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Aé Foreword

The material in this report represents a contri-
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edited by A.C. Zettlemoyer. This contribution was

1 solicited by the editor who also assembled Nucleation,

Marcel Dekker, N.Y., 1969 (now called"Nucleation I").
Since the material includes original contributions,

it is first published as an ONR Report.




ABSTRACT

The fundamentals of gasdynamics of one-dimensional
flows with condensation are reviewed paying special at-
tention to concepts from nonequilibrium flows, homoge-
neous nucleation, droplet growth. Flow systems for
experimental research in condensation, namely steady-
flow Laval nozzles, Ludwieg tubes, shock tubes and high
intensity supersonic molecular beams are discussed.

New and previously published experimental results on
homogeneous nucleation of eight vapors, obtained using
gasdynamic methods, were critically examined and com-
pared on a uniform basis with steady state homogeneous
nucleation theory. It is found that experiments with
water, nitrogen and ethanol vapors agree with the classi-
cal theory of homogeneous nucleation or the statistical
mechanics theory based on the models of Kuhrt or Dunning.
This study also revealed that in a number of experiments
with several vapors, in which much higher nucleation
rates than those calculated from the classical theory
were thought to have been observed, involved ambiguous
interpretations and assumptions. To date, no experiment
using any method has shown conclusive agreement with the
Lothe and Pound model of the statistical mechanical
theory of homogeneous nucleation. Finally, a bibliography
of condensation studies in compressible flow systems is
provided in the appendix.
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1 HISTORICAL INTRODUCTION.

The first international congress wholly devoted
to high speed flight and gasdynamics* was held in Rome
in 1935. At that meeting, Prandtl (1935) showed a
schlieren picture of nozzle flow (Fig.l.l) and
he pointed to the then-mysterious disturbances seen in
the supersonic flow to the right of the nozzle throat.
Wieselsberger** in the ensuing discussion suggested
that condensation of water vapor may have been responsible
for these shock-like phenomena since Prandtl's supersonic
wind tunnel was operated with moist air. Shortly after
the Rome meeting this guess was indeed confirmed at
Wieselsberger's laboratory in Aachen with the results
published later by Hermann (1942). Subsequently
air driers were introduced in supersonic wind tunnel
circuits to avoid condensation disturbances which rendered
quantitative model tests impossible. Thus, condensation
problems entered gasdynamics and aeronautics by an acci-
dental discovery while water condensation has long ago

been known to occur in steam nozzles. These

* Gasdynamics is the regime of fluid mechanics where the
compressibility of the fluid needs to be taken into account.
*% For a brief history of these early events and detailed
references see the Appendix of Wegener (1975).




convergent-divergent nozzles introduced by the Swedish
engineer de Laval in 1883 (e.g. Stodola 1927) produced
supersonic steam flow in steam turbines. The appear-
ance of condensation in such nozzles, however, was de-
layed with respect to the coexistence line as shown in
Fig. 1.2. From many such observations an empirical
condensation curve emerged which was named the "Wilson
line" to honor the early investigator of delayed con-
densation in cloud chambers (e.g. Wilson 1897).
Condensation of water vapor in air in supersonic

nozzles obeyed empirical relationships and a function

ATad = f(¢o, aT/dt) (1.1)

could be established experimentally.®* The adiabatic
supercooling AT 4 is taken to be the temperature differ-
ence between the location of saturation and the onset of
condensation on an adiabatic (here, an isentropic)

expansion.

* For symbols note Section 8.




This term is also illustrated in Fig. 1.2. It is more-

over apparent, that the "critical supersaturation", i.e.

the ratio, pvk/Pw’ of the partial pressure of the vapor to its
saturation pressure at the onset of condensation

is an equivalent method to describe the state of the

spontaneous condensation in the supersaturated state. ?
For ATad>0, we have ka/Pw>l‘ In supersonic flow we %
normally experience high values of the critical super- a

saturation, therefore it is usually easier and more
accurate to express the onset of condensation in terms
of ATad since slight errors in temperature result in
large errors in the tabulated saturation pressure.

The primary effect on the value of the supercooling
in Eq.(1.1) is due to the initial partial pressure of
water vapor, or the relative humidity in the supply of

the nozzle, Qo' Experimental data on this effect in noz-

zle flow are shown in Fig. 1.3 at a cooling rate of
about 10°C/sec. Next, Fig. 1.4 shows the
effect of a variable cooling rate observed in a Prandtl-

Meyer expansion* with a functional relationship also shown

* Such an isentropic expansion arises in a steady super-
sonic flow around a sharp convex corner. It is the two-
dimensional analog of the unsteady expansion in shock
tubes to be discussed in Section 2c.




to admit the proper physical limit at ATad = 0 for a
vanishing cooling rate. We note, for this experiment
as for other gasdynamic methods, that the cooling rates

are appreciably higher than those of other techniques.

It took until 1940 before this empirical result
and in fact the entire gasdynamic process were physi-
cally understood. Displaying remarkable insight,
Oswatitsch (1941, 1942) provided experimental and theo-
retical evidence on the nature of the condensation
process in supersonic flow (homogeneous nucleation,
growth laws, time scales, heat addition, etc.) that
still stands today. Moreover, he was the first to
suggest supersonic flow methods to study condensation
itself by proposing to measure the surface tension of
small clusters indirectly. This task still eludes us
today. Thus, he added a new tool to the chemical
physics laboratory that rivals Wilson's cloud chamber

in importance (Dunning 1960).

4
4




Finally, Oswatitsch noted the cross connection of con-
densation in supersonic wind tunnels with that in steam
turbine nozzles and he employed identical theoretical
methods for the understanding of both.

