z-1}\right)\left(\frac{q}{2}\right)^{m}
\end{aligned}
$$

$$
=\frac{\hat{H}_{1}}{\mu_{c k}}\left(q^{m}-\hat{o}_{a k, A}(b)(z)\right)
$$

$$
\left(q^{m}=\hat{o}_{c k, A(b)}(1)\right) .
$$

f. Once again using d. and a.,
Corollary (to Theorems 1-4)
u_{s} / α_{i} is plan-independent.
Proof. (clear).
5.2 Equilibrium sampling plans. Having shown the aquivaFence or the two definitions in 5.0 , we can now turn our attention to the fundamental sMC system for delayed p.d.f.'s ("nh and "—" have been replaced with a prime symbol). since a first transition returns the equilibrium system to the ordinary non-delayed one, we haves

$$
\begin{aligned}
& \sum_{j=0}^{m-1} \frac{a_{d j}}{a d k} \hat{f}_{c j, A(a)}+\sum_{j=0}^{m-2} \frac{a_{c j}}{a_{d k}} \hat{f}_{c j, A(a)} \\
& =\sum_{j=0}^{m-1} \frac{q}{j}_{\mu^{j}}^{d k}\left(\frac{1-q^{m-j}}{z^{m-j}}\right)+\sum_{j=0}^{m-2} \frac{\left(1-q^{j+1}\right)}{{ }^{m} d k} \cdot \frac{1}{z^{m-(j+1}} \\
& =\frac{1}{\mu_{c k} z^{m}}\left\{\sum_{i}^{m-1} q^{j} z^{j}-q^{m} \sum_{\Sigma}^{m-1} z^{j}+\sum_{\Sigma}^{m-2} z^{j+1}-\sum_{0}^{m-2}(z q)^{j+1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\mu_{c k^{2}}{ }^{m}}\left(1-q^{m}\right)\left(\frac{z^{m}-1}{z-1}\right) \\
& =\frac{\hat{\mu}_{1}}{\mu_{c k}}\left\{\left(1-q^{m}\right)-\hat{Q}_{c k, A(a)}(z)\right\} \text {. }
\end{aligned}
$$

$$
\left(F, B, \tilde{f}_{\&} P_{i, k}(t)=\sum_{j} Q_{i, j} * P_{j, k}(t)+\left(B_{i, k}\right) J_{\dot{k}}(t)\right.
$$

where

$$
\hat{J}_{\hat{k}}=\hat{H}_{0}\left(1-\theta_{\hat{k}}\right)
$$

Fox this system we have
Lemma.

$$
\hat{J}_{k}-\hat{H}_{0}=\frac{\hat{H}_{1}}{\mu_{k}} \hat{J}_{k}
$$

Proof.

$$
\text { a. } \hat{J}_{k}=\hat{H}_{0}\left(1-\Sigma \hat{Q}_{k}, m\right) \text {. }
$$

b. But,

$$
\begin{aligned}
& \hat{Q}_{k m}=\frac{1}{2 \mu_{k}} \hat{J}_{k, m} \\
& \sum_{m} \hat{\Omega}_{k, m}=\frac{1}{2 \mu_{k}} \hat{J}_{k} .
\end{aligned}
$$

a. Thus, since $\hat{H}_{0} / z=\hat{H}_{1}$, we are done by a. and b.

Theorem 5. (Stationarity) Given a CSP,
$\underline{a}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a stationary distribution for $P_{i, j}(t)$.

Proof.
a. Statement of Theorem is equivalent to

$$
\sum_{j}^{\varepsilon} a_{j} p_{j, k}(t)=a_{k},(t \geq 0)
$$

Or

$$
\begin{aligned}
& \text { b. L.R.B. of last equation in a. } \\
& =\sum_{j} \sum_{s} \alpha_{j} \hat{Q}_{j,} \hat{p}_{n, k}+\alpha_{k} \hat{J}_{k} \\
& =\quad W_{1}+W_{2} \text {, for (F.S.) } \\
& \text { c. } w_{1}=\sum_{j} \sum_{j}^{a_{j}} \hat{u}_{j} \hat{\bar{n}}_{1}\left(q_{j, a}-\hat{Q}_{j, ~}\right) \hat{p}_{a, k} \\
& =\sum_{j}{\underset{D}{1}}^{\theta_{1}} \hat{H}_{1}\left(q_{j, B}-\theta_{j, E}\right) \hat{P}_{y, k} \\
& =\frac{\hat{H}_{1}}{\sigma}\left(\Sigma\left(\Sigma e_{j} q_{j z}\right) \hat{P}_{s k}\right. \\
& \left.-\sum_{j} e_{j}\left\{\Sigma \hat{Q}_{j} \hat{E}_{s k}\right\}+\left(\Sigma e_{j}\right)\left(-e_{k} \hat{J}_{k}\right)+e_{k} \hat{J}_{k}\right\}
\end{aligned}
$$

(the last two terms summing to zero since $\varepsilon e_{j}=1$)

$$
\begin{aligned}
& =\frac{\hat{H}_{1}}{D}\left\{\Sigma e_{k} \hat{p}_{k k}-\sum_{j} e_{j} \hat{\mathrm{~F}}_{j k}+e_{k} \hat{J}_{k}\right\} \\
& =\frac{\hat{H}_{1}}{D} e_{k} \hat{J}_{k} . \\
& =\frac{\hat{H}_{1}}{H_{k}} a_{k} \hat{J}_{k} .
\end{aligned}
$$

d. By the lemma,
$W_{2}=a_{k} \hat{J}_{k}^{\prime}$

$$
=a_{k}\left(\hat{H}_{0}-{\underset{H}{H_{k}}}_{\underline{1}}^{\hat{J}_{k}} \hat{J}_{k}\right.
$$

e. c. and $d . a$

$$
w_{1}+w_{2}=a_{k} \hat{H}_{0}
$$

which completes the proof.
Defining $M_{k}(t)$ as the number of recurrences of the state k in $(0, t)$, we have an analogous result concerning the ecationarity of the renewal functions $R_{i, j}$.

Theorem 6 .

$$
E_{\underline{\alpha}}\left[M_{k}(t)\right]=t\left(\frac{\alpha_{k}}{\mu_{k}}\right)
$$

Proof.

$$
\begin{aligned}
& \text { a. } \quad \underline{\underline{Q}}\left[M_{k}(t)\right]=\Sigma a_{i} R_{i k}(t) . \\
& \text { Now } \hat{B}_{i k}=\hat{R}_{i k}\left(1-\hat{Q}_{k}\right)+\left(\delta_{i, k}\right) \hat{J}_{k} \\
& \therefore a_{k} \hat{H}_{0}=\left\{\Sigma a_{i} \hat{R}_{i k}\right\}\left(1-\hat{Q}_{k}\right)+a_{k} \hat{J}_{k}
\end{aligned}
$$

or

$$
\frac{a_{k}\left(\hat{H}_{0}-\hat{J}_{k}\right)}{1-\hat{Q}_{k}}=\Sigma \alpha_{i} \hat{R}_{i k}
$$

b. But $\hat{J}_{k}=\hat{H}_{0}-\hat{H}_{0} \hat{Q}_{\hat{K}}$

$$
\begin{aligned}
\bullet \hat{H}_{0}-\hat{J}_{k} & =\hat{H}_{0}-\hat{H}_{0}+\hat{H}_{0} \hat{Q}_{k} \\
& =\hat{H}_{0} \hat{Q}_{k} \\
& =\frac{\hat{H}_{0} \hat{H}_{I}}{H_{k}}\left(1-\hat{Q}_{k}\right)
\end{aligned}
$$

c. \dot{b}. and a. $\Longrightarrow E_{\underline{a}}\left[M_{k}(t)\right]=\hat{H}_{0} \hat{H}_{1}\left(\frac{a_{k}}{\mu_{k}}\right)$; letting $\hat{a}(z)=\hat{H}_{0} \hat{H}_{1}$, we have

$$
a(n)=\int \frac{z^{n} d z}{(z-1)^{2}}=n
$$

$$
E_{\underline{\alpha}}\left[M_{k}(n)\right]=\left(\frac{a_{k}}{\mu_{k}}\right) n .
$$

5.3 Variance for CBP-1 and FI(N). We conclude this chapter With an application of Theorem 5 (and Theorems 1 through 4) in obtaining an upper bound to the second moment of (1-FI(N)) for Csp-1. To avoid repetition of chapter 4, we split ils into its two nondegenerate subphases thereby dealing with a sac with 3 tater. Analogous methods can be applied to CSP-2 as well. Letting $S(N)=1-F I(N)$, we have

[^3]\[

$$
\begin{aligned}
& -\frac{{ }^{a_{S N}}}{\mathrm{~N}} . \\
& =2 W-\frac{\alpha_{S N}}{N} \text {. } \\
& W=\frac{1}{N^{2}} \sum_{r=0}^{N}\left(\alpha_{E C^{P}}^{\prime}{ }_{E C, S N}+\alpha_{S N} P_{S N, S N}^{\prime}+\alpha_{S I} P_{S I, S N}^{\prime}\right) * P_{S N, S N}(x) \\
& =\frac{1}{N^{2}} \Sigma\left(a^{S N} H_{0}\right){ }^{*} P_{S N, S N}(x)^{*}
\end{aligned}
$$
\]

$$
\begin{aligned}
& =a_{S N} \frac{\left(H_{0}^{2}{ }^{* p_{S N}} S_{S N}\right)(N)}{N^{2}} \\
& \leq \frac{1}{2} a_{S N} \frac{H_{0}^{2}(N)}{N}\left(\frac{H_{0}^{*} \mathcal{P}_{S N} S N(N)}{N}\right)
\end{aligned}
$$

since H_{0} and $H_{0}{ }^{*} \mathbf{P}_{8 N, B N}$ are monotonically nondecreasings

$$
=\frac{1}{2} a_{S N}\left(1+\frac{1}{N}\right)\left(\frac{H_{0}^{*} P_{S N}, 8 N}{(N)}\right)
$$

Thus

$$
E_{\underline{a}}\left[(S(N))^{2}\right] \leq \alpha_{S N}\left(1+\frac{1}{N}\right)\left(\frac{H_{0}{ }^{*} P_{S N_{\rho} S N}(N)}{N}\right)-\frac{\alpha_{S N}}{N}:\left(E_{0}\right)
$$

But $\hat{P}_{S N, S N}=\hat{Q}_{S N, S I} \hat{P}_{S I, S N}+\hat{J}_{S N}$

$$
\begin{align*}
\hat{\mathrm{P}}_{S I, S N} & =\hat{Q}_{S I, S N} \hat{P}_{S N, S N}+\hat{Q}_{S I, I} \hat{\mathrm{P}}_{1, S N} \\
\hat{\mathrm{P}}_{S N, S N} & =\frac{\hat{Q}_{S N, S I} \hat{Q}_{S I, 1} \hat{P}_{1, S N}+\hat{J}_{S N}}{\left(1-\hat{Q}_{S N, S I} \hat{Q}_{S I, S N}\right)} \\
& =\left(\hat{Q}_{S N, S I} \hat{Q}_{S I, I} \hat{\mathrm{P}}_{1, S N}\right) \hat{S}+\hat{J}_{S N} \hat{S} \\
& =\hat{\mathbb{A}} \hat{P}_{1, S N}+\hat{B} . \tag{1}
\end{align*}
$$

Now, simplifying

$$
\hat{A}(z)=\frac{\delta}{z(z-\beta)}
$$

which implies

$$
H_{0}^{* A(n)}=\left\{\begin{array}{ll}
1 \\
0 & -\theta^{(n-1)}, n \geq 1 \\
0 & , n \geqslant 0
\end{array} \quad\left(E_{2}\right)\right.
$$

and

$$
\hat{B}(z)=(z-f q) /(z-\beta)
$$

which implies

$$
\begin{align*}
& H_{0}{ }^{*}(n)=1+\frac{U}{\delta}\left(1-\beta^{n}\right)_{8} \tag{3}\\
& \left(E_{0}\right),\left(E_{1}\right),\left(E_{2}\right) \text {, and }\left(E_{3}\right) \\
& E_{\underline{a}}\left[(S(N))^{2}\right) \leq a_{S N}\left(1+\frac{1}{N}\right)\left(\frac{H_{0}{ }^{*} A * P_{1, S N}(N)}{N}+\frac{H_{0}{ }^{*} B(N)}{N}\right)-\frac{a_{S N}}{N} \\
& \leq \alpha_{S N}\left(1+\frac{1}{N}\right)\left\{\left(H_{0}{ }^{*} A(N)\right) \frac{\left\langle H_{0}{ }^{*} D_{1} S_{N N}(N)\right)}{N}+\frac{H_{0}{ }^{*} B(N)}{N}\right\}-\frac{a_{S N}}{N} \\
& =\alpha_{S N}\left(1+\frac{1}{N}\right)\left\{\left(1-\beta^{N-1}\right)(1-\operatorname{AFI}(N))+\frac{1}{N}\left(1+\frac{U}{\sigma}\left(1-\beta^{N}\right)\right)\right\}-\frac{\alpha_{S N}}{N}
\end{align*}
$$

6.0 CONCLUDING REMARKS. We conclude this paper with two examples of the drrect use of SMC theory followed by a short surmary.
6.1 CSP-1 in tandem. Consider two CSP-1 plans arranged in tandem, 1.e., the output of the first is the input of the second. This kind of sampling procedure (along with further iterations) can practically arise when each production unit is being inspected for 2 (or more) defecte. An example of what is involved in a two dimensional MC model of this situation is now given. For $0 \leq J_{1}\left(J_{2}\right) \leq I_{1}-1\left(I_{2}-1\right)$,

Upon working out all the remaining transitional probabilities, it quickly becomes clear that such a model is time homogeneous.

Let us now consider collapsing the two dimensional model into a one dimensional one: the result is nonMarkovian (the reverse process, constructing a MC model out of a non-Markovian one through additional variables, thereby yielding higher dimensional states, is called the method of mupplementary variables). Specifically, we obtain a non-homoganeous SMC; for instance, during the time interval ($k, k+1$), $J \rightarrow \frac{j}{j+1}$ with probability

$$
P_{J, j+1}(k, k+1)=\left(P_{11}(k) q_{1}+P_{1.2}(k) \theta_{1}\right) q_{2}
$$

where the first factor is derived from the first plan. However, if we consider the first CsP to be steady state, the reault is a time homogeneous SMC: for inatance,

$$
\sigma_{j, j+1}(n)=\left\{\begin{array}{l}
\left(p_{1} \alpha_{1}+\sigma_{1} \alpha_{2}\right) p_{1}^{n-2} q_{1} q_{2}, n>1 \\
\left(q_{1} \alpha_{1}+\beta_{1} \alpha_{2}\right) q_{2}, n=1
\end{array}\right.
$$

6.2 Downstream ingpection. Another example of the direct use of SMC techniques is downatream inspection in a Csp-1 setting: if upon inapecting, a defeot in found in the uls phase, go to an intermediate one and inspect, at 600%, the I previous unita; if no defects are found, transfer back to ula; otherwime go to sof then proceed as in CSP-1. This modified CsP-1 can be modeled directly with the following SMC without the intermediate stage, the model has the following SMC transitional diagram:

with

$$
\begin{aligned}
& \chi_{2,1}(n)=\beta^{n-1}(\delta)\left(1-q^{I}\right) \\
& \chi_{2,2}(n)=\beta^{n-1}(\delta)\left(q^{I}\right)
\end{aligned}
$$

It should be noted that if sampling downstream were instead sampling upstream, we would essentially have a "partial" CSP-3 since operational time is measured by the flow of production units -- each counted once!
6.3 Summary. A simplified method, with some of its ramifications and variations, of dealing with the standard MC model of a given CSP has buen considered. The essance of the technique is the partitioniny of the MC into natirally defined segments. This blocking out of (relatively) many microstates into few (relatively) macrostaices has been accomplished here within the natural context of SMC's. However, this approach does not obviate the need for the MC model in favor of some directly given SMC aince the former is initially likely to be the more intuitive and easier of the two to construct. For a more practical explication on the basic method for the steady state case not explicitly involving SMC's, references 7.3 through 7.5 are highly recommended (where the inethod is called "A Simplified Markov Chain Approach").
7.0 REFERENCES.
7.1 Arp, D. L. "Expected values from a Markov Chain medel of CSP-F and the Z-transform", Proceedings of the Nineteonth Conference on the Design of Experiments in Army Research hevelopment and Testing, to be pumitehed.
7.2 Barrière, R. Optimal Control Theory, W. B. Saunders Co., Philadelphia, PA, 1967.
7.3 Brugger, R. M. "A simplification of the Markov chain approach to continuous sampling plan formulation", QEM 21-230-12, Ammunition Procurement and Supply Agency, 1972 (Transferred to US Army Armament Command; Rock Islind, IL 61201) 。
7.4 Brugger, R. M. "Responsiveness properties of continuous sampling plans", Proceedings of the Nineteenth Conference on the Denign of Experiments in Axiny lisearah Davelopment and resting, to be pubilshed.
7.5 Brugger, R. M. "Skip-lot procedure formulation ueing the simplified Markov chein method". Proceedinge of the 'rwentieth Conference on the Design oi experiments in Friay Ferourch Devalopmant and TGBting, to be pubished.
7. 6 Ciniar, E. Markov renewal theory", Adv. Appl. Prob. . Vol 1 (1969). pp. 123-187.
7.7 Cinlar, E. "Periodicity in Markov ranewal theory", AD 738-469.
7.8 Cox, D. R. Renewal Theory, Mathuen Monographs on Applied Probability and statistics, Iondon, 1962.
7.9 Feller, W. "On Somi Markov Processes", Proc. of Mat'1 Acad of Sci, Vol. 54 (1964), pp. 653-659.
7.10 Karlin, S. "On the renewal equation", Pacific J. Math. Vol. 5 (1955) pp. 229-257.
7.11 Pyke, R. Markov renewal processes: definitions and preliminary properties". AD 227-271.
7.12 Pyke, R. "Markov renewal processes with finitely many states", AD 228-117.

TRACKING RELIABILITY GROWTH

Larry H. Crow
U. S. Army Materiel Systems Analysis Activity Aberdeen Proving Ground, Maryland

ABSTRACT. It is common practice for a complex system under development to be subjected to a test-fix-test-fix process. During this process, the system is tested until a fallure occurs, design and/or ongineering modifications are then made as attempts to oliminate the failure mode(s) and the system is tested again. This process is continued until the desired reliability is attained. Because of these changes in reliability and the fact that test data may be limited in quantity, it is often a difficult task to directly estimate the growth of reliability and relate this to the final reliability goel.

A popular, "common sense" procedure used for the tracking of reliability is not satisfying because of several major drawbacks. This paper gives improved, yet simple, techniques for tracking the system reliability through this development process, along with appropriate confidence bound and goodness of fit procedures. Application of these techniques to an Army system is discussed.

1. INTRODICTION

Invariably, development programs for sophisticated, complex systems require considerable resources such as time, dollars and manpower, to achieve a lovel of system reliability acceptable to the user. The reliability requirements for many systems are high, and to obtain these high goals it is common practice to subject the system to a test-fix-test-fix process. During this process, the total system or major subsystems are tested to failure, system failure modes are determined, and design and/or engineering changes are made as attempts to eliminate these modes or, at least, to decrease their rate of occurrence. If this process is continued, and design and engineering modifications are made in a competent manner, then the system reliability will increase.

It is advaniageous, of course, for the program manager to track this increase in system reliability during the development program. He may then determine as early as possible whether or not the system reliability is growing at a sufficient rate to meet the requirel goal and allocate avallable resources accordingly. In this regard, " progrum manager wishes to determine from test data the current reliability status of the system, estimate the rate of growth, and obtain projections of future expected reliability.

Since the system configuration is continually changing under this test-fix process, there is usually limited test data available on the system for a fixed configuration. Consequently, direct estimates of system reliability for a fixed configuration would generally not
onjoy a high degree of confidence and may, therefore, have little practical value.

Because of these difficulties with the direct estimation of system reliability, mathematical reliability growth models are often employed. Most reliability growth models considered in the literature assume that a mathematical formula (or curve), as a function of time, represents the reliability of the system during the development progran. The central purpose of most reliability growth models includes one or both of the following objectives:
a. Inference on the present system reliability,
b. Projection on the systen reliability at some future development time.

Many reliability growth models are parametric. That is, these models have certain parameters which are unknown and must be estimated from test data generated during the development program. This paper considers a popular parametric reliability growth model which is widely used in government and industry. Background on the derivation of the model will be discussed along with some major drawbacks with a "common sense" technique for estimating the unknown parameters. We show how these drawbacks can be avoided by applying estimation, goodness of fit and confidence interval procedures developed at AMSAM. Recently developed tables for computing exact confidence intervals on syston failure rate and MTBF are given and an application of these techniques to an actual Army development program is discussed.

2. THE WEIBULL RELIABILITY GROWTH MODEL

In 1962, J. T. Duane of Genersl Electric Company's Motor and Generator Dopartment [see Duane (3)] published a report in which he presents his observations on failure data for five divergent types of systems during their development programs at G. E. These systems included complex hydromechanical devices, complex types of aircraft generators and an aircraft jet engine. The study of the failure data was conducted in an effort to determine if any systematic changes in reliability occurred during the development programs for these systems. His analysis revealed that for these systems, the observed cumulative failure rate versus cumulative operating hours fell close to a straight line when plotted on log-log paper. Similar plots have been noted in industry for other types of systems, and by the U. S. Army for various military weapon systems during development

For a mathematical interpretation of these straight line plots on log-log paper, let $N(t)$ denote the number of system failures by time $t, t>0$. The observed cumalative failure rate $C(t)$ at time t is, therefore, equal to $C(t)=N(t) / t$. The plots on log-log paper imply thati log $\mathrm{C}(\mathrm{t})$ is approximately a straight line. That is, log $C(t)=8+Y \log t$. Equating $C(t)$ to its expected value and assuaing an exact linear relationship, we have $\log (E[C(t)])=$ $6+\gamma \log t$. Taking exponentials gives $E[C(t)]=\lambda t^{\gamma}, \lambda=\theta^{6}$. Hemee, $E[N(t)]=\lambda t^{8}$, for $=\gamma+1$, since $E[C(t)]=E[N(t)] / t$. Thus, the expected number of aystem fallures by time t is λt^{β}.

The instantaneous failure rate, $r(t)$, of the systen is the change per unit tim of $E[N(t)]$. Thus, $r(t)=\frac{d}{d t} E(N(t)]=\lambda B t^{B-1}$, which is recognized as being the Weibull failure rate function. It is important to note that since the system coafiguration is changing, the data are not homogeneous and, therefore, the usual theory for a Weibull distribution will not apply. in fuct, it has been shown by the author [see Crow (1)] that when the configuration of the system is changing, and failures are governed by the fallure rate $r(t)=\lambda B t^{\beta-3}$, then the system failure times follow a nonhomogeneous Poisson process with Weibull intensity function r(t).

At time t_{0} the Weibull fallure rate is $r\left(t_{0}\right)=\lambda \beta t_{0}^{\beta-1}$. If no further systom improvements are mado after time t_{0}, than it is reasurable to assume that the failure rate would remain constant at the value $x\left(t_{0}\right)$ if testing were continued. In particular, if the system were put into production with the configuration fixed as it was at time t_{0}, then the life distribution of the systems produced would be exponential with mean time betwoen failure (MTBF) $M\left(t_{0}\right)=\left[r\left(t_{0}\right)\right]^{-1}$ - $t_{0}^{1-\beta} / \lambda \beta$. Hence, for $0<\beta<1$, the MTBF $M(t)$ increases as the development testing time t increases, and is proportional to $t^{1-\beta}$. Thus, B is a growth parameter reflecting the rate at which reli-. ability, or MTBF, increases with development testing time.

If this Weibull model is determined to sufficiently represent the occurrence of failures for a particuiar system during development testing, then it can, of course, be used to monitor and
project the growth of system reliability. To do this, howevor, would require estimating from test data the two unknown parameters λ and B by say $\dot{\lambda}, \dot{B}$. One would then estimate the failure rate function by $\dot{r}(t)=\tilde{\lambda} \dot{a} t^{\dot{B}-1}$ and the MTAF function by $\dot{M}(t)=[\dot{r}(t)]^{-1}=$ $t^{d-\bar{B}} / \tilde{\lambda} \dot{\beta}$. If the system is tested to time T, say, then $\dot{M}(T)$ would estimate the current MTBF, and $\bar{M}(t), t>T$ would project estimates "of systen MTBP into the future.

Consider a "common sense," ofton used procedure for estimatIng λ and B. Suppose the system is tested to time T, and lot $0<T_{1} \leqslant T_{2} \leqslant \ldots<T_{K}=T$ be partition of $(0, T]$. The observed cumblative failure rate at time T_{i} is $C\left(T_{i}\right)=N\left(T_{1}\right) / T_{1}$, where $N\left(T_{1}\right)$ is the number of systom fallures to time $T_{1}, 1=1, \ldots, k$. Recall that $\log \mathrm{E}\left[\mathrm{C}\left(\mathrm{T}_{1}\right)\right]=\log \lambda+(B-1) \log \mathrm{T}_{1}$. Hence, if we plot log $\mathrm{C}\left(\mathrm{T}_{1}\right)$ versus $\log \mathrm{T}_{i}$ on coordinate paper and fit a line by linear regression, we could use γ, the slope, to estimate $B-1$ and δ° the intercept at $t=1$ to estimate $\log \lambda_{\text {. }}$. The estimates of λ and B would be $\dot{\lambda}={ }^{6}$, $\dot{p}=\dot{\gamma}+1$, respectively.

There are several points to be made about the above techniques for estimating λ and B. Firstly, the estimates are dependent on the choice of $T_{i}, 1=1, \ldots, K$, and, of course, may differ for different choices. Thus, this method is subjective, yielding results perhaps not suscaptible to rigorous analysis. Secondly, the values $C\left(T_{i}\right), 1=1, \ldots, K$ are not independent since $N\left(T_{i}\right) \leq N\left(T_{j}\right)$ for $1<j$. Moreover, the variances of the $C\left(T_{i}\right)$'s are not equal. In particular, $\operatorname{Var}\left[C\left(T_{i}\right)\right]=\lambda T_{i}{ }^{\text {B-2 }}$. If the system reliability is improving ($0<\beta<1$), then $\operatorname{Var}\left[C\left(T_{i}\right)\right]$ is decreasing as T_{i} increases. Hence, since the $C\left(T_{1}\right)$'s are not independent with equal variances, usual normal regression theory will not apply to yield confidence bounds on the parameters λ, β, and the functions $r(t), M(t)$. Finally, in practice, the criteria for using the Weibull model and this estimation technique would probably depend on the subjective appraisal of whether or not the plotted points appear to lie nearly on a straight line.

It is apparent that improved goodness of fit, estimation and confidence bound procedures are nteded for this highly important task of monitoring and projecting the growth of system reliability during development. Using the result that the plots on log-log paper imply that the successive failure times of the system follow a certain stochastic process (1.e.. the nonhomogencous Polsson process with Welbuli intensity $\lambda \beta t^{\text {B-1 }}$) we have derived a variety of useful stidistical prosedures for this model. Some recent results will be disfcussed in the following sections.

3. ESTIMATION AND GOODNESS OF FIT PROCEDURES

If the successive times of fallures are being recorded for a system undergoing development testing, then a statistical goodnass of fit test can be performed to determine if the Weibull reliability growth model is appropriate. If the model is acceptable, then closed form maximum likelihood (ML) estimates of λ and β may be used to estimate and project systen MTBF. Using these precedures developed by the author in (1), one can avoid the aformentioned drawbacks associated with astimation from log-log plots.

Suppose that a system has experienced N failures during development testing. Let X_{i} be the age (time on test) of the system at the i-th failure $i=1, \ldots, N$. If testing is stopped at the N-th failure time, the data are said to be fallure truncated.

The ML estimate of B, the growth parameter, is

$$
\begin{equation*}
\hat{\beta}=\frac{N}{\sum_{i=1}^{N-1} \log \frac{X_{N}}{X_{i}}}, \tag{3.1}
\end{equation*}
$$

and the ML estimate of λ is

$$
\begin{equation*}
\hat{\lambda}=\frac{N}{x_{N}^{\beta}}: \tag{3.2}
\end{equation*}
$$

Thus, calculating $\hat{\lambda}, \hat{\beta}$ one may estimate the failure rate function $r(t)=\lambda \beta t^{\beta-1}$ by $\hat{r}(t)=\hat{\lambda} \hat{\beta}^{\hat{\beta}} \hat{\beta}-1$. The MTBF function $M(t)=$
$[r(t)]^{-1}$ is similarly estimated by $\hat{M}(t)=[\hat{r}(t)]_{n}^{-1}$. In particuiar, the current estimate of the MTBF is $M\left(X_{N}\right)=X_{N} / N B$, and $M(t), t>X_{N}$, projects expected futurn growth of system MTBF.

To determine the appropriateness of the Weibull model for representing the reliability growth for this system one may caiculate the statistic

$$
\begin{equation*}
C_{M}^{2}=\frac{1}{12 M}+\sum_{1=1}^{M}\left[\left(\frac{x_{1}}{X_{N}}\right)^{B}-\frac{21-1}{2 N}\right]^{2} . \tag{3.3}
\end{equation*}
$$

where $M=N-1, B=[(N-1) / N] \hat{B}$. Critical values of the C_{M}^{2} statistic for M-2 thru 60 have been dotormined at AMSM from Monte Carlo simulation, using $\mathbf{1 5 , 0 0 0}$ samples for each value of M. Various critical values are given in Table 2 of (1).

If the statistic C_{M}^{2} is greater than the selected critical value; then the Weibull model is rejected at the designated significance level. If C_{M}^{2} is less than this critical value, then the Woibuld model is accopted and may be used to track the system reliability growth.

Suppose that $K \geq 1$ systems have been simultancously tested to time T, where T is not a failure time. In this case the data are time truncated, If design and engineering modifications are made on all K systoms at the same time, then at any time during the testing the systemy will have basically the same configuration. In this situacion, we may combine the failure data on these K systems to obtain estimates of λ and B. These estimates and other related procedures are given in (2).

4. CONFIDENCE BOUNDS FOR MTBF

In this section we shall give recenily developed procedures for placing confidence bounds on current and projected failure rates and MTBP. Thesp procedures apply to the single system, failure truncated situation. Similar devalopments for time truncated testing will appear in a future AMSAA report when completed.

If a system undergoes development testing until the N-th
fatlure occurs, then $r\left(X_{N}\right)\left[M\left(X_{N}\right)\right]$ is the current failure rate [MTBF]. It can be shown that the ratio $U_{N}=\operatorname{Nr}\left(X_{N}\right) /(N-1) r\left(X_{N}\right)$ is distributed independently of λ and β, where $\hat{r}\left(X_{N}\right)$ is the ML estimate $\hat{\lambda} \hat{B} X_{N}{ }^{\beta-1}$ of $r\left(X_{N}\right)$. Percentage points of this ratio were obtained at AMSM from Monte Carlo simulation for $N=2$ thru 60 . These percentage points are presented in Table 1. Exact $100(1-a)$ percent confidence lounds on $r\left(x_{N}\right)$ are of the form $\left[\dot{r}\left(x_{N}\right) a(N-1) / N, \dot{r}\left(x_{N}\right) b(N-1) / N\right]$, where a and b are from Tuble 1 such that $\operatorname{Prob}\left(a<U_{N} \leqslant b\right)=1-a$. Equivalently, $100(1-a)$ percent confidence bounds on $M\left(X_{N}\right)=\left[r\left(X_{N}\right)\right]^{-1}$ are of the form $\left(\left[\hat{r}\left(X_{N}\right) b(N-1) / N\right]^{-1},\left[\dot{r}\left(X_{N}\right) a(N-1) / N\right]^{-1}\right)$.

For $\mathrm{N}>60,100(1-a)$ percent confidence bounds may be calculated from the approximate relationships: $\pm 1-\sqrt{2 / N} z_{a / 2}$, $b \pm 1+\sqrt{2 / N} x_{a / 2}$, where $z_{a / 2}$ is the $a / 2-t h$ percentile for the standard normal distribution.

For N moderately large, we may also use the percentage points in Table 1 to piace approximate confidence bounds on future failure rates and MTBF. In particular, suppose we wish to place approximate $100(1-a)$ percent confidence bounds on $r(T), T \geqslant X_{N}$. These approximate confidence bounds will again be of the form $[\hat{r}(T) a(N-1) / N, \dot{x}(T) b(N-1) / N]$, where $\dot{r}(T)=\hat{\lambda} \hat{\beta} T^{\hat{\beta}-1}$ is the ML estimate of $r(T)$, and a and b are the appropriate percentage points from Table 1. Approximate $100(1-a)$ percent confidence bounds on $M(T)$, the MTBF at time T, are derived, as before, from the bounds on $r(T)$. These bounds become exact as $N \rightarrow \infty$.

5. NUMERICAL EXAMPLE

Suppose that a system undergoing development testing recorded the following 40 successive failure times; $7,3.7,13.2$, 17.6, 54.5, 99.2, 112.2, 120.9, 151.0, 163.0, 174.5, 191.6, 282.8, $355.2,486.3,490.5,513.3,558.4,678.1,688.0,785.9,887.0,1010.7$, 1029.1, 1034.4, 1136.1, 1178.9, 1259.7, 1297.9, 1419.7, 1571.7, 1629.8, 1702.3, 1928.9, 2072.3, 2525.2, 2928.5, 3016.4, 3181.0, 3256.3. That is, the system was of age .7 when the first failure occurred, of age 3.7 whon the second failuxe occurred, etc. At age
3256.3 the systom had the 40 -th failure. From these data, and equations (3.1) and (3.2) we find that $\hat{\lambda}=0.761, \hat{\beta}=0.490$.

To determine if the Weibull model may be used to track this systen's reliability growth, we calculate the goodness of fit statistic C_{M}^{2} given by equation (3.3) where \boldsymbol{N} a 39 , $\hat{B}=(38 / 40) \hat{8}$ - 0.465. This gives $C_{39}^{2}=0.077$. Next, we find in Table 2 of (1) that for $M=39$, the critical value at the .05 significunce level is 0.218 . siace $C_{30}^{2}<0.218$, we accopt the Welbull model.

Uaing $\dot{\lambda}$, $\dot{\beta}$, the failure rate function is estimated by $\hat{r}(t)=\hat{\lambda} \hat{A} \hat{t}^{\hat{\beta}}-1$ and the MTBF function is estianted by $\hat{M}(t)=[\hat{r}(t)]^{-1}$. The current failure rate $r(3256.3)$ is estimated to be $\hat{r}(3256.3)=$ 0.006 , and the estimate of current MTBF is $[.006]^{-1}=166.7$.

To place 90 percent confidence bounds on the current MTBF $M(3256.3)$, we refor to Table $1, N=40$, and find $a=0.664, b=1.40$. Using the formulas in the previous section, wioget 90 percent confidence bounds ($0.004,0.008$) for $r(3256.3)$. Hence, 90 percent confidence bounds on $M(3256.3)$ are (125.0, 251).0).

Suppose we wish to place approximat.0 90 percont confidence bounds on future MTBF, say at $T=4000$. Using $\dot{r}(4000)=0.005$, we celculate these bounds to be ($0.003, .007$). Approximate confidence bounds on M(4000) are, therefore, (142.8, 333.3).

6. APPLICATION

In this section we shall discuss an application of the Wolbult reliability growth procedures to an Army idevelopment program. Two major points concerning the application of this model are demonstrated. Firstly, the model may be applied to discrete data. socondly, as in any mathematical model, cars should be exercised, in 1ts use. In particular, the importance and usefulness of the goodness of fit statistic in Section 3 is demonstrated in this appileation.

Recently, AMSM conducted a reliability growth study of a missile system. The purpose of the study was to use historic data on the first 801 valid filght tests to determine the growth curve, and
also to ascertain in retrospect how these data could have been used to track and project system reliability during development.

In reliablity growth considerations, it ir configuration changes on the system which are of prime importance. Consequently, in this study the sol valid flights were orderod according to manufacturing date, since this should reflect the sequence and consequences of sysien configuration changes during dovelopment. The data consisted of the flight numbers at which a missile failure occurred. Observed that these are discrete data as opposed to continuous data In the model. However, it can be show that for a large number of data points, the discrete fallure process can be approximated by the continuous model. This approximation improves as the number of data points increases.

The interpretation of $r(t)$ for this type of application ds that $r(i)=\lambda \beta i^{\beta-1}$ is the probability of failure for the $1-t h$ alssile produced, $1=1,2, \ldots$. Honce, $R(1)=1-r(1)$ is the reliability of the i-th missile. Analogous to MTBF, $M(i)=[r(i)]^{-1}$ is the mean flight between failure.

The first stop in determining the reliability growth curve was to use the failure results for the 801 flights, and equations (3.1) and (3.2) to estimate the parameters of the Weibull model. The goodness of fit statistic C_{M}^{2}, given by equation (3.3), was then calculated to determine if the model and data were compatible. The value of the statistic was highly significant (very large) indicating that the model did not reasonably represent the data. This implies that a single, smooth, Weibull curve would not reflect the decrease in fallure probability of this system.

Further investigation revealed that the development program experienced a major re-emphasis on reliability improvement after the 200-th filght. Thus, the parameters of the model were estimated separately for the first 200 flights (soe Figure' 1) and for the remaining 601 flights (see Figure 2). In both casos, the goodness of fit of the model to the data was acceptable. The horizontal lines in Figures 1 and 2 are the average failure probabllities over 100 flight intervals. The smooth curves are the estimated Weibull failure
probabilities $\hat{\lambda} \hat{\beta}_{1} \hat{\beta}-1$. These curves are solid up to the end of the data, and the dash lines indicate the estimated future decrease in fallure probability if the current rate of improvement were continued.

From the two curves the reliability $R(i)=1-r(1)$ is estimated. The resulting reliability growth curve is shown in Figure 3 with a jump at 200. The magnitude of the jump was calculated by parametric and nonparametric means, and consultation with the progrme office.

We mext considered how the Weibull model could have been used to track and project systom reliability during developeont. Using the first 200 filghts, the estimate of the current reliability was .68 and the projected reliability at flight 800 was .74 (Pigure 1). This projection indicated that the syitem reliability requirement would not be met if the presen: trend were continued. There was a major ro-emphasis on reliability, and based on the next 100 filghts (201-300), an estimate of the reliahility at 300 was .89 and a projection to 800 was .94 (Figure 4). This projection was very close to the current estimace of .95 for system reliability obtained using all the data on flights 201-800 (Figure 3).

Thus, the estiantion procedures provided agood guide as to men additional emphasis should be placed on reliability, and also provided accurate estimates of future system reliability for each phase of the dovelopment program.

ACROOWLEDGNENT

The author wishes to thank Mr. Edward F. Belbot for the computer programing which generated the Monte Carlo results of Table 1.

REFERENCES

1. L. H. Crow, Reliability Analysis For Complex, Repnirable Systems, AMSMA Reliubility, Rvallability and Maintainability Division Interim Note No. 26, January 1974.
2. L. H. Crow, On Reliability Growth Modeling, AMSAA Reliability, Avaliability and Maintainability Division Interim Note No. 27 , January 1974.
3. J. T. Duane, Learning Curve Approach to Reliability Monitoring, IAEE Trans. Aerospace, Vol. 2, 1964.

P1	25	50	10	20.	30	40	50	60	70	80	9	73	975
31	560	021	691	774	846	809	971	104	1.11	120	134	147	158
32	574	025	691	780	847	. 911	972	104	111	125	133	145	157
33	SEO	632	696	784	. 851	811	972	103	111	1.20	133	145	157
35	Sta	638	704	789	855	914	973	103	111	119	132	184	153
35	Ses	342	707	793	85E	914	975	103	1.11	1.19	132	143	133
33	595	C4S	710	792	857	. 914	975	103	111	119	132	143	193
37	597	- 52	712	796	3s ${ }^{\text {d }}$	920	977	103	1 H	119	131	142	133
35	597	053	717	عこ0	803	920	978	103	1.10	1.19	131	142	151
39	tes	t¢ 0	322	8.3	803	924	978	103	110	118	130	12	131
45	614	684	725	805	808	925	97	103	1.15	118	135	163	149
4	615	670	729	837	869	925	978	103	110	1!8	129	137	139
42	819	670	731	810	872	926	978	103	110	118	129	137	148
43	024	© 75	734	812	872	926	978	193	110	118	129	137	148
42	024	675	737	816	874	927	978	103	109	117	129	137	128
45	833	681	741	818	873	928	980	1.03	1.09	117	1:8	133	186
43	534	ce 2	741	818	877	930	981	103	109	117	1:3	: 33	186
47	836	685	745	819	878	935	981	1.03	109	1.17	127	137	180
4	841	691	746	819	879	93	981	103	109	116	127	131	180
49	642	til	751	824	880	933	982	103	109	110	127	135	144
5	C42	694	753	E27	853	934	983	103	109	1:6	127	139	124
$5:$	449	897	. 753	827	885	. 936	984	103	109	110	126	:3s	184
52	C: 9	697	754	229	835	936	984	1.03	169	110	123	; 35	184
53	052	079	759	231	896	936	984	103	109	110	120	'35	184
54	tss	76	700	E33	838	939	985	103	109	110	125	:	143
5s:	650	706	. 762	835	889	938	985	103	109	110	125	32	182
Ss	059	705	784	837	895	939	985	103	109	1:s	125	35	143
57	c66	. 712	787	E37	8\%	939	ges	: 53	: 9	115	$1: 5$:34	181
58	ced	. 712	. 707	839	E92	937	ges	133	167	115	129	133	181
59	668	716	771	839	893	937	989	103	109	115	125	133	$14 i$
65	673	719	771	840	873	939	985	103	169	1.15	$1: 5$! 33	141

Figure 3. Estimoted Reliability Based on Weibull Model.

Figure 4. Projected Failure Probability Based on Flights 201 to 300.

MidImin VARIA,ICE SOLUTION OF A POLY, IOHIAL FUNCTION of Two inolsy raiduom variables

Oren id. Dalton
Aathematical Services Branch Analysis and Computation Division White Sands Missile Range, idew Mexico

ABSTRACT

The multivariate analysis problem involving two random vector variables, one a dependent and the other an independent variable, each variable noisy, has not been solved in general. However, if the two covariance matrices for the vector variables are independent and known, d maximum likelihood solution is possible in certain nonEuclidean spaces. This paper discusses an iterative technique for finding the minimum variance solution to a problem in which the independent variable is an $m^{\text {th }}$ degree polynomial function of the independent variable, and both are normally distributed. The data is assumed to have highnoise content and to have been obtained, manually, from a graph using a ruler. Because of the nature of the data, problems of stability may arise. A method in which control of the excursions of the initial estimates of the polynomial coefficients by means of an ad hoc Bayesian covariance matrix, is included in the derivations, and a way to convert a divergent problem to a convergent problem by means of scaling is illustrated. The results for the minimum variance solution of a third-order polynomial math model, for mutually independent measurements using data from manual measurements from a graph, is included.

1. MTRODUCTION.

We have the problon of ustimatiar the paremortere for a moth model relatink two random variables, each subjact to noise. That is, lot ε_{i} and n_{i} reproeeat two meaurmente:

$$
\begin{aligned}
& c_{i}=x_{i}+c_{i} \\
& n_{i}=y_{i}+\delta_{i}
\end{aligned}
$$

whose c_{i} and δ_{i} represent noise, and such that

$$
y_{1}=f\left(x_{i}\right)
$$

 Thum, for any 11

$$
y=p_{0}+p_{1} x+p_{2} x^{2}+\cdots+p_{m^{2}} x^{m} .
$$

The problem as atated has not been solved in maneral [1], but if certain restricticas are anamed a minimum variance solution cen be obtained. These reatrictions are the indopendance exiteria, mell-known to prectitiocarn of the ant:

$$
\begin{aligned}
& E\left(\varepsilon_{1}\right)=E\left(\delta_{1}\right)=0 \\
& \operatorname{Cov}\left(\varepsilon_{i}, c_{j}\right)=E\left(\varepsilon_{1}, L_{j}\right)=\sigma_{c}^{i j}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Cov}\left(c_{1}, 5,\right)=0 .
\end{aligned}
$$

ard the assumption that the $i_{c}^{i j}$, $\sigma_{\delta}^{i j}$ aiv known. (This asumption can ba swlawed [2]. in that the varlances can be eatimated. It is anaumed here, that such estimates, if necessary, have been made.)

For the poiynomial in x, we note that if $m=1$, afriy stral tht-formard derivation produces a quadratic equation for P_{1}. for example see [1, D. 258-60]. There arm, however, several complications which may arise even in this simple case which ore enumerated in considerable derail by Worthine and Geffner [3. pp. 375-91]. Additional difficulties arise when $m>1$, and a short disacuasion of some of these problame are also discussed by Worthing and Geffner [3.pp. 409-13], besed mainly on the work of feary [4].

On the othar hand, it was shown [5] that most distributions commonly used can be clasified in less than half-a-dozen equivalence clasaes described by mon-Euclidean spaces, to the limit of parameter; anythinp true for one mamber of the class if true for other members. or is true elements in apaces derivable from auch spaces. Thus, the non-Euclidean apmee described as the "e-log" space includes such distributions as the Chi-squared, Haxwall, ramme. Raylaifht and Normal; the parimensic spaces derivable from this include the Beta, Student-t and Fisher (F); the derivable Uniform ooeon includer the Uniform:.

The expeaition in this paper is concermed with Mormal variates, but from the ebow statemants. it can be shom by extension [5] and [6], that the resulte are epplicabie to any of the other dintributions. (Ordar etatistice, since the range of the diatribution depends on the variates, are, perforce, ruled out.)

1I. MOMPNCLATURE AND DEFTMITIOAS.

