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1. INTRODUCTION

During the last few years considerable interest has developed in
the feasibility of designing accelerators capable of accelerating pulsed
high-current electron beams to tens of MeV. Possible applications of
such devices include electron-beam fusion, collective ion accelerator
injection, and deep flash radiography. While single-stage diode accel-

6erators exist which are capable of handling current pulses of up to 10
amperes, the energy limitation of these single-stage machines is on the
order of 10 ?4eV. The AURORA facility at the Harry Diamond Laboratories,
for example, was designed to produce a l20-ns, 1.6-MA pulse of l5-MeV
electrons.1 To get to higher energy the beam must be subjected to a
succession of properly-phased accelerating fields . Multi-gap concepts

2-5for achieving this include the magnetic linear induction accelerator,
6,7 . . 8,9the autoaccelerator, and accelerators based on iron-free inductors

1B Bernstein and I .  Smith, “AURORA , An Electron Accelerator, ” IEEE Trans .
Mud . Sc~. NS— 20, No. 3, 294—300, 1973.

2R. Avery, ~~~. Behrsing, W.W. Chupp, A. Faltens, E.C. Hartwig, H.P. Her-.
nandez, C. MacDonald, J.R. Meneghetti, R.G. Nemets, W. Pop enuck, W.
Salsig, and D. Vanecek, “The ERA 4 Me l” Injector,” IEEE Trans. Mud . Sci.
~VS—1 8, No. 3, 479—483, 1971.
3
N. C. Chris tofi los, R. N. Hester, W. A. S. Lamb, D. D. Reagen, W. A. Sherwood,
and R.E. Wright,” High Current Linear Induction Accelerator for Elec-
trons,” Rev. Sci. Inst. ~~~~ , 886—890, 1964.
4J. Leiss, NBS, private commu~n’cation.
5A .I. Anatskii, 0. S. Bogdanev, P. V. Buokaev, Ju P. Vakhrushin, I. F.
Malyshev., G.A. Nalivaika, A.I. Pavlov, V.A. Suslov, and E.P. Khalchitskii,
“Linear Induction Acce lerator,” Soy. At. En. ~~~~~~ 1134-1140, 1966.

6
M Friedman, “Autoacceleration of an Intense Relativistic Electron Bean,”
Phys. Rev. Lett. 

~ 
1107—1110, 1973.

~
‘J .  K. Burton, D. Conte, M. Frie dnan, T. 0 ‘Conne ii, and J. Shipmcrn, “The
Autoaccelerator - A Generator f or Pr od~cing a Hi g h Energy Intense Rela-
tivist~c Electron Beci~n by the Autoacce lera tor Process , ” IEEE Trans.
Mud . Sci. NS—2g, No. 3, 1628—1630, 1977.

8A.I .  P avlovs1 <v~, A.I .  Gerasz.mov, D. I .  Zenkov, V.S. Bosamykz~n, A.P .
Klementev, and V.A. Tananakin, “An Iron-Free Linear Induction Acce lera-
tor,” Soy . A t .  En. ~~~~ ,, 549-550, 1970.

9A . I .  Pavlovskii, and V.S. Bosamykin, “Linear Inductive Accelerators
Without Iron,” 5ev. At. En. ~~~~, 942-94 ?, 1974.
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or pulse transmission lines.’°~~3 Pulse-line accelerators which use in-
ternal switches to generate the accelerating voltage have received
little attention, at least in this country, probably because of the
number of high-current, high-voltage switches that must be operated

synchronously. Recently, however, Pavlovskii e- 1.11 have describ I a
radial pulse-line accelerator of this type for high current (100 kA),
in which they claim to have solved the switching problems . Furthermore,
very significant advances are being made in this country in high-speed

simultaneous switching for application to electron-beam fusion.
14 

It
is therefore appropriate to reconsider the possibilities for accelerator
design based on energy storage in pulse transmission lines. In this
report we present the mathematical details of an analysis of internally-
switched pulse-line accelerators based on constant-impedance lines . It

- 
is assumed throughout that the lines and switches are ideal and lossless.

The results of this analysis have been submitted to the open literature .’3

Also included is a discussion of how’ a repetitive voltage waveform pre-
sent in the transmission-line cavities might be used to repeatedly ac-
celerate a current pulse which is recirculated through the accelerator .
Techn iques for recirculating hi gh—current beams are presently being in-
vestigated at MRS with a magnetic induction linear accelerator.’5

2. BASIC PULSE LINE CONCEPTS

2.1 The Blujnlein Pulse Line

The workhorse of most single-stage diode accelerators is the Biwn-
lein pulse line. A simplIfied diagram of a strip-line version of such
a line is shown in Figure 1 . Other geometries are also employed - in

10
E.C. Hartwig, “Pulsed Line Acce leration of Electron Rings,” Proceed-
ings of Syinpoaiu,n on Electron Ring Accelerators, Feb . 1968 , pp 44-64 ,
UCRL 18103, 1968.

11
A.I. Pavlovskii, V.S. Bosamykin, G.D. Xuleshov, A.I .  Gera.sirnov, V.A.
Tancmakin, and A. P. Klementev, “Mult ~e lement Accelera tors Based on
Radial Lines,” 3ev. Phys . D oki .  ~~ 441-443, 19 75.

Kazacha and I.V. Kozhukhov, “Use of Radial Transrr?ssion Lines in
Pu lsed Accelerators,” Soy .  Phy s. Tech. Phys . ~~~~~ , 841—844, 1976.

13D. Ecoleeha ll and J .K.  Teniper ie-y , “Transfer of Energy from Charged
Transmi8s ’ion Lines with App l’icat ’C’ons to Pulsed Hi g h-Current Acce lera-
top s ,” submitted to J .  App i. Phys .

14K .R. Pr estwich and T. II . Ma.rt in, Sandia Laboratories , private communi-
cation.

15J Leiss and M. Wi’lson, Nat iona l Bureau of Standards , p rivate coninuni-
cation.
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0 -

AURORA , for example , coaxial Blumleins are used .’ The main feature of
the Blumlein line is that the full charging voltage is app lied to a
matched load, whereas with a simple coaxial line, for example, only half
the charging voltage appears across a matched load. The principle is
easily understood. The center strip In the diagram of Figure 1 is
originally charged to some voltage V. and no voltage appears across
the output end. We note that if the same dielectric material is used
in all regions of the line, then the speed of an electromagnetic wave
is the same in all three regions. The time of travel per unit length,
T, is just

= (L1 C1)~
’2 

= (L2 C ”~ (L3 C3)
1”2 

, (2 .1)

where L., C~ are the inductance and capacitance per unit length in each

of the three reg ions . If the switch S is closed at time t = 0, a volt-
age step of amplitude V will travel to the right in line 1. At t = T9j
it arrives at the discontinuity and is partially reflected with reflec-
tion coefficient

_ z3 +z 2 - z l _ z2p — ~~- 
~~ ~~ 

_
z + z  ( . )

3 2 1 2 1

The transm ission coeff icient is

2Z + Z
T 1 + p  z + z ~ 

(2.3)

The transmitted voltage divides across lines 2 and 3 according to the
ratio of their impedances. Hence at time t = Ti1 

+ 1(2. - R1) a voltagestep

Z3 2Z 2 + Z~
~~~~~~~~~~ ~2 +ç ’ 1=” (2. 4)

arrives at the output of line 3. If a matched load of impedance Z1 + Z2
is connected across the output this voltage will be developed across the
load and no reflections occur at this end. The voltage step reflected
back into line 1 at t = Ti

1 
has magnitude

V1 = V, (2.5)

10
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and is reflected out-of-phase from the shorted end of line 1 at t = 2T2.1.
The voltage step transmitted into line 2 at t = Ti

1 
is

z
V2 

= z z (2.6)
2 1

and is reflected in-phase from the open end of line 2 at t = 2T2.1. At
time t = 3T1

1 both these steps arrive back at the junction with line 3,
and each is partially reflected and partially transmitted . The voltage
step generated at t = 3Ti

1 
and traveling to the left in line 1 is

Z
2 / -Z2V Z1 / Z

1 
+ Z

3 
- Z2\ Z2

1 Z
2

+ Z
1 ~Z2

+ z1 
+ z3 

(
~ 

+ 
z1 

+ z3 + c) z2 + z
1 
V

Z2(Z
1 

— Z2)
= 2 V .  ( 2 . 7 )

(Z 1 
+ Z

2)

In line 2 we have

________ 

Z2 V z2 ~ 
z2 + - Z

1\ / 22
= 

+ + + 
+ Z

3 
~~ + 

+ + z1) ~~
- 

~2 +

Z2 
(Z

1 - 
Z2)

= 2 V. (2.8)
(Z

1 
+ Z

2)

The voltage step in the output line generated at 3T2.
1 is

V — 

Z3 2Z
2 

+ Z1 / -Z 2 
~ 

Z3 2Z1 
+ Z

2 2
2

3 Z
3
+ 2

2 z2 + z 1 ~z2 + z 1 ”
) _ z3 + z , z2 + zj z2 + z 1~~

= ~~~~~ V . (2.9)

This step arrives at the load at time t = 312.~ + I (2. - 2.
~~~

• Hence the

load voltage i~ constant during the period Ti < t < Ti + 2T2. , so that
for constant voltage output the useful pulse length is 2T2.~ .

