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ABSTRACT

Gately (1974 ) and Littlechild and Vatdya (1976) defined and studied

ratio measures of “disrupt ion propensi t y ” of coali t ions in an n-p erson game.

We define and study new Inc remental measures giving rise to a wide v a r i e t y

of “disruption solution ” concepts free of various ratio defects  and affording

advantages of analysis and acceptability In terms of solution specifications.

Various “nioUifier ” and tt homomoll if ier ” solution concepts are characterized

which appear to be of promising u t i l ity .
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1. INTRODUCTION

Gately [1974 1 introduced the concept of an ind iv i dua l  player ’s

“propensity to disrupt ” for the case of a three-person characteri s t ic

function game. Litt lechild and Vaidya F 19761 have recently extended this

concept to n-person games. For a given payoff vecto r , they defi ne a

coali t io n ’s “propensity to disrupt ” as the ra t io  of what the complementary

coali t ion stands to lose if that payoff vector is abandoned to what the

coalition itself stands to lose. The~’ then defi ne a d is runt ion  nucleolus

using the vector of cropensities to disrupt  rathe r than the vector of

coa l i t ional  excesses.

The choice of the ra t io  of the two quan t i t i e s  as the measure of t h e i r

d i snar ity ,  howeve r , is not w i thou t  i t s  at tendant d i f f cu lt i es. To avoid

in f in i t e  d i s ruo t ion  pronensi t ies , one is res t r ic ted to games w i th  a s t r ic t

core . The calculat ion of solution concepts i nvo lving the normal ized

propensi t ies  also becomes much more i nvolved. Thus L it t l ech i ld  and

V ai dy a  do not employ the normal ized , or “per pe rson ” . d i s run t i on  rat io

which  they indicate they would prefe r .

In this pape r we propose alternate measures of the d isp ar i ty  in

term s of the diffe rence rather than the ratio. In pa r t icular , we normalize

the two quantities (to obtain the per person loss) and use their  difference

rather than their  ratio.  These incremental  forms of the oropensity to

disrupt  have a number of interest ing and suggestive propert ies.  Thus the

comple ment of a game is defi ned and the prop ensity to d i srunt  ‘s charac ter ized
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as a weighted coalitional excess for a par t icular  “mixture ” , e. g. componentwise

convex combination of a game function and its complement function. We call

games arising from such mix tures  “molli f iers ” and the per person forms ,

“hornomollifiers.” A large variety of “disruption ” solution concepts is now

immediately available using the extremal ( “convex nucleus ” ) charac ter iza t ions

of Charnes and Kortane k 119671 and Charnes and Keane 119691.

2. THE PROPENSITY TO DISRUPT

Let (N , v) be a characteristic function game where N ( 1. 2 n i

is the set of players and v is a characteristic function , i.e. a non-negative

function defined on the subsets of N wi th  v (ø)  = 0. A payoff vector i s an

n-tuple x~ (x 1 x~) such that E 
xj = v (N )  and x 1 ~ 0 , 1 1 n.

Littlechild and Va idya defi ne , for a given payoff vector x , the

“propensity to disruot ” of a coal i t ion S CN (S ~ ~~~, 
N ) by

x (N -S)  - v (N- S)
d(x , S) x(S) - v(S) (-.1)

where x(S) E x 1
i eS

To avoid the d i f f icu l t ies  of in f in i t e , negative or art if icially nos i t ive

prooensit ies , they l imit  themselves to games where the strict  core is

non-empty and require the solution vectors to be in this set .

To avoid this severe re str ict ion and othe r diff icult ies we suggest that the

difference of the quant i t ies  x(N-S ) - v(N- S) and x(S) - v (S)  be employed as a

measure of their variation. More gene rally, one could consider a wE ighted diffe renc e

I
-
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)
of the form

~ (N -S) fx (N -S)  - v (N - S ))  - ~ S) [x(S ) - v (S) J

F where ~ N-S) and 8 ( S)  are suitably chosen we i ghts or ‘ normalization ” factors .

A measure of the desired “ave rage” or “per-person” disruption quality

is t hen had by taking the weights to be the reciprocals of the coalit ional size.

