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Gately (1974) and Littlechild and Vaidya (1976) defined and studied
ratio measures of "disruption propensity' of coalitions in an n-person game.
We define and study new incremental measures giving rise to a wide variety
of "disruption solution' concepts free of various ratio defects and affording
advantages of analysis and acceptability in terms of solution specifications.
Various "mollifier" and "homomollifier" solution concepts are characterized

which appear to be of promising utility.
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1. INTRODUCTION

Gately [1974] introduced the concept of an individual player's

"propensity to disrupt'' for the case of a three-person characteristic

function game. Littlechild and Vaidya [1976] have recently extended this
concept to n-person games. For a given payoff vector, they define a
coalition's ''propensity to disrupt' as the ratio of what the complementary

coalition stands to lose if that payoff vector is abandoned to what the

coalition itself stands to lose. They then define a disruntion nucleolus
using the vector of propensities to disrupt rather than the vector of

coalitional excesses.

The choice of the ratio of the two quantities as the measure of their
disvarity, however, is not without its attendant difficulties. To avoid
infinite disruotion provensities, one is restricted to games with a strict
core. The calculation of solution concepts involving the normalized
propensities also becomes much more involved. Thus Littlechild and
Vaidya do not employ the normalized, or "per person', disruotion ratio
which they indicate they would prefer,

In this paper we propose alternate measures of the disparity in
terms of the difference rather than the ratio. In particular, we normalize
the two quantities (to obtain the per person loss) and use their difference ]
rather than their ratio. These incremental forms of the propensity to
disrupt have a number of interesting and suggestive properties. Thus the

complement of a game is defined and the propensity to disruot is characterized

:————_———i‘
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as a weighted coalitional excess for a particular "'mixture', e.g.componentwise

convex combination of a game function and its complement function. We call
games arising from such mixtures ''mollifiers' and the per person forms,
"homomollifiers. ' A large variety of ''disruption' solution concepts is now
immediately available using the extremal (''convex nucleus'') characterizations

of Charnes and Kortanek [1967] and Charnes and Keane [1969].

2. THE PROPENSITY TO DISRUPT

Let (N, v) be a characteristic function game where N = {1,2,...,n]
is the set of players and v is a characteristic function, i.e. a non-negative
function defined on the subsets of N with v(®) = 0. A payoff vector is an
n-tuple x=(xj,...,X,) such that ié}l xi =v(N)and x; 20, i =1,...,n.

Littlechild and Vaidya define, for a given payoff vector x, the

"propensity to disrunt'' of a coalition SEN (S #@, N) by

x(N-S) - v(N-S)
x(S) - v(S)

dix,8) =

where x(S)= 2 X
ieS

To avoid the difficulties of infinite, negative or artificially vositive
propensities, they limit themselves to games where the strict core is
non-empty and require the solution vectors to be in this set.

To avoid this severe restriction and other difficulties we suggest that the
difference of the quantities x(N-S) - v(N-S) and x(S) - v(S) be employed as a

measure of their variation. More generally, one could consider a weighteddifference




of the form
o (N-S)[x(N-S) - v(N-S)] - BS)x(S) - v(S))
where a(N-S) and B (S) are suitably chosen weights or ''normalization' factors.
A measure of the desired "average' or 'per-person' disruption quality
is then had by taking the weights to be the reciprocals of the coalitional size.
As we shall shortly see, it turns out also to yield a class of games,
"homomollifiers", with particularly convenient analytical properties reflecting
those of v(S). Thus we define the incremental form of the "average' propensity

to disrupt of coalition S as

x(N-S) ~ v(N-S) x(S) - v(S)

IN-S| : Is| o

d(x,S) =

where |Sl is the cardinality of the set S. Hence the average propensity to disrupt
is the difference of the normalized coalitional excesses for S and N-S.
Using the relation
x(N-S) = v(N) - x(S)

(2.2) can be rewritten as

1 1 |S[(v(N) - v(N-S)) + [N-S|v(S) (S)]
BN ISkl ST+ In-s] ;
(2.9)

We notice that d(x,S) is a weighted coalitional excess for the ''game"

[S|(v(N) - v(N-S)) + |N-S]|v(S)

S|+ |N-S|

Evidently w(S) is a convex combination of v(S) and v(N) - v(N-S). This

(2.4)

w(S) =

observation motivates the next section.




