
MrA032 280 A;R FORCE AVIONICS LAS WRIGHT—PATTENSON AFB OHIO P15 9.13 11THE UNIFILO PROCESSOR. A HZCPOPROSRAMNASLE PROCESSOR. (U)
SIP 76 ft £ SARRLAA

uN’LASSIFICO AFAL—tR—75—1fl

_
fl ap’

I i
(I,

AFMTR 75 143

THE UNIFIED PROCESSOR, A
~~ ~ ICROPROGRAMMABLE PROCESSOR

~~~ INFORMATION MANAGEMENT BRANCH
~~~ SYSTE~1 AVIONICS DIVISION

~PTEMBER 1976

TECHNICAL REPORT AFAL TR-76 146
FINAL REPORT FOR PERIOD AUGU 1972 THROUGH MARCH 1975

• ~~~~

I Apr ~ .d tar pv~& russ... d~.tr~bstiss .riftmJt.i ~J

AIR YOROI AVIONICH L4~I%~ AT1RY
*a roRc~ WRIGHT AERONAUTICAL LAHORATORIES
La FORCE I~8TEM$ CO~~~ ND
WRIGET-PAT~EMON AIR FORCE BASE, OHIO 45438

~J
-,

NOTICE

When Goverj ~~ent d~awAngs, ap eolf icationa, ox other data at. used for any p urposeother than in connection wi th a def ini tely related Ooverrm.nt p.rocureu~ it operatice,the Uni ted States Government thereby incurs no rseporaslbil.i ty nor any obligati onwhetsoev.ti and th, f act thee the government mey hove f ormulated, f urnishd, or inany way supplied the said drawings, specif ication., ox ethos dsta , is not to beregarded by laplica tie~ or otherwise as in any nnez licsneing the holder or anyother p erson or corpora elan , or conveying any rights or perul,ai on to menuf actur.,use, or sell any p atented invention tha t y in any way b rel a ted ther.to.
This technica]. report has been reviewed and is approved for publication .

e ~~~~~RALPH E . BARRERA
Proj.ct Engineer

FOR THE COMMANDER

AJ~~S N. RI LEY MAJ USAF
Chie f , System Teohn ogy Bran ch
System Avionics Division

Copiet of this report should not be r.tura~ d melee. retdaa La *squized by aeoiuityConajderatiana, caetrac~~~~ ~~~~~~~~~~~ or met.fee me a ~~~~iftc dar. Jat
~~~ • 20 OCt~~* ?~ • tOC



IJNCLASSIFIEfl
SCCURITY C LA S S IF I C AI I O N  OF TIllS PAGE (WI.... D.t. E..t.,.d ) 

___________________________________

REPORT DOCUMENTATION PAGE B E F OR E  C O M P L E T I N G  FORM

~~~~~~~~ I ~~~r~~f lT UUI.t5 1 GOVT ACC ESSION NO. 3. RECIP IENT ’ S C A T A L O G  N U M B E R

—
AFAL-TR-75 -148

~~~~~~~ 4. T ITLE (ond S~bIUI.) / A • ~~~~~ 01,REPORT A PERIO 0~’EJ1J~(
~ 

_—.----------——-— —

~~~~ 
(J Final 7echnical,.~e ~ . /

The Unified Processor, A Microprogrammable (Aug 72 $~ww Mai’ 75

Processo~~f~~~
________ _____________________

7. AUTw OR(.) S. C O N T R A C T OR G R A N T NLJ MBER(.)

Ralp h E,/Barreraj

S. PERFORMING OR GAN iZA TI O N NAME AND AD DRESS 10, PROGRAM ELEN~~NT. PROJECT , TASK

Air Force Avionics Laboratory
Systems Avionics Division (AA) 62204F-2003-04-08
Wright Patterson Air Force Base, Ohio

II. CONTROLLING OFFICE N A M E AND ADDRESS IZ .

Air Force Avionics Laboratory (AFSC) Sep L.. 1U 076
System Avionics Division (AA) .•. L.. .. 1..- .~AG’E3
Wright Patterson AFB, Ohio 79
14. MONITORING AGENCY NAME & ADDRESS(S I dIfl•r~~ I Ir on. Cool OIIic.) IS. SECURITY CLASS. (of tAt. r .po.I)

/
~2ii~ UNCLASSIFIED
~1 lID IS.. DECLASSIFICATION /DOWNGRADING

SCHEDULE

16. DISTRIBUTION S T A T E M E N T (of 11.1. R.port)

Approved For Public Release; tribution Unlimited.

~~~~~~~ 4~~
(

Il. QISTRI I?~~~’~ T• .._.. . I lb. .b.fr.c ocj. 20. If dIIl.r.n I Iron. R.porI)

IS. SUPPLEMENTARY NOTES

IS KEY WORDS (CootI n... on r.v.r. • .id. II n.c..aary ond Id.nIlfy by block nsm.b.r)

Microprogranuning; Processor; Avionics ; Computers; Microprocessors;
Architecture

SSTRACT (COnIMo. on ..vn... .Id. II n•cI•I cy id Id.nUIy by block nu..b.r)

is report presents the design of a microprogrammable processor called
the Unified Processor (UP). First a brief history of microprograinming is given
followed by a description of a present day processor. The architecture of the
Interpreter is presented along with several deficiencies that were present in
its design. A brief discussion of the microprograinming format of the UP is
presented followed by an in-depth description of the UP. The features of the UP
that are covered include general registers, special registers, internal bussing,

COIFrINUED
DD 

~~~~~ ~473 EO I TIO M 0? 1 NOV 11 IS OSSOLETE UNCLASSIFIED
SECURITY CLA SSI?I CA IIO N OF THIS PAGE (WI..n D.r. KnI..,d)

~~~ 



iiwci ~ccicr pn
S E C U R I T Y  C L A S S I F I C A T I O N  O~ THIS  PA GC(WI . on D.ta EnI.r.d)

mi croprogram addressing , and the Barrel Switch. Examples of how each of the
various features can be used is included in each section . Finally, the UP is
evaluated and recommended changes for a future design presented .

UNCLASSIFIED
SECURI TY CLASSIF ICA T ION OF THIS PAOE(WI~.n 0.1. Fnr.r.d)

. ,,.‘..,

0 
— . . . . _________



AFAL-TR-75-148

FOREWORD

This Fina l Engineering Report was prepared by the Air Force

Av ionics Laboratory (AFSC), System Avionics Division , In forma tion

Mana gemen t Branch , Wright-Patterson AFB I Oh io. The work was accomplished

under USAF Project 2003 entitled “Avionic System Design Technology ,”

Task 04 entitled “Modular Processors .” The work was administered

un der the di rec tion of Mr . R . Barrera , A ir Force Avionics Laboratory ,

AFAL /AAM , Wright-Patterson AFB , Ohio.

Th i s repor t covers work con duc ted from Au gust 1972 throu gh

March 1975 and was submi tted by the author March 1975.

The author , Mr. R. Barrera , is grateful for the help and contri-

bu tions recei ved from Messrs . John Camp an d Fred Schurr , assoc iates at

the Avionics Laboratory in fabricating and debugging the Unified

Processor . In additi on he wi shes to thank Mr . Dewey E . Brewer also of

the Av ion ics La boratory for h i s ove ral l  gu id ance an d encoura gement

during the initial study and design and Mr. Robert Davis of the

Burrou ghs Corp. who spen t many hours explaining the hardware and

progranuiing of the Interpreter .

— — I ~~~

lhlto Se~lj~5
D.C ,Ifl $~cU~ C]

‘V 

iii 

0’



AFAL-TR-75-148

TABLE OF CONTENTS

SECTION PAGE

INTRODUCTION 1

1 Back ground 1
2 Statement of the Problem 4
3 Approach 4

II THE INTERPRETER 6

1 Architecture 6

a. Logic Unit 6
b. Control Unit 10
c. Memory Con trol Un it 1 2
d. Contro l Store 14

2. Interpreter Deficiencies 16

III MICROPROGRANMING 19

1. Language . 19
2. Example 21

IV UNIFIED PROCESSOR 25

1. General Registers 25
2. Barrel Switch 28

a. Barrel Swi tch Operation 35
b. Barrel Switch Control 39

3. Microprogram Addressing 41
4. Memory/DevIce Addressing 50
5. Mlcromemory Control Partitions
6. Internal Bussing 57
7. Prograum~able Instruc tion Decoder 62
8. Input/Output Registers
9. Special RegIsters 67

V CONCLUSION

1. Sun~nary 69
2. RecommendatIons 69

a. Mlcromemory 69
b. B Register 70
c. Barrel Swi tch 70

V 
-
~~~~~~~

.-

.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _ _



L

,WAL-TR-75-148

TABLE OF CONTENTS (Cont ’d )

SECTION PAGE

APPENDIX A - Un ifi ed Processor I/O Channel 71

APPENDIX B - Un ifi ed Processor M icromemory Impl ementat ion 75

BIBLIOGRAPHY 79

_ _ _  
_ _  

vi 

_

..$l
~~~~ ~~~~~ .

0’

AFAL-TR-75-148
LIST OF ILLU STRATIONS

FI GURE PAGE

1 Basic Computer Structure 2

2 In ter preter Bloc k D i agram 7

3 Logic Unit Block Diagram 8

4 Control Uni t Block Diagram 11

5 Memory Control Unit Block Diagram 13

6 Micromemory Word Formats 15

7 Nanomemory Word Format 15

8 Un if ie d Processor Con trol F iel ds 20

9 Un i f ied Processor Bloc k D iagram 26

10 Multiple Shifter 31

11 Single Level 8-Bit Barrel Switch 32

12 Single Level 8-Bit Barrel Switch Control 33

13 Two Level 8-Bit Barrel Switch 34

14 Shifting Examples 37

15 Shift Amount Register Block Diagram 40

16 T im i ng of CSAR Instruct ion 40

1 7 SAVE Successor T im ing 45

18 JUMP Successor T imin g 47

19 EXEC Successor Timing 49

20 CALL Successor Timing 51

21 MPM Address i ng System Block D iagram 52

22 Type I Microinstruction Control Fie~ds 55

23 InstructIon Timing Diagram 57

24 X-Bus Mult iplex Structure 58

25 V-Bus Tn -State Structure

vii

F
.

— . —
~~~ 

- . .