As we shall shortly see , it turns  out also to yield a class of games.

“homornollifiers ” , with par t icular ly  convenient analytical properties reflecting

those of si(S) . Thus we define the inc remental form of the “average ” propensity

to disrupt of coalition S as

x(N-S) - v(N-S) x(S) - v(S )
d(x ,S) = - (2 .2 )

IN -SI I s i
where 1Sf is the cardinality of the set S. Hence the average propensity to disrupt

is the difference of the normalized coalitional excesses for S and N-S.

Using the relat ion

x(N-S) = v(N) - x(S)

(2. 2) can be rewritten as

1 1 1 1 1 ISI(v(N)- v(N-S)) + tN-S l y(S)
d(x ,S) 

[IN-S I 
+ I S[ j ~ Is I + I N - S f  

- x(S)

(2. 3)

We notice that d(x , S) is a weighted coalitional excess for the “game ”

w(S ) ls Lv u~n - v (N - S) )  + JN-S f v(S) (2.4 )
I N-S f

Evidently w(S) is a convex combination of v(S ) and v(N) - v(N-S) . This

observation motivates the ne xt section.

_ _ _ _ _ _ _ _  
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3. COMPLEMENTS AND MOLLIFIERS
2/ —The complemenro f a game v , denoted by v , is defined by

V’(S ) = v(N ) - v(N -S) . 
—

Clearly, the complement t ransformation is involutory ( i .e .  V v) with

0 and~~~(N ) v (N ) .  -

It will be helpful in what follows to keep in mind the 3-person game with

v(l) v(2) v(3) = 0, v ( l 2 )  = v( 13) = 1, v(23) = 0, v( 123) = 1. For It, V (l) 1,

V(2) = V(3) = 0, V(12) =V (13) = V (23) = 1, ~(l23) = 1.

While thereby ~ will not necessarily be superadditive , even if v is

superadditive, V does inherit some of the structure of v.

Theorem (3. 1)

( I )  If v is monotone , i. e. A ~ B ~ v( A )  ~ v( B), then ~ is monotone .

( i i )  If g is strat~ gically equivalent to v , then ~ is strategically

equivalent to v .

Proof: (i) A~~~B ~~N - A 2 N - B

~ v(N -A) ~ v(N -B)

~ ~ (A ) = v(N) - v(N-A) ‘v(N) - v(N-B) = V (B )

(ii ) Suppose g(S) = r ‘ v(S) + E ~ 
with r >0 .

i eS
Then I(S) g(N) - g(N-S)

= (r . v(N ) + E ~ j ) - (r. v(N-S) + E 
~ 

)
iCN ieN-S

= r(v (N) - v (N - S))  +

= r~F(S ) +

tes Q~E .D.

If we assume that v is supe radditive , the structure of V becomes more fixed.

2/
As noted by the referee , the name “dual ” has been used for this concept .
We prefe r “complement ” since as he states (and we later prove) this “dual ”
of a superadditive game cannot be supperadditive if not equal to the “primal ”.
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Theorem 3.2 If v is superadditive , then

(I ) ~ (S)~~~v(S ) (V S C N ) ,

( i i )  V(S ) + V (N -S) ~ V(N ) (VS ~ N).

(iii ) V(S UT~ � V (S)4 v(T) , whenever S~ T

(iv) V is superadditive 1ff V = v.

P roof: (I )  i(S ) v(N ) - v(N-S) ~ v(S) . whe re the last inequal i ty is due

to superaddit ivity .

(ii) ‘7 (S)  + ~ (N- S) v(N) - v(N-S ) + v(N ) - v(S)

v(N) + v (N)  - v(N-S) - v(S).

Since v(N) = V (N ) and v(N ) ~ v(N-S ) + v(S), the result follows.

( i i i )  v( N- S) ~ y (N- SUT) + y (T) , so V (S )  ~ v ’( SUT) - v(T) .

( iv) By ( i ) , V # v implies V(S) > v( S)  for some S .

Thus v (N ) - v (N-S ) - v( S) > 0 .