1. A vector will be represanted asi
a.
b. The Dirac bre $"$; and ket $N>\omega$ will ooiy indicate rew, colum vectore resp. Punctions involving these symbole have no other implication then Etandard matrix operations. Thus, for A a matrix, cxAy is a bilinear form for vectore \vec{x} and \vec{y}.
2. $f(\vec{x})$ represents a functional of the variables in the vector, \vec{x}.
3. Matrices or vectory may be defined as arraye whose elemente are, thangelves, mrrays. Thus:

$$
A=\left[\begin{array}{ccccc}
A_{1}> & & & & \bullet \\
& A_{2}> & \cdot & & \\
\bullet & & & \cdot & \\
& & & & \\
& & & A_{\Delta}>
\end{array}\right]
$$

represente an mox arrav, each of whone elemente is a vector. If each A_{i}, has k_{i} eloments and if $i_{i=1}^{k_{i}}=i \quad$, then the total size of A in terme of scalar quantities is, perforee, mkxm.
4. |A| reprasents the absolute value of the determinant of a matrix, A.
5. . . represont a vector or matrix of zeree, reap. Subseriote If epplicable, will indicate dimension.
6. I or I_{n} ropresent unit matrices; the dimension is opecified in the $2^{n d}$ case.
7. Some operators
a. $r(\dot{x})$ indicates the diagonal matrix whoe diagonal elements are the components of \vec{x}. Thus, if

$$
x>=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

then

$$
r\left(\frac{1}{x}\right)=\left[\begin{array}{llllll}
x_{1} & & & & & \\
& x_{2} & & & & \\
& & \cdot & & & \\
& & & & \cdot & \\
& & & & & x_{n}
\end{array}\right]
$$

b. $\left\langle D_{k}(x)\right.$ is the vectop for the $k^{\text {th }}$ dardvative of the pelymomial in n. (Wetes $<D_{k}\left(x_{0}\right)$ inplies the $k^{\text {th }}$ derivetive vector of x enaluated at $\left.x_{0}.\right)$ The:

1) $<D_{0}(x)=\left[1 x x^{2} \cdots x^{m}\right]$
2) $\left\langle D_{1}(x)=\left[\begin{array}{lll}0 & 1 & 2 x\end{array} \cdot \cdot \quad \cdot x^{m-1}\right]\right.$

Ite
c. $D_{k}(\vec{x})$ is the metrix, each of whoee rewe is the $k^{\text {th }}$ derivative of the correaponding component $f \overrightarrow{x_{x}}$. Thus:

$$
D_{k}(\vec{x})=\left[\begin{array}{c}
<D_{k}\left(x_{1}\right) \\
<D_{k}\left(x_{2}\right) \\
\vdots \\
\vdots \\
<D_{k}\left(x_{n}\right)
\end{array}\right]
$$

III. THE PROALEM DEFIMITICN.

We ceave that wo have two masaroment vectores \vec{n}, \vec{t}, each with a cemposente, meesured independently, where

$$
\begin{aligned}
& \vec{\eta}=\vec{y}+\vec{c} \\
& \vec{y}=\vec{x}+\vec{d}
\end{aligned}
$$

$$
\begin{gathered}
E(\overrightarrow{\mathbf{c}})=E(\vec{J})=\boldsymbol{J} \\
\operatorname{Cov}(E \times E\}=E\left\{\mathbf{c} \times \varepsilon \in=Q_{y}\right. \\
\operatorname{Cov}(\delta><\delta)=E(\delta><\delta)=Q_{x}
\end{gathered}
$$

and both $\dot{\eta}$ and $\vec{\xi}$ have a Normal distribution. Further:

$$
y_{i}=p_{0}+p_{1} x_{i}+p_{2} x_{i}+\cdots+p_{m} x_{i}^{m}
$$

Thus me cen write:

$$
\vec{y}=D_{0}(\vec{x}) \vec{p}
$$

where

$$
\overrightarrow{\mathbf{p}}=\left[\begin{array}{c}
p_{0} \\
p_{1} \\
\cdot \\
\vdots \\
p_{n}
\end{array}\right]
$$

We aloo astum that we have prior diatribution which deacribe our falth In the Initisl ustimates of the parameters in \vec{p}. also nommelly distributed. This ad hoc "Baryesian" adjunct is uned to control the excursions on the edfurtinat of the paramaters. The dangar in its ue lies in the fact that for any "erall" variance on a parametere, w must be aure that particular parmater is well-xnown. On the other hand [7], this "control function" can force convergence in an, otherwise, divargent problen.
W. an then write the $11 k$ lihood function ees

$$
L=\kappa \exp \left\{-\frac{1}{2}\left\langle\varepsilon Q_{y}^{-1} \varepsilon-\frac{1}{2}\left\langle\delta Q_{x}^{-1} \delta\right\rangle-\frac{1}{2}\left\langle\Delta p_{c} Q_{p}^{-1} \Delta p_{c}\right\rangle\right\}\right.
$$

where

$$
\begin{aligned}
& K=(2 \pi)^{-(n+[m+1] / 2)}\left|Q_{y}^{-1}\right|\left|Q_{x}^{-1}\right|\left|Q_{p}^{-1}\right| \\
& \Delta \vec{p}_{0}=\vec{p}-\vec{p}_{0}^{\prime} .
\end{aligned}
$$

where p_{0}^{\prime} will mepresent the initial extimates of the parametare. and Q_{p} will be chosen as a diakonal metrix whose diagonal components ane the variances assumed for the parameters in \vec{p}. It has bean found that one parameter is more likely to be known than any of the others. In this problem the bles (1.e.: p_{0}) is likely to be beat known, so Var (p_{0}) will be amall. The variances of tha othar ternes in \vec{p} will be set to $10^{22^{\circ}}$. The effact of thie procedure (through net on a polynomial) was documented is [7].

Thun, our minlalestion function, 1 , can be written [0] as:

$$
I=\left\langle\varepsilon Q_{y}^{-1} c\right\rangle+\left\langle\Delta Q_{x}^{-1} \delta\right\rangle+\left\langle\Delta p_{0} Q_{p}^{-1} \Delta p_{0}\right\rangle .
$$

Iv. DERIVATION OF THE N.MIMIZATIMN FUNCTIONS.

The approach toward minimization will be by the method of steepest descent using an iterative procedure. That is, we will add adjustments to the variables nell the magnitude of the adjustments epnroeches zero. A moments reflection [9] Indicates that we will adjust the independent variable, \vec{x}, and the parameter vector, \vec{H}, until the residuals $\dot{\varepsilon}$ and t minimize I. since we are coaming analyticity in a neighborhood of $\vec{n}, \dot{\varepsilon}$ and \vec{F}_{o}^{\prime}, we en expand \vec{x} and \dot{p} in a Taylor' expansion, and since the method of steepest descent le afirst-order process we will write:

$$
\begin{aligned}
& \ddot{x}=\vec{x}_{0}+\Delta \vec{x} \\
& \vec{y}=\vec{y}_{n}+\Delta \vec{y}
\end{aligned}
$$

and since

$$
\begin{gathered}
\Delta \vec{p}_{p}=\vec{p}-\vec{p}_{0}^{\prime} \rightarrow \Delta \vec{p}_{0}=\vec{p}_{1}+\Delta \vec{p}^{\prime}, \\
\vec{p}_{1} \oplus \vec{p}_{0}-\vec{p}_{0}^{\prime}
\end{gathered}
$$

where It is understood that the "on subscript (except on \vec{p}_{0}^{\prime}) refers to the value of the variable duping any iteration.

For the remeindar of this section we will assume that n measurements have been made of the variables η_{i} and ξ_{i} so that $\vec{n}, \vec{\xi}, \vec{y}, \vec{x}$ and $\Delta \vec{x}$ ane n-components vectors. The definition of the order of the polynomial will be changed to mol so that $\vec{p}, \vec{p}_{0}, \vec{P}_{2}, \vec{P}_{0}^{\prime}$ and $\Delta \vec{p}$ are m-component vectors.

P. Characterisation of $\vec{\varepsilon}$

We expend \vec{c} in a Taylor's series retaining the first two terms. Thus:

$$
c>c_{0}>+\left(\frac{\partial}{\partial x}><\varepsilon\right)_{0}^{T} \Delta x>+\left(\frac{\partial}{\partial p}><\varepsilon\right)_{0}^{T} \Delta p>.
$$

1. Derivation of $\left(\frac{\partial}{\partial x}><c\right)$

$$
\text { Let } \begin{array}{rl}
J_{y} & A D_{0}(\vec{x}) \text {, Then } \\
c> & =n>-J_{y} p>
\end{array}
$$

from which, using the method developed by Dalton in [B, Appendix C] for forming the partial derivative of amaze with respect to arrays we can write:

$$
\begin{aligned}
\left(\frac{\partial}{\partial x}><\varepsilon\right) & =\frac{\partial}{\partial x}>\left(<n-\left\langle p J_{y}^{T}\right)=-\left(\frac{\partial}{\partial x}><p J_{y}^{T}\right)\right. \\
& \left.=-s_{1}\left\{\frac{\partial}{\partial x}>J_{y}\right\} \xi_{2}\{p\rangle\right\}
\end{aligned}
$$

where

$$
J_{y}=\left[\begin{array}{c}
<J_{y 1} \\
<J_{y 2} \\
\vdots \\
<J_{y n}
\end{array}\right]
$$

Now, since

$$
\left\langle J_{y i}=\left[\begin{array}{lll}
1 & x_{i} & x_{i}^{2}
\end{array} \cdot \cdot \cdot x_{i}^{m-1}\right]\right.
$$

wo have that

$$
\left(\frac{\partial}{\partial x}><J_{y i}\right)=\left[\begin{array}{c}
1 \\
<D_{1}\left(x_{i}\right) \\
1
\end{array}\right]+i^{\text {th }} \text { row }
$$

Thus, this derivative is:

$$
-\xi_{2}\left\{\frac{\partial}{\partial x}>J_{y}\right\} \zeta_{2}\{p>\}=\left[\frac{\partial}{\partial x}><J_{y 1} p>\frac{1}{\partial x}><J_{y 2} p \geqslant \cdots \frac{\partial}{\partial x}><J_{y n} p>\right]
$$

$$
\begin{aligned}
& =-\left[\begin{array}{cccc}
\left\langle D_{1}\left(x_{1}\right) p\right\rangle & & & \\
& \left\langle D_{1}\left(x_{2}\right) p\right\rangle & & \\
& & \cdots & \\
& & & \\
& & \\
&
\end{array}\right] \\
& \\
&
\end{aligned}
$$

Now, the $1^{\text {th }}$ term in $\Gamma\left[D_{1}(\vec{x}) p>\right]$ is

$$
\left\langle D_{2}\left(x_{1}\right) p\right\rangle
$$

$$
\begin{aligned}
& \text { and since } \left.\left.p\rangle=p_{0}\right\rangle+\Delta p\right\rangle \quad \text { wave: } \\
& \quad\left\langle D_{1}\left(x_{1}\right) p\right\rangle=\left\langle D_{1}\left(x_{1}\right) p_{0}\right\rangle+\left\langle D_{1}\left(x_{i}\right) \Delta p\right\rangle .
\end{aligned}
$$

The term $<D_{1}\left(x_{i}\right)$ can be written ass:

$$
=\left[\begin{array}{llllll}
0 & 1 & 2 x_{i} & 3 x_{i}^{2} & \cdot & \cdot(m-1) x_{i}^{m-2}
\end{array}\right]
$$

$$
=\left[\begin{array}{llll}
0 & 1 & 2\left(x_{i 0}+\Delta x_{i}\right) & 3\left(x_{10}+\Delta x_{i}\right)^{2} \cdots\left(m-1 X x_{10}+\Delta x_{i}\right)^{m-2}
\end{array}\right]
$$

$$
\approx 1 \begin{array}{llll}
0 & 1 & 2 x_{10}+2 \Delta x_{i} & 3 x_{10}^{2}+3 \cdot 2 x_{10} \Delta x_{1}
\end{array} \cdots
$$

$$
\left.(m-1) x_{i o}^{m-2}+(m-1)(m-2) x_{i o}^{m-3} \Delta x_{x}\right]
$$

$$
=\left\langle D_{1}\left(x_{i 0}\right)+\Delta x_{1}<D_{2}\left(x_{10}\right)\right.
$$

From which

$$
\begin{aligned}
\left\langle D_{1}\left(x_{1}\right) p\right\rangle & =\left\langle D_{1}\left(x_{10}\right) p_{0}\right\rangle+\left\langle D_{2}\left(x_{10}\right) p_{0}\right\rangle \Delta x_{1} \\
& +\left\langle D_{1}\left(x_{10}\right) \Delta p\right\rangle+\left\langle D_{2}\left(x_{10}\right) \Delta p\right\rangle \Delta x_{1}
\end{aligned}
$$

If we define

$$
\Delta x>\triangleq\left[\begin{array}{c}
\Delta x_{1} \\
\Delta x_{2} \\
\vdots \\
\Delta x_{n}
\end{array}\right]
$$

then under the aegis of the assumption of analyticity in the neighborhood of \vec{x}_{0}
we cen drop second-order terme and write:

$$
\begin{aligned}
& \Gamma\left[D_{1}(\vec{x}) p>\right]=r\left[D_{1}\left(\vec{x}_{0}\right) p_{0}>\right]+r\left[D_{1}\left(\vec{x}_{0}\right) \Delta p>\right] \\
& \\
& +\quad r\left[D_{2}\left(\vec{x}_{0}\right) p_{0}>\right] r[\Delta \vec{x}] \\
& \Delta J_{x p} \quad J_{x p 0}+J_{x p 1}+J_{x p 2}
\end{aligned}
$$

reapectively. Thue:

$$
\left(\frac{\partial}{\partial x}><\varepsilon\right) \approx-J_{x p} \triangleq-J_{x p o}-J_{x p l}-J_{x p 2}
$$

2. Derivation of $\left(\frac{\partial}{\partial p}><\varepsilon\right)$

$$
\begin{aligned}
\left(\frac{\partial}{\partial p}><\varepsilon\right) & =\frac{\partial}{\partial p}>\left(<\eta-<p J_{y}^{T}\right) \\
& =-J_{y}^{T}
\end{aligned}
$$

B. Chemeterisation of J

In amper ainilar to that abow, we have the followingt

$$
\left.\delta\rangle=\delta_{0}\right\rangle+\left(\frac{\partial}{\partial x}>\langle\delta)_{0}^{T} \Delta x\right\rangle+\left(\frac{\partial}{\partial p}>\langle\delta)_{0}^{T} \Delta p\right\rangle
$$

$$
\begin{aligned}
& \left(\frac{\partial}{\partial x}><\delta\right)=\frac{\partial}{\partial x}>(<\xi-<x)=-I_{n} \\
& \left(\frac{\partial}{\partial p}><\delta\right)=\Phi .
\end{aligned}
$$

C. Charasterization of j_{y}

Dine $J_{y}=D_{0}(\vec{x})$, expanding this similarly to the one done above for $\left(\frac{\partial}{\partial x}>J_{y}\right)$ we have that

$$
\begin{aligned}
J_{y}=D_{0}(\vec{x}) & =D_{0}\left(\vec{x}_{0}\right)+\Gamma[\Delta \vec{x}] D_{1}\left(\vec{x}_{0}\right) \\
& \Delta J_{y 0}+\Delta J_{y}, \text { resp. }
\end{aligned}
$$

D. Reformulation of the Minimization Functional, I

We can write \vec{c} and δ as:

$$
\begin{aligned}
c\rangle & \left.\left.\left.=\varepsilon_{0}\right\rangle-\Gamma\left[D_{1}(\vec{x}) p>\right] \Delta x\right\rangle-J_{y} \Delta p\right\rangle \\
& \left.\left.\left.=\varepsilon_{0}\right\rangle-J_{x p} \Delta x\right\rangle-J_{y} \Delta p\right\rangle \\
\delta\rangle & \left.\left.=\delta_{0}\right\rangle-\Delta x\right\rangle .
\end{aligned}
$$

Thus:

$$
\begin{aligned}
I & =\left\langle c Q_{y}^{-1} c\right\rangle+\left\langle\Delta Q_{x}^{-1} \delta\right\rangle+\left\langle\Delta p_{0} Q_{p}^{-1} \Delta p_{0}\right\rangle \\
& =\left(\left\langle\varepsilon_{0}-\left\langle\Delta x j_{x p}-\left\langle\Delta p v_{y}^{T}\right) Q_{y}^{-1} c\right\rangle+\left(\left\langle\delta_{0}-\langle\Delta x) Q_{x}^{-1} \delta\right\rangle\right.\right.\right. \\
& +\left(\left\langle p_{1}+\langle\Delta p) Q_{p}^{-1} \Delta p_{0}\right\rangle\right.
\end{aligned}
$$

$$
\begin{aligned}
I= & \left\langle\varepsilon_{0} Q_{y}^{-1} \varepsilon_{0}\right\rangle-2\left\langle\varepsilon_{0} Q_{y}^{-1} J_{x p} \Delta x\right\rangle-2\left\langle\varepsilon_{0} Q_{y}^{-1} J_{y} \Delta p\right\rangle \\
& +\left\langle\Delta x J_{x p} Q_{y}^{-1} J_{x p} \Delta x\right\rangle+2\left\langle\Delta x J_{x p} W_{y}^{-1} J_{y} \Delta p\right\rangle \\
& +\left\langle\Delta p J_{y} \|_{y} Q_{y} \Delta p\right\rangle+\left\langle\delta_{0} Q_{x}^{-1} \delta_{0}\right\rangle \\
& =2\left\langle\delta_{0} Q_{x}^{-1} \Delta x\right\rangle+\left\langle\Delta x Q_{x}^{-1} \Delta x\right\rangle \\
& +\left\langle p_{1} Q_{p}^{-1} p_{1}\right\rangle+2\left\langle p_{1} Q_{p}^{-1} \Delta p\right\rangle+\left\langle\Delta p Q_{p}^{-1} \Delta p\right\rangle
\end{aligned}
$$

Since we wish to keep terms of no higher than second-order we have:

1. $\left\langle\varepsilon_{0} Q_{y}^{-1} J_{x p} \Delta x\right\rangle=\left\langle\varepsilon_{0} Q_{y}^{-1} J_{x p o} \Delta x\right\rangle+\left\langle\varepsilon_{0} Q_{y}^{-1} J_{x p 1} \Delta x\right\rangle$

$$
+\left\langle\varepsilon_{0} Q^{-1}{ }^{-1} \times p 2^{\Delta x\rangle}\right.
$$

2. $\left\langle\varepsilon_{c} Q_{y}^{-1} J_{y} \Delta p\right\rangle=\left\langle\varepsilon_{0} \|_{y}^{-1} J_{y o} \Delta p\right\rangle+\left\langle\varepsilon_{0} Q_{y}^{-1} \Delta J_{1} \Delta p\right\rangle$
3. $\left\langle\Delta x J_{x p} Q_{y}^{-1} J_{x p} \Delta x\right\rangle \geqslant\left\langle\Delta x J_{x p o} Q_{y}^{-p_{J p o}} \Delta x\right\rangle$
4. $\left\langle\Delta x J_{x p} Q_{y}^{-1} J_{y} \Delta p\right\rangle=\left\langle\Delta x J_{x p o} Q^{-1} J_{y o} \Delta p\right\rangle$
5. $\left\langle\Delta p J_{y} \mathrm{P}_{\mathrm{Q}}^{-1} \mathrm{~J}_{y} \Delta p\right\rangle=\left\langle\Delta p J_{y o}^{T} Q_{y}^{-1} \mathrm{~J}_{y_{0}} \Delta p\right\rangle$.

Make the following definitions:

$$
\begin{aligned}
& \left.\kappa_{0} \hat{z} \cdot \varepsilon_{0} Q_{y}^{-1} \varepsilon_{0}\right\rangle+\left\langle\delta_{0} Q_{x}^{-1} \delta_{0}\right\rangle+\left\langle p_{1} Q_{p}^{-1} p_{1}\right\rangle \\
& \left.\varepsilon_{A}\right\rangle\left\langle Q^{-1} \varepsilon_{0}{ }^{\prime}\right. \\
& \left.\left.\delta_{A}\right\rangle \triangleq Q_{x}^{-1} \delta_{0}\right\rangle .
\end{aligned}
$$

Then:

$$
\begin{aligned}
& 1 \sim K_{0}-{ }^{\ll \varepsilon_{A} J_{x p o}} \Delta x>-2<\varepsilon_{A^{J}{ }_{x p I}} \Delta x>-2<\varepsilon_{A}{ }^{J}{ }_{x p 2} \Delta x> \\
& \left.\left.-2<\varepsilon_{A^{4}} y_{0} \Delta p\right\rangle-2<\varepsilon_{A} \Delta J_{y} \Delta p\right\rangle+\left\langle\Delta x J_{x p o} Q_{y}^{-1} J_{x p o} \Delta x\right\rangle \\
& +2\left\langle\Delta x J_{\left.\mathrm{xpO} Q_{y}^{-1} J_{y o} \Delta p\right\rangle+\left\langle\Delta p J_{y o}^{T} Q_{y}^{-1} J_{y o} \Delta p\right\rangle-2\left\langle\delta_{A} \Delta x\right\rangle}\right. \\
& +\left\langle\Delta x Q_{x}^{-1} \Delta x\right\rangle+2\left\langle p_{1} Q_{p}^{-1} \Delta p\right\rangle+\left\langle\Delta p Q_{p}^{-1} \Delta p\right\rangle \quad .
\end{aligned}
$$

k: Minimization or 1
1 will be a minimum when

$$
\left.\left.\left.\frac{\partial I}{\partial \Delta x}\right\rangle=\phi\right\rangle \text { and } \frac{\partial I}{\partial \Delta p}\right\rangle=\phi>
$$

1. Derivation of $\frac{\partial I}{\partial \Delta x} \gg \phi$

$$
\begin{aligned}
\frac{\partial I}{\partial \Delta x}>= & \left.\left.=-J_{x p o} \varepsilon_{A}\right\rangle-J_{x p 2} \varepsilon_{A}\right\rangle \\
& \left.-\zeta_{1}\left\{\frac{\partial}{\partial \Delta x}>J_{x p 2}\right\} \zeta_{2}\left\{\Delta \vec{x}^{\prime}\right\}_{A}\right\rangle-\zeta_{1}\left\{\frac{\partial}{\partial \Delta x}>\Delta J_{y}\right\} \zeta_{2}\left\{\Delta \vec{p}^{\prime} \varepsilon_{A}\right\rangle \\
& \left.\left.\left.\left.+J_{x p o} Q_{y}^{-1} J_{x p o} \Delta x\right\rangle+J_{x p o} Q_{y}^{-1} J_{y o} \Delta p\right\rangle-2 \delta_{A}\right\rangle+Q_{x}^{-1} \Delta x\right\rangle,
\end{aligned}
$$

We note that the diagonalizing function $\Gamma[\cdot]$ has the following characteristic:
$\Gamma[\vec{v}] w>=\Gamma[\vec{w}] v\rangle, \forall \vec{v}, \vec{w}$.
Thus we can write:
a. $\left.\left.\left.J_{x p o}{ }^{\varepsilon p>}=\Gamma D_{1}\left(\vec{x}_{0}\right) P_{0}\right\rangle\right] E_{A}\right\rangle$
$=r\left[\vec{\varepsilon}_{A}\right] A_{1}\left(\vec{x}_{0}\right) p_{0}{ }^{2}$
b. $\left.J_{x p 1} \varepsilon_{A}=\Gamma\left[D_{1}\left(\vec{x}_{0}\right) \Delta p>\right]_{A_{A}}=\Gamma\left[\vec{\varepsilon}_{A}\right] D_{1}\left(\vec{x}_{0}\right) p_{0}\right\rangle$
c. $J_{x p 2} \varepsilon_{A}=\Gamma\left[D_{2}\left(\vec{x}_{0}\right) F_{0}>\right] \Gamma\left[\Delta A_{x}\right] \varepsilon_{A}{ }^{\prime}$
$=\Gamma\left[D_{2}\left(\vec{x}_{0}\right) p_{0}>\right] \Gamma\left[\vec{\varepsilon}_{A}\right] \Delta x>$
a. $\quad \zeta_{1}\left\{\frac{\partial}{\partial \Delta x}>J_{x p 2}\right\} \xi_{2}\{\Delta \dot{x}\} \varepsilon_{A}>$
$=\zeta_{1}\left\{\frac{\partial}{\partial \Delta x}>\Gamma[\Delta \vec{x}]\right) r_{2}\left\{\Gamma\left[D_{2}\left(\vec{x}_{0}\right) p_{0}>\right] \Delta x>\right\} \varepsilon_{A}>$

Define $e_{i}>$ as the $1^{\text {th }}$ orthonormal vector. That is, a vector with all zeros except the $1^{\text {th }}$ component which is a one. Then If:

$$
\begin{aligned}
& E_{1} \triangleq e_{i}><e_{i} \\
& \text { a. } \zeta_{1}\left\{\frac{\partial}{\partial \Delta z}>J_{x p 2}\right\} \zeta_{2}\{\Delta \vec{x}\} \varepsilon_{A}> \\
& \left.\left.\left.\left.\left.=\left[\varepsilon_{1} \Gamma\left[D_{2}\left(\vec{x}_{0}\right) p_{0}\right\rangle\right] \Delta x\right\rangle \cdots E_{n} \Gamma\left[D_{2}\left(\vec{x}_{0}\right) p_{0}\right\rangle\right] \Delta x\right\rangle\right] \varepsilon_{A}\right\rangle \\
& \left.\left.E_{i} \Gamma\left[D_{2}\left(\vec{x}_{0}\right) p_{0}\right\rangle\right] \Delta x\right\rangle=\left[\begin{array}{c}
\phi> \\
\Delta x_{i}\left\langle D_{2}\left(x_{10}\right) p_{0}\right\rangle \\
\phi>
\end{array}\right]+i^{\text {th }} \text { row } \\
& \zeta_{1}\left(\frac{\partial}{\partial \Delta x}>J_{x p 2}\right) \zeta_{2}[\Delta \vec{x}) \varepsilon_{A}> \\
& {\left[\left\langle D_{2}\left(x_{10}\right) p_{0}\right\rangle \Delta x_{1}\right.} \\
& = \\
& <D_{2}\left(x_{20}\right)_{D_{0}}>\Delta x_{2} \quad \Phi \\
& \Phi \\
& \left.=\Gamma\left[D_{2}\left(\vec{x}_{0}\right)\right] \Gamma \mid \Delta \vec{x}\right]_{E_{A}} \\
& =r\left[\dot{c}_{A}^{*}\right] r\left[D_{2}\left(\vec{x}_{0}\right) p_{0}>\right] \Delta x>
\end{aligned}
$$

b.

$$
\begin{aligned}
\zeta_{1}\{ & \left.\left.\frac{\partial}{\partial \Delta x}>\Delta J_{y}\right\} \zeta_{2}(\Delta p>) \varepsilon_{A}\right\rangle \\
& \left.=\zeta_{1}\left\{\frac{\partial}{\partial \Delta x}>\left(r[\Delta \vec{x}] D_{2}\left(\vec{x}_{0}\right)\right)\right\} \varepsilon_{R}\{\Delta \vec{p}\} \varepsilon_{A}\right\rangle \\
& \left.=\left[E_{1} D_{1}\left(\vec{x}_{0}\right) \Delta p>\cdots E_{n} D_{1}\left(\vec{x}_{0}\right) \Delta p>\right] \varepsilon_{A}\right\rangle
\end{aligned}
$$

$$
\left.E_{i} D_{1}\left(\vec{x}_{0}\right) \Delta p\right\rangle=\left[\begin{array}{c}
\phi\rangle \\
\left\langle D_{1}\left(x_{10}\right) \Delta p\right\rangle \\
\phi\rangle
\end{array}\right]
$$

$$
\begin{aligned}
& \left.=r\left[D_{2}\left(\vec{x}_{0}\right) \Delta \mu>\right] \varepsilon_{A}\right\rangle \\
& =\Gamma\left[\vec{\varepsilon}_{A}\right] D_{2}\left(\vec{x}_{0}\right) \Delta p>.
\end{aligned}
$$

If we make the following definitions

$$
\begin{aligned}
R_{1}> & \left.\Gamma\left[\vec{\varepsilon}_{A}\right] D_{1}\left(\dot{x}_{0}\right) p_{0}\right\rangle+\delta_{A}> \\
& \left.\left.=\Gamma\left[D_{1}\left(\vec{x}_{0}\right) p_{0}\right\rangle\right] c_{A}\right\rangle+\delta_{A}> \\
s_{1} A & -2 \Gamma\left[\vec{\varepsilon}_{A}\right]+\Gamma\left[D_{1}\left(\vec{x}_{0}\right) p_{0}>\right] Q_{y}^{-1} D_{0} x_{0}> \\
s_{2}- & -2 \Gamma\left[\vec{\varepsilon}_{A}\right] r\left[D_{2}\left(\vec{x}_{0}\right) p_{0}>\right]+Q_{x}^{-1} \\
& \left.+r\left[D_{1}\left(\vec{x}_{0}\right) p_{0}\right\rangle\right] Q_{y}^{-1} r\left[D_{1}\left(\vec{x}_{0}\right) p_{0}>\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{\partial I}{\partial \Delta x}> & \left.\left.=0 \rightarrow S_{1} \Delta p\right\rangle+g_{2} \Delta x\right\rangle-R_{1}> \\
& =\phi>.
\end{aligned}
$$

2. Derivation of $\frac{\partial I}{\partial \Delta \nu}>=0 \cdot$

$$
\begin{aligned}
\frac{\partial I}{\partial \Delta p}>= & \left.-\frac{\partial}{\partial \Delta p}>\left(\left\langle\varepsilon_{A} J_{x p 1} \Delta x\right\rangle\right)-J_{y O}^{T} \varepsilon_{A}\right\rangle \\
& \left.-2 \Delta J_{y}^{T} \varepsilon_{A}>+J_{y 0}^{T} Q^{-1} J_{x p o} \Delta x\right\rangle \\
& \left.\left.\left.+J_{y 0}^{T} Q_{y}^{-1} J_{y o} \Delta p\right\rangle+Q_{p}^{-1} p_{1}\right\rangle+Q_{p}^{-1} \Delta p\right\rangle
\end{aligned}
$$

Observe the following terms:

$$
\text { a. } \begin{aligned}
\left.\frac{\partial}{\partial \Delta p}>\left(\cdot \varepsilon_{A}^{J}{ }_{x p l} \Delta x\right\rangle\right) & =\frac{\partial}{\partial \Delta p}>\left(\left\langle\varepsilon_{A} \Gamma[1)_{1}\left(\dot{x}_{0}\right) \Delta p>\right] \Delta x>\right) \\
& =\frac{\partial}{\partial \Delta p}>\left(\left\langle\varepsilon_{A} \Gamma[\Delta \vec{x}]_{1}\left(\vec{x}_{0}\right) \Delta p>\right)\right. \\
& =D_{1}^{T!}\left(\vec{x}_{0}\right) \Gamma[\Delta \vec{x}]_{\varepsilon_{A}}=D_{1}^{U}\left(\dot{x}_{0}\right) \Gamma\left[\varepsilon_{A}^{*}\right] \Delta x> \\
\text { b. } \left.\Delta J_{y}^{T} \varepsilon_{A}\right\rangle & =D_{I}^{T}\left(\vec{x}_{0}\right) \Gamma[\Delta \vec{x}]_{E_{A}} \\
& =D_{1}^{T}\left(\vec{x}_{0}\right) \Gamma\left[\vec{\varepsilon}_{A}\right] \Delta x>
\end{aligned}
$$

Making the following definitions:

$$
\begin{aligned}
& H_{2} \triangleq D_{0}^{1}\left(\vec{x}_{0}\right) c_{A}>Q^{-1} p_{1}> \\
& s_{3} \triangleq D_{0}^{T}\left(\vec{x}_{0}\right) q_{y}^{-1} D_{0}\left(\vec{x}_{0}\right)+Q_{0}^{-1}
\end{aligned}
$$

Tine

$$
\frac{\partial L}{\partial \Lambda p}: \Rightarrow \phi \cdot \Rightarrow s_{3} \Delta p \cdot+s_{1}^{T} \Delta x \cdot-H_{2}=\$ v
$$

3. Solving for Ap> and Δx ?.

We have two equations in two unknowns, vise.:

$$
\begin{aligned}
& \left.\left.S_{1} \Delta p\right\rangle+S_{2} \Delta x>=R_{1}\right\rangle \\
& \left.\left.S_{3} \Delta p\right\rangle+S_{1}^{T} \Delta x\right\rangle=R_{2\rangle}
\end{aligned}
$$

In which S_{2} and S_{3} have inverses. Make the following definitions:

$$
\begin{aligned}
& S_{A} S_{2}^{-1} S_{1} \\
& R_{A}>s_{2}^{-1} R_{1}> \\
& Q_{A} S_{1}^{T} S_{A}-S_{3} \\
& V_{A}>S_{1}^{T} R_{A}>-R_{2}>
\end{aligned}
$$

then:

$$
\begin{aligned}
& \left.\Delta p>=Q_{A}^{-1} V_{A}\right\rangle \\
& \Delta x>=R_{A}>-s_{A} \Delta p>
\end{aligned}
$$

V. INITIALIZATION.

The "best" initial estimate for $\stackrel{\text { p }}{\mathrm{p}}$ is obtained (unless additional information is available) from the normal equations. Thus

$$
\begin{aligned}
& I_{1}=\left\langle\varepsilon Q_{j}^{-1} \varepsilon\right\rangle+\delta \delta Q_{x}^{-1}{ }_{j} . \\
& \frac{d 1}{\partial p},=\frac{\partial}{\partial p} \cdot\left[\left(<n-p_{y}^{1 p}\right) Q_{y}^{-1} c\right\rangle \\
& +(-E-x) u_{x}^{-1} s y \\
& =-2 J_{y}^{T_{y}} a_{y}^{-1}\left(n-J_{y} \cdot\right) \\
& \frac{\partial l_{1}}{\partial p}=+- \\
& \left.p_{0}^{\prime}\right\rangle^{\prime}=\left(J_{y}^{T} Q_{y}^{-1} d_{y}\right)^{-1} J_{y}^{T} Q_{y}^{-1}{ }^{2} \\
& x_{1}=\xi_{0} .
\end{aligned}
$$

The alporithm derived in the previous papes was based on a linear approximation for the error in an anamed analytic neiphbo:hood of tha true solution. Inasmuch as both the dependent and independent variables are adiusted to achieve a minimum, the alporithm is uevelly sensitive to noise and the large excursions of the dependent variable. Indeed, in the form shown there is definitely a tendency for the alporithm to be unstable and to diverge with unbecominp frequancy.

A darpe number of empirical studies were made for various kinds of polynomials under variom condition of noise content (in which the basic premise for which the study wan intendend, namly: $n_{x}=n_{y}=I$, was assumed) and comparisons where made among thoae which diverged and those which convorped. The criteria which distinguiahed the convergent polynomials from the divergent onea suprised this author. At this writing, the author has not studied the theoretical aspects and cannot supply the reasons. (One minht auspect that an investifation aimilar to that employed which demonstrates the reasons for the instabilities of Milne's interration method, might help toward en understanding of this problem.)

Early, it was found that if the input were randomized, formerly diverpent problems would converye. thouph net always. 1 Flgures 1 to 4 show a study in which the algorithm diverped after rendomiation. (It diverged before randomization, but this result is not nhown.)

1. All work was computed in double precision.

A number of additional studien involvine polynomials of various shapes disclosed the rather aprising fact that, aprarently, the only criterion neeied to insure convergence was that the (scaled) slope of a line based on the total heleht of the fimst and last points of the variables must be less then 45°, 1 if the terms in the induperidont variable were monotonically nondecreasing.

A scalinh criterion was introduced which compared $\left|\xi_{n}+\xi_{2}\right|=\xi_{s}$ with $\left|n_{n}+n_{2}\right|=n_{s}$. If $F_{g}<n_{s}$, the data in \vec{n} was roplaced by $s . \vec{n}$ wheres $=0.9 \mathcal{F}_{s} / \eta_{s}$. Firures 5 to 10 demonstrate the effect on identical data of the divergent problem (fipuresi to 4) sub.ject ro this scaling criterion. In this case, the alporithm converend.

The data for the above studias were penerated from the polmomial:

$$
y=22.5+2.125 x-0.5 x^{2}+0.03125 x^{3}
$$

to which zemomean Gaussian noise with a variance of 0.02 har' bean added to each of the $2 n$ observations in $\vec{\xi}$ and \vec{n} resp. Further studien yere done in which the variance of the noise was increased to 4.0 , which is the same size as the first point of the independent variable, and the domain of the indepandent variable was decreased so that it ranged through the values: $4.0,4.2, \ldots, 13.8$. The alporithm still converped when the independent variable was rascaled, hut not suprisinply, the number of iteretions inereased substantially. These rasults are not shown.

[^4]Figures 11 to 15 show the convermace of the alporithm baned on the polmomial:

$$
y=12.0+7.0 x-0.2 x^{2}-0.1 x^{3}
$$

in which the variance wes apain 0.02. This curw is dome-shaped and so constructed that y_{i} and y_{m} are cufficiently clow tonethor that the data wan barelv manceled. Thie demonatrates the, epperentlv, sufficient criterion that the mlope besed on the firgt ad int goint determise whother the almorithm will converne or not.

Finally. Flature 16 to 16 show the convergence of the elgorfthm from data obtalned menualiy using a ruler and atrip chart. Furthermore, the curm from ohlch the masurements mase obtalued fittered over a width of about $3 / 8$ of an inch. Such data Is crude by any standards for computer work, hut, hearteninply, the alrorithim converyed aicely. Semeral other studies usinf data obtained in a similar manner from similar mouree almay had convergent alporithe when the rescaling criterion was employed.
VII. RESURTS AND COMCLUSIONS.

This paper heo diecused the probloms of a minimum variance iterative firgt-omder solution for two moiny vector variablen, deneadent and an indepwndent one, in which the dependent verimble is related to the independent variable bu a polmorial. A number of atudien ware aide uling a variety of polynomial shapes, of dexee thate. It wee aseumed that the roise on cach independent obsemvetion was rauasim with a 2050 mena. The raxidice of the noise was varied from 0.02 to 4.0 , the latter of the same oxder of magitude et the independent variable.

Two orfteria for mating almorithm eenverpmee have been introduced:
(1) An a hoe Dryeaim diatribution which controlled the excureions of the polynomilal coelficilonte.
(i1) Rescaling the dspendent variable so that the slope hased on the firat and last data point was leas then 45°,
nf the three eriteria no studien have heen proeented using criterion (i), but the effectivanea of this method has heen discusaed in [7].

Rether complete studies based on exiterion (ii) were made using a $3^{\text {rd }}$ order nolynomial in whioh $\eta_{x}=n_{y}=I$. That is, a least spuares nolution. For all cases tried, the alporithm converged evervtime. Ar present, because of the oripinal pools of, the problom. the use of (il; as a converpence criteris is deemed adequate for the requirements of the project.

1. Kuadaij, M.C. and Stuart, A., The Adranced Thpory of Statietics, Chas Griffin and Co., Ltd, Lendon, Vol 2, 196.1.
2. Morvisen. D.F., Multivapiate Statistical Mothodg, Mosram - Mill Book Co. o NY, WY 1967.
3. Worthing, A.G. and Geftner. J., Treatmeat of Experimental Dates John Wi ior and Sons, Inc., NY, NY 2950.
4. Geary. R.C. Non-lipear Fuactional Relationship Dotwon Two Vericblea When One Variëble is Controlind, J. Amer. Stmist Aes., 48. 94. 2953.
5. Dalten, O.N. Trameformations Through a Nop-Euciiden Space in a Linear Trensformätion Context, Applioation of Firyt-dennee-affine Truanformen to Probeblity Duanity Functieas in the o-Log, Space. Paper presented at the $19^{\text {th }}$ cenference on the Deaigi of Exp in Axmy Res.. Dev. and Teoting. Rock Inlend, IL, Oet 1973, to be published.
6. Andereca, T.W., mintroduotion to Multivariate Statiatical Analysis John Wiley and Sone, NY 1958.
7. Dalton, 0.K., Mininlention Procedure for Aasesin Instmumention and Ceoperhienl Loention Biep Xryory, Neport No 91 92.40-502, TRW, Space Technolony tab. Podeado Beach CA, July 1963.
8. Inown, D.C. A Fratmant of Analrtical Photorygmetry, RCA Dara Nod. Tech. Report No. 30, 20 Aus 1957.
9. Dalton, O.N., Int rodsetion to Minimization Problems and Kalman-Hucy Pliter Teghigues, Techaical Hoport, An and Comp. Div., WSMR, NM, 1 Juma 1967.

(FIGURE 2)

> IMITIAL Estinates ror the ceeffis

(fifure 6)
\qquad

CCAVEGGEACE PROGRAE EOE 2OCIMENSICNAL DEIA
THE VAREABLES ARE COMACCTEO AY A POLYMOFIAL GF EEGREE

TME PROEAAM SIBL STEP AFTER IC JTEMATIONS CA AFTE日 A CMAMGE TE TME

ERPUT yALUES EOR IME RESEALE
DEPENOENT VARIABLE ARE:

$6 \angle 9600^{\circ}-$

(Fifilue 13)

OEPENoEnt vaniable ank: 324.360000
33.060000
320.350000 $000005 \cdot 305$
000000.815
$0000075 \cdot \mathrm{ERE}$
$000039.5<8$
80
80
80
08
0
0
0
0
0
0
0 08
08
0
0
0
0
0 2010.000000
274.520000
 88

 218.200000
212.700000
\qquad

THE PROBABILITY OF MOT'OR CASE RUPTURE

RONALD S. DUWNS
 PAUL C. COX
 QUALITY ASSURANCE OFFICE US ARMY WHITE SANDS MISSILE RANGE WHITE SANDS MISSILE RANGE, NEW MEXICO

A $\operatorname{BSTRACT}$

Statistical Procedures are studied for the evaluation of the probability that a motor ease may rupture as a result of excessive pressures exerted by the propellunt. Normally, this study is based upon two sets of data. The first consists of data indicating the pressure required to burst a motor case (X), and the second consists of data indicating the maximum pressure exerted by the motor (Y). These data are obiained from two separate tests; the sample sizes for each test are usually different; and while X is usually tested under a fixed set of conditions, Y is frequently tested under a variety of envirommental conditions and therefore makes use of a designed experinsnt. This may be recognized as a special case of the problem of estimating component reliability from sample measurcments taken of the stresses applied and the strength of the component.

Four tanniques were studied for the evaluation of the probability of motor case rupture. All required independence for X and Y; the first requires normality for $(X-Y)$, the second requires nommality for X and Y, and the third and fourth require few assumptions concerning the distribution of X or X. The procedures are:

1. One-Sided Statistical Tolerance Limits.
2. The Church-Harris-Downton (CHD) Procedure.
3. Birnbaum - McCarty Procedures.
4. The Chebycheff Inequality.

The last two methods either provide unacceptable results or require an unacceptably large sample size. Either of the first two methods can provide acceptable results with a reasonable sample size if the assumptions of normality can be considered valid. Of these first two, the CHD method appears to five the narrower confidence limits, but the tolerance limit mathod may be preferable for small samples.

Actual test data was used to test the assumptions underlying the various methods. From this data, it was concluded that X may be distributed almost as the normal, but there is some evidence that Y and ($X-Y$) may deviate from normality. The implications of these deviations are discussed.

THE PROBABILITY OF MOTOR CASE RUPTURE

1. INTRODUC'IION.

a. An important preblen when evaluating the safety of a missile or rocket system is the determination, at a suitable level of confidence, that the probability of the motor case rupturing is less than some pre-determined small value. Normally, an estimate of the probability of case rupture will be obtained from two tests, each limited to relatively small samples. The first test will be to determine the maximum pressure (X) exerted by the motor. The second test will be to determine the pressure (X) required to burst the motor case. The maximum pressure tests will frequently be conducted under a variety of environmental conditions and will, therefore, make use of a designed experiment, while the motor case tests will nearly always be conducted under a fixed set of environmental conditions. The first point is mentioned, because, for most maximun pressure tests, the degrees of freedom cannot be expected to be one less than the sample size.
b. The case rupture probiem is a special case of the well-known problem in which the reliability of a component is estimated by determining the probability that the strength (X) of the component exceeds the stresses (Y) which are exerted on the component. The main difference lies in the fant that the examples and supporting data of this report will be related entirely to the motor case problem.
c. The following methods for solving this problem are discussed:
(1) The Statistical Tolerance Limits.
(2) Church-Harris-Downton (CHD) Procedure.
(3) Birnbaum - McCarty Procedure.
(4) The Chebychaff Inequality.