AFAL-TR-75-l48

LIST OF ILLUSTRATIONS (Cont ’d )

FIGURE PAGE

26 Norma l Fetch-Decode-Execute Cycle 63

27 Programmable Instruction Decoder Operation 64

28 I/O Channel Block D iagram 72

29 Input Data Transfers Timing Diagram 73

30 Output Data Transfers Timi ng Diagram 74

31 UP Micromemor,y 76

v iii

F 
- - — — _ _ _ _

~~~

. — —- - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

AFAL-TR-75-148

SUMMARY

This report presents the desigrl of a microprogrammable processor

called the Unifieu Processor (UP). First a brief history of micro-

programming is given followed by a description of a present-day pro-

cessor. The architecture of the Interpreter is presented along with

several deficiencies that were present in its design. A brief dis-

cussion of the inicroprogramming format of the UP is presented followed

by an in-depth description of the UP. The features of the UP tnat are

covered include general registers , special registers, internal bussing ,

microprogram addressing, and the Barrel Switch . Examples of how each

of the various features can be used is included in each section.

Finally, the UP i s evalua ted an d recommended chan ges for a fu ture de-

sign presented .

ix

F ~~~~~~~~~~~~~~

AFAL-TR.-75-148

SECTION I

INTRODUCTION

1. BACKGROUND

The structure of the computer has remained constant since 1830 when

Charles Babbage described his Analytical Engine . This structure shown

in Fi .~ure 1 is comprised of four basic units : the Arithmetic Unit that

performs all the necessary calculations , the Memory that holds both the

instructions and data , the Input/Output Unit tnat ties the computer to

the world , and the Control Unit that produces the signals to synchronize

the operations of the other units . Although Babbage had defined the

necessary componen ts of a computer he was never ab le to cons truc t one

because of the lack of suitable technology.

By the 1940’s technology had advanced sufficiently that a working

computer could be built. The first, made wi th relays , was the MARK I.

It was fol l owed closely by the ENIAC , which was the first computer to

use vacuum tubes , and then UNIVAC I, the first commercially produced

computer.

Since the introduction of UNIVAC I in 1951 there have been few

changes to the basic units of the computer. As tecnnology advanced the

units were made to operate faster but their circuits remained uncnanaged .

There have been several suggested alternatives to the system presently

being used but most of these have proved of little worth because of

either limited applications or Insufficient technology . One alternative

AF AL-TR- 7~ - 1 4~l

F-
~~ I—I— — — — — — — — -..-- =

0)
I-

U

43
(I.)

*
0)

L)
I—

-J L~J I— 0L)

— ________
~~~ 

=

L.. (0

0)
S..

I.L. 

2



AFAL-TR-75-j4~

that had been considered an academic curiosity , for the la tter reason

above, was the use of microprogrammi ng .

The Arithmetic Unit , Input/Output Unit, an d the Memory have almos t

since their inception been very systematically designed. The flow of

data within these units is easy to follow and the design or modification

of an existing unit is relatively easy to accomplish. The same cannot

be said of the Control Unit because its design tends to be of random

logic groupings. It was this ad hoc , nonsystematic approach to de-

signing the Control Unit that concerned M. V. Wilkes and caused him in

1951 to put forth the scheme of microprogramming . Wi l kes observed that

every machine l evel Instruction was really a combination of several less

complex comands or machine states. For example an add instruction was

composed of the following sequenct~ of machine states.

MACHINE LEVEL MICRO LEVEL

ADD Rl , R2 - ADDRESS Ri & R2 AND GATE ONTO ALU BUSSES

- SET ALU FUNCTION TO ADD

- ADDRESS DESTINATION REG R2

- CLOCK RE SULTS INTO REG R2

The i dea of microprograming was that instead of allowing a designer to

create the series of states using gates and flip-flops the necessary

control signals would be stored In a memory. Wilkes ’ or ig inal conce pt

was to have each bit of a word from micromemory control a unique gate.

This has been modified in most Implementations by allowing some decoding

between the micromeinory and the logic to be controlled . This has not

3 

,. —., -



AFAL-TR-75-148

produced many li m itations because there are severa l operations that tend

to be mutually exclusive such as add and subtract.

Microprograminq was not widely accepted commercially until IBM

introduced the Model 360 computer in 1963. The cost of memory had been

too high to make implementing the Control Unit with Memory feasible.

Since the late 1960’s the cost of hi gh-speed memory has dropped to about

one or two cents per bit, making microprogranining very cost-competitive

with the previous method . Presently most computers being introduced use

m icroprogranining in the Control Unit with a small amount of decoding .

This has produced computers that are easier to understand and reasonably

simple to mod ify.

2. STATEMENT OF THE PROBLEM

With microprogrammabl e processors becoming so economically feasible

much interest has been generated concerning their potential applica-

tions. It has been proposed that these processors could be used to

emu la te ano ther processor , thereby taking advantage of software that had

already been written. Another possible area is the matching of processor

to application by tuning the microprogram . This report presents the

resul ts of an effor t to des ig n a m icroprograma ble processor tha t woul d

provide the necessary facilities for studying the potential applications

of microprograming .

3. APPROACH

The approach used in designing the microprogrammable processor was

to first examine carefully an existing ~‘nicroprocessor. This study was

4



AFAL-TR-75- 148

performed by writing several muicroprograms for a Burroughs designed

m icroprocessor called an Interpreter. The programs were analyzed and a

list of deficiencies was compiled .

The next step was to design a processor that incorporated the

desired features. The result of this effort is the Unified Processor

which represents an enhancement of the Intepreter.

The Interpreter along with its deficiencies is described in Sec-

tion II of this report. Section III contains a brief explanation of the

microprogranining language used on the Unified Processor (UP) and Sec-

tion IV provides a complete explanation of the liP hardware . F inal l y

Section V discusses some problem areas that have been identi fied with

the present UP design and possible solutions to them.

5

- ~r~~~~~j



AFAL-TR-75-l 48

SECTION II

THE INTERPRETER

The In ter preter is a m icroprogramma b le processor tha t was bu i l t by

the Burroughs Corp. The block diagram in Figure 2 shows information

flow between major registers of the Interpreter. The implementation of

the Interpreter necessitated the partitioning of these components into

specific function modules.

The four major modules that comprise an Interpreter are the Logic

Unit (LU), the Control Unit (CU), the Memory Control Unit (Mcli), and the

control store which is comprised of the Micro Memory (MM) and the Nano

Memory (NM ) . A descr ipti on of how each of these un i ts func tion is gi ven

in the following section.

1. ARCHITECTURE

a. Logic Unit

The LU performs the required shifting , arithmetic , and logic

functions as well as providing a set of ~cratch pad registers and data

interfaces to and from external devices and memories . A functional

block diagram of the LU is shown in Figure 3.

Re gi sters Al , A2, and A3 are func ti onal l y id en ti cal .  Each

temporarily stores data and serves as a primary input to the adder .

Selection gates permit the contents of any A register to be used as one

of the inputs to the adder. Any combination of A registers can be

loaded simultaneously from the B-Bus
.6



__________________ _ _ _ _  _ _ _ _ _ _  - -~~~~- - - - -- ----

AFAL-IR- 75-148

I-

~~I— I—

E - 1
I-
=

LI

H~1 Li

- 
~~~~~~~~~~~~~ 

.— _ -~~~m~~~~T~~~—Y~~~~ff ~~~I~~~~. , ,- ‘ ,

AFAL-TR-75-1 4R

I- UJ
F-

___ LI _______
—(D

F- —

E

-L _
5-
(0

.~~

• = 4)— . ~~~~
-. F-

0
.
~~~~~~. U
~~ V) F-

_I_
I I I-

I
8 

__

. ~~~~~~~~~~~~~~

0’



AFAL-TR-75-l48

The B register is the input buffer. It serves as the second input

to the adder and can also collect certain side effects of arithmetic

opera ti ons. The B regi ster may be loa ded from a num ber of loca ti ons .

The output of the B register has true/complement selection gates

which are controlled in three separate sections : the most significant

bit , the least significant bit , and all the remaining centra l bits .

Each of these parts is controlled independently and may be either all

zeros, all ones, the true contents or the complement (ones complement)

of the contents of the respective bits of the B register. The operation

of these selection gates affects only the output of the B register. The

con ten ts rema i n unchan ged.

The Memory Information Register (MIR) primarily buffers information

being written to main system memory or to a peripheral dev i ce. It is

loaded from the B-Bus and its output may be sent to the Input/Output

Unit , to the B register , or to the data input of the MPM or Nanomemory

for programmatic loading .

The adder in the LU ‘is a modified version of a straightforward

carry look-ahead adder. Inputs to the adder are from selection gates

which allow various combinations of the A , B, and 2 inputs . The A input

‘S from the A register output selection gates and the B input from the B

register true/complement selection gates. The 2 input is an external

input to the LU and can be CTR, L I T , or AMPCR regi sters from the Memory

Control Unit.

9

— —~~~~~~~ .- - 
• 

- — - -



AFAL-TR-75-l48

Using various combinations of inputs to the selection gates , any

two of the three inputs can be added together , or can be added together

with an additional “one ” added to the least significant bit. Also , al~

binary Boolean operations between the A and B and between the B and Z

adder inputs and most of the binary Boolean operations between the A and

2 adder inputs can be done.

The Barrel Switch is a matrix of gates that shifts the parallel

output of the ALU any number of p laces to the lef t or r ig h t, either end-

off or end-around , in one clock time . Da ta pass i ng throu gh the Barrel

Switch is put on the B-Bus from where it may be loaded into any selected

register.

b. Control Unit (CU)

The CU contains a condition register and the logic necessary

for testing the selected condition , a register for controlling shift

operations in the LU, and part of the control register used for storage

of some of the control signals to be sent to the LU.

Major sections of this unit shown in Figure 4 are: The Shift

Amount Reg ister (SAR), the condition register , part of the control

reg’ster , the MPM content decoding , and part of the clock control . The

functions of the SAR and its associated logic are :

(1) To load shift amounts into the SAR to be used In the

shifting operations.

10

- -



AFAL -TR-75-l48

_J
_J ~~= =-J O~~~I -JC V’)

C LL CF- Li. I’-

~~~~~~~~~~~~~~~~~~ r

t

1
_

-- IIr~ 1

Pu I

I-~~~ i1 ~
C I.a.lL)

11

~

-

.‘
~~~~~~~~

-.



AFAL-TR-75-14~3

(2) To generate the required controls for the Barrel Switch

shift operation indicated by the controls from the

Nanomemory .

The condition register Section of the CU performs four major functions:

(1) Stores 12 condition bits used for error indicators ,

interrupts, status indicators , and lock out indicators.

(2) Selects I of 16 conditions to be tested for use in per-

forming conditional operations.

(3) Decodes bits from the Nanom~mory for adjusting condition s .

(4) Resolves priority between interpreters in the setting of

globa l condition (GC) bits .

c. Memory Control Unit (Mcli)

The MCU provides addressing logic to periphera l units for data

accesses, controls for the selection of microinstructions , constants

storage, and counter operation . The MCU block diagram (Figure 5) shows

the three major functions this unit performs.