For V superadditive ,

V(N ) ~ V(S) + V (N- S)
= v (N )  - v (N- S)  - v( S) + v(N )
> v (N ) , a contradiction , sinc e ~7( N ) = v ( N ) .

Hence V = v.
Q.E . D.

Corollary 3. 2 v is constant sum 1ff V(S) v(S) for all S~~ N.

Proof: If V(S) v( S) then v(S) 4 v (N-S )  = v (N) .
Conversely, v(S) + v (N- S)  = constant = v(N ) , taking S = 0.

Q.E .D.

A s will next be shown , the core of a game may be characterized

alternatively by means of the comr ~ement in an “upper boun d” foirm.

~ 

_r:~::iJ~ ~
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Theorem 3 3 Let C(v) denote the core of a super additlve game v. The

following three conditions are equivale nt for x an imputation of v and

( ) . Y  ~iCS

( i )  x C C ( v ) .

(Ii) v(S) ~ x(S) VS~~ N.

( i i i )  x(S) ~ V ( S) VS~~ N

Proof: (i) iff (ii) is well known. For (ii) iff (iii) notice that

v(S) ‘x(S) iff v (N) - v(s) ~ v(N) 
-

1ff V (N-S) � x (N -S) .

Corollary 3 .3 :  x C C ( v )  iff v(S) ‘x(S) ‘V(S), VS ~ N, where x is an
imputation of v.

The value of V’(S) can be considered as a maximum feasible “goal ” of

coalition S. It is the largest amount that they can reasonably “expect”

to ~ t ’t , just as v(S) is the least t hey would “accept ” . For coalition N-S .

F howeve r , these bounds are reversed. We thus define a mollifier of a game v

as any componentwise convex combination of the funct ion v and its complement

function V .  In particular , w 1~, , a “constant ” mollifier of v is define d for 0f ~~’ 1 by

w~(S) 
= ~V(S) + ( l -~ )v( 5) .

It is again immediate that w )~(0) = 0 and wj N )  = v(N). As a convex

combination w~ (S) lies between v(S) of the game and V(S) of its complement.

From this we conclude that the core of suc h a mo l l i f i e r  is contained in the

core of v. Thus

Theorem 3. 4 C(w~ ) E C(v~ for a süpe raddit iv e game v.
Q . E .D .
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As was the case for ’7, w 1~ is not necessarily superadditive . rf v

is constant sum , howeve r , w a (S) - v(S) for all i~ c (0 . 11.

Some fur ther  properties of constant moll i f iers  are given in the following

theorem.

Theorem 3. 5 If v is a superadditive game then:

(1) w~ (S) is linear and monotone non-decreasing in i~.

( I i )  if w~ 1 is super addit lve . then w 1~,2 i s superadd it ive for all

‘

Proof: (I) Let 
~i < L~2 

. Then

w,11 (S) 
- w

~2
(S) (~~ 

- i&9)V(S) + ( l - I ~i ) v( S) - (1- I~2 ) v(S)