Gasdynamic methods have since been enlarged by
adding shock tubes and other devices. However, they
all have some common features which set them apart from
other techniques. For one, heterogeneous nucleation on
aerosols present in the flow is unimportant. The short
time scales of supersonic flow are such that even maxi-
mized rates of condensation on foreign nuclei are negli-
gible in relation to condensation produced by homogeneous
nucleation. This situation 1is unchanged even in the
presence of large numbers of aerosols, say 10%/cm?®,
(Oswatitsch 1942, Wegener 1969). It is, in fact, dif-
ficult to affect the normally homogeneous nucleation by
seeding the moist air in the supply of a supersonic noz-
zle (Buckle and Pouring 1965). Supersaturation is gen-
erally found to be high owing to the high cooling rates
because the short time scale permits only a reduced
number of collisions of the condensing vapor in relation,
for example to a cloud chamber. However, these effects

still permit a detailed resolution
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of the condensation process. Rather than the single
measurement of the critical supersaturation possible
in Wilson and diffusion cloud chambers, condensation
rate, nucleation rates, droplet growth, etc., may be
measured quantitatively in a precisely prepared en-
vironment.
2 COMPRESSIBLE, INVISCID, ONE-DIMENSIONAIL FLOW OF

PERFECT GASES.*

a) Basic Considerations

Effects of compressibility arise in fluid mechanics

if flow speeds exceed about one third of the

speed of sound, and this technologically important
regime has received much attention in the last forty
years or so. The advent of supersonic flight, rocketry,
atmospheric entry from space, etc. has moreover spurred
much recent progress. In such flows,the density varies

and in addition to the equations of motion,an equation

* This section is addressed to those who may

not be familiar with gasdynamics. For details we refer
to textbooks such as those by Liepmann, d.W. and Koshko,
A., Elements of Gasdynamics, Wiley, New York 1957,
Becker, E., Gas Dynamics, Academic Press, New York 1968,
and Vincenti, W.G. and Kruger, C.H., Introduction to
Physical Gasdynamics, Wiley, New York 1965.




of state, p = p(p, T), is required. Conversely, gas-
dynamics had a strong impact on chemistry (e.g. Wegener
1966) since well understood gasdynamic processes such
1 as shock waves provide tools for the study of reactions é
at controlled time resolutions that have traditionally i
not been available. Nonequilibrium flows are important

(e.g. Becker 1972) where one or more modes of molecular

motion, etc. of a gas mixture depart from thermodynamic
equilibrium. Rapid condensation by homogeneous nucle-

ation represents such a nonequilibrium situation.

However, before studying real gas flows, a few simple
gasdynamic concepts need to be clarified. This dis-
cussion will set the stage for an understanding of the
particular advantages of high speed flow experiments in
relation to the more traditional devices in the field.

Gasdynamics is described in relation to condensation in

greater detail by Stever (1958), Wegener and Mack (1958),

and Wegener (1969).

Inviscid Flow: All shear flows, or flows in which

neighboring layers of the fluid (liquid or gas) exhibit
different speeds, are subject to laminar or turbulent

exchange of momentum between these layers. However,




it is found in practice that at low shear rates, the
internal friction (or turbulent motion) can often be
neglected and the fluid can be treated as if it were
inviscid. This idealization of the real fluid is

never valid near solid walls. In a narrow

layer, the so-called boundary layer, the flow speed is
reduced from the undisturbed free stream speed to zero
velocity at the wall. The structure of this boundary
layer (laminar or turbulent), and its lateral extent are
governed by the well-known Reynolds number. This di-

mensionless similarity parameter is given by

ReEB:‘;—R’-]‘\‘:—E : £2.1)

expressing the ratio of the inertial to the viscous
forces acting on a fluid element. Generally at Reynolds
numbers of the order of 10* to 10® as found in most con-
densation experiments in gasdynamics, the boundary layers
near the walls of a nozzle are turbulent.

ﬁext, we recall the definitions of the Mach number:

M= u/a , (2:2)

and the Knudsen number, relating the mean free path to
a characteristic length:

Kn = A/%. (2.3)

REoT =y Sianoe - -2

A




By combining Egqs. (2.1), (2.2) and (2.3) and making

use of concepts from kinetic theory we find

Kn = %—e\l v (2.4)

where y isthe ratio of the specific heats.* Here all

three important similarity parameters of compressible
flow appear. Excepting high intensity molecular beams

produced by supersonic nozzle flow, large Knudsen

are not found in gasdynamics research on conden-
sation. Rather,Kn<<l for the previously quoted high
Reynolds numbers, and continuum flow prevails. At high
Reynolds numbers,viscous effects are small and the
boundary layers are found to be very narrow (e.g. Fig.
8, Wegener, 1969). For such nearly inviscid flows, a
small empirical correction can be applied to the geo-
metrical nozzle cross-sectional area resulting in an
"effective area" to be used in the inviscid flow treat-
ment to be discussed next.