The advantages and disadvantages of each procedure is discussed and actual test data is used to evaluate the assumptions of these procedures.
2. STATISTICAL TOLERANCE LIMITS.
a. A procedure which has been used for some time for the solution of case rupture problems has been that of statistical tolerance limits. If it can be shown, at the r level of confidence, that $(X-Y) \leq 0$ no more than $\varepsilon \%$ of the time, then it is clear that at the ytlevel of confidence, the probability of case rupture does not exceed et. Making use of a table of one-sided normal, tolerance limits, such as Reference a, this can be determined if:
(1) $X-Y$ is normally distributed
(2) $\overline{X-Y}$ is known
(3) n_{x-y} can be determined
(4) S_{x-y} can be determined
(5) Degrees of Freedom: $\mathbf{f}_{\boldsymbol{x}-\mathrm{y}}$ can be determined
b. If the assumption of normality is valid, the required information is available from the following formulae:
(1) $\overline{X-Y}=\bar{X}-\bar{Y}$
(2) $S_{x-y}^{2}=s_{x}^{2}+s_{y}^{2}$
(3) $n_{x-y}=\frac{s_{x}{ }^{2}+s_{y}{ }^{2}}{\frac{s_{x}{ }^{2}}{n_{x}}+\frac{s_{y}{ }^{2}}{n_{y}}}$
(Note Appendix 2 for discussion)
(4) $f_{x-y}=\frac{\left(S_{x}{ }^{2}+S_{y}{ }^{2}\right)^{2}}{\frac{S_{x}}{f_{x}{ }^{+2}}+\frac{S_{y}^{4}}{f_{y}{ }^{42}}}-2$.
(Note Reference b)
c. Referring to Example A, Appendix 1, the following can be computed:
(1) $\bar{X}-\bar{Y}=2500$
(2) $S_{x-y}=\sqrt{(250)^{2}+(450)^{2}}=514.78$
(3) $(X-Y) / S_{x-y}=4.856$
(4) $n_{x-y}=9.22$
(5) $f_{x-y}=14.31$
d. Referring to pages 180 and 182 of Reference a, and performing several interpolations, it can be determined that at the 90% level of confidence, the probability of a case rupture does not exceed 3.30×10^{-4}.
e. Formulas $F(3)$ and $F(4)$ frequentiy provide fractional answers. One may proceed by rounding the fractions to the nearest integers and computing the desired probability, or the fractions can be retained and the solution can involve extensive interpolation.
f. Advantages.
(1) At a given level of confidence, low probabilities of case rupture can be obtained with relatively smail samples.
(2) If suitable tolerance limits tables are available, the procedure is relatively simple to apply (especially simple if f and n are integers).
g. Disadvantages.
(1) The procedure is sensitive to deviations from normality.
(2) As will be shown in Section 3, the Church-HarrisDownton procedure generally provides lower probabilities of case rupture than the tolerance limit procedure.
3. THE CHURCH-HARRIS-DOWNTON (CHD) PROCEDURE.
a. The Church-Harris-Downton (CHD) Procedure evolved through three journal articles, References c through e, and was developed to determine, at a suitable level of confidence, the probability that $X>Y$. It was specifically developed to evaluate the reliability of a component based upon its strength and the stresses it must undergo.
(1) The confidence limit statement:

$$
\begin{equation*}
P_{r}\left\{\phi\left[V-\phi^{-1}(1-\alpha / 2) \theta_{v}\right]<R<\phi\left[V+\Phi^{-1}(1-\alpha / 2) \theta_{v}\right]\right\}=1-\alpha \tag{5}
\end{equation*}
$$

(2) $V=\frac{X-Y}{\sqrt{C_{n}{ }^{S}{ }^{2}+C_{m} S_{y}}} ; ~ \phi(V)=\hat{R}$ (the point estimate) $F(6)$
(3) $\quad \sigma_{v}{ }^{2}=\frac{1}{C_{n} S_{x}{ }^{2}+C_{m} S_{y}{ }^{2}}$

b. The following explanation of $F(5)$ through $F(7)$ are given:
(1) $F(5)$ is for two-sided confidence limits. For onesided, replace $\alpha / 2$ with α.
(2) ϕ refers to the cumulative normal and Φ^{-1} to the inverse cumulative normal. Selected values of Φ^{-1} are provided in Appendix 3.
(3) C_{n} is a constant depending upon n_{x} and C_{m} on n_{y}. These constants were developed by Dr. F. Downton, Reference 3, and may be found in Appendix 3. The constants could be replaced by one without greatly affecting the results.
c. To solve Example A, Appendix 1, by the CHD Method:
(1) $v=5.01922$ and $\sigma_{v}=\sqrt{1.0754}=1.037$.
(2) For 90%, one-sided confidence limits, $\Phi^{-1}(1-\alpha)=$ 1.28155 .
(3)

$$
\begin{aligned}
& P_{r}\{\Phi[5.019-1.282 \times 1.037]<R\}=90 \% \\
& P_{r}\{\Phi(3.690)<R\}=90 \% \\
& P_{r}\{.999888<R\}=90 \%
\end{aligned}
$$

90% confidence that the probability of case rupture $<1.12 \times 10^{-4}$.
d. Advantages.
(1) At a given level of confidence, low probabilities of case rupture can be obtained with relatively smail samples. The CHD method generally appears to provide narrower confidence limits than the tolerance limit method. Paragraph 2 of Appendix 1 gives the results for five examples and it can be seen that in each case the CHD method gives probabilities ranging from 1/2 to $1 / 3$ of those obtained by the tolemance limit method.
(2) Aside from the complexity of Formula $F(7)$, the CHD method is relatively simple to use. Abo't the only tables required are Tables of C_{n} and good tables of the cumulative normal.
e. Disadvantages.
(1) The CHD method is sensitive to deviations from normality.
(2) The CHD method uses the asymptotic normal approximation of a given statistic, and requires substitution of the population means and standard deviations by their observed sampla values. For these reasons, the method of statistical tolerance limits may be preferable when dealing with small samples.
4. BIRNBAUM - MCCARTY STATISTICS.
a. Birnbaum - McCarty statistics provide a non-parametric procedure for determining, at a given level of confidence, that $X<Y$. This procedure is relatively simple and involves computing $\beta=11 /\left(n_{x} \cdot{ }^{n} y\right)$, where U is the number of pairs of x and y for which $x<y$. It is then possible to make the following statement:
$P_{r}\{p \leq \beta+\varepsilon\} \geq \gamma$, where ε depends upon n_{x}, n_{y}, and γ, and can be obtained from the Tables on pages 323 and 324 of Reference f.
b. To illustrate this procedure, Example A of Appendix 1, will again be used. It will be assumed that the smallest x in the sample is larger than the largest y, resulting in $U=p=0$. From page 323 of Reference \mathcal{F}, it can be seen that $\mathcal{E}=0.609$ for $n_{x}=10, n_{y}=9$, and $\gamma=904$. Thus, $P_{r}[(Y \leq X)<.609] \geq 904$, which is to say that at the 90% level of confidence, the probability of case rupture is less than 60.94. (Note Para 2, Appendix 1, for other examples.)
c. It is of further interest that if Birnbaum - McCarty statistics were used to verify, at the 90% level of confidence, that the probability of case rupture did not exceed .005 , it would require $n_{x}=n_{\mathbf{y}}=140,111$.
c. Advantages. The only requirement is that X and Y must be independent random variables.
e. Disadvantages.
(1) To provide probabilities which are at all useful, completely unrealistic sample sizes are required.
(2) Regardless of how widely separated \bar{X} and \bar{Z} my be, as long as the two samples do not overlap, it does not improve the probabilities.
5. THE CHEBYCHEFF INEQUALITY.
a. Since Birnbaum - McCarty statistics do not appear to provide a reasonable solution for the motor case problem, the Chebycheff Inequality is offered as a possible procodure when there is reason to belive that the assumption of normality may not be valid.
b. This procedure is discussed below, and Example A is again used to illustrate the method.
(1) To Chebycheff Inequality is given by $F(8)$ and $F(9)$ below. The procedure for converting the inequality from a well known form to $F(3)$ is provided by Appendix IV.

$$
\begin{align*}
& P(X>Y) \geq 1-1 / K^{2} \tag{8}\\
& K=\frac{\mu_{x}-\mu_{y}}{\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}}} \tag{9}
\end{align*}
$$

(2) Usins the data for Exapic A from Appendix 1, and the values $n_{x-y}=9.22$ and $f_{x-y}=16.31$ frum Para $2 c$, the following is determined:
(a) 95 LCL for $\mu_{x}-\mu_{y}$:

$$
\bar{X}-I \cdot t .95,16.31 \sqrt{\frac{S^{2}+S^{2}}{9.22}} \equiv 2500-(1.7439)(82.333)=
$$

2356.642

(b) 95 UCL for σ_{x-y} :

$$
\sqrt{\frac{f\left(S x^{2}+S y^{2}\right)}{X^{2} .95, F}}=\sqrt{\frac{16.308 \cdot 265,000}{8.181}}=726.809
$$

(c) 904 LCL for $K=\frac{2356.642}{126.809}=3.242$
(d) 904 LCL for Prob $(Y<X)=1-1 / K^{2}=1-1 /(3.242)^{2}=$ $1-.0951=.905$.
(e) Assuming $(X-Y)$ is continuous, unimodal, and symmetric, 908 LCL for $\operatorname{Prob}(Y<X)=1-2 / 9 K^{2}=1-.0211=.979$
C. Advantages.
(1) Fixcept for the application of t and x^{2} tests, the procedure is completely distribution free.
(2) The procedure is relatively simple to apply.
(3) Referring to the Table in Para 2 of Appendix 1, it appears that the Chebycheff procedure provides better results than Birnbaum - McCarty, and if $(X-Y)$ is :ontinuous, unimodal, and symmetric, it is possible to improve even more.
d. Disadvantages.
(1) The t and X^{2} procedures are based upon the assumption of normality.
(2) While the results are better than Birnbaun - MeCarty, they are still not adequate for most applications.
(3) If it is desired to use the further refinement of continuity, unimodal, and symmetry, this will be about as difficult to verify as normality, and it really doesn't buy nearly as much as the assumption of normality.
6. OTHER PROCEDURES. The four methods determining motor safety, which are'discussed in this report, are far from exhaustive. Three additional methods are briefly discussed below:
a. Reference m uses the Chebycheff inequality and the Van Dantzig upper bound for the variance of the Mann-Wiitney statistic U to provide distribution free confidence intervals for the probability $(Y<X)$. This method generally gives better results than Birnbaum-McCarty statistics but not as good as the Chebycheff procedures of Section 5 of this report.
b. Paragraph 4 of Reference j provides a procedure which can be used if X and Y are independent and both are normally distributed. This method provides results which are about the same as the Tolerance Limit Method, but has the following limitations:
(1) σ_{x} and σ_{y} must be equal.
(2) n_{x} and n_{y} must be equal.
(3) The published tables to not go below 10 or above 100 for sample size.
(4) The published tables do not provide probabilities of less than one percent.
c. Reference 1 provides procedures based upon similar concepts to those discussed in 6b and provides some additional methods for solving the case rupture problem.

7. TEST FOR NORMALITY.

a. The methods of "Statistical Tolerance Limits" and "Church-Harris-Downton" are both based upon the assumptions of independence and normality. The assumption of independence for X and Y appears to be perfectly reasonable, but the assumption of normality requires careful study. If X and Y are both normal and independent, then $X-Y$ is also normal with $\mu_{x-y}=\mu_{x}-\mu_{y}$ and $\sigma_{x-y}=\sigma_{x}+\sigma_{y}^{2}$. Therefore, the matter or normality for X, Y, and $X-Y$ will all be investigated,
b. In addition to testing for normality, it may also be useful to compute the coefficients of skewness (γ) and kurtosis (Y_{2}).
(1) The following drawings illustrate why the distributions of X and Y appear less likely to overlap if $\gamma_{1}(X)$ is positive and $Y_{1}(Y)$ is negative. Similarly, the distribution of $(X-Y)$ appears less likely to overlap zero if $Y_{1}(X-Y)$ is positive.

(2) Kurtosis: If the coefficients of kurtosis $\left(Y_{2}\right)$ for Y and Y are both negative, there appears to be less likelihood of their distributions overlapping, than if γ_{2} is either zero or positive. Furthermore, if γ_{2} is negative, a narrower confidence limit for the variance can be expected than if γ_{2} is zero or positive. Note pages 51-56 of Reference h.
c. Actual Test Data.
(1) A search was made for actual test data, and while all the data that was located was classified, burst pressure data (X) was located from three tests and maximum generated preseure data (Y) was located from 2.0 tests. Table 1 provides: sample size; the coefficient of skewness $\left(\gamma_{1}\right)$; the coefficient of kurtosis $\left(r_{2}\right)$; and the significance level using the ShapiroWilk procedure to test for deviations from normality. (Note Reference i for a diecussion of the Shapiro-Wilk Test.)
(2) From Table 1:
(a) Burst Pressure Data.

1. Neither γ_{1} nor γ_{2} is significantly different from zero for any of the three tests.
2. Y_{1} is small in all cases and positive for two.
3. $\quad \gamma_{2}$ is negative for all three tests.
4. The Shapiro-Wilk test gives no indication of deviation from normality.
5. For burst pressure, the assumption of normality appears reasōnable.
(b) Maximum Generated Pressure.
6. For Test \#5, γ_{1} is significantly different from zero at the 5\% level and γ_{2} at the 18 level. Neither γ_{1} nor γ_{2} is significantly different from zero for any of the other 19 tests.
7. From the Shapiro-Wilk Test, \#5 deviated significantly from nomality at the 1% level while tests 11 and 14 showed deviation at the 10\& level. For the other 17 teste, there was no indication of a significant deviation.
8. The signs for γ_{1} and γ_{2} are about evenly divided between posiEive and negative.
9. There is little indication that (Y) data deviates significantly from normality, but there is enough questionable data that further study appears desirable.

TABLE 1
PROPETIISS OF 3 SAMPLES POR BURSK PRESSURE (X) AND 20 SAYPLES FOR MAXINM ODNERATED PRESSURE (Y)

(3) The small samples associated with the tests in Table 1 provide a serious handicap in evaluating normality. Therefore, the following was performed in an attempt to obtain a look at a larger sample:
(a) The data from the three "burst pressure" samples were transformed to provide samples with $X=0$ and $S_{x}=1$. The data was then combined to form a single sample with $n=27, X=0$, and $s_{x}=1$.
(b) The data from the 20 "maximum generated pressure" samples were transformed to provide samples with $\mathcal{Y}=0$ and $S_{y}=1$. The data was then combined to form a single sample with $n=139, Y \approx 0$, and $S_{y}=1$.
(c) The data discussed in Para (a) was again transformed such that $X=4000$ and $S=300$. The data in Para (b) was transformed to have $\bar{Y}=2000$ and $S=75$. Then a sample of 200 values of $X-Y$ was obtained by randomly matching values of X and Y and computing their differences.
(d) The sample size, mean, standard deviation, coefficient of skewness, coefficient of kurtosis, their standard deviations, and normality test information are provided in Table 2 for the combined samples of X, Y, and $(X-Y)$.

TABLE 2
PROPERTIES OF SIMULATED SAMPLES FOR BURST PRESSURE (X), MAXIMUM GENERATED PRESSURE (Y), AND (X-Y)

$\begin{aligned} & \text { TYPE } \\ & \text { OF } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { SAMPLE } \\ & \text { SIZE } \end{aligned}$	MEAN	ST. DEV.	γ_{1}	SY	γ_{2}	Sr_{2}	$\begin{aligned} & \text { TEST FOR } \\ & \text { NORMALITY } \end{aligned}$
x	27	. 0002	0.961	. 0887	. 471	. 08011	. 578	. 43
Y	139	. 0008	0.923	-. 124	. 208	-. 568	. 408	. 11
$X-Y$	200	2026	287	-. 004	. 1.7 ?	-.978***	. 342	.025**

Significant at the 54. lavel. *Significant at the 1% level.

[^5](4) It is possible that the procedures introduced in developing the samples of Table 2 may have introduced some biases in the above statistics, but the following may be drawn from this Table.
(a) Burst Pressure Data (X)

1. Both γ_{1} and γ_{2} are small and have the desired sign.
2. The Shapiro-Wilk Test indicates no significant deviätion from normality.
3. The assumption of normality appears to be valid.
(b) Maximum Generated Pressure (Y)
4. γ_{1} is small and possesses the desired sign.
5. $\quad r_{2}$ differs from zero at about the 17 level of significance. γ_{2} possesses the desired sign if not zero.
6. Y deviates from normality at the 118 level of significance, using the χ^{2} test for goodness of fit.
7. While r_{1} and γ_{2} possess the desired signs, there remains some concern about the assumption of normality and the behavior of the distribution in the region of the tails. Fortunately, the variance of Y is usually significantly smaller than the variance for X.
(c) $(X-Y)$
8. $\quad \gamma_{1}$ is essentially zero.
9. $\quad \gamma_{2}$ is large and differs from zero at the 1 level of significance. This may reflect the procedure used instead of the behavion of the distribution of $(X-Y)$. Fortunately, γ_{2} is negative.
10. Ueing the X^{2} test for goodness of fit, (X-Y) deviates from normality at the $21 / 28$ level of significance. This can be attributed to the large negative value of γ_{2}.
11. There may be considerable question concerning the nommality for ($X-Y$), especially since normality for Y is questionable. This apparent lack of normality appears to be caused by the large, negative value for the coefficient of kurtosis, and this may be caused by the procedure for constructing the sample rather than the actual behavior of (X-Y). While negative value for the coefficient of kurtosis may be preferable to a positive value, thare etill remains the question of the behavior of the distribution in the vicinity of the tails.
12. CONCLUSIONS.
a. Birnbaum-McCarty and Chebycheff Inequality procedures are desirable because of their distribution free characteristics. Howevar, each provides either unsatisfactory confidence limits or requires unrealistic sample sizes.
b. Both the statistical tolerance limits and the Church-Harris-Downton methods require assumptions of independence for X and Y and normality for each. If the above assumptions are valid, either can be expected to provide satisfactory confidence limits with a reasonable sample. of the two, the Church-Harris-Downton method appears to provide narrower confidence limits, but may be less suitable for small samples.
c. A study of actual data suggests:
(1) The assumption of normality appears to be reasonable for pressure required to burat the case (X).
(2) The assumption of normality may be questionable for the maximum pressure (Y) and the difference ($X-Y$) thus suggesting considerable caution when applying these procedures.

9. REFERENCES.

a. Owen, D. B., "Factors for One-Sided Tolerance Limits and For Variable Sampling Plans." SCR-607, March 1963, the Sandia Corporation. Available from the Office of Technical Services, Dept of Commerce, Washington, DC.
b. Welch, B. A., "The Generalization of Student's Problem When Several Different Population Variances are Involved," Biometrika, VOL 34, 1947, p. 28-35.
c. Church, J. D. and Harris, Bernard, "Estimates of $P(Y<X)$ and Their Application to Reliability Problems for Both Continuous and Quantal Response Data," proceedings of the 13 th Conierence on the Design of Experiments, 1967.
d. Church, J. D. and Harris, Bernard, "The Estimation of Reilability froin Stress-Strength Relationshipa," Technometrics, VOL 12; February 1970, p. 49.
e. Downton, $F_{\text {. , "The Estimation of } \operatorname{Pr}(Y<X) \text { in the }}$ Normal Case," Technometrics, VOL 15. August 1973, p. 551.
f. Owen, D. B., "Handbook of Statistical Tables," 1962, Addison-Wesley Publishing Co., Inc., Reading, Mass.
g. Box, G.: E. P., "Non-Normality and Tests on Variances," Biometrika, VOL 40, 1953, p. 318.
h. Davies, 0. L., "The Design and Analysis of Industrial Experiments," 1963, Oiiver and Boyd, London.
i. Shapiro and Wilk, "An Analysis of Variance Test for Normality," Biometrika, VOL 52, 1965, P. 591-611.
j. Owen, Craswell, and Hanson, "Nonparametric Lipper Confidence Bounds for $\operatorname{Pr}\{Y<X\}$ and Confidence Bounds for $\operatorname{Pr}\{Y<X\}$ When X and Y are Normal," Journal of the American Statistical Association, VOL 59, September 1964, p. 906.
K. Dixon, W. J. and Massey, E. J. Jr., MIntroduction to Statistical Analysis," 1957, McGraw-Hill Book Company, Inc., New York.

1. Mazumdar, M., "Some Estimates of Reliability Using Inference Theory," Naval Research Logistics Quarterly, June 1970, p. 159-165.

APPENDIX 1

EXAMPLES

1. The following examples are used for illustrative and for comparison purposes. Example A is used for demonstrating how the four procedures of this report are applied. Note that for Example A, a designed experiment was used to evaluate the maximum pressure exerted by the propellant, resulting in a sample of 10 with 17 degrees of freedom. In all other examples, the degrees of freedom are ($n-1$).

PRESSURE REQUIRED TO BURST CASE

Example A
$\bar{X}=6000 \mathrm{psi}$
$S_{x}=450 \mathrm{pai}$
$n_{x}=9$
$f_{x}=8$
Example B
$X=6000 \mathrm{psi}$

$$
Y=3500 \mathrm{psi}
$$

$S_{x}=400 \mathrm{psi}$

$$
S_{y}=400 \mathrm{psi}
$$

$n_{x}=16$

$$
n_{y}=15
$$

$f_{x}=14$

$$
f_{y}=14
$$

Example C

$$
\begin{array}{ll}
\bar{X}=6000 \mathrm{psi} & Y=3500 \mathrm{psi} \\
s_{x}=400 \mathrm{psi} & s_{y}=200 \mathrm{psi} \\
n_{x}=10 & n_{y}=25 \\
f_{x}=9 & f_{y}=24
\end{array}
$$

$$
\begin{aligned}
& Y=3500 \mathrm{psi} \\
& \mathrm{~s}_{\mathbf{y}}=250 \mathrm{psi} \\
& n_{y}=10 \\
& f_{y}=17
\end{aligned}
$$

MAXIMUM PRESSURE EXERTED BY PROPELLANT

Example D

$X=6000$ psi	$Y=3500 \mathrm{psi}$
$S_{x}=450$ psi	$\mathrm{S}_{\mathbf{y}}=\mathbf{2 5 0} \mathrm{psi}$
$n_{x}=25$	$n_{y}=10$
$f_{x}=24$	$f_{y}=9$

Example E
$=X=6000 \mathrm{psi}$

$$
S_{x}=500 \mathrm{psi}
$$

$$
n_{x}=8
$$

$$
f_{x}=7
$$

$$
\begin{aligned}
& Y=3500 \mathrm{psi} \\
& \mathrm{~s}_{y}=225 \mathrm{psi} \\
& n_{y}=8 \\
& f_{y}=7
\end{aligned}
$$

2. The following table provides 90\%, one-sided confidence limits that the probability of case rupture will not exceed the listed value for each procedure.

	PROCEDURE				
EXAMPLE	TOLERANCE LDIITS	CHURCH-HARRIS DOWNTON	BifnbalumMc CARTY'	CHEBYCTEFF ingzuality	$\begin{aligned} & 2 / 9 \times \\ & \text { CHEBYCHEFF } \\ & \text { INEQULLTYY }{ }^{2} \end{aligned}$
A	3.30×10^{-4}	1.12×10^{-4}	6.09×10^{-1}	9.51×10^{-2}	2.11×10^{-2}
B	2.92×10^{-4}	1.10×10^{-4}	4.83×10^{-1}	10.24×10^{-2}	2.28×10^{-2}
C	2.91×10^{-5}	8.54×10^{-1}	4.88×10^{-1}	8.10×10^{-2}	1.80×10^{-2}
D	5.05×10^{-8}	2.00×10^{-8}	4.88×10^{-1}	7.86×10^{-2}	1.75×10^{-2}
E	9.18×10^{-4}	4.28×10^{-4}	6.62×10^{-1}	16.46×10^{-2}	3.66×10^{-2}

[^6]
APPENDIX 2

ETEDCINO THE SAMPLE SIZE POR THE STATISITCAL TOLERANCE LINIT METHOD

1. When applying statistical tolerance limits to determine the probability that $X-Y>0$, it is necessary to deternine a sample size, n_{x-y}, to be used in the computation. If $n_{x}=n_{y}$, then simply set $n_{x-y}=n_{x}=n_{y}$. If $n_{x} \neq n_{y}$, a safe procedure is to set n_{x-y} to the smaller of $\left(n_{x}, n_{y}\right)$. However after some consideration, $F(3)$ was decided upon:

$$
\begin{equation*}
n_{x-y}=\frac{s_{x}^{2}+s_{y}^{2}}{\frac{s_{x}^{2}}{n_{x}}+\frac{s_{y}^{2}}{n_{y}}} \tag{3}
\end{equation*}
$$

2. The procedure used in determining $P(3)$ was as follows:
a. The t teat for the equality of two means with unequal variances:
$t \equiv \frac{(X-Y)-\left(u_{x}-\mu_{y}\right)}{\sqrt{\frac{s_{x}^{2}}{n_{x}}+\frac{s_{y}^{2}}{n_{y}}}}$
b. If $n_{x}=n_{y}=n$, the formula obviously becomes:
$t=\frac{(X-Y)-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{S_{x}^{2}+S_{y}^{2}}{n}}}$
c. Equating the two and solving for n gives $F(3)$.
3. The above procedure cannot be considered more than a plausible reason for $F(3)$; however, $P(3)$ does have the following desirable attributes:
a. If $n_{x}=\eta_{y}$, then $n_{x-y}=n_{x}=n_{y}$.
b. If $S_{x}=S_{y}$, then n_{x-y} is the harmonic mean of n_{x} and n_{y}.
c. n_{x-y} is bounded by n_{x} and η_{y}.
d. If $S_{x}>S_{y}$, then n_{x-y} will be closer to n_{x} than η_{y}, and this is doairmble since the larger S has the greater influence on S_{x-y} in the

$$
s_{x-y}=\sqrt{s_{x}^{2}+s_{y}^{2}}
$$

APPENDIX
3
TABLES REQUIRED FOR THE CHLRCH-HARRIS-DOWNTON (CHD) PROCEDURE

1. Values of C_{n}, taken from p. 554 of Reference e, are listed below. ${ }^{1}$

n	C_{n}	n	c_{n}	n	c_{n}
4	0.9955	17	0.9560	30	0.9719
5	0.9456	18	0.9578	31	0.9727
6	0.9334	19	0.9595	32	0.9734
7	0.9314	20	0.9610	33	0.9741
8	0.9328	21	0.9625	34	0.9748
9	0.9355	22	0.9638	35	0.9754
10	0.9384	23	0.9651	36	0.9760
11	0.9414	24	0.9663	37	0.9766
12	0.9443	25	0.9674	38	0.9772
13	0.9470	26	0.9684	39	0.9771
14	0.9495	27	0.9694	40	0.9782
15	0.9519	28	0.9703	-	-
16	0.9540	29	0.9711	-	-

For large $n, c_{n}^{2} 1-1 / n+6 / n^{2}-60 / n^{3}+0\left(n^{-4}\right)$.
${ }^{1}$ This Table has been included with the permission of the author.
2. Values for Φ^{-1} (Inverse Cumulative Normal)

CONFIDENCE	ONE	THO
LEVEL		
0.70	SIDEN	SIDED
0.80	.6745	1.0364
0.85	.8461	1.2816
0.90	1.0364	2.4395
0.95	1.2816	1.6449
0.975	1.6449	1.9600
0.99	1.9600	2.2482
0.995	2.3264	2.5758
	2.5758	2.8130

3. For values of Φ, any table of cumulative normal should be adequate. The tables on p. 3-10 and on p. 13 of Reference f could be useful since these cover values of Φ from $0-500$.
4. Using the above, V and σ_{v} san easily be computed, note Example A, Appendix 1.

$$
\begin{aligned}
& \text { a. } V=\frac{\bar{X}-\bar{Y}}{\sqrt{C_{n} S^{2}+C_{m} S^{2}}}-\frac{6000-3500}{\sqrt{.9355(450)^{2}+.9384(250)^{2}}}=5.01922 \quad F(6) \\
& \text { b. } \sigma_{v}{ }^{2}=\frac{1}{C_{n} S_{x}{ }^{2}+C_{m} S_{y}{ }^{2}}\left[\frac{S_{x}{ }^{2}}{n_{x}}+\frac{S_{y}{ }^{2}}{n_{y}}+\frac{(\bar{x}-\bar{Y})\left(\frac{C_{n}{ }^{2} S_{x}{ }^{4}}{f_{x}}+\frac{c_{m}{ }^{2} S_{y}{ }^{4}}{f_{y}}\right)}{2\left(C_{n} S_{x}{ }^{2}+C_{m} S_{y}{ }^{2}\right)^{2}}\right] \\
& =\frac{1}{(.9355)(450)^{2}+(.9384)(250)^{2}}\left[\frac{(450)^{2}}{9}+\frac{(250)^{2}}{8}\right. \\
& \left.+\frac{(2500)^{2}\left(\frac{(.9355)^{2}(450)^{2}}{8}+\frac{(.9384)^{2}(250)^{2}}{17}-\right)}{2\left((.9355)(350)^{2}+(.9384)(250)^{2}\right)^{2}}\right]=1.0817
\end{aligned}
$$

$$
\sigma_{v}=1.0400
$$

APPENDIX 4

CIE CHEBYCHEFFF INEQUALITY

1. The usual statement of the Chebycherf Inequality:
a. $P\left[\left|z-\mu_{z}\right|>b\right] \leq \sigma_{z}^{2} / b^{2}$
b. $P\left[-b<\left(Z-\mu_{z}\right)<b\right] \geq 1-\sigma_{z}^{2} / b^{2}$
c. $P\left[\left(z-\mu_{z}\right)>-b\right] \geq 1-\sigma_{z}{ }^{2} / b^{2}$

Since the inequality has changed from two-sided to one-sided, it would appear reasonable to write the right side of le as $1-\sigma^{2} / 2 b^{2}$; however, this does not appear to be justified since there is no assurance of symmetry.
2. Letting $Z=X-Y$, lc can be written:
a. $P\left\{\left[(X-Y)-\left(\mu_{x}-\mu_{y}\right)\right]>-\left(\mu_{x}-\mu_{y}\right)\right\} \geq 1-\frac{\sigma_{x}{ }^{2}+\sigma_{y}{ }^{2}}{\left(\mu_{x}-\mu_{y}\right)^{2}}$
b. Subtracting $\left(\mu_{x}-\mu_{y}\right)$ from both sides of the inequality within the brackets and letting

$$
\begin{array}{ll}
& K=\frac{\mu_{x}-\mu_{y}}{\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}}} \\
& P[(X-Y)>0] \geq 1-1 / K^{2} \\
\text { c. } & P(X>Y) \geq 1-1 / K^{2} \text { or } \tag{8}\\
\text { d. } & P(X<Y) \leq 1 / K^{2}
\end{array}
$$

3. According to Reference K, page 293, when ($X-Y$) is continuous, unimodal, and symmetric, and since this is a one-sided inequality, 2d could be written:
$\Gamma(X \leq Y) \leq 2 / 9 K^{2}$

CN TIN MOMEXISTANCE OF SOME TMONPLETR BLOCX DESIG

Alan W. Benton
U. S. Arty Materiel Systems Analysis Activity Aberdeen Proving Ground, Maryiand

Anstmact. When considerins a randomized complote block design, it my turm out that the blocks availeble are not large enough to accomiodate all of the treatments. We are, thus; naturally lead to the consideration of incomplete block designs (IBD); incomplete in the sense that each block dees not contain a complete set of treatments. Although the parmaners which define an IBD may satisfy the necessary paramotric rolations usually used for this purpose, the configuration may not exist. A dovelopmont of nonexistence proofs, utilizing the Hasse-Minkowski invarlant, is presented which leads to som necessary conditions for symatrical balanced incomplete block designs (SBIBD). Some necessary conditions are worked out for the existence of intra- and inter-group balanced incomplete block designs.

1. INTMODUCTION. In order to pave the background for the formulation of the problem it will be necessary to provide a fow definitions.

Let r denote the number of treatments,
b denote the number of blocks.
r denote the number of replications of a treatment,
k denote the block size, i.e., the number of treatments in a block.

An IBD is an arrangement of v treatments in b blocks such that no treatment occurs more than once in any block, each treatment occurs in exactly r blocks and each block contains exactly k distinct treatments, $k<v$. . A BIBD is characterized by the parameter λ which indicates the number of times a pair of treatments occurs together in ablock. If vab then the design is said to be symmetric and this design is denoted by SBIAD.

The five parametars which define a BIBD are not algebraically indopendent. They are integers subject to the following restrictions:

$$
\begin{align*}
v r & =b k \tag{1}\\
\lambda(v-1) & =r(k-1) \tag{2}
\end{align*}
$$

With overy design is associated a unique (0,1) matrix called the incidonce matrix, where 1 ind 0 indicate the presence or absence of a treatment in a block, respectively. The matrix for a BIBD is wrieten as

$$
\begin{aligned}
& N=\left(n_{i j}\right), i=1,2, \cdots, v \text { and } j=1,2, \cdots, b \\
& a_{i j}=\left\{\begin{array}{l}
1 \text { if } \dot{v}_{i} \in B_{j}, \\
0 \text { if } V_{i} \in B_{j},
\end{array}\right.
\end{aligned}
$$

where $V_{1}, V_{2}, \cdots, V_{v}$ axe the trentments and $B_{1}, B_{2}, \cdots, B_{b}$ ase the blocks.

Of considerable interest in the theory of IBDs is the metrix NN', which consists of v rows and v colums and provides a description of the treatment structure of the design. For example, for the design vabe3, rak=2, $\lambda=1$

$$
N=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

and

$$
N N^{\prime}=\left[\begin{array}{lll}
2 & 1 & 1 \tag{3}\\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]=(r-\lambda) I_{v}+\lambda J_{v v}
$$

where I_{v} is the identity matrix of order v and $J_{v v} a$ matrix of order vxy of whose elements are 1.

In the remainder of the text we will make use of the properties of the Legendre symbol (b / p), the llilbert norm residue symbol $(a, b) p$, and the Hasse-Minkowski invariant' of matrix $A, C_{p}(A)$. Shrikhande [8] and Chowla and Ryser [2] were the first to use these as the main tools in nonexistence theory. Only tho definitions will be provided, propertios and preofs can be obtained from Uspenskey and Heas let [9], Jones (4] and Pall [7].

Let p be a prime. If p does not divide b, and $x^{2} \equiv b$ mod y has a solution $X(\bmod p)$, then b is a quadratic residue $(Q R) \bmod p$, otherwise
it is a quadratic nomsesidev (quR) mod p.
The property of QR and QNR may be expressed in terms of the legondre symbol (b/p) by the rules

$$
(b / P)= \begin{cases}+1 & \text { if } b \text { is a } Q R \\ -1 & \text { if } b \text { is a QNR. }\end{cases}
$$

A gaparalization of the Lagendre symbol is the Hilbert norm residue sybol $(a, b)_{g}$ which is +1 or -1 according ts the congruence

$$
a x^{2}+b y^{2} \equiv 1 \bmod p
$$

has or has not, for each value m, rational solutions x and y, p is any prime and a and b are retional numbers.

Two symmetic and nonsingular matrices A and B of the same order n, with rational elements, are rationally congruent if there exists a nonsingular and rational matrix C of the same order such that C'AC = B, where C ' denotes the transposed matrix of C. This relationship is donoted by A~B. The symbol ~ will also be used to denote that the square fret parts of two integers are the same.

Let $D_{1}, D_{2}, \cdots, D_{n}=|A|$ denote the leading principal minor determinants. Define $D_{0}=1$. Then for $D_{i} \neq 0$ the Hasse-Minkowski invariant of a matrix A is given by

$$
\begin{equation*}
C_{p}(A)=\left(-1,-1 j_{p} \prod_{j=0}^{n-1}\left(D_{j+1},-D_{j}\right)_{p}\right. \tag{4}
\end{equation*}
$$

for avery prime p and is invariant for all matrices rationally congruent to A.

A fundamental theorem on rational congruence due to H. Hasse [3] and one to which we shall appeal is

Theoren 1. Two symetric and rational matrices, A and B, of the same order are rationally congruent if and only if $|A| \sim|B|$,
2. A NECESSARY CONDITION IOR TIE EXISTENCE OF A SRIBD. FTOM equation (4) wo find that
and that det (NiN') $=(r-\lambda)^{v-1}[r+\lambda(r-1)]=x k(r-\lambda)^{v-1}>0$.
It may be showa that INT $\sim I_{v}$. Also, since the rank of N is v, index

$$
C_{p}(A)=(-1-1)_{p}(-1,0)_{p}^{m(n-1) / 2}(-1, g)_{p}(n, \varepsilon)_{p}(n, 0)_{p}(g, 0)_{p}^{m-1}
$$

where $2=0$. Unf. Ung this result we find

$$
C_{p}\left(1_{v}\right)=(-1,-1)_{p}
$$

and

$$
c_{p}(N W v)=(-1,-1)_{p}(-1, r-\lambda)_{p}^{v(v-1) / 2}(v, r-\lambda)_{p} .
$$

Hence, we obtain
Theoren 2. The necessary conditions tor the existence of a SBIBD with parameters v, r, λ are that

$$
(x-\lambda)^{v-1} \sim 1
$$

and if so, then

$$
\begin{equation*}
(-1, r-\lambda)_{P}^{v(v-1) / 2}(v, r-\lambda)_{P}=+1 \tag{5}
\end{equation*}
$$

for all primes p.
The design with parameters vab=29, r=k=8, $\lambda=2$ satisfies equations (1) and (2). Using the theorem (8-2) $28 \sim 1$, but using (5)

$$
(-1,6)_{P}^{29 \cdot 28 / 2}(29,6)_{P}=(29,6)_{P}=(29,3)_{P} i 25,2 j_{P}
$$

But for $p=3,(29,3)_{3}(29,2)_{3}=-1$ which implies that the design does not
exist.
3. INTRA- AND INTER-GROUP BALANCED INCONPLETE BLOCK DESIGNS. Nair and gho [5] definod incomplete block designs for experiments involving several groups of treatments which are known as intra- and inter-group BIBDs (I-IBIBD). In such designs one is interested in achieving equal accuracy for comparisons between all pairs of treatments belonging to the same group.

An I-IBIBD is defined as fullows:
(a) The experimental material is divided into b blocks of k units each, different treatments being applied to the units in the same block.
(b) There, are m groups of treatments consisting of $v_{1}, V_{2}, \cdots, v_{m}$ treatments.
(c) Tioatments belonging to the i-th group are replicated r_{i} times, $i=1,2, \cdots, m$.
(d) Every pair of treatments in the 1 -th group occur together in $\lambda_{i i}$ blocks ($i=1,2, \cdots, m$), and every pair of treatments one of which belongs to the i-th group and the other to the j-th group occur together in $\lambda_{i j}$ blocks (ifj,i,j=1,2, \cdots, m).

The numbers $v_{i}, b, k, r_{i}, \lambda_{i j}(i, j=1,2, \cdots, m)$ are known as the parameters of the I-IBIBD m-group design. The parameters must first satisfy the following relations in order for the design to exist.

$$
\begin{gather*}
v=\sum_{i=1}^{m} v_{i} \quad \sum_{i=1}^{m} v_{i} r_{i}=b k \tag{6}\\
\lambda_{i i}\left(v_{i}-1\right)+\sum_{\substack{j \mu_{i} \\
j=1}}^{m} \lambda_{i j} v_{j}=r_{i}\left(k-1^{\dot{\prime}}\right), i=1,2, \cdots, m . \tag{7}
\end{gather*}
$$

By arranging the treatments within a group in order and the groups of treatments in order we obtain

Where $A_{i}=\left(r_{i}{ }^{\wedge \lambda_{i 1}}\right) r_{v_{i}}{ }^{+\lambda}{ }_{i 1} v_{v_{i} v_{i}}, B_{i j}=\lambda_{i j}{ }^{J} v_{i} v_{i}$, ipj and $B_{j 1}=B_{i j}^{\prime}$, If in particular $r_{i}=r, \lambda_{i i}=\lambda_{1}, \lambda_{1 j}=\lambda_{2}$ then the design reduces to a group divisible design.

Consider the case for $m=2$. Then

$$
N N^{\prime}=\left[\begin{array}{ll}
A_{1} & B_{12} \\
B_{21} & A_{2}
\end{array}\right]
$$

Since A_{2} is nonsingular, the determinant may be evaluated from

$$
\operatorname{det}\left(N N^{\prime}\right)=\operatorname{det}\left(A_{2}\right) \operatorname{det}\left(A_{1}-B_{12} A_{2}^{-1} B_{21}\right)
$$

After some manipulations we find

$$
\begin{array}{r}
\operatorname{det}(N N \cdot)=\left(r_{2}-\lambda_{22}\right)^{v_{2}-1}\left(r_{1}-\lambda_{11}\right)^{v_{1}-1}\left(\left(\left(r_{2}+\lambda_{22}\left(v_{2}-1\right)\right)\right.\right. \\
\left.\left.\cdot\left(r_{1}+\lambda_{11}\left(v_{1}-1\right)\right)\right)-v_{1} v_{2} \lambda_{12}^{2}\right)
\end{array}
$$

Lat $p_{i}=r_{i}+\lambda_{i i}\left(v_{i}-1\right), P_{i}=\left(r_{i}-\lambda_{i i}\right)^{v_{i}-1}$, and $R_{i}=p_{i} / v_{i} i=1,2$. In ogder to ovalumete the llasse-Minkowski invariant of NN' for the 2-group design, we note that the leading principal minor determinants may be put in the form

$$
D_{i}=\left(r_{1}-\lambda{ }_{11}\right)^{i-1}\left(r_{1}+\lambda_{11}(i-1)\right), i=1,2, \cdots v_{1}
$$

$$
D_{v_{1} \oplus j}=\left(P_{1}\right)\left(v_{1} P_{2}, v_{2} \operatorname{det}\left(z_{j}\right)\right)=P_{1} D_{j}^{r}, j=1,2, \circ n \cdot v_{2}
$$

where

$$
\begin{aligned}
& P_{2_{j}}=\left(r_{2}-\lambda_{22}\right)^{j-2}, v_{2}{ }_{j}{ }^{m} \text { and } \\
& \operatorname{det}\left(z_{j}\right)=R_{i} R_{2}-\lambda_{12}^{2}
\end{aligned}
$$

Using the definition for the Hasso-Minkowski invariant we obtain

$$
\begin{aligned}
C_{p}(N N I)= & (-1,-1)_{p}{ }_{j=0}^{v_{1}+v_{2}-1}\left(D_{j+1},-D_{j}\right)_{p} \\
= & {\left[(-1-1)_{p}\left(D_{1},-D_{0}\right)_{p}\left(D_{2},-D_{1}\right)_{p} \cdots\left(D_{v_{1}},-D_{v_{1}-1}\right)_{p}\right] } \\
& \cdot\left(D_{v_{1}+1},-D_{v_{1}}\right)_{p} \cdots\left(D_{v_{1}}+v_{2},-D_{v_{1}}+v_{2}-1\right)_{p} \\
= & C_{p}\left(A_{1}\right)\left(D_{v_{1}+1},-D_{v_{1}}\right)_{p} \cdots\left(D_{v_{1}+v_{2},-D_{v_{1}}+v_{2}-1}\right)_{p} \\
= & (-1,-1)_{p} C_{p}\left(A_{1}\right)\left(P_{1}, D_{v_{2}^{\prime}}^{\prime}\right)\left[(-1,-1)_{p_{j=1}}\left(D_{j}^{\prime},-D_{j-1}^{\prime}\right)_{p}\right] .
\end{aligned}
$$

The terns in the brackets are of a form similar to a Hasse-Minkowski invariant for $D_{v_{2}}^{\prime}$. Noting this we write

$$
C_{p}(N+1)=(-1,-1)_{p} C_{p}\left(A_{1}\right) C_{p}^{*}\left(D_{v_{2}}^{\prime}\right)\left(P_{1}, D_{v_{2}}^{\prime}\right)_{p}
$$

If $v_{1}+v_{2}=b$ and if $\operatorname{det}\left(N N^{\prime}\right)>0$, then $N N^{\prime} \sim I_{v_{2}}+v_{2}$ and $w e$ obtain
Theorem 3. Necessary conditions for the existence of a l-18jBD with $v_{1}{ }^{+v_{2}-b}$ and dot (w 1) >0 are that

$$
P_{1} P_{2}\left(p_{1} p_{2}-v_{1} v_{2} \lambda_{12}^{u}\right) \sim 1
$$

and if so thon

$$
\begin{equation*}
C_{p}\left(A_{1}\right) C_{p}^{*}\left(D_{v_{2}}^{\prime}\right)\left(P_{1}, D_{v_{2}}^{\prime}\right)_{p}=+1 \tag{8}
\end{equation*}
$$

for all primes p.
For a design with parameters $v_{i}=5, r_{i}=k=6, \lambda_{11}{ }^{n+} \lambda_{22}=5, \lambda_{12}=2, d=10$ the initial parametric equations, (6) and (7), are satisfied, det (MN')~1, but for $\mathrm{p}=13$ it may be shown that

$$
C_{p}\left(A_{1}\right) C_{p}^{*}\left(D_{v_{2}}^{\prime}\right)\left(P_{1}, D_{v_{2}}^{\prime}\right)_{p}=-1
$$

which implies that the design does not exist. It may be noted that this design is also a group divisible design. Utilizing Bose and Connors $[1]$ results for $G D$ designs, the product is also -1 , confirming our result.

references

[1] Bose, R. C. and Connor, W. S. (1952). Combinatoxial properties of group divisible incomplete block designs. Ann, Math. Statist., 23, 367-383.
[2] Chowla, S. and Ryser, H. J. (1950). Combinatorial problems. Can. J. Meth., 2, 93-99.
[3] Hasse, H. (1923). Uber die Àquivalenz quadratischer formen im Korper der rationalen zahlen. J. Reime Angew Math., 152, 205-224.
[4] Jones, B. W. (1950). The arithmetic theory of quadratic forms. Carus Math. Monograph No. 10, John Wiley and Sons, New York.
[5] Nair, K. R. and Rao, C. R. (1942), Incomplete block designs for experiments involving several groups of varieties. Science and Culture, 7, 615-616.
[6] Ogawa, J. (1959). A necessary condition for the existence of regular and symmetrical experimental designs of triangular type, WIth partially balanced incomplete blocks. Ann Math. Statist., 30, 1063-1071.
[7] Pall, G. (1935). On the order invariants of integral quadratic forms. Quarterly J. Math., 6, 50-51.
[8] Shrikhande, S. S. (1959). The uniqueness of the L_{2} association scheme. Ann. Math. Statist., 30, 781-798.
(9) Uspensky, J. V. and Heaslet, M. H. (1939). Elementary number theory, NeGraw-itill Publ. Co.. New Yark.

SONE USES OP ORDER STATISTICS ${ }^{1}$

H. A. David
Department of Statistics Iown State University, Ames

ABSTRACT. Various usen of order statistics (OS), particulariy in reliablifity etudies and robust estimation, are first briefly reviewed. A more detailed treatment is then given of three further uses of 08 , namely in data compression, selection procedures, and in some double sampling situations. Concomitants of $O B$ ant defined and applied to the last two areas. It is nhown that considerable savings may be poscible in the estimation of the mean of a random variable Y, which $1 s$ expensive to measure, if a correlated rendom variable X can be cheaply deternined. Tables are provided to allow immediate application of the tuchniques described.

1. InTRODUCTION. If the random variables $X_{1}, x_{2}, \ldots, x_{n}$ are rearranged in asconding order of meenitude and then written as

$$
x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}
$$

we call $X_{(r)}$ the order statistic of rank r or simply the $\underline{r}^{\text {th }}$ order statistic $(r=1,2, \ldots, n)$. In this paper we concentrate on the commonly occurring case when the (unordered) $X_{1}(i=1,2, \ldots, n)$ are independent r.v.'s with comon cumulative distribution function (c.d.f.) $P(x)$. it then follows at once that

$$
\begin{equation*}
\operatorname{Pr}\left\{X_{(n)} \leq x\right\}=\operatorname{Pr}\left\{a .1 X_{1} \leq x\right\}=P^{n}(x) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Pr}\left[X_{(1)}>x\right]=\operatorname{Pr}\left\{\operatorname{aill} X_{1}>x\right\}=[1-P(x)]^{n} \tag{2}
\end{equation*}
$$

These results have interesting interpretations, for if X_{i} is the iffetime of the $i^{\text {th }}$ component in a parallel system of n like components, then $X_{(n)}$ is the lifetime of the lant component to fail, $1 . e_{.,} X_{(n)}$ in the infetime of the aystem. Likewise $X_{(1)}$ is the ilfetime of a series system. Thus. knowing the probability distribution of component lifetime, wo can from (1) and (2) deduce the probability distribution of a parallel ir series syutem consisting of n such components. Indeed, if the components are unlike and X_{i} has c.d.f. $P_{i}(x)$, eqs. (i) and (2) are easily modifled to

[^7]\[

$$
\begin{align*}
& \operatorname{Pr}\left[X_{(n)} \leq x\right\}=P_{1}(x) P_{2}(x) \ldots P_{n}(x), \tag{3}\\
& \operatorname{Pr}\left\{X_{(1)}>x\right\}=\left[1-P_{1}(x)\right]\left[1-P_{2}(x)\right] \ldots\left[1-P_{n}(x)\right] . \tag{1}
\end{align*}
$$
\]

There is an obvious connection with problema of relinbility. If $R_{1}(x)$ is the probability that the $i^{\text {th }}$ component is still functioning at time x, then $R_{i}(x)=1-r_{i}(x)$, and (4) gives the well-known result that the relisbility of a series system is the product of the component reliabilities, it being asumed that the components fail imlepeniently.

Chosely related are problems of life teating; for if n like items (e.g., light bulbs) are put on test simultaneousiy the life teat will take time $X_{(n)}$ to completion. We may wish to terminate the test earlier, asy as soon as the $r^{\text {th }}$ item has falled (Type II censoring). The test then lasts time $X_{(r)}$ and we are led to study the behavior of $X_{(r)}$, ecpecially its expected value $\mu_{r: n}$ and its variance $\sigma_{r ; n}^{2}$. As a matter of fact, we will usually be able to observe the order statistics $X_{(1)}$) $X_{(2)}, \ldots, X_{(r)}$, the lifetimes of all failed items. If we can assume an appropriate distribution of lifetime, such as the normal $N\left(\mu, \sigma^{(\prime)}\right)$, then it is easy, with the help of tables, to construct linear functions of the order statistics (OS) $\sum_{1=1}^{r} a_{i} X_{(1)}$ and $\sum_{1=1}^{r} b_{i} X_{(1)}$ which are respectively estimetors of μ and σ having minimum variance in the class of linear unbiesed functions of the OS.

These and many other applications of OH are treated in some detail in [10] and [4]. Among other applications we may single out the use of 03 in the construction of distribution-free confidence intervals and tolerance intervals, the use of the range $\left(: X_{(n)}=X_{(1)}\right)$ as an estimator of scatter espectally in quality contrul. proliability plottine. te:;ts: for outlierm, and extreme-value theory. In recent years there has; been particular interest in finding robust estimators, i.e., estimatur: which are not too ereatly affected by the presence of spurious observations or by our failure to assume the correct underlying distribution. OS play a prominent rôle in such robust estimators since the more central observations in an ordered sample are less liable to be affected by both spurious observations and fallure of assumptions than are the more extreme ones. Thus a very simple robust estimator which is unbiseet for the mean of any symetric population is the midmean

$$
\operatorname{man} \quad{\underset{i}{n}}_{\substack{\frac{2}{n} \\ i \\ i \\ \frac{1}{1} n+l}}^{i} \quad X_{(1)} \quad \text { (n o. miltiple of } 4 \text {) }
$$

which is generally more efficient (although not quite as robust) than the familiar sample median

$$
\begin{aligned}
M & =X_{\left(\frac{1}{2}(n+1)\right)} & \text { (n odd) } \\
& =\frac{1}{2}\left(X_{\left(\frac{1}{2} n\right)}+X_{\left(\frac{1}{2} n+1\right)}\right) & \text { (n even) } .
\end{aligned}
$$

Both MM and M are examples of trimed means; M is an extreme example, at the other extreme being the untrimed mean \bar{X}, not a robust estimator. Many other types of robust estimators have been proposed, the more elaborate 'adapting' themselves to certain features of the sample in an attempt to produce an estimator particularly appropsiate for that sample (:see e.g. |1]).