1 In par-
ticular, we see by adding all steps in the lines, that if = Z2, the
voltage goes to zero in lines I and 2 after 3T11, and drops to zero

11



across the load at t = Ti + 2Ti1. To see that in this situation the
total energy stored in the line is delivered to the load, we note that
the stored energy is

E5~ 
= ~~

.- 2.1 C1 V
2 

+ £~ C 2 V 2 
, (2.10)

and the energy delivered to the load is

2T2. V2
El d  = 

21 
+ 2

2 
(2.11)

Now , C1 = l/z1 and C2 = T/Z 2. Defining the efficiency to be the ratio

of the energy delivered to the energy stored, we have

212.1 V
2/(Z1 + Z

2) 4Z
1 Z2

2 T  T = 2 (2.12)
1 2.1 V + 

~~
- ) (Z1 + Z2)2 1 2

= I when = Z2 .

We also note that c is close to unity even for quite dissimilar lines
(e.g., c = 89% for Z2/Z1 = 2) .  While multi-gap transmission-line accel-

erators based on various Bluinlei’n configurations have been proposed ,’°’’6

the geometry of these des igns is extremely cumbersome . We turn now to
a different type of transmission-line accelerator.

2.2 The Radial Pulse-Line Accelerator

Cons ider a ser ies of radi al pulse l ines arranged as in F igure 2a.
With the switches open , the center electrodes are charged to a voltage
V. An electron beam sent down the accelerator tube will be alternately
accelera ted and decelera ted with no net energy gain , as shown in Fi gure
2b. Suppose now that each set of swi tches, whi ch are situated around
the inner circumference of the cavity structure, is closed jus t before
the electron beam reaches that gap . A voltage pulse will be generated
within the cavity, but until this pulse has traveled to the open gap
the electron beam will see only accelerating voltages and hence will
gain energy as indicated in Figure 2c. There is unfortunately a basic
objection to this conceptuall y simp le des ign. The impedance of the
radial pulse line varies as a function of the radial distance from the
center . Hence any waves traveling in the line see a time-varying

l6~ Yonas, T. H. Mart in, and K.R. Pres i~ ich, Sandia Laboratorie~, pci -
Pat e cc~nv17un1.-cation.

12
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Figure 2. (a) Non-constant impedance radial pulse line
accelerator. (b) Electron energy with switches
open . (c) Electron energy with sequential closing
of switches.
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impedance and , in particular , the interac tion of a uniform high-current
beam pulse of finite duration with the cavity will be time-dependent and
the net accelerating voltage acting on the beam will not be constant . A
cons tan t accelera ting vol tage could perhaps be achieved by appropriate
time-shaping of the beam pul se, but for applications in which both con-
stant curren t and cons tant vol tage are required the inhomogeneous radi al
l ine is not suitable.

2 .3 The Pavl ovskii Accelerat or

The accelera tor des ign proposed by Pavlovskii et al.U is shown in
Figure 3a. The principle of opera tion is the same as in the rad ial
pulse-line acclerator - the alternately accelerating and decelerating
gaps are to be swi tch ed in phas e with the passage of the beam so tha t the
beam sees only accelerating potentials. The important innovation here
is the shape of the cavities. By tapering the sides so that the lateral
boundaries are conical an approach to a constant-impedance cavity is ob-
ta ined. In fac t if the outer boundary is made spher ical , as in Fi gure
3b , ra ther than cy lindrical , one arrives at a constant-impedance spheri-
cal reentrant cavity with a disc in the middle. In the following we
treat the configuration of Figure 3a as being made up of constant-
impedance l ines .

We take the impedance of regions 1 and 2 in Figure 3a to be Z .  For
a first approximation we assume d, R-r<< 2.. The inner conductor is
charged to a voltage V in the absence of a beam ; no net voltage appears
across the gap . When the center electrode is shorted to the cavi ty side
by closing the radial switch system , S, the voltage V appears at the gap
and a voltage pulse is generated within the cavity . After a period 2T2.
this pulse appears at the gap . In the absence of a load the pulse under-
goes an in-phase reflec tion , and the gap voltage changes to -V. A period
4T2- later the pulse has traveled back to the short circuit , reflected
out-of-phase, and returned to the gap to restore the voltage again to V.
The open-circui t voltage is now a square wave alternating between -V and
V with a half period of 4T2.. Assuming that ÷V is the appropriate polar-
ity for acceleration , a beam pul se of current* I sent past the gap dur-
ing a constant-voltage period will see an accelerating voltage V given
by 

g

V
g 

= V - I z (2.13)

where the polarity of the voltage step IZ generated by the beam is al-
ways such as to oppose acceleration . Defining the efficiency as in
Section 2.1 , we obtain
4-

We assume throug hout tha t the beam pulse const..~ts of hi~ghl y relativis-
tic electrqns , so tha t the velocity and therefore the current are in.-
dependent of particle energy .

14



(0)

(b)

Figure 3. (a) Pavlovskii accelerator design.
(b) Spherical-reentrant-cavity-like
modification .
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L IZ(V - Iz)
c = 

2 
(2.14)

T2N

where L is the time duration of the pulse. If we differentiate this
p

with respect to I and set the derivative equal to zero we obtain the con-
dition for maximum efficiency:

I = . (2.15)

This is the matched-load case. If a matched-current pulse of length
L~ = 2T2. is sent past the gap during the period 0~t~2Ti, which corres-
ponds to the first output vol tage pulse , the accelerating voltage is

V
g 

= (2.16)

and the eff ic iency of energy transfer to the beam is 50% . This can be
increased to 100% by tak ing L~ = 412. and accelerating the beam dur ing a
later vol tage pulse , which has duration 4Ti. The accelerating voltage
is again half of the charging voltage. This can be increased only by a
deliberate mis-match of the beam current to the cavity impedance , with
a consequent decrease in the efficiency.

Th e abov e analys is has neg lected all effects on the voltage pulse
due to the discontinuity between regions 1 and 2. Poss ible compli cations
to the accelerating waveforms can be seen by cons idering wha t happens
to a step voltage as it transits from 1 to 2, for example. The discon-
tinuity can be described by introducing an equivalent circuit in paral-

lel with the lines in the manner described by Whinnery and others .’7
19

However, for a design such that the major time constant of the equival-
ent circuit is less than 2Td an approximate analysis based on principal
mode s can be used . In this approximation a voltage step V in line 1
traveling toward the outer discontinuity will see line 2 in series with
a line of impedance approximately 2Z which is shorted after an electri-
cal length Td. We will call this line 3. When the voltage step arrives

17J. R.  Whinnery and H. W. Jcvnieson, “Equivalent Circuits for Discontinui-
ties in Transmi ssion Lines, ” Proc . IRE ~~~~, 98—115 , 1944.

1 ~~ H .  Whinn ery, H. W. Jam ieson, and T. K. Robbins, “Coa.ri a i-Line Discon-
tinuitie s,” Proc. IRE ~~~~~, 695— 709, 1944.

19eT .R. Wh~nnery and D.C. Stinson, “Radia l Line Discontinui ties , ” Proc.
IRE 43, 46—51 , 1955.
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at the discontinuity it is partially reflected with p = ~~
-. A step of

amplitude ~~
- is transmitted into line 2, and a step of amplitude V is

transmitted into line 3. This latter step is reflected out-of-phase at
the shorted end and arrives back at the junction a time 2Td later , where

it is totally transmitted into lines 1 and 2 with amplitude in each

line. The steps in lines 1 and 2 then appear as shown in Figure 4a, if
the initial voltage on the center electrode is taken to be negative.
Thus the effec t of the discontinuity on the step transmi tted in to l ine
2 is essentially a deterioration of the risetime. These steps can now
be followed through their subsequent history in an analogous manner ,
taking account of reflections at the ends of lines 1 and 2 and of par-
tial reflections at the junction with line 3. The resulting open-circuit
waveform at the output end of line 2 is shown in Figure 4b.