(1) The microprogram address section contains the microprogram

count register (MPCR), the al tern ate m icroprogram count

register (AMPCR), the incremen ter , the microprogram ad-

dres s con trol reg i ster , and associated control logic.

12



AFAL -Tp_ 7~_l4g

_  

I

~~~~~~ - 
~~~—_ _  _ _ _ _



AFAL-TR-75-l48

The output of the incrementer addresses the 11PM for the

sequencing of the microinstructi ons.

(2) The memory/device address section contains the memory

address register (MAR), base registers one and two (BR1 ,

BR2), the base register output selection gates , and the

associated control logic.

(3 The Z register section contains registers which are two

of the Z inputs to the LU adder: A loadable counter (CTR),

the literal register (LIT), selection gates for the input

to the memory address register and the loadable counter

and their associated control logic.

d. Control Store

The control store for the Interpreter is unique in that it

uses a two-level memory system . The first level or Micro Memory (MM) is

sixteen bits wide and has two word formats as shown in Figure 6. The

TYPE II instruction format is used to load data constants from the MM

into either the AMPCR . SAR , or the LIT Register. The TYPE I instruction

does not provide any data or control by itself. What it does provide is

an address into the Nano Memory where the controlling signals are stored.

The Nano Memory has a fifty-four bits word length . The control fields

of the NM are shown in Figure 7.

The two-level memory system runs slower than a single level

system would because two memory accesses must be made for every TYPE I

14



AFAL-TR-75- 148

CODE ADDR (NANOflEMOR-? ) J
TYPE I INSTRUCTION

OP CODE DATA

TYPE II INSTRUCTION

Figure 6. Micromemory Word Formats

[~( ‘N [ ) COND~[ 
ALU ALU ~LU ALtJ ~HFT B-BUS

[TI SI ADJ ~ IN IN IN FUN CONT BEST CONI OPIR

Figure 7. Nanomemory Word Formats

15 

-~~—~~~~~~~~-•.—‘ —..--- 
~- .  ~~~~~~~~~~~~~~~~~~~~~~~~

~F



~~AL — iP - - 75—148

‘ns ’ ti~~ri . The first provides the Micro instruction and toe second

the ~~~ Lontrol word. The benefit derived from the two memorios is

~ wi- ~ue fifty-four bit control word need be stored on1~ once.

2. iNTER PRETER DEFICIENCIES

A subs tant ial number of microprograms were written on the Irterpre-

~er j r~ ord r to arrive at a complete list of deficiencies in its architec-

~~~~ The programs include an emulation of a 24-bit general purpose

r~ v~~)tic r co rs rut.er , an emulation of a special purpose flight control

i~~~~~~ pr~ ~~~~~~ I/O drivers , and some special purpose routines such as

nu ltip l y, floatin g point operation , etc . The largest niicroprogramniing

ef~~rt t~~t has been performed was the partial emulation of a Burrougns

~C~OU . This required 2000 microinstruction and 1000 nanoinstruction and

- ~t one man-year of time . The result of analyzing these programmi ng

efforts is the following list of deficiencies and the enhancements

I~ lieved necessary tn correct them .

a. (eneral Purpose Register . Three registers were supplied on

the Interpreters and only one could be used as an i nput to the ALU at

i ir y o re time . There were several occasions when temporary data had to

~ 9 st~ired in core memory because the three registers were being used .

The r - i i~er of general registers was increased to eight , thereby allow i ng

more processing w ithin the registers and less of the time consuming

memory operations. Another improvement was to allow two of the eight

reg isters to be selected at one time . This allowed register to register

4’rdt.iofls to be performed without the extra instruction tha t had been

flP1~ S~ Rry to move data to the B register prior to ALU operations .

1€

AFAL-T k~ 75-148

b. Standa rd Arithmet ic Logic Unit. The ALU function set prov d~-i

on the Interpreter did not contain some very essential operations.

These included ones complement and twos complement subtractior . as we ll

as decrement. To correct this a 74181 ALU integ rated circuit (IC) was

used . This IC prov i des all the arithmetic operations (addit1~ n , sub-

traction , increment , decrement) and logical operations (AND , OR , NANL ,

NOR , Complement , Exclus i ve OR , and Equiva l~nce) that are required.

c. The addressing structure of the Interpreter did not prov kie

convenient way of implementing a program counter. There was no way tt

reading the present address or incrementing it , therefore the normal

practice was to use a genera l register. To correc t this problem a n in th

general register that could be incremented was adr~ed. This reqister can

be selected for addressing in the same manner that the Base Register and

Memory Address Registers are selected.

d. A problem involved in writing complex programs was how to

conveniently nest loops or save return addresses when branchi ig to sub-

routines. The approach used in the B6500 emulation was to save th.’ n

core memory . This required not only more instruction but considerably

more time . A hardware stack was added to the microprogram addres sing

system to save return addresses.

e. Emulated Instruction Decode. It was found in the emulations

performed that the greatest decrease in execution time co~1d be r~~1i :r-~

if the instruction decode routine was made extremely fast. By relying

17

F

/\~ ~ —T N— 75— 1 4R

st~ ictt y on microprogran~ling it was impossible to provide good performance

~ ~uriety of instruction formats. To obtain the desired speed and

~le xi b il ity a hardware instruction decoder was used . It is capable of

decoding an instruction and providing the proper microprogram address

within one clock (100 nanoseconds).

~~~. Interna l ALU Bussing . The Lussing provided on the Interpreter

provided little flexibility in how data was supplied to the ALU. To

correct this a bus was provided on each of the ALU ports and all regis-

ters were tied to both. This allowed operations such as Al - A2 , CTR -

A6 , A3 - LIT , etc. to be performed.

18

.,~
, 

_
-.1~

_
’_



AFAL -TR- 75-148

SECTION I I I

MICROPROGR AM M ING

1. LANGUA GE

Before entering into a discussion of the hardware of the Unified

Processor it is necessary to describe briefly the language used to

program the UP. No attempt will be made to present all the mnemonics of

the language but instead a brief description of the different control

fields will be given. The control fields of the UP are shown in Fig-

ure 8 and in general one entry from each field may be used to form a

complete microinstruction.

a. Condition Test. Selects one of 32 conditions for testing and

con tro ls whe ther the ALU an d/or the external opera ti ons are to be con di-

tion or unconditional.

b. Conaltion Adjust. Sets and resets one bit flag registers.

These flags are used mainly b/ the programer to store the results of

tests.

c. Successor. Two successors are selec ted on every i ns truc ti on .

The first one is used if the tested condition was true and the second if

the con diti on was false.  The successors i nclude the follow i ng: STEP ,

SKIP , JUMP , WAIT.

19

.

~ 

— —.— —

F 
- - _ _ _ _ -



AFAL-TR-7 5- 48

LI)

~~ F—v)
~~

F-
L~ t —

_

I

20 

_L ..



AFAL -IR- 7’~- ] 4 ~

d. ALU X Input. Selects which register will be Lur n~cted to the

\-[~us. The registers include the A , B , PcR , d R . LIT , and ~M1-CP . Th’s

field also has the controls for the 0/1 T/E netw .r k.

e. ALU Y Input. Controls the access to the ‘~-Lu~ by tiu~ A regis-

ters, PCR , LIT , CTR , and AMPCR .

f. ALU Function. Determines which of sixteen dri t h~etic /1og ic

functions will be performed.

g. Shift Control. Controls the shift direction in the Barrel

Switch. It provide ; for right or left end-off or right end-around

shifts.

h. B-Bus Destination. This field controls what registers wil l be

loaded w i t h  the output of the Barrel Switch. One A reqlc ter may be

selected and in addition the B register , M I R , AMP CR , MAR , B~ , and CTR

may be selected in any combination.

i. Memory/Device Operatiori . Determines what I/O oper atiun ~n ll

be performed and at the same time selects the sou~~ of the address.

2. MICROPROGRAM EXAMPLE

Below is a program tha t multiplies two thi~ ty - twu b~’ w nFd . together

and arrives at a sixty-four bit product. The follow i ng ass t u i ~ are

nade at the start of this program.

21



AFAL -TR-75- 148

a. Numbers are in sign magnitude form where the sign bit is the

most signifi cant bit.

b. Positive numbers have a zero sign bit and negative numbers a

one .

c. The multiplier is a register A3 and the multiplicand is in

reg i ster B.

d. The least significant part of the product will be in A3 and

the most significant part along wi th the sign in B.

1. A3 XOR B; IF LC1

% Reset LC1.

2. BOTT = A2; IF MST THEN SET LC 1

% Check sign bits of A3 and B if they are

% different then set LC1. Put magnitude of B

% into A2.

3. B000 = B; LCTR

% Clear B register , load LITERAL into COUNTER.

4. 31 = LIT; l =SAR

~ 31 Is used as a ioop counter below . This

% instruction and the previous one together load 31 Into

CTR .

% 1 i s loa ded Into SAR to all ow for 1 bIt  shifts .
22

f
.

F



p.-

AFAL -TR-75- 148

5. A3 R A3; SAVE

% Shifts least bit of multiplier off.

3. IF NOT LST THEN BUTT C=B SKIP ELSE STEP

% Tests least bit of A3 before it is shifted off. If

~ it was a “0” then shift B circular into B and

% skip next instruction .

7. A2 + BUTT C=B

% If least bit was a “1 ’ then add multiplicand

% to B and shift circular into B.

% NOTE both instructions 6 and 7 put the new

% least bit of the product into the most significant bit.

% Also the old least bit that was transferred to

% A3 is removed (BOTT).

8. A3 OR BTOO/R = A3, IN C; IF NOT COV THEN JUMP EL SE STEP

% Combine the new least bit of B with A3 and

% shift right. Increment counter and test for overflow.

% If overflow then multiply complete if not JUMP to

% InstructIon 6.

9. B R=B

% Shift off the last least bit of the product.

10. IF LST THEN A3 + BIQO = A3

% If least was true then set the most bit of A3.

23

a— ~~~~~ - . -



- -

c

AFAL -TR-75-l48

11. IF NOi LC1 THEN BUTT B SKIP ELSE STEP

% If LC1 was not set then signs were the same and

% product sign w ill be positive .

12. BiTT = B

% If IC1 was set then product is negative.

13. END

24 

F ~~~~~~~~~~~~~~~~ -



AFAL-TR-7 5-l 48

SECTION IV

U N I F I E D  PROCES SOR

The Unified Processor represents an enhanced version of the Interpe-

ter by the elimination of the deficiencies described in Section 11.2.