We turn now to a more detalled treatment of three further uses of OS. namely in data compression, selection procedures, and in some double sampling situations.
2. DATA COMPRESSION. If the observations in a large random sample of n from a population of interest are arranged in ascending order, then it is possible to estimate the population mean (and other parameters) from a small number k of os, and to do so with remarkably little loss of information if the $O S$ are suitably chosen. For $k=2$ the optimal estimator of the mean μ of a normal population turns out to be, from largesample theo:y,

$$
H^{*} \frac{1}{2}(z(0.2708)+z(0.7292)),
$$

where e.g. $\mathrm{Z}(0.2 \% 08)$ stands for the order statistic with rank equal to the integral part of $0.2708 n+1$. Thus if $n=100$

$$
H^{*} \quad \frac{1}{2}\left(x_{(28)}, x_{(73)}\right) .
$$

The efficiency of $\|^{*}$ is 0.81 (for any large n), so that its variance in samples of 100 is equal to the variance of the best estinator, the sample mean, in samples of 31 . For k. I the optimal estimator is

$$
u^{*}=.1918[z(.1068)+z(.8932)]+.3082[z(.3512)+z(.6488)],
$$

with efficiency 0.92. It should also be noted that μ^{*} is much more robust than the sample mean, since it does not involve the more extreme 0:3. Table 1 gives j^{*} for k - 2(2)12.

An interestinf application of μ^{*} and related estimators has been made in opace flights fol. A large sample of, say, particle counts taken in a space craft may be replaced by enough os to allow (a) satisfactory
estimation on the ground of parwneters of interest; auch as the man count, and (b) a test of the assumed underlying dietributional form, by means of probability plotting.
3. SEIECTION PROCEDURES. Suppose we wish to select the top k scorers in a certiain test taken by n individuals ($k<n$). How much better than average do we expect the selected group to be? More precisely, we are really interested in the 'selection differential'

$$
\begin{equation*}
\Delta(k, n)=E[D(k, n)], \tag{5}
\end{equation*}
$$

where $D(k, n)$ is the average scaled difference between the selected os and the mean score μ, viz.

$$
\begin{equation*}
D(k, n)=\frac{1}{k} \sum_{i=n+1-k}^{n}\left(\frac{x_{(1)}-\mu}{\sigma}\right) \tag{6}
\end{equation*}
$$

where σ is the s.d. of the test score X which for definiteness we take to be normally distributed. $\Delta(k, n)$ is readily evalunted with the help of the important Table 2 giving the expected value $\xi(1 \mid n)$ of the ith largest order statistic from a standardized normal distribution, viz.

$$
\begin{equation*}
\xi(1 \mid n)=E\left(\frac{X_{(n+1-1)}-\mu}{\sigma}\right) . \tag{7}
\end{equation*}
$$

Example 1. $\quad \Delta(1,20)=\xi(1 \mid 20)=1.867$

$$
\Delta(5,20)=\frac{1}{5}(1.867+1.408+1.131+0.921+0.745)=1.214 .
$$

If $\mu=100, \sigma=16$, typical values for IQ testa, we see that, the expected score of the best in 20 is

$$
\begin{aligned}
E X_{(20)} & =1+1 \cdot \sigma(1 \mid 20) \quad \text { by (7) } \\
& \because 1.00+16(1.867)=130
\end{aligned}
$$

and the expected average score of the five best is

$$
100+16(1.214)=119.4
$$

Very extensive tables of the expected values of OS from normal, exponential, Weibull, and gamma distributions are provided in [6]. A usefui approximation to Δ severing also non-normal distributions, is given in [2].

Sometimes we may ajso be interested in the variance of $D(\mathbf{k}, \mathrm{n})$. From (6) it is clear (see [1.] for explicit results) that this can be found from tables of variances and covariances of OS:

$$
\begin{equation*}
\beta_{r r^{\prime}: n}=\operatorname{cov}\left(\frac{X_{(r)}-\mu}{\sigma}, \frac{X_{\left(r^{\prime}\right)}-\mu}{\sigma}\right), \tag{8}
\end{equation*}
$$

($\mathbf{r}=1,2, \ldots, n ; r^{\prime}=1,2, \ldots, r ; r-r^{\prime}$ gives variance). The means, variances, and covariances of $0 S$ in samples of $n \leq 20$ have been tabuiated not orly for the standard normal distribution ([10], p. 200 or [9], Table 10) but for a variety of other distributions which depend only on a location and a scale parameter (for a listing see [4]. p. 226). For larger samples approximations ure available.

Often we are interested in how individuals selected because of their good scores on X may be expected to score on Y, a r.v. to be measured in a later test. We shall assume that Y is linearly related to X except for an independent error term Z :

$$
\begin{equation*}
Y_{i}=\mu_{Y}+\beta\left(X_{i}-\mu_{X}\right)+Z_{i}, \quad i=1,2, \ldots, n \tag{9}
\end{equation*}
$$

where $\mu_{X} E(X), \mu_{Y} E(Y), \beta=\| \sigma_{Y} / \sigma_{X}$, , being the correlation coefficient between X and Y which have respective standard deviations σ_{X} and σ_{Y}; without essential loss of generality we take $n \geq 0$. From (9) it folliows that $\mu_{Z}=0$ and $\sigma_{Z}^{2}=\left(1-\rho^{2}\right) \sigma_{Y}^{2}$ An important special case of (9) occurs when X and Y are bivariate normal (when 2 must also be normal).

Now if we order the X's, eq. (9) Eives

$$
\begin{equation*}
Y_{[r]}=\mu_{Y}+\rho \sigma_{Y}\left(X_{(r)}-\mu_{X}\right) / \sigma_{X}+Z_{[r]} \quad r=1,2, \ldots, n, \tag{10}
\end{equation*}
$$

where $Y_{[r]}$ and $Z_{[r]}$ denote the r.v. 's Y and Z associated with $X_{(r)}$. Because of the mutual independence of all $n X ' s$ and $n Z ' s$ in (9), ordering of the X 's does not affect the distribution of the $Z ' s$, $s o$ that the $Z_{[r]}$ are, like the Z_{i}, n independent r. v.'s with mean 0 and variance σ_{Z}^{2}. The $Y_{[r]}$ are the r.v. ' s of interest and we call $Y_{[r]}$ the concomitant of the $r^{t h}$ order statistic.

On taking expectations in (10) we have

$$
E\left(Y_{[r]}\right)=\mu_{Y}+\rho \sigma_{Y} E\left(\frac{X(r)-\mu_{X}}{\sigma_{X}}\right)
$$

or

$$
\begin{equation*}
E\left(\frac{Y_{[r]}-\mu_{Y}}{\sigma_{Y}}\right)=n E\left(\frac{X(r)-\mu_{X}}{\sigma_{X}}\right) \tag{11}
\end{equation*}
$$

This result may be described by saying that for the r.v. $Y_{[r]}$ the selection differential of $X_{(r)}$ is attenuated by the factor 0 .

Prein (10) we have also

$$
\begin{equation*}
\operatorname{var} Y_{[r]}=\sigma_{Y}^{2}\left(\rho^{2} i_{r r: n}+1-\rho^{2}\right) \tag{12}
\end{equation*}
$$

and for $s=1,2, \ldots, n(s \neq r)$

$$
\begin{equation*}
\operatorname{cov}\left(Y_{[r]}, Y_{[B]}\right)=v_{Y}^{2} \rho^{2} \beta_{r s: n} . \tag{13}
\end{equation*}
$$

4. DOUBLE SAYPLIIG. We are all too frequentiy faced with the problim of estrinting a popilation mean, H_{Y} eay, from samples smaller than we would like because of the high cont of observing Y which may, for example, involve destructive testing. suppose n items are available to us and ue are prepared to memiure Y on k of than ($k<n$). Mow if it is pesaible to measure cheaply fur each of the n items a quantity X, correisted with Y, then such auxiliary measurements can be uned to improve the eatimation of ${ }^{\prime} Y$. We shall assume that X and Y heve bivariate normal distribution (possibly after suitable transformations) although the method bolow is applicable to the more general model (9).

Instead of the mean Ψ_{x} of k randomily chosen observations on Y we propose the following eatimator:

$$
\bar{Y}_{[k]}=\frac{1}{k} \sum_{j=1}^{k} Y_{\left[r_{j}\right]}
$$

where $Y_{\left[r_{j}\right]}$ is the concomitant of $X_{\left(r_{j}\right)}$, the $r . v$. of rank ${ }^{\circ}{ }_{j}$ among the $X ' s$. Table 3 gives the values of $r_{1}, r_{2}, \ldots, r_{k}$ which minimize the variance (obteinable through (12) and (13)) of the unbiesed eatimator $Y_{[k]}$ for various n and k. Our double sampling procedure is therefore as follows:
(i) Arrange the n measurements on X in ascending order of magnitude. (ii) Then measure Y on those k items having X-ranks ${\underset{r}{r}}^{\prime}, r_{2}, \ldots, r_{k}$.
(iii) Take the average of these $k X$-values to obtain $\bar{Y}_{[k]}^{1}$.

Note that we actually need to know only the ranke of the X's to find $\bar{Y}_{[k]}$. If the numerical values of the X 's are availabje, then it 1 s also possible to use regression estimates with randomly chosen Y 's [3] or, better still, with selected concomitants but it turns out [7] that the aimple $\overline{Y_{[k}}$ is generally quite efficient. Table 4 gives the variance of $\bar{Y}_{[k]}$ as a function of $|\rho|$ for $n=19$ and 49 and $k=4$ and 10 . For $\kappa=0$, $\bar{Y}_{[, X]}\left[\begin{array}{l}\text { is equivalent to } \\ \bar{Y}_{k}\end{array}\right.$. Entries for $|\rho|>0$ therefore indicate the reduction in variance dae to the use of the auxiliary variables.
[1] Andrewi, D. F., Bickel, P. J., Hapel, F. R., Huber, P. J., Rogers, W. H., and Tukey, J. W. (1972). Pobust Estimates of Location. Princetan University Press.
[2] burrows, P. M. (1972). Fapected selection differentials for directional selection. Bentrics 28, 1091-1100.
[3] Coohran, W. G. (1963). Eeroling Techniquea, 2nd Mn. Wley, InW York.
[4] Devid, H. A. (1970). Quder 8tatistics. W11ey, New York.
[5] misenberger, I. and Posner, E. C. (1965). Syotematic sitatistics used for data compression in epece telenetry. J. Aner. Btetist. Assoc. 60, 97-133.
[6] Herter, H. L. (1970). Orier Statistics and Their Uses in Teating and Ettimation. Vol. 2. U. S. Coverwent Prating Oilice, Nennmion, D.C.
[7] O'Connell, M. J. and Darid, H. A. (1975). Order atatistice and their conconitants in some double sapling siturtions. To appear in a volvere in honor of J. Ogawa.
[8] Pearson, E. S. and Hartley, H. 0. (1966). Biometrikn Tables for Statisticiens, Vol. I, 3rd Bdn. Cambridge Univeraity Press.
[9] Pearson, E. S. and Hertley, H. O. (19'(2). Biometrikn Thbles for Statisticians, Vol. II. Cambridge University Press.
[10] Sarban, A. E. and Greanberg, B. G. (Eds.) (1962). Contributiong to Order statistics. Wiley, New York.
[11] 8chaeffer, L. R., Van Vleck, L. D., and Velasco, J. A. (1970). The use of order stetistics with selected records. Blomatrics 26, 854-859.
Inile 1. Expected values of nornal order statistics $\underline{g}(\mathrm{i} \mid \mathrm{n})=\mu_{\mathrm{n}+1-1: n}$

Table 1. Continued

i	25	28	30	32	34	36	38	40	42	44	46	48	50
1	1.58	2.01	2.04	2.07	2.09	2. 12	2.14	2.16	2.18	2.20	2.22	2.23	2.25
2	1.54	1.58	1.62	1.65	1.68	1.70	1.73	1.73	1.78	1.80	1.82	1.84	1.85
3	1.29	1.33	1.36	1.40	1.43	1.46	1.49	1.52	1.54	1.57	1.59	1.61	1.63
4	1.09	1.14	1. 18	1.22	1.25	2.28	1. 32	1.34	1.37	1.40	1.42	1.44	1.146
5	0.93	0.98	1.03	1.07	1.11	1. 14	1.17	1.20	1.23	1.26	1.28	1. 31	1. 33
6	. 79	.85	0.89	0.94	0.98	1.02	1.05	1.08	1.11	1.14	1.17	1.19	1.22
7	.67	. 73	. 78	. 82	.87	0.91	0.94	0.93	1.01	1.04	1.07	1.09	1.12
8	.55	.51	.67	.72	.76	.81	.85	.88	0.91	0.95	0.98	1.00	1.03
9	.44	.51	.57	. 62	.67	.71	. 75	.79	.83	.86	.89	0.90	0.95
10	0.34	0.41	0.47	0.53	0.58	0.63	0.67	0.71	0.75	0.78	0.81	0.84	0.87
11	.24	- 32	. 38	.44	$.50$	$.54$. 59	$.63$. 67	. 71	. 74	. 77	. 80
12	.14	.22	. 29	. 36	.41	$.47$	$.51$	$.56$.60	.64	$.67$.70	.74
15	.05	.13	. 21	.28	-34	.39	.44	.49	. 53	$=.57$.60	.64	. 67
14		.04	. 12	.20	. 26	.32	- 37	.42	.146	.50	.54	.58	.61
15			0.04	0.12	0.18	0.24	0.30	0.35	0.40	0.44	0.48	0.52	0.55
16				.04	.11	. 17	. 23	. 28	. 33	$\begin{array}{r} . .44 \\ .38 \end{array}$. 42	$\begin{array}{r} 0.2< \\ .46 \end{array}$	$.49$
17					.04	. 10	.16	.22	. 27	. 32	. 36	.40	.44
18						.05	. 10	.16	. 21	. 26	$.30$. 34	.38
19							.03	.09	.15	.20	. 25	.29	. 33
20								0.03	0.09	0.14	0.19	0.24	0.28
21									. 03	. 0.09	. 14	$.18$. 23
22										$\bigcirc 03$	$.08$	$.13$	$.18$
23									-	- 0	$.03$. 08	. 13
24												.03	.07
25													0.03

Hote: For $i>\frac{1}{2} n$ use $\xi(i \mid n)=-\xi(n+1-i \mid n)$ (from [8], Table 29).

k		Berficiency
2	$0.5[z(0.2709)+z(0.7291)]$	0.8098
4	$0.1919[z(0.1068)+z(0.8932)]+0.3002[z(0.3512)+z(0.6488)]$	0.9201
6	$\begin{gathered} 0.0968[z(0.0540)+z(0.9460)]+0.1787[z(0.1915)+z(0.8085)] \\ +0.2245[z(0.3898)+z(0.6102)] \end{gathered}$	0.9560
8	$\begin{aligned} & 0.0559[z(0.0310) \div z(0.9690)]+0.1119[z(0.1154)+z(0.8846)] \\ &+0.1550[z(0.2481) \div z(0.7519)]+0.1772[z(0.4126)+z(0.5874)] \end{aligned}$	0.9722
10	$\begin{aligned} & 0.0366[z(0.0203)+z(0.9797)]+0.0751[z(0.0768)+z(0.9232)] \\ &+0.1086[z(0.1084)+z(0.8316)]+0.1334[z(0.2887)+z(0.7113)] \\ &+0.1463[z(0.4274)+z(0.5726)] \end{aligned}$	0.9808
12	$\begin{aligned} & 0.0246[z(0.0135)+z(0.9865)]+0.0522[z(0.0525)+z(0.9475)] \\ &+0.0766[z(0.1178)+z(0.8822)]+0.1012[z(0.2075)+z(0.7925)] \\ &+0.1174[z(0.3163)+z(0.6837)]+0.1260[z(0.4373)+z(0.5627)] \end{aligned}$	0.9859

(from [5], Table 1 or [9], Table 1]a)

Table 3. Optimal ranke r_{1}, r_{2}, \ldots of conocmattente for the entimetor ${ }^{T}[k]$ $n=n 0$. of auxillary variables, $\mathbf{k}=$ no. of concomitents
(c) $k=2$

n	r_{1}	n	r_{1}	n	r_{1}	n	r_{1}
4	1	17	5	30	9	43	12
5	2	18	5	31	9	44	12
6	2	19	6	32	9	45	13
7	2	20	6	33	9	46	13
8	3	21	6	34	10	47	13
9	3	22	6	35	10	48	13
10	3	23	7	36	10	49	14
11	3	24	7	37	10	50	14
12	4	25	7	38	11	60	17
13	4	26	7	39	11	70	19
14	4	27	8	40	11	60	22
15	4	28	8	41	11	90	25
16	5	29	8	42	12	100	27

(b) $\mathrm{k}=3(1) 10$

$k=3$		$\mathrm{k}=4$		$k=5$		$k=6$			$k=7$		
n	r_{1}	r_{1}	r_{2}	r_{1}	r_{2}	r_{1}	r_{2}	r_{3}	r_{1}	r_{2}	r_{3}
9	2	2	4	1	3						
19	4	3	8	2	6	2		8	2	5	7
29	6	4	11	4	9	3	8	13	3	7	11
39	8	6	15	5	12	4	10	17	3	9	14
49	9	7	19	6	15	5	13	21	4	18	25

	$\mathrm{k}=8$				$\mathrm{k}=9$				k= 10				
n	r_{1}	r_{2}	r_{3}	r_{4}	r_{1}	r_{2}	r_{3}	x_{4}	r_{1}	${ }_{2}$	r_{3}	r_{4}	r_{5}
19	2	4	6	9	2	4	6	8	1	3	5	7	9
29	2	6	10	13	2	5	9	12	2	5	8	11	14
39	3	8	13	18	3	7	11	16	3	6	10	14	18
49	4	10	16	22	3	9	14	20	3	8	13	18	23

Table 4. Variance of $\bar{Y}_{[k]}$ (in wits of σ_{Y}) as a function of $|\rho|$

$\|0\| \cdots$	$k=4$		z-10	
	$n=19$	$a=49$	$n=19$	$n=49$
0	. 2500	. 2300	. 1000	. 1000
0.1	. 2481	. 2477	. 0998	. 0998
0.2	. 2423	. 2409	. 0968	. 0968
0.3	. 2326	. 2295	. 0988	. 0989
0.4	. 2190	. 2135	. 0905	. 0073
0.5	. 2016	. 1930	. 0883	. 0802
0.6	. 1803	. 1680	. 0832	. 0715
0.7	. 1551	. 1384	. 0771	. 0612
0.8	. 1261	. 1042	. 0701	. 0494
0.9	. 0932	-0655	. 0622	. 0359
0.95	. 0753	. 0444	. 0579	. 0286
1	. 0564	. 0 P.22	. 0533	. 0209

(from [7])

Gerald J. Lieberman
Department of Operations Rasearch and Department of Statistics
stanford University, Stanford, California

0. ABspact. In the design of a nev aystem, or the maintanance of an old ayotem, aliocation of resources is of prime conaideration. In allocating resources it is often beneficial to develop a solution that yields an optimal value of the aystam masure of dearability. In the context of the probleme considered in this paper the resourcen to be allocated are components already produced (assembly problema) and money (allocation in the construction or repair of aystame). The measure of deairability for system agseably will usualiy be maximizing the expacted number of aysteme that perform satiafactorily and the measure in the allocation context will be maximizing the aystem reliability.
I. INTRODUCTLON. This work on the optimal rasource allocation for maximising system reliability represents a aumary of research in this area conducted by Cyrua Derman, sheldon Ross and Gerald J. Lieberman. The basic problem is to allocate resources in a way that yields an optimal value of the ayatem measure of desirability. Spacifically the probleme considered can be categorized as shown in the following table.

Renources to be Allocated	Type Problem	Measure of Desirability
Money	Allocation of funds in the construction or repair of systems	Maximizing the system raliability
Componants already produced	Assambly of systems	Maximizing the expected number of systems that parform satisfactorily

II. ARBMBLY PROBLEMSS.

 components, and these components are to be arranged in some fashion into a set of working aystems. This problem was treated by Derman, Lieberman, and Ross in two papers, "On Optimal Assemble of Sybtems", NLRQ, Vol. li, No. 4, December 1972, and "Assembly' of systems Having Maximum Reliability", NLRQ, Vol. 21, No. 1, March 197/4. In particular, assume that a single syatem has m different types of components. Associated with each component is a numerical value. Lat $\left(b^{i}\right), i=1,2, \ldots, m$, denote this set of numerical values in the m components. Let $R\left(b^{1}, b^{2}, \ldots, h^{m}\right)$ denote the probability that the syatem will perform satiafuctorily, i.e.,
$a\left(b^{1}, b^{2}, \ldots, b^{2}\right)$ is the 'reliabsility of the system. for example, let b^{i} denote the probubility that the $i^{\text {th }}$ component will work when component performances are independent. If all components must work than the reliability is, just $a=b^{1} \cdot b^{2} \ldots b^{m}$. Nevertheleat, this formulation allowe for the component performances to be dependent. Mow auppone that thare are, n units of each componont with correspoading $b_{1}^{1}, b_{2}^{1}, \ldots, b_{n}^{1}$ for every 1 . The problem considered Is to arrange the na units into n gysteme, to maximise the expected number of syetme thut perform satisfectorily, i.e., maximize $B(N)$, where N is the number of systeme that work. Of course this criterion is equivalent to maximizing the sum of the n celiabilities.

II, 2. "Series" Reqults. If R is a distribution function (includes a series syatem of independent components) and $1 f$ $b_{1}^{1} \leq b_{2}^{1} \leq \cdots \leq b_{n}^{i}$ for $1=1,2, \cdots, m$, then the n nysters represented by the partitions $\left(b_{1}^{1}, b_{1}^{2}, \ldots ; b_{1}^{m}\right), \ldots,\left(b_{n}^{1}, b_{n}^{2}, \ldots, b_{n}^{m_{n}}\right)$ is the optimal arrangmment, i.e., put the "worst" together, the second "worst" together, ... , and finally, the "best" together. Furthermore, if $R\left(b^{1}, \ldots, b^{m}\right) \geq 1 / 2$ for every permutation of the unita, then this ame arrangemant also minimizes the variance of the number of syetems that perform satisfactorily, Finally, if

$$
R\left(b^{1}, b^{2}, \ldots, b^{m}\right)=b^{1} b^{2} \ldots b^{m}
$$

where

$$
b^{1}=P\left(i^{\text {th }} \text { component works }\right],
$$

then this same arrangement maximizes

$$
P\{N \geq r\},
$$

fur each r.
II.3. Parallel Bystem Having Indopendent Components - Formulation. Problem is to arrange the no unity into a gystems to maximize the expected nuber of systeme that work. $\mathrm{E}(\mathrm{N})$. In this case,

$$
F b^{1}, b^{2}, \cdots, b^{m i}=1-\prod_{i=1}^{m}\left(l-b^{i}\right)=1-\prod_{i=1}^{m} a^{i},
$$

where

$$
a^{1}=P\left(1^{\text {th }} \text { component faila }\right),
$$

so that

$$
E(N)=\sum_{j=1}^{n}\left(1-\sum_{1=1}^{n} a_{j}^{1}\right)=n-\sum_{j=1}^{n} \prod_{i=1}^{m} a_{j}^{1} .
$$

Thia formulation requires that each (parallel) system contain exactly m components, and such a requirement may degrade the performance masure in that $E(N)$ may be larger if we allow for the posibility that some aystems contain less than m units while others contain more. This more genoral parallal problam is trested as follows:

II.4. Parallel Systame Having Indpandent Components - More

 General Formulation. A set of t units is to be partitioned into n diajoint parallel syateme. After completion of a partition the number of units contained in the $j^{\text {th }}$ system $(j=1,2, \ldots, n)$ is denoted by m_{j}, with the added restriction that $\sum_{j=1}^{n} m_{j}=t$. For a given partition, the reliability of aystam f, R_{j}, is given by$$
\mathbf{R}_{\mathbf{j}}=1-\underset{\substack{\text { ali } \\ \text { units in } \\ \text { systen }}}{\operatorname{j}} \mathbf{a}_{j}^{1},
$$

st that

II.5. Resulta for Parallel 8yateme. The solution to thia problem, 1.U., the arrangement that maximizes $\mathbb{E}(N)$, attempta to make the reliabilities of each system as equal as possible. Indeed, if a partition exists that makes the reliabilities equal, it is optimal. Unfortunately, auch an arrangement may not exist. However, bounds are available so that the maximum oxpected number of aysteme chat perform satisfactorily will be within these bounde; the bounds being a function of an arbitrary chosan partition. Finally, an improvament algorithe is also available. Esentially, thia algorithm looks for pairwisc interchanges of unite which make two ystems have "more equal" reliabilities. Incidently, 11 the resulta obtained for this problem carry over to the original problem where emeh system is required to contain exactly m components.
II.6. Anothar Application of Amambly of Systems Model. A version of the target assignment problem can be related to the general parallel system assambly formulation. Manne's "A Target Aseignment Model", Operations Research, Vol. 6, No. 3, 1958, treats essentially the following target assignment problem. There are t wapons to be asaigned against n cargets. Lat $P_{1 j}$ be the probability that the $i^{\text {th }}$ weapon will dentroy the $j^{\text {th }}$ target if it alone is assigned to it. The objactive is to minimize the expected number of eurviving targets. If $x_{i j}$ denotes the probability that the $i^{\text {th }}$ weapon is assigned to the $j^{\text {th }}$ target, then the $x_{i j}$ are sought that minimize

$$
\sum_{j=1}^{n} \prod_{i=1}^{t}\left(1-p_{i j} x_{i j}\right)
$$

subject to

$$
\sum_{j=1}^{n} x_{i j}=1, \quad i=1,2, \ldots, t
$$

and

$$
x_{i j}=0
$$

II. I. Resules for Target Assignment Problem. Manne points out that this ia a nonlinear problem and an exact solution is not known. However, by making some simplifying assumptions he presents two approximate solutions (one due to himself and one due to G.B. Dantzig). The analogous concepts in the assembly model version would assume that x_{11} is zero or one. The $i^{\text {th }}$ wespon corresponds to the $i^{\text {th }}$ unit. The $j^{t h}$ target corresponds to the $j^{\text {th }}$ syetem. Whereas $p_{i j}$ depends on both the weapon and target, the probability of a unit working in the assembly context is assumed to be independent of which system it is placed in and hence $1 s$ denoted by P_{i}. This would imply that the 1 th weapon has the same probability of destroying each target. Under this assumption (which is less stringont than those proposed by Manne) the system assembly realits are relevant.
11.8. Other Work on System Assembly. An independent and earlier discussion of the assembly problem with other application can be found in Abe, "Multi-Stage Rearrangement Problem and its Application to Multiple System Reliability", Journal of the Operations Rescarch Society of Japan, Vol. 11, No. 1, November 1968 . He uses somewhat different techniques, particularly in the parallel case. In the reliability context he always assumes independence of components, and his version of the parallel system problem requires each system to contain m units. However, for this case he obtalus some sufficient conditions for optimality weaker than equal reliabilities. He also points out that the assembly model can be used in scarch and assignment contexts.

III. AXLOCATION PROBLEMS.

III. G: Genaral Allocation Problem. I, ct A denote a Elxed amount of money to be used to build a single syatem consisting of In components. Define $P_{i}\left(X_{i}\right)$ as the probahility that component i will work if x_{1} is allocated to its production. The rroblem is c_{0} chousc $x_{1}, x_{2}, \ldots, x_{1}$ so as to maximize the probability that the system works, i.e.,

$$
R\left[P_{1}\left(x_{1}\right), P_{2}\left(x_{2}\right), \cdots, P_{n}\left(x_{n}\right)\right]
$$

subject to

$$
\because x_{i} \quad A,
$$

where R is the probability that the system performs sat:sfactorily.

III.:.' Special Cases of General Model.

A. System can be represented by n independent modular subsystems connect in parallel and/or series: in such cases R has an indentifiable simple form. Budin, in his paper, "Optimization Procedures for the Analysis of Coherent Structures", IBM Data Processing Division Report No. 320-3509, July 1968 , has done some work on this problem, He developed some algorithms, but essentially, the solution is still unknown.
B. In order to get some insight into this beneral problem, a simple versicn is considered by Derman, Ross, and Lieberman in a series of papers, (i) "Assembly of Systems Having Maximum Reliability", Naval Research Logistics Quarterly, Vol. 21, No. 1, March 1974, (ii) "Optimal Allorations in the Construction of k out of n Reliability Systems", Management Science, Vnl. 2l, No. 3, November 1974, and (iii) "A Stochastic Sequential Allocation Model", Technical Report No. 165 , Stanford University, September l(i, ly'j. These papers assume that $P_{i}(x)-P(x)$ for all components, and the system has a special structure, i.e., it is a k out of n system. However, another facet is added, namely, in some of our models allocation decisions can be made sequentially.

11I.5. An Allocation of Money Resources Model. Suppose A denotes a fixed amounc of money to build a single system consisting of n components. Define $P(x)$ as the probability that a component will work if amount x is allocated to its production.
A. Non-Sequential Version: Choose $x_{1}, x_{2}, \ldots, x_{n}$ in order to maximize $R\left(P\left(x_{1}\right), \ldots, P\left(x_{n}\right)\right)$, 1.e., the probability that the system wo.ks.
B. Sequential Version: x_{1} is allocated to produce the first component. Using the information as to whether the first allocation produced a working or non working component, x_{2} is then allocated to produce a 2nd component. We proceed in this manner, making no more than n allocations. The problem is to chuose x_{1}, x_{2}, up to x_{n}, if necessary, sequentially to maximize the probability that the system will work.

It is assumed that an n component system will work if at least k of the components function.
III. It. Results for an Allocation of Money Resources Model.
(i) k. 1 (parallel system) - sequential or non-sequential version. If $\log (1-P(x))$ is convex, then the x 's are chose so that

$$
x_{1}=x_{2}=\cdots-x_{n} \because \frac{A}{n}
$$

If $\log (1-P(x))$ is concave, then the $x^{\prime} s$ are chosen so that

$$
x_{1}: A, x_{2}=0, \cdots, x_{n}-0
$$

(ii) General k (note k : n is series-system) - sequential or non-sequential version.
If $\log (1-P(x))$ is (strictly) convex then if one wants to sequentially build k working components in at most n attempts, $n \geq k$, then it is (uniquely) optimal to allocate $\mathrm{A} \mathbf{n}$ at cach stage when A is the total resource available. Thus, it also follows that the same allocation is optimal for the noll-sequential model.
(iil) Special case of $P(x)=x-$ sequential case $-k=1$ and 2. Since $12 g(1-x)$ is a concave function, the results presented under (i) hold for k 1, i.e., $x_{1} A, x_{c}=0, \ldots, x_{n}=0$. Exact results can also be obtained for the cage of $k=2$. The optimal policy n^{*} can be described as follows. When the present amount available is y and at most n additional components can be built, then
a) if only onc additional working component is needed, π^{*} allocates $\min (y, 1)$, and
b) If two additional working components are needed, "x allocates

$$
\left\{\begin{array}{cc}
y-1 & \text { if } y \geq \frac{n}{n-1} \\
\frac{y}{n} & \text { if } y \leq \frac{n}{n-1}
\end{array}\right.
$$

(iv) Special case of $P(x)$: x - sequential case - general k. For the general case (any k), it is conjectured that the optimal policy ${ }_{10}{ }^{*-k}$ is such that when the present amount available is y and if k additional working components are needed with atwost n stages to go, then $\pi^{*} x$ calls for allocating

$$
\left\{\begin{array}{cl}
\frac{y}{n} & \text { if } y \leq \frac{n}{n-1}(k-1) \\
y-(k-1) & \text { i.f } y \geq \frac{n}{n-1}(k-1)
\end{array}\right.
$$

(v) Special case of $P(x)=x$ - non-sequential case. 'he optimal allocation $x^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)$ is such that all of the non-zero elements of \underline{x}^{*} are equal. It is not clear how many non-zero elements are presented in an oprimal allocation, although some indications are available for A near k or zero; fur A near k the number of non-zero elements is small while for A neas zero the number is large.
III.',' A Stochastic Sequential Allocation Model (SSAM). The following model is described in terms of an investment problem, although several ocher interpretations are available for this model. We have D units avadlable for investment. During each of N time periods an opportunity to invest will occur with probability p. As soon as an opportunity presents itiself we mast dec jde how much of our avallable resources to invest. If we invest x, then we obtain an expected profit $P(x)$, where P is a nondecreasing continuous function. The amount x then becomes unavailable for future investment. The problem is to decide how much to fnvest at each opportunity so as to maximize the total expected profit.

III.6. Other Applications of SSAM.

A. Target Assignment Application of SSAM. Suppose that there are D units of ammition available, and for each of N time units, say days, the target may be under attack. During each of the N days enemy planes will attack with probability p. As soun as planes appear, we must decide how much of our ammuntion to expend. If x units of ammunition are expended then $P(x)$ is the expected number of enemy planes that will be downed.
B. Allocation of Research Effort Application of SSAM, A proposal is received and sent out for review. From past history the fraction of those receiving favorable reviews are p (p may be thought of as the probability of the referee recommending funding). However, the review comes in as rocommending approval or rejection. If the review is positive, how much should be allocated to each proposal. Wo have a total of D dollars available. If x is allocated, then $P(x)$ is the return of the investment. We have N proposals to be sent for roviow and decisdons must be made sequentially. Another interpretation is for p to represent the probability of a favorable report being received in each of N given days.

11I.7. Resultb for SSAM Model. When $P(x)$ is convex, it is easily show that the optimal policy in t invest everything when an opportunity presents itself. When $P(x)=\log x$, and if there are n time periods to go and A doilars available then the optimal anount to invest at this time, $x_{n}(A)$, is given by

$$
x_{n}(A) \quad \frac{A}{1+(n-1) p}
$$

Another casc where the optimal policy can be made explicit is when

$$
P(x) \quad x^{\alpha}, \quad 0<\alpha=1 .
$$

111.13. Further Results for SSAM Mode1. When $P(x)$ is a general concave function, it is only possible to describe the structure of the optimal policy. In particular, if $V(n, A)$ denotes the supremal expected additional profit attainable when there are n time periods to go, A dollars available, and an investment opportunity is at hand, and $x_{n}(A)$ is the optimal amount to invest at this time, then
(i) $V(n, A)$ is a concave function of A,
(ii) $x_{n}(A)$ is a nondecreasing function of A, and
(lii) $x_{n}(A)$ is a nunincreasing function of t. 'This structure can be used to simplify the necessary computations, but does not yield a closed form expression for the optimal value to invest.
III. 2. The Sequential Stochastic Assignment Problem. It is assumed that there are n men available to perform n jobs. The jobs arrive in sequential order with each job being categorized before a man is assigned to it. It is assumed that the category ${ }^{\prime}$ ' j of the $i^{t h}$ job is determined by a probability measure over all possible catogorios and that $(t, j)(j \cdot 1, \ldots, n)$ are independent with the same probability measure. The $i^{\text {th }}$ man has a value $x_{i}\left(0 \leq x_{i} \leq 1\right.$, i $1, \ldots$, , 11 associated with him. If the $i^{\text {th }}$ man is assigned to
the $j^{\text {th }}$ job the (expected) raturn is a innown function $P\left(x_{i}, O_{j}\right)$. After man is assigned to a job, he is unavailable for future assignments. The objective is to assign the workers sequentially to maximize total expected return. This problem was treated by Derman, Litberman, and Ross in "A Sequential Stochastic Assignment Problem", Management Science, vol. 18, No. 7, March 1972.
III. 10. Relationship of SSAM to the Sequential Stochastic

Assignment Problem. In the stochastic sequential allocation model the possible categories are two in number. The first category, which occurs with probability $1-P$, corresponds to $P\left(x, O_{1}\right) \equiv 0$ (no occurrence of an opportunity); the second, which occurs with probability P, to $P\left(x, \theta_{2}\right) . P(x)$ (occurrence of an opportunity). The n men each having a value $x_{i}(i=1, \ldots, n)$ is equivalent to a predetemined division of the total resources $\sum_{i=1}^{n 1} x_{i}=D$ and the problem is simply that of assigning the predetermined values. The allocation problem requires instead of a sequential assignment of values a sequential division $n f$ the resources. Beyond occurring or not uccurring the present allocation model does not permit a more refined weighing of the return function since $P(X)$ is assumed to be the same for each occurrence.
IV. CONCLUBIONS. Are results relevant for solving the general allocation problem: Can they be used $L S$ aid in the design of a new system or in the maintenance of an old system. Obtaining an explicit solution to the gencral allocation problem requires intimate knowledge of cost functions and system performance. Similarly, this information also appears to be necessary for obtaining explicit solutions to the "simpilfied" models considered in this paper ... With one important difforence -- namely, most solutions lead to qualitative results. Admittedly, the "optimal solution" to the gencral allocation problem is still open, but the zenults presented in this paper are useful in enhancing "engincering intuition" for the purpose of getting "good" answers to a most difficult problem.

Finally, the models presented, usually in a reliability context, are quite broad so that they are useful in other areas, e.g., the assembly of parallel systems and the stochastic sequential allocation model are related to target assignment problems.

Joseph F. Hannigan and Mary L. Pownrs
Research Institute
U. S. Army Engineer Topographic Laboratories
Fort Belvoir, Virginia

Abstract

It is standard procedure to use the method of least squares to obtain the best straight line fit to a given set of data samples which are known or belleved to represent some physical quantity having a linear characteristic. There are two reasons for seeking simple alternatives to the method of least squares. The first is that some rield applications require only a determination of the x-intercept. The method of least squares determines the slope and Y-intercept from which the X-intereept is then calculated. The second reason is that in some field applications only ilmited amounts of data can be retained, stored, or manipulated because of restrictions on the ADP systems. This paper examines several altematives for reducing the amount of data used and a method of determining the x intercept. Of course, the slope appears in tine calculation. However, it is not determined explicitly and the Y-intercept is not determined at all. For this investigation, a set of 100 data samples are used. These data samples were obtained from a random number generator then normalized and applied to the " Y " coordinate appropriate to 100 " x " coordinates for the line $y=-x+50$. Results are evaluated in terms of closeness to tha original. X-intercept (i.e., $x=50$).

1. INTRODUCTION. The purpose of this paper is to present the resulte of an investigation which explored a statistical alternative and a statistical variation on the method of least squares. In addition, the effect of simply reducing the number of data samples was examined. These latter results are presented in Appendix A simply to show the effect of loss of data. The loss could be deliberate to reduce the amount of data for simplicity or it could be accidental due to equipmen: malfunction.

The method of least squares has many applications from massive batch reductions, such as simultaneous adjustments of large geodetic networks, to the relatively simple, straight forward determination of the "best" atraight line fit for data which are known or believed to represent a physical quantity having a linear characteristic. "Beat" fit in the latter case means the quation for the straight line which comes closer to all the data points than any other straight line. In other words, it usually means the line for which the deviations between the given ordinate values of the data points and the corresponding ordinates of the line are a minimum. This is the specific application being considered in this inventigation.

There are two reasons for seeking alternatives to the method of least squares. The first is that some field applications require only a determination of the x-intercept. The method of least squares determines the slope and Y-intercopt from which the X-intercept is calculated. The second reason is that in some field applications only limited amounts of data can be stored, retained, and manipulated because of restrictions on the size and capacity of the ADP systems being used.

A specific application to illustrate the above is the potential use of an FM discriminator to determine a particular frequency. The discriminator (here used in the generic sense) could then be used in the field as a cheap replacement or a backup for the more expensive frequency counter. A discriminator has a well known linear frequency versus voltage characteristic. This is apparent in data and figures prasented in Appendix B. A disadvantage of the discriminator is that it does not have the resolution of the more expensive frequency counter. However, a discriminator can be sampled every few milliseconds compared to the usual second or more for a frequency counter. The sampling rate for a discriminator is limited only by the settling time of the sampling and data storage circuits while a frequency counter must count for a specific time interval in order to obtain the desired resolution. compared to a frequency counter a discriminator can provide a very large number of data samples. The method of least squares is recognized as a good, standard procedure to use to determine the best straight line to fit for such data. A specific frequency or frequencies can then be determined from the equation of the line so obtained.

An experiment was conducted at the Research Institute, U. S. Army Engineer Topographic Laboratories, Fort Belvoir, VA, to determine the fea-. sibility of using discriminators for the purpose of determining a specific frequency (e.g., 300,000 kilocycles). Details of the experiment are planned for inclusion in a separate USAETL report. As background information for this paper, Appendix B contains a block diagram of the experiment, tables of representativo data, and plots of the data.
2. INVESTIGATION. The approach taken in this investigation was analytical and empirical rather than theoretical. The investigation used both experimental data (shown in Appendix B) and hypothetical data.

The hypothetical data was based on the line $Y=m X+b$ where the slope m was chosen to be -1 and the X-intercept was chosen to be +50 . A hundred data samples (X, Y values) were obtained using equally spaced absissa values from 0 to 99 and calculating the corresponding ordinate values. These ordinate values were then changed by the application of "normalized" random numbers. The distribution is shown in Figure 1. These numbers wore obtained from a random number generator and then "normalized." The "normalized" random numbers are shown in rable 1 . One hundred data samples are not enough to show a good normal distribution, hence the quotes on normalized.

However, this is the number of samples which would be expected in apecific application and it is more than actually desired from the data storage and manipulation standpoint. In a real case, even though the physical quantity would be expected to have a normal distribution under long term conditions, such distribution might not actually apmear in a limited number of mamples. Hence, it is believed that the values used are reasonable for what would be abtained in a real situation.

It seam appropriate at this point to illuetrate briefly what is involved in detarmining the x-intercept by the mod of least squares.

DATA REEOUIRED

NORMAL EQUATIONS

$\Sigma \mathbf{Y}=\boldsymbol{m} \Sigma \mathbf{X}+\mathrm{bN}$
$\Sigma X Y=m \Sigma X^{2}+b \Sigma X$
Where m is the lope, b is the Y-intercept, and N is the number of data samples. The slope and y-intercept are obtained by the aimultaneous solution of the NORMAL EQUATIONS. The X-intercept is then determined by equation:

$$
x=-\frac{b}{m}
$$

It is significant to note that as the data samples (X, Y) are put into the ADP system, they are summed; they are multiplied and then summed; and the X values are squared and then summed. These operations require either a certain amount of memory to store data while the arithmetical operations are performed or a paralicl ADP capability to perform the multiplication, squaring and summing operations simultaneously as the data samples aze put into the ADP system.

The next thing to note is that the NORMAL EQUATIONS must be solved simultaneously for the slope (m) and the y -intercept (h). From these values the x-intercept is then calculated from a third equation. Physically, the Y-intercept has no significance in our experiment, however, the slope gives the rate of change of the frequency. The slope could be used to extrapolate the data in the event

OI malfunction which prevents getting enough data samples to include the deaired frequency. Although it is not expected to give a high degree of accuracy, extrapolation might be better than no answer at all. Although the slope is of secondary interest, it is included in the findings since it does have some physical significance.
3. FINDINGS AND RESUL'TS. The investigation was performed with the hypothetical data first and then the experimental data. The impressive finding was the extremely good results obtained by simpln statistical averaging of consecutive data samples to form new sets of data. This gave reduced number of new data samples which reduces the amount of storage required. It even eliminates the method of least squares when carried to the extreme. For example, by dividing the data into halves, then averaging each half to obtain two average x coordinates and two average Y coordinates, the X-intercept can be obtained directly from the linear equation:

$$
x=\frac{\left(x_{2}-x_{1}\right)}{\left(x_{2}-x_{1}\right)}\left(-y_{1}\right)+\left(x_{1}\right)
$$

The above equation is derived from the equation of a straight line between two points. Note that the x-intercept is obtained imediately and that the slope, although present, is not derived expliaitly.

The results obtained by reducing the data by simple statistical averaging of consecutive data samples are shown in Table 2 for the hypothetical data and Tables 3 and 4 for the experimental test data. The x-intercept and slope obtained by the method of least squares using all the data samples are shown in table 5 for comparison purposes.
4. CONCLUSION. Based on the empirical and analytical approach taken in this investigation, it is concluded that simple statistical averaging of the data samples so as to obtain two average data samples (i.e.. one average sample for each half of the dat:a) and the application of the single equation for the straight line between two points provides an alternative to the method of least squares for the determination of the x-intercept and slope. The accuracy obtainable with this procedure is helieved to be acceptable for many applications, especially in view of the simplicity of the calculations.

It is also concluded that statistical averaging of consecutive data samples provides a variation to the method of least squares which has an accuracy that would be accoptable in many applications. 'the averaging of consecutive data samples could be used to reduce the data storage requirements or poseibily permit. parallel arithmetical operations.

It ia recognized that these conclusions are based on limited amounts of data. Howover, intuition tends to support the logic of these conclusions and the numorical results tond to verify them.