We see from the above analysis that periods of length 4T9. during
which the open-circuit output voltage is constant at ±V still exist , at
least in this approximate , ideal ized analys is, even when the discontinu-
ity at the outer end of the line is taken into account. However, if we

now try to achieve 100% efficiency by accelera ting a pulse with I =

during one of these per iods , the accelerating voltage will be further
affected by the discontinuity . To see this, we note that the arrival
of the beam front at the gap causes a voltage step V

B 
to be sent up line

2. Assume for purposes of argument that the beam front arrives at the
gap at t = 212. + 2Td wh ich , accord ing to Figure 4b , is the beginning of
a period of 412. during which the open-circuit voltage is constant at V.
For the matched-current case the beam-generated step is

V5 
= - . (2.17)

Hence the accelerating voltage is

Vg
= V _

~~~=~~ . (2.18)

Th e step V5 is partially reflected at the junction with line 3 and re-
turns down line 2 w ith

(2.19)

17
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Figure 4. (a) Effect of coupling region on steps in lines 1
and 2. (b) Resulting open-circuit output voltage .
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This step arrives back at the output at t = 4TQ. + 2Td , is reflected in-
phase, and cancels out V

g~ 
In the meantime the part of V

5 
which was

transmitted into line 3 has reflected out-of-phase at the shorted end
and been pa rtia ll y transmitted back down line 2. It arrives at the out-

put at t = 4T2.  + 4Td and restores the accelerating vol tage to ~~
- . Hen ce

the perturbation on the accelerating voltage due to the discontinuity
at the outer circumference of the cavity is of short duration , but very
sever e .

While the above analysis is approximate and ideal , it strongly sug-
gests that if one requires a constant accelerating voltage for a con-
stant beam current the beam pulse length should be restricted to 2T2..
As has a lready been pointed out, the maximum efficiency possible in the
Pavlovskii accelerator for this pulse length is 50%. We turn now to a
detailed analysis of a design which overcomes this drawback and also
Permits accelerating voltages greater than one-half the charging voltage .

3. THE ASYMMETRIC -LINE ACCELERATOR

3.1 The Equivalent Circuit

Fi gure 5 shows exanpies of general line configurations in which re-
gions I and 2 can have different but constant characteristic impedance.
In this chapter , in which we treat the open-circuit behavior of such
lines , we will ignore complications at the line junction. Arguments
similar to those in Section 2 .3 for the Pavlovskii accelerator indicate
that the effect of the coupling region on the open-circuit output volt-
age will be a deterioration in the pulse risetime . We will return to
this later. The basic accelerator operation is the same as before:
the center electrode is ori gin a l l y charged to V0, and at t = 0 the

switch system S shorts this electrode to the side of the cavity . In
the approximation that d , R-r , c<< t , the equivalent circuit is as shown
in Figure Sc. For the line of Fi gure 2a the characteristic impedance
20is

(tan~~~\
= in ( 

~~ 
j , (3.1)

\tan ~
-/

20
and similarly for Z2. For the coaxial line of Fi gure Sb we have

Z
1

= ~
_
~t,r/r~ 2.n~~ , (3.2)

20 . ,, . . .I . A . D .  r~cwi.s and P . H .  Wel ls, M7 l i1(rnicroae~ ond P ulse Y -~-!/ 2 pAI ’~ , ”
Perq amrn Press , New Y- ’rk , 1~ 59 , p 367.
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and similarly for Z2, where ~i , e are the magnetic permeability and per-

mittivity of the cavity medium . Throughout we assume that all regions
of the cavity contain the same dielectric. The special case considered
in section 2.3 corresponds to Figure 5a with ~ = 90° and y = - ct .

We will analyze the equivalent circuit with the aid of Laplace
transforms . The voltage waveforms at various points in the equivalent
circuit are designated as in Figure Sc , where the arrows denote the di—
rection of travel of the waves . We let the Laplace transform of V be
V and let the Laplace transform variable be s. We take p to be the re-
flection coefficient at the discontinuity for a wave travel ing from 1
to 2 :

p = (Z2 — Z1)/(Z2 + Z
1
) . (3.3)

The equivalent circuit generators set up the initial conditions , i.e.,
the generator in line 1 generates a voltage step -V0 

at t = U and the gen-

erator in line 2 applies a voltage V
0 
across the (open-circuit) output

at t 0. We assume ideal switches so that the voltage waveforms are
step functions and

(3.4)

The transformed output voltage is given by

V - E + V 2 , (3.5)

whe re

V 2 — V 2 + V 2 . (3.6)

We have
-~

= -l , — = 1 , V2 
= 2V

2 
= 2V2 . (3.7)

V
1 2

Noting that the reflection coefficient for a wave traveling from 2 to 1
is just -p, and that the transmission coefficient is one plus the reflec-
t ion  coe f f i c i en t , we can wr i te
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‘4- + ÷

~
h 12. P V~2~ + (1 — p) v22. (3.8)

and

-4- +

= 
~~~ ~‘22. + (1 + p) V~~ . (3.9)

Furthermore, since the time for a wave to travel a line of length 2. is
Ti, we have

‘p 12. = e
_5Tt 

(‘1~l 
- (3.10)

‘~l2. ~~ 
e~~

2. 
, (3.11)

= ‘
~22. 

e
5Ti 

, (3.12)

‘4- .4-

— 
sT2. (3.13)

2 22. e

From (3.7), (3.10) , and (3.11) we get

v12. + v12. e
25Ti 

= -~~~ e
_5T2. 

(3.14)

From (3.8), (3.9) we obtain

‘p 12. = 
~~ ~‘22. + “22.~ 

(3.15)

= E~ ‘p 22. 
+ (3.16)

Substituting (3.15) and (3.16) into (3.14) gives

V22. (p 
+ e~~

2S
~~~ + V22. (1 + pe

_25Tt
) = — (1 + p) ~ e

_5TL. (3.17)

Using (3.12) and (3.13) in (3.17) we obtain 

~T.~~
_

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



~2 
e
_5Ti 

(p + e 25TZ
) + V2 (1 + p e

25Ti
) = -(1 + p) ~ e

_5Ti
. (3.18)

From (3.7) and (3.18), then

— -2sT2.
— 

— 2 (1 + p ) E e  
1

2 
— — 

-4sT2. -2sT2.l + e  + 2pe

Using (3.4), (3.5), and (3.19) we obtain for the transformed output volt-
age

V -2sT2.
V = —.

~~ 
- 2V

0 (1 + 
~ 

e 

S -4sT9. 
1 

-2sTi (3.20)
1 + e  + 2 p e

3.2 The Open-Circuit Output Voltage

To obtain the inverse transform we rewrite (3.20) in the form

V = -
~~~ 

- V
0 
(1 + p) e

_25T2. F -2sT2. (3.21)
Lse (cosh 2sT2, +

The poles of the second term in (3.21) are

= 0, ± 
~~

- (2ni~ + 0) , n = . . ., — 2 , —1 , 0, 1, 2, . . ., (3.22)

where* 0 = arccos (-p). These poles are all distinct. Setting D(s) =

-2sTI, .se (cosh 2sTl. + p), we obtain for the derivative

D’ (s) = e
_25Ti 

(cosh 2sTi + p) - 2sT2.e 251i (cosh 2sT9. + p)

+ 2sT2. e
_25T2. sinh 2sT2,. . (3.23)

Evaluating (3.23) at the poles gives

D ’ (0) = 1 + p

D’ 
~~~~~~ 

(2nn + 0) ] = - (2nit + 0) sin S [cos 0 i sin 0]

4- 1We use the notati-on arc ~oe .r to mean the principal value of cos .r.
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Hence the inverse transform of (3.21) ~~2l

i(2nw+8 ) ( t_ 2Ti )
V = V0 u(t) -V0 (1+p) u(t-2T2.~ {.1_L_ 

+

~~~ 
-(2nir+8) sin8 [cosO - i sin 8]

e 2
~~~

0) (
t;2T2.)

- (2n~r + 8) sin 0[cos 8 + i sin 8]

= V
0 
u (t) - V0 u (t - 2TL) x

cos e cos [fl7~(t 2T2.) 
+ 
0(t-2T2.)~

x {1+(1+p) [2~~~ -(2nit+O) 
2T2. 211.

- Sin 0 sin [flhT(t-2TL) + 
6(t-2T1.)~

+ 2 ~

‘ 
. ) 1 (3.24)-( Z n ir+ O) sin 0

where the unit step function is defined by

0~ t < 0
u (t) = . (3.25)

i , t > 0

Noting that cos 0 = -p, sin 0 = 2 , we can rewrite (3.24) in the
form

V = V
0 
u (t) - V0 u (t 

- 211.) x

,— r ~~ ~05r~~
Ct 2Tt) 

+ 
O(t 2t1.)

1 + 2 (1+p (t-2T1.) 
~
‘ IL 2TL

X 1-p V 2T1. 
~~~~