3. COMPLEMENTS AND MOLLIFIERS

2 -
The complement of a game v, denoted by v, is defined by

v(S) = v(N) - v(N-S). i
Clearly, the complement transformation is involutory (i.e. v = v) with

V(d) = 0 and V!N) = v(N).

It will be helpful in what follows to keep in mind the 3-person game with

v(l) = v(2) = v(3) = 0, v(12) = v(13) = 1, v(23) = 0, v(123) = 1. For it, v(1) = 1,

v(2) = v(3) = 0, ¥(12) = ¥(13) = v(23) = 1, V¥(123) = 1,

While thereby v will not necessarily be superadditive, even if v is

superadditive, Vv does inherit some of the structure of v.

Theorem (3. 1)

(i) If v is monotone, i.e. A S B = v(A) € v(B), then Vv is monotone.
(ii) If g is stratégically equivalent to v, then g is strategically
equivalent to v .
Proof: (i) ASB ®= N-A2N-B
= y(N-A) 2 v(N-B)
= v(A) = v(N) - v(N-A) < v(N) - v(N-B) = V(B)
(ii) Suppose g(S) =r-v(S) + £ «; withr >0,
ieS
Then g (S) = g(N) - g(N-S)

(r.v(N) + z a;) - (r-v(N-S) + z a; )
ieN ieN-S

r(v(N) - v(N-S)) + Z @;
ieS

rV(S) 5 2 ai
i€eS Q.E.D.

If we assume that v is superadditive, the structure of ¥V becomes more fixed.

= As noted by the referee, the name "dual" has been used for this concept.
We prefer "complement' since as he states (and we later prove) this "dual"
of a superadditive game cannot be supperadditive if not equal to the "primal"'.
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T heorem 3. 2 If v is superadditive, then
(i) v(S)2v(S) (v SEN),
(ii) ¥(S) + V(N -S) 2 V(N) (VSEN).

(iii) v(SUT) 2 V(S)+v(T) , whenever SNT = @ .

(iv) v is superadditive iff ¥ = v.

Proof: (i) v(S) = v(N) - v(N-S) 2 v(S) , where the last inequality is due
to superadditivity.
(ii) v(S) + V(N-S) = v(N) - v(N-S) + v(N) - v(S)
= v(N) + v(N) - v(N-S) - v(S).

Since v(N) = v(N) and v(N) 2 v(N-S) + v(S), the result follows.

(iii) v(N-S) 2 v(N-SUT) + v(T), so v(S) € v(SUT) - v(T).

(iv) By (i), v #v implies v(S) > v(S) for some S.
Thus v(N) - v(N-S) - v(S) > 0.
For Vv superadditive,

V(N) 2 v(S) + V(N-S)
v(N) - v(N-S) - v(S) + v(N)

v(N) , a contradiction, since v(N) = v(N).

v

Hence Vv =v.

Q.E.D
Corollary 3.2 v is constant sum iff ¥(S) = v(S) for all SS N.
Proof: If v(S) = v(S) then v(S) + v(N-S) = y(N).
Conversely, v(S) + v(N-S) = constant = v(N), taking S = 0.
Q.E.D.

A s will next be shown, the core of a game may be characterized

alternatively by means of the complement in an "'upper bound'' form.
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Theorem 3.3 Let C(v) denote the core of a superadditive game V. The
following three conditions are equivalent for x an imputation of v and
xS) =l x4
ieS
(i) x € C(v). '
(ii) v(S) = x(S) . VSE N.
(iii) x(S) = ¥(S) | YSEN
Proof: (i) iff (ii) is well known. For (ii) iff (iii) notice that
v(S) € x(S) iff v(N) - v(S) 2 v(N) - x(S)
iff V(N-S) 2 x(N-S).
Corollary 3.3: x €C(v) iff v(S) = x(S) sv(S), YS SN, where x is an

imputation of v.
The value of V(S) can be considered as a maximum feasible ''goal' of

coalition S. It is the largest amount that they can reasonably "expect"

to get, just as v(S) is the least they would "accept'. For coalition N-S,

however, these bounds are reversed. We thus define a mollifier of a game v ’
as any componentwise convex combination of the function v and its complement
function V. In particular, w,, a "constant'' mollifier of v is defined for 0sus 1 by
wy(S) = uv(s) + (1-pv(S).
It is again immediate that w,(#) = 0 and w (N) = v(N). As a convex
combination w(S) lies between v(S) of the game and V(S) of its complement.
From this we conclude that the core of such a mollifier is contained in the
core of v. Thus

Theorem 3.4  C(w,) S C(v) for a stperadditive game v.