LEAST SQUARES SOLITION USING

Averages of Each of 10
Consecutive Sanples
Congecutive Sanplas

7	$\%$
4.5	45.58589
14.5	35.27179
24.5	25.87178
34.5	15.05009
44.5	5.81243
54.5	-4.58638
64.5	-14.43884
74.5	-24.51048
64.5	-34.61079
94.5	-44.44648

Averages of Earin of 20 Conserutive samples
\boldsymbol{Z}
9.5
23.5
49.5
69.5
09.5
-19.47466

ETRAIGHT LINE BLTNEEN TWO END POINTS SOLUTION USI:IC

AVERMGES OF EACH HALF (End Points of Line)

X-Intercept 'siope

TMIE 3. TESY SET NO. 1

IEAST SOUARES SOLUTION USING

Averages of Each of 5 Consecutive Samples		Averages of Each of 10 Consecutive 5amples	
Erequency	Voltage	Frequency	Voltage
299.910	37.6	299.923	32.0
299.935	26.4	299.972	11.0
299.960	16.0	300.022	-10.9
299.985	6.0	300.072	-33.0
300.010	-5.8		
300.035	-16.0		
300.060	-27.0		
300.085	-39.0		
X-Intercept	S1ope	x-Intercept	Slope
299.99698	-433.80938	299.99698	-433.79977

grpaicat LINE BETWEEN
TWO ENU POINTS SOLUTION USI:GG
AVPReES Of EACH HAZF (End Points of Line)

Frucucy Voleage

299.9475	21.5
300.0475	-21.95

XnIntereept Slope
294.99898-434.30000

LEAST SQUARES EDLUTION USING

Averages of Each of 5 Consecutive Samples

Frequency	Voltage
299.920	33.6
299.970	10.2
300.020	-5.6
300.070	-27.8
X-Intercept	Slope
300.00150	-400.00002

STRAIGHT LINE BETWEEN TWO END POINTS SOLUTION USING

Averages of Each Half (End Points of Line)

\bar{X}	\bar{Y}
299.94500	21.90000
300.04500	-16.70000
X-Intercept	S10pe
300.00174	-386.00000

GABLE 5

Least Squares Solution Using All Data Samples

	Hypothetical Data
X-Intercept	
49.99981	

mest Set Number 1
299.99691
-434.63343

Test Set Number 2
300,00117
-405.58409

\underline{x}	X-INTERCEPT	SLOPE
0,1,2,.....,99	49.99981	-1.00039
0,2,4,..... 98	50.04974	-. 99684
1,3,5,.....,99	49.95376	-1.00389
0,3,6,....., 99	51.48230	-1.09439
0,5,10,....,95	50.15983	-1.00213
0,10,20,..., 90	49.85273	-. 99125
Least Squares Solution```Hypothetical Data + Normalized Random Numbers X=0, 10, 20, 90 Onitted N = 99```		
Omit X	x-intercept	Slope
0	50.00038	-1.00042
10	50.01663	-1.00121
20	50.00284	-1.00050
30	50.00769	-1.00058
40	49.99136	-1.00029
50	50.01514	-1.00039
60	49.98716	-1.00055
70	49.59263	-1.00056
80	49.98575	-2.00090
90	50.01784	-0.99953
Hypothetical Data and Normalized Random Numbers Randomly Selected Point Omitted$N=99$		
Omit X	x-intercept	Slope
56	50.00985	-1.00031
46	49.98573	-1.00033
29	49.98723	-1.00008
14	50.00161	-1.00047
12	50.00397	-1.00058
97	50.00648	-1.00002
17	50.01115	-1.00084
4	50.00923	-1.00092
79	50.00599	-1.00017
60	49.98716	-1.00055

LEAST SQUARES SOLUTION HYPOTHETICAL DATA + RANDOM NUMBERS OMIT SERIES OF FIVE VALUES $N=95$

Omit X	X-Intercept	Slope
0-4	49.99346	-. 99998
10-14	50.01240	-1.00101
20-24	50.00259	-1.00049
30-34	50.03673	-1.00119
40-44	49.98093	-1.00025
50-54	50.00376	-1.00040
60-64	49.96250	-1.0009 3
10-74	49.98099	-1.00090
80-84	50.02216	-. 99949
90-94	49.97216	-1.00188

Least Squares Solution of
Sate of Sequential Pointe Hypothetical Data and Normalized Random Numbers

X	X-Intercept	Slopa	N
0-30	50.30710	-. 99269	31
39-59	50.09299	-1.03749	21
34-64	50.15715	-. 98349	31
44-54	50.07964	-1.12965	11
69-99	49.78529	-. 99515	31

Table 1. Frequency (5 cycle interval) and voltage data obtained with a Phase Lock Loop Discriminator.

Freguency (kc)	Voltage (mv)	Frequency (kc)	Voltage (mv)
299.900	$+42$	300.000	- 1
299.905	$+40$	300.005	- 4
299.910	$+37$	300.010	- 6
299.915	+ 36	300.015	- 8
299.920	+ 33	300.020	- 10
299.925	+ 31	300.025	- 12
299.930	+ 29	300.030	- 14
299.935	+ 26	300.035	- 16
299.940	+ 24	300.040	- 18
299,945	+ 22	300.045	- 20
299.950	+ 20	300.050	- 22
299.955	+ 18	300.055	- 25
299,960	+16	300.060	- 27
299.965	+ 14	300.065	- 29
299.970	+ 12	300.070	- 32
299.975	+ 10	300.075	- 35
299.980	+ 8	300.080	- 37
299.985	$+6$	300.085	- 39
299.990	$+4$	300.090	- 41
299.995	+ 2	300.095	- 43
		300.100	- 46

Table 2. Frequency (10 cycle interval) and voltage data obtained with a Phase Lock Loop Discriminator.

Frequency (kc)	Voltaye (mv)
299.900	$+42$
299.910	+ 39
299.920	+ 34
299.930	+ 29
299.940	+24
299.950	+20
299.960	+15
299.970	+ 10
299.980	+ 5
299.990	$+1$
300.000	$+0$
300.010	- 0
300.020	- 4
300.030	- 10
300.040	- 14
300.050	- 19
300.060	- 23
300.070	- 28
300.080	- 32
300.090	- 37
300.100	- 42

Table 3. Frequency (100 cycle interval) and voltage data obtained with a Pulse Type Discriminator.

Frequency (kc)
499.000
499.100
499.200
499.300
499.400
499.500
499.600
499.700
499.800
499.900
500.000
500.100
500.200
500.300
500.400
500.500
500.600
500.700
500.800
500.900
501.000

Voltage (volts)

5.068
5.069
5.070
5.071
5.072
5.073
5.074
5.075
5.076
5.077
5.078
5.079
5.080
5.081
5.082
5.083
5. 084
5.085
5.086
5.087
5.088
VOLFAGE (m)

Plot of data from Table 2 showing linear response of Discriminator measurement with rare (one time)
300.000 ke)
872

A STATISTICAL APPROACH TO LOADING AND FAILURE OF STRUCTURES*

Ronald G. Merritt

U. S. Army Corps of Engineers Construction Engineering Research Laboratory
Champaign, Illinoin

Abstract

It is becoming increasingly important to examine available data on structural behavior in the assessment of design criteria. To this end a rationale for examination and selection of loading criteria based upon available data is proposed. The rationale is based upon examination of both structural load data and atructural failure data. This paper examines in some detail the assessment of atructural failure data and extends some of the same ideas to structural load data. In order to extract information content from collected data, a class of statistical methods applicable to the data has been selected. A matrix correlating data parameters with statiatical method is developed. A method for assessing the overall information content of the collected data is proposed. Finally recomendations are made for future collection and correlation of load and failure data. 1. INTRODUCTION. A fundamental problem of structural engineering is the examination and election of loading criteria. It is imperative that any solution to the problem center around a rationale that relates information available on loading to selected criteria. Such available information is generally in the form of data. It is the purpose of this brief paper to abscract the problem and outline preliminary work on a rationale for addressing the problem.

The paper begins by defining the general nature of the problem. Solution to the problem is related to consideration of available information in the form of data. The next three sections of the paper discuss the initial stages of a rationale for consistent examination and selection of loading criteria. The first of the sections examines available information on structural load and the second examines available information on inetancas of structural fallure. Classes of statistical methods are discussed in the third section. This section also includes discussion of a proposed method for aseessing the overall information content of the avoflable data. Finally, an illustrative example of application of a statistical method to loading data in presented and the paper concludes with a discussion of future extension to this preliminary work.

[^8]2. GENERAL NATURE OF THE PROBLEM. Examination and salection of loading criteria involves the consideration of a statement S with quantifiers that relate variables useful in description of the lcad. This may be written generally as
\[

$$
\begin{equation*}
S: C=C(E, \bar{r}, \bar{B}) \tag{1}
\end{equation*}
$$

\]

for
S - loading criteria statement
C - load function
T - time vector
T - space vector
G - parameter vector

The statement S has an quantifier the load function C which is expressable in terms of time, apace and a finite met of paramaters. The expresaion ia general enough to allow for aeveral components of time, space and parameters ae denoted by the vector notation. The problom may now ba stated in terms of examination of the validity of S.

Validity of S is usually established through mome subjective and objective evaluation of available information ralated to S. In order to be consistent in this avaluation of information a rationale for carrying out thi evaluation must be set forth. The preliminary outine of the rationale proposed in this paper centers upon a means of asseseing available information ralated to S by use of statistical techniques, correlating this information and obtaining quantitative factors upon which the validity or invalidity of S may be established. In a real mence this rationale in part already exists in that statiatical intarpretation of collectad daca is common place in exmination of load data. The diecuasion to follow extende this rationale. Howaver, it is important to note here that "all" available information in to be examined in evaluating the validity or invalidity of S. This includes consideration of load information for one. In addicion, since the invalidity of s tacitly implies poasibility of etructural fallure because of load, one must also conalder atructural fallure information. It is the general nature of these sets of information that provides the basia for this preliminary work on development of the rationale.
3. LOAD ISFORMATION, LOAd information is obtained in a quantity termed a datum. Such datum may be in a raw form or in a summary forn. The raw form conelate of the most banic unit and rasulte from direct quantization of the phenomenon under obearvation. The sumary form reaulta from a transformation of the raw datum.

Upon collaction of data on loading e.g., wind loading, it becomes apparent that som way of clasalfying individual pieces of datum needs to be developed. Once clangified then groups of datum within any une designated category could be exeminad for consintency and their relationsifip to the propored loading criteria. The discuation to follor defines the ratum ciassification syatem and the axample in Saction 6 illustrates application of atatistical tachnique to a piece of datum within the syotem.

The requirements on a load data classification ayoten are very basic. First, a single piece of datum mat be recognized as auch in the aystem and second a piece of datum mat be classifiable within the system. In order to facilitate this a "generalized random process", L, is defined whose "mample functions" consist of pieces of datun described by a set of parameters reiaced to the leed phenomonit. This is mon easily expreseed as

$$
\begin{equation*}
L(\bar{E}, \bar{r}, \bar{a})=\{1(\bar{E}, \overline{\bar{r}}, \bar{Z}): E \in T, \bar{r} \in R, \bar{I} \in A\} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& L(E, \bar{r}, \bar{\Omega})=\text { generalized random procesa } \\
& 1(t, F, \vec{a}) \text { - a piece of datum } \\
& \mathrm{E} \text { - time ralated description of the datum } \\
& \text { T - time indexing set } \\
& \overline{\mathrm{r}} \text { - apace related description of the datum } \\
& R \text { - space indexing set } \\
& \text { (} \text { - paramater related description of the datum } \\
& \text { A - parameter indexing set. }
\end{aligned}
$$

It is aseumed that every piece of datum related to a load phanomanon belongs to $L(\bar{E}, \bar{r}, \bar{a}$, and that each piece of datum is uniquely defined through an ordered triple of vectore ($\bar{E}, \overline{\bar{r}}, \overline{\mathrm{I}}$).

The advantages of such a mans of clasifying dats by evaluation of \bar{F}. \bar{Y} and \bar{a} are readily apparent. Firet, in evaluation of \bar{E}, \bar{r} and \bar{a} datum setr are established within $L(\bar{F}, \bar{r}, \bar{a})$ that relate similar information about the load phenomenon under investigation. Second, correlation of information through evaluation of $\bar{E}, \overline{\boldsymbol{T}}$ and \bar{a} allows one to assese the overall information content of the available data. Third, ready evaluation of data within a given datum set is poasible and links ariongst datum sets provide a key to links amongst data within different datum sets. Finally, this approach lends itaelf well to either the synthesis approach or the analytical approach to criteria selection. In the suthesis approach all data is structured into a deacription of the load phenomenon and criteria are selected from this description. In the analytical approach the datur is chaciced asainst the proposed criteria for consiatency and selection of criteria is basad upon this check. In either cese the pertinant datum is easily identified.

A total of twanty-two parameters that must be evaluated for each piece of datum are selected. The twenty-two parameters may be divided into five groups. Bridef mention of these five groups will suffice for the present discussion. The first group conelsting of two parameters uniqualy identifies the plece of datum. The eecond group consisting of five paranaters identifies the datum by defining the ovarall load phenomenon propertien, e. g. static, deterministic, stationarity, source, spatial extent. The third sroup consisting eight parameters deacribes the plece of datimin tern of the time

[^9]history information avallable. The fourth group consisting of five parameters describes the datur in teras of the spectral inforation available. Finally the fifth group of parmacexs consisting of twoparmeters gives a brief narrative description of the piece of datum along with a source reference.

This general scheme of datum referencing permits a congistent examination of structural load data and allows for easy construction of a structural load data base.
4. STBUCTURAL PAILURE INTORMATION. The consideration of data on instancas of etructural failure in the preilminary atages of development has provided for sone most intereating ideas on structuring of data from diverse and complex phanomenon. In the case of atructural laad data, the content of individual pieces of datum is described in term of a set of paramaters and the raw or mumary form data is conteined within each of the random process sample functions. Data analysis was posumed to take place on a "level below" the datum structure, $\mathrm{L}(\mathbb{F}, \bar{r}, \overline{\mathrm{~B}})$. For the case of structural failure the aature of the available data and information desired from the data requires that the description of the datum 1.e., instance of structural fallure, be complete enough for data analysis on the datum structure level. That is the anslogous structural fallure "generalized random process" should contain all the available information conceraing the structurel failure. This approach to etructural failure datum is the product of several considerations. First, quantitative structural failure data is difficult to obtain since few instances of atructural failure are instramented. Second, unless the failure is controllad in mome maner, quantitative data tends to be meaningless because of the complex load-response path that usually describes the failure. Third, any one case of structural failure is but one of many possible structural failures and it may or may not share properties in common with other cases of structural failure. Fourth, detailed quantitative data from instrumentation of a structural failure would present a prohibitively high collection and reductinn cost to information ratio. Finally, detailed reduction of quantitative data obtained during or after structural failure would tend to de-emphasise the overall characteristics of the structural failure. Thus, structural failure data is considered in the following way.

It was hypothesized that structural failure may be considered a "generalized random proceasi"1. Thus, it may be represented by an expression

$$
\begin{equation*}
S(\bar{E}, \bar{F}, \bar{M})=\left\{s(\bar{E}, \bar{x}, \bar{a}) ; \bar{E} \in, \overline{\bar{r}} \in R, \bar{a}_{\in A}\right\} \tag{3}
\end{equation*}
$$

$S(\bar{E}, \bar{\Gamma}, \bar{a})$ - structural failure generalized random process
$s(E, \bar{F}, \bar{Z})$ - structural fallure sample function
E-time vector
T - time indexing set
\vec{r} - mpatial vector
R - spatial indexing set.
$\bar{a}+$ paramater vector
A - parameter indexing set.

All instances of atructural failure belong to $S(E, \bar{\Gamma}, \bar{a})$ and every failure is in $\mathrm{S}(\mathrm{F}, \bar{r}, \bar{a})$ either explicitly through collected data and paramater evaluation or implicitly in cases where the atructural failure is unrecorded but the indexing sets are broad enough for the description. The problem of atructural failure data structuring now becomes a matter of defining T, R and A and evaluating \bar{r}, \bar{r} and \bar{a} from collected data on structural fallure.

Forty-five paramaters are considerad adequate to dafine the structural failura random process, i.e., forty-five parameters are conaidered sufficient to describe any instance of atructural failura. Obvioualy, only the overall gross charactaristics of an instance of atructural failure are considered appropriate for description and most pertinent to the overall rationale.

The forty-five parameters fall into nine major categories. For the sake of brevity these nine major categories will be liuted with a few comments regarding the parameters within each category.

1. Idantificarion - This category includes information on the source and information content of the structural failure data available.
2. structure characteristic information - Thia category includen all information related to the atructure that exparienced the failure. The dates of construction and fallure are recorded along with the general structural, material and functional characteristics of the structure. The geometrical dimensions of the atructure along with those of the failed portion of the structure are also recorded.
3. general failure description - This category deacribes the cause of the fallure, the extent of the failure both in qualltative and quantitative teras, the nature of the failure in terms of its possible progressive or nonprogressive characteristics, horizontal or vertical characteristics, the total time of the failure and the stages of the failure.
4. global failure description-For failures in which a major portion of the overail otructure has failed the failure takes on a global nature. This is aubsequently described by three parmeters naming elements of the structures that falled, modes of failura, and anterial compoaing the failed elements of the structure.
5. local fallure deacription - A fallure of a structure may include a amall portion of the overall structure in which case the fallure takes on a local nature. The same three parmaters as for the global failure description provide for the local failure sescription.
6. global load description - Loading on a atructure that is over a large portion of the structure may be termed a global load. It is deacribed in teras of four parametera including identification, general dimenaions, a general statement and eatigated value if this is available or able to be deduced.
7. Ircal load demeription - Loading on a structure that is ovar a mall portion of the structura may be termed a local load. The man four partmeters an in the case of global load description describe the local load.
8. load - fallure relationship - In most instances of structural fallure there exista a general spatial ralationship betwean load and fallure. This relationship may be expressed in terme of local load - local failura, global load-local fallure, local load global failure, global load - global failure. This paraseter provides insight into the nature of the axtent of the loading and the corresponding failure.
9. general statement - This final paramater sroup coneisting of one parmater is a genaral statement bbout the fallure and its cause.

Here again it is well to take note that atructural failure does not relace well to phenomenological deucription because of its complexity. The categories of parameters and the parameters themselvea provide for an overall view of the structural failure process. Given data on structural failure the parameters of $S(\bar{E}, \bar{T}, \bar{n})$ can be evaluated and $S(\bar{F}, \vec{r}, \bar{n})$ better defined. The statistical techniques to be discuased in the next section are applied directly to the parameter: of $S(\bar{E}, \bar{r}, \bar{Z})$.
5. BASIC CONSIDERATIONS FOR STATISTICAL ANALYSIS. The nature of the problem under consideration and the number of statiatical tachniques applicable to the problem make it possible to consider only a faw topice in relating atatiatical methode to the datum within the framawork of the load and fallure generalized random processes discussed above.

One of the first considerationg in applying statistical methods to data defining the processes above is an examination of the way in which the data is measured. There exist four acceptable statiatical data measures by which the measure of data is defined ${ }^{2}, 3$. Listed in order from least to most powerful they are as follows: nominal, ordinal, interval and ratio. A brief description of each is in order. The nominal measure applied to data implies the data may be categorized according to a set of mutually exclusive conditions. The ordinal data measure applied to data implies there exists an order relationahip amongat pieces of the datum. The interval data measure appliad to data implies a relationship of the form

$$
\begin{equation*}
x-y>0, x-y=0 \text { or } x-y<0 \tag{4}
\end{equation*}
$$

exists between any two pieces of datum. Finaliy, the ratio data measure applied to data implies numerical relationships for the datum are available and for $y \neq 0, x / y$ is meaningful exprasion between any two piaces of datum.

Although there are a number of ways of dividing statintical methods into categories for purposes of this discussion, perhaps the categories distribution and distribution free will affice. Distribution relaced statistical methods in general correlate with inetances in which distribution functione with a finite
number of parameters may be utilized in the statistical analysis of the data. Distribution free related statistical methods in genaral correlate with instances in which leaser restrictions are inposed upon conditions that must be satisfied for application of the method to a given set of data. These statistical methods may be further subdivided into mathods concerned with point estimates of paramaters, confidence regions for parameters or significance tests for parameters.

In the illustrative exampla to follow a distribution free statistical method is applied to a piece of load datum. In general distribution related methode apply well to losd data because of its tendency to be describabla in terme of the ratio data maesura and distribution free related statistical methods apply well to atructural failure date because of its tendency to be deacribable in terms of data measures lese powerful than the ratio maasure.

In work to date emphasia has been placed on consideration of structural failure data. It has become important to consider categorical diatribution free statistical techniques for use on paramsters of the structural failure random process. Categorical techniques are most applicable because structural failure data is for the most part of a categorical nature. Distribution free techniques are most applicable because of the difficulty in determining the distributions and their related parametera reauliting from unavailability of large amounts of data.

It is found useful when considering the structural failure generalized random procesa to construct a statistical method - process parameter matrix whereby statiatical methods applicable to given process parameters are correlated one to another. Table 1 below provides a segment of this matrix.

	SM	1	2	3	4	5
6	X	X	X			
7	X	X		X		
8	X	X		X		
9						

Key:
Pailure Parameter (FP)
6 descriptive name
7 conatruction date
8 failure date
9 structural
Statistical Method (SM)
1 binominal test
2 chi-square test for goodness of fit
3 Wald - Wolfowitz run tee 4 quantile test

Table 1: Statistical Method - Failure Process Parameter Marrix

The conatruction of the matrix in Table 1 leads naturally to an assessment of the ovarall information content of a set of data based upon an evaluation of factore useful in defining the overall characteristics of a statist ical method ${ }^{4}$. Table 2 lists factors useful in evaluating the effectiveness of a atatistical method along with proposed welghts for these factors. The overall information content of a set of data is determined by associating a set of atatistical techniques with the data and proceeding to tabulate weight values for the various factors. A ralative measure of information content amongat sets of data is obtained.
statistical data measure (10)
nominal 2
ordinal 4
interval 6
ratio 10
sample size 10
data tranaformation and restrictions on data parameters 2
level of computational offort 2
extent of use of symmetry 2
sensitivity of procedure to assumptions 4
precision level (10)
exact 10
theoretical approximate 7
judgment empirical 4
efficiency of method 10
consistency of method 10
sensitivity of procedure to asaumptions and difificulty in verifying assumptions 10
population properties and importance amongst other data groups 5

Table 2: Factors for Evaluating the Effectiveness of a Statistical Method with Weights

There exist several major weaknesses in the approach. first, not all statistical methode may be accurately evaluated in terms of thase factors. Second, it presumes that one has selected an optimal set of atatistical mathode to operate on a given set of statistical data. Third, it presumen that data information content is related to abstract measures on the atatis.. tical method independent of the data. Finally, it assumes the weighting factors are accurate and constant over the ranges of statistical methods. Despite these weaknesses matrix relating statisticul method versus weightIng factor provides for a crude measure of the relative information concert of a set of data to which the atatistical method may be applied.
6. AN ILLUSTRATIVE EXAMPLE. The example in this section of the paper is illustrative in the sense that (a) it is not based upon all the data that is available and (b) it presents a rather new approach in the raduction of civil engineering data. The first point is a result of the preliminary nature of this work and ability to reduce only a portion of the data available, The second point refers to the use of distribution free statistical techniques on the selected data. In general, measurement distribution oriented statistical techniquas are used on numerical data reculting from a well controlled experiment. The results of the statistical analysis are then presented in some concise form. Distribution free statistical techniques are often times related to a atatistical hypothesie test that may or may not be associated wich para. meters deacribing the data e.g., trend or randomess of data may be under investheation.

It is also mell to point out that the conclusions drawn from the illustrative axmaple may seem trivial, however, each example conclusion presents only a minute piece of information axtending that which is already known about the case under investigation. That is to say, the effectiveners in use of techniques in this way comes by way of construction of an overall view of the case by means of atatistics. This implies application of many statistical techniques in many different ways to the data avallable. Fortumately, once a data base has been constructed and the statiatical techniques selected, this becomes a rather simple and automatic procedure.

The illustrative exmple presented here concerns investigation of the relationship between the set of values from "collected data" and the set of values assignad by a criteria tatement. In the context of the previoun discussion, Table 3 provides a stacemat of structural loading criteria.

Criteria: Foilowing table for average pressure coafficients shall be used for calculating prameures on external surfaces of buildings.

Location of Wall	$\frac{C_{p e}}{0.8}$
Windward wall Leeward wall, both height-width and height-langth ratios 2 2.5	-0.6
Other buildings	-0.5
Side Walls	-0.7

Table 3: Criteria Ior External Pressure Coefficients for Walls, C_{p}^{5}
Some of the data related to this criteria acquired from wind tunnel testing is provided in lable 4. In this table the external pressure coefficient on a structures wall is tabulated for two angles of incidence (0 and 45°) to the building wall A with the unprimed letters representing data for building sides of 0° of incidence and the primed letters representing data for building sides of 45° of incidance.

Table 4: Structural Configuration and External Pressure Coefficient $C_{p e}$ at Angles of Incidence of 0° and $45^{\circ} 6$

For this illustrative axample it is to be determined if there is a significant difference betwean the numbers representing the criteria and those derived from the mall amount of available wind tunnel data. This is parhape better stated by inquiring of some atatistical measure of the representation of the wind tunnel data by the criteria. However, it is important to note here that the numbers of Table 3 and Table 4 do not represent randoa sample values from a general population. For this illustrative example it is asamed that there exist ten categories of atructural configuration defined by the h, b, L ratios of Table 4. In addition it Is asaumed that initialiy a number of structuras in each category are deaigned on the baeis of the data of Table 4. Ac a latar date the samannmber of structures in the reapective categories are designed on the bagis of data of Table 3. There exists then a population of designe P_{1} asnociatad with Table 3 and a population of designe P_{2} essociated with Table 4. Suppose then a random sample of designs is taken from P_{1} and P_{2} being careful to select one and only one design from each category of the two populations. In effect then the tabulation of design values for $C_{p e}$ from population P_{2} results in Table 4 and to cach value of Table 4 correaponds a value of Table 3. From this discusaion, one may eurmise that the axmple is quite artificial, howevar, one must note the sbjective of the consideration is to determine in some atatistical way the difference between a statement of criteria and a amall amount of data available for evaluating the criteria. As a matter of fact the mall amount of available data may have been used in angendering the criteria.

The "atatiatical measure" for examining the difference in the artificial constructed populations P_{1} and P_{2} is the Wilcoxon signed rank teat ${ }^{2,7}$. This teat is very likely not the most effective test that might be applied in this inatance, however, it is easy to apply and ahould yield some information relative to the question being asked. The teat assumes samples of paired replicater with a model defined by

$$
\begin{equation*}
z_{i}=Y_{1}-X_{1}=\theta+a_{1} \quad 1=1, \ldots, n \tag{5}
\end{equation*}
$$

whera

$$
\begin{aligned}
& Y_{1} \text { - ample values from population } P_{2} \\
& X_{1} \text { - aample valuea from population } P_{1} \\
& \theta^{-} \text {unknown parameter of interest (treatment" effect) } \\
& e_{1} \text { - unobservale mutually independent random variables from a } \\
& \text { continuous population symeatric about } 0
\end{aligned}
$$

The hypotheais to be tanted is

$$
\begin{equation*}
H_{0}: \theta=0 \text { against the alternative hypothesis } H_{1}: \theta \neq 0 \tag{6}
\end{equation*}
$$

If the hypothesis is accepted at prescribed level the criteria of Table 3 will be considered an adequate representation for the data of Table 4 and if the hypotheala is rejected the criteria will be considared inadequate for representation of the date. It should be cautioned that (1) a level of eignificance for the test is somawhat arbitrary at this point and no apecific
guidance is available for selection of a level that will provide a soild confidence in acceptance or rejection of H_{0} and (2) the data in not completa. Utiliziang the tent atatistic T^{+}for mall amples and T° for large samples where

$$
\begin{aligned}
& T^{+}=\sum_{1=1}^{n} K_{1} \Psi_{1} \\
& R_{1}-\text { the rank of }\left|z_{1}\right| \quad i=1, n \\
& \psi_{1}=1 \text { if } z_{1}>0 \\
& n-\text { if } z_{1}<0 \\
&=\text { the sampe oize }
\end{aligned}
$$

and

$$
T^{*}=\frac{T^{+}-[n(n+1 ; / 4]}{\left[\left(n(n+1)(2 n+1)-\frac{1}{2} t_{j}\left(t_{j}-1\right)\left(t_{j}+1\right)\right] / 24\right]^{\frac{2}{2}}}
$$

Selecting the level of eignificance to be 0.01 and considering various combinations of the data of Table 4 matched with the criteria of rable 3 the reaults are tabulated in Tabie 5.

Criteria againgt	n	T^{*} or T^{+}	Decision
A	9	45	reject H_{0}
B	1	1	no table values
C	7	22	accept H_{0}
D	7	22	accept H_{0}^{0}
A^{\prime}	10	0	reject H_{0}
B^{\prime}	4	4	accept $\mathrm{H}_{0}^{\text {O}}$
C^{\prime}	10	55	raject $\mathrm{H}_{0}^{\text {O}}$
D^{\prime}	10	55	reject $\mathrm{H}_{0}^{\text {O}}$
ABCD	24	3.34	reject H_{0}
$A^{\prime} B^{\prime} C^{\prime} D^{\prime}$	34	2.64	reject H_{0}^{0}

Table 5: Tabulation of Statiatics and Decision for the Wilcoxon Sigaed Rank Test for $\alpha=0.01$ (two tail test) For Criteria and Data on the Eterall Prassure Coafficient.

It will be noted that the criteria is apparently an adequate description for C in three of the nine cases tested. Again some caution needs to be exificised in drawing conclueions from the illustrative example ince there in little guidance available on levela of test oignificance and the limited amount of data.
7. CONCLUSIOS. The above represents a very preliminary basis for a statistical examination of the load and failure of atructuras and a rational approach to exmining available information related to loading criteria. The next stage in the development will consider conatruction of a data base of available data along with establishing broader group of statistical techniques. This should lead to the consideration of mathematical pattern language in the correlation of collacted date and in the utilization of appropriata atatimtical technique: on the collected data. In addition it in anticipated that more advanced mathematical techniques e.g., in the area of combinatorial methoda will be used for inventigating ganeral relationahips anoget the diverse pleces of datum.

The ideas expreased above form a basis for a rationale for the examination and selection of load criteria. The rationale is based upon a consiatent and thorough statiatical analysis of available load data and failure data. Given the statmant S representative of a atatemant of load criteria the validity of S is deduced frow the consiatent and thorough statistical analyais of sil available data. Work to date dascribed above is a firgt step in the rationale development.

Acknowledgement

The author would like to express his apprectation to Dr. W. E. Fiaher of the Structural Mechanica Branch at CERL and CERL for their support during this study.

References

1. Marritt, R, G., "A Statistical Approach to Loading and Failure of structures," CERL Technical Report to be published.
2. Conover, W. J., Practical Nonparametric Statiatics, John Wlley and Sons, Inc., 1971.
3. Stavens, S. S., "On the Theory of Scales of Measurements," Science, 103, pp. 677-680.
4. Walsh, J. E., Handbook of Nonparamatric Statistics, Vol. I. D. VanNostrand Company, Inc. 1962.
5. "Americun National Standard Building Code Reguirements for Minimum Design Loads In Buildinge and Other Structures" ANSI A58.1 - 1972 American National Standerds Institute Inc. New York, Naw York 1972.
6. Wind Forces on Structures, Final Report, Task Comititee on Wind Forces Comittee on Loade and Stresses, ASCE Paper No. 3269, Transactions of ASCE, Vol. 126, Part II, 1961, pp. 1124-11.98.
7. Hollander, M., and Wolfe D., Nonpsrametric Statistical Mathods, John Wiley and Sons Inc. 1973.

Paul D. Flynn
Pitman-Dunn Laboratory
Frankford Arsenal
Philadelphia, Penneylvania

Abstract

ABSIRACT. In connection with a modernization program on the manufacture of mall caliber ammunition, it wa recognized that ballistic pressure measurements would have to be autometed in order to keep pace with increased rates of production. Copper crusher pressure gages with individual maacurements of compressed cylinders would be too slow. This paper deals with a feasibility study on the use of electrical resistance strain gages for quality asurance testing of ammanition.

Although the method of using external strain gages to determine internal baliistic pressures is well known, a new arrangement of sirain gages was developed to masura directly the quantity ($c_{\theta}+v \varepsilon_{2}$) on the outer surface of a test barrel (where $\theta_{\theta}, \epsilon_{2}$ are the circumferential and longitudinal atrains, respectively, and v is Poisson's ratio). From Hooke's law, the combined strain signal was proportional to the circumferential atress in the barrel at the outer aurface. Using Lame's solution, this stress was related to the internal pressure. Thus, the strain gaged test barrel acted as its own pressure transducer.

Experimants were designed to compare the results of ballistic firings with chree types of amunition, two test barrels, and pressures at several locations. It was concluded that the strain gage method is feasible for acceptance teating of amanition.

NOTE. Published by the Society for Experimental Stress Analysis in its Journal on Experimental Mechanics, Volume 15, 1975.

STATISTICAL INVGSTIGATION INTO PULGE CHARGING OF NICKSLCADHIUW BUTHERIES

Walter Kasian Maintemance Directorate and
Givwin Biser
Avionics Laboratory
U. 3. Arwy Electronics Command Fort Monmouth, New Jersey

ABSTRACT. The common mothods of charging vented aircrait nickel-cadmium batteries are constant current, constant potential and modified constant potential (current limited). However, through continuous recharging uy these methods, nickel-cadmium batteries develop a "memory effect" caused by passivation of the battexy's positiva cell plate material (nickel-oxide) and "fadeout" caused oy crystal growth of the negative cell plate material (cadmium). These tiwo phenomena gradually and continually lessen battery charge accoptance which in turn lessens the battery output.

Pulse charging, however, has shown a significant effect in eliminatin battery "Iadeout" and "memory eifect". Thus pulse charginc can eliminate the required periodic cycling to rejuvenate the oatteries and possible increase the dattery cycle life. The pulse charsing of nickel-cuamiwn butteries has been completed on two new and two used datteries in all possible comoinations of the tollowing charge variaules: three different pulse amplitudes, three diliferent charge rates and two difierent per-cent ovorcharge rates.

This investigation entails analysis of the mean response (oattery output) and response variability to determine the optimum combination of pulse amplitude, cilarie rate and perment overchare in chargins now and used nickel-cadmium oatteries. Similar analysis is performed to determine the optimum combination of the variables for ereatest battery efficiency.

1. InTRODUCHION. The Army nickel-cad.iium oattery, on which this investifjution was performed, is nomenclatured as the $B B-433() / U$, is rechargeavie and is rated at 34 anperehours; that is, it is capable of supplyine 34 auperes of current at a constant rate for 1 hour at a nominal voltace of 24 volts. This is just over 000 watts of power. The oattery is used primarily to start Army aircraft and to
supply power to airborne electronics equipwent and the Vulcan Air Detense System.

The reason an investigution was performed on this oattery is because of its hi, ${ }^{\text {of }}$ density, approxinately 5,000 of these vatteries are deployed ana decause of the severe maintenance prooleus encountered with these batteries. After every 100 hours of use, these vatteries have to come into maintenance shops for reconuitioninc which cau take anywhere from 20 to 30 hnurs it the vatteries are jooc. The reason for periodic maintenance is necess tated oy the foct that the present recharent techniques, constiont current and modified constant yotential, whether in a battery operatin ${ }_{0}$ system or akintenance siop jrauually lessen battery chare acceptance which in turn lessens battery output. rulse charoine hoiever eliminates the maladies associated with contant current or constint potential charging, i.e., tadcout (cudimium crjstal groitio on tic u:tiery noeative plates) anu menory efiect (nassi-vition or the nicicl-oxide on the vaticr: yositive lates).

The three different charoins metnods are de icted in wieure 1. As constant current inrlies, a constint current is applied to the uattery fior a siecilied line, usually liuited to the time that the aattery receives ils riated capacitir. In modified constant rotential, the sattery ura..s current until it is ch:isse to a cervin specilied voltite. 'Ihe naximum current is usually limited to tide
 can be oi any amplituue with an averase injut value, as in this case up to lie outter; satins oi 34 ampere-iours.

The pulse chargin of the $3 B-433() / u$ is derictes in Fi, iure 2. The averaye main current ($I_{k i}$) iniut at an wulse
 the viltery recuives approxiantel in ion or its cas acity. It is iinen overchareed at one-thirdthe wain cuirent by a crrasiu 活 of the time it underwent its amin chur, e. In this cose, at 20\% and 40. overchare. jecause the vattery is not 100;0 eilicient, overchar,int is recuired so that we can ootain at least 100, of the vattery's ratec outiut on dischirete. The utomitic sul:se chireer, mociel 3000 A , developed oy Utiah Research and hevelopaent Comeanc specifically for the aray was $=m$ loyed for all tine indse chargines in this investi, ition.

After chirring and a iour nour rest perioa, tice vatherjes wert uisciarged at half tineir ratea capacity,

17 anperes, to a battery end voltaje of 19.2 volts, the point at which 100\% of the vattery's capacity his been removed. all chareine and dischureing was monitored oy external test equipment to provide data accuracy to 1%. The $3 B-433$ dischare characteristic is depicted in Figure 3.
2. STRUCNURE OM RHE MOMH2. This experiment consisted of the followine lactorin $A=$ reak Hulse, $B=$ Charge Current $C=\%$ Topping or Overcharge and D = Battery Type (new or used). The factors and the level of these factors are described in Figure 4. Since the levels of the factors are at fixed values, the model is thus a tifxed model. lthe values of the output (amperemours) and efficiencies ovtained from BB-433's of two dit'ferent manufacturers (batteries ${ }^{\prime \prime} 1$ and H2 of manuracturer x and batteries \#3 and \#4 of manufacturer Y) are shown in wifures 5 throush 8. Two ouservations were outained for each combination of the difierent levels. sitiiciency was caloulated as the ampere-hour output divided oy the anpere-hour input for each battery charge - dischurge cycle.

The mathematical model adopted can be expres.jed as follows:

$$
\begin{aligned}
X_{I J K I(M)}= & U+A_{I}+B_{J}+C_{K}+D_{I}+A S_{I J}+\Delta C_{J K}+C D_{K I}+ \\
& \Delta C_{I K}+A D_{I L}+B D_{J L}+A B C_{I J K}+\cdots+\Delta C D_{J K L}+ \\
& E_{I J K L(M)}
\end{aligned}
$$

$$
\frac{1}{K},{ }^{J}: 0,1,2
$$

where $X_{[J K L(M)}=$ observed random variaule (output or efficiency) $U=$ grand average or eiliect due to the mean

 $E_{I J K L(M i)}=$ random orror
Hypothesis tested:
$H_{1}: A_{1}=0$ for all I
$H_{2}: B_{J}=0$ for all J
$\mathrm{H}_{3}: \mathrm{O}_{\mathrm{K}}=0$ 100 all K
$\mathrm{H}_{4}: \mathrm{D}_{\mathrm{L}}$: 0 for all I
H_{i} : $A^{B_{I J}}=0$ for all 1 and J
Similarly for the interactions $B C_{j k}, O D_{K C,}$, otc.

Conoideration was given to confounding the $3^{2} 2^{2}$ design. Since we are limited to two ouservations per coll, we have, alto ether only seventy-two (72) ooservations. Confoundin. would introduce unwarranted complications and would be countierproductive. Confounding was thus avoidea.

The results of the analysis of variance are shown in Figures 9 througin 12. The resulte indicate that for the output of biatteries iil knd $;$ 2, tine only siciniticant differs race exists in the intoraction oetvieen factors C (; overcharge) and D (battery condition; $F_{.95(9,40)}=2.83$. while for the efliciency, detined as per cent output divided oy input in aupere-hours, times 100, or oatteries ifi and $\# 2$ the interaction between factors C anc D was sicniticant and the main effect C was overwhelruingly slenificant.

For the output of batteries $\$ 3$ and $\# 4$, signiricant differences existed in the main eifect C, main ef.ect D and the interaction Detween ef'ects C and $D_{i} \quad F_{.95(9,4 u)}=2.83$.
 (\% overcharee) and the interaction oetween eftects B (char rate), C (\% overcharge) and D (battery type) showed bignificant differences at the 95:\% level.

Though the F test performed above may reject the null hypothesis that the means are equal, it does not tell us which means are si, nilicantly diflerent from which. Schefic.' proposed a system of procedur'e for this problew wich we shall smploy.
 Suppose trit we haye esidatios x_{1} ot true means ti, with variances $s^{2} / n_{1}, s^{2}$ vein.j ustimated vith f degrees oi freedom. "ic ase interested in contrasts, defined as

$$
\begin{equation*}
0=\sum_{i}^{k} c_{1} E_{1} \tag{3.1}
\end{equation*}
$$

where
is

$$
\text { Whe contrast } \theta \text { is estimated as }
$$ $\sum_{i} c_{1}=0$, Whe contrast θ is estimated as

$$
\begin{equation*}
H=\sum_{i}^{x} c_{i} \bar{x}_{i} \tag{3.2}
\end{equation*}
$$

With variance

$$
v[H]=\sum_{i}^{k} c_{i}^{2} \frac{o^{2}}{\Sigma_{1}} .
$$

The ostimated variance of is is

$$
\begin{equation*}
\hat{V}[H]=\sum_{i}^{\frac{x}{n}} \mathrm{c}_{1}^{2} \frac{\mathrm{~s}^{2}}{y_{i}}=\mathrm{s}^{2 k_{i}} \frac{c_{i}^{2}}{n_{i}} . \tag{3.3}
\end{equation*}
$$

Scheffe's result is that we can construct ($1-\infty$) confidence limits for all possible contrasts θ,

$$
\begin{equation*}
P_{r}[H-S \sqrt{\hat{V}[H]}<\theta<H+B \sqrt{\hat{V}[H]})=1-\alpha \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{s}^{2}=(k-1) \mathrm{F}_{1-\alpha(k-1, f)} . \tag{3.5}
\end{equation*}
$$

If for each experiment we perform, we construct contidence limits according to (3.4), then, in a iraction ($1-a$) of these experiments, all the contidence stateuents will de correct; in a fraction a, one or more of the statements will be incorrect. The Scheffe raethod, furthermore, willows for comparisoas of means when the numuer of ouservations, n_{i}, for the means are dif'ierent.

Example: Let us sujpose the following megns are ootained: $x_{1}=24 ; x_{2}=22 ; x_{3}=21 ; x_{4}=17 ; x_{5}=16$ and $n=4$ replications; $k=5$ treatments, $s^{2}=4 .>0$ and number of degrees of freedon $=12$. Suppose we wish to test the contrasts x_{1}, x_{2}, x_{3} versus x_{4}, x_{5}. Therefore:
$H=2 c_{1} \bar{x}_{1}=2 x_{1}+2 x_{2}+2 x_{3}-3 x_{4}-3 x_{5}=35 \quad\left(\varepsilon c_{1}=0\right)$
and $\nabla(H)=\left(2^{2}+2^{2}+2^{2}+(-3)^{2}+(-3)^{2}\right) 8_{8}^{2} / n=(30)(4.5) / 4=$ 33.75 and therefore $V(H)^{+}=5.81$. To determine if a contrast is aicnificant, we wish to know it $\mid \mathrm{H} / / \sqrt{V\langle H\rangle}>5$ where S^{2} is described in eguation 3.5. Since $j H \mid / \sqrt{V(H)}=6.02$ and $S=r(x-1) \mathrm{F} .95:(4,32)=3.61 ; 6.02>3.61$ and thererore the contrast is sienijicant. The $95, j$ confidence interval for the true value of the contrast, θ, cande constructed usine equation 3.4. For our example the 95% continence interval for the true value of the contrast, e, will oe $14.03<\theta<55.97$. Thus the difference vetween x, x, x_{3} and $x_{4}, x_{\text {w }}$ will lie vetween the
interval just calculdtea, at $95 ; 0$ conficience.

Pitures 13 through 16 show the means, \bar{x}, stanuard deviations, σ, and the numper of ouservations, it, of the dirferent levclis ros voth the outwut and efficiency of vatteries \#1 throuth *4. These reans ure employed in the scheit'e nethod to evaluate the estimate, H , of the contrast and construct the 95.j confidence limits ior several contrasts. The results of the schetiti method are Eiven in litiure 17 and 18 sor batteries irl and $i 2$ and batteries \#3 and $\ddot{\#} 4$, rospectively. Batterics it 1 and y 2 were manuiacturcd by General ilectric and oatteries \#3 und if 4 were manuractured oy Sonotone Inc. 'ihe asterisked contrasts, H, in fisures 17 and 18 indicated si:nificant difierences at $95 i$ the 95: conildence limits for the contrasts are oiven.
4. CUNCLUSIONS. For oatteries il anu it 2 (irenera: slectric), tre jcheíc results, jisure 17, indicate sijeint difference, on the average, in output vetween cosoinations of contrasts; however, a sigijiricant diricerence exirts in the efficiencies as evidenced, in particular, in contrasts 1 and 2. Tius, analyzing the ichetife results, one can inier: linat for pulse charsine the use oi 40% overcharsc does not si,nificantly increase oattery output out is sieniricantly less elficient than 20% overchareing and tius inaicating large charge curreat losses throufh coiversion oi charte eneryy into heat. so signiiicant effect of iactor $;$ (iulse a:ijlitude) or fiactor B (chare current) is noticed on bitter: output or elificiency.

For oatteries .4 and $\# 4$ (Sonctone), the jeherie results for fulse chsreine, rigure 18, indicate a signiliciuntly Misticr averabe output at 40\% overcharie ti.an at $20, \dot{i}$ ior identical contrasts as for the ieneral ilectric outteries, but still the 40% overcharge was sionificantly less cillicicut than 20, overcharese. Also, the nevi jonutone Datiery had a oetter charee acceptance and thereíore ereate:
 the olu uittery had an averaje output oi 40.70 aupere-hours (Fi, ure $1 j$, Level d_{1}). A. ain, iactor A (puise amolituae) aus bactor s (chare current) had no siexilicat exlect on oatter; output or eriicienc.
in coup:ujison, tur tie icucral ilectric uatterics t!e \therefore iand mon lor lhe outjut was 38.16 ampere-hours anu the eiricjency was \% $\% .67 \%$, while lo. the Sonotone untteries tine ciand man lor the output ons 4\%. 4 ampere-hours and the elticiency was 74.67%. (The nominal ratin, o: tiece o:!terios is 34.0 ampere-hurs).
in sumany, for pulse chareino, the Generai slectric witeries, on the averaje, provided 12.2% sreater out ut tian its ratine, while the jonotone provincd zjo oulpul. so noticeable oattery outiut deeradation :is ooserved as each vattcry underwent 36 randon pulse charie - dischare e wicles (titures , ind 7). sasta on the test, tie Scierie results, desisn mmeticality, the need io: a quicin uatter: rechiore tinac, and irom tiac staupoint of encré conscivetion, th: oftimun pulse chargint $L=v e l s$ woula ot 100 anderes jeak Mulse, $\dot{4}$ amperes main/ll. \because, andes overc:arce current at a 20 overchare ratc.