, nlT(t-2T2.) 
+ 
e(t-2Tt)

______ 
n~ft- 2T 1.) 0(t-2TL) ~

- ~2 (t-2TtJ ~ sin TI. + 
2T1. . (3.26)

2Tt n=-~ nir(t-2TL) 
+ 

O.1~~ 2TL) JTI. 2TL

V. Churchill , “Mo dern Opera tiona l Mathematics in Engineeri ng, ” McGr~-
Hi l l  Book Co., Inc., New York and London, 1944 , p.  170.
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The summations in (3.26) can be evaluated explicitly
22 to give

V V
0 
u(t) - V

0 
u (t - 2T2.) x

!~~~ I cos(2k+l)-~ 1 2 
sin(2k+l).~-1

1+ ~~~ ~
p +V l—p 

0 
2kT2.-zt-2T2.<2(k+l)T2. - (3.27)

L sin~~- sin~~- J
We now define x = arccos p , so that x = ~~~~- e , and substitute into
(3.27) to obtain

V = V
0 
u (t) - V

0 
u(t-2T2.)

x ~l ~~~~~ ~ 
(1)k (2k+1)-~ 

+ ~~~~~ x

= V
0 
u (t)  -

. 

V0 
ii (t - 2T2.)

k [sin(2k+3)~-1
x 1 + (-1) I 2(k+l)T2.<t<2(k+2)Ti . (3 .28)

1 (_ sin~~
We now de?ine

V(m) = V(t) , 2mT&<t<2(m+1)Ti

and obtain from (3.28)

sin (2m+l)~ -
~
(m) 

= - V
0
(_l)

m_ l 2 m>l
sin

which is the same as

22 . ,, . . . .
L ’. Man9’ul’~-a , Han dbook of Sert.es for  Scn~enti- sts and &zgl-neers ,
Acp4emic Rreee Inc., New York 2965 , p .  102.
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sin(2ni+l)~-
= (1)m 

~0 
2 

ni>O . (3.29)
sin

Expression (3.29) is our final expression for the open-circuit output
voltage. An alternate derivation, which is somewhat longer but perhaps
retains more physical insight , is given in the Appendix.

We see from the form of (3 .29) that , if the impedances in the asy-
mmetric line are chosen so that x is a rational multiple of v, then the
open-circuit output voltage will be repetitive. To determine the period
of this rep etition , we note that a given sequence of voltage pulses will
repeat after some number k of intervals of 2T2. if there exists a value

of k such that v(m+ l
~ = for all in, that is, if

m+k . 2m+2k+1 in . 2m+l
(-1) sin 

~ 2 ~ 
x = (-1) sin (—

~
-—) x

Put x ir, where p and q are integers with no common factors. Then we
have q

(_1)in’4~ sin (2m+2k+1) 2-
2 q

= (_ 1)
Th~~~ Is~

n ~~~~~~~~~~ ~ ir cos ‘TI + cos 2m+l 2- ~ sin2 q  q 2 q q

If is an integer , the second term in the above expression vanishes .
The smallest value of k for which this occurs is k = q. If p and q = k
are both odd , the first term is (_1)in sin 7V , and ~(m+q) = ~

(m)

If either p or q = k is even, the first term is _ (_1)in sin TI . In

this latter case the smallest value of k for which the pattern repeats
is k = 2q. Therefore the voltage patterns repeat after q intervals of

212. if x = r where p and q are both odd, and af ter 2q intervals if
x = ~~

- ~ and either p or q is even.

It is also easy to show that these repetitive voltage patterns con-
tain intervals of 4T2. for which the open-circuit output voltage remains
constant. For this to be true we must have

~~~~~ v (k)
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or

(1)k~1 sin (21~
1) 

x = (1)k Sjfl (2k+l) x

for some value of k>O. Taking x = ~ and letting n be any positive
integer, we observe that q

(1)nq-l ~~ (
2nq-l) ~~ 71 = ( 1) nq cos np’s sin ~~

- 
~~

.

and

sin (2n~~1) 
2- 71 = (_1)nq ~~ ~~ sin

Therefore the open-circuit voltage remains constant for all intervals of
4T2. given by (nq-l)2T2.<t<(nq+1)2T2.. Furthermore

2nQ+1 2.
= (_1f’~

q v0 
sin c 2 g

sin —

q 2

= (_1)nq 
V0 

cos np’s = (-l)’~~~°’~ ~0

That is , the open-circuit voltage during the double-length intervals is
± V0. If p and q are both odd the voltage is + V0. If either p or q

is even the voltage alternates between + V0 and - V0 in successive

double-length intervals. Indeed , in this latter case we have in general

2m+ 1
~ (in+q) = (_ 1)

Th~~~ V0 
~~~ (— ~~

--- ÷ q)

sin — —

q 2

2m+l ncos p’s sin —
= (-l)~~~~V 

- 
2 q

0 . n7rsin ~
— —

q 2

= ~v
Cm)
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The idealized Pavlovski i line treated in Section 2.3 can serve as a sim-
ple illustration of these general results. For this case we have p = 0,

x = 5’s = ~~
- ‘s .  The voltage pattern repeats every 2q=4 intervals of 2T2..

During the last 2 intervals of each half-period (which in this case con-
stitutes the total half-period) the voltage is constant, alternating
between + V0 and - V

0 
in successive half-periods . The open-circuit vol-

tage patterns for this case and for the simple asymmetric line cases

p = 4, x = ~~- and p = - 5, x = are shown in Figure 6.

To summarize the results on the open-circuit line pair, then , we
have shown that the output voltage is

2m+ 1
in 

~~~~~~~ ~~~~~~~~~~~~~ 
x

= (-1) V0 , x = arccos p . (3.29)
sin

If x = it , p and q integers with no common factors , the voltage is a
repetitive pattern with period 2qT2. if p and q are both odd and period
4qTi if either p or q is even. For the repeating patterns the voltage
remains constant for intervals of 412. given by (nq - l)2T2.<t<(nq + 1)212.,
and is equal to + V

0 
if p and q are both odd . If either p or q is even

it alternates between + V0 
and - V

0 
in successive half-periods . In this

latter case we have V (Th
~~

j 
= -

4. ENERGY TRANSFER TO THE LOAD

4. 1 Maximum Efficiency

Th the principal mode approximation considered in Section 3 an
axial l 1 symmetric constant-current beam of short duration (<211.) will
couple resistively to the line of impedance Z2 through image currents
in the conducting walls of the structure1.3 If the beam pulse is timed
so that it passes the line opening during the interval 2uiTL<t<2(m+1)T2.,
the net accelerating voltage at the gap, V

g 
is

Vg 
= ~ (m) 

- ~ (4.1)

where I is the beam current, equal in magnitude to the current induced
in the wal ls . We have implicitly assumed the convention that and
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I have the same sign for the case of acceleration . If the length of
the beam pulse is 2T2., the energy gained by the beam at the gap is

E = 2TI. V I . (4.2)g g

We define the effic iency , as in Section 2, to be the ratio of the energy
transferred to the beam to the energy initially stored in the lines .
The stored energy is given by

E = 5 2.C
1 V

0
2
+ 5 L C 2 V0

2 
. (4 .3 )

Recall ing that Z 1 = /L
1/C 1 , 

= /L
2/C2 , and I = = , we

obtain

4 Z  Z
C = 

2 
2 (V (m) 

- I Z
2

) I . (4 .4)
V0 

(Z
1 
+ Z

2)

For a fixed external charg ing potential , V0. and taking Z
1 
constant ,

(4.4) can be differentiated to obtain the conditions for optimizing the

efficiency . We label these conditions by c, V
(m)

, I, etc. Differentiat-
ing with respect to I and setting the derivative equal to zero yield s

I = , (4. 5)
2

which is the generalization of the result we obtained for the Pavlovskii
accelerator. Differentiating with respect to Z

2 
(or , equivalently, with

respect to p )  and substituting (4.5) then yields an expression for Z2 .
It is somewhat less laborious, however , simply to note tha t the largest
value the efficiency can possibly have is 1. For ~n = 0 this requires

0, a physical ly unrealizable case. In the following we take m>0.