Figure 9 is a reg ister level bloc k diagram of the UP showing the data

transfer paths. The following sections describe the specific features

of the UP and the reasons they were selec ted .

1. GENERAL REGISTERS

Ma ny processors , especially for avionics application , have been

built using only one genera l purpose register called the accumulator .

All arithmetic/log ica l operations that were to be performed had to be

between a memory location and the accumulator. This put a severe limita-

tion on the prograrner because all intermediate results had to be stored

in memory . For most machines the result would be a minimum of four

extra memory cycles .

Opera ti on Mem Cyc

FETCH “STO” INST 1

STO TEMP

WRITE TEMP DATA 1

FETCH “IDA ” IN ST 1

LDA TEMP

READ TEMP DATA 1

25

., ;
~ -w ’~



I.

AFAL-TR-75-148

~z c.~F- F—
— =~ ~ T

_ 
_~~~~~~~~~~~

— 

~~~~l~1’i~M,o1r-~ ~~

_ _

1
—

~~~

. 

rf-i r1_i r 1~
_ _ _ _ _  _ _ _  I I I  I I

_ _ _ _  

_ _ _  

_ _  

L~iL~J

-
~1

26



AFA L-TR- 75-148

The reason for the single accumulator machines was the requirement for

simple logic , small size and low power. The cost of adding additional

registers and the controlling log ic was prohibiting .

As technology improved and integrated circuits became available the

problems of size and cost were partially solved . A 16-bit register that

once required eight printed circuit cards with discrete components could

now be built from four ICs. Not only had the parts cost been lowered

but, possibly more important , iabor time had been reduced making the

fina l product more reliable at a reduced cost.

Recent advances in integrated circuit technologies have made avail-

able an MSI device called a Multiport Register File. A typical example

is the Fairchild 9338 which has eight 1—bi t registers with one i nput

port and two output ports. This allows the designer to put either gen-

eral purpose registers into a processor by merely adding sufficient ICs

for the work length .

W it h many of the new processors be i ng develo ped hav i ng several

genera l purpose registers it was necessary to include some in the

Unified Processor in order to maintain a near real-time emulation

ability . Although some machines have sixteen or even thirty-two general

registers , only a few of the registers get frequent use. Eight regis-

ters were selected as an optimum between availability of ICs and pro-

grammer usage. It must be noted that if an emulation of a machine

having sixteen or more general registers is desired , then all sixteen

will have to be mapped into the UP. The eight most frequently used

registers would of course use the hardware registers .

27

-

~~~ 

-

‘\ FAL-T R-75- 1 4~

The e i~ ht genera l req isters P ,~, A 1 .. . A 7 may be loaded one at a

t i i ~ fru it ~~~ n-Bus ~n~’:h is t~ c output of the Barre l Switcn. T here an

~~~,
- cjt~ u~ ~~r t.  on the reg i~ te ;~ f i le, one connect ed to the X-Bus , the

~th~�r ~u the ‘(-Bos . Their addressing is completely independent, allow-

~ng a iy  tw~ rey i~ ters to be selected for output to the ALU. This ar-

~ inqei:~ r t  pcrmit s register to register operations such as:

J

2.  A 7 
* A. A 1

3 ~~ * p ~ ~ A 7

NOTE: *can be any of the 16 possible ALU operations to be

performed in one micro instruction clock. (100 ns when in a

norma l instruction stream.)

The 9~3o chip presently costs $6.00 each (5192.00 for eight 32-bit

register) and has a read access time of less than 30 ns, making it as

fast as most TTL q~ting circuitry would ..~e. To write into a register

re ij ire s a S?tu~ time of approximately 15 ns on both address and data

dnd u clock of 10 ns. This means that the register file costs very

~i tt j e i i -  ~~~~~~ fur the vast improvement in  programming ease it gives

~ er the sing le d~~ umu ldtor.

2. BARREL SW IT CH

In many types of information processing Such as communication~
emulat ion , compiling , character manipulation , etc., it is necessary to



AFAL-TR-75- i 4f~
s h i f t  ur rotate a da ta word severa l ulaces.  Tnc operati ur is normally

perform ed one shift  left or ri ght per instruct ion. ~he ~rocedure takes

one to two memory cycles each for position so thdt on a 10 posi t ion

sh ift 10 cycles (about 10 microsec ) woula be required .

The need for a means of shif ti ig data rapidly is probaoly oest

demonstrated when considering an emulator . The ori -~inal ~cr~ ne may

have two half word counters hardwire ’1 together to give the effect of one

lafge register but still allowing the programmer the ability o~ increment-

ing or loading each half i ndependently. A system like this would be

useful in a paging type operation where the most signif icdn t counter

defines the page and the least significant counter ide ,tif ies ~he parti cu-

lai entry . The original machine would take ~ne cluc k period to increment

or l oad either half of the register. In an emulation to l u a U  or increment

the upper half of the word would require the following steps.

NOTE: MS is multiple shifts per clock and SS is single shift per

clock.

STEP MS SS

ROTATE Reg Left 8 places 1 8

Increment/Load Reg 1

ROTATE Reg Right 8 places 1 8

TOTAL 3 1 7

For this particular example the multiple shift emulator takes three

times as much time as the original machine but it is still almost six

time s better than the single shift machine .

2~



AFAL-TR-75-148

The multiple shifter or Barrel Switch is a device that allows the

input to be shifted end-off ri ght or left or right end-around n-i places

in one clock where n is the width of the registers . One implementation

of a multiple shifter is shown in Fi gure 10.

The sing le level switching system in Figure 11 will provide the

necessary gating to perform ri ght and left end-off shift and right end-

around shifts on eight bits of data . The control of the shifter is

simple with three lines determining the amount of the shift and eight

lin es for blanking contro l (fill with zeros). The states of the con-

trols for the different shifts are shown in Figure 12. The circuit

could be built from eight 8 to 1 multip lexers such as the 74151 .

The single level system may be satisfactory for an ei ght-bit word

operation but if the word is longer (16, 24, 32 bi ts) then a significant

problem arises . The multiplex IC must have N inputs for an N bit word

system. ~ithough there are 16 to 1 multiplexers available there are no

standard 24 to 1 or 32 to 1 ICs.

To avoid the problem of using ion-standard ICs the multiplexing was

divided into two levels. This ailows a total word length 64 bits with-

out going beyond the standard 8 to 1 multiplex IC. A two-level 8-bit

switching system is shown in Figure 13. This circuit performs the same

function as the singles level system and uses the same shift amount and

blanking controls. One extra benefit of the two level system is that in

this case the circuit could be built from four (4) 74153 DUAL 4 input

30



AFAL -T~ -75- l4 g

XI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

:1

- 

-I 

—

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

__
~

AFAL-TR-75-14 8

I C)

_ _ _ _ _ _ — I F-

_ _ _

I C
C)

r-. - . - . - - - —

-- - — 0
4-)

—U,
a)

S..

- . - . - - - —

- . - - - — a)
- . - - - — >

= U
C

— - — U
— —

F- . - . - - - — . .
C)

— U
S..- . - - - —

C’-) — - . - . - - - —

C

C

32

/ ..

F

_ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _ _

AFAL -TR-75-~4g

LEFT END OFF

SHFr A B C X0 X 1 X2 X 3 X~ X 5 X6 X 7
0 0 0 0 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1 1 1 0
2 0 1 0 1 1 1 1 1 1 0 0
3 0 1 1 1 1 1 1 1 0 0 0
4 1 0 0 1 1 1 1 0 0 0 0
5 1 0 1 1 1 1 0 0 0 0 0
6 1 1 0 1 1 0 0 0 0 0 0
7 1 1 1 1 0 0 0 0 0 0 0

RIGHT END OFF

SHFT A B C X0 X 1 X 2 X 3 X~ X 5 X6 X7

0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1. 1 1 1
2 1 1 0 0 0 1 1 1 1 1 1
3 1 0 1 0 0 0 1 1 1 1 1
4 1 0 0 0 0 0 0 1 1 1 1
5 0 1 1 0 0 0 0 0 1 1 1
6 0 1 0 0 0 0 0 0 0 1 1
7 0 0 1 0 0 0 0 0 0 0 1

RIGHT END AROUND

SEFT A B C X0 X 1 X2 X 3 X~ X 5 X6 X7

0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 0 1 1 1 1 1 1 1 1 4
3 1 0 1 1 1 1 1 1 1 1 1
4 1 0 0 1 1 1 1 1 1 1 1
5 0 1 1 1 1 1 1 1 1 1 1
6 0 1 0 1 1 1 1 1 1 1 1
7 0 0 1 1 1 1 1 1 1 1 1

Figure 12. SIngle level 8-Bit Barrel Switch Control

33

:.

~

,.

ArAL -r p-~~-l4g

_ _
1T111 — - - — — _ _ _ _

111 11T ____ ____

III I I I C
‘-i-r-rrr— — — ____ I-

I— F-
T 1 m
I L...L.LL....
11 1 1 1 — _____

~

-

~

I w

5-

— ___

U-

_____ _________C\J

— _________C

34

F

AFAL-TR-75- 148

rnultiplexer s and two 74157 QUAD 2 input mu ltip lexerc , a savings of two

packa ges over the s in g le l evel.

A modified version of the two level system shown in Figure 13 was

used for the 32 bit shifter in the Unified Processor. The first level

uses 8 to 1 multiplexers and the second level uses 4 to 1 multi plexers .

Because of an 8-bit modularity requirement the first level required nine

ICs instead of the normal eight. The tota l package count was 52.

a. Barrel Switch Operation

The specific Barrel Switch that has been implemented in the

Unified Processor consists of thirty-six 8 to 1 multiplexers for the

first level and thirty-two 4 to 1 multiplexers for the second level .

The f ir st level has four more mul tip lexers than a m i n i mum system i n

order to ease the Interconnection of eight-bit wide modules . Another

advantage is that the blanking control logic is simpler. With nine

columns the blan ki ng of each co l umn proceeds i n an orderl y progress i on

dependent upon the amount of shift. If only e.ight ICs were used then a

more complicated series of controls would be necessary in order for the

less orderl y blanking required .