Future tests s:ould be comucted to netem:nine inaividual rochar ine eflectis of these ojtinum pulse charging levels on B.3-iF: valteries alter they have unuergone the present rield belvice rech: re concitions (sonctant current, etc.).

rIGUKis 1

HICKI-CADMILM BATTERY DISCHARGE CHARACTERISTIC

Factore and Levele of Pulee Cbareling Experiment
$A=$ Pagk Pulee
$a_{0}-100$ Auperes
$a_{1}=150$ Amperes
$a_{2}=200$ Apperes

$$
\begin{aligned}
& c_{0}=20 \% \\
& c_{2}=40 \%
\end{aligned}
$$

$$
\begin{aligned}
& B=\text { Charge Current (Ampe)* } \\
& b_{u}=17 / 5.7 \\
& 0_{1}=25.5 / 8.5 \\
& b_{2}=34 / 11.3
\end{aligned}
$$

D E Battory Tpe

$d_{0}=\mathrm{m}_{\mathrm{N}}$
$d_{1}=$ Used

* The charbe current is divided into main/overciarare curient, e.e.., $0_{0}=17 / \geqslant .7$ indicates 17 aujeres main charge and $0, \frac{7}{}$ amperes overcharge current

RIGURE 4

	${ }^{\text {d }} 0$						$\mathrm{d}_{\mathbf{i}}$					
	c_{0}			${ }^{1}$			c_{0}			c_{1}		
	b_{0}	b_{1}	b_{2}	b_{0}	b_{1}	b_{2}	b_{0}	b_{1}	b_{2}	b_{0}	b_{1}	b_{2}
${ }^{\mathbf{a}} 0$	$\begin{aligned} & 36.55 \\ & 35.70 \end{aligned}$	$\begin{aligned} & 36.27 \\ & 35.70 \end{aligned}$	$\begin{array}{l\|l} 38.53 \\ 36.55 \end{array}$	$\begin{aligned} & 53.83 \\ & 35.55 \end{aligned}$	$\begin{aligned} & 60.07 \\ & =7.40 \end{aligned}$	$\begin{aligned} & 37.97 \\ & 36.27 \end{aligned}$	$\begin{aligned} & 38.53 \\ & 37.12 \end{aligned}$	$\begin{aligned} & 41.65 \\ & 36.55 \end{aligned}$	$\begin{aligned} & 39.95 \\ & 38.55 \end{aligned}$	$\begin{aligned} & 39.67 \\ & 38.82 \end{aligned}$	$\begin{aligned} & 37.12 \\ & 37.40 \end{aligned}$	$\begin{aligned} & 40.80 \\ & 37.40 \end{aligned}$
${ }^{\text {a }} 1$	$\begin{aligned} & 36.83 \\ & 36.55 \end{aligned}$	35.42	36.27	36.55	35.13	$\begin{aligned} & 37.12 \\ & 36.27 \end{aligned}$	$\begin{aligned} & 55.25 \\ & 37.12 \end{aligned}$	$\begin{aligned} & 38.53 \\ & 36.83 \end{aligned}$	$\begin{aligned} & 39.10 \\ & 37.40 \end{aligned}$	40.60 35.70	41.65 57.35	$\begin{aligned} & 39.10 \\ & 36.93 \end{aligned}$
a_{2}	$\begin{aligned} & 34.28 \\ & 35.42 \end{aligned}$	34.00 33.15	35.98 36.27	36.27 37.12	36.27	41.93	38.82	41.37 39667	39.67	35.98	37.97 36.83	38.25 55.83

Output Table

C: \% Topping Charge
D: Battery Type
$d_{0}=$ New (\#1)
$d_{1}=$ Osed (\#2)

$$
\text { FIGUTï: } 5
$$

	d_{0}						${ }_{1}$					
	${ }^{\circ} 0$			c_{1}			c_{0}			c_{1}		
	${ }^{\mathbf{b}}$	${ }^{b_{1}}$	b_{2}	${ }^{\text {b }}$	b_{1}	b_{2}	b_{0}	b_{1}	b_{2}	b_{0}	b_{1}	b_{2} :
${ }^{3} 0$	99.50 83.92	$\begin{aligned} & 88.92 \\ & 86.61 \end{aligned}$	$\begin{aligned} & 91.52 \\ & 91.74 \end{aligned}$	$\begin{aligned} & 02.05 \\ & 67.82 \end{aligned}$	$\begin{aligned} & 95.84 \\ & 66.83 \end{aligned}$	$\begin{aligned} & 59.89 \\ & 69.95 \end{aligned}$	$\begin{gathered} 87.09 \\ 89.04 \end{gathered}$	88.82 86.28	$\begin{gathered} 58.54 \\ 86.47 \end{gathered}$	56.26 64.32	65. 2 62.41	61.95 66.73
${ }^{a_{1}}$	$\begin{aligned} & 87.73 \\ & 88.97 \end{aligned}$	$\begin{aligned} & 86.81 \\ & 84.94 \end{aligned}$	$\begin{aligned} & 86.54 \\ & 88.01 \end{aligned}$	$\begin{aligned} & 68.86 \\ & 63.89 \end{aligned}$	$\begin{aligned} & 60.93 \\ & 65.53 \end{aligned}$	65.79 63.64	126.49 85.73	86.06 87.23	87.39 86.14	58.19 64.17	54.04 67. 00	60.77 67.06
a_{2}	$\begin{aligned} & 81.12 \\ & 85.74 \end{aligned}$	$\begin{aligned} & 85.74 \\ & 79.33 \end{aligned}$	91.18 86.15	65.20 68.06	$\begin{aligned} & 61.69 \\ & 66.38 \end{aligned}$	$\begin{aligned} & 50.73 \\ & 69.88 \end{aligned}$	87.20 93.25	90.13 89.47	85.42 87.49	62.03 64.17	68.55 65.81	64.15 65.93

Efficiency Table

3xI $6 x 2778$
$\ddot{0} \quad \ddot{0} \quad \ddot{0}$
FACTORS :
A: Peak Pulse

$$
a_{n}: \quad 100 \mathrm{amps}
$$

$$
a_{1}: \quad 150 \mathrm{amps}
$$

$$
a_{2}: \quad 200 \text { amps }
$$

C: \% Topping Gharge

B: Charge Current

$$
\ddot{m} \quad \ddot{0} \dot{0} \dot{\square}
$$

$$
r=\because
$$

$$
\begin{aligned}
& \text { N } \\
& c_{1}=40 \%
\end{aligned}
$$

	d_{0}						${ }^{\text {d }}$					
	c_{0}			c_{1}			${ }^{\circ}$			${ }^{c} 1$		
	b_{0}	b_{1}	b_{2}	${ }^{\text {b }}$	${ }^{\text {b }} 1$	b_{2}	b_{0}	b_{1}	b_{2}	b_{0}	b_{1}	b_{2}
${ }^{a_{0}}$	42.78 43.07	$\begin{aligned} & 43.07 \\ & 41.65 \end{aligned}$	43.15 44.77	$\begin{aligned} & 43.07 \\ & 40.23 \end{aligned}$	$\begin{aligned} & 47.88 \\ & 46.18 \end{aligned}$	$\begin{aligned} & 45.62 \\ & 43.35 \end{aligned}$	$\begin{aligned} & 33.28 \\ & 31.96 \end{aligned}$	$\begin{aligned} & 58.08 \\ & 33.86 \end{aligned}$	$\begin{aligned} & 36.44 \\ & 32.10 \end{aligned}$	$\begin{aligned} & 52.72 \\ & 49.02 \end{aligned}$	$\begin{aligned} & 41.06 \\ & 41.23 \end{aligned}$	$\begin{aligned} & 44.91 \\ & 43.60 \end{aligned}$
${ }^{\mathbf{a}} 1$	41.08 40.80	45.05 44.77		44.48 43.35	43.92 43.35	44.77 41.93	34.13 36.30	35.70 34.85	$33: 98$ 34.55	46.17 44.47	47.60 47.46	48.88 41.71
a_{2}	$\begin{aligned} & 44.20 \\ & 43.07 \end{aligned}$	$\begin{aligned} & 43.63 \\ & 39.95 \end{aligned}$	$\begin{aligned} & 45.05 \\ & 42.22 \end{aligned}$	$\begin{aligned} & 44.20 \\ & 42.78 \end{aligned}$	$\begin{aligned} & 50.15 \\ & 38.25 \end{aligned}$	44.20 42.78	38.29 34.80	37.83 31.17	34.93 34.36	53.66 44.47	41.51 43.07	40.58 46.43

Output Table

$$
\begin{aligned}
& \text { D: Battery Type } \\
& d_{0}=\text { New (\#3) } \\
& d_{1}: \text { Used (解) }
\end{aligned}
$$

rrent
amps
amps
PIGURE: 7
FACTORS:
A: Peak Pulse
$a_{0}: 100$ amps
a_{1} : 130 apps
$a_{2}: 200$ anps
PIGURE 7

$$
C:
$$

$$
\begin{aligned}
& c_{0}: 20 \% \\
& c_{1}: 40 \%
\end{aligned}
$$

	${ }^{\text {d }}$						d_{1}					
	${ }^{0}$			c_{1}			${ }^{0}$			${ }_{1}$		
	b_{0}	b_{1}	b_{2}	b_{0}	${ }^{\text {b }} 1$	b_{2}	${ }^{6}$	b_{1}	b_{2}	b_{0}	b_{1}	b_{2}
${ }^{a_{0}}$	$\begin{aligned} & 81.80 \\ & 81.35 \end{aligned}$	$\begin{aligned} & 88.08 \\ & 88.80 \end{aligned}$	$\begin{aligned} & 84.38 \\ & 86.30 \end{aligned}$	$\begin{aligned} & 65.86 \\ & 63.55 \end{aligned}$	$\begin{aligned} & 59.18 \\ & 66.26 \end{aligned}$	$\begin{aligned} & 61.82 \\ & 63.10 \end{aligned}$	$\begin{aligned} & 82.58 \\ & 85.99 \end{aligned}$	$\begin{aligned} & 56.10 \\ & 86.19 \end{aligned}$	$\begin{aligned} & 78.53 \\ & 87.38 \end{aligned}$	$\begin{aligned} & 56.97 \\ & 58.96 \end{aligned}$	$\begin{aligned} & 64.95 \\ & 80.40 \end{aligned}$	$\begin{aligned} & 66.24 \\ & 68.23 \end{aligned}$
a_{1}	$\begin{aligned} & 81.83 \\ & 64.76 \end{aligned}$	$\begin{aligned} & 84.52 \\ & 87.78 \end{aligned}$	$\begin{aligned} & 88.34 \\ & 68.34 \end{aligned}$	$\begin{aligned} & 60.85 \\ & 90.12 \end{aligned}$	$\begin{aligned} & 68.63 \\ & 66.39 \end{aligned}$	$\begin{aligned} & 69.74 \\ & 68.40 \end{aligned}$	$\begin{aligned} & 62.02 \\ & 80.39 \end{aligned}$	$\begin{aligned} & 81.75 \\ & 87.80 \end{aligned}$	$\begin{aligned} & 84.22 \\ & 81.19 \end{aligned}$	$\begin{aligned} & 62.59 \\ & 61.80 \end{aligned}$	$\begin{aligned} & 62.50 \\ & 60.30 \end{aligned}$	$\begin{aligned} & 60.36 \\ & 82.19 \end{aligned}$
${ }^{a_{2}}$	$\begin{aligned} & 72.21 \\ & 86.49 \end{aligned}$	$\begin{aligned} & 87.26 \\ & 84.64 \end{aligned}$	$\begin{aligned} & 87.48 \\ & 89.83 \end{aligned}$	91.51 67.26	$\begin{aligned} & 58.59 \\ & 58.49 \end{aligned}$	$\begin{aligned} & 64.34 \\ & 81.80 \end{aligned}$	$\begin{aligned} & 78.44 \\ & 87.12 \end{aligned}$	81.64 88.17	84.36 82.46	56.50 62.44	92.98 65.78	71.92 66.52

Efficienéy Table

FACTORS:

 D: Battery Type " $0 \stackrel{\circ}{0}$ \begin{tabular}{l} (t\#) pasa

(ع\#) man

\hline
\end{tabular} reent

amps
amps
FIGUKis 8

Amalyain of Variance mble
 (Batterice /\$1 and (N, outpat)

sovace	D. ${ }^{\text {d }}$	89	US	PRayo
A	2	53.7245	26.8623	1.4900
3	2	5.5787	2.7884	0.154;
c	1	LU.0ly 0	10.8190	0.6002
D	1	35.9128	35.9128	1.4902
AxB	4	42.1819	10.5455	0.5850
AxC	2	64.5722	32.2601	1.7910
AD	2	75.4045	37.7003	2.0915
BxC	2	25.8343	7.91 .12	0.43*2
BxD	2	3.0390	1.5195	0.0843
Cxd	1	103.4641	103.4641	5.7396
Acmec	4	55.4999	13.8750	0.7497
Ached	4	61.0004	15.4201	0.8554
AxCxid	2	19.5804	Y.7902	0.5431
BrCxD	2	22.2550	21.1275	0.6173
RTsimener	40	721.059	1u.deor	
Yorer	71	1290.6059		

FIGURE 9

Anmlyule of Variance Table

SOURCE	D.F.	88	MS	1 P RAITIO
A	2	82.4559	41.2280	0.8143
B	2	82.3685	41.1843	0.8134
c	1	4595.5113	9595.51 .13	203.4524
D	1	5.911	5.9111	0.1254
A \times B	4	115.6990	28.9848	0.6134
AxC	2	146.2346	T3. 1198	1.5507
AxD	2	266.2553	133.1277	2.8232
BxCC	2	44.7423	22.3112	0.4744
B \times D	2	0.3031	0.1516	0.0032
CxD	1	228.1604	228.1604	4.8386
AxCxa	4	183.2613	45.8153	0.9716
A \times BxD	4	132.6138	33.1535	0.7032
AxCedo	2	48.8554	24.48 .11	0.5180
BxCxD	2	346.9326	173.4663	3.6787
RESIDUAL	40	1886.1666	47.1542	
TOTAL	71	13165.4762		

IIGURE 10

Amalyule of Variance mable
 (Datteries \$3 and /4, Output)

80Un0	DS.	83	ms	F Ranto
A	2	12.4191	6.2096	0.3571
B	2	16.9933	8.4967	0.4000
c	1	501.2043	507.2643	29.1695
D	1	129.7398	129.7398	\%. 4605
A×B	4	51.1551	12.7899	0.17354
$A \times C$	2	7.7664	3.8035	0.2233
A D	2	3.5659	1.7830	0.1025
Buc	2	34.1900	17.4503	1.0388
Exd	2	25.1606	12.5803	0.7234
CxD	1	324.1483	324.1483	18.6397
Axtice	4	41.361%	10.3404	0.5946
Axtab	4	17.4804	4.3701	0.2513
AxCxD	2	9.5661	4.7632	0.2750
BxCxD	2	75.122y	31.0015	$2.27 / 2$
Residual	40	695.6048	17.3908	
TOTAL	71	2956.1498		

HIGUIE 11

905

Anciyete of Varipmoe thbla (Betterles \$3 and (H, EIfIcienay)

FIGUits 12

906

	Moen Output Reapopese (Anere - Hours) (3atierion \$/2 and (2)			
	\%	σ	$\begin{aligned} & \text { Btamance } \\ & \text { rexor of } \overline{5} \end{aligned}$	\square
0	39.33	5.73	1.27	24
a_{1}	37.97	4.01	0.82	24
2	37.25	2.08	0.45	24
${ }^{\circ}$	38.54	5.17	2.06	24
b_{1}	38.14	5.25	1.05	24
32	37.86	1.68	0.33	24
${ }^{\circ} 0$	37.79	3.57	0.60	36
c_{1}	30.57	4.89	0.81	36
${ }_{0}$	37.48	5.04	0.84	35
d_{2}	38.83	3.27	0.55	36

Grand meais $=38.16$

PIGURN 13

$$
\text { Griand mean }=76.37
$$

wICusen 14

	Sman Outpat Reapose (Ampere - Hourn) (Batteries \#3 and (4)			
	$\overline{\mathbf{x}}$	σ	$\begin{aligned} & \text { stumdard } \\ & \text { rreor of } \bar{x} \end{aligned}$	1
0_{0}	42.63	6.19	1.26	24
a_{1}	42.76	4.55	U.Y3	24
a_{2}	41.73	5.05	2.03	24
b_{0}	42.18	5.49	1.12	24
b_{i}	42.55	5.79	1,98	24
b)	41.3y	4.75	0.93	24
${ }^{0}$	39.39	5.48	0.91	30
c_{1}	4.1.70	3.36	0.56	36
${ }_{0}$	43.38	2.20	0.3'r	36
d_{1}	40.10	6.88	1.15	36

Grami mean $=42.04$

PIGURE 15

Mean Eriticioncy (\%) Reoponse (Batterien *3 and A)

	X	6	Standard Eruor of \bar{X}	N
0	73.46	- 11.66	2.33	24
${ }_{1}$	73.53	20.87	2.22	24
2	77.01	11.82	2.41	24
b_{0}	72.77	21.64	2.38	24
b_{1}	75.30	12.61	2.57	24
b_{2}	74.69	23.09	2.67	24
${ }^{\circ} \mathrm{O}$	82.90	8.00	1.33	36
${ }^{c} 1$	67.43	9.61	1.60	36
${ }_{0}$	'15.50	11.44	1.91	36
${ }^{\text {d }}$	73.83	11.49	1.91	36

Grand mean $=74.67$

PIGURE 16
(z) pue ti Saryaldyg 'oradoata tvaanao)

	$\overline{\mathbf{a}}_{0} \overline{\mathrm{a}}_{1} \overline{\mathrm{a}}_{2}$	$\overline{5}_{0} \overline{\mathrm{~b}}_{1} \overline{\mathrm{~b}}_{2}$	$\bar{c}_{0} \bar{c}_{1}$	$\overline{\mathrm{a}}_{0} \overline{\mathrm{~d}}_{1}$		Interval	$\begin{aligned} & E F \\ & \mathbf{H} \end{aligned}$	BICY Interval
1.	$10-1$	$10-1$	$1-1$	00	1.96	-6.86;10.82	28.11*	19.27; 36.95
2.	$10-1$	$10-2$	-11	00	3.54	-5.30;12.38	$-18.07^{\text {\% }}$	-26.91; -9.23
3.	$1 \quad 0-1$	$1 \quad 0-1$	$1-1$	1-1	0.63	-9.25;10.51	28.68*	18.80; 38.56
4.	$10-1$	$10-3$	$1-1$	-1 1	3.33	-6.52;13.21	27.54\%	17.66; 37.42
5.	$10-1$	$10-1$	-1	$1-1$	2.19	-7.69:12.07	5.02	-4.86; 14.90
6.	$10-1$	$10-1$	-1 1	-1 1	4.89	-4.99:14.77	$18.64 *$	-28.53;-8.75
7.	$\begin{array}{lll}-1 & 0 & 1\end{array}$	$1 \quad 0 \quad 1$	I -1	00	-2.18	-11.02; 6.66	22.89*	14.05; 31.73
8.	-1 01	$100-1$	-1 1	00	-0.62	-9.46; 8.22	-23.29*	-32.13;-14.45
9.	$1-10$	$1 \quad 0-1$	$1-1$	00	1.25	-7.58;20.10	26.98*	18.14; 35.82
10.	$1-10$	$100-1$	-1 1	00	2.82	-6.58:11.66	-19.20*	-28.04;-10.36
11.	1 -1 0	$1-10$	$1-1$	00	0.98	-7.86; 9.82	26.68*	17.84; 35.52
12.	\pm-1 0	$1-10$	-1 1	00	2.5\%	-6.30; ². 38	- 19.50%	-28.34;-10.66
13.	$0 \quad 1-1$	0 1 -1	1-1	00	0.22	-8.62; 9.06	24.52\%	15.68; 33.36
14.	0 1-1	$0 \quad 1$-1	-1 1	00	1.78	-7.06;10.62	-21.66*	-30.50;-12.82

SCHEFFE RESUETS (SOHOTONE, BATTERIES 3 and 4)

OPTICAL CHARACTERIZATION OF SURFACE ROUGHNESS

Eugene L. Church and John Mr. Zevada
Pitman-Dunn Laboratory
Frankford Armenal
Fhiladelphia, Penneylivanis

Abstract

There is conaiderable Army intereat in developins non-contact techniques for quantifying surface roughnean. Here we consider light acattering as a tool for deducias stasistical properties of surface microtopography with the aid of a nuitable electromagnatic ecattering formaliam. For alifhtiy rough curfacen the solution to the invarse scattaring problem may be written in terms of the power spectrum of the surface roughness viewed through a isindow covering the nominal wavenumber range from the reciprocal waveleagth of light on one extrem, to the reciprocal diameter of the probing bean on the otior. As illustrations of the method we consider the characterisation of two typea of residual roushneas on lager mirror surfaces: one-dimenaiomal periodic rougheas left by single-point diamond turning; and isotropic random roughaena left by more conventional polishing techaiques. 1. INTRODNCTION. The Axuy manufactures many high-quality optical componeats for lanar and pasaive aystems. The performence and uability of these components depende critically on their surface quality and atructure. There is a need for quick and maningful ways of testing these curfaces during manfacture and before uan. Surface microroughness is a very important parameter in determining the quality of such aurfaces; and this paper reviews the background and design of experiments to explore light scattering as a tool for masuring such surface microroughness.

Figure 1 indicates this need more fully. There are two principal methods of charactarizing the residual microroughness of optical aurfaces now in una: visual observation and stylus measurement. However, these methods have limitations as shown. What is neeted is a method that is fast and objective, which can be used by unakilled personnal or automated, aid which can meacure roughnessee In the submicroinch range - down to 10 to 100 Krma . Light acattering, an we will describe it, offere a posisible means for doins this.

Figure 2 showe an artiat's conception of how such a light-scattering device might work. It consiste of a laser light source on the left, a photomaltiplier detector on the right, and the mample under test in between. The lacer light reflects and acattara from the gample, but a mask over the datector blocke out the specularly reflected light and only allow the neattorad light to reach the senditive area of the detector. The output of the detector goes to a meter. A good surface will acatter little light and give a low readinge bad aurface will give more scattering and a high reading. In principle, the meter reading can be rolated quantitativaly to the roughness parametars of the surface, such as the surface variance.

Although it is easy to conceive of a device such as this, we do not know enough about the roughness characteristics of real surfaces at this tim to make such a device meaningful or reliable.

The purpose of this paper is to deacribe the design of a series of experiments which we are setting up at Frankford Areanal to ganerate the naceasary data base on various types of real surfaces, te amit ui to dasign and build and uae light-acattering devicen for aurface teat and evaluation. ${ }^{1}$
2. LIGHT SCATMERING. We have chosen light acattering as a technique because it providea a functional test of surface performance; it is an extremily aenative way of manaring amall deviatione of an optical medium from ita average behavior: The moat familiar examplas of this is Rayleigh scattering, which resulte from the acattering of sunlight from microparticles and density fluctuations in the atmosphere, and is reaponsible for the color of the blua aky and red sunset. The scattering we will consider today differa from aimple Rayleigh scattering in two ways: first wh consider the random deviations from a plane surface - a two-dimansional mirror - rather than a three-dimensional volume; and second, we include the posilbility that the adjacent acattering centars are correlated with each other. In effect, then, we will be oxamining "opalescentscattering" offects of the surface layer. ${ }^{2}$

Figure 3 aketches some of the undarlying phyaics involvad in the lightscattering procesa. Consider light incidant on a ainusoidal, grating-ilike surface. In this ceas the ecattered light is bunched into a series of discrete diffraction orders, whose angular positions are determined by the familiar grating equation shown, where θ_{i} is the angle of incidence and $\theta_{\text {a }}$ is the angle of acattering or diffraction. In the case of normal incidence, $\theta_{1}=0$, and the grating equation raduces to the form shown on the second line, where the integer $m= \pm 1, \pm 2-\cdots$ is the diffraction order.

The positions of the various diffractad orders is independent of the depth of the grating, but their intenaities depend atrongly on the depth. For a wak grating - one where the depth is much lese than the wavelength of iifht, which in the case of interest here - only the two first-order diffraction lines (m = ± 1) appear with any aignificant intensity. They appear at the aymetric anglen shown, and their inteneitiea relative to the incident intensity - the grating efficiancy e - in ahown below in the Figure. ${ }^{3}$ Here k is the wavenumber of the incident light and σ° is the variance of the surface roughnese.

We now see the thape of thinge to come - there mre two roughnese length scales in the scatterins problem: vertical and horizontal. The vertical roughness scale datermines the intengity of the scattering, while the horizontal roughness acale determines ite angular distribution.

Real aurfaces are not imple sinusoidal gratings. However, we can generate realistic eurfaces by making a Fourier superposition of elemental gratings such as considered here; by suming the scattering due to a large number of gratings with various wavelensthe running in various direction over the two-dimensional surface. In the case where the rwe depth of the grating is much lase than the wavelongth of light, the acattering of auch a composite surface is efuply proportional to the two-dimanional spectral density of the surface roughness. Thia is true whether the arface is described statisticaliy or deterministically. ${ }^{3}$

Figure 4 skatches the notation we will use in describing an arbitrarily roush surface. The average surface is the $x-y$ plane, and $C(x, y)$ is the deviaticin of the real aurface from that average, with variance σ^{2}. The power apectrum, W, is the average equare of the two-dimansionsl Fourier transform of \mathcal{G}, and is itself the twodimanaional transform of the surface autocorrelation function A. If the roughneas is dacribed an a atationary random function, A is then a function of the separation paramater, ρ. Specific examplea of W and A are given in a later figure.

Figure 5 givee the form for the diffarential scattering intenaity of a rough surface in tarm of ita power spectru, W, for the illuatrative case of unpolerized radiation nomaliy incident on a perfect conductor. ${ }^{3}$ The scattering intensity is proportional to k^{4}. which reflects its relationahip to Rayleigh scattering. The factor $1+\operatorname{Cos}^{2} \theta$ ia the polarization factor for alectric-dipola acattering, which helpe honay bees find theic way hom to the hive in the blue-sky verision of thie formula. The final factor is the two-dimensional power epectrum of the roughnese, which contains all the information about the aurface that is necescary to predict the acattering. It is a function of the two wavenumbers, p and q. However, for an isotropic aurface W ie a function only of the Pythagorean combination of the two wavenumbers p and q, which equale k Sin θ. which ia, in turn, the tranmerse momentum imparted to the scattered photona by the aurface roughnees.

The top formula in Figure 5 gives the differential scattering per unit solid angle. The total integrated scatter, or TIS, is the integral of this over the whole hemisphare. In the case where the scattering occurs principally at amall angles. θ, the TIS can be written in terms of the integral over W itaelf, which
Is just the surface variance, σ°. In that case the TIS assumes the simple form given on the bottom of the picura. This well-known formula ie often uted to estimate the variance of the surface roughaes from meaurementa of the TLS, uaing an integrating light ephere. In the experimente we are conidering, however, we will look at the differential light acattering intenaity, which givea information mbout the form of W itgelf and not just ite integral.

The expreseion for the TIS given on the bottom of Figure 5 has another significance in the present context - it is the expansion paramater used in the
perturbation theory which is used to derive the form for the scattering intensity given on the first line. In other words, the TIS must be << 1 for this form to be valid. Thia is the mathematical definition of a slightly-rough or a weaklyrough surface as we use it here. In practice the tis is of the order of 1% or less, which is one of the rasmons we choose to look at the scattered light directly, rather than the corresponding reduction of the specular intensity.

The resulte shown here are a special case of a more general electromagnatic scattering formaliom which was originally derived for radar scattering from the surface of the sea and various tarraina. That ganeral formalism includes the dependence of the acattoring on the angle of incidence, the initial and final polarizations, and the complex dielectric rasponse of the surface material. The only change that we need make in going from those radar reaulta to our optica problem is to change the wavalength scale from maters to microns, and to use the appropriate optical-frequancy dielectric reaponse of the surfaces under atudy. ${ }^{4}$
3. PARTICULAR SURFACES. Figure 6 gives the power apectra for two idealized optical surfaces: a random, isotropically rough surface, and a deterministic, periodic surface. In the case of the randomly-rough surface we derive the form of W from the exponential autocorrelation function shown, where l is the transverse autocovariance length. This form is suggested by the Ornatein-Zernike analyais of critical opalescence. W is then the two-dimensional Lorentzian showr.

For the purpose of designing our experiments, this first form for W is taker to represent the surface genarated by random poliahing techniques. It predicts E continuous distribution of ecattered intensity peaked about the specularly reflected beam. The longer the correlation length l, the sharper the peaking; until finally, when ℓ becomes of the order of the size of the probing beam apot, the scattered light collapses into the diffraction cone of the specularly reflected beam. Cowersely, the shorter the correlation length, the broader the acattering. distribution, until in the limit where $l \ll \lambda$, the results go over into the ample Rayleigh acattering from a layer of independent scattering centers lying on the surface.

The second form of W shown is a deterministic form representing a periodic, a corrugated, surface; expanded in a Fourier series. The corresponding power spectrum is then a sum of product of various delta functions correaponding to the standing waves of the fundamental and harmonice that make up the corrugations. This type of roughnesa does not lead to a continuous scattering distribution, but rather, to a aeries of diffraction peake - one peak for each harmonic - at the positions determined by the grating equation. In the special case of a single ane-wave component, these results reduce exactly to those of the simple grating already given in Figure 3. For the purpose of designing experimente, this second form of W is taken to represent the residual roughness on a surface generated by the single-point diamond turning. ${ }^{3}$

One important feature of alightly-rough acattering is illustratod by this second form for the power spectrum W : the scattering is inseriaitive to the oigns and phases of the original Fourier decomposition. This means that even in the case of a determiniatic aurface, the mont careful manuremant of the acattared intensity will still not allow un to solve the inverse ecattering problem exactly, and to reconstruot the parent aurface uniqualy. This is the price pald for exploring surface cougher with a light probe whose wavelength is much greater than the vertical seale of the roughness. Although the power spectrum doen not tell un evarythins about the arrface roughnase, it does tell us all that we need to know to predict light acattering, and, tharefore, it recomanda itself as a natural quantity for characterizing the residual roughnese of optical surfacen.

Now that we have defined form of W corresponding to rwo types of optical aurfaces of practical interest, the next atep is to substitute thase reaulte into the previous expresion for the scattered intensity and to evaluate the net result in canes of interest.
4. ILLUSTRATIVE RESULTS. Figure 7 illustrates typical results for a razdom aurface whth an exponential autocorrelation function. The rms roughnese is taken to be 50 and the correlation length, $20 \mu \mathrm{~m}$. These are typical valuan for polished matal mirrore. 5,6 The differential acattering intensity is plotted veraus the cattering angle in degrees. There are two curves - one for the HeNe laser vavelength of $0.6328 \mu \mathrm{~m}$, and one for the CO_{2} laser wave length of $10.6 \mu \mathrm{~m}$. In this case of normal incidence the heve crossection peaks at zero scattering angle, and falle off essentially as $1 / 0^{3}$. The CO_{2} crossection also peaks at 0° but in generally much amaller in magnitude because of its maller wavenumber, k.

Figure 8 illustrates the corresponding reaults for a corrugated surface - the particular periodic aurface thown in the upper corner. The half height ia taken to be 87 X to give the ame TIS a the aurface in the preceeding siide; that is, about 1%. The period is $5 \mu m$, wich is typical for micromachined surfaces. 7

The scatcering here is in the form of aeriea of delta functione, each corresponding to mermonic of the roughness: $n=1,3,5,7$. unly odd harmonis: appear because of the vartical aymatry of the corrugations, and only the first four of these appear in scattering because $n=9$ and higher have wavelengthe whorter than the HiNe laser, and do not diffract. Only HeNe resulte are given in this Figure aince the CO_{2} wavelength is $10.6 \mu \mathrm{~m}$, which is already larger than the $5 \mu \mathrm{~m}$ fundamental, so that there is no diffraction at that wavelength and the aurface appeare parfactly amooth.

The intensity of the diffracted peaks falls off rapidiy with increasing angle. This ia not due to an inherant inefficiency of the diffraction procese at large angles, but because the Fourier coefficiente of the particular shape we have chosen fall rapidly with n. In particular; they go ms $1 / \pi^{3}$, so that the
diffraction intenaity ahown here falle off as $1 / n^{4}$.
The reaults shown in Figures 7 and 8 have a double value; they can be used as a basis for designing specific experiments, and thay illuatrate the typer of data that we hope to extract about real surfaces. To repeat, differential light ecattering gives us information about the two-dimanalomal power apectrum of the reaidual roughness. These power spectra may be more complicated for real surfaces. However, for ease in comparison they are usually described by two length parameters - σ and ℓ, in Figure 7 , or h and d in Figure 8 - which represent the verti cal and horisontal atructure of the roughness.

As a final result, we consider the nominal ranges of these two length paramaturs that are apanmed by the light-scattering experimanta. These are ahown in Figure 9. The shaded area is for the HeNe-vavelangth laser and the dechad area for the CO_{2}. The equares represent - in effect - the windows through wich light scatteritis allowe us to view the surface roughness parameters; a kind of tranafor function for the scattaring process. The dot and the cross rapresent the ewo particular examples we considared before: the ieotropically rough and periodic surfaces, respectively. As shown, they fall nicely in the HeNe window.

The limite of o are determined from the intensity of the scattering; here, somowhat arbitrarily, by caking TIS $=10^{-4}$ and 10°. The limite on l are deterioined by angular coneiderations. A maximum scattering angle of 90° determines the minimum value of $\ell=\lambda$. A minimum angle of 10 milliradians, or $\sim \frac{1}{2}^{\circ}$, determines the maximum of $\mathcal{L}=100 \lambda$. This minimum angle of $\sim 1^{\circ}$ is typical detector reaolution for the experimante we have in mind. If we had a detector with infinitily good resolution, the upper limit for ℓ would be limited by the diameter of the probing beain apot.
5. CONCLUSION. We are now setting up an experimental light-acattering facility at Frankford Arsenal based on the principles and resulta deacribed ahove. This facility will be used to measura the scattering from a variety of ral optical surfaces - matal mircuis and the metalizad surfaces of tramaisaive optica - obtained from the Frankford Areenal oplicel Shops, induntry, and other govarnment laboratories. We plan to use the data genarated by these experiments as a base for developing apecific test and ovaluation devicea to antiafy the Army needs.

6. REFERENCES AND FOOTNOTES.

1. Detaila are given in: The Deaign of Experiments for the Characterization of the Microroughneas of poliwhed Surfaces by Light Scattering, E. L. Church and H. A. Jenkinson, Frankford Arsenal Report (to be published).
2. See, for example, L. Roneufold, Theory of Electrong, North Holland Publishing Company, 1951.
3. Paper praseated at the Machining of Optics Workshop held at Bouldar, Colorado, 22 May 1974 (proceadings to be published in Applied Optics): E. L. Church and J. M. Zavade, Charecterisation of the Realdual Surface Roughnege of DiamondTurned Optice.
4. D. E. Barrick, Chapter 9 in Mader Grose geotion Hadbook, Plonum Fross, 1970,
5. J. M. Monatt, private communication; 9 May 1974. see also the propeadime of the Workuhop mantionad in zef. 3.
6. After the prementation of tais paper wo learnad of the work of J. M. Eastman and P. W. Baumister, J. Opt. 8ee. An. 64, 1369A and Opt. Comm. 12.418 (1974). which report macuremnte sindlar to those propoed here.
7. J. C. Stover and R. L. Gordon, private commaleations, May 1974, see also the procsedinge of the Workshop mentioned in ref. 3.

Bench Characterization of the Residual Microroughness of Optical surfaces

Motion

Figure 1. method of characterizing the residual roughness of optical surfaces

Fisure 2. Schamatic of possible scatterins apparatua

Gratins Equation:

$$
\sin \theta_{s}=\sin \theta_{i}+m \frac{\lambda}{d}
$$

Normal Incidence:

$$
\sin \theta_{1}=m \frac{\lambda}{d} \quad ; m= \pm 1, \pm 2, \cdots
$$

Weak Grating:

$$
\begin{gathered}
\sin \theta_{1}= \pm \frac{\lambda}{d} \\
C^{c}=(k \sigma)^{2}\left(\cos \theta_{4}+\frac{1}{\cos \theta_{4}}\right) \\
k=2 \pi / \lambda ; \quad \sigma^{2}=\text { variance }
\end{gathered}
$$

Figure 3. Electromagnetic scattering from a
Ifnucoldally rough surface
922

Power spectrum:

$$
\begin{aligned}
W^{-}(p, q) & \left.=\left.\langle | \mathcal{F}^{(2)}\{\zeta(x, y)\}\right|^{2}\right\rangle \\
& =\mathcal{F}^{(2)}\{A(\rho)\}
\end{aligned}
$$

Autocovariance function:

$$
\begin{aligned}
& A(\rho)=\left\langle\Phi(x, y) \zeta\left(x^{\prime} y^{\prime}\right)\right\rangle \\
& \rho=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d I}{d \Omega}=2 k^{4}\left(1+\cos ^{2} \theta\right) W(p, q) \\
& p=k \sin \theta \cos \varphi \\
& q=k \sin \theta \sin \varphi \\
& r=\sqrt{p^{2}+q^{2}}=k \sin \theta
\end{aligned}
$$

Total Integrated Sáatter:

$$
\begin{aligned}
T I S=\int \frac{d I}{d \Omega} d \Omega & \approx 4 \dot{R}^{2} \int d p \int d q W(p, q) \\
& =4 k^{2} \sigma^{2} \ll 1
\end{aligned}
$$

Inotropic Surface

$$
\begin{aligned}
& A(\rho)=\sigma^{2} e^{-\rho / l} \\
& W(p, q)=\frac{1}{2 \pi} \frac{\sigma^{2} l^{2}}{\left[1+(l \pi)^{2}\right]^{1 / 2}}
\end{aligned}
$$

Periodic Surface

$$
\begin{gathered}
\zeta(x, y)=\sum_{m=1} a_{m} \cos \left(2 \pi m x / d+\varphi_{m}\right) \\
W(p, q)=\frac{1}{4} \sum_{m=1} a_{m}^{2}\left[\delta\left(p-\frac{2 \pi m}{d}\right)+\delta\left(p+\frac{2 \pi m}{d}\right)\right] \\
\cdot \delta(q)
\end{gathered}
$$

Figure 7. Pradioted geattering eronnectione for an isot:opically rough aurfece

Pigure 8. Predicted acetterins crossection for a periodically rough aurface

Figure 9. Rangan of aurfaca parametors apanged by ecatterins experininats

Robert E. Bachhofer
Dopartment of Oparations Reseench
Coimell Univeraity
Ithan, New York 14853

1. Introduction

In recent yeare statisticians bave become increasingly concerned with the meningful formulation and solution of certain multiple-decision problems which arise in experimentation. Thus, for oxauple, when an experimenter conducts tests to compare the performances of sevaral compating categories of items, his ultimete objective often is to select the category (or categories) which is (are) bent, goodnass being masured in terms of particular parameter (e.g., the population man on the population variance) assooiated with the mandom variable beins observed. To accomplish this the experimanter requires a tatiatical decision procedure which will tell him how many observations to take, how to take these observations, and based on these observations which population(s) to choose; the decision procedure should have the property that the probability of en incomrect selection (or mor ennerally, the risk or expected loss) is controlled at com specified level.

In response to the need for such decision procedures, research statisticians have been studying various possible appropriate formulations of these problems, and have developed a body of statistical methodology to cope with them. The procedures have come to be referred to as ranking and selection procedures. The purpose of this paper is to introduce the reader to these procedures, to describe some of them and the philosophy underlying their use, and to discuss their properties.

In section 2 we will pose the normal means problem, and use it as a vehicle for motivating some of the basic ideas. The two most commonly adopted formulations of ranking and selection problems, namely the so-cailed indifference-zone approach and the aubset approach, will be described. The attributes of single-stage, two-stage, and sequential procedures devised for the normal means problem, under different assumptions concerning the population variances, will be assesed. In Section 3 we sketch some analogous results for the normal variances problem, and in Section 4 we mention results for parameters of other distributions.

This research was supported in part by the U.S. Army Research officeDurham under Contrect DAHC04-73-C-0008 and by the Office of Naval Research under Contract N00014-67-A-0077-0020.

The number of research papers written on aubjects in this field is now vast; it is hoped that this brief introduction will stimulate the reader to exploie the literature, and to apply the procedures where appropriate.
2. The normal means problem

A very important problem which arises frequently in applications is that of eelecting the normal population which has the largest population mean. Thus, for example, the ordnance engineer might be conducting firing programs to compare the ballistic performance of different types of projectiles (in which case his objective might be to select that type which, on the average, travels the greatest distance), or the medical research worker might be studying the response of patients to different kinds of analgesic druge (in which case his interest might lie in selecting that drug which produces, on the average, the longest period of time without pain), or the agronomist might be conducting field trials with different varieties of grain (in which case his purpose might be to select that variety which produces, on the average, the largest yield per acre). In all of these cases lange values of the means are deemed to be desirable; however, in other cases small values of the means might be considered desirable. The procedures that we will describe can, with minor modifications, handle these latter cases as well.

In Sections 2.1 and 2.3 .1 we shall state the statistical assumptions which underlie the procedures that have been developed. Then we shall describe several approaches to the selection problem.

2.1 Statistical assumptions

We ahall assume that we have k sources n_{i} ($1 \leq i \leq k$) of normally distributed data, the ith source having population mean μ_{i} and population variance σ_{i}^{2}; population π_{i} ($1 \leq i \leq k$) should be thought of as being associated with the ith category. The μ_{i} are assumed to be unknown. Let ${ }^{\mu_{[1]}} \leq{ }^{\mu}{ }_{[2]} \leq$ $\cdots \leq \mu_{[k]}$ denote the ranked values of the μ_{i}; it is assumed that the pairing of the π_{i} with the ${ }_{\mu}^{\mu}[j]$ ($1 \leq i, j \leqslant k$) is completely unknown. Possible assumptions conceming the $\sigma_{i}^{2}(1 \leq i \leq k)$ will be discussed in Section 2.3.1. Throusnout this paper $X_{i j}(1 \leq i \leq k, j=1,2, \ldots)$ will denote the fth observation from n_{i}, all observations being asaumed independent.
2.2 Some formulations

The two most-commonly used formulations of the selaction problem are due to Bechhofer [1954] and Gupta [1956], [1965]; these are referred to as the indifference-zone approach and the subset approach, respectivoly. The approaches are described below.

2.2.1 The indifference-zona approach

The goal and probability requirement associated with the
indifference-zone approach are:
Goal: "To select the population associated with "[k]"
It is assumed that prior to the start of experimentation the experimenter can
 into the following probability requirement:

Probability requisament:

Prob\{Selecting the population associated with $\left.\mu_{[k]}\right\} \geq$ pt whenever $\mu_{[k]}-\mu_{[k-1]} \geqslant \delta \hbar^{2}$.

The experimenter then restricts consideration to procedures which guarantee (2.2). (In (2.2) the specified quantity $\delta *$ can be thought of as the amallest difference "worth detecting" between the population mean of the "best" and "secend best" population; P is specified strictly greater than $1 / k$ since a probability of $1 / k$ can be achieved by choosing one of the k populations at random.)

2.2.2 The subset approach

The goal and probablility requirement associatod with the subset approach are:

Goal: "To solect a (non-empty) subset of the populations which contains the population associated with $\mu_{[k]}$ "

It is assumed that prior to the start of experimentation the oxperimenter can specify a constant ($P^{\prime \prime}$) ($1 / k<p \hbar<1$) which is then incorporated into the following probability requiremant:

Prob (Selected subset contains the population associated with $\left.\mu_{[k]}\right] \geq p h$ regardlese of the values of the u_{i} ($1 \leq i \leq k$).

The experimanter then restricts consideration to procedures which guarantee (2.4).

Remark 1: It is to be noted that the experimenter plans his exporiment assuming that the population means are not all equal; this is a very reasonable assumption in almost all real-life aitum ions. He is intereated in identifying the "best" population -- in this case the population with the largant population mean. conl (2.1) leads to a k-decision problem since the experimenter must choose one of the k populations based on the outcome of his experiment (i.e., his possible deciaions are: π_{1} is best, or π_{2} is best, or \cdots, or π_{k} is best). similarly, gosi (2.3) leads to a ($2^{k}-1$)-decision problem since the experimonter must choose one of the $2^{k}-1$ non-empty subsets of the k populations baled on the outcome of his experiment ($0 . \mathrm{g}_{1}$, for $\mathrm{k}=3$ his possible decisions are: only π_{1} is in the subset, only π_{2} is in the aubset, only π_{3} is in the subset, π_{1} and π_{2} are in the subset, Π_{1} and Π_{3} are in the subset, Π_{2} and π_{3} are in the subset, π_{1} and π_{2} and π_{3} are in the subset). These multi-decision appreaches are in marked contrast to the classical 2 -decision test-of-homoreneity approach afforded by the Analysis of Variance; in that approach the experimenter teste the (usually completely unrealistic) hypothesis that the k population means are equal, and decides based on the outcome of the experiment efther to accept the hypothesis or to reject the hypothesis.

Remark 2: As noted above, goal (2.1) leads to a k-decision problam. However, depending on the practical situation under consideration, the experimentor can, uaing the indifference-zone approach, pose more general goals. For example, he may wish to eelect the t ($1 \leq t \leq k-1$) best populations with regard to order, or he may wish to select the $t(1 \leq t \leq k-1)$ best populationa without regard to onder, t being fixed before the start of experimentation. (Both goals reduce to (a.1) Whan $t=1$,) These more general goals lead to $[k \mid /(k . . t)!]$-decision problem and a $[k \mid / t!(k-t)!]$-deaision problem, respectively. Such general goals and others are discussed in Beshhofer [1954] and Mahamunulu [1967].

Ramark 3: For goal (2.1) and the indifference-zone approach, the experimanter always ende up by selecting a single population. For goal (2.3) and the subset approach, the experimenter ends up by selecting 1 or 2 or \cdots or k populations, depending on the outcome of the experiment; thus for this latter approach the number of populations in the selected subset is a random variable.

2.2.3 Other appronchas

Gantner [1975] has proposed a mentricted gubsut approach in which the experimenter selects 1 or 2 or \cdots or a populations, depending on the outcome of the experiment, where c (1scuk) is decided on and fixed before the etart of experimentation; his approach can be regarded as bridging the Indifference-zone and subset appromehos aince if $0=1$ his approach reduces to the indifference-zone approach while if c=k it reduces to the subset approach. Other appronchen in which more general "loss functions" axe used have boen proponed by Somerville [1954] and Fairweather [1988]. An approach in which the μ_{i} are assumed to have prior distributions has been considered by Dunnatt [1960] while a similar idea from a Bayosian point of view has been proposed by Raiffa and Schlaiffer [1961] and Denly and Gupta [1068]. However, for brevity we will not discuse these or other approaches.

2.3 Assumptions oonceming the variances

2.3.1 Posisiblo assumptions

In order to devise procedures which will guaranteo (2.2) ur (2.4) for the nommal means problem, it is necessary to make an assumption concerning the values of the $d_{1}^{2}(1 \leq i \leq k)$. Mich assumption it is appropriate for the experimenter to make in any particular practical situatior depends on the information avaliable to him at the time that he plans his experiment. The fous most common asmumptiona aw that:
a) The values of the $\sigma_{1}^{2}(1 \leq i \leqslant k)$ are known, and all are equal to σ^{2} (any).
b) The valuns of the $\sigma_{i}^{2}(1 \leq 1 \leq k)$ are known, but not all are oqual.
c) The values of the $o_{i}^{2}(1 \leq 1 \leq k)$ are unknown, but it is
known that they have common vaiue σ^{2} (say).
d) The values of the $\sigma_{1}^{2}(1 \leq i \leq k)$ are completely unknuwn.

2.3.2 The variance assuription and associated procedurus

Once the experimenter has adopted one of these assumptions he then must choose a selection procedure which was derived under that particular assumption.

Thus, for example, if he wishes to guarantee (2.2) and adopts assumption (2.5a) or (2.5b), then he can use a single-stare procedure (Bechhofer [1954]), a two-stage procedure (Alam [1970] or (Tamhane [1975]), an opan sequantial procedure without elimination (Bechhofer, Kiefer, Sobel [1968]), or a closed seguential procedure with elimination (Paulson [1964]). If he wishes to guarantee (2.2) and adopts assumption (2.5c), then he cannot use a single-stage procedure (see Dudewicz [1971]) although he can use a two-stage procedure (Bechhofer, Dunnett, Sobel [1954]) or a sequential procedure (Paulson [1964]); similarly, if he wishes to guarantee (2.2) and adopts assumption (2.5d), then he cannot use a single-stage procedure although he can use a two-stage procedure (Dudewicz and Dalal [1971] or Rinctt [1974]). Finally, if the experimenter wishes to guarantee (2.4), and he adopts assumption (2.5a) or (2.5c), then he can use a single-stage procedure (Gupta [1956], [1965]).

When the experimenter has adopted a particular assumption and as a consequence has the option of choosing among several competing procedures, each one of which will guarantee his probability requirement, he then chooses one of these procedures on the basis of various possible operational or cost criteria. An indication of such criteria will be given in our later discussion. In the next section we shall describe certain selection procedures. Our emphasis will be on procedures which can be used wi.th the indifference-zone approach to guarantea (2.2).