If we substitute (4.5) into (4.4) and set c = 1 , the solu tions (if any)
will clearly yield the conditions for maximum efficiency . Making the
substitutions gives
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= 
4 Z1 Z2 ~~(m) 

- 
~ (m) 

Z
2) 

~~

-

~~~~~~

- 
-

v0
2 (Z1 + Z2) 

2Z 2 2 
—

2 . 2
V

(m) 
_______ 

v
(m)

= . = —  (l— p) . (4.6)

0 1 2 0
Putt ing c = 1 then y ields

/ 2 ~ 1/2
V

(m) 
= ± V

0 (—H . (4.7)

We now use (3.29) in (4 .7) to get

2m+l

(_1)m V0 

sin (—~—~x 
= ± 

~0 ~7_ ~ 
1/2 

= ± 
“o

sin — sin —

( 1) in sin (~~ -L) x = ± 1.

Therefore

= 

~4- it , j = 0, 1, ..., rn — i ; m>0. (4. 8)

Hence we see that for m>0 it is always possible to choose an impedance
ratio such that all the energy stored in the lines will be transferred to
a matched-current pulse of length 2T2. during the period 2mT2.<t<2 (m+l)T2..
In fact, there are in different ways in which this impedance ratio may
be chosen. We note in passing that the values of x are the same as those
which result in an open-circuit output voltage pattern which repeats
with period (2m+1)2TI.. The beam may therefore in princ’ple be timed to
pass the accelerating gap during any per iod of 212. beg inning at
jm+n(2in+i)J2T2., where n is zero or a positive integer . We further note
that using (4.7) in (4.1) gives

V 1/2

I~~g i = ..L~.Q.I ~~~ > .L SLL .
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That is , the accelerating voltage in the maximum-efficiency case is al-
ways greater than the accelerating voltage in the Pavlovskii accelerator.

The conditions which maximize the efficiency are shown in Table I-. 1for in = 1, 2, and 3. We see that for the in = 1 case, with p = ~~
- , the

system operation is similar to a symmetric Blumlein line in transferring
all stored energy to a matched load at a voltage across the load of V0.
For other values of in and p , accelerating voltages in excess of V0 can

be achieved while still maintaining C = 1. The impedance ratios required
in these cases are large , however, and such configurations might be very
difficult to achieve in practice.

We remind the reader at this point that the effect on the output
voltage of the coupling region between the two lines has been neglected
in our analysis. The effects of the coupling region can best be deter-
mined experimentally or through computer analysis of the equivalent

circuit using lumped circuit elements17~~
9 to simulate the coupling

region. To gain a qualitative understanding , however , we can approxi-
mate the coupling region as a shorted transmission line of impedance
Z1 + Z2 and electrical length Td, and trace a voltage step through the

system as we did in Section 2.3 for the symmetric lines . The results

of this analysis for x = ~~~ and x = it are shown in Figure 7. where we

compare the open-circuit output voltage obtained for d = 0.052. with
that obtained when the coupling region is completely neglected (d=O) .
We see that additional short pulses arising from reflections in the
coupling region are superimposed on the waveform at intervals of 212..
Except for the double-length pulses, where small pulses occur at the
mid-point , the net effect is that the rise- or fall-time of the wave-
form at t 2niT P. is 2mTd instead of zero. We therefore expect that in
a real cavity the effect of the coupling region will be to cause rise-
time deterioration which will become increasingly severe in successive
periods of 212.. The constant-voltage pulses will therefore be shorter
than 2T2., and the length of the beam pulse to be accelerated must be
shortened accordingly. The efficiency will be correspondingly reduced.

4.2 The Double-Length Pulse

In our initial discussion of the Pavlovskii accelerator in Section
2.3 we showed that, neglecting perturbations caused by the discontinu-
ity at the outer circumference of the line, 100% efficiency for energy
transfer from the cavity to the beam can be achieved by accelerating a
pulse of length 4T~ during an interval of that length for which the open-
circuit voltage is constant. In Section 3.2 we showed that there are
also asymmetric line configurations in which the voltage remains con-
stant for an interval of 4Tt. In Section 4.1 we showed that some of
these configurations (namely, those in which the open-circuit voltage
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Figure 7. Effect of coupling region on open-circuit output voltage .
(a) x = sf 3 , coupling region neglected. (b) x = sf3 ,
coupling reg ion approximated by transmission line of
length d = 0.05 1.. (c)  x = Sir/7 , coupling region neg-
lected . (d) x = Sir/7, coupling region approximated by
transmission line of length d = 0.05 2..
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is always + V0 during the interval 4T2. for which the voltage is constant)

correspond to 100% efficiency for energy transfer to a properly-matched ,
appropriately-phased beam pulse of length 2TL . It is of some interest
to ask what happens if an accelerator designed for c = 1 in the case of
a pulse of length 2T2. is used to accelerate a constant-current pulse of
length 4T2. during one of the double-length voltage intervals.

Since we are interested in a total time of length 4T2. , it is easi-
est to analyze the situation by following the reflections and transmis-
sions of voltage steps in the lines. As in our initial analysis of the
Pavlovskii accelerator, we will neglect the complications caused by the
region where the lines are coupled together. We denote by Vg1 the

accelerating voltage during the first half of the beam pulse and by V
g2

the accelerating voltage during the second half. We know that the open-
circuit voltage is V0. When the front of the beam pulse passes the gap ,
a voltage step - 1Z

2 is sent up line 2. As before , we use a caret to
designate parameters corresponding to a design which gives unit effi-
ciency for a pulse of length 2TL . We therefore have

Vg1 = V0 
- I (4.10)

A time T2. later this step reaches the line junction and is reflected
with reflection coefficient

z - z
= 

1 2 
= — - (4.11)

Z
I 
+ Z

2

At time 212. the reflected step arrives back at the output end and is
reflected in-phase , changing the accelerating voltage to

V 2 = V0 
- 1Z

2 
+ 2pIZ

2 
(4.1 2)

We see that unless I is neglig ibly small , which is not a case of inter-
est , the accelerating voltage is not constant for the duration of the
pulse, but rather changes abruptly at the midpoint.

While for most applications this is not acceptable , we wi l l  for the
sake of completeness note some efficiency formulas for this case. We
have

= ~~~2 _  I (Vgi + ~g2) - (4.13)

V0 (Z1 + Z2)
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If we take

V
I~~~~~~~~~~~~~ Q. 

, (4.14)
2Z 2

which is optimum for the case of pulse length 2T 2., we obtain

2 Z
= 

1 (1 + p) = (1 — p) (1 + p) = 1 — P . (4.15)
zi + z2

For this situation the efficiency is less than 1. It is possible, how-
ever, to choose an I such that c 1. We demand

4 Z  Z
2 

1 
~ I [2(V 0 

- 1Z
2) 

+ 2pIZ
2j = 1 . (4.16)

V
0 

(Z
1 

Z2)

Solving (4.16) for I we obtain

V
I = 

0 
—~~~~~~ (4.17)

2Z 2 (1 - p)

The accelerating voltages for this case are

V 
V0 l - 2 p

g1 2 
~~~~~~~~~~~ 

‘

_ V
0 ~V

g2 
— 

~
. - (4.18)

1 - p

4.3 Maximum Energy Transfer

Al though it seems paradoxical at first, it is possible to transfer
more total energy to a pulse of length 2T2. than is transferred in an
accelerator designed for c = 1, while still keeping the same charging
voltage V0. The penalty for doing this is that even more energy must be

stored than is transferred to the pulse , so that c < 1. To determine
the conditions for maximum energy transfer to the beam , which we denote

i, ~Ofl) etc . ,  we use the expression (4.2) :

Eg 2T2. Vg I . (4.2)
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Writing this in terms of and p, we obtain

Eg = 212. I [V (in) ( c)  — 1Z
1 ~

-
~~~~

- 
] . (4.19)

Taking the derivative with respect to I and setting equal to zero gives

-

I = - , (4.20)
2Z 2

in analogy to the case for maximum efficiency. Unlike the maximum effi-
ciency treatment, however, there is no way to derive general expres-
sions which completely determine the optimum conditions without taking

the derivative with respect to p (or Z2). Setting ~~~~~~~ = 0 yields

av (m) .,
~ 21 Z

1
________ — 

2 = 0. (4.21)p

Substituting (4.18) into (4.19) we obtain

(1 + )(1 - ) ~V
Crn)(P) 

= 

= V(m)cp) (4.22)

as the equation which specifies p. Referring to (3.29), we see that
(4.22) is a trigonometric equation in x = arccos p, which must in general
be solved numerically. For m=l , however , we have

- 3xsin
—- 

0 sin~~

sin x cos ~~- + cos x sin ~~
-

= -V 0 . xsin

= - V0 [2 ( l1-cosx) 
+ ~~~~

= - V0 (l+2p)

The solutions of (4 .22)  in this case are
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- l ± V ~D 2

and only the p lus sign is physically meaningful .