One-dimensional Flow: The requirement of low shear

* It is customary in gasdynamics to use the symbol, Y,
for this term. We shall therefore later denote the
surface tension by ¢, in contrast to other chapters in
this volume.

numbers characteristic of the free molecule flow (FMF) regime

R L e Moilin (6 s il
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to produce practically inviscid flows further demands
flow systems of low or no wall curvature in addition
to the previous criterion of high Reynolds numbers.
Typical nozzles used for condensation studies, again
with the marked exception of gasdynamic molecular beams
(e.g. Anderson et al. 1966), consist of converging-
diverging ducts having flat walls with total included
angles of about 5 to 10 degrees. These plane walls
are joined by cubic curves in the throat region to
provide a continuous second derivative of the surface
profile. Consequently, a uniform acceleration of the
flow at the junctures of the cubic curve and the plane
is found. In such ducts the concept of one-dimensional
flow is applicable with a practically uniform velocity
distribution across the channel, i.e. at a right angle
to the streamlines. In fact if we have A(x) given by
a static pressure calibration of a nozzle (see Section
2b), we can later find u(x) from the equation of motion.
In turn in shock tubes of constant cross section
the flow is one-dimensional by definition provided again

that the Reynolds number is high enough to insure a

RN
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negligible boundary layer thickness. In sum, the
treatment of nozzle and shock tube flows at high
Reynolds numbers and low supersonic Mach numbers will
permit us to apply the equations of motion simplified
for inviscid (ideal) and one-dimensional flow res-

pectively.

Equation of State: Finally, a substantial {

analytical advantage is obtained if the gases, vapors |
and their mixtures can be treated as thermally and
calorically perfect gases until condensation appears.
This assumption applies in particular to gasdynamic
experiments designed to study the condensation process
itself. Exceptions are found for thermal non-ideality
at higher pressures in steam nozzles (e.g. Barschdorff

1971). The need for real gas equations including those

for the supersaturated states becomes particularly acute
in modern high pressure steam turbines since states at |
extreme conditions of say 50 bar pressure at condensa-
tion are required to make efficient use of nuclear plants
(Gyarmathy et al. 1973). On the other hand, in shock
tube work, the study of condensation of metal vapors

(e.g. Kung and Bauer 1971)
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may require that caloric non-idealities appearing at
high temperatures are included.

However, aside from these less frequent situations,
the ideal gas assumption is valid and the equation of

P = RI (p'/ ') 2.5

where the subscript j denotes the j'th species. Eq.

(2.5) can also be written as

p = p(R/WT , (2.6)
where
p = Zpi 3 (2.7)
and
1/ = 5 Quplue) {2.8)
33
using the mass fraction, wj = pj/p. The ratio

of the specific heats, Yy, is given by

(a] LWeC .
Y = ER = EE%ER% . (2.9)
v d Vi

It is practical in gasdynamics to express heat capacities,
enthalpy, etc. in terms of unit mass and to employ lower
case letter symbols to designate this fact. Finally,

Eqs. (2.5) and (2.6) can later readily be adapted to

include partially condensed flow by introducing the mass
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fraction of the condensate, g = pé/pT. Here, pé is the
density of condensate referred to the volume of the gas
phase and pq is the total density of the two-phase med-
ium (see Section 5a).

For a thermally and calorically perfect gas, the

acoustic velocity, defined by:

a. = Xenfop), s (2.10)
is given by

a = /Y(R7u)T , (2.2%)
with y and p given by Egs. (2.9) and (2.8) respectively.
Using Eqs. (2.11) and (2.2), we have the Mach number for
ideal gases:

M= —R—“—; . (2.12)
Yy (R71)

b) Nozzle Flow.

Isentropic, one-dimensional, steady® nozzle flow
exemplifies the special attractiveness of gasdynamic
techniques in condensation studies. With the assumptions

of the

* Steady flows are those in which no parameter changes
with time at a given location.




last section, the equations to be derived for this flow
will, moreover, be useful for a determination
of the starting point, or "onset", of condensation in
nozzles,since up to this point the condensation pro-
cess cannot yet interfere with a supersonic flow. The

results are as follows.¥®

The conservation of mass is expressed by:

puA = Q = constant, (6251.3)
or

%9+%11+%é=0. (2.14)
Newton's second law of motion applied to a moving,

compressible fluid yields Euler's equation

udu+%2=0. (2.15)

Similarly, for later use in one-dimensional flow in the

x-direction, Egs. (2.13) and (2.15) can be written as

digud) . o , (2.16) ?
and
du , 1dp .
ua'}adx-o, (2.17)

®* For details note Wegener and Mack (1958), and Wegener
(1969) in addition to the textbooks cited.
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where the term u(du/dx) expresses the convective acceler-
ation in steady flow. We realize that while in steady
flow no flow parameter changes with time, a gas sample
undergoing the expansion alters its properties from point
to point since it is convected to different locations
having different states.

By combing Egqs. (2.6),(2.12),(2.14), and (2.15) we can
derive the well-known area-velocity relation for compress-

ible flow,

du _ cdA/4, . (2.18)
The fundamental equation for incompressible flow yields
the well-known result du/u = - dA/A since M = 0. However,
if M # 0, the following pattern emerges. For 0 < M < 1
(or subsonic speeds with u<a), Eq. (2.18) behaves qualita-
tively as in incompressible flow; a decrease in area re-
sults in an increase in velocity. For M > 1 (or super-
sonic speeds with u > a), the denominator of Eq. (2.18)
becomes negative, resulting in a positive coefficient for

dA on the righthand side of the equation. Now an increase
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of flow speed is caused by an increase in area, in con-

trast to the low speed situation. Finally at M =1,

(or at sonic speed with u = a), we have (1-M?) = 0 in
Eq. (2.18). 1In steady flow this condition can only be
realized at a "throat" where dA/A = 0, because du/u
must remain finite. In sum, flow from a low speed re-
servoir through a converging-diverging nozzle can attain
sonic speed at the throat and subsequently proceed to
supersonic speeds in the diverging passage.