= - 

~~~ 
v( S) - 

~~ 
-

~~ ~2
)F”
~~ 

- v(S)1

‘0

since 
~~ 

- i~2 ) <0 and V(S ) ~ v(S) .

(i i )  Suppose w Ml ( S U T )  ~ w~~ (S) ~ w~ 1(T). Then

i~1V(SUT ) + ( l - i ~,1 ) v(S UT ) ~ u,1V(S) + ( l -~~j )v ( S) + i& 1V(T ) + ( 1- i ~j )v(T) .

Regrouping, we obtain

v(SUT ) - v(S ) - v(T) � i~ [V(S) - v(S)+V(T) - v(T)+ v(SIJT) - V(SUT)J

Multiplying by ..
~~~~
.. > 0 yields

~~~~~. [v(SUT ) - v(S) - v(T)J � i~2(V(S) - v(S)+ V(T) - v(T) + v(SUT ) - V(SUTfl .

• Since — ~~ 1,

v(SUT ) - v(S) - v ( T)  ~ 
! Iv(SUT ) - v(S) - v(T) J .

Hence , v(SIIF ) - v (S)  - v (T)  ~ p &2fV(S)-v (S)+V(T)-v (T)+ v(SUT)-V(SUT)1.

Upon regrouping, the result follows.
Q. E .D.
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Recalling the “game ” . w( S) . which motivated thi s section , we see

that in (2. 4) the convex combinat ion weight s are a function of the coalition. We

therefore define a coalitional rnollifier by

w(S) ~~V(S) + ( 1  -

whe re C (0 , 1J, “S. This allows us to “mollify ” different coalitional values to a

greater or lesser degree than others. In particular , if . we

call the associated w(S) a “homomollifier ”.

Coalitional mollifiers have several attractive properties.

Specifically, w(S) is superadditive if the weight s are additive for disjoint

coalitions. This is formalized in the following theorem .

Theorem 3.6 Let v be a superadditive game and 
~~ 

€ [0, l] the weight

associated with coalition S. If the weights satisfy 
~~ 

+ 
~ T = 

~StiT

whenever SflT 0 , then w(S) = ~ V( S)  + s~ ”~~ 
is a superadditive game.

Proof: Let S~T 
= 0

w(SUT ) = MSUTV(SUT) + (l-u suT~~
(S(
~
T)

= 

~s~~~
JT) + L

~T
V(SUT) + ( l - i ~ - U

~T
(SUT )

� + ~T V(SUT) + (1 -i~ - 

~~~~~~~ 
+ v(T)J

� 
~s

1’7
~~ ~ v ( T) )  + 

~T
1’7(T (

~~~~~~~~~~~T
)Fv T)1

(by Theorem 3.2  ( i i i )

~ (l-~~ )v(S) + 
~~~~T~~

T)

= w( S) + w( T) .

Q.E.D.

Even more interesting is the fact that w(S) is a constant sum game ,

if,in addition to disjunctive additivity , the weights are normalized , i .e .  
~N ~

I-
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Theorem 3. 7 if in addition to the assumptions of Theorem 3 . 6 , = 1, then w(S)

is constant sum.

Prooi~

w(S) ~ w(N-S) ‘s~~
5
~ 

(l~~.~)% ’( S) + U N ...SV( N_ S ) + ( l -~~~5)~.’(N ..S)

S + UN S
)
~

(N )  + 
N~ s

= ~~ v ( N ) 4  
~~~~N

)
~’( N - S)  +

= v( N ) w ( N )  
Q.E . I) .

The incre mental  propensi ty  to d i srup t  of coal i t ion S was given by (2. 3) as

/ 1 1 \ I J S I ( v ( N ) - v ( N - S ) ) ÷ f r ~_ S I v(S)d(x ,S) = + —

~

-

~~~

-

~ ) (s~ + ~N - S l  
- x (S)

Since 
~s 

— satisfies the conditions of Theorem 3. 7, we observe that

this propensity to disrupt is a weighted coalitional excess , i.e.