It is shown in the Appendix that v
(m) 

can always be written as a
polynomial of degree in in p. Hence (4.22) is a polynomial of degree m+l
in p. The complete set of conditions for maximum energy transfer for
m=1 , 2, and 3 are shown in Table I. Note that in each case there are
only m physically meaningful roots of 14.22). We see that in each case

V V
i l l  < ~i j  and 1 > 

l~~~~~ I . The maximum energy transfer is therefore
0 0

achieved by accelerating a larger current and not by increasing the
energy gain per particle per gap.

5. THE RECIRCULATING ACCELERATOR

5.1 Tiine-D~pendent Voltage Generated By a Beam Pulse

The recirculating accelerator is based on the idea that a beam
pulse can be accelerated to a higher energy by repeatedly circulating
the beam pulse through an accelerator. For example, in a single-gap
accelerator , if the output voltage exists across the gap for a period
several times as long as the time required for one recirculation, the
pulse wi l l  be accelerated on each passage. For the transmission line
accelerators we have been discussing the desired accelerating voltage
exists only for a period 2T2., which might typically be on the order of
10 nanoseconds for reasonably-sized cavities. To circulate the pulse
several times through the accelerator in this time frame is not possible ,
and it would be difficult to recharge and switch the cavities between
beam passes. The repeating voltage patterns derived in Section 3.5,
however, offer the interesting possibility that the cavities could be
charged up once , and the beam recircula-tion timed so that the pulse ar-
rives back at the cavity when the open-circuit output voltage repeats.
The derivation of the repeating waveforms assumed lossless lines and
there will in practice be an attenuation of the voltage amplitude as
well as progressively shorter periods of constant acceleration voltage
(Section 4.1) available for each successive pass through the gap. Ex-
periments* on line-pair systems using high-quality coaxial lines, how-
ever, have yielded results which encourage us to pursue the concept fur-

ther analytically. Of course, the current must be less than I, or else
all the stored energy will be transferred to the beam on the first pass.
We shall see that with proper choice of parameters it is theoretically
possible to achieve c = 1.

Experimenta pe~’formed by C.E. Ho2~landaworth, BRL.
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To analyze this case we require a general expression for the time-
dependent voltage generated in the cavity structure by the passage of a
beam pulse. We have encountered this problem before, in Section 2.3 and
4.2 , but there we were interested in times so short that it was possible
simply to follow the reflected voltage steps and determine their influ-
ence on the output voltage. To derive the general expression applicable
to a recirculating pulse we will proceed with a Laplace transform analy-
sis.

The idealized transmission line configuration is shown in Figure
8a, where we are now concerned with the time behavior of a voltage step
generated at the output end of line 2 , with line 1 shorted as shown . As
in our earlier analysis we neglect the effect of the intermediate region
which in the real configuration serves to couple the lines together .

The input impedance looking back into the lines is23

—2sT9.1 ÷ p 2. e 2
= Z

2 —2sTQ. ‘ 
(5.1)

l - p 2.
e 2

where p 2. is the reflection coefficient at the line junction looking back

from the open end ,

~~2.
= , (5.2)

and Z
2. is the input impedance looking into line 1 from the line junction :

—2sT2.
12. 

= 
- e

2512.
l 

= tanh sT2.1 . (5.3)
l + e  I

Using (5.2) and (5.3) in (5.1) yields , af ter some algebra ,

Z 1 tanh 512.1 + Z2 tanh sT2.2
Z~ = Z 2 ~1 tanh sT2. 1 tanh sTQ~2 + z2 

(5.4)

Since in the cases of interest the two lines are of the same length, we
now put 2.

1 = = 2.. Then in terms of the reflection coefficient
z - z

= z
2 
+ z

1 used in our earlier analysis we can obtain (5.4) in the
form 2 1

231 A D  Lewie and F .H ,  Wella , “Mi~llimiaroaecond Pu lse Techniques,”
Pergconon Preas, New York, 1959 , p .  39.
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( a )

I

21! t

(b)

Figure 8. (a) Idealized transmission line configura tion for
calculation of voltage pulse by beam . (b) Time
dependence of beam current.
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Z (1 - e 45T2.)
2 

-2sTZ -4sTt - (5.5)
l + 2 p e + e

We assume that the current is a square pulse, as shown in Figure 8b:

I = 1
0 fu (t) 

- u(t - 2Tfl ) , (5.6)

so that the transform is

-2sTL\
T = 1 0 (

~ 
e ) (5.7)

Hence for the transformed voltage we obtain

V 
= 
i (1 - e45T2.) e

_25Ti (1 - e_45TZ)
Z I s -2sT9. —4sT2. s —2sTL —4sT2.
2 0 l ÷ ~~pe + e  1 ÷ 2 pe + e

= 
sinh 2sT2. 

-- 
-2sTP.. — sinh 2sT2.

s(cøsh 2sT2. + 
~ 

e s(cdsh 2sTQ. + ) 

(5.8)

5.2 The Inverse Transform

We introduce the notation

v — 
sinh 2sT2. ‘ 

(5 9)
1 — s(cosh 2sTL + 

~~~)

Then from (5.8) we have

£~~ {V1 - e_ 25 T2. v11
2 0

= V1 (t) 
— V1 (t—2T2.) . 

(5.10)

The poles of V
1 

are

S = ± 
~~~~~~~ 

(2nir + 0) , n = .. . -2 , -l , 0 , 1 , 2 , ..
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where 0 = arccos (-p), and these are all distinct. Evaluating the deriva-
tive of the denominator of V

1 

at the poles gives

D ’ (s ) = - (2nn + O)~~i-p~n

21so that the inverse transform is

/ 2 (2inir + iO)
V1 (t)= 

~ i l - p e

n=-~ -(2nir + 0) f ~‘-p

[ 2 e (2th71 + i0).2~~.
+ - i i-P

n=-~ - (2ntr + 0) ~~~~~1—p

flirt @t
— 2t Si~fl + ~~~ 

. 
(5.11)-

~~r n=-~ nnt Ot-
~r~~r

From Reference 22 we then have

V1 (t) sin (2k +
— 2 , 2kT2.<t<2(k+l)T2, . (5.12)

0sin

Similarly, for V1 
(t - 2TL) we obtain

V~ 
(t - 2T2.) = 2 u(t-2T2.) ~ sin(2nir + 0) (t-2TL)2T&

2nir + 0

8sin(2k 
, 2kT2.<t-2TL<2(k+l)T2. . (5.13)= u (t-2T2.) 

sin

We again define

V (Th) = V( t) , 2mTL<t<2(m+1)TL . (5.14)
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From (S .l2~ and (5. 13) we then have

~
(O) 

= z2 r~

v (m) 
— 

sin(2m +1) .-~ sin f2 On- l )+l ] - -~
z 210

_ 
sin~~. 

- 

sin~~..

— 

2 cos -~~~ [(2m+l)-~ + (2m-l)~ jsin .-~~ {(2m+1)-~ - (2in-l)~.J
- 

sin~-

= 2 c o s m e  , m>1 . (5.15)

To conform with our previous notation , we again substitute x = arccos p
= it - 0 to obtain from (5.15) our final expression :

= z2 10

V(in) = 2 (_1)in Z2 1o COS lflX , flI>l . (5.16)

5.3 Acceleration of a Recirculating Beam

We now analyze the situation in which a cavity is charged extern-
ally to a voltage V 0, and the device is used to accelerate a recircu-

lating beam pulse of length 2T2. and current I. For the voltage at the
gap due to the switched applied voltage we have

2m+l
-,

= (l)in v0 , (3.29)
sin~~.

where in counts the intervals of 2TL which have elapsed since the closing
of the switches. For the voltage at the gap due to a single passage of
the beam pulse , which opposes the impressed voltage , we have

~~~ = (1)
k 2Z 2 I cos kx , k 1 , (5.16)
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where k counts the intervals of 2T2. which have elapsed since the beam
arrived at the gap . We wish to choose an impedance ratio which results
in a repeating open-circuit output pattern , so that according to the re-
sults of Section 3.2 we must have x = it , p and q integers . If p and
q hav e no coi~~on f actors , the pattern repeats every 2qTL if p and q are
both odd ,and every 4qT2. otherwise .

Assume that the beam pulse passes the gap for the first time dur-
ing the interval 2nT2.<t<2(n+l)T2., where t is measured from the time the
internal cavity switches are closed, and every 2jqTL thereafter, where
j  is an integer and must be even if p and q are not both odd . Then the
accelerating voltage during the first pass is

2n+ 3. 2.sifl ( ) q 11

= ( 1f1 2 
- I = ~ (n) 

- . (5.17)
sin ~ -

—q 2
Between the first and second pass, 2(n+l)TL<t<2(n+jq)TL , we have