To obtain the local properties of the nozzle flow,
we add the energy equation for steady adiabatic flow:

dh + udu = 0. (2.19)

With the thermodynamic assumptions of the previous section

we find for the enthalphy

h = cpT + const. , €2.20)

and Eq. (2.19) can be integrated to give

SR NI 2T . 2,21}
p po

where the subscript, o, refers to the known nozzle supply
or reservoir state where u = 0. Moreover, TO may be de-

fined as the stagnation temperature of the gas after it
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has been brought to rest adiabatically. With the pre-
vious assumptions and definitions we find:

L

T_=(1 +IiM2) : t2.29)
i 2
o
In an isentropic expansion:
Y y/ (y-1)

B =B Voup 'l
PO (po ) (Tb ) ’ (2.23)

which leads to:

-y/ (y-1)
%=(1+1}1M2) : (2.24)
and
-1/(y-1)
S—O=(1+%MZ) (2.25)

Setting M = 1, in Egs. (2.22), (2.24), and (2.25) we get
the critical or sonic conditions at the throat to be de-

noted by an asterisk:

*
T 2
= ’ (2.26)
T; Y+1
& y/ (y=1)
g_:=(;%f ) ’ C2+27)
(o]
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and
* 1/(y-1)

_g_ =(7f_1_ : (2.28)

O

Equation (2.27) tells us that to achieve sonic speed at
the throat, a pressure ratio across the nozzle of at least
po/p* = 1.9 is needed for y = 7/5 = 1.4. Indeed, Eq. (2.18)

does not prohibit subsonic flow at the throat at insuffi-

cient pressure ratios across the nozzle with a subsequent
deceleration in the diverging part of the nozzle. Moreover,
should the pressure ratio exceed that given by Eq. (2.27),
the constant in Eq. (2.13) can now be determined by:

I
pPuUA = p a A = Q = const., (2.29)

%* *
from a fixed supply since a /ao = (T /To)%' From Eq.(2.29)

we find

=22 (2.30)

and from the formulas derived so far, the nozzle area ratio

as a function of Mach number,

£onf(2) o2

may be obtained. The function of Eq. (2.31) is double-

s (2.31)

]

i valued and for each area ratio there are two

L

411 “““"“’ﬂddm




values of the Mach number for subsonic and supersonic
speed respectively, while A/A* = 1 at M = 1.
These results can now be put to practical

use. For a given converging-diverging nozzle with known

geometry, we have A(x) and thus A/A*(x). From Eq. (2.31),

| we next find M(x) and the previous formulas yield T/TO,

p/po, and p/pO at each location. A single measurement

in a supersonic nozzle flow at a known location there- é

fore fully defines all flow parameters. These parameters

can be tabulated as a function of Mach number as given

for y = 7/5 = 1.4 (diatomic gases) in Appendix 1, and

they are shown in Fig. 2.1. A rapid drop of pressure

with Mach number is apparent and relatively

high values of the supply pressure are required for the flow

to remain in the continuum regime at higher Mach numbers.
For water vapor, ethanol and

many other vapors, however, saturation is usually attained

at M < 1, ahead of the throat. The delayed condensation

occurs usually at low supersonic Mach numbers (M < 1.5), or

shortly past the throat. Therefore even at relatively

low supply pressures, free molecule flow does not yet

enter. The geometry of the nozzle throat region

controls the expansion rate and thus the cooling rate
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of the vapor sample. In steady nozzle flow such time
dependent variables can be found from the local grad-
ients by

gl 3y 2h) (2.52)

where any of the derived parameters may be put in the paren-

theses. For a two-dimensional nozzle, the change of
area ratio with distance in the throat region can be re-
lated geometrically to the radius of curvature of the
throat, R*, and the nozzle throat height, h* (Wegener

1964). We then find

* -

a(T/T ) L
o y=1
i, Wi AR L (2.33)
[ dt ] [(y+1)/217 ©
or

%
d(T/T ) R »
T = - Cao (Rt ) . (2.34)

For diatomic gases, vy = 7/5, and C = 0.278. From Eq.
(2.34) we find remarkably high cooling rates of the

order of 10°® C/sec for small research nozzles (See
Section 6).
¢) Shock Tube Flow

A simple shock tube is a duct of uniform cross sec-

tion in which a removable diaphragm divides two chambers.

r— — T ” N s
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In these chambers there are carefully prepared gases or
gas mixtures at different pressures and temperatures
prior to a given experiment. These gases undergo con-
trolled changes in a wave system resulting from the
rupture of the diaphragm to equalize conditions in the
two chambers as shown schematically
in Fig. 2.2. Condensation research has utilized several
different sections of the wave system to be des-
cribed in Section 4b. The gasdynamics of shock tube flows
is discussed in detail in the textbooks cited and
special applications to physical chemistry exploiting
the well controlled changes in the gas sample are given
e.g. by Bradley.*

After diaphragm rupture a shock wave develops
rapidly and this wave proceeds at a uniform speed into
the undisturbed low pressure gas at condition 1. The shock Mach
number is defined by MS = us/a1 where the subscript, s,
relates to the speed of the shock wave. We have from Eq.

(2.11), a, = /yl{R7ul5Tl, and the pressure jump across

1
the wave is given by the well-known Rankine-Hugoniot

relation for a calorically and thermally perfect gas by:

Py 2Y, 2 )
EI A & fITT (Ms . 2 : (2.35)

* John N. Bradley, "Shock Waves in Chemistry and Physics,"
Methuen Co., London, Wiley, N.Y. 1962.
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where the subscript 2 denotes the state at higher pres-
sure and temperature behind the shock. As seen in Fig.
242, P,>Pq> and while the shock moves to the right, an
isentropic, unsteady expansion fan proceeds into the
high pressure chamber. The front of this expansion moves

at the sound speed of the medium ahead:

= .
a, “Yqu7uqSTu . (2.36)

where again as in all following equations, y and u are |
given by Egs. (2.8) and (2.9). The expansion fan shown
in Fig. 2.2 is ideally centered at the diaphragm location

at time zero, and each straight line in the fan, being a

characteristic of the governing partial differential
equation, defines wave propagation at constant speed, c, |
by

¢ = x/t =u - a. (2.87)
Here, u, is the local flow speed of the gas moving towards
the lower pressure. At the head of the expansion fan,

a At the tail of the same fan where

u =0, and c Y

(2.38)

c x/t = u, - a

3 3 S
the outflow speed of the gas initially located in the high
pressure chamber may be locally subsonic, sonic or super-

sonic depending on the slope (x/t) of the last character-

istic Cys i.e.