d~
(x , S) = + 

~~~~ 
) iw~s~ - x ( S) J  (3. 1)

where w( S) (the homomollifier of v)  is a constant sum game.

We conclude the present section by observing that our inc remental

propensity to disrupt is additive due to the addit ivi ty of the underlying

components. This is made explicit by the following theorem whose proof

is straightforward .

Theorem 3.8 Suppose u , v and g are n-per son games with g strategically

equivalent to v. (g(S) r~ v(S ) + 
~ ~~~~ 

with r > 0 . )
iCS



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ::~~~“T; -

-10-

Then

(i) u + v = U + V (i. e. the comp lement of a sum is the sum of the
complements)

g(S) = rV(S) + i
i CS

(ii) ~~~~ = w ’~ + w ” , where wZ denotes the “w” mollifier of z, i .e.
w designates a particular weighting of the z(S) and i(S).

= r.w~
’(S) + E~j

j CS

(i ii) d~ ()( , S) + d v(y ,S)  = d~~~ (x 4y, S)

dg(rx +Q’i S) = rd v (x , S) .

4. DISRUPTIVE SOLUTIONS.

We first observe (from 3. 1) that any solution concept defined in

terms of the incremental disruption propensities can be equivalently

expressed using the weighted coalitional excesses for w. Thus solution

• concepts for w give rise to corresponding “disruption” solution concepts

for v. For example , the disruption nucleolus could be expressed using

• the vector of disruption propensities as in Littlechild and Vaidya or it

could equivalently be expressed as a weighted nucleolus of w.

Charr ies and Kortanek generalized the nucleolus and introduced the

class of “~~~ex!itleus ” solutions. Charnes and Keane have shown that

this class includes , among others, the core and the Shapley value. Their

mathematical programming characterizations are:

(i) The core C~~) # 0 consists of the solutions to

mm � lg(S ) - x(S)f
SCN

(4. 1)
subject to

x(N ) g (N ) .
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( i i )  The Shaple y value ~ (g) ~s the solution x~ to

mm ~ Ig( S) - x(S) 12 m( S)
X SCN

(4. 2)
subject to

x (N )  = g (N ) .
f n- 2\~~~where the weights rn (S) rn ( I SI )  u i_ i)

In view of the above , we could define a disruption core , a disruption

Shapley value and a host of othe r disruption solution concepts , eac h

cha racte rized a [a Charnes and Kortane k as the solut i on (s)  to

mm Z fç (d( x , S) )
x S~~N

subject to
x(N ) v (N )

or equivalently

mm E r~ ((w(S - x (S ))

~ SCN

subject to
x (N ) = w (N )

for suitably chosen convex functions

In particular , we define the disruption value with power a for the

game v as the solution to
/ \ 2 r~ ‘a(s)

mm ~ ~v~(S) x(S)) 

~~X S~ N
(4.3 )

subject to
x(N ) w(N )

We remark that as o ~ 0 Inc reases , a independent of 8, the weights of the

single playe r coalitions and their complement s Inc rease while the weight s of the

othe rs decrease. Anot he r extreme case of interest Is
2

mm E lw(1) - x(i)I
x

i4. 4)
subject to

x(N ) - w(N )
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The solution of (4 .4 )  is easily shown to be
N

w(N) - E w(i)
i=1

which equalizes the propensity to disrupt for coalitions of size 1.

The general case (4 . 3) can also be solved explicitly . (See the

appendix for the details. ) If we let , even more generally,

n
m( IS I) = [(n~s)s j p(s ) where s = fS~ , p(s) � 0,

then the solution to (4. 3) is given by

1 8 w ( N ) - M 1
x1(v ) = 

~~ 
+ V j (4 • 5 )

where = L w ( S) m ( I S I)
S?i

n

j=1
n- i fn-2\

= 
~~ rn(s)

g 1

It is readily verified that the disru ption value solution given by (4 . 5) is

additive over game s with the same numbe r of playe rs. Thus if v and u are

two such characteristic fu nctions, then

x m ( v)  + x 1(u ) x~
(v+ u ) .

This property and the intuitive appeal of a solution which minimizes  the

propensity to disrupt make s it an at tract ive alternative distribution scheme

to , say, the ordinary Shapley value . Thus , for instance , when the two are

close in value the disruption concept affords anothe r interpretation of the

properties of the Shapley value in achieving equitable solutions.
-- 

~

_ __
ii -
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Let us now il lustrate these various matters by reference to our little

example which we have chosen because of its importance in elucidation of

discrepancies between standard solution presentations and acceptable ones.

For it w ( 1)  = 1/3 . w (2 )  w(3) = 0, w( 12 )  = w ( l 3 )  = 1, w(23) = 2/3 . w( 123 ) 1,

Note that the core of w is empty whereas the core of v is the unique solution

= 1, x 2 x3 = 0. This is not an acceptable prescription, for why should

players 2 or 3 join 1 to assure his x 1 1, while they receive zero ? Re the

Gately-Ltttlechild - Vaidya formulation , v has no strict core . Therefore it

is outside the class which is covered by their  results.

Suppose, furthe r, responding to the referee ’s query as to what might

the G-L-V Theory say for games in the neighborhood of v , we consider our

example as the l imit  (as e- .0)  of games having a strict core :

v ( i )  = 0

v ( l2 )  = v( 13) = 1-2c (4 .6)

v(23 ) = € , v ( l23 )  = 1

Then the G-L-V solution (which equalizes the ratio propensities to disrupt ) is:

x 1 = ( 1-c)/ (1+3i)
(4 . 7 )

x2 x 3 = 2 C/ ( 1 + 3 € )

Thus the limit of the ratio disruption soLutions as c-~ 0 is the (unacceptable)

x 1 = 1 , x2 = x3 = 0

L —4
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We calculate the Shapley value to be x i  = 2 / 3 , x 2 = x 3 1/6. In

comparison with (4 .4 )  our “individual ” disruption value yields x 1 5~ 9 ,

x 2 = x 3 = 2/9.  The two differ  in that the Shapley value gives players 2 and

3 each twenty-five percent less ( 1/18 )  t han does the disruption value.

Thus even this extreme inc remental  disruption value checks the Shapley value

well in this simple , but critical case, In fur ther  work underway we expect

to make deeper and broader studies of the properties of our disruption values

(such as constant sum) in relation to those of other possible solution notions

including extensions to meta-garne notions such as core-stem solutions

[51 and unions [6 1. Toward this program we record the following (easily proved)

result :

Theorem 4. 1: The Shapley Value of a game v and its complement ~ are
identical , e. g. ~~ (v )  = •~(~ ) 

, V i .

APPENDIX

For the explicit solution of the disrupt ion value convex programming

~ 
a(s)

problem , let rn ( s)  = 
~~~~~~~~~~~~~~~~~~~~ 

