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Flow Stability Beyond Unit Roughness

S.Ya. Gertsenshteyn

Roughness of a body ’s surface is one of the main factors in-

fluencing the position of the point of transition between a

laminar boundary layer and a turbulent one.

This paper explains the influence of two—dimensional unit

roughness on the origin of turbulence. More accurately, a study

is made here of flow stability beyond two—dimensional unit roughness.

Many experimental studies have been devoted to studying the influence

of two—dimensional unit roughness on the origin of turbulence [1].

This is explained by the value this problem has for practical application.

As a very simple example can be given the problem of selecting the

depth and shape of a welding seam, questions relating to aircraft, etc.

If, as Is usually the case, the flow far from the surface is

considered close to plane—parallel, then the problem of flow stability

as far as infinitely small disturbances are concerned boils down to

the problem of finding eigenvalues of the Orr—Sommerfeld equation with

homogeneous boundary conditions:

• (ç/V~ 
~~~~~c ’ ) U_c) ~~’~~ WU ~~~ 0, ( 1)

~o(o)~ o , ~o(’oo) = o,~~’(c)~~O ,q”(”ao) =O . (2)

Here , U(y) is the velocity beyond unit roughness, R = u09/ v
is the local Reynolds number (d is the depth of roughness; u

0 is

the velocity at a roughness level remote from the surface, and
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v is the coefficient of viscosity). All remaining symbols here

are defined by the fact that flow function for a disturbance of

11 5s written in the form:

Entering the discussion below will be one more Reynolds number:

- 

dQ~ = .��f~.~~ (~ =~~~~ Z)
and a frequency of

A solution to the problem was sought for eigenvalues according

to [2]. Calculations were made for different positions of the unit

surface with respect to the front edge of a plate with a fixed

external streamline flow velocity (i.e., wl~h different Reynolds

numbers for the main stream, R1 
= U 6/v ). The velocity profile,

U*(y) , beyond the unit surface was taken in the following form:

when ~ y ~~j
’ 11(,) when <00

Here U(y) is the Blasius profile, u(y) is the velocity profile

beyond the unit surface computed in [3] with a corresponding Reynolds

number value of

Neutral curves and steady growth curves were plotted, giving the

relationship between the local Reynolds number, = u
0
d/v , the

wavelength of the perturbation, A = 2ir/ c~r , the frequency of per—

‘ I  turbation, y=cçc , and the gain, ct~ . Typically, the first manifest—

ations of instability (with small values of the local Reynolds number ,

are observed in experiments sufficiently far beyond the unit surface,

i.e., exactly where the flow is close to plane—parallel. Here the

velocity profile, U(y) , in specific computations corresponds to 

a2
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velocity distribution in the stream at a distance of five gauge

numbers downstream from the unit surface (the depth of the unit

surface, d , is understood to be typical).

As a result of calculations of flow instability beyond the

unit surface it w~s found that the unit surface can show a stabilizing

effcct with a sufficiently low local Reynolds number. Apparently,

the appearance of a point of inflection in the velocity profile

near the wall has an insubstantial influence on stability owing to

the stabilizing effect of the wall, and the increase in fullness of

the velocity profile proves to be more important. Furthermore,

the fullness of the velocity profile increases at a very dangerous

point——in the vicinity of the critical layer. Critical Reynolds

numbers for the main stream with similar comparatively moderate dis-

tortions of the initial profile increase markedly. For example,

when = u0f/v = 3 and d = (l/2s)5 , the maxiu~al relative deviation

from the initial profile, max [U*(y) — U(y)]/U(l) , is less than

one percent in absolute value, and the critical Reynolds number for

this slightly altered profile increases by almost a factor of 1.5

(Fig. 2 and 3).

I

Fig. 1
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The range of dangerous wave numbers is somewhat reduced .

Fig. 4 and 5 show the relationships between the local Reynolds

number and the wave perturbation characteristics introduced above

= ar + ict1 ; y = c c )  with main stream Reynolds numbers, R1 =
= U(6

1/v) equal respectively to 800, 1000, 1200, and 1500.

En Fig. 5 the relationship between , a, and y is shown only for

> 4. Calculations demonstrate that the most dangerous wave numbers

in all cases considered lie approximately between 0.93 and 1.2.

The frequencies corresponding to these wave numbers lie in the range

of 0.3 to 0.4. The maximal values of wave numbers and frequencies

on all neutral curves increase with an increase in the local Reynolds

number, . Within the range of variation of considered , the

maximal value of the wave number is 1.7, and the maximal frequency

value is y*= 0.72.

The great relative wavelength of unstable perturbations draws

attention. In dimensional variables A~
2
~ ~ 3.7. A similar feature

mm
is typical of the neutral curve computed by Tolmin [1] for the

boundary layer, 
~~~~ 