>
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It can be shown that the propagation speed of this last
characteristic, i.e., the speed of the tail of the fan

is given by:
Yu'l

2y,

Yutl /P
2 4 3
c, = a - - ’ (2.40)
3 Y Yu"l yu—I(pq)

The pressure on each characteristic in the expansion
fan may be related to the corresponding temperature

and density in the isentropic expansion by Eq.
(2.23).

The local wave speed can be expressed in terms of the

local flow speed and the conditions in region 4 by:

Yyt
c=-a, t—m—u. (2.41)
This equation allows us to determine the path of an actual
particle (or small volume) of the flow starting at some
initial location as shown in Fig. 2.2. This particle
path x = x(t) is obtained by integrating the local fluid
velocity in Eq. (2.41):

2

(2.42)
Yy*l

dx _ X
— = = -
at =~ T -

Yl#+l 4

The history of a particle can now be traced in the x - t
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plane with initial particle position, X, at time
t, (tO = xO/au), by:
Yq'l
a,t t, Ty
x(t) = = i1 2 - (yq+l) — . (2.43)

Returning to Fig. 2.2 we note a last feature of the
flow, the so-called contact surface separating states 2
and 3 corresponding to the gases initially in either
chamber. The contact surface may also be viewed as a
virtual piston set abruptly into uniform motion. We find
u, = U, and P, = P3, but T3 < T2 since the expanded gas on the
left has been cooled while the shocked gas on the right has
been heated. The contact surface thus represents an
entropy discontinuity.

Combining the conservation laws, we finally arrive

at the shock tube operating equation

-(ZYq)/(Yu—l)
Py P, g (Yu'l)(al/au)EP2/Pl)_q

L VY. VYt (Y *1(p,/ D) -1
1 W g ¥

(2.44)

where we can insert Eq. (2.35) for p,/p;. This substi-
tution links the shock Mach number directly to the ini-~
tial conditions that are known a priori and thus the

remaining parameters can be computed. The maximum
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expansion and correspondingly the lowest pressure and
temperature respectively achieved in the isentropic,
unsteady fan is found e.g., from p,/p, = (pz/pl)/(pu/pl)
in conjunction with Eq. (2.44) since P; = P,- Instanta-
neous distributions of these properties at time t,, are
shown schematically in the lower part of Fig. 2.2 to-
gether with symbols denoting the conditions in the tube.
At high Reynolds numbers, small viscous effects or
the minor consequences of finite diaphragm rupture can
be accounted for as will be seen in Section 4. The
reasons for this fortunate state of affairs were outlined
in Section 2a. However, a check of the ideality of the
tube operation is usually provided by the redundancy
inherent in the measured variables entering the equations
of motion. Usually the shock speed, Ug s is measured and
thus p2/p1 can be computed directly from Eqs. (2.12) and
(2.35). Independently,with known initial conditions,
P3 = Py is measured and overall agreement with Eq. (2.44)
can thus be checked. For the application of these flows

to condensation studies, we refer to Section 4.

3 REAL GASES AND FLOW WITH CONDENSATION
a) Nonequilibrium Flow
In certain flows, the behavior of real gases may de-

viate from that of ideal gases. In terms of
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the equation of state, such deviations may generally be
divided into two classes: those resulting in an equation
of state involving two independent variables, e.g., for
the internal energy, .
e = e (p, 8), (3

and those requiring more than two independent variables,

such as

e = e (p; S,0). (3.2)

Here the additional so-called progress variable, ¢, is

required to fix the thermodynamic state of the gas. Non-
idealities of the kind of Eq. (3.1) have been discussed
before in conjunction with high pressure steam. No con-
ceptual difficulty arises in the gasdynamic treatment

of the flow since the function, Eq. (3.1), may be given

in the form of diagrams, tables, or simply in more compli-

cated equations than the ones for the ideal gas.

Equation (3.2) on the other hand applies to situations
where departures from the thermodynamic equilibrium appear. |
This may happen if chemical reactions, excitation or de- ‘
excitation of some internal degrees of freedom of molecules,
dissociation, ionization or changes of phase occur. The
progress variable, ¢, must therefore be defined differently
in each specific non-equilibrium situation. When the flow
is in the continuum regime, i.e., when Kn<<1l, the gas mole-

cules may be considered to be in
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translational equilibrium, and the pressure and a "trans-
lational temperature" may be defined for the gas without
ambiguity. Moreover, at the conditions of interest in
most condensation problems the rotational mode of mole-
cules may be taken to be in equilibrium and vibrational
modes* are unexcited. Fortunately therefore, only one
active relaxation mode needs be considered in homogeneous
nucleation problems. Thus, the mass fraction of conden-
sate may conveniently be taken as the progress variable,
¢, in Eq. (3.2). However, the formalism of a general
rate process applies, and a relaxation equation of the

general form:

de _ 3.3)
é% e \l’(p, S,¢) b} (

arises, where Y is a prescribed function of p, s, and ¢.
For small deviations from equilibrium, Eq. (3.3) may be

linearized to give

4-9_)
d
a%='—?i . (3.4)

Here, $e is the equilibrium value of the progress variable
¢ (e.g. the condensate mass fraction) under the local con-
ditions, and T = T(p,s,4)>0 is the relaxation time with the

property that at equilibrium,

1(p,s,¢e) = 0. (3.5)

®# This latter mode may have to be considered in conden-
sation studies of polyatomic molecules.
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; Interesting work in gasdynamics concerns the behavior
of these equations and it is discussed in different

recent books.* More recent reviews by

Marble (1969) on two-phase flows, Becker (1972) on
chemically reacting flows, and by Wegener (1975) on condensing
nonequilibrium flows are also of interest in this connection.