p(s)
where s = I s !, p(s) � 0

• Then (4 .3 )  becomes

mm L [w(S) - x ( S) 1
2m(s)

~ SCN
subject to

x(N ) = w(N )

Thus we shall follow the arguments of Charnes & Keane [11.
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The Lagrangean is

L = �- [w(S) - x ( S) J 2m(s) + 2 X ( x ( N ) - w (N ) 1
SCN

Differentiating with respect to each of the variables , we obtain

0 = = -2 E lw(S) - x ( S) Im ( s)  + 2X 1 1 , , . .  , n
SCN
S2i

0 =
~~~~~~~ 

x(N) - w(N )

or equivalently

A = ~~~~ [w(S) - x( S)Jm ( S) ( 1)
s~ m

x(N) = w(N ) (2 )

Let = E w(S)m(s)
S~~i

Then (1) can be written as

~ x(S)m(s) I&j - A (3)
s~ m

n - i
But ~ x(S)m(s) = E Z~ x(S)m(s)

s~i r 1  ISI r
s~i

n -i
= ~ m( r)~ E x(S)

r 1  ISI r
S2i

+ �: r n(r )  + 

~ (~~~:~~)J
= 

~~~~ 

m(r)  
(~~~

.. 
~) 

X j + r~ 2
m

~~ (r -2)  ,

~~~~~~ 

Xj

—
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n - i  n - I  fn -2~
~ m ( r )  k r - i )  X~ - ~ m (r )  kr -2J  x 1r n  r -2

(n-2\
+ ~ m (r)  (~ r_2) w(N )

n - i  f n - 2 \  n - i  fn - 2\
m( r) 

~ r _ l )  x i + 
r 2  

rn (r )  k~r -2)  w (N )

= + f l w (N~
n- i  In-2\  n - i  /n - 2

whe re B = m ( r )  
~r _ l )  and r~ = 

r~ 2 
m (r )

Substitution into (3) yields

8x ~ + ?l w (N )  = - (4)

or x~ = f -r I w (N )  + - 

~ I 1

To obtain the expression for A , we sum (4) ove r the set of players

~~~ 
[ ~x 1 + r lw (N ) ]  = E -n A

or

B w (N)  + T l n w ( N )  - nA

Solving for A we obtain
n

A 
~ 

fM - B w(N ) - ‘ln w (N ) )  where M = �..;
i= 1

Replac ing A in (5) and simplifying we finally arr ive at
1 1 B w ( N ) - M 1xi~~~~ L u m + n j

whe re ~ L m(r)  and (~) = i

• ~~~~ 
w(S)m(s) 

, S # N
S~~l
n

M = 
~~m = i

Q .E . D.

- A ~~~~~~
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