[^10]2.4.1 Sincle-stare procedure

The easiest type of procedure to implement is a aingle-stage one. The following single-stage procedure was proposed by Bochhofar [1954]; constanta $C_{k, p t}$ (sen a), below) necessary to implement this procedure are given in Table I.
"a) Take a common number in of observations from each of the k populations where N is the smallest integer greater than or equal to $\left(c_{k, p \hbar} \sigma / \delta 由\right)^{2}$.
b) Calculate $\bar{X}_{i}=\sum_{j=1}^{N} X_{i j} / N(1 \leq i \leq k)$, and let $\bar{X}_{[1]}<\bar{X}_{[2]}<\cdots<\bar{X}_{[k]}$ denote the ranked values of the \bar{x}_{1}.
c) Select the population which yielded $\bar{X}_{[k]}$ as the one associated with $\mu_{[k]}$ "

Note: The constants $c_{k, p *}$ ane computed under the assumption that the μ_{i} (isis) are in the so-called least-favoreble (LF)-configuration, i.e., ${ }^{\mu}[1]=\mu_{[k-1]}=\mu_{[k]}-\delta *$.

Table I
Values of $\overbrace{k, p *}$

	$k *$							2	4	5	7	10
	2	3										
0.99	3.2900	3.6173	3.7970	3.9196	4.0861	4.2456						
0.95	2.3262	2.7101	2.9162	3.0552	3.2417	3.4182						
0.90	1.8124	2.2302	2.4516	2.5997	2.7972	2.9829						
0.80	1.1902	1.6524	1.8932	2.0528	2.2639	2.4608						
0.60	0.3583	0.8852	1.1532	1.3287	1.5583	1.7700						

The values in this table are abstracted from Table I of Bechhofer [1954] where values for other k and $P *$ are also given. Additional values for $k=n+1=2(1) 51$ and $P^{*}=0.99,0.975,0.95$, $0.90,0.75$ are contained in Table I of Gupta [1963]; Gupta's values must be multiplied by $\sqrt{2}$ in order to obtain the $c_{k, p^{*}}$ - values required in (2.6).

2.4.2 Open-ended sequential procadure without ellmination

The single-stage procedure of Section 2.4.1 is conmervative in the sense that tho constants $c_{k, p}$, necessary to implement it are computed under the assumption that the population means are in the LF-configuration; however, it has been show (Hall [1959]) that the probability requirement (2.2) cannot be guaranteed with a smaller M if the experimenter restricts consideration to aingie-atage procedures. If this rentriction is eliminated, and multistage procedures are permitted, then cortain gains can be achieved. What is desired is a multi-stage procedure which not only will guarantee the probability requiremant (2.2) when the population means are in the LF-configuration, but also will require a maller number of observations per population, on the average, than the N of (2.6) when the population means are in very favorable configurations-in particular when $\left(\mu_{[k]}-\mu_{[k-1]}\right) / 0$ is large. The following sequential procedure, which porsesses these attributes, was proposed by Bechhofer, Kiefer, and Sobel [1968], Pp. 258-9, 264-7.
"a) Take one observation from each of the k populations at each stage of experimentation. Let $\sum_{j=1}^{m} x_{i f}$ denote the cumilative sum from π_{i} ($1 \leq i \leq k$) at the mth stage of experimentation, and let $\sum_{j=1}^{m} x_{[1] j}<\sum_{j=1}^{m} x_{[2] j}<\ldots<\sum_{j=1}^{m} x_{[k] j}$ denote the ranked values of the $\sum_{j=1}^{m} x_{i j}$.
b) At the mth stage of experimentation ($m=1,2, \ldots$) compute

$$
z_{m}=\sum_{i=1}^{k-1} \exp \left\{-\frac{\delta_{k}}{\sigma} \frac{\sum_{j=2}^{m} x_{[k] j}-\sum_{j=1}^{m} x_{[1] j}}{\sigma}\right\}
$$

Then proceed as follows:
i) If $Z_{m} \leq\left(1-P^{H}\right) / \mathrm{P}^{h}$, stop experimentation and select the population which yielded $\sum_{j=1}^{m} X_{[k] j}$ as the one associated with ${ }^{[k]}$.

ii) If $\mathrm{Z}_{\mathrm{m}}>(1-\mathrm{P} A) / \mathrm{P} \neq$, take another observation from each of the k populations and compute Z_{m+1}.
 Continue in this manner until the rule calls for stopping."

Remark 4: For (2.7) the observations are taken in vectors, each vector constituting a stage, there being one observation frem ach population in every vector. The number of stages (i.e., number of abservarions per population) neceasaxy to terminate experimentation is a random variable. The expected number of atagne to terminate experimentation has been shown (B-K-S [1968], Tables 12.8.2 and 12.8.3) to be leas than N for many configurations of the μ_{i} ($1 \leq 1 \leq k$); in particular, if $\left(\mu_{[k]}-\mu_{[k-1]}\right) / 0$ is lerge, then with high probability experimentation will cease after only a samil number of stages. Regardless of the configuration of the μ_{i} ($1 \leq i \leq k$) axperimentation will caase with probability one after a finite number of atages.

2.4.3 Closed sequential procedure with elimination

The sequential procedure of Section 2.4 .2 has two possible drawbacks:
i) It is openended, i.e., before the start of experimentation it is not possible to give a finite upper bound on the number of stages to terminate experimentation, and ii) It does not eliminate "non-contending" populations, i.e., it continums to sample from populations which, based un observations obtained in the aarly htages of experfmentation, would appear to be out of contention for being selected as "bast." The following sequential procedure, which overcomes these drawbacks of (2.7), was proposed by Paulson [1964]; like (2.7) it guarantees the probability requirement (2.2) when the population means are in the LF-configuration, and also tends to cease experimentation early when the population means are in very favorable configurations:

For fixed λ ($0<\lambda \leq \delta \hbar / 2$) let $a_{\lambda}=\left[\sigma^{2} /(\delta \hbar t-\lambda)\right] \log [(k-1) /(1-\mathrm{Ph})]$, and let $W_{\lambda}=$ the largest integer less than a_{λ} / λ. Paulson's procedure is actually a family of procedures which depend on the choice of λ; in Remark 9, below, we shall make some comments on the role of λ.
> "Tuke one observation from each of the k populations at the first stage of experimentation. Eliminate from further consideration any population \mathbb{a}_{i} for which $a_{\lambda}-\lambda<\max _{1 \leq s \leq k} x_{s 1}-X_{i l}$. If
all but one population is 2 iminathd afted the first etage, stop experimentation and melect the remining population at the one associated with " $[k]$] Otherrise, ge on to the secend stage end take one observation from pophulation not yet eliminated. At stage m ($2 \leq n \leq H_{\lambda}$) take one obuervation from each population hot oliminated after the $(m-1)$) stage, and then eliminate from further conaldora. tion any remaining population n_{1} for which
where the sums are ninly for: populations left after the ($m-1$)st stage. If all but one population is eliminated after the mth stage, stop ekperimentation and select the remaining population as the one associated with $\mu_{[k]}$; atherwire go on the ($\mathbf{w + 1) = t}$ stage. If more than one population remains after stage W_{λ}, terminate experimentation at the $\left(W_{\lambda}+1\right)$ et atage by welecting the remaining population with the largest sum of the $\left(W_{\lambda}+1\right)$ abservations as the one associated with $\mu_{[k]}{ }^{\prime \prime}$

Remark 5: The procedure (2.8) never requires more than $W_{\lambda}+1$ etages to terminate experiaentation.

Remativ 6: The procedure (2.8) permanentiy eliminates apparently non-contending populations; thus the number of observations taken at the mth stage of experimentation is less than or equal to the number of observations taken at the (m-1)st stage of experimentation.

Romark 7: The cost of experimentation using procedures (2.7) and (2.8) can be mampured in terms of expected number of stages to terminate experimentation and/or uxpected total number of observations to terminate experimentation. Which one is an appmpriate measura will depend on the practical situation at hand.

Remark 8: Ramberg [1966] has demonstrated using Monte Carlo sampling methods that

max E(Muber of stages to tarminate experimentation, $\mu_{1}, \mu_{2}, \cdots, \mu_{k}$

and

> max $\mu_{1}, \mu_{2}, \cdots, \mu_{i}$ ETotal numbed of observations to temmate experimentation)
cre leme for (2.8) than for (2.7) whon F t is high (1.e., olose to unity) but the inequaility is reversed if pic is sufficiontiy maili Porng [1909] hae studiad that quaution anclyticelly. Thia cesult ie of prantical interept since it compares the performano of $\left\{2.7\right.$) and (2.8) when $H_{[1]}{ }^{2}{ }^{\mu}[k j, 1.0$. . when, unknow to the experimenter, all of the popuiation means are equal and thus the expected number of stages and the expected fotal number of observations are at their maxima.

Ramark 9: Fabian [1974] pointed out the advantage ot choosing $\lambda=\delta 1 / 2$, and recomended for that choion of λ that $1-p k i n d a$ be replaced by $2(1-p H)$ yiolding $a_{\delta / 2}^{\prime}=\left[2 \sigma^{2} / \delta \hbar\right] \log [(k-1) / 2(1-P *)]$ - b (aay); then beplaces a_{λ} and $\delta * / 2$ raplaces λ in (2.8). This modified procedure still guarantees the prokusility requiramart (2.2) when the population means are in the LF-configuration. It unffoxmly (in the μ_{i}) reduces the expected number of strens and expected total number of observations relative to the ones that would have been obtained with the unmodified procedure employing $\lambda=\delta \pi / 2$; in addition, in either the family of unmodified Paulson procedures or in the family of modified Paulson procedures the choice $\lambda=\delta \beta / 2$ has the property that
max Eliutal nrmber of observations to terminate experimentation) is $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ approximately minimized for P^{*} close to unity.

2.4.4 Two-atage procedure

The sequential procodures (2.7) and (2.8) have the drawbacks that they may not be appropriate for use in certain types of experimentation. For example, in agricultural experimentation where yields can be obtained only once per year (or per grewing season), and thus only one vector of observations can be obtained par time period, multi-stage experimentation is impractical.

In auch elituation two-stage experimentation would appear to be appropriate. Alam [1970] and Tamhane [1975] have developed two-atage procedures which guarantee the probability_requiremant (2.2) when the population medns are in the LFconfiguration; their procedures screan out the apparently non-contending populations in the first stage, and concentrate sampling on the remaining populations in the second (terminal) stage. Tamhane's procedure has the addad virtue of possessing a minimax property similar to that actieved by Fabian's modification of (2.8) when $\lambda=8 \mathrm{t} / 2$.

2.5. Procedures for une with the indifference-sone approach under the

 asgumption of common ynknown or oompletely unknpun yarianceaAs was mentioned in Section 2.3.2y if the experimenter wishes to guarantee (2.2) and adopts assumption (2.5c) or (2.5d) then he cannot use a uingle-stage procedure. In this section we thall conaider two-atare procedures which accomplish these objectives.

2.5.1 Two-stare procedure for the common unknown variance case
 The following two-stage procedure for the common unknown variance

 cane was proposed by Bechhofer, Dunnett, and Sobel [1954]; constants $h_{k, p}{ }^{*} ; \mathrm{n}$ (see c), below) necessary to implament this procedure for $P *=0.95$ are given in Table II."a) In the firgt stage take an arbitrary common number $N_{0}>1$ of observations from each of the k populations.
b) Calculate $s^{2}=\sum_{i=1}^{k} \sum_{j=1}^{N O}\left(x_{i j}-\sum_{j=1}^{N 0} x_{i j} / N_{0}\right)^{2} / n$ which is an unbiased estimato of σ^{2} based on $n=k\left(N_{0}-1\right)$ degrees of freadom.
c) Enter the appropriate table (e.g., Table II, below, for $p *=0.95)$ with $n=k\left(N_{0}-1\right)$ and the specified $p *$, and obtain a constant $h_{k, p, n}=h$ (nay).
d) In tho second stage, take a common number $\mathrm{N}-\mathrm{N}_{0}$ of additional observations from each of the k populations where

$$
\begin{array}{ll}
N=N_{0} & \text { if } 2(h s / 8 \phi)^{2}<N_{0} \\
N=\left[2(h s / 8 \phi)^{2}\right] & \text { if } 2(h s / 8 \phi)^{2}>N_{0} \tag{2.9}
\end{array}
$$

and [y] denotes the amplest integer equal to or greater thai y.
e) Calculate the k overall (firat-atage plus second stage) sample sum a $\sum_{j=1}^{N} x_{i j}(1 \leq 1 \leq k)$, and let $\sum_{j=1}^{M} x_{[1] j}<\sum_{j=1}^{N} x_{[2] j}<\ldots<$ $\sum_{j=1}^{M} X_{[k] j}$ denote the ranked values of the $\sum_{j=1}^{N} X_{i j}$.
f) select the population which yielded $\sum_{j=1}^{N} X_{[k] j}$ as the one ascosiated with ${ }^{[k}[k]$ "

Note: The constants $h_{k, j, n}$ are computed under the assumption that the u_{1} (1sisk) are in the LF-configuration.

Table II
Values of $h_{k, P^{*}, n}$ for $P^{\prime}=0.95$

n	k						
	2	3	4	5	7	20	
5	2.02	2.44	2.68	2.85	3.08	3.30	
6	1.94	2.34	2.56	2.71	2.92	3.12	
7	1.89	2.27	2.48	262	2.82	3.01	
8	1.86	2.22	2.42	4.55	2.74	2.92	
0	1.83	2.18	2.37	2.50	2.68	2.86	
10	1.81	2.15	2.34	2.47	2.64	2.81	
15	1.75	2.07	2.24	2.36	2.51	2.67	
20	1.72	2.03	2.19	2.30	2.46	2.60	
30	1.70	1.99	2.15	2.25	2.40	2.54	
60	1.67	1.95	2.10	2.21	2.35	2.48	
0	1.64	1.92	2.06	2.16	2.29	2.42	

> The values in this table are abstricted from Table la of Dunctt [1955]; Table 1 b of Dunnett [1955] gives corresponding values for $p t=0.99$; Dunnett's p equals our $k-1$.

Note: The value of $h_{k, p}, n$ given for the $n=0$ row of Dunnett [1955], Table la, is the same as the value given by Cupte [1963], Table I, for the sume $k=1=p=n$ and $p *=0.95=1-\alpha$.

Remark 10: The total number of observations N required by the two-stage procedure is a random variable aince ita value depends on the value of s^{2}; no additional observations axe taken in the second stage if s^{2} is sufficientiy emall.

Remark 11: Paulson [1964], Section 5, proposed an open-anded sequential procedure which permanently eliminates non-contending populations; his procedure is applicable in aituations in which the common variance is unknown.

2.5.2 Two-stare procedures for the completely unknown variance case Dudewicz and Dalal [1971], and also Rinott [1974], proposed twostage procedures for the complately unknown variance case. Like (2.9), the common number of observations in the first stage for each of these procedures is arbitrary (>1), while the total number of observations per population is a random variable.

2.6 Procedure for use with the subset approach under the assumption of commoll (known or unknown) variance

As was mentioned in Section 2.3.2, if the experimenter wishes to guarantee (2.4) and adopts assumption 2.5 a) or 2.5 c), then he can use a singlestage procedure. The following single-stage procedure was proposed by Gupta [1956], [1965] for use under assumption 2.5c); constants $d_{k, p A, n}$ (see c), belaw) necessary to implament this procedure are given in Table III. (Under assumption $2.5 a$, the random variable S in d) of (2.10) is replacad by σ, and the value of $d_{k, p \hbar, n}$ for $n=\infty$ is used.)
"a) Take a common arbitrary number $N>1$ of observations from each of the k populations.
b) Calculate $\bar{X}_{1}=\sum_{j=1}^{M} X_{i j} / N(1 \leq j \leq k)$ and let $\bar{X}_{[1]}<\bar{X}_{[2]}<\ldots<\bar{X}_{[k]}$ denote the ranked valued of the \bar{x}_{i}; also calculate $s^{2}=\sum_{i=1}^{k} \sum_{j=1}^{M}\left(x_{i j}-\sum_{j=1}^{M} x_{i j} / m\right)^{2} / n$ which is an unbiased eatimute of 0^{2} based on $n=k(N-1)$ degrees of freedom.
c) Enter the appropriate table (e.g., Table III, below, for $p *=0.95)$ with $n=k(N-1)$ and the specified $P *$, and obtain a constant $d_{k, p \neq n}=d$ (say).
d) Retain the population \bar{a}_{1} (1sisk) in the selected subset if and only if $\bar{X}_{i} \geq \bar{X}_{[k]}-d s / \sqrt{\pi} .1$

Table III
Values of $d_{k, P^{*}, n}$ for $P^{* *}=0.95$

n	k		
	2	5	10
15	2.48	3.34	3.78
20	2.44	3.25	3.67
30	2.40	3.19	3.59
60	2.36	3.12	3.50

The values in this table are abstracted from Table I of Gupta and Sober [1957] which gives many additional devalues for $P^{*}=0.75,0.90,0.95,0.975,0.99$.

Note: $d_{k, p^{*}, n}=\sqrt{2} h_{k, P^{\star}, n}$ where $h_{k, P^{\star}, n}$ is given in Table II.
Remark 12: The width of the "yardstick" in d) of (2.10) is $\mathrm{dS} / \sqrt{\mathrm{N}}$ which decreases with N; thus the largor the value of N, the smaller the expected number of populations that will be included in the selected subset. Also, for fixed N
the more faverable the coaffguration of the population moans (e.g., the larger the value of $\left.\left(\mu_{[k]}-{ }^{\mu}[k-1]\right) / \sigma\right)$, the ameller the expected number of populations that will be included in the selected subset. (This expeoted nuaber always lies betwoen unity and kPH .)

Remark 13: In prectice the subset approach is often used for sereening pusposes, since it tends to eliminate "non-contending" populations (i.e., those with mall u-values) from the selected aubset. The populations retained in the aubset cin then be subjected to further atudy in an independent follow-up experiment in which the indifference-sone approach (say) is used.

2.7 Factorial experimenta involvins means

The statiatical model given in Section 2.1 is appropriate for ainglefactor experiments. In a two-factor experiment we have rc nomal populations $\pi_{i j}(1 \leq i \leq r, l \leq j \leq e)$ with population means $u_{i j}$ and population variances $\sigma_{i j}^{2}$. It is sometimes appropriate to asame that $\mu_{i j}=\mu+a_{i}+\beta_{j}\left(\sum_{i=1}^{r} a_{i}=\sum_{j=1}^{c} B_{j}=0\right)$, i.e., that there is nu interaction between the factors, and that $\sigma_{i f}^{2}=\sigma^{2}$ ($1 \leq 1 \leq r, 1 \leq j \leq c$). Here the a_{i} and the β_{j} are referred to as the "offects" of the first and second factor, respectively. It is assumed that μ, the a_{i}, the β_{j}, and o^{2} are unknown. Let $a_{[1]} \leq a_{[2]} \leq \ldots \leq a_{[r]}$ and ${ }^{\beta}[1] \leq{ }^{\beta_{[2]}} \leq \ldots \leq \beta_{[c]}$ denote the ranked values of the α_{i} and the β_{j}; it is assumed that the pairing of the $\pi_{i j}$ with the ${ }^{a_{[i]}}$ and ${ }^{\beta_{[j]}}$ ($1 \leq i \leq r, 1 \leq j \leq c$) is completely unknown.

In the above satup it is possible to consider goals such as

Goal: "To select the 'level' of the first factor associated with " $[r]$, and simultaneously to select the 'level' of the second factor associated with ${ }^{\beta}[c]$ "
with associated probability requirements. Such problems are treated for the indifferonce-zone approach in Section 4 of Bechhofer [1954]. The virtue of conducting factorial experiments in this situation is discussed by Bawa [1972]. The indifference-zone selection procedures of Sections 2.4 and 2.5 can be used in multi-factor experiment; it is only necessary to make appropriate modifications in the procedures.

It is also possible to conduct single-factor or multi-factor ranking and eelection experiments using the standard experimental designs auch as randomised blocks and Latin squares, and these designs play the same type of role here as they do in classical hypothesis-testing situations.

2.8 Means vo. fixed know standard

In Section 2.4.1-2.4.4 and 2.5.1-2.5.2 the selection procodures proponed were devised to select the category associated with the largest μ-value. However. in certain clasaese of experiments even the "bost" one of the competing categories, i.e., the category with the largeat μ-value, my not be pood enough to warrant the experimentar'c selecting it. for example. if the competing categories are drugs, the ieat one may not be worthy of considaration unless the expected period of immunity obtained with that drug is at leaat some specified period of time; or if the cumpeting categories are types of heat treatment of stecl. the bast one may not be deemed satisfactory unlese the expected tensile atrength reaulting from that type of treatment is at least some specitied minimum value. Such types of problems involving comparisons of means with a fixed known standard are considered by Bechhofer and Turnbull [1974], [1975a]; in the first paper a aingle-itage procedure is proposed under assumption (2.5a), and in the mecond a two-stage procedure is proposed under assumption (2.5c). These procedures are generalizations of Bechhofer [1954] and Bechhofer, Dunnett, and Sobel [1954]. Gupta and Sobel [1958] proposed a single-stage procedure for this problem using the abset approach.

3. The normaj variances problem

Section 2 dealt with the normal means problam. Corresponding procedures exist for the normal variances problem. Ranking and selection problema involving variances arise, for exmmple, when the ordnance engineer is interested in selecting that type of projectile which yields the smallest dispersion of range, og when the laboratory teohnician is interestec in selecting that measuring instrument which has the highest precision (e.g., that scale which has the greatest reproducibility). An analogue of the single-stage procedure given in Bechnofer [1954] for nomal means is given in Bechhofur and Sobel [1914] for normal variances; factorial experimenta involving variances are treated in Bechhofer [1968a] and [1968b] using a model proposed in Bechhofer [1960].

Bechhofor and Turnbull [1975b] ia the counterpart for variances of Bechhofar and Turnbull [1974]. An anslogue of the procedure given in cupta [1956] for normal means is given in Gupta and Sobel [1962] for normal variances.
4. The Bornoulli P problem, and other problems

Ranking and solection problems involying Bornoulli p's (i.e., probabilitias of "auccesy" on a aingle trial) asise, for example, when a consumer in interested in selecting that producer whose product has the galleat fraction defective. An analogue of the procedure given in Bechhofer [1854] for nomal means is given in Huyett and Sobel [1957] for semoulli p's, while the counterpart of the procedure given in Gupta [1956] for normal means is given in Cupte and sobel [1960] for Bernoullf p'e.

Sobel [1954] proposed a sequential procedure for selecting the exponential population with the largest mean; hia reaules have applicability in relinbility studies. Bechhofer, Kisfor, and Sobel [1968], p. 63 considered sequential procedures for ranking parameters of certain stochastic processes such as the Poicson process and the Wiener procesa. Various research workers have proposed procedures for many othor ranking and selection problemn involving parametera of distributions arising in prectico.

5. Closing romarks

The ranking and selection formulation of atatistical problems involving inferences concerning $k \geq$? catagories has wide applicability in the solution of probleme arising in experimentation. In this paper we have sketched only a small number of the relevant ideas and procedures. The interested reader is reforred to Bechhofer, Kiafer, and Sobel [1968] for raforences up to that date, und to Gupta and Panchapakesan [1972] for references to the latter date concerning the subset approach. Additional and more recent reforences are given by Wotharill and ofour [1974]. The writer would appreciate learning of experimeñtul aituationa in which some of the procedures described herein hava proved halpful.
6. Acknowledmpent

The writer would like to axpross his approciation to the Army Research Office-Durham and the Office of Naval Research which have generousiy supported his research and that of his colleagues at Cornell who have been working with him on this program.

7. Režorences

Alan, K. (1970): "A two-sample procedure for aelecting the population with the largest mean from k normal pepulations," Annals of the Institute of StMtintioal Mathomatics (Tokyo), Vod. 22, pp, 127-136.

Bawe, V. S. (1972): "Aeymptotic efflciency of one R-factor experiment relitive to R one-factor experimente for celecting the best normel population," Journal of the American Statietical Association, Voi. 67, No. 339. Pp. 660-661.

Bechhofer, R.E. (1954): "A Einyle-saple multiple-decision procedura for ranking mennt of normal populations with known varlances," Anuale of Mathomitical Statistice, Vol. 25, No. 1, Pp. 18-38,

Bechhofer, R.E. (1960): "A multiplicative model for analysing variancus visioh are affected by several facters." Journal of the Amerionn Statiatical Asmociation. Vol. 35, No. 290, pp. 245-264.

Dechhofor, R. E. (1968a): "Single-ntage procedures for ranking multiply-chusifled varlencen of normal populations," Technometrice, Vol. 10, No. 40, pp. 693-714.

Bechhofer, R. E. (1988b): "Dasifning factorial experiments to rank variancas," Trasactlolin of the Twenty-Sucond Annuel Conference of the American Society For Quallty Control. Pp. 69-73.

Bechhofer, R. E., Dunnett, C. W. and Sobel, M. (1954): "A two-sample multiple decielon procedure for ranking means of nommal populationa with a common unknown variancu," Blometrika, Vo1. 41, Parts 1 and 2, pp. 170-176.

Bechhofer, R. E., Kiefer, J. and Sobel, M, (1965): Sequential Identification and Rankin: Procedures (with gecial reference to Koopman-Darmola populations). University of Chicago Press.

Bechhofer, R. E. and Sobel M. (1954): "A single-nample multiple-decision procedure for ranking variances of normal populationa," Annale of Mathematical Statiatics, Vol. 25, No. 2, pp. 273-289.

Bechhofer, R. E. and Turnbull, B. W. (1974): "A (k+1)-decision aingle-stage selection procedure for comparing k normal meanm with a fixed known standard: the case of common known variance," Technical Report No, 242, Department of Operations Research, Cornelil Univerality, Submitted for pubilication.

Bechhofer, R.E. and Turnbuil, B. W. (1975a): "A (k+1)-decimion two-stage selection procedure for comparing k normal means with a fixed known standard: the case of common unknewti variance." in preparation.

Bechhofer, R. L. and Turnbull, B. W. (1975b): "A ($k+1$)-decisiun single-stage seleotion procedure for ormparing k normal variances with a fixed known standard." In preparation.

Deely, J. J. and Gupta (1968): "On the properties of aubset selection prucedures," Sankhyā, A, Vol. 30, Part 1, pp. 37-49.

Dudewicz, E. J. (1971): "Nonexistence of a single-sample selecrion procedure whose $P(C S)$ is independent of the variances," South African Statistical Journal, Vol. 5, pp. 37-39.

Dudewicz, E. J. and Dalal, S. R. (1971): "Allocation of observations in ranking and selection with unequal variancen," a paper presented at the Symposium on Optimizing Methods in Statistics held at the Ohio State University, June $24-16,1971$. Accepted for publication in Sankhya.

Dunnett, C. W. (1955): "A multiple complarison procedure for comparing several treatments with a control," Journal of the American Statistical Association, Vol. 50: No. 272, pp. 1096-1121.

Dunnett, C. W. (1960): "On selecting the largest of k normal population means," Journal of the Royal Sratistical Society, B, Vol. 22, No. 1, Pp. $1-40$.

Fabian, Y. (1974): "Note on Anderson's sequential procedures with triangular boundary," Annals of Statistics, Vol. 2, No. 1, pp. 170-176.

Fairwather, W. R. (1968): "Some extensions of Somerville's procedure "or ranking means of normal populations," Biometrika, Vol, 55, No. 2, pp. 411-418.

Gupta, S. S. (1956): "On a decision rule for a problem in ranking means," Institute of Statistics Mimeograph Series No. 150, University of North Carolina, Chapel Hill, N.C.

Gupta, S. S. (1963): "Probability integrals of multivariate normal and multivariate t," Annals of Mathematical Statistics, Voi. 34, No. 3, pp. 792-82R.

Gupta, S. S. (1965): "On some multiple decision (selection and ranking) rules," Technometrics, Vol. \because, No. 25, pp. 225-245.

Gupta, S. S. and Panchapakesan, S. (1972): "On multiple decinion procedures," Journal of Mathematical and Physical Sciences, Vol. VI, No. 1, pp. 1-72.

Gupta, S. S. and Sobel, M. (1957): "On a statistic which arises in selection and ranking problems," Annals of Matromatical Statistics, Vol. 28, No. u, pip. 957-967.

Gupta, S. S. and Sobel, M. (1958): "On selecting a subset which contains all populations better than a standard," Annals of Mathematical Statistics, Vol. 29, No. 1. pp. 235-244.

Gupta, S. S. and Sobel, M. (1960): "Selecting" a subset containing the best of several binomial populations," Contributions to Probability and Statistics (ed. by Olkin et al), Stanford University Press, Stanford, California, pp. 1-25.

Gupta, $\therefore .8$, and iobel, M. (1962): "On selocting a subset containing the population with the :mallest variance," Biometrika, Vol. 49, 「arts 3 and 4 , pp. 495-507.

Hall. W. J. (1959): "The most economical character of some Hechtofer ard sobel decision rules," Annals of Mathematical Statistics, Vol. 30, No. 4. PF. 964-969.

Huyett, M. J. and Sobel, M. (1957): "Selerting the best one of arvaral binowial

Mahamunulu, D. M. (1967): "Sone :ixed-eample rankity, and selection problemsi," Annals of Mathematical Statistics, Vol. 38, No. 4, !2. 1079-i04i.

Paulson, E. (1964): "A sequential proredure for selecting the pof.jat: in with the largest mean from k normal populat ions," Annals of Mathemitiral Statistirs, Vol. 35, Ho. 1, pp. 174-180.

Ferng, S. K. (1969): "A comparison of the asymptotir expertel sampi.e :.i me of two sequential procedures for ranking. problem," Annals of Mathemiti.in Statistics, Vol. 40, No. 6, pp. 619-632.

Raiffa, H. and Schlaifer, R. (1961): "(icinction of the hest of several premexim:.," Chapter 5B of Applied Statistical Decision Theory, Gradualn Schmol af Business Administration, Harvard University.

Ramberg, J. S. (1966): " A comparision of the pertormance chatarteristic: st twa sequential procedures for ranking the means of hurmal populations," Techniral. Report No. 4, Department of Operations Research, Commell University.

Rinott, Y. (1974): On two stage procedur :s fur suleciling the :opulition with the largest mean from several normal population:; with unhnown variancol." Report. Department of Mathematics, Cornell Univorsity. Submitied for publicition.

Santner, T. J. (1975): "A restricted subsent selection dphrosch in rastikinat and selection problems." Accepted for publicition in the Annals of Statiotics.

Sobel, M. (1954-5): "Sequential procedures, fur selortige the best exponential population," Proceedings of the Third Berkelcy Symnsium on Mathematicas. Statintios and Probability, Vol. 5, bp. 99-110.

Somerville, P. R. (1954): "Some probjems of optinum samplinf." Bicxnetrika, Vol. 41. Parts 3 and 4, pp. 420-429.

Tamhane, A. (1975): "A two-stage minimax procedure for selecting the ;opulation with the largest mean from k normal populations." Ph.D. dissertation (in preparation), Department of Operations Research, Cornell University.

Watherill, G.B. and Ofosu, J.B. (1974): "Selection of the best of k normal populations," Journal of the Roya! Statistical Society, C, Vol. 23, No. 3, pp. 253-277.

MAXIMUM INFORMATION FROM FIELD EXPERIMENTS

Marion R. Bryson
US Army Combat Developments Fxperimentation Command Fort Ord, California 93941

ARSTRACT. The constraints of limited time, limited resources, and large inherent sample variance characterize army field experimentation. For these reasons the significance level, the power, or both, of tests of hypotheses are usually not as high as one would desire. The decision must be made as to whether low power or low significance is less undesirable-or. perhaps. we can eat our cake and have it, too.

This paper briefly describes the US Army Combat Developments Experimentation Command and its mission to perform field experiments. It then discusses a typical example which brings out the major problems in this type experimentation. Methods of dealing with a large number of sources of vaxiation are discussed.

1. INTRODUCTION. The process known as combat developments includes the planning of the future army; how it will bei equipped, how it will be organized, how it will fight. The specific products which are produced to address these topics are materiel need documents, tables of organization and equipment, and field manuals. Often in the development of these products, a concept or a piece of equipment must be tested with troops. It is the mission of the Combat Developments Experimentation Command (CDEC) to design and conduct field experiments in these areas. The players in these experiments are trained army troops, the equipment is operational or prototype hardware, the environment is a realistic combat environment. CDEC deals in small unit experimentation, usually smaller than company size elements on each side.

The sources of variation in field experimentation are more difficult to handle than in many types of experimental situations. This is caused by the necessary freedom given the players to behave as if they were in a combat environment. Dealing with chis variation is the major subject of the paper.
2. THE CDEC MISSION. It is quite apprupriate that reprasentatives of CDEC should participate in the Army Design of Experiments Conficrence. We are one of only two organizations in the army with the word experiment (in some form) in their title. CDEC is unique in the Army, DOD. and probably in the world. Its sole mission is to perferm field experiments in which the equipment is put in the hands of the troms to be used in an operationally relevant environment. This is as distinguished from field tests. engineering tests, and operational tests in which the major concern is the operation of the equipment rather than the interaction of the equipment with the personnel and the environment.

CDEC is a service organization. With rare exceptions the requirements for experimental data comes from an orgarization outside of CDEC. This organization tasks CDEC through its higher headquarters, the Training and Doctrine Command (TRADOC); and acts as proponent for the experiment. The major customers for the CDEC product are the TRADOC schools and centers -- the Combined Arms Center. Armor, Infantry, Artillery, Aviation. and Air Defense schools. CDEC provides data to satisfy one of three requirements. The first is to compare two or more alternatives. Them alternatives may be hardware systems. strategies, or organizations. The second is to compare one or more al ternatives with a standard system. The third is to provide data for use in computer models, simulations. or war games. The data may be used for model validation or for data input.

CDEC is a subordinate command of TRADOC. The staff section in TRADOC responsible for CDEC is the Deputy Chipf of Staff for Combat Developments. The Operational Test and Evaluation Agency (CTEA) monitors the work of CDEC as well as all operational tests throughout the army. The Commander of OTEA chairs the Test Schedule and Review Committee ('TSARC) which meets twice yearly to review the army test prom gram. The TSARC, a general officer committee, manages the Five Year Test Program. This program consists of all army operational tests, joint tests, and force development tests and experiments.

Within CDEC, the experimentation mission is performed by three major divisions. The first is responsible for developing the overall CDEC program, working with the proponents in identifying the problems. and designing the experiment. The second division performs the experiment. analyzes the data and writes the report. The third divisjon maintains and opexates the highly complex system of instrumentation necessary to collect the data.

The instrumentation system at CDEC consists of five major categories of hardware.
a. Instrumentation Control. This is a system of computers which include a GE M605. an XDS 930, and two XDS 910's. CDEC is currently in the process of changing over to a new computer control system.
b. Position Location System. This system consists of a series of movable transmission towers which can be located anywhere on the range. a series of small transponders which autematically send and receive messages, and two relay stations thich interface with the computer. The computer, by sending messages to and receiving messages from the transpenders via the transmission towers, can compute the location of the transponders on a second by second basis. Each player element carries a uniquely coded transponder to identify his location to the computer. A continuous location record is kept of all players by the computer.
c. Simulated Fire. The simulated fire system consists of 60 small laser generators. These eye safe lasers can be bore sighted with a weapen and wired so that when the trigger is pulled a coded laser beam is emitted rather than a projectile. When a laser beam is emitted, a message to that effect is sent to the computer through the transponder, automatically. If the laser beam strikes a target, a laser sensor on the target is activated. This message is sent to the computer through the transponder on the target. This "hit" does not necessarily mean the target was "damaged" or "killed" by the exchange. The computer now possesses the following knowledge from the engagement: who fired. the weapon tyme, the location of the firer, who was the target. and the Incation of the target. The computer then determines the range of engagement and the aspect and speed of the target. Then using probability of kill functions resident in memory, the actual probability of kill is computed. A random number is drawn by the computer to determine whether damage or a kill has been inflicted by the engagement. If the target is assessed as a casualty it is sent a message to that effect and the laser wcapon of that player is deactivated by the computer so he 'an't shoot any more. The target also detonates a smoke grenade and displays a distinctive panel to inform the other players in the game of his - tatus.
d. Live Firc. There are two computer controlled live fire ranges. "un offensive and one defensive. The man-sized targets can be programmed
to come up in an exposed position on any preassigned schedule, to fire hlanks, to duck for a programmed time if a bullet comes close, and to Eall down and stay down if hit.
e. Support instrumentation. The systems represented in the support instrumentation are additional data gathering and storage systems and control systems. There are two radar systems for target tracking, there are cameras to record, manually or automatically, what is taking place, there are several multiple channel voice :ecording, system's to record by radio or telephone all that goes on in a trial, ard there is a master timing system. This timing system simultanoously tirne tags all records kept of the experiment for the purpose of cross checking redundant data records.

The geographic area used in CDEC experiments is Hunter Liggett Military Reservation at Jolon, California. This reservation has 166,000 acres consisting of all terrain types from flas treeless piains areas to heavily forested rugged mountains. The weather is mild and rainy in the winter, hot and dry in the summer. CDEC controls the air space over Hunter Liggett to an altitude of 10,000 feet.
3. LEVELS OF DATA REFINEMEN'f. CDEC recognizes six levels of data refinement. The hierarchy represented in these levels is valuable in discussing the form and nature of experimental results desired by the proponent. The six levels are defined here:
a. Level 1 - Raw Data. Data at Level 1 are data in their original form. This includes data on:
(1) Data collection forms used by a controller or data collector.
(2) Magnetic tape. This refers to the original tape used during the conduct of the experiment.
(3) Camera film, unedited.
(4) Voice Fecording System tape (VRS), unedited.
(5) Punch cards or hard copy print-outs of the contents of (2).

At this level no data purification has taken place except the elimination of data which are obviously invalid, such as that caused by an instrumentation malfunction.
b. Level 2 - Rechuced Data.

Data at Level 2 have been taken Irom the raw data form and consolidated for evaluation of datd quality. Thas first level of data refinement is performed soon after the data are collected, uaually within one day.
c. Level 3 - Ordered Duta. Data at Level 3 have been chercked for accuracy and placed in logical order. Data at this level may be produced in one or more of the following forms:
(1) Ordered computer print-out.
(2) Typed listing.
(3) Purified and ordered tape.
(4) Edited camera film.
(5) Edited VRS tape.
(6) Punch cards.

Data in this form will have heen thoroughly purified. Invalid data will have been identified and eliminated. The data may be ordered on any of several dimensions such as:
(1) Measurement taken, e.g., time to detect total exposure time, range to target, or crossing velocity.
(2) Trials.
(3) Player elements.
(4) Time of day.

No arithmetic operations, with the possible exception of counting, are applied to data at this level. Data at Level 3 are distinguished from data at Level 2 by the terms "edited" and "ordered."
d. Level 4-Descriptive Data. Data at Level 4 have teen subjected th any of several elementary statistical and mathematical operations. Data in this form will usually consist ot:
(1) Frequency distritutions. Such distributions may be in tabular form, histograms, or curves smoothed by eye.
(2) Computed means, variances and s tandard deviations of distributions.
(3) Computed medians, modes, ranges, quartiles, deciles, etc,
(4) Computed percentages.
(5) Computed correlntion coefficients.

Processing of data to Level 4 does not include drawing inferences. Significance of the difference between any of the neasurements is not piven. Data at this level differ from those at Level 3 in that they are summarized and combined into more concise measures. Data at this level ahould not go heyond what may be called "data descriptive of what happened in the experiment."
c. Level 5 - Inferred Data. Data at Level 5 have undergone statistical tests of hypothesis and/oz interval estimation. The design of the experiment is constructed so that the specific planned tests and estimates can be made. Although there are many tests of hypothesis in the literature, those techniques which will most of ten be used at this level of data refinement are:
(1) "Student's" t test.
(2) Chi square test.
(3) Snedecor's F test.
(4) Analysis of variance.
(5) Regression analysis.
(6) Any of several siandard non-parametric tests.

Hypotheses to be tested will include testing whether:
(1) An observed sample represents a sample from a standard or known distribution.
(2) Two (or more) observed samples are both (all) samples from the same, perhaps unknown distribution.
(3) A sample parametric estimate such as a mean, median, standard deviation, or regression coefficient differs from a given fixed value.
(4) Two or more independent sample parametric estimates differ from each other.

Data at this level do not include statistical inferences on ex post facto questions generated either from an outside source or by the results themselves. Level 5 data are limited to preplanmed statistical analysis of the data generated in the experiment.
f. Level 6 - Analyzed Data. Data at Level 6 have received a more thorough and detailed analysis than at Level 5. Analysis at this level is characterized by two features:
(1) It answers questions or investigates areas not planned for in the original experiment or.
(2) It combines the results of the experiment with data obtained elsewhere in order to generalize the conclusions which may be drawn.

A classic example of Level 6 analysis is the insertion of experimentally derived data into a combat model to generate nevi information to help answer force mix questions. A second example is the use of experimentally derived intervisibility data to determine the probability that a target is available when a tuive launched guided projectile arrives. inother way to distinguish analyses at Level 5 and Level 6 is that data at Level 5 are pure data, are derived by deductive reasoring, and concern themselves solely with the quantitative nature of the population from which the experimental sample was drawn. Data at Level 6 . on the other hand, answer operational questions, require inductive reasoning, and use the experimental results to assist in shedding light on the key military issues.

Although CDEC reports to the proponent on data at Level 3 , the subject of the remainder of this paper concerns analyses at Levels 4 and 5. Analysis at Level 6 is generally done by an analytic organization rather than an experimentation orgarization.
4. A TYPICAL EXPERIMENT. In this example will be described some design problems which are characteristic of the type of experiments conducted at CDEC. A general solution to most of these problems will be: indicated. The following paper by Dr. Mallios will discuss some specific techniques that have been used to solve some of the more troubles: me problems.

This example is hypothetical (barely). Barely, only because it has been simplified to its basic important elements. It is very typical. Let us say the re are two helicopter mounted target acquisition devices the proponent wants to compare. He also wants to compare the devices at two ranges, i.e., he suspects a device range interaction. (Generally there are many other independent variables he is itc $s \%$ in such as the size of the target, is the target moving or stationary. i.: the target hot or cold (IR emissions). is the helicopter hovering ~: sving, etc.) Let us say further in our 2×2 experiment that we have the \cdot, money. fuel . etc. . for exactly 48 trials. The dependent variables is "time to detect." One would likely propose such a design and model as is shown in Table 1.

TABLE I-BASIC DESIGN

MODEL: $y=m+d+r+d r+e$
ANALYSIS OE VARIANCE
d.f.

Devices (d) 1
Range (r) 1
Interaction (dr) 1
Error (e) 44

Fine--it will work. But we must have players. How many players? Certainly at least 1 and at most 48. Let's look at those two extremes. A proposed model for the case of one player would be,

$$
\begin{equation*}
y=m+d+r+d r+t+e \tag{2}
\end{equation*}
$$

where t is the learning effect. Certainly he wouldn't have the same expected behavior on the first trial as on the 48 th trial. This learning effect is neither linear nor random. Dealing with it presents a significant problem. Moreover, one must keep in mind the population about which we are making inferences. In terms of people, that population is the group of people who may use the device to detect targets in combat. Certainly, making inferences about that population with a sample of one player is poor procedure.

The 48 player proposition soes not suffer from either of these shortcomings. It is shown in many experiments that the greatest single cause of variation in experimental results is the difference between players. The postulater model for this case is.

$$
\begin{equation*}
y=m+d+r+d r+p+e \tag{3}
\end{equation*}
$$

The player effect (p), is confounded with the error. It occurs as a term in the expected mean square of all four sources of variation shown in the ANGVA of Table 1. Since the player variance is so large, it overpowers the F ratio and nothing but the most obvious treatment effects show up as significant. (This is apart from the logistical problem of finding and training that many qualified players.)

Now that we have disposed of those two options let us look at another and a more reasonable player option. Let us use four players, each one playing in three trials in each of the cells of the design in Table 1. Since each player plays in 12 trials, each of the cells can con'ain one of each of the player orders: 1, 2, . . 12. A model for this design is,

$$
\begin{equation*}
y=m+d+r+d r+p+t+e \tag{4}
\end{equation*}
$$

where all interactions except the device X range interaction are assumed away. "his design is better. We can isolate the player and learning effects, but there is still the question of sample size. Is a sample of 4 from all possible soldiers an adequate representation?

A final, and best alternative we will consider is one which uses 12 players, each one playing once in each of the four cells. Again we can balance the order effect within the cells. The postulated model is the same as in equation (4), however, the analysis of variance would have redistributed degrees of freedom and different coefficients in the expected mean squares. The analysis of variance is shown in Table 2.

TABLE 2
ANALYSIS OF VARIANCE

Source of variation	d.f.
Devices	I
Range	1
Interaction	1
Players	11
Order	3
Error	30

Since "Players" would normally be a random factor, more correctly the error term for the main effects of range and device would be their interaction with player. We have assumed this to be zero which makes "crror" the denominator of all F ratios. If one is unwilling to assume zero interactions, the player interactions can be computed and used as error terms. In this case, the player X device X range interaction is confounded with order so no legitimate test exists for the range X device interaction.

All of the foregoing is merely the peak of the iceberg. The real problems in field experimentation center around dealing with such factors as:
a. Carry over effect. This effect is that influence the treatment combination experienced by the player in trial i has upon his performance in trial $\mathrm{i}+1$.
b. Environmental factors.
(1) Eust.
(2) Wind.
(3) Atmospheric attenuation.
(4) Light level.
(5) Sun angle.
c. Target location factors.
(1) Target to background contrast.
(2) Background clutter.
(3) Shape contrast.

It is clearly impossible to control all of these sources of variation. Each one may have an effect on the measurement of interest in a piven trial. One solution is to balance on these factors, i.e., assure in the design that whatever the level of these factors is, that level occurs with equal frequercy in each of the four cells in Table 1. This can be achieved physically by having a single target and four observers, two at each range with one of the devices at each range. Perform the detection task simultaneously. Then, as nearly as possible, we can say that the differences in detection time are lue to the difference in the main effects and their interaction (plus random error). We perform a sequence of 12 such games with the proper player and order design. Now the analysis shown in Table 2 is valid, or is it? When the main effect mean squares are computed, to be sure, the variance caused by the above mentioned sources is absent. But when the error mean square is computed it shows up in all of its glory. What happens, then, is that the expected mean square of the denominator of the F ratio contains terms not found in the numerator. This leads to small, inappropriate \mathbf{F} ratios.

This brings us to the last straw. To avoid the problem of inappropriate F ratios and still have degrees of freedom left for error, we can randomize the assignment of treatment combinations to target locations, days, and times of day. The terms mentioned above then occur in all expected mean squares and the result is valid F ratios.
5. COUP DE GRACE. In real life, do we really randomize? This only leads to tests of very low power. Whici is more important, to get the very best estimates possible of the behavior of a system, or to get estimates of the behavior of a system which can be subjected to valid statistical tests? We think the former. It is for this reason that we favor balancing rather than randomizing. We still do tests of hypotheses but recognize clearly that these tests are of ten very conservative. In other words, we are more interested in obtaining the most accurate data possible at level 4 of refinement at the expenee of doing rigorous level 5 analyses.