One additional fundamental problem that arises is the

proper definition of the speed of sound in a condensing
medium.** In a non-reacting medium, small disturbances
propagate at the local acoustic velocity defined unambiguous-
ly by Eq. (2.10). Here, the differential in Eq. (2.10)

is well defined since p may be expressed as a function

of p and s using Eq. (3.1). In a condensing mixture,

however, p is a function of three (or more) variables,

p = plp, s,¢), (3.6)

as in Eq. (3.2), and thus there is an jinfinite number of
differentials having the form (aplap)s. Indeed in con-
densing flows we deal with the acoustics of dispersive

media in treating the propagation of small disturbances.

* Tn addition to books cited at the beginning of Section
2, see Clarke, J.F. and McChesney, M., Dynamics of Real
Gases, Butterworth, London (1964), and Wegener, P.P. (Ed.)

Nonequilibrium Flows Parts I and II, Marcel Dekker, N.Y.
11553 1970).
b

#% Again the term condensing medium is to be interpreted
broadly to include systems involving chemical reaction
and other finite rate processes.
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There are two limits with important physical signifi-
cance in taking the derivative of the right hand side
of Eg. (3.6
= .
ag /(3p78p5s’¢ 5 (3.7)
and
a, = /(Bp/Bp)S, = (3.8)

e
Here, ag and a_ are defined as the frozen and equilibrium
sound speeds, respectively. The differentiation in Eq.
(3.7) is taken with ¢ held constant regardless of the
state of the gas. Thus the composition of the mixture

is fixed, or "frozen". On the other hand, the differenti-
ation in Eq. (3.8) is taken with ¢ retaining its equilib-
rium value appropriate for the prevailing state of the gas.
The equilibrium condition

¢ =¢_ (p,s) , (3.9)

e e
is given by the law of mass action for chemical reactions,
the Clausius-Clapeyron equation for condensation, or
equivalents for other processes. When Eq. (3.9) is in-
troduced in Eqs. (3.6) and (3.8), the classical gasdynamic
result, Eq. (2.10) is recovered as expected. The terms
"frozen" and "equilibrium" may, in turn, be interpreted

to indicate the limiting behavior of the flow when the




30

rates of condensation are infinitely slow and infinitely
rapid, respectively. We then have T = © or T = 0 in Eq.
(3.4).

Chu (1958) and Broer (1951) both showed that
the characteristic speed of propagation of small dis-
turbances in a reacting medium is the local frozen sound
speed in all reacting flows having a finite reaction
rate. Only when the reaction rate is truly infinite,
i.e., when the flow is exactly in thermodynamics equi-
librium, is the characteristic speed given by the equi-
librium sound speed. Thus, the variation of character-
istic speed with reaction rate is discontinuous, being

ag at all finite rates and a, only when the rate is in-

finite (Chu 1958).

B




The definition of characteristic speed in a react-
ing flow is important because it serves to define the
proper sound speed, the Mach number, and the direction
of characteristics for the partial differential equa-
tions describing the flow. It can be shown using thermo-

dynamic stability arguments that

& ¥ a . £3.310)

and typically

1.0 < af/ae < B2 (3.11)
for dissociating gases. For condensing flows we find:
1il < af/ae < 1.8 (3.12)

for H20 (Wegener and Mack 1958) resulting in a much more
pronounced effect of condensation on the dispersion of
sound than the effect found in reactions.

Nozzle flow of gases undergoing dissociation or other
single chemical reactions is well understood at this time.
When the flow starts at a high temperature in the supply
in thermodynamic equilibrium the gas may be partly disso-
ciated. Recombination sets in as the gas mixture is cooled

in the expansion. At some point determined largely by the

local collision frequency of the gas, "sudden freezing"

occurs as predicted by Bray (1959), the reaction ceases
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and the flow departs from equilibrium. An interesting
parallel may be drawn for nozzle flows with condensa-
tion (Wegener 1975).* 1In vapor expansions condensation
is initially absent in the nozzle although the vapor
may be highly supersaturated and the mixture composition
remains constant. Hence in contrast to dissociating
flow the expansion starts in the "frozen" condition.
With the onset of condensation by nucleation and droplet
growth saturation is attained quickly resulting in rapid
vapor depletion. Henceforth the remaining vapor in the
gas phase in the flow stays in equilibrium with the
finely dispersed liquid phase. Thus condensation occurs
spontaneously by "sudden equilibrium" in an exactly
opposite process to that of "sudden freezing" discussed
above for reicting flow. Analytical work has recently
been done by Petty et al. (1972) in an attempt to locate

the "sudden equilibrium" onset point of condensation

through some simple criteria in the spirit of Bray's work.