Q.E.D.
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As was the case for V, w, is not necessarily superadditive. If v
is constant sum, however, w,(S) = v(S) for all u ¢ [0,1].
Some further properties of constant mollifiers are given in the following

theorem.

Theorem 3.5 If v is a superadditive game then:

(i) w, (S) is linear and monotone non-decreasing in u.
(ii) if Wiy is superadditive, then Wy, 18 superadditive for all
Mo s My

Proof: (i) Let By <ug . Then

‘"ul(S) - wuz(S) * (By - W) V(S) + (1-up)v(S) - (1-ug)v(S)
= (W) - ug) V(S) - (Mg - uy)v(S)
= (ug =~ Bo) [V(S) - v(S)]
<0
since (By - py) <0 and V(S) 2 v(S).
(ii) Suppose w,,, (SUT) 2 wy (S) + w,,(T). Then
W T(SUT) + (1-4y)Iv(SUT) 2 pyW(S) + (1-up)v(S)+ ug¥(T) + (1-p)v(T).
Regrouping, we obtain
v(SUT) - v(S) - v(T) 2 w[V(S) - v(S) + ¥(T) - v(T) + v(SUT) - v(SUT) ] .

u I3
Multiplying by ﬁ- > 0 yields

2 [W(SUT) - v(S) - v(T)] 2 uy[W(S) - v(S) + T(T) = v(T) + v(SUT) - WSUT)).
»1

M
Since 2 < 1,
LD

'Y
v(SUT) - v(S) - v(T) 2 u_z.[v(SUT) -v(S) - v(T) ) .
1

Hence, v(SUT) - v(S) = v(T) lnle(S)- v(S)+T(T) - v(T)+ v(SUT) - W(SUT)).

Upon regrouping, the result follows.

Q.E.D.




Recalling the ''game'’, w(S), which motivated this section, we see

that in (2. 4) the convex combination weights are a function of the coalition. We

thercfore define a coalitional mollifier by

W(S) = ug T(S) + (1 ~ ug) v(S)
where ug € [0, 1], ¥S. This allows us to "mollify' different coalitional values to a

Is
greater or lesser degree than others. In particular, if Hg = Tﬁ—lr , we

call the associated w(S) a "homomollifier".
Coalitional mollifiers have several attractive properties.
Specifically, w(S) is superadditive if the weights are additive for disjoint

coalitions. This is formalized in the following theorem.

Theorem 3.6 let v be a super"additive game and ug €(0, 1] the weight

associated with coalition S. If the weights satisfy bq t U T Mgy
whenever SNT = @ , then w(S) = %V(S) + (l-us)v(S) is a superadditive game.
Proof: LetSNT =0

w(SUT) = uSUTV(SUT) + (l-uSUT) v(SUT)

uSV(SUT) + uTV(SUT) ax{ 0 B uT)v(SUT)

S
2 UgW(SUT) + 4 TISUT) + (1-ug - k) [V(S) + v(T)]

2 uS[V(S) + v(T)) + uT[v(T)+v(S)]+(1—u.s-u.T)[v(S)+v(T)]
(by Theorem 3.2 (iii) )

uSV(SH uTV('I‘) + (l-us)v(S) + (l-uT)v(T)

w(S) + w(T).

Q.E.D.

Even more interesting is the fact that w(S) is a constant sum game,

if, in addition to disjunctive additivity, the weights are normalized, i.e. My~ 1.

|




Theorem 3.7 If in addition to the assumptions of Theorem 3. 6, Wy~ 1, then w(S)

is constant sum.

Proof':

w(S) + w(N-8) ug¥(S) + (1-ugv(S)+ Un-gV(N-S) + (1-uy _gIV(N-S)

= (“S+“N-S)"(N) + (!~uN_S-u.S)\-(N-s)+(1-us-“N_s)v(S)

= qu(N)+ (1~uN)v(N-S) + (l-uN)v(S)

b V(N) b W(N\ Q E

The incremental propensity to disrupt of coalition S was given by (2.

o 1 il [le(v(N) - v(N-8) )+IN-S]| «(S) s
d(x,S) = = X(S
bt [N-S] s [s]+ IN-s]

Since “S = m satisfies the conditions of Theorem 3. 7, we observe that

this propensity to disrupt is a weighted coalitional excess, i.e.