Willians. Mallics
The BUM Corparition
Monterey, Califurnia

ABSTRACT. Cost effectiveness is applied to sample size determination for field trial experimentatior. Compound distributions are used in establishing trade-offs between sumple size combinations and expected inforration. These trade-offs are used in thasimizing informalion under cost constraints.

1. Il:TRODUCTION. This writing illustrates the use of sample size trade-offs in the design of field trials. Trade-offs are possible when sample size has more than one dimension. For example, a two dimensional sample size or.curs when responaes are to be drawn from each of a number (n) of experimental units in each of a number (N) of trials per fixed en-viromment:--units are nested in trials, and trials are nested in environments. Since a number of (n, N) selections can give rise to approximately the same level of information, an appropriatc selection is one which costs least, assuming other constraints have not been violated.

Sample size trade-offs provide a basis for answering the following questions regarding the design of fitid trials.

How was prior knowiedge used in the design of the proposed experiment?

How much information is to be gained for a given expondi- (1.1) ture?
What is the loss (gain) in information as the expenditule is decreased (increased)?

Experimental objectives and information level (1.L.) are related as follons. Model specification is dependent on the objectives, while I.L. is inversely proportional to the variability associated with the modei. Key to this relation is the model which reflects the objectives and dictates the design and method of analysis. In turn, variability can be quantified in terms of a variance, a generalized variance (the determinant of covariance matrix associated with the model), or other appropriate measures.

Our use of l.L. is directed at quantifying information on the state of knowledge, not the state of uncertainty as in the Shannon formulation of information; see Pierce (1961). Thus, I.L. is more attuned to the definition of intrinsic accuracy (see Fisher (1950)) in describing the amount or information yielded by each member of a sample regarding a

[^11]distributional parameter. However, with the diversity of definitions of "information", l.L. is left in general terms so as to allow for flexibility and further experimentation in applying the quantity. For examole, a generalized variance (as the reciprocal of I.L.) is proportional to the square of the volume of the concentration ellipsoid (see Cramer (1946)), the geometrical representation of a distribution about its center of gravity. Or, if the objectives are formulated in terms of a linear combination of variables, the covariance matrix is refluced to a single variance as the inverse of the 1.1 . required, say, to attain a confidence interval of a certain width or to test for a certain difference between expectations. Regarding our loose definition of l.L.. it should be recalled that Fisher (1950) tempered his definition as follows: "I am more inclined to examine the quantity (information) as it emerges from mathematical investigations and to judge of its utility by the free use of common sense, rather to impose it by formal definition".

Sample sizes should be based on the model, but oftentimes this is no easy matter. Consider, for example, a proposed field experiment where a yes or no response is to be measured from each of n units in each of N trials per environment. In addition, trials are to be quantified, if possible, on an ad hoc basis through measures of prevailing meteorological (met) conditions, and it is anticipated that the probability of response will vary between trials within environments. Our recourse to this problem involves, firstly, utilizing distributions which account for varying probability of response, secondly, getting prior estimatis of the distribution's parameters, and thirdly, establishing irade-ofts between sample sizes. Regarding the varying probabilities. commund distributions are applied. As to prior estimites, these can be obtained through analyses of data from exploratory irials. from past experiments of a similar nature, from computer simulation studies, from combinations thereof, or, as a last resort, through a good guess.

Section 2 contains background material on data collected in previous field trials in one particular environment. In Section 3, these data are used in establishing sample size trade-offs in maximizing l.L. under cost constraints. The aspects of model derivation, parameter estimation, and goodness of fit are considered in the appendices.
2. RESULTS OF DATA ANALYSIS FOR AN AIR POLLUTIOM EXPERIMENT. CONsider all environment with an inversion occurring at a few hundred meters In height, the inversion defined as an atmospheric layer, of limited vertical extent, in which temperature increases with height. Beneath the inversion windflow is light and variable, with pollutant plumes emanating continuously from a fixed point source (say, a smokestack). The pollutant does not penctrate the inversion so that the plumes are dispersed by the winds and turbulence. These conditions can lead to large comeentrations of ground level pollution, all of which mandate useful predictions of concentrations from proposed or existing sources in such environments.

Prior to proposed field experimentation, data were analyzed from an experiment in a similar environment. Therein, air samplers were located near ground level within an area of size 1200 meters by 1000 meters -concentrations at varying heights wbove ground level were nut considered. Dissemination of a pollutant simulant was from a fixed print source located at the center of the grid with responses drawn fronin 35 samplers, arranged in aniform pattern, in each of $N=22$ trials. The response from each sampler was concentration or the number of particles cumulated over - fixed span following dissemination.

Better hnown modely, based largely on the normal distribution, are aimed at predicting concentration at glven grid coordinatcs: c.g. . under the Gausisian plume model, the effluent is assumed to expand normally in the horizontal and vertical directions as it moves downind with a prevailing wind: see Panofsky (1969). However. these models are knuwn io be inadequat: when eddy sizes are sufficiently large to move the effluent along a meandering path. as was the case in these previous trials. In. stead of prodictions at given grid cuordinates (see Mallios (1969)), alternative convideration was given to models which predict percentages of the grid ares subjected to given ranues of concentration and which account for between trial variation in these percentages. Accordingly. basce on compliance with experimental objectives, sampler responses were categorized, on a per trial basis, to one of the four pariicle number ranges

$$
\begin{equation*}
C_{1}:(0,99), C_{2}:(100,999), C_{3}:(1000,9999), C_{4}:(\geq 10,000) ; \tag{2.1}
\end{equation*}
$$

e.9., samplers with particle counts between 100 and 999 were assigned to category C_{2}. With x_{i} j denoting the number of sampler responscs assigned
to category C_{i} in the $j-t h$ trial, we have $\sum_{i=1} X_{i j}=35$. The data are presented in Table 1.

Subjecting these data to contingency table analyais leads to the obvious result that the muleinomial distribution does not account for the between trial variation of $\underline{x}_{j}=\left(x_{1 j}, \quad, x_{4 j}\right)^{\prime} ; i . e .$. assuming x_{j} follows the multinomial distribution with probability $\mathcal{R}_{j}=\left(p_{1} \ldots \ldots p_{4 j}\right)$: and setting

$$
\hat{p}_{i}=\sum_{j=1}^{22} x_{i j} / \sum_{i j}^{22,4} x_{i j}
$$

the hypothesis $H: p_{i j}$ ep is rejected in view of the value of

$$
\sum_{i, j}\left(x_{i j}-n \hat{p}_{i}\right)^{2} / n \hat{p}_{i}=175.4
$$

which, under H, follows the x^{2} distribution with 63 degrees of freedom.
Readings of meteorological (met) instrumentation, operational during these trials, were evaluated in attempting to classify trials into met reglmes within which the multinomlal probabilities were approximately constant. It was found that the instrumentation could not identify differing

Table 1. A per trial grouping of sampler responses.

Categorics

	$c_{1}:$	$(0,99)$	$c_{2}:$	$(100,999)$
Trial	$\%$	(No.)	$\%$	(No.)

$\begin{array}{cc}C_{3}: & (1000,9999) \\ \% & (\text { No. })\end{array}$
$\begin{array}{rr}C_{4}: & (\geq 10,000) \\ \% & \text { (NO.) }\end{array}$

1	67	(23)	11	(4)	11	(4)	11	4)
2	49	(17)	23	(8)	14	(5)	14	(5)
3	74	(26)	14	(5)	6	(2)	6	(2)
4	37	(13)	20	(7)	32	(11)	11	(4)
5	66	(23)	23	(8)	8	(3)	3	(1)
6	63	(22)	11	(4)	6	(2)	20	(7)
7	34	(12)	14	(5)	34	(12)	18	(6)
8	60	(21)	18	(6)	11	(4)	11	(4)
9	14	(5)	34	(12)	29	(10)	23	(8)
10	37	(13)	43	(15)	6	(2)	14	(5)
11	29	(10)	52	(18)	8	(3)	11	(4)
12	37	(13)	34	(12)	11	(4)	18	(6)
13	37	(13)	41	(14)	8	(3)	14	(5)
14	43	(15)	29	(10)	14	(5)	14	(5)
15	18	(6)	18	(6)	33	(12)	31	(11)
16	57	(20)	0	(0)	40	(14)	3	(1)
17	34	(12)	18	(6)	34	(12)	14	(5)
18	37	(13)	17	(6)	23	(8)	23	(8)
19	49	(17)	26	(9)	8	(3)	17	(6)
20	11	(4)	52	(18)	23	(8)	14	(5)
21	40	(14)	17	(6)	23	(8)	20	(7)
22	43	(15)	14	(5)	26	(9)	17	(6)
Totals		(327)		(184)		(144)		(115)

[^12]23.9\%
18.7\%
14.9\%
regimes under these cnnditions, so that the 22 trials were taken as characteristic of one met regime. An area-coverage distribution applicable to this regime is obtained by compounding the multinomial and multivariate beta distributions. The result, given by

4
$h(\underline{x} ; n, a)=n!\beta\left(\alpha_{1}+x_{1}, \alpha_{2}+x_{2}, a_{3}+x_{3}, a_{4}+x_{4}\right) / \beta\left(a_{1}, x_{2},{ }_{3}, n_{4}\right) \prod_{i=1} x_{i}:$,
is termed the multinomial-multivarlate beta (MMB) distribution, ihere the $a_{i}>l$ are parameters of the quadrivariote beta distribution; spe Appendix 1 for the moments of (2.2), Appendix 2 for estimation of the a_{i}, and Appendix 3 for goodness of fit of (2.2) the data in Table 1.

It should be noted that (2.2) is a conglomerate distribution in that it should account for the between trial variation in x even if the pollutant source were varied between trials and/or if there were substantial measurement error and/or if trials could be classified into distinct met regimes and/or if samplers mere positioned varying heights above ground level. However, the more the sources of unidentificd variation, the greater the variability and the less the l.L., so that one should always isolate sources of variation when possible.
3. INFORMATION CONTOURS AND OPTIMAL SAMPLE SIZE SELECTIONS. BEfCR addressing the questions in (1.1), we first quantify the change in 1.L. as the sample size is varied. Thercupon, an optimal (n, N) combination, say $\left(n_{0}, N_{0}\right)$, is that which maximizes $I . L$. Under constraints of fixed costs.

In this problem, l.L. could be taken as the inverse of the generalIzed variance of a, the maximum likelihood estimate of $g ; i e .$, under fairly general conditions, it is known that variance $a=-1 / N$, where

$$
\not-E-E\left(\partial^{2} \log h / \partial a_{i} \partial a_{i}\right)
$$

and h denotes $M M B$ distribution. $1 . L$. is then estimated by $N \mid$ after a Is substituted for al Alternatively, I.L. could be taken as the inverse of variance $\left(\underline{l}^{\prime} \underline{x}\right)-\ell_{\ell} V_{\ell}$, wherc V variance (\underline{x}) and $\underline{l}^{-x} \underline{x}$ is an appropriate Ilnear combination of the $x_{i}: e . g .$, the L_{i} might be defined as the midpoints of the four categories given in (2.1). As a matter of illustration, we take the former as the measure of I.L.

Figure 1 contains contours of fiaed $I . L$. $N|(\underline{L}=\underline{a})|$ values, rangn Ing from $.3 \times 10^{-3}$ to 1000×10^{-3}, for varying values of n and N. If. for example, $n=30$ and N is increased from 6 to 10 , the 1.1 . is increased, roughly, from 5×10^{-3} to 50×10^{-3}, a 9002 increase in 1.L. For this application, this is to illustrate the N should be incieased at the expense of n and that large n adds little to I.L. when N is held constant; e.g.. If' the area of interest were saturated with samplers and trials were few In number, then great deal would be known about these few trials, but

Figure 1. Information (l.L.) contours for varying values of n and F
little would be known about trlals in general (which form a major source of varlation).

To maximize l.h, subject to fixed costs, we employ the simple cost model

$$
\begin{equation*}
C=C_{B}+C_{L}+N C_{T}+n N C_{S}, \tag{3.1}
\end{equation*}
$$

where C denotes total funds available: C_{B} is the base cost; C_{L} is the expected loss in funds due to miterialized risks; C_{j} is the cost per sampler and C_{T} the cost per trial. Substitution of

$$
\begin{gather*}
C=200, C_{B}=15, C_{L}=5, C_{T}=10, \text { and } C_{S}=1 / 2 \text { into (5.1) viclds } \\
180=10 N+n N / 2 . \tag{3.2}
\end{gather*}
$$

We could introduce a Lagrangian multipler, λ, and differentiate $N|\phi|-\lambda(180-10 N-n N / 2)$ with respect to N, n, and λ in determining (n_{0}, N_{0}). However, a graphical approach is the easiest recourse, i.e.. superimposing (3.2) onto the contours in Figure 1, we choose ($\mathrm{n}_{\mathrm{o}}, \mathrm{N}_{\mathrm{o}}$) as that combination corresponding to that maximum value of I.L. on the curve (3.2). From the plot of (3.2), given in Figure 1, it is seen that $(20,9)$ is an adequate approximation to (n_{0}, N_{0}).
4. CONCLUDING REMARKS. Now we are in a position to answer the questions in (1.1). Firsty, prior knowledge has been utilized in the form of the depiction in figure 1. Regarding the second question, an 1.L. of approximately 15×10^{-3} is to be gained for a fixed expenditure of $\mathrm{C}=200$. Relating 1.L. to center of gravity (see Section 1) means that 1.L. $=15 \times 10^{-3}$ is to be interpreted on a relative basis. Had I.L. been equated to the inverse of $\underline{\ell}$ V $\underline{\ell}$ (as discussed in Section 3), absolute interpretations could have been given; e.g., in this case, the expenditure of $C=200$ would give rise to an I.L. which, say, would lead to a confidence interval of a certain width.

The third question in (1.1) is answered by varying the value of C in (3.1) which, in turn, shifis the cost curve in Figure 1 up or down. In this manner, one can determine the loss or gain in I.L. as the budget is inereased or decreased. If, for example, the budget is decreased to the extent that l.L. is deemed insufficient to anser the experimental objectives, thought should be given to whether the experiment should be conducted.

Let the multinumisl distribution,

describe the withis trial variation of $\underline{x}=\left(x_{1}, \ldots, x_{r}\right) \%$ If p is con-
stant between trials, then this distribution also accounts for the between trial variation in x. However, p may vary between trials, even when environmental conditions are closel: monitored and the scheduling of trials is arranged such that thesc conditions are as honogenous 35 possible. Such variation in p might be described by the multivariate beta distribution,

$$
g(\underline{p ; a})=\prod_{i=1}^{r} p_{i}^{a} i^{-1} / \beta(\underline{a}), \underline{a}=\left(a_{1}, \ldots, a_{r}\right) \cdot \underline{0}
$$

where

$$
B(a)=\sum_{i=1}^{r} r\left(u_{i}\right) / r\left(\sum_{i=1}^{r} a_{i}\right)
$$

Compounding $f(\underline{x} ; n, \underline{p})$ and $g(\underline{p} ; a)$ (see Feller (1957)) and letting $r=4$ for the applicution in Section 2, we have
$h(\underline{x} ; n, \underline{a})=\int_{0}^{1} d p_{1} f_{0}^{1-p_{1}} d p_{2} f_{0}^{1-p_{1}-p_{2}} d p_{3} f_{0}^{1-p_{1}-p_{2}-p_{3}} f(\underline{x} ; n, \underline{p}) g(\underline{p} ; \underline{a}) d p_{4}$,
which, after integration, reduces to (2.2). This is an extension of a result of Skellam (19/18) who compounded the binomial and beta distributlons. From the general case (given by Hoiseman (1962)), it follows that the $\left(k_{1}, k_{2}, k_{3}\right)$-th factorial moment of $h(\underline{x} ; n, \underline{a})$ for $r=4$ is

$$
\mu\left(k_{1}, k_{2}, k_{3}\right\}=n^{\left\{\sum_{i=1}^{3} k_{1}\right\}} \beta_{\left(k_{1}+a_{1}, k_{2}+a_{2}, k_{3}+a_{3}, a_{4}\right) / \beta\left(a_{1}, a_{2}, a_{3}, a_{4}\right)} .
$$

Hence,

$$
E\left(x_{1} / n\right)=a_{1} / \Sigma \sum_{k=1}^{h} x_{i}
$$

$$
\begin{equation*}
\operatorname{var}\left(m_{1} / n\right)=\alpha_{i}\left(\sum_{2=1}^{4} n_{i}^{-\alpha_{i}}\right)\left(n+\sum_{i=1}^{4} \alpha_{2} j^{2} /\left(1+\sum_{i=1}^{4} \alpha_{\ell}\right) n\right. \tag{A.1.1}
\end{equation*}
$$

$$
\left.\operatorname{cov}\left(x_{1} / n, x_{i} . / n\right)=-a_{i} a_{i}, \sum_{l=1}^{4} a_{l}+n\right) /\left(\sum_{l=1}^{h} a_{i}^{2}\right)\left(1+\sum_{i=1}^{4} a_{\ell}\right) n
$$

In summary, $h(x ; n, a)$ is intended to account for the between trial variation in x when p varies hetween trials. In general, when a contingency table with mixud borders (sce Cramer (1946)) leads to significant x^{2} result and when an alternative to the multinomisl distribution is desired, application of the MMB distribution is a natural recourse.

In fitting the MMa distribution to the data in Table 1 through maximum likelihood (m.l.) estimation, the log likelihood function is given by

```
log L= constant +
```


The function $\log \Gamma(0)$ is approximated by $\left(\frac{1}{2}\right) \log (2 \pi)+\left(\theta-\frac{1}{2}\right) \log 0-\theta+$ $1 / 120-1 / 3600^{3}+1 / 12600^{5}-1 / 16800 \theta^{7}$ for $\theta \geq 5$. Repeated use of $r(\theta)=$ (0-1)r(0-1) 15 made when $\theta<5$ (sce Caratheodory (195B), page 297). The m.l. estimate of α, say, a, is obtained by taking partials of $\log \mathrm{L}$, equating $\partial \log L / \partial a$; to zero, and solving for that value which maximizes $\log L$. To calculate a by iterative methods, an initial value, say a ${ }^{(0)}$. is required and can be obtained through method of moments estination as follows. From (A.l.1) we have

$$
\begin{align*}
& R_{111}=E\left(x_{1}\right) / E\left(x_{1}\right)=\alpha_{1} / \alpha_{1} \tag{A.2.1}\\
& R_{21 i}=\left\{E\left(x_{1}^{2}\right)-E\left(x_{1}\right)\right\} /\left\{E\left(x_{1}^{2}\right)-E\left(x_{1}\right)\right\}=\left(\alpha_{i}^{2}+\alpha_{1}\right) /\left(\alpha_{i}^{2},+\alpha_{1}-\right)
\end{align*}
$$

These two relations can be used in identifying four equations in the four unknown a_{i} after

$$
\begin{align*}
& \hat{R}_{1 i i^{-}}=\sum_{j=1}^{22} x_{j J}{ }_{j=1}^{22} x_{j} j \tag{A,2,2}\\
& \hat{R}_{2 i j}=\left|\sum_{j=1}^{22} x_{i j}^{2}-\sum_{j=1}^{22} x_{j j}\right| \div\left|\sum_{j=1}^{22} x_{i j j}^{2}-\sum_{j=1}^{22} x_{i j}\right| .
\end{align*}
$$

are substituted for $R_{1 i j}$ and $R_{2 i j}$.
Except for the casc $r=2$, a number of ${ }^{(0)}$ values may have to be consldered, since repeated application has shown that many of these moment estimstors lie nowhere in the neighborhood of a-- in which case, non-convergence or covergence to a relative maximum may result. Among several possible values for (0), the approprlate one is that which minimizes
 mated that the $M M B$ distribution, as it relates to the data in table 1 , will have a unique node, in which case, $\underline{a}^{(0)}>1$. Using these criteria to evadate differing values of ${\underset{\mathrm{a}}{ }}_{(0)}$ as defined by $(A .2 .2)$, we choose $\mathbf{a}^{(0)}=$ (10.648, 5.993, 4.072, 3.804) . For this value, $H_{1}=-.262, H_{2}=-.255$, $H_{3}=-.608, H_{4}=-.349$, so that $a^{(0)}$ appears to lie in the nelghunrhood of a.

Convergence to a utilizes a modified Newton-Raphson procedure as follows. The correction to ${ }^{(t)}$, the value obtained in the t-th iterative
 typical clement $\partial^{2} \log L / \partial a_{i} \partial \alpha_{j}, \mid \underline{a}=\underline{a}^{(t)}$, and $\underline{g_{(}}(t)$ is an $r x \mid$ vector with typical element $-H_{j}(t)$; c takes the values $.1, .2, \ldots, 1.0$ with the selected value of $\underset{\sim}{(t)}$ taken as that for which $\sum_{i=1}^{r} H_{i}^{2}(t)$ is minimized. Values of $\frac{(1)}{(t)}$ through six iterative cycles are as follows:

$$
\begin{aligned}
& a^{(1)}=(7.73646,4.35829,3.46059,2.95983) \\
& a^{(2)}=(7.90812,4.45444,3.54099,3.05283) \\
& a^{(3)}=(7.83936,4.44951,3.53670,3.04752) \\
& a^{(4)}=(7.90126,4.45056,3.53759,3.04854) \\
& a^{(5)}=(7.90155,4.45074,3.53774,3.04876) \\
& a^{(6)}=(7.90148,4.45071,3.53773,3.04877)
\end{aligned}
$$

Substitution of $\left.a^{(6)}\right)_{n}$ for a and 35 for n in (A.1.1) leads to (.417, 235, .187. . 161) as the estimate or $E[(1 / n) x]$ and

$$
\left[\begin{array}{rrr}
.0187, & -.0075, & -.0052, \\
.0138, & -.0060 \\
& .0117, & -.0023 \\
& & .0104
\end{array}\right]
$$

as the estimate of variance $[(1 / n) x]$.

APPENOIX 3.

GOODNESS OF FIT

Goodness of fit is illustrated through the distribution of
4
y_{i}
$\sum_{i \neq i} x_{1} \ldots$ where

$$
\left.n\left(y_{i}\right)=n!_{i \neq i}^{4} \quad a_{i}+y_{i} \ldots n-\alpha-y_{i}\right) / y_{i}!\left(n-y_{i}\right)!\beta\left(\sum_{i \neq i}^{4} a_{i}, \ldots a_{i}\right)
$$

and

$$
f\left(y_{i}\right)=n!\left(1-p_{i}\right)^{y_{i}} p_{i}{ }^{n-y_{i}} / y_{i}!\left(n-y_{i}\right)!
$$

for the MAB and nultinomial distributions, respectively. Table 2 presents groupings of observed and expected $y_{i}, i=1, \ldots, 4$, for f and h. Ranges for each y_{i} were selected for demenstrating the greater spread of the MMB distribuelon, so that the goodness of fit statistic is applied loosely. For, not only are most observed cell frequencies quite small, but in three cases there are no degrees of freedom, l.e., for the MMB distribution, there is a loss of five degrees of freedom, four for the estimation of the a_{i} and one due to the restriction that $\sum_{i} x_{i j}=35 ;$ for the multinomial distribution, four degrees of freedom are lost, three for estimating P_{1}, P_{2}, P_{3}, and one due to $\sum_{i} x_{1 j}=35$.

Table 2. Goodness of fit of the MPAB and Multinomia! (M) distributions to the data in Table 1.

Ranges for Y_{1}	Observed	Frpected		Ranges	Observad	Expected	
		MM	M	for y_{2}		MMB	M
0-11	1	. 576	. 036	0-19	2	. 785	. 084
12-17	5	5.378	3.997	20-22	2	1.988	1.132
18-21	3	7.384	10.855	23-25	3	4.446	5.748
22-26	8	7.049	6.831	26-29	9	8.934	12.279
27-30	2	1.501	. 279	30-32	5	4.787	2.647
31-35	1	. 112	. 002	33-35	1	1.060	. 110
	22	22.000°	22.000		$\overline{22}$	22.000	22.000
x^{2} value		8.476	538.042			2.364	56.078
Degrees of	Frecdom	1	2			1	2
Ranges		Exp	cted	Ranges		Exp	
for y_{3}	Observed	MAB	M	for y_{4}	Observed	MMB	M
0-21	1	. 748	. 061	0-24	1	1.365	. 234
22-24	4	2.014	1.028	25-29	8	7.627	9.156
25-28	5	7.199	9.677	30-33	11	10.830	12.06 .3
29-32	9	9.546	10.598	34-35	2	2.178	. 547
33-35	$\frac{3}{22}$	$\frac{2.413}{22.000}$	$\frac{.636}{22.000}$		$\overline{22}$	32.000	22.000
x^{2} value		2.809	343.340			. 144	6.608
Degrees of	Freedom	0	1			-	0

C. Carathcodory (1958). Theory of Functions. Chelsea Publishing Co., N.Y.
H. Cramer (1946). Mathematical Methods of Statistics, Princeton University Press, Princeton, N.J.
W. Feller (1957). An Introduction to Probability Theory and Its Applications. Volume 1. Wiley, N.Y.
R. A. Fisher (1950). Contributions to llathematical Statistics. Wiley, N.Y.
W. S. Mallios (1969). A Monte Cario Study of Sniall Sample Properites of Estimates of Parameters In Certain Mon-Linear Regression Models. Under DOD Contract No. DAAD 09-68-C-0023.
J. Mosimann (1962). On the Compound Multinomial Distribution, the Multivarlate B -Distribution, and Correlations Among Proportions. Biometrika 49, 65-82.
H. A. Panofsky (1969). Air Pollution Meteorology. American Scientist 57, 269-285.
J. R. Plerce (1961). Symbols, Signals, and Noise. Harper, N.Y.
J. G. Skellam (1948). A Probability Distribution Derived from the Binomial Distribution by Regarding the Probability of Success as a Variable Between Sets of Trials. Journal of the Royal Statistical Society. Series B, $10(2)$, 257-261.

Commander
ATTN: David L. Arp
Naval Weapons Center
Code 12
China Lake, CA 93555
John Atkinson
Food and Drus Admin
200 C St SW
Washington, DC 20204
Commander
ATTN: Carl B. Bates
US Army Concepts Anal Agcy
8120 Woodmont Avenue
Bethesda, MD 20014
Commander
ATIN: John R. Baumgarten USACTEA
ATTN: DACS-IED-T
Ft. Belvoir, VA 22060
Mr. R. J. Bartyczal.
Internal Revenuc Sve
1111 Consi Ave, NW
Washington, DC 20224
A. Stuart. Baldwin

IIM' Research Institute
1825 K St NW
Washington, DC 20006
Prof. R. E. Bechhofer
Dept. Operctions Research
Cornell University
Ithaca, NY 14850
Mr. Kenneth Beane
N.S.A. R-21

Ft. Meade, MD 20755

Commanter
ATTN: HOb O, Benn
Watorways fixper sta

1. 1 . Rivx 0.32

Vieksbure, Miss. 39180

Commander

USAMASA,
ATTN: Ala7 W. Benton
Aberdeen Proving Ground, MD 21005
Commander
USAMSSA
ATMT: Mar: C. Berwanger
Washington, DC 20301
Commandmar
Picatinny Arsenal
ATTN: SARPA-MI-M
James G. Bevelock
Dover, New Jersey 07802
Narayan Rangnath Bhalerao
Mathematics Research Center
610 Walnut St
Madison, WIS 53706
Commrnder
USAECOM
ATIN: Arionics Lab Edvin Biser
Ft. Monmouth, NJ 07703
Commender
ARMCOM
ATTN: AMSAR-QAA
Richard M. Brugger
Rook Island, ILI, 6i201
Commander
USA CDEC
ATMN: Dr. Mariun Bryson
Ft. Ord, CA 93941
Commander
USAOTEA
ATMW: DACS-TEZ-B
Max Bunyard
F^{*}, Belvoir, VA 22060
Commander
WRAMC/WRAIR
ATTN: Bob Burge
Washingtion, DC 20012

Comander
USAMSSA
AITM: Kenneth L. Buach
Wushington, DC 20210
Dr. Jagdish Chandra
US Army Research 0:fice
Box CM, Duke Station
Durham, NC 27706
Eugene Church (address on last page of list)
Commander
Herry Diamond Leboratories
AMH: J. Mi chael Clodfelter
Weshington, DC 20438
Dr. Eugene A. Cogan HUMRRO
300 R. Wenhington St.
Alex, VA 22314
A. Clifford Cohen

Dept. of Stetistics
University of GA
Athens, GA 30602
Commander
Naval Mat'l Command (Mat 03015)
AINT: Jacnb L. Cobn
Nary Dept
Weahington, DC 20360
Jerome Cornfield
George Weahington Univ.
Washington, DC 20006
Commander
WBMR
AITM: STENS-QA
Peus C. Cox
WSMR, Hew Maxico 88002
John R. Cricler
NEWC
Code KCA
Dahlgren, VA 22448
Commander
ISANSAA
ATTN: Dr. Larry A. Crow
Aberdeen Proving Ground, MD 21005

Commander

US Arry iog. Ctr.
ATII: Jim Cunainghem
Ft. Lee. VA 23801

Commander
USAECOM
AHM: AMSELIMLLOO Richard J. D'Accardi
Ft. Monmouth, $\mathbf{N J} 07703$
Commender
WBNR
ATIN: NR-AM-I
Oren N. Dalton
WSMR, New Mexico 88002
Mr. Cuthbert Dansel
RD 2
Bhinebeck, ITY 12572
Prot. H. A. David
Dept of Statistics
Iova $8 t$ University
Aues, Iown 50010

Commander

USA MSL RDEE Lab
AIMN: ANSNE-FISO
Joseph A. De Blequiere
Redstone Arsenal, AL 35809
Berbera De Florio
System Planning Copr
1500 Wilson Blva
Arlincton, VA 22209
President
USAIB
ATHN: STEBC-TE-T
Jimaie Diloach
Ft. Bemaing, GA 31905

Commander

TRCA:
AdH: Gerard T. Dobrindt
Aberdeen Provind Ground, MD 21005
Dr. Francil Dreaeel
Arng Research opsice
Box CM, Drize ste
Durhen, MC 27706
L. A. Dre

BDM Services Co.
1920 Aline Are
Vienne, VA 22180
Commender
Picatiany Arcean
ATIII: Dr. Seymore K. Einbinder
Dover, MJ 07801

Dr. Churchill Eisenhert
Maticalal Burean of Stenderds
Weshington. DC 20230

Commander
USA Missile Cmd
AITIN: ANBMI-RRA
Oskar M. Essenvanger
Redstone Arsenal, al 35609
Commander
US Naval Ship Rad Cer
ATTH: Harry Yeingold
Bethesde, M 20084
Commender
ISAOTEA
ATTM: DACB-TIT-S
J. K. Peiker

Ft. delvoir, VA 22060
Comeander
Frankford Arsenel
ATTN: SARPA-PDR-B
Paul D. Plynn
Philadelphia, PA 19137
Walter D. Foster
APIF
Hashingten, DC 20306
Commander
Pisatinay Arsenal
ATTM: Burton Frank
Dover: MJ 07801
Dr. Fred Prishman
Internal Revenue gre 1111 Constitution Ave
Wanhington, DC 2022ls
[hil D. Gidillend
Interanal Revenue Sve 1201 E Street MW Washiagton, DC 2000\%

C'ommender
Edrewood Arnenal
AITN: BI uned liab
Henry Goldstein
Aberdeen Proving Ground, MD 21010

Thomas M. E. Greville
Apt L-23
Univ of Wisconsin Math Res Ctr 2022 Belitimore Road
Rockville, MD 20853
Commender
USA Ballistia Res Lab
ATHN: Frank E. Grubbs
Aberdeen Proving Ground, ND 21005
Dr. Alchard Giobons
System Plannine Corporation
1500 Wilson Blvd.
Arlington, VA 22209

Mr. R. L. Haines
Canadias Def Lno Staff
2450 Massachusetts Aye
Washington, DC 2000 8
Comander
Research Institute USAETL
AITIA: J. Hannigan
Pt. Belvoir, VA 22060
Mr. Bernard Herris
Univ of Wis
610 Walnut St
Madison, WI 53706
Mr. Boyd Harshbarger
Dapt of Statistics
VA Polytechaic Inst.
Blackeburg, VA 24061
Ne. Anton Hauschild
2126 Oriole Dr
Corwells Heights, PA 19020
Jenes L. Heicl, Jr
Litton Industries
490 L'mintant Plaze
Weshington, DC 2.0024
Commander
USA MBRDC
STSFB-ZSG
John Hennessy
Pt. Beivoir, VA 22060
HQDA (DAMA-ARZ-D)
ATTN: Dr. Herahper
Washington, DC 20310

Comerader
UBAOTAA
ATHM: DACS-THI
Pobert Hertl
P't. Belvoir, VA 22060
Director
NSA
AITN: Thomas N. Herzog
Ft. Meade, MD 20755
Commander
USAMRIID
AIHM: Glen A. Higbee
Ft. Detrick, MD
Commender
USA MERDC
ATTN: STSS-FB-HM
Paul hopler
Ft. Belvoir, VA 22060
Dr. Theodore Horner
Suite 1104
7479 Old Georgetown RD
Bethesda, MD 20014
Mr. David Howes
Us Consumer Products Safety
4501 West Bard
Bethesda, MD 20207
Commender
Harry Diamond Labs
ATMN: J. C. Ingram
Washington, DC 20438
Edwin Inselman (address on last page of 11st)

Profenmor J. S. Hunter
School of Ingineering and Applied Solence
Frinceton Uaiveraity
Princeton, NJ 08540
Commander
USAOTMEA
AITN: DACS—TED-T
Daryl Jaschon
Ft. Belvoir, VA 22060
Commander
William P. Johnmon
ATHN: AMDBR-CAL
Aberdeen Proving Ground, MD P. 1005

Dr. Salph W. Jollensten
Dept of Defense
Ft, Mesde, NL 20755
Commander
Edgewood Arsenal
ATMI: SAREA-CL-PO
Robert V. Jolilffe
Aberdeen Proving Ground, MD 21010
Commander
Watervilet Arsonal
ATEN: SARWV-RDD-SE Donald E. Jonea
Watervilet, NY 12189
Commander
USAOTEA
ATTN: DACS-TMD-T
Michael D. Jones
Ft. Belvoir, VA 22060
Commander
USAECOM
ANSEO-MA-DM
Walter Kasian
Ft. Monmouth, NJ 07703
Commander
Frankford Arsenal
ATTN: SARFA-FCD-P
Thomas Kelley
Philadelphia, PA 19137
Mrs. Victoria Kojesich
Internal Revenue Svc
120. E St NW

Washington, DC 20004
Mr. Dennis Koutras
Poly Inst of New York
333 Jay St
Brooklyn, NY 11201
Commander
Frankford Arsenal
AITIN: SARFA-PDR-M
June A. Kryat
Philadelphia, PA 19137
Harry H. Ku
National Bureau of Standards
Warhington, DC 20234

Commander
USA MSL RDAE Lab
AIIN: AMSMI-REO
Christopher E. Kulas
Redstone Arsenal, AL 35809
Pref. Solomon Kullbeck
Dept of Statistics
The Florida State Univ
Tullahassee, FI 32306
Dr. B. Kurkjian
AMCRD-R
US Army Materiel Command
5001 elisenhower Ave
Alexandria, VA 22333
Commander
USA Log Migmt Ctr
ATMW: Proc Res Dfc Robert Launer
Ft. Lee, VA 23801
James A. Lechner
National Bureau of Standards
Washington, DC 20234
Commander
USAOTEA
ATTN: DACS-TET-A
Larry Leiby
Ft. Belvoir, VA 22060
Director
NSA-R 21
Charles T. Lempke
Ft . Meade, MI 20755
Gerald J. Ifeberman
Dept. of Operations Research
Stenford University
stanford, CA 94305

Director
National Security Agency
ATTN: R51
James R. Manar
Ft. Meade. MD 20755
Dale Madden, HFT 30
Food and Drug Admin
5600 Fishersa Lane
Rockilile, MD PO852
Dr. Willim Mallios Brmddock, Dunn MeDonald Sive Co cIO UBA CDEC
Ft. Ord, CA
93942

Dr. Clifford J. Maloney Food \& Drug Admin
8000 Rockville Pike
Bethesda, MD 20014
Commander
Picatinny Arsenal
Bldg 92
John Mardo
Dover, NJ 07801
Commander
Frank ford Armenal
AITIH: SARFA-PCD-P
Nicholas Marasco
Philadelph1a, FA 19137
Commander
Harry Diamond Labs
AITN: HDL-WRF
Egon Marx
Washington, DC 20438
Bculan Mathis
Interaal Reveaue Svc
1201 E St INW
Weshington, DC 20004
James M. Maynard
105 Brookside Ave
Hershey, PA 17033

Commander
USAOTEA
ATTN: DACS-TED-M
Fred K. McCoy
Ft. Belvoir, VA 22060
US Army Secuity Agency
ATM'N: IARD-D
Bruce J. McDonald
Arlington, VA 22212
Commander
TECOM
AITN: ANETE-RA
Richard M. McGanley
Aberdeen Proving Groind, ND $2 i 005$
Commander
USA Yume Froving Ground
ATTM: Math Instr Thomes 0 . Mcintire
Yuma, AZ 85364
Comander
TECOM
AITH: AMBTE-RA
Willien BL McIntosh
Aberdeen Frovine Ground, MD 21005
Director
Armed Forces Inst Pathology
ATTM: I. McLean
Washington, DC 20305
Director
Arwy Research Inct
ANTM: J.J. Malilioger
1300 Wilson Blvd
Arlington, VA 22209
Ronald G. Merritt
Conatr Engr Res Lab
P. O. Box 4005
Chmpaien, Il 618e0
Director
Army Research Inst
ATIN: Mary Marion 1300 Wilson Blve Arlington, VA 2220
Comander
USA MERDC
ATHA: STES-FB-ET Genurieve Myer
Ft. Eelvoir, VA 22060
Commander
Bock Island Arsenal
ATIM: SARRI-LE-R Veughn Meehan
Hock Isiand, IL 61201
Comender
UBAOTEA
AIIN: DACS-TED-T Jerome Miller
Ft. Belvoir. VA 22060
Mr. Nash Monsour
itat Res Div
i'enaus Bureas
Weshincton, DC 20233

Director

Ballistic meaearch Lab
Nxil: J. Ricbard Noore Aberdeen Proving Cround, MD 21005
V. I. Murty

Fean State Iniv.
Capitol Canpue-RM E355
Middletown, Ps: 17057
Mr. A. Musco
Potomac Research Inc. 7655 0ld Springhouse Road Meleen, VA 22101

Mary G. Vaireila
Itational Burean or sceaderds
Wenhiagton, DC 2023h
Comander
NEAC
ATH: Donald Ileal
Watertoun. M 02172
Commender
MBSHER
AIIN: Dr. Charlec Hyatroa
Fr. Hood. TX 76544
Ms. Donne L. Nemman
Internal Rev Ser
1111 Constitution Are In
Wehlagton, DC 20024
Micheel J. O'BrieL
MSA-DOD
Fi. Meade, MD 20755
Micheel H. Q'Donnell, Jr.
Dept. of Defense
Ft. Mede, MD 20755
Maval sea gys Gad
ALIN: Bentrice 8. Orlean
Code C-03F
Wenincton, DC 20262
Director
UBANBAA
ATHT: AMRSY-RM
Harold C. Panini, Jr.
Aberdeen Proving Ground, ID 21005
Comander
UBA Eleetronice Comend
ATM: ABELMEF (Avionics Lab)
Charles A. Pleckeltis
Ft. Mownouth, MJ OTT03

Comanader
Harry Dismond Labs
AHIM: H. W. Price Weshington, DC 20438

Commander

Watervilet Arsenal
Beret Wpas Lab
ATIM: Ronald L. Racicot
Watervilet. XY 12189
Commander
USAOTKA
ANITM: DACS-TED-T
Stophen C. Reynolds
Ft. Belvoir, VA 22060
Joan R. Rosenblatt
Metional Dureau of Stendards
Weshington, DC 20234.
Director
Us Army Ratick Labs
ATEM: E. W. Roeng
Matick, MA 01760
Arthur D. Salamon
IRS PR:S:MB
1201 E St N
Washimgton, DC 20004
Orfice of Maval Research
ATIT: S. M. Selis
Ballston Tower 1
Arlington, VA 22217
Comander
WBAR
AITH: ID-R
Willien L. Shepherd
WBNR, MM 88002
John sjobere (addreas on last page of list)

Comander

MERDC
ATIN: Tin Smail
Mt. Belvolr, VA 22060
Ir. 3tephen imeach
Univ. of So. Pla
Dapt of Math
Tapa, Fla 33620

Ccmander

Edgrood Artemai
ATHM: SAPEA-CL-PO
Arthur K. Stuempile
Aberdeen Proving Ground. MD 21010
Captain Rolf Stutzmenn
Eabeasy of Switzerland
2900 Cathedral Ave., IW
Washington, DC 20008
Commander
UBAOMEA
AMYI: DACS-TED Roy Schmidt
Ft. Belvoir, VA 22060

Comander

USAMERDC
ATMI: HVL (J. Swistak)
Ft. Belvoir, VA 22060
Director
WRAMC
ATLN: D. Tang
Washington, DC 20012
Director
Ballistic Research Labs
ATTN: M.S. Taylor
Aberdeen Proving Ground, MD 21005
Marlin A. Thomes
NSWC
Code KCM
Dahlgren, BA 22448
Ramie H. Thompson
The Franklin Institute
20th and the Parkway
Phaladelphia, PA 19046
Robert M. Thrall
Dapt of Math Sci
Rice Univ
Houston, TX 77001
Naval Ship R\&D Ctr
Code 184.1
Edverd J. Timko
Bethesde, MD 20084
Bruce E. Trumbo
Wational Sci Found
1800 G St NW
Washington, Dc 20550

Prof. Chris P. Tsokos
Univ of So Fla
Dept of Math
Tampa, Fla 33620
Commander
USACAA (Dr. E. Virene)
8120 Wcodmont Avenue
Bethesda, MD 20014
John Van Ryzen
Math Res Ctr
Univ. Wis-Madison
Madison, WI 53706
Commander
USAOTEA
ATTN: DACS-TED-T Michael Volpe
Ft. Belvoir, VA 22060
Kenneth T. Wallenius
Math Dept
Clemson Univ
Clemson, SC 29631
Steve Webb
McDonnell Douglas Corp
5301 Bols Ave
Huntingt on Beach, CA 92647
Commander
USAMERDC
ATTN: STSFB-HM
Samuel Wehr
Ft. Belvoir, VA 22060
Commander
Frankiord Arsenal
ATTN: E. Weigand
Philadelphia, PA 19137
Dr. M. A. Weinberger
National Defence Orae
Cartier Sq MSB
Ottawa, Ontario, CAnada

Nis. Gertrude Weintraub
Anmo Dev \& Eng Directorate
Picatinny Arsenai
Dover, NJ 07801
Commander
USA Tecom
ATIN : AMSTE-RA
Larry West
Aberdeen Proving Ground, SD 21005
Commander
Frankford Arsenal
ATHT: G. C. Thite
Philadelphia, PA 19137
Commander
USA Electronic Proving Ground
ATTM: STEEP-MI-I
John Bart Wilburn, Jr.
Ft. Buachuca, AZ 85613
Director
USANSAA
ATTM : RAM DIV
Paul E. illliams
Aberdeen Proring Ground, MD 21005
Commande:
USAOTEA
ATIT: DACS-TET-A
Lang kithers
Pt. Belroir, VA 22060
Commander
USACAA
ATTM: Aga:ha S. Holmar.
8120 Woodront Ave
Bethesda, MD 20014
Dr. Hilliam W. Wolman
LS Dept of Transportation
Federal Highway Adminfstration
Washington, DC 20590

Comander
USA Missile Command
ATTH: AMSMI-RER
James W. Wrignt
Redstone Arsenal, AL 35809
Mrs. P. A. Young Department of Deiense

Commander

usaotea
ATTN: DACS-TET-A
Thomas Zeberlein
Ft. Belvoir, V 222060
Mr. Theodore G. Zeh, Jr.
OASD (INL)WR
RM 2B 323
Pentagon, Washington, DC 20301
Comander
Frankford Arsenal
A'TN: IDH-P
H. i.. Church
Philadeiphia, PA 19137
Ur. Liduin Inselman
AMCRD-R
If: Army Hateriel Command
5001 Eisenhover Avenue
Alexandria, VA 22333
Dr. John C. SJoberg
Ofince of the Deputy Chief of Staff for Logistics
US Army Loristics Evaluation
Agency
New Cumberland Army Deport
New Cumberiand, PA 17070

Sest Available Copy

SECURITY CLASSIFICATION OF THIS PAGE (When Dnie Finireod)

16. DSTAIDUTION STATEMENT (OA MIE ROPMI)

Approved for public release; distribution unlimited. The findings in this report are not to be construed as an officiai Department of the Army position, unless so designated by other acthorized docurents.

16. SUPPLEMENTARY NOTES

This is a technical report resulting from the Twentieth Conference on the Design of Experiments in Army Research, Development and Testing. It containz mort papers presented at that meeting. These treat various Aruy statistical and design problems.
19. KEY wonos (Contlime on roverov aldo if noceseary and lometify is Wock meneten)
contingency Lables
random processses
elvtruexplosives
Weribull distribution
de-ision theory
roliuvility
Hayesiun statistics
computer simulation
buifers
air trailic
covariance computer prosram
lon Rayleigh distribution
wicanic eruptions
up: imi :.stion
discriminant functions
Corecasting
curve ititing
sensitivity rualysis
multivarinnt dota analysis
Murkor chains
motor case rupture
incomplete block design::
order statistics
least squares
structure failures
nickelcadmium batteries
surface roughness
ranking and selection procedures

[^0]: *75 for 40 mm (weapon could not reach the target at right angle). **Yaw angle is the angle between the aircraft heading and airspeed.

[^1]: 1 - Function
 0 - Non-Function

[^2]: Hote that this is not the odde that would be computed directiy frow the obearvatione, but rathar from thair logarithaic trangforme, then avaregias, than traisforning back to the odds domin. Thue, this "man odde" io a mitiplicative mean, not in additive man.

[^3]: *This corrects formula 4.3E in reference 7.1.

[^4]: 1. It m ight be of interest that the first attampt at rescalinf was to make $\vec{\xi}$ and $\vec{\eta}$ each anft vector. This didn't affect the divernence or convergence tendency at all.
[^5]: ${ }^{2}$ The Shapirowilk Test was used to test for normality of X. The X^{2} test was used to test for normality of Y and $X-Y$.

[^6]: ${ }^{1}$ When applying the Birmbaun-Acrorty procedure, it is assumed that the smallest X in the sample is larger than the largest Y in its sample.
 ${ }^{2}$ Using $2 / 9$ of the Chebycheff values is fustified if $(X-Y)$ is continuous, unimodel, and symmetric.

[^7]: Work supported by the Amby Renearch Orfice - Durbam.

[^8]: * "The views of the author do not purport to raflect the position of the Department of the Army or the Dapartment of Defense."

[^9]: * Blevated numbers denote refarances.

[^10]: 2.4 Frocedures for use with the indifference-zone approach under the asaumption of common known variance

 In this section shall describe three procedures, each one of with will guarantee (2.3) when assumption (2.5a) is made; minor modifications of these procedures will guarartee (2.2) when assumption (2.5b) is made. The procedures will be introduced in the order of their historical development, each being designed to affond different options to the experimenter.

[^11]: * When environments are rendom, sample size becomes three dimensional.

[^12]: Average 42.52