In sum, we note that much experimental and theoretical

work has been done on nonequilibrium nozzle flows and recent

advances in the field have

* This suggestion was made by Prof. N.H. Johannesen of
Manchester University in a discussion of an earlier paper
by Wegener and Parlange (1967) on p. 633.
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been reviewed by Bray (1970). Steady, shockless flows
in slender nozzles involving a single nonequilibrium
process are well understood at this time. This
knowledge has been successfully used in recent years to
determine the rate constants of some chemical processes
through gasdynamic measurements of the nozzle flow and
also to determine the rate of condensation by homogeneous
and binary nucleation and cluster growth.
b) Flow with Heat Addition

The energy equation for one-dimensional, adiabatic
and frictionless flow, Eq. (2.19) may easily be modified
to admit heat exchange with the surroundings resulting
in "diabatic flow." We shall not presently be concerned
with the kinetics of this heat transfer; rather, we shall
focus on the gasdynamic effects on the flow once the heat
transfer has been completed. This view is consistent
with our previous assumption of high Reynolds number flow
with thin boundary layers. In compressible flow of real
fluids, there will, in general, be temperature gradients
along and normal to the streamlines, as dictated by the

conditions at the flow boundary (e.g., heat conducting or

insulating sidewalls held at fixed or variable temperature).

Like velocity, it is found experimentally that temperature




variations across the streamlines are also restricted
to a narrow region near the wall. In fact, a thermal
boundary layer exists near the wall. Outside this
layer the heat conductivity of the fluid plays no role,
and the fluid behaves as though it were nonconducting.
The ratio of the thickness of the thermal and the
viscous boundary layers respectively is proportional

to the inverse square root of the so-called Prandtl

number. This dimensionless parameter is defined by:

nc
R (3.13)

K

with k, the thermal conductivity. The Prandtl number
has the physical significance of expressing the ratio
of the diffusivity of viscous to thermal effects res-
pectively and for most gases we find Prnl. Therefore,
the thermal and viscous boundary layers are roughly of
the same thickness. In fact, in the one-dimensional
treatment of nozzle flows using the effective area
distribution given by a static pressure calibration
discussed previously, both the viscous and the thermal

boundary layers are accounted for, and the flow may be

treated as inviscid and nonconducting. Within the
boundary layer, the temperature increases from that

given by the isentropic relation Eq. (2.22) roughly to




the stagnation temperature, To’ at the wall for those
gases with Prs 1.

In the following discussion, therefore, we can
assume that the gas is nonconducting, and heat addi-

tion in one-dimensional flow is uniform at a given

cross section normal to the flow direction. The
amount of heat added to unit mass of the flow, g may,
of course, vary with x and the function g(x) depends
on the process at hand. Heat addition of this kind
is realized in flows subject to thermal radiation,
flows with chemical reaction®* (e.g. combustion), flows
with condensation®, etc.

In the diabatic flows discussed, the continuity,
momentum and thermodynamic state equations, (2.14),
(2.15), and (2.16), remain valid. The energy equation,

Eq. (2.19), for steady, adiabatic flow of an inviscid

gas must now be modified by including a term dq to admit

external heat exchange,

dh + udu = dq. (3.14)

* It may be argued that in these cases no heat addition
from an external source takes place. Heat is merely
being transformed from one form to another. However, it ]
is often more convenient and informative to consider
flows with chemical reactions or condensation external
heat-addition problems by a suitable choice of the system.
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|
|
|

For an ideal gas, it is convenient to regard the heat |

addition as a change in the local stagnation tempera-

ture,® i.e.,

cPdT + udu = cP

ar_ , {23.15)
with f

dq = cpdT . (3.16) ;

Detailed discussions of the influences of various pro-
cesses on the gasdynamics variables, M, u, p, p, etc.,
of one-dimensional flow are available in Shapiro's
textbook.** For example, in diabatic flow the changes
in Mach number, cross-sectional area, and stagnation

temperature are related by

-1,,2 2 -1.,2
d.M2 e 2(1+11——M ) da , (1+yM )(1+3—2—M ) dTo s
M2 1-M2 A 1-M2 TO : ;

It can be seen from Eq. (3.17) that heat addition (dTO>O)

to subsonic flow (M<1l) is accompanied by an increase in

* ? T :
With heat addition, To # 'I‘O1 where T01 is e.g. the

temperature in the supply of a nozzle. Often the sub-
script 1 is dropped, however.

*% Shapiro, A.H., The Dynamics and Thermodynamics of
Compressible Fluid Flow, Vols. I and II, Ronald Press, ]
N.Y. (1953). |
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Mach number, while that to supersonic flow (M>1) de-~
creases the Mach number. Thus, heat addition always
tends to drive the flow Mach number towards unity.
Moreover, since the coefficients for dA and dTO in Eq.
(3.17) are of opposite sign, the effects of heat addition
on M are equivalent to and may be duplicated by an area

reduction. This qualitative analogy between heat addi-

tion and area reduction is found to be generally valid
for the influence on the other flow variables as well.
Using the area reduction analogy to heat addition
we note that for a given Mach number there is a specific
amount of heat that may be added to the gas stream which
is equivalent to a reduction of the cross-sectional area
to the critical throat area A*. The Mach number after
this critical heat addition will then be unity and at
this point the flow becomes "thermally choked". This

maximum or critical amount of heat addition (for

> 9nax?

condensation note Lukasiewicz and Royle 1948), is given

by

dmax _ ___(M2-1)* . (3.18)
°plo  M2(y2-1)[M*+2/(y-1)]

Heat addition exceeding the value of q . may cause
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shock waves or unsteady flows to occur (e.g. Wegener
1975), and these phenomena invalidate the simple treat-
ment of Section 2. In this work,we shall only be in-
terested in diabatic flow where the heat addition does
not lead to thermal choking or discontinuities in the
flow. Therefore,the basic conservation equations in

the form of Egqs. (2.14%4), (2.15) and (3.14) remain valid.