1 1
d (x,8) = (IN-SI + 5 )[w(S) - x(S)] (3. 1)

where w(S) (the homomollifier of v) is a constant sum game.

We conclude the present section by observing that our incremental
propensity to disrupt is additive due to the additivity of the underlying
components. This is made explicit by the following theorem whose proof
is straightforward.

Theorem 3.8 Suppose u, v and g are n-person games with g strategically

equivalent to v. (g(S) =r-v(S) + & a; withr >0.)
i1 €S ;

b

3) as
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Then
(i) ¥Fv = T + ¥V (i.e. the complement of a sum is the sum of the
complements)
g(S) = r¥(S) + L % _4
i€S ¥
(i) w9tV = w"® + wY , where w? denotes the "w" mollifier of z, i.e.

w designates a particular weighting of the z(S) and Z(S).

w8S) = rew'(s) + pI-H
i€S

(iii) d,(x,8) + dy(y,S) = d 4+ (X4, S)

dg(rx+a, S) = rdv(x,S).

4, DISRUPTIVE SOLUTIONS.

We first observe (from 3. 1) that any solution concept defined in

terms of the incremental disruption propensities can be equivalentl’y

expressed using the weighted coalitional excesses for w. Thus solution
concepts for w give rise to corresponding 'disruption'' solution concepts ;
for v. For example, the disruption nucleolus could be expressed using
the vector of disruption propensities as in Littlechild and Vaidya or it
could equivalently be expressed as a weighted nucleolus of w.

Charnes and Kortanek generalized the nucleolus and introduced the
class of 'onvexnrleus' solutions. Charnes and Keane have shown that 4
this class includes, among others, the core and the Shapley value. Their |
mathematical programming characterizations are:

(i) The coreC@) # @ consists of the solutions to

min 2 |g(S) - x(S)] {

SCN
(4.1)

subject to
x(N) = g(N).
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(il) The Shapley value ®(g) is the solution x' to

min & [g(S) - (912 m(s)
X SSN
(4.2)

subject to
x(N) = g(N),

-1
n-2
where the weights m(S) = m(|s]) = (M'l)

In view of the above, we could define a disruption core, a disruption
Shapley value and a host of other disruption solution concepts, each

characterized a la Charnes and Kortanek as the solution(s) to

min & fq(d(x.S))
X SeN

subject to
x(N) = v(N)

or equivalently

n
min & fS ((W(S) - x(S)) (n-s)s)
X s&N

subject to
x(N) = w(N)

for suitably chosen convex functions fq .

In particular, we define the disruption value with power o for the

game v as the solution to

2 n a(s)
min & (w\;(S) - x(S)) [(n-s)s]
X SN

(4. 3)
subject to

x(N) = w(N) .
We remark that as o 2 0 increases, o independent of §, the weights of the
single player coalitions and their complements increase while the weights of the

others decrease. Another extreme case of interest is

. 2
e

(‘ . 4)
subject to

x(N) = w(N) ,
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The solution of (4.4) is easily shown to be
N

w(N) - 2 wili)
i=1
n

Xj : W(]) +

which equalizes the propensity to disrupt for coalitions of size 1.
The general case (4.3) can also be solved explicitly. (See the

appendix for the details.) If we let, even more generally,

% a(s)
m([S|) = [(n-s)s ] p(s) where s = [S|, p(s) 20,

then the solution to (4. 3) is given by

1 Bv\(](N) - M : j
Xi(V) = -B— B a7 __n___.._ (4.5 ’
where Wy = Z w(S)m(|s)
S2i
n
M = Hi
i=1
n-1 n-2
B = 5 nis) (s-l)
s=1

It is readily verified that the disruption value solution given by (4.5) is
additive over games with the same number of players. Thus if v and u are
two such characteristic functions, then

xi(v) + x;(u) = x; (vtu)
This property and the intuitive appeal of a solution which minimizes the
propensity to disrupt makes it an attractive alternative distribution scheme
to, say, the ordinary Shapley value. Thus, for instance, when the two are
close in value the disruption concept affords another interpretation of the

properties of the Shapley value in achieving equitable solutions.

il
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Let us now illustrate these various matters by reference to our little

example which we have chosen because of its importance in elucidation of
discrepancies between standard solution presentations and acceptable ones.
For it w(l) = 1/3, w(2) = w(3) = 0, w(12) = w(13) = 1, w(23) = 2/3, w(123) = 1.