The Barrel Switch is controlled from two sources . The first

is the Microprog ram Memory bits [37, 38]. The secon d source of control

is from the Shift Amount Register (SAR) which contains the number of

positions to be shifted . The SAR is a five-bit register that contains

the actual value of the amount to be shifted for right end-off and right

end-around shifts. For left end-off shifts the va lue in the SAR Is the

twos complement of the actual shift amount.
35

A FAL —~P-75-14R

OJ~~ 1c~~ n’ (DATA) ~ 1

t ~AM~LE:

SAR

~~~ . N~J OFF 0 1 2 3 4

~3 ~~~~~~ 1 0 1 1 1

SAR

L~ I T END OFF 0 1 2 3 4

23 P]aces 0 1 0 0 1

Using ~t~ ndard 74 seri es TTL circuits the present Barrel Sw itch can

shift data in about f i f t y  nanoseconds. This includes the time necessary

for the SAR contrels to settle and the data to propagate through both

levels of the switch.

During normal programming it is often desired to shift data right

end-off places and then left end-off n places or right end-around n

places and then returned . The first procedure is a blank field n bits

lor~ on th~ right of a word and the second allows an easy means of

testing try . nth bit of a word. Because left shifts expect the twos

complu~~nt of the shift amount ~n the SAR th~ desi red results would not

be produced if a right shift - left shift or right circular - TEST -

ri ght circular were executed . Figure 14 shows the desired resul ts an d

the actuJ results that would be obta i ned. There are two ways to get

the desired results . The first way is to insert an extra instruction

36

- -



AE AL-TR-7 5- l4~

RIGHT SHI ll - LEFT SHIFT

ACTUAL RESULTS N =

A I B C I D~~J

LL H OS I A I B I C 1 RIGHT SH I F T  ~

C ~~~~~~S I Z E R O S I ZEROSJ LEFT SHill N

D E S I R E D  RESULTS

‘ B L~c I o
F/i ~OS r I B I c RIGHT SHIFT N

_________________________ M = 32 -N

A I B I c I ZEROS 1 LEFT SHIll M

RIGHT CIRC . - TEST - RFiH1 CIRC

ACT u AL RESULTS

[ A l  ~ I c I D III

F D I A I B I C ] R1CHT SHIFT CIRC Ii

_______________________________________ TEST
C I ~ I A I 8 1 RI1’.HT SHIF T CIRC fi

U{SU~1P RISULTS[ A 1 8 ~I c I D~~1

Ij A I B I C 111111 RIGHT SHIFT CIRC U

__________________________________ lIST; ti = 32 -N

1, 1 1 I c I o I RIGHT SHIFT CIRC N

Fi gure 14. Shifting Examples

37



AFAL -TR-75-148

(TYPE 11 SAR LOAD ) into the stream to modify the SAR contents , but this

of course re qu i res an ex tra clock. A better way i s to use the CSAR

(Complement SAR) instructions which can be executed during the first

shift instruction. The two methods of prograni~iing are shown below :

8 BIT ZERO FIELD OR RI GHT OF B REGISTER

B R = B %B RIGHT 8 PLACES INTO B

8 SAR

B L = SAR %B LEFT 8 PLACES INTO B

24 = SAR

B R = B ; CSAR %B RIGHT 8 PLACES INTO B COMPLEMENT SAR

8 = SAR

B L = B %B LEFT 8 PLACES INTO B

TEST 8th BIT OF B REGISTER

B C = B %B C IRCULAR RIGHT 8 PLACES INTO B

8 = SAR

B C = B %B CIRCULAR LEFT 8 PLACES INTO B

24 = SAR

B C = B %B CIRCULAR LEFT 8 PLACE S INTO B

= SAR

IF LST THEN JUMP % TEST LEAST SIGNIFICANT BIT OF REGISTER

B C = B : CSAR %B CIRCULAR RIGHT 8 PLACES INTO B COMPLEMENT SAR

8=SAR

B C B %B CIRCULAR LEFT 8 PLACES INTO B

IF LST THEN JUMP % TEST LEAST SIGNIFICANT BIT OF B REGISTER

38

I
-~~~~~~~~~~~~~~ 

F



AFAL-TR-75- 148

NOTE : The CSAR instruction is executed at the end of the second

phase of the instruction therefore it does not affect the

instruction in which it appears . The 8 = SAR is a Type II

instruction and is executed prior to the completion of

the previous instruction.

b. Barrel Switch Control

The Shift Amount Register along with MPM [57, 58] provide the

necessary information for controlling the Barrel Switch. Figure 15 is a

genera l block diagram of the SAR and its support logic.

The SAR may be loaded fr om one of three sources. The method

that is most used is a load from the Microprogram Memory with a Type II

instruction. This requires the programmer to insert a constant into

memory to be loaded in the proper sequence so that the necessary shift-

ing may take place. As mentioned previously there are several times in

prograni~ing that it is desirable to shift information temporarily and

then return it to Its original position. To accomplish this sequence of

operations it is necessary to provide the origina l shi ft amount and then

provide it twos complement for the second shift. The necessary logic to

produce the twos complement of the present SAR is provided so that the

process requires only the CSAR Input selected and an SAR clock. This

operation Is executed at the end of Phase II and therefore does not

affect the present instruction but Is complete for the next Instruction

to use. A programi ng example and timing chart is shown in Figure 16.

The *“ in the timing diagram shows when the operation is performed.

The time between clocks is used only for controls to stabi l ize . The

39

F



AFAL -TR-75-148

CSA R MPM II SW MPM

TLLI ê
S ELECT CONTROL

~4R

BARREL SW ITCH
CCNTROL

2 s  COM P

Figure 15. Shift Amount Register Block Diagram

1. Al R = A l; CSAR ~
. PRODUCE AN 8-BIT

2. 8 = SAR % ZERO FIELD RIGHT

3. Al L A l % JUSTIFIED 114 Al

CLOC K I I I I
PHASE I I Al R = Al CSAR I

I =SAR I
3 I I’N[.SI I I Al L = Al 1*

Figure 16. Tim Ing  of CSAR Ins t ruc t ion

40 

-—



AFAL -TR-75- 148

delay is execution of instruction one is accomplished by inhibiting the

clock used by Type I instructions.

The third source for the SAR is the least used but probably

the most powerful. Loading the SAR from the Barrel Swi tch allow s the

programmer to dynamically deterriine the shift amount based upon present

conditions. A possible application for this operation is in doing scal-

ing for floating point arithmetic. The amount of the shift is dependent

upon the value of the exponent and providing an easy way of entering the

exponent into the SAR can greatly increase the speed of these instructions .

3. MICROPROGRA M ADDRESSING SYSTEM

The control Unit of a microprogrammable processor is in reality a

complete processor in itself. This microprocessor works within a some-

what limited environment , taking its input from the conditions of the

Logic Unit and I/O Unit and giving as its output , commands to these

units. It must be capable of executing a series of instructions (ad-

dressing MPM), testing various conditions (AOV, MST, LC , etc.), and

issuing commands. The program executed by the microprocessor is called

Firmware and is written in much the same way as standard software is.

With all programs there Is a need to be able to progress sequentially

through a series of instructions (STEP) or to execute Instruction not In

a sequential manner as a loop or jti~ip tu a subroutine . To provide these

Options to the microprogranitier severa l successor commands are available.

Eac h Ins truct ion must have a successor comma nd so that the location of

41

F



AFAL-TR-75-148

the next instruction can be determined . Listed below are the eight

possible successors available in the Unified Pro cessor :

NEXT MPCR 4EXT EMP CR MP MAD DR

WAIT MPCR AMPCR MPCR

STEP MPCR+1 AMPCR MPCR

SAVE MPCR + l AMPCR MPCR

SKIP MPCR+2 AMPCR MPCR

JUMP AMPCR+l AMPCR MPCR

EXEC MPCR+l AMPCR AMPCR

CALL AMPCR+l MPCR MPCR

REIN AMPCR+2 AMPCR MPCR

WA IT

The WAIT successor is used mainly for synchronization between the

processor an d the external worl d . When a rea d from memory opera ti on i s

performed it is necessary for the processor to wait for the new data

before it proceeds with the calculations . Between the read operation

and the entering of data several instructions may be executed so that

meaning fu l  work can be accomplished during this time . The WAIT in-

struction does not really turn off the processor but instead increments

the present address (MPCR) by zero. This means that the same instruc-

tion Is executed several times . As every instruction has two successors

(TRUE & FALSE) it Is obvious that a condition can be tested an d as lon g

as it is FALSE the WAIT successor is used. When It becomes TRUE the

42

0’ 
- - - - - 

___________________________________



AFAL -TR- 75-l4R

other successor is used. Some examples of how the WAIT successor is

used are shown below :

Synchronizing Processor and Memory

MR % START MEMORY READ

IF RDC THEN BEX STEP ELSE WAIT % WAIT FOR MEMORY TO

% RE SPOND THEN INPUT DATA

~j~~le Instruc ti on Loop

LCTR % LOAD THE COUNTER WITH

1000 = LIT % ONE’S COMP OF 1000.

INC , IF NOT COV THEN MW WAIT EL SE STEP

% INCREMENT COUNTER , IF NO OVERFLOW THEN WRITE

% INTO MEMORY AGAIN. ELSE STEP.

STEP

In microprogranini ng as in other programming the instructions are

set In an orderl y sequence so tha t mos t instruc tions w i ll  have a STEP

successor. The s tep successor cuases the MPCR to be i ncr emen ted by one

so that the next instruction is taken from the next word in memory .

When STEP is used by i tself (no logic or externa l operation ) the equiva-

lent of a 40-OP is performed .

SAVE is used mainly to create the top end of a l oop. The present

contents of the MPCR are clocked into the AMPCR (SAVED) and the MPCR is

Incremented by one (STEPED). After this operation is complete a sub-

phase cycle Is Initiated that writes the AMPCR into the stack. The

43

• ~~~~ 
,
~~~~~~~~~~—

— .—- -

F

-

AFAL — TR—75 _ 1

AMPCR is clocked at the trailin g edge of Phase I (reference Htjure 17)

so that it is ready for the next instruct ion tn u~ e if desired . Below

are su ~e uses of the SAVE instruction.

0 PCR ‘Z RESET PROG CNT

L I T Al , MIR; IF SAl % PUT ASC II A INTO

65 = LIT % Al & M I R ; REST SAl

L~ T = CTR ; SAVE % SET COUNTER FOR 26 LOOPS

25 LIT % TOP OF LOOP

MW , INC . % WRITE , INCREMENT COUNT

AL + 1 = Al , MIR; IPCR % INC. Al & MIR , N E XT LET

IF AIS THEN STE P EL SE WAIT ~ WAIT FOR MEM COMP

IF COV THEN STEP ELSE REIN ~ TEST FOl~ DONE

This program writes tne alphabet in ASCII form into memory starting

at location zero. The loop that is executed consists of the last four

instruction s. Note that the SAVE successor has put the address of the

LIT CTR instruction into the AMPCR but when the REIN successor is

executed it branches to AMPCR+2 which makes MW , INC the top of the loop.

SKIP

The SKIP successor performs exactly the same way as the STEP except

that the MPCR i incremented by two instead of one. This allow s the

programmer to create longer instruction. An example would be to load

register Al from A6 and A2 from B only if a program flag (LC) is set.