~~~~~ = v~’~
1
~ - (_ 1) k 212 I c~s k~ir , 1 < k < jq - 1 . (5.18)

The second time the beam is sent through we get , since ~~~ =

~~n f iq )  
= - (_1)jq 2Z

2 
I cos jpir - Z

2 
I . (5.19)

Similarly,  for the third time through the accelerating voltage is

~~n+2iq) 
= ~,(n) 

- ( 1 ) 2jq 2z 2 ~ ~~

- (_1)jq 2Z2 I cos jpir - Z2 
I . (5.20)

The 5th time through we get

~~n~ (5_ l) i q) 
— 

~~~ - z2 I 
~ 

( 1 ) rj q 2Z 2 I cos rjpir , s>l . (5.21)

Now , if j  is even , (_1)njq = + 1, cos rjp ,r = + 1, and we have

~ 
(1)

rjq 2Z 2 I cos rjp it = 2(s - 1) Z 2 I . (5.22)
r= 1
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I f j  is odd , then so are p and q. Then ( 1 ) rj q 
= ( 1 ) r and cos rjp it =

so that th e sum again has the value (5 .22) .  Hence we have for
(5.2 1k

— 1)jq) 
= 

~~~~~~~~~~~ Z2 I (2s — 1) . (5.23)

Suppose the beam pulse is to be circulated through the accelerator
a total of K times . The energy gained will be

Eg =

~~~ 
~~~ - Z

2 
I (2s - l)} 2T2. I =

= 2T2. I K (V~
’
~ — K Z

2 
I) . (5.24)

The energy stored initially is

Z +1
E =~~- TLV

2 1 2 (5.25)
5 0z l z2

Taking the ratio of (5.24) to (5.25) we have

= 

4 I K { V ~’~ - K 
2 (5.26)

zlz2
To maximize the efficiency we first set ~~~~

- = 0 and find

I = . (5.27)
2K Z2

That is, the matched current in the recirculating case is ~~
- times the

matched current in the single-pass case, where K 2.5 the number of times
the beam circulates through the accelerator. To determine the conditions
for unit efficiency we substitute (5 .27) into (5.261 and set c = 1, giv-
ing

A f~n) ~~()VA r~~(n) 
VA 2 

_____4 K 1 VA 2 ~~~V02K Z Z Z2
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zl 1Recognizing that = we have
zl+z2

2 1/2 V
VA~~ 

= ± V
0 

(.-__
~~~ 

= ± . (5.28)
X

Putting in the explicit form of ~
J
~~) which we required to get a repeating

voltage pattern gives~

2n+1 n i t
sin ( ) ‘-  V

(-lf’ V 2 q 
=~~~~ 

0
0 . n i t  . n i tsin g— — sin ’-—q 2  q 2

which implies

( 2 n+ l )p = q ( 2 2 . + l )

where 2. is any integer. Hence we have

2&+1
X = 2n+l ~ , 2. = 0, 1, 2 ..,, n—i , (5.29)

where n designates the interval during which the beam is first circu-
lated past the gap. In the unit efficiency case the total voltage
through which the beam is accelerated is obtained by summing (5.23) ,
which gives

K V ~~~~~~

= — 
A (5.30)

The beam pulse gains a decreasing amount of energy each time it passes

~ (n)
the gap , the gap voltage decreasing f— each time and going to zero

after K passes. If the beam were to continue to be recirculated it
would of course lose energy to the cavity .

These results are surprisingly simple. The particles in the
matched low-current beam which circulates through the accelerator K
times gain K times as much energy as would the particles in a matched
high-current beam which passes the gap only once. There are, of course,

46



1/K times as many particles in the low-cu~-rent beam as in the high-
current beam. The conditions for unit efficiency are the same in the two

cases: make p = cos it , and accelerate the beam pulse during those
intervals of length 212. starting at t = 2nT L and/or any multiple of
2(2n+1)21L thereafter, the “and” referring to the recirculating case,
the “or” to the single-pass case. We note additionally that the gap re-
ferred to could be a multi-gap accelerator through which the beam circu-
lates. As was pointed out earlier, these results were obtained under the
assumption of ideal, lossless lines and switches , we have treated only
the principal mode in the lines , and we have ignored complications arising
from the cavity region which couples the two L nes together.

As a simple numerical example, suppose that a cavity is designed

with p = 5, 2Tt = 10 ns, V0 = 1 MV, and Z2 = 50 ~~~. Then the open-circu~t

output voltage pattern will be as shown in Figure 6b. A 20-kA , 1O-ns
beam pulse will be accelerated through 1 MV by passing it through the
cavity during the 10-ms period beginning at 10 ns (or 40 ns, or 70 ns,...)
after the closing of the internal cavity switches, and all the stored
energy will be transferred to the beam. In a recirculating mode we can
circulate a 2-kA, iO-ns beam pulse through the cavity 10 times at intervals
of 30 ns (or 60 ns, or 90 ns, ...) starting at t = 10 ns (or 40 ns, or 70
ns, . . .) ,  resulting in a total acceleration through 10 MV , and again all
the stored energy will be transferred to the beam. Since the accelerat-
ing voltage decreases with each pass, 75% of the total acceleration is
achieved after 5 passes.

We now record the behavior of the output voltage between beam passes,
since this could be important for identifying voltage excursions which
cause breakdown. As before, we have x = it , where p and q are integersq thwith no common factors. Then during the period between the s and the

(541)th passes at time t between 2T9.(n+(s-1)jq+k) and 2TL (n+(s-1)jq+k+l),
where i<k~jq-1, we find

~(n+ (s-l)jq+k) 
= ~~~+k) - 2Z2 I 

~ 
(l)mJ~~~ cos (mjq+k) it

= - 2Z
2 I y (1)

mjq+k cos mjpir cos k P~

= ~(n+k) (fl
k 212 Is cos k ~~

. iT . (5.31)
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In particuiar, for the unit efficiency case we have q = 2n+l and p odd,
say p = 2r+i. Then (5.31) becomes

~(n+(s-l)j(2n+l)+k) =

= ~ (n÷k) 
- (1)k 2sZ2I cos k~~:~ ~ . (5.32)

But
2n+l 2r+l

,~(n+k) — ‘ ~~~~ V 
sin (-

~~
---— + k) 2n+l ~ 

-— 
‘~ 

‘ 0 
— 2r+l it 

—

sin —2n+l 2

n+k v0 (1)
r 

~~~~ k 
~~

:—-
~ ~= (-1) 2r+i ii 

. (5.33)
S1~fl 

~n+l

Using (5.33) and (5.27) in (5.32) results in
k+n+r k 2r.

~-l
~ (n+ (s— 1)j (2n ÷1 )+k)  

= 

V0 cos 2n+l 
[1 - ~-J . (5.34)

sin — —2n+l 2
Clearly the voltage given by (5.34) is identically zero after K passes,
when all the stored energy has been delivered to the beam.

It is of some interest to note that the recirculating accelerator
described here affords the possibility of a quite high accelerating grad-
ient for relatively low-current beams. It is possible to show that a
single-pass accelerator designed to accelerate a high-current beam with
given efficiency will always exhibit a higher accelerating gradient than
a single-pass accelerator designed for the same efficiency at a lower
current. Furthermore, as shown above, if a beam of current I~ is circu-
lated K times through a machine designed to accelerate a current I = K 10
through a voltage V, the lower-current beam will be accelerated through
a voltage (V. In the recirculating case one thus increases the acceler-
ating gradient through two effects: the recirculation of the beam and
the use of design parameters appropriate to a higher current than that
to be accelerated . The accelerating gradient in a recirculating accel-
erator is therefore more than a factor of K greater than in a single-pass
machine designed for the same current and efficiency; for some designs,
in fact , this gain in accelerating gradient approaches a factor of K4.
The details of the analysis .Leaaing to these conclusions will be published
in a separate report.
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6. SUMMARY

We have shown that, under the assumptions of ideal , lossless lines
and switches, and within the approximations of a principal-mode analysis ,
a transmission-line accelerator using asymmetric line pairs can be de-
signed which will accelerate a constant-current beam pulse of length 2T2.
through a constant voltage with a theoretical efficiency of unity . Fur-
thermore, we have demonstrated that the accelerating voltage in this case
is always greater than half the charging voltage applied to the lines .
We have demonstrated that, while periods of time of length 4T2. exist for
which the magnitude of the open-circuit output voltage remains constant
at V0, a constant-current beam pulse of length 4Tt will not experience a
constant accelerating voltage for its full duration. In addition, we
have shown that a lower-current beam pulse can be circulated through
the accelerator several times resulting in a total accelerating voltage
several times that of the single-pass case, and that in this case also
total transfer of the stored energy to the beam pulse can be achieved .
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APPENDIX

We here present for the open-circuit case an alternative derivation
of the time-dependent output voltage. While somewhat lengthier than the
derivation given in Section 3.2, it has the heuristic advantage of ex-
p licitly demons trating that the voltage periods of length 2TL are due to
the step-function character caused by repeated reflections in the trans-
mission lines. We start with (3.19):

— — -2sTR.V., —2 ( l + p ) E e  1-4sT2. -2sT2.l + e  + 2 p e

From the binomial theorem for negative integral exponents, we obtain for
(A.1)

= -2 (1 + p) ~ e 25TL~~ (_1)
fl (e

_45TL 
+ 2pe

_25Ti
)
fl 

. (A.2)

We further expand the suinmand in (A.2):

V2 = -2(1 + p) ~ e_25Ti~~~(_ l)h1
~~ (

~
) e_4~ l - k) 5T2. (2~ ) k e 2~~t2.