Note that the core of w is empty whereas the core of v is the unique solution

X) = 1, xg = xg = 0. This is not an acceptable prescription, for why should
players 2 or 3 join 1 to assure his Xy = 1, while they receive zero? Re the
Gately-Littlechild-Vaidya formulation, v has no strict core- Therefore it

is outside the class which is covered by their results.

Suppose, further, responding to the referee's query as to what might
the G-L.-V Theory say for games in the neighborhood of v, we consider our
example as the limit (as €+ 0) of games having a strict core:

v(ii) = 0

v(12) = v(13) = 1-2¢ (4. 6) i

v(23) €, v(123) =1

Then the G-L-V solution (which equalizes the ratio propensities to disrupt) is:

Xy (1-¢)/(1+3e)
(4.7) | 3

XS - 2e/(l+3:) |

X2

Thus the limit of the ratio disruption solutions as €= 0 is the (unacceptable)

xl=l,x2=X3=0!
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We calculate the Shapley value to be xj = 2/3, x5 = x4 = 1/6. In
comparison with (4.4) our "individual' disruption value yields x; =5/9,

X9 * Xg = 2/9. The two differ in that the Shapley value gives players 2 and

3 each twenty-five percent less (1/18) than does the disruption value.

Thus even this extreme incremental disruption value checks the Shapley value

well in this simple, but critical case. In further work underway we expect

to make deeper and broader studies of the properties of our disruption values
(such as constant sum) in relation to those of other possible solution notions
including extensions to meta-game notions such as core-stem solutions

[5] and unions [6]. Toward this program we record the following (easily proved)

result:

Theorem 4. 1: The Shapley Value of a game v and its complement v are
identical, e.g. ®;(v) = ®;(V), Vi,

APPENDIX
For the explicit solution of the disruption value convex programming

# a(s)
problem, let m(s) = [m] p(s)

where s = [S], p(s) 2 0 .
Then (4. 3) becomes
min & [w(S) - x(S)]zm(s)
¥ seN

subject to
x(N) = w(N)

Thus we shall follow the arguments of Charnes & Keane [1].




The Lagrangean is

L = 2 [w(S)-x(8))%m(s) + 2A[x(N) - w(N)]

SN

Differentiating with respect to each of the variables, we obtain

3 gL = _2% [w(S) - x(S)m(s) + 2\ i=1,...,n
*i SCN
s2i
L

e =5 ° x(N) = w(N)

or equivalently

A= 2 [(w(S) - x(S)Im(S)
S2i

x(N) = w(N)

Let u; = Z w(S)m(s)
S2i

Then (1) can be written as

2 x(Shm(s) = wuj - A

S2i
n-1
But 2 x(S)m(s) = 2 x(S)m(s)
S2i r=1 |S|=r
S2i

-1
o nz m(r): 2 x(S)
r=1 Is|=r
S2i

n-1 -1 -2
- (i) + Z m(r) .")+E .(“_)
x;m r=2m r l:xl(r-l A X | r-2

(1)

(2)

(3)
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n-1 n l n-1 n-2)
= m(r) X - Z m(r) \r-2 X;
r=1 r=2
n-1 n-2
+ Zm(r) | .9/ w(N)
r=2
n-1 n-2 n-1 n-2
= m(r)\ o.1/ x. + m(r) \ p-2/ w(N)
r= 1 r=2
= Sxi + NMw(N
n-l n-z n-l n‘2
where B = Z m(r) peot and N = & m(r) \p 2
| gl r:2
Substitution into (3) yields
ﬁxi + NMw(N) = TP A (4)
1
or X = [-nw(N) + u - A5 (5)

To obtain the expression for A, we sum (4) over the set of players

n n
> [Bx; + nwn)] = T o -m
i=1 i=1
or n
Bw(N) + Mnw(N) = Zi u, - nh
l=
Solving for A we obtain
n 1
A= LM - pw(N) - nnw(N)] where M = 2 4, |
i=1
Replacing A in (5) and simplifying we finally arrive at
ERS | Bw(N) - M
% "y lw"? n
n-1
where B = l“§l m(r) ( and o)
= T wSimis) , s+ N
S2i
n .
M= 3 i 3
i=1
Q.E.D
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