44

I~FA L-TR-75- l4 8

L~~~ ! I

~~

:~~~~~~~~~~~~~
11

~~~~~~~~~~~~~
i

45



AFAL-TR- 75-148

IF LC THEI4 A6 = Al; STEP ELSE SKIP

B = A2

STEP

Note the operation A6 = Al and B - A2 could not be performed in the same

instruction since they both require the use of the ALU.

JUMP

The JUMP successor provides a means of branching to a nonsequential

instruction when there is no need of returning to the origin. A JUMP

causes the AMPCR output to be incremented and then loaded into the MPCR

so that the next instruction is at location AMPCR + 1. The timi ng for

this instruction is shown in Figure 18. Since a JUMP does not affect

the AMP CR it i s normall y the cho ice ins truct ion for the bottom of a

loo p .

Exam ple of a SAVE-JUMP LOOP

SAV E % SET UP LOOP

MR % READ WORD , TOP OF LOOP

WHEN RDC THEN BEX % SYNCH WITH MEM, ENTER WORD

Al EQV 8, IPCR % COMPARE WITH Al

IF NOT ABI THEN JUMP % IF COMPARE STEP ELSE LOOP

EX E C

The EXEC successor has the effect of inserting one instruction into

the normal sequence. The MPCR is Incremented by zero (WAIT) for one

clock while the AMPCR is used as the MPM address source. This condition
46



AFAL -TR- 75-148

~1

c.’J
+

E

0
tl~

+

l j

I

L)

0 L)
_J
L)

47

F



A FAL- [R-75-148

is maintained for only one clock and is then returned to the normal

. FZ ~~~~~~t~~fl (~~~ (reference Figure 19). The EXEC instructi on can be used to

make the MPM act as a RUM decoder as shown in the instruction decode

p rog ram below .

~ INST ADD SUB MUL DI V

~ OP-CODE 00 01 02 03

TAbLE: MAD [I-l = AMPCR ADD = 0

MSUB-l = AMPCR SUB = 1

MMUL- 1 = AMPCR MUL = 2

MD IV-l = AMPCR DIV = 3

DECODE : % THE DECODE ROUTINE EXPECTS TO FIND

% THE OP-CODE PORTION OF THE

% INSTRUCTION RIGHT JUSTIFIED BY Al

A l + LIT = AMPCR % PUT OP CODE INTO AMPCR

TABLE = LIT % INDEX BY “TABLE”

EXE C % LOAD ADDR OF ROUTINE INTO AMPCR
JUMP % JUMP TO EXECUTION ROUTINE

MADD , MSUB, etc. are the addresses of the routines that actually perform
the ADD , SUB , etc. opera ti ons. Use d i n th i s manner the EXEC i ns tru ct ion
provides a ~napping between the operation code and the microprogram

routine that performs it.

48



fl

AIAL -TR- 7%- 148

F 

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~


AFAL -TR- 75-148

4
The CALL successor , as wi th the JUMP , provides the microprogramme r

a means of branching out of the norma l sequence of instruction . The

CALL does have an important difference in that it saves the present MPCR

in the AMPCR. This means that a branch and subsequently a return to the

calling program can be performed. The timing diagram in Figure 20 shows

the operation of a CALL.

R ET N

The RETN opera tes exactly the same way as JUMP except it uses the

AMPCR plus two as the next address.

Figure 21 shows a block diagram of the MPM addressing system and

its interconnections to the Logic Unit.

4. MEMORY/DEVICE ADDRESSING

The Unified Processor is capable of operating as a Real-Time Con-

troller or a general purpose Data Processor. Both of these applica-

tions , of course, require a data path between the processor and device.

In addition , address l ines (for memory) an d control l ines (for dev ices)

are required to tell the periphera l what to do and where to do it. The

Unified Processor provides the microprogramer four schemes for out-

putting address/control Information . These register combinations are

BRI-MAR , 9R2-MAR , BRI-PCR , and PCR-PCR .

Each of the four ways of addressing has specific uses for which it

is best suited . Examples of t~e various ways are shown below.

- ~
_i~

- - -

AFAL -TR-75-148

c’.J

+

+

E

+ I.
0
U,
U,

0
U

-J

c,J
4)

.
~~~

,

U. j

51

~ 

•;-~~~~~~k~

— 
F



AFAL -TR-75-l48

‘I-)

~J) c,)

c~ c~

_______ ‘0

U
0

0,
C

U,
I I U,

I 4)
>- I I

I ~ II L) ~~~
I; 

_ _ _ _
I

~~~

± I
~~i ~~~~i

—

C”

4)

~~~~~~~~~~~~~~~~~~~~

52 

— 
F



AEAL- TR- 75~ 14R

BRI-MA R . T h s  form is available for all read or write operations .

It is ;~ rtic’j]arly useful when addressing a particular memory location

ct when Lor~t ,oi 1in q a device. The norma l procedure would be to use BR1

to ado’~’ess the aeripheral and the MAR to provide the control bits. This

Lombinatiq’l is also useful for supplying data addresses in an emulation

since they tend to be nonsequentially l ocated in memory .

B~2-MAR is the same as BR1-MA R and is included to allow the pro-

grammer the freedom of using one Base Register to address devices and

~he second for memory paging .

eRl-PCR . Th is form i~ available only on memory read or write

and functio i operations. It provides the capability of using a Base

Register to select a particular page or top of a table and then an

e’ght-h it counter to step through the desired area .

2CR_PCR . This form is more in line with the conventional program

counter. When usiny this node the low order sixteen bits of the PCR are

supplied to the I/O Unit as on address.

The three registers BRI , BR2, and MAR are each eight bits long .

Their positi on in the UP is such that their major function is as an

address buffer . This is because they cannot be used as temporary

storage since there is no way to read them. The registers may be loaded

- . _ T __ _



AFAL-TR-75-l48

with the eight least significant bits of the Barrel Switch , or the MAR
may be loaded from the Literal Register. Operations such as:

LMAR ; A6 = BR1

which loads the MAR from the Literal Register and at the same time loads

BR1 from register A6 are permissible.

The fourth address register , the PCR , differs from the other three

severa l ways. It is usable as a full thirty-two bit general purpose

register with the same restrictions as the A registers have. The PCR is

loaded from the B-Bus which is the output of the Barrel Switch. It can

be used as a source of data for the ALU on either the X-Bus or Y-Bus .

T he PCR may also be used as a coun ter to keep trac k of the num ber of

cycles in a i oop or to step through a table ~n memory. Not onl y can it

be incremented iruependent ly of all other operations it can also be

tested for a carryout of the sixteenth or thirty-second bit.

5. MI CROMEMORY CONTROL PARTITIONS

The Microinemory which is sixty—four bits wide supplies the neces-

sary con trol l ines to set the state of the processor at every cloc k.

The memory is divided into several fields (see Figure 22) to provide

i ndependent control of different functions . The particular scheme used

was selected to provide maximum flexibility of the processor ’s resources

with mInImum hardware decoding . The entries within a field represent

mutually exclusive controls such as right shift and left shift . Any

combination of elements from different fields can be used to give a

valid microinstruction even though It may not be meaningful.

54

F 
—



AFAL -TR-75- l48

11PM DITS

1 TYPE I or TI

2—6 Condition to be tested

7 Select TRUE or NOT TRUE of condition

8 Condi t ional or Uncondi tional LU opera tion

9 Cond itionl or Unconditional Ext operation

10—13 Cond ition Adjustmen t (set—reset)

14—19 Select TRUE and FALSE Successors

20—26 Selec ts X—Bus data soui~~

27—31 Selects Y—Bus data source

32 Byte Carry Control

33—36 ALU Control

37—38 ShI ft Operation

39—42 Selec t A Register distination from B—Bus

43—46 Selec t B Register input source

47 MIR input enable

48—49 AMPCR source select

50—52 Address regis ter input enable

52—56 Counter controls

57—5 8 SAR Source select

59—63 External Memory/Device operation select

64 Programmable Instruction Decoder enable

Fi gure 22. Type I Microinstruction Control Fields

55



FAI - TR — ? 5— 1 4R

A m~L~~instructi on is read from the Microprogram Memory ~MPM) every

cloLk . AR instructions fall into one of two categories as determined

by b it one of the instruction. If MPM[1] is a zero the instruct ion is a

Tvpe I class and the remaining bits are to be interpreted as controls.

If MPM[l] is a one then the instruction is a PIPE II class which is

t4sed for leading constants into selected register. MPM bits 3, 4, and 5

determin ing which register or combination of registers will be loaded.

MPM [3] AMPCR Control

MPM[4] LITERAL Register Control

MPM [5] SAR Control

Not al l control fields from a single microinstruction are executed

at the same time . The instruction is divided into two phases with phase

one execution occurring on the next clock and phase two delayed o~e

clock. Figure 23 shows the two-phase timing for severa l instructions.

Note that phase one of instruction M+l overlaps phase two of instruction

M , therefore , even though each instruction requires two clocks to com-

plete its execution with the overlap the average is one clock per in-

struction.

The operations during phase one of an instruction occur in the

following sequence. At clock n the address for instruction M is appl ied

to the MPM. After the completion of the memory access time (typically

40—60 n sec) instruction M is available. MPM [2-19] are applied directly

to the ‘ ontrol logic to determine the address of the next microinstruction .

56



AFAL-TR-75-148

n 4 I n + 2 ~
( LO( I I I I

I~)N t } I~\ SE I PHASE II

+ 1 
PHASE I PHASE II

M~~~2 PHASF I

Figure 23. Instruction Timing Diagram

The remainder of the MPM bits are applied to a buffer. At clock n+l the

next (Nil ) address is loaded into the MPCR ; also MPM [20-64] are loaoed

into a buffer. During this phase (Execution Phase) the sources to the

ALU and the ALU operation are set up. The registers that are to be

l oaded will have their clock lines enabled so that on clock n+2 the

result will be loaded into the selected destination.

6. INTERNAL BUSS iNG

There are three main busses in the UP that are used for providing

information to the ALU (X-Bus , V-Bus). The X-Bus is a standard multiplex

network that allows selection of any one register to be connected to the

ALU. The bus is implemented using 74153 4 line to 1 line Data Selector

ICs . The configuration is shown in Figure 24.