3c. Flow with Condensation

Condensing flows show simultaneous nonequilibrium
and heat addition effects and the progress variable ¢
for Egqs. (3.2) and (3.6) may be identified with the
mass fraction g of the condensate. The thermodynamic
state of the flow is fixed once g and two other thermo-
dynamic variables, say p and T, are specified. The
incremental heat addition per unit mass of mixture of

the flow is related to the condensate mass fraction by:
dq = L, dg. (3.19)

Here ,L  stands for the latent heat of the bulk conden-
sate and possible curvature effects on this value

(Wegener and Parlange 1967) are not considered.

e -
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Provided that the pressure ratio across the nozzle
is sufficient to produce sonic flow at the nozzle
throat, and that supercritical heat addition does not
take place, integration of the gasdynamic equations for

supersonic nozzle flows are rather straightforward. :

The theory of supersonic nozzle flow with vapor conden-
sation was first developed by Oswatitsch (1942). He
showed that the presence, in the flow, of condensate
droplets produced by homogeneous nucleation does not
invalidate the assumption of inviscid flow because

they are usually extremely small (typically r R 10008)
and thus they move practically with the gas stream.¥*
Hence, the viscous drag between the droplets and the

gas stream may be neglected outside the region of extreme

* For proof of this statement see e.g. Wegener (1969).
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velocity gradients as found in shock waves or boundary
layers. It may be argued that although the momentum
transport between the gas stream and the droplets 1is
negligible, the heat transfer across the phase

boundary may not be ignored, and heat conduction ought to
be included in the energy equation. In fact, it is due
to the transfer of latent heat of condensation from the
droplets to the gas phase that condensation is "felt"
gasdynamically. However, since the condensate is found
to be finely dispersed (~1012/cm3) and therefore the droplets
may be considered as uniformly distributed heat sources
throughout the gas stream. Thus, the heat may be viewed
as being generated internally in the gas phase and the
problem of heat transfer between phases may be circum-

vented for the time being.#*

Oswatitsch's assumption that condensation proceeds by
homogeneous nucleation and droplet growth enabled him to
compute the mass fraction of condensate as a function of

the position along the nozzle by summing up the mass of all
droplets

* On a different length scale, for example, in distances
on the order of the diameter of the droplet, this heat
transfer process may be important. In fact it is one
limiting factor of the droplet growth rate.

O TR TR,




present. He realized that although droplets of dif-
ferent sizes would be present at any given location
along the nozzle, it was possible to

determine the size of each individual droplet by
tracing its history back to its origin as a nucleus

of critical size and by integrating the growth rate
along the particle path. Furthermore, he assumed that
no disintegration or coalescence of droplets occurs
resulting in the conservation of the number of droplets.
Thus, both the total number of droplets and the size
of each may be determined yielding the mass fraction
of condensate. A condensation rate equation, in the
general form of Eq. (3.3) may therefore be derived from
a known droplet growth rate and nucleation rate. For
this purpose, Oswatitsch (1942) gave a droplet growth
equation, and he used the steady state homogeneous
nucleation rate equation of Becker and D8ring

(1935) to describe the kinetics of condensation. The
droplet growth law was based on an approximate free-
molecule treatment of the simultaneous heat and mass
transfer occurring at the surface of the droplet.

For this assumption to be valid, the droplet diameter

must be much smaller than the mean free path of
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the surrounding gas, a condition satisfied in flows of
vapor in the presence of an inert carrier gas. Typi-

cally for moist air, where the maximum droplet radii

are about 100 R at the completion of condensation and

o
the mean free path is of the order of 1000 A, Eq. (2.3)

shows Kn~10. For condensation of a pure vapor (e.g.,
steam), the droplets in the condensation zone eventu-
ally grow beyond 1000 X. However, in the region immedi-
ately downstream of the location where the droplets are
formed, they are again of a sufficiently small size for
the free molecule flow assumption to hold.
Under these assumptions, the primary effect of con-
densation on the supersonic nozzle flow is the addition
of the latent heat of condensation to the gas stream. Therefore,
the gasdynamic equations of motion are similar to those of

one~dimensional, frictionless, diabatic, and steady flow,

discussed before. If condensation occurs only in the
supersonic section of the nozzle, integration in the flow
direction may conveniently start at the throat, using the

sonic conditions as a starting point. This situation

avoids integration through the nozzle throat, which is a
mathematical singularity as noted in the cited textbooks.
Thus, Oswatitsch was able to perform a stepwise numer-

ical integration of the system of equations for steady
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supersonic nozzle flow. In the pre-computer days of
1942 he obtained remarkable agreement of the theory
with steam experiments (Yellot and Holland (1937),
Binnie and Woods (1938)),and his own experiments with
moist air. In the intervening years, Oswatitsch's
formulation was consistently proven to be successful as
adapted by many later investigators. Moreover,
Oswatitsch's model has conversely become the basis for
using supersonic nozzles in the experimental study of
condensation phenomena.®

Along similar lines, one of us (B.J.C. Wu) has
derived equations for the one-dimensional unsteady

expansions

* Papers using this

approach include Wegener and Mack (1958), Stever (1958),

Pouring (1963), Hill, Witting and Demetri (1963),
Gyarmathy and Meyer (1965), Griffin and Sherman (1965),
Duff and Hill (1966), Hill (1966), Stein (1967), Wegener
and Parlange (1967), Deych and Filipov (1968), Dawson

et al. (1969), Jaeger et al. (1969) Puzyrewski (1969),
Wegener (1969), Roberts (1969), Chmielewski and Sherman
(1970), Clumpner (1970), Barschdorff (1970, 1971), Wu
(1972), Wegener, Clumpner and Wu (1972), Barschdorff et

al. (1972), and Wu (1974).
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