= -2(1 + p)~ e
_25T2. Y (_ l)11 

k~0 
(2)k (

~
) ~~~~ L 2k)sT2. (A.3)

Using (3.4), (3.5), and (A.3) we obtain for the transformed output voltage

V = ~~~ V0 - 2 (1 + p )V
0 

e_25T & 
(2p)k(fl) ~~~~ 

- 2k)sTL 
. (A.4)

Taking the inverse transform of (A.4) we obtain the output voltage
as a function of time:

V(t) = V0 u(t ) -2( l  + p)V0 
~~ 
(
~~~1) fl ~ (fl)(2~)k u[t - 2(2n - k + 1)T2.] . (A.5)

n=O k 0
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We note that the output voltage is a series of step functions, and that
the value changes every 2T~. In particular, we see that for any t, the
sununand is identically zero for values of n and k such that
2(2n - k + 1) TR.>t. We therefore define

= V(t) , 2mT L<t< 2(m + l)T2. . (A.6)

We now make the substitution i = 2n-k and replace the sum on n with a
sum on i. We see from the above that 17(0) = v0, and for any value of
m~0, i is summed from 0 to rn-i. To obtain the new limits on k we note
the following correspondence:

n k i
0 0 0

1 0 2
1 1

2 0 4

1 3

2 2
3 0 6

1 5

2 4
3 3

4 0 8
1 7

2 6

3 5

4 4

We see that for i even, k is summed from zero to i in steps of 2, and
for i odd, k is summed from i to i in steps of 2. We therefore substi-
tute k = 2j when i is even and k = 2j + 1 when i is odd. Making these
substitutions and using the definition of u(t), we obtain

~ (0) = v 0 ,
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I rn-i 2. i+2j /i+2j\
~

(m) 
= V

0 
- 2(1 + p)V

0~ ~ ~ (-1) 2 ( 2 
~ ( 2 ) 23

i i=0 j=0 \2J /
(i even

i— i /i+2j+l\
rn- i 2 i+2j+l ( 2 2j+l f

~ (-1) 2
i=0 j=0 - \23+1 ) (2p) , m>0 . (A.7)

i odd

Putting i = 2n in the first sum and i = 2n + 1 in the second sum gives
rn-i

n
V (m) 

= V0 - 2 (1 + p ) V 0 ~ ~ (-1)~~~ (n+i) (2p)
2i

n=0 j=0

+ ~ ( 1)n +J+l (n+3+l) (fl 23+l 
, m>0 , (A.8)

n 0 j=0 \ 2j+l

where the square brackets denote “largest integer contained in.” Inter-
changing the order of summation results in

rn-i

~~~V (m) 
= V

0 
- 2 (1 + p)V

0 ~ ~ ( 1 ) n+i(n
+
i)C2 

2jp) -
j=O n=j

m m
E2~

J l  [~]l
+1

+ ~~ ~~~~~~~~~~~~~~~~~ ~~~~, in>0 . (A.9)
j=0 n=j

Making the substitution I = n-j yields

I rn-i rn-i

~ E—~— ] [—2’—l—i
~

tm) 
= V0 

- 2 (1 + p)V
0 ~ ~

_fl2i4
~
l
~ 
fi+2i
)
~ 2~~2i

j  0 i=0 \2i

[~]—l (!~]_ l_ j

+ (1)
2)+1+i (i+2j+l\ 2j+l1

j=0 j=0 \ 2j+l) (2p ) ~~~, ,n>0 . (A.1O)

55

- - - . — .- - -S- - -S .~~~~~S--~~~~~~~~~~~- -5-- . --~~S--~~~~~~~~~~~-- S S

— - - S .5—S.



To recombine these into a single sum we put 2j = k in the first sum ,
2j+l = k in the second sum:

~
(m) 

= V
0 

- 2 (1 + p)V0 

2[~~~] ~~~ 
(4)k+~ (i+k) (2)k

k=0 i=0
k even

2~~’ 
!~i~~~E~!

+ Z (1)k+i (i÷k) (2~)
k 

, m>0 . (A.1l)
k=0 i=0
k odd

We note that if m is odd (even) the first sum goes to m-l (a-2) and the
second sum to rn-2 (in-l) . We can therefore combine the sums, and we ob-
tain a power series in 2p for the open-circuit output voltage:

~(0) = V0

rn-k-i

~
(m) 

V0 
- 2 (1 + p V

0 
~ (.4)k (2~)k ~ (-l)~ (I

~k~ rn>O . (A.l2)
k=0 1=0

Values of ~
(m) for m = 0, 1, . . . ,  6 are given in Table Al.

TABLE Al. EXPRESSIONS FOR OPEN CIRCUIT VOLTAGE ON AN ASSYMETRIC LINE

V~°~ = V
0

= —V 0 
(1 + 2p)

= -V0 (1 
- - 4p 2)

V~
3
~ = V

0 (1 
+ 4p - 4p2 - 8p3)

~((4) 
= V0 (1 

- - 12p 2 + 8p3 + 16p4)

= -V0 (1 
+ 6p - 12p 2 - 32p3 + 16p 4 

+ 32p5)

= -V0 (1 
- 6p - 24p2 + 32~~ + 80p

4 
- 32p5 - 64p6)

S6
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To reduce (A.l2) to the closed-form expression (3.29), we first in-
terchange the order of summation to obtain

~ 2 ~ m— (2i+l)
V

(m) 
= V

0 
— 2V0 (l+p) ~ ~ (-1)~

’
~
’
~ 

(i+k) (2~)k . (A.l3)
i=0 k=0

We now put n = k+2i+1, and replace the sum over k with a sum over n:

= V
0 

- 2V0 (1+p) ~~~~ 11n~
i_ l (n_~~l)(2~)

n_2i~ 1 
. (A .14)

Once more reversing the order of summation we get

= - 

~~o (l+p) ~ ~~~~~~n-i- l (n~i~i) (2Ø)~~
2
~~

1 
. (A.15)

n=l i 0

We now define x = arccos p, as in the main text. From Reference A-i we
find -.

sin nx = sin x 
i=0 

(-1)’ (n_ i_l) (2 cos xf~
_2
~
_ l 

. (A.16)

Using (A.16) in (A.15) yields

~
(m) 

= V0 
+ 2V0 

(.1+cos x] 

n~l 
(1)n sin mc . (A . 17)

This sum can be explicitly evaluated as~~
2

~ (_l)fl 5in mc = 
.
~s1fl x 

+ (;fl hflj5j f l~~~~~~~~ + sin (m+1)x] (A.l8)
n= 1

We therefore have

A_ l v. Mctngulie, “Handbook of Seri ’ea for Scientieta and Engineers,” Aaader rtic
Press, Inc., New York, 1965, p. 16.

A_ 2~ • Mangu lie, “Handbook of Ser~ee for Scientists and Engineers ,” Academic
Press, Inc., New York, 1965, p .  104.
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- 
~ + ~ 

in sin m x + sin (~+1) x
0 o~~ sin x

in 2 sin (~~±i) x c o s~~.

2 sin .
~~
. cos

2m+lsin ( --
~~ 

) x
= (_1) in V0 

— - , a>0 , (A.19)
sin

and

This reproduces (3.29), as required.

58

5 i  — . . 
.5 . 5 —  —i-— .5



REFERENCE S

A-i. V. t4angulis, “Handbook of Series for Scientists and Eng ineers ,”
Academic Press, Inc., New York , 1965 , p. 16.

A-2. V. Mangulis, “Handbook of Series for Scientists and Engineers,”
Academic Press, Inc., New York, 1965, p. 104.

59