57

F 
- - —--—--



AFAL-TR - 75- 148

[ CNT ZERO

AMP CR 1 L I T  ]
I SELECT

REG 1 I PCR J B REG J
I 

______________________

SELECT

X-BUS

ALU X
PORT

Figure 24. X-BUS MULTIPLEX STRUCTURE

58

F 
-



AFAL-TR -75-l 48

The V-Bus differs from the X-Bus in that j t~ uses a Tn -State con-

cept. Each register is connected to the bus with a Tn —State Buffer

such as a 74126 Quad Bus Buffer Gate with Tn -State outputs. The gates

have the normal on and off states and in addition have a third state

where both output transistors are turned off, providing a very high

i mpedance shunt on the bus. Because of the fixed nature of the X-Bus it

was necessary to use a system on the V-Bus tha t allowe d fu ture ex pans i on

of the system without necessitating a redesign of the control section.

A possible application of this bussing structure is when using an external

function and gating the result directly onto the V-Bus . This has the

effect of providing a second input port , and s ince the ALU an d BSW are

nonmemory async h ronous c i rcu i ts the da ta can be clocke d i n to any regi ster

in one instruction time.

An example of this feature is shown below where an external SINE

function generator is attached to the UP. The angle in degrees is lo-

cated in register A7 and the resulting angle in radia ns is to be

placed in register A7. Note it is assumed that the SINE generator re-

quìres less than one clock to obtain a result.

LIT = BP 1 , MAR % LOAD SINE GEN ADDRESS

SINEADDR = LI T

A7 = MIR; FW1 % WRITE ANG IN DEG TO SINE GEM

0 = Al % RESULTS PLACED IN A7

59

-- ~ .~~~~~ - - - -- -~~~~~ - 
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

F -

A~ AL-TR-75-148

The complete struc ture of the V-Bus is ~.hown in F i gure ?5. No te

t hat a multiplexer is still used on this bus for the LIT , CN T , and AMV~CP

registers. ih i s was done to relieve unnecessary loading on the Tn-

~t~ te bus.

The third bus in the UP is much simpler than either the X-Bus or ~~
-

Bus. The B-Bus is used to distribute the output of the ALU as mouif ied

by the Barrel Switch to the various registers in the processor. The bus

is actually hardwired to all the registers (input port of the A registers)

and a clock is applied to those registers that are to be loaded. Th i s

allows for loading of more than one register at a time . An example of

how this may be used is shown below. The routine sends the ASCII char-

acters A to Z to the Line Printer continuously.

LPADDR = LIT % ADDRES S THE LINE
LIT BR 1 , MAR % P RINTER

LQOP2: LIT = Al , % LOAD REGISTER Al , WITH ONE

OCTA- l = LIT % LESS THAN OCTAL VALUE OF ASC II A

L IT = A ,2; SAVE % LOAD RE G ISTER A2 WITH THE
LOOP1 : OCTZ = LIT % OCTAL VALUE OF ASCII Z

A 1+l = Al , MIR % INC A l AND LOAD MI R
OWl , Al E~V LIT % WRITE AND TEST FOR Z

LOOP2-l = AMPCR ~ A-Z LOOP COMPLETE

JUMP ‘I START AGAIN AT LOOP 2

60

b ____- -

A FAL-TR -75- l4 8

r 1 r~jI .

I U
I ~~~ ~~~~~~~~~~

‘?r~~~~I L~~~~ I I - i
I l i— IL J L....J

61

F
- — - — -

AFAL -TR-75- 148

7. PROGRAMMABLE INSTRUCTION DECODER (PlO)

During normal operation as a genera l purpose process a specific

sequence of operations will be performed. Figure 26 shows the cycle of

Fetch , Decode , and Execute . It is obvious from the drawing that if it

is desired to shorten the loop time the major effort should be placed in

the Fetch and Decode stages. Working on the individual Execution

routines would only provide substantial benefits if that instruction

were executed a high percentage of times . For most Systems the Fetch

time is controlled by the access time of the system memory and therefore

no benefits can be oota i nect from improvement in the processor.

The Decode position of the cycle must be executed every time and it

i~ not bound by system memory . During the Decode phase the op-code

portion of an instruction is examined to determine ~ihat operation is to

be performe d. Several app roaches to th i s have been used , from the very

slow process of examining each bit of a time , to using an algorithm to

modify the op-code in order to convert it into a table address. The

second approach is much faster but still requires a large number of in-

structions , especial ly if the op-code is of varying length .

To reduce the amount of time spent in decoding instructions the UP

was designed to use a Prograninable Instruction Decoder. The PID is a

ranuom access memory that applies the op-code position (eight bits) to

the memory address lines . The contents of the word accessed are used as

a microprogram address to get to the proper Execution routine . The

present implementatIon of the PID is with Read Mostly Memory having a

wrIte time of more than one millisecond and a read time of 45 nanoseconds .

62

F

-

PrAL_TR 75_148

I FE TCH I
DECODE

_ _ I I
ROUT EROUT I [ROUT
ONE I TWO] L N

I I I

Figure 26. Normal Fetch-Decode-Exec Cycle

The memory is arranged as fourteen bits by 256 bits but could be

increased if more address lines were brought through the mask. Only

twelve bits of the memory are used for addressing the 4K Micromemory

with the remaining two bits being testable as OC1 and DC2. This allows

the programer to use the same routine for several instructions with

minor tailoring being performed based on the condition of DC] and DC2.

The PlO can also be loaded from the B-Bus which allows a prefetch and

storage in an A register of an instruction prior to its being required .

All information that is sent to the P10 must first pass through a

hardware mask. The mask is used to select the eight op-code bits from

the thirty-two bit instruction and from a continuous eight bit P10

address. An example of the PlO in operition is shown In Figure 27. An

ins truction is read from (re memory and applied through the mask to the

PID . In Figure 27 this is an ADO instruction and therefore accesses the

PID l ocation AAD . The content of this location MAOD Is the address of

63

4
— SI ~~~~~~~~ ?~ - ~~~~~~~~~~~~~ —-

F

AFAL-TR-75-l48

>-

L~J

—~
--

~~~~

64

I 
~~~~~~~~~~~~~~~ 

..

~ ~~~~~
- —.—-

~~~ 

- - - f
- 

~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~



I,

AFAL-TR -75-l48

the Micro Add routine and can be used directly co jump and begin execu-

tion of the MAOD routine . A proyranining example of the use of the PlO

to decode a simple instruction set is shown below.

MR4 % READ NEXT INSTRUCTION

WHEN RD C THEN P10 % LOAD INTO AMPCR

JUMP % JUMP TO ROUTINE

8. INPUT /OUTPUT RE G ISTER S

The Unified Processor is completely buffered from the outside world

by the B registers for incoming data and the Memory Information Regis-

ten (MIR) for data output. The entry and exit of data through these

registers is completely under the control of the microprogram and not

directly tied to any I/O operation being performed.

The B register, in addition to providing input data buffering , is

usable as a general purpose register. It is connected to the X-Bus

through a series of gates called the i/O/I/F. The purpose of this gat-

ing network is to provide the prograniner control of the form the data in

the B register will take when put on the X-Bus . The network , which ic

divided into three sections — the most significant bit , the leas t si gn i f-

icant bit, an d al l  the rest , modifies the B register output In the

following manner.

T TRUE Date passed unaffected (Data out = B)

F FALSE Date complemented (Data out = B)

1 ONE Output set to one (Data out = one)

0 ZERO Output set to zero (Data out = zero)

-
- 

— -



AFAL-TR- 75-148

An example of the usefulness of this feature is shown in the multiply

exam p le gi ven i n Sec ti on V.

In addition to being loadable from the Input Bus the B register may

also be loaded from the Barrel Swi tch , the MIR , or the ALU . Several

ORed combinations of these are also available as shown below .

ALL’ output of ALU

BSW output of Barrel Switch

EXT External data

M IR Ou tput of MIR

ALU or BSW

ALU or MIR

BSW or EX~

BSW or M 1R

EXT or M I R

ALU or BSW or M IR

BSW or EXT or MIR

4 BIT CARRY Carry ou t of 4th BIT

8 BIT CARRY Carry out of 8th 811

4 BIT CARRY or MIR

B BIT CARRY or MI R

A fifth Input to the B register Is available and Is very useful when

working wi th BCD ntsnbers or 8-bi t characters . The carryout of the

fourth bit or ei ghth b i t of the ALU Is complemented, duplicated, and

shifted three places rIght and then loaded into the B register.
I

66 ft

- - --__ - 

~~~~~~~~~ : 


AFAL-TR- 75- 148

BIT 0 1 2 3 4 5 6 7

CARRV C0 - - - C4 - - -
8C4 0 0 C0 ~~

0 0 C4 C4

BC8 0 0 o ~o 0 0 0 0

The M I R is also usa b le as a general regi ster bu t, because of it s

l ocation , its use is not always straightforward . The MIR is loaded from

the B—Bus and outputs ei ther to the B register or an external memory or

device. It should be noted that loading the MIR does not initiate an

output operation .

9. SPECIAL REGISTER S

There are three registers available to the mi croprogrammer that

have not yet been discussed. Their function is unique to each register

and therefore each will be described separately below .

LITERAL (LIT) register is loadable only from the microprogram

memory and provides a means of entering constants. The register is

bits long and usable for generating mask , enterin g characters for use i n

a compare, or for entering a looping limit. A sample program that

illustrates the use of the LIT is shown abelow . A string of characters

is read un ti l an A i s foun d

SAVE % START OF LOOP

65 = LIT % CHAR “A” INTO LIT

DR % READ A CHARACTER

IF RDC THEN BEX % INPUT TO B REG

B EQV LIT = % PERFORM EQV OPERATION

67

_ _ _ _ _ _

a
-—=

•
-
~
-:
~;~~c ~~

F

AFAL -TR-75-]48

0
IF ABT THEN STEP ELSE JUMP % IF AN “A ” IS FOUND THEN % GO ON. IF NOT

% “A” THEN LOOP BACK .

COUNTER (CTR) register is sixteen bits long and is loadable from

either the B-Bus or the LITERAL register. The primary function of the

CTR is to provide a convenient means of controlling the number of times

a loop will be executed . Data presented to the CR1 is automaticall y

complemented (ones complement) before i t i s loa ded i nto the CR1. The

contents of the CTR can be incremented by using the INC comand and an

overflow condition is testable wi th the COV condition.

LCTR ; SAVE % LOAD COUNTER FROM LIT (3)

3 = LIT; COMP 8 = SAR % LOAD 3 INTO LIT; 8 (LEFT) INTO S~R

LOOP : DR; AL L = Al % READ A CHAR ; SHIFT Al L 8 PLACES

IF RDC THEN BEX

Al or B = Al; INC % PACK CHAR . INC CIR

IF COV THEN STEP ELSE RETURN % READ FOUR CHAR .