66 , where 6 = 5.2 I(vx/u ) is the distance

to the forward edge, and u0,is the velocity at infinity. It is easy

to see that the wavelengths of dangerous perturbations for the boundary

layer are greater than in the case considered . It can also be seen that

the phase velocity, C
r = 1/a r , on the neutral curve varies slightly.

For example, when the Reynolds number , , varies from 9 to 20 (the

Reynolds number of the main stream , , equals 800), the phase

velocity varies from 0.4 to 0.42 (for the upper branch of the neutral

curve) or from 0.4 to 0.33 (for the lower branch of the neutral curve).

Especially striking is the strong dependence of wave numbers, ar
gain cii, and frequency, y , on local Reynolds numbers. When the

Reynolds number, ~ = u
0d/v , varies from six to ten (R

1 
= 1000) , the

highest of the dangerous frequencies increases approximately twofold

6
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(from 0.32 to 0.65), the frequency of the most dangerous perturbation

increases approximately by 1.4 (from 0.31 to 0.43), and the wavelength

of the most dangerous perturbation by 1.3 (from 0.91 to 1.18).

The increase In the range of dangerous wave numbers and frequencies

corresponds to the manifestation in the nroblem of one more character-

istic dimension (the death of the unit roughness), which is considerably

smaller than the thickness of the boundary layer. The gain (—a ) even

with moderate Reynolds numbers, = ui/v , varies considerably

when the unit roughness is added to the stream. In particular ,

when R1 = 1000, for the Blasius profile max(_a~) ~ —0.05, and when

= 10 and R = 1000, max(-~~) ~ 0.064. We recall that for the

Blasius profile max(_ci
i) ~ 

0.03 9ven when R = 2500. The situation

is somewhat more complex when R1 Reynolds numbers are close to

critical. For example, when the Reynolds number is 1200 the flow in the

boundary layer is unstable (max(_ci
i
) = 0.002), and it can become stable

when the unit roughness is added. So, when = 3 the flow is steady

(max(_a~) = —0.0145). The corresponding curves are shown in Fig. 6 and

Fig. 7.

_ _ _ _  _ _ _ _  _ _ _ _  
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From the data presented in Fig. 4 and 5 it is possible to trace

the nature of the change in different wave oscillations with an

increase in the R1 
= u~ ,61/v Reynold~~number. We notice first of

all that with an increase in R~~~
1
1(~
’ local critiëal Reynolds number

is reduced : When R
1 

= 800, 1000, 1200, and 1500, R* ~ 9,6,4, and 3.

Obviously, with a sufficiently high R
1 Reynolds number the local

critical I~i Reynolds number will equal zero. The range of dangerous

wave numbers and dangerous frequencies practically does not change

with an increase in the R
1 Reynolds number within the limits con—

sidered . With a fixed local ~ Reynolds number, with an increase

in the R1 Reynolds number the range of dangerous wave numbers and

frequencies can both increase and be reduced——all depends on the

magnitudes of and R1
. If is sufficiently low, then obviously

8



the range of dangerous wave numbers and frequencies will first

be expanded with an increase in the R
1 number and then will be

narrowed , precisely the same as without roughness. If the magnitude

of is sufficiently great (on the order of 10), then the influence

of the unit roughness is manifested as a shift in the direction of

very small—scaled pulsations (the range of dangerous frequencies

increases and the possible wavelengths for dangerous perturbations

are reduced). With an increase in the R
1 

Reynolds number a

reduction In the range of dangerous ~‘ave numbers and frequencies

predominates , owing to the suppressing influence of instability in

the boundary layer itself.

Coumarison between the results obtained and experimantal data

is satisfactory . Analysis of the experimental data in [4] has

demonstrated that an element of roughness becomes the cause of pre-

mature turbulence of the boundary layer when the R2 Reynolds

number , plotted for average velocity and average depth of the element,

d , is greater than 30 to 40. Here, in our case, under conditions

most close to experimental:

“~~~ =~(5OO ), ~~~4o.
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