SHIFT AMOUNT REGISTER (SAR) is a five bit register that is uniqe in

that it is the only register that the microprogramme r can write into but

not read from. The SAR is loadable from the B-Bus , the Microprogram

Memory (usIng a Type II instruction) and the complement (Twos Comp l ement)

of itself. The SAR is used to hold the shift amount for the barrel

SwitLn. For right shifts the contents represent the actual number of

bIt positions that will be shifted . On left shifts the contents are the

twos complement of the shift amount. A more complete descri ption of the

operation of the Barrel Switch is given in Section IV.2.

68

F

AFAL-TR-75-148

CHAPTER V

CON CLU S ION S

1. SUMMARY

All of the deficiencies that were noted in the Interpreter have

been eliminated. The Unified Processor is more than just a rework of

the Interpreter. It is instead a new design that used the Interpreter

as a baseline design.

A gate level design of the UP has been completed and will be imple-

mented using standard bipolar integrated circuits . This will provide a

powerful laboratory tool for use in studying microprogramming techniques .

2. RECOMMENDATIONS

After the completion of the design of the Unified Processor i t was

noted that several areas could be changed to provide a more efficient

machine . The major areas are discussed below .

a. M i cromemory

The present UP used a sixty—four bit memory for its control

store. It becomes obvious after writing several test programs that sel-

dom are more than one-third of the control fields used for a particular

Instructor. The remaining two—thirds are in their “no-change” state.

To make more efficient use of memory but yet not reduce flexibility or

increase decoding complexity the memory could be divided in two. This

woul d Introduce a third instruction type and a comp ete study would have

to be made to determine what controls each Instruction had .

69

F
-

- - - —- —

AFAL-TR-75-148

b. B Register

The B register should be removed and its function taken over

by the A registers . The B input network would be put on the A register

with the exception of the internal input. This source would be connected

through a buffer to the tn-state Y-Bus. The 0/1/1/F should be used on

the A register output that goes to the X-Bus.

c. Barrel Switch

The Barrel Switch provides a fast means of shifting a parallel

word but requi res an enormous amount of circuitry . A better compromise

between complexity and speed would be if only shifts in increment of

four were available. This would reduce circuitry complexity by one-

half. If a shift is desi red that is not a mul tiple of four the Barrel

Switch would be used to provide an initial shift and then a standard

shift register would be used for the additional one, two, or three

shifts . The maximum using this system would be four clock, one for the

Barrel Swi tch and three for the shift register.

70

- .
~~~~~~ ~~~~-_~~ 

__________

~~~~~~ 
y~~ :_ ~~.-

AFAL-TR-75- 148

APPENDIX A

UNIFIED PROCESSOR I/O CHANNEL

All information transfers between the tiP and the outside world are

through a buffered parallel channel. A block diagram of the channel

showing its double buffering is shown in Figure 28. The parallel data

and address lines are attached to all devices/memories and the deter-

mination of who accepts the information is made by the interface .

When a memory operation is being performed the sixteen address bits

directly define the particular word to be worked wPh. For a device

operation there is no need for an address so the sixteen lines can be

used as control bits to define the particular function to be performed.

Input and output operations are very similar as the timing diagrams in

Fi gures 29 an d 30 show . The ma i n di fference is that for an i nput

operation only the B Buffer is loaded and during an output operation the

MIR Buffer is loaded . The only indication an interface has that an

operation is an input or output is from the read/write line.

This channel is used only for programmed , con trol le d data trans fers

and can operate at a maximum of 2,500,000 words/second.

71

~ dP

AFAL-TR-75.. 148

I I

I I

Li Li
u i J Li I
Li -J < I-. C~

I ~ J ~— ~~~ L J
I ~~
I Li

I I
— —-

F i F I F
Ic~~~~~~ - Li.Jc4 !a~~~u~u~w~4 l~~~~~ -~-’~~

C~ Li
I I I I I

I— Li
Li ~~-

~~~~ I,
X L i~~~~~~ 

~ I T~~~

72

F 

_



AFAL-TR-75 148

IN S T

BUFF CK

DATA R O Y 
___________________ ______

INPUT DA TA 
__________________________ ______

OPER COMP __________________________________

BUFFER CK

I I I I I I I

IIOTLS:

1. Buffer clock is only for Address Buffer .

2. Address is stable on output lines approx imately fifty

nanoseconds pr ior to DATA RDY goint TRUE.

3. DATA RDY w ill remain true until OPER COMP goes TRUE.

4. INPUT DATA must be stable on input lines fifty nanoseconds

prior to OPER COMP going TRUE.

5. urc~i COMP must remain TRUE until DATA ROY goes false and

it must then also return to false.

Figure 29. Input Data Transfer Timing Diagram

73



AFAL-TR-75-l48

INST I 1____________________________________

BUFF CK

DATA I 1

DATA RDY 1 1

OPER COMP I 1

RDC _______________________________________I

I I I I I I I I

NOTES:

1 . Data is stable on output lines approximately fifty nanoseconds

urior to DATA ROY going TRUE.

2. D/\TA ~i
y will remain TRUE until the OPER COMP lines goes true.

3. The OPER COMP line must return to FALSE when DATA RDY goes

FALSE .

4. The RDC is set by the interface and will remain that WAY

UNT i L RESET BY T~[ IIICROPROGRAM .

Figure 30. Output Data Transfers Timing Diagram

74



AFAL-TR-75-l48

APPENDIX B

UNIFIED PROCESSOR’S MICROMEMORY IMPLEMENTATION

The memory used to store the control signals for the UP is 4096

words of sixty-four bits each. A new word is assessed each clock

period , whi ch i s 100 nanosecon ds ; therefore , the memory has an access

time less than fifty nanoseconds . To obtain a memory of this size and

speed it was necessary to go to integrated circuit memory chips. The

origina l design by Burroughs Corp. used a I-~~rchi ld 93410 which is one

bit by 256 words. The chip is TTL compatible and has a maximum access

time of forty-five nanoseconds but it would require 1024 of these chips.

The micromemory would have taken more volume and power than the remainder

of the processor.

To achieve a memory with higher density , l ower power consumption ,

and reasonable cost without sacrificing speed it was necessary to go to

the MOS fami ly of ICs. A new pseudo static MOS chip, the AMS 7011 ,

proved to have the desired features. The 7001 has a maximum access time

of fifty nanoseconds and each chip is one bit by 1024 words ; therefore ,

only 256 chips are necessary for the entire memory .

The structure of the memory is shown in Figure 31. During normal

execu ti on the MPCR p rov ides a new address every clock . The new con trol

word is read from the Random Access Memory (RAM) and applied to the 64

control lines going to the UP. There are times when it is desirable to

change the microprograms , possibly when emulating a new machine . To

accom p l i sh th i s , two input sources are available to the programmer.

75



AFAL-TR-75-l48

INPUT DATA

__________  

SELECT 
__________

r 1
~~~ 

-1~~~
-- t~~~~~~~~I0RD$ $

________ ________

ADDRESS

RAM RAM RAM RAM

4K 4K 4K

16 16 16 16

I iRUM RUM RUM] RUM

A B~ A A B BOOTP SE ECT F/F

64 CONTROL L L t ~ES

Figure 31. UP Micromemor~

76

_ _

F..

AFAL -TR-75_148

The first source is the least significant sixteen bits of the MIR.

To load the memory the prograniier put the desired 16-bit control word in

the MIR and the section and word address in the BR1/PCR. The form the

address takes in these registers is shown bel ow.

BR 1 PCR

I- I l i i i]

I I
~* 1I ftI

WORD ADDR SECT
SEL

Af ter the data and address have been loa ded an LDM instruc ti on is

performed . This causes the UP to stop for one clock while the memory

address lines are switched from the MPCR to the BR1/PCR. The word is

then wr itten i nto memory an d the control returne d to the UP.

The second data source is from a f lo ppy di sk tha t i s used to store

microprograms . When the programmer desires to load a program that is on

the floppy disk he must perform the following sequence of operations :

a. Check status of floppy disk.

b. Write to disk the starting microprogram address. (NOTE: This

must be in the same form as the BR1/PCR address described pre-

v iously .)

c. Write to disk the starting disk address.

d . Wr ite to disk a DMA comma nd.

77

_ .. _ . _ _ • _ _
~~~~~~~~~~~~~~~~~~~~~~~ 

—

AFAL-TR-75_l48

After these four operations are performed the clock to the UP will be

inhibited and a DMA transfer from the disk to micromemory will take

place. When the transfer is comp lete the clock w i l l  be ena b le d an d

execution will continue at the address in the MPCR . Since the entry

point of the new program is in general not the same address as the exit

of the calling program , the following sequence of instruction is neces-

sary for the trans i t ion.

NEW PROG -l = AMPCR % START ADDR INTO AMPCR

OWl; JUMP % WRITE DMA ; LOAD STARTING

ADDR INTO MPCR

78



AFAL-TR-75-l 48

BIBL I OGRAPHY

Barrera , R., The Interpreter , Wright-Patterson Air Force Base , Ohio:
A ir Force Avion ics Laboratory , May 1972.

Bar tee , Thom as C. , et al , Theory and Design of Digital Machines , New
York , New York: McGraw-Hill Book Company , 1962.

Bell , C. Gordon , and Al l en Newel l , Computer Structures: Readings and
Examples , New York : McGraw-Hill Book Company , 1971 .

Bingham , H. W ., et al , Microprogranining Manua l for Interpreter Based
Systems, Paoli , Pennsylvania: Burroughs Corporation , November 1970.

Chu, Yao han , Computer Organizati on and Micrqpro9raimning, Englewood
Cliffs , New Jersey: Prentice—Hall , Inc., 1972.

Dav i s , R. L., The Interpreter, Paoli , Pennsylvania: Burroughs Corpora-
tion , Februa ry 1970.

Dav is, R. 1., et al , Aerospace Multiprocessor , Wright-Patterson AFB,
Ohio: Air Force Avionics Laboratory , June 1973.

Don ovan , John J., Systems Programm i,~~ New York , New York: McGraw -Hill
Book Company , 1972.

Godfrey , R.D., A Fortran Micrqprogram Translator, Thesis Wright-Patterson
AFB, Ohio: Air Force Institute of Technology, June 1972.

Hill , Frederick J., and Gerald R. Petterson, Introduction to Switching
Lheory and Logical Design, New York: John Wi ley & Sons, Inc., 1968.

Husson, S., Microprogran,ning Principles and Practices, Englewood Cliffs ,
New Jersey: Prentice-Hall , Inc ., 1970.

Kohavi , Zvi , Switchin if and Finite Automata Theory, New Yor k , New York:
McGraw-Hill Book Company , 1970.

Stone, Harold S., Introduction to Computer Organization and Data
Struc tures , New York , New York: McGraw-Hill Book Company 1972.

79
~~I4 Ig% Pvj ,, I.d —


