AD=A069 299 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO SCH==ETC F/6 9/2 ~
IMPLEMENTATION AND TESTING OF NUMERICAL ANALYSIS TECHNIQUES IN ==ETC(U)
MAR 79 R A ADAMS

UNCLASSIFIED AFIT/GCS/EE/79-1

- EENEEENNEEE
EEEEL [EEFEEELE
HEEEHE5EHA008E8
HEEASANREEE8808
HEEEA0EHASEEESE8
BEAEEEEA0EEEEa
SNEEENEEEEEEEE

P

it el
Il el I
““ L P
|y IENIE

L8

o

= i

lri
il

' »

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

TR N W G T s e

P —

AFIT/GCS/EE/79-1 /

e iSRS

i,

_, } e e i

_JIMPLEMENTATION AND_TESTING OF NUMERICAL
/ s ,ANALYSIS TECHNIQUES IN

o —
VIONICS_APPLICATTONS o ;!
g - //A/ /AP ; i @/’;i\t v ﬁ e
THESIS }\—_'_—:{ (/ I
AFIT/GCS/EE/79-1 ‘7 Richard AY /Adams |
" Captain USAF '
) 1) G
. — 5:\ ;"‘ 200 R0
\ {15 i
) / ¢ / Ui JUN 4 1919 |i|
Ly Mar VT h i
B —— O e ,:;),,.T—.r “_17——-‘:]‘!-'-;‘}’
{ : 1‘ 5{ q :'! I\\
T/“"l

| DISTMBUNION STATCIONT &
Appraved for pubh relagsed
Distnibution Unlimited

]

LB

0122 225

oo’ - L) e

IMPLEMENTATION AND TESTING OF NUMERICAL
ANALYSIS TECHNIQUES IN
AVIONICS APPLICATIONS

THESIS

of the Air Force Institute of Technology
Air University

in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

by

Richard A. Adams, B.S.

Captain USAF

Graduate Electrical Engineering

March 1979

School of Engineering
Air Force Institute of Technology
Wright-Patterson Air Force Base,
Ohio

Presented to the Faculty of the School of Engineering

s e

‘aRINCK

Preface

The n-bit simulation tool developed by Captain Gary A. Klein has
been modified to include the capability of simulating two's-complement
machines which truncate results, as opposed to rounding them. Anyone
who uses this tool should realize the effect different number represen-
tation schemes can have on arithmetic computations.

It is easy to state that we need a computer with a longer word-
length whenever we fail to achieve a required accuracy from a piece of
software. Sometimes, however, this required accuracy can be obtained
by employing better programming techniques on the original machine. In
writing this thesis, I am primarily interested in applying numerical
analysis techniques to software to obtain a required aceuracy with the
constraints of a given fixed wordlength and number representation and
handling schemes.

I would especially like to thank my thesis advisor, Dr. Gary B.
Lamont, for his guidance, support, and many suggestions when they were
needed most. I would also like to thank my two committee members, Dr.
Thaddeus L. Regulinski and Dr. Peter S. Maybeck, for their advice and
encouragement. A special thanks goes to my thesis sponsor, Dr. Donald
L. Moon, for the many hours he spent helping me get started and for
providing some much needed guidance throughout this period. ULlastly, I
would like to thank my typist, Cheryl Gilliland, for her diligent work.
I thank all of you for your continued patience, support, and under-

standing that has made it possible for me to complete this thesis.

ii

Contents

PURTECE . . s a i h s v sy s e aee e s w e s el e e e ii

ListofFigures........,...--.......... vi
LiStOfTables.......o...........-.... viii

ABBEYACE o i e e s e v v a e e e e e a e ee 4 e ix

—

I. Introduction e e e e e & e e ° e % & 0 * e e * o e+ e e o

RULPOBE v <« v o ¢ 5 & o '« & & v o o o -
ApProach . o« « o o 4 v o 8 4 =5 v e e s
Tools and Techniques . . . « « « « « &
Assumptions/Constraints « « « « « « « &
Chapter Synopsis . . ¢« « ¢« ¢ ¢ &+ o o &

o« o o o o
.
.
.
.
.
NN

1I. N=-bl€t SImulatar . « <« = & 5 » & 5. & » & & % & # o o @ 10

Preprocessor « + « s s o @ o ¢ & & o & 6 5 & ¢ o o ‘o 10
SETNBIT Subroutine . . 11

Option ONe o = ¢ o o« o 6 0 a4 s & o o 8 o s © ¢ « » 12
Option TWO o « o o o 6 & o 5 s & & & 5 & & o o & o 12
Option Tl\ree e © o & e e o o e e e e e e & e o o o 12
Option FOUE & o o v « o 5 ¢ 5 o & o & 5 8 s & o o 13
Option Five . ¢« ¢« o ¢ ¢ ¢ « Chr & ® w 14

Option Six n O b e 14

Option Seven . ¢« « o ¢ ¢ o o o ¢ ¢ ¢ ¢ o o o ¢ o = 14
Option Eight . . & . ¢ s o ¢ o o ¢ ¢ ¢ ¢ ¢ o o o o 16
Option Bitle . « « s o & & v 5.9 4 % & 5 v & © ¢ @ 16
Optiont Ten o v o & o ¢ v :6 & @ « 6 v o o s o @ o 17
m L] 17
TREBY o ¢ v @ @ o & s &% o0 9 & & % s & 5 % ¢ & ¢ 18

21
22
. 22

Function Subroutines
Special Subroutines
ONETRNC

.
.
.
.
.
.
.
.
.
.

TWOTRNC e & o ° & @ s e e e e e & e e s e * e ¢ o 24
ROUNDER e ® e e & e % e e 0 & e * e ° o e & ° o o 25
e e ® e e & & e ® e ¢ & o o o s 26

i SUMATrY « « « « « o

ITY. Monte €Carlo TestINg « « v o s ¢ s o s % ¢ & v & % & & s 28

Generating Pseudo-Random Samples . « « « « &« o« « « & 28
Testing of Pseudo-Random Number Generators 30
. Uniform Distribution . « . ¢« « ¢ ¢ ¢ ¢ o o o o & 31

Independence . + o &+ o « o o o ¢ o ¢ o o o o o o o 33

RONS TE8E ¢ v v 5 5 v o % v 4 0 6. % ¢ % 6 v o » 33

Serial Correlation Test . . « « « o« & . o 34

Termination Criteria for Monte Carlo Testing o 36

(SUMBEY o ¢ o v« & & 6 % 5 v & % & & 9 4 ¢ ¢ & ¢ & o @ 42

IV,

v.

VI.

VII.

Evaluation of Avionics Mathematical Routines

Square Root « . . « « « ¢« &
Specifications
Assumptions
Testing Criteria
Solution 1 . « « ¢ &« &
Selution 2 . v v ¢ v v e
Solution 2 . « < s e e
Recommendations

Sine Function « « « « o« o &
Specifications
Assumptions
Range Reductions
Testing Criteria
Salution < .« ¢ « . @ s
SUMMBALY o « v s s & @ »

Cosine Function
Specifications
Assumptions
Range Reductions
Testing Criteria
Solution « « & « s v & &
SUIMMAYY .« ¢ « ¢ « & o

Summary . ¢« « ¢« ¢ ¢ o s o o

Analysis of Avionice Routine .

Bearing to Go Routine . . .
Bearing to Go Analysis . .
Objectives « « ¢« « o o
Approach « « v « v v o s
Termination Criteria . .
General Plot Analysis .
Spike Analysis
Recommendations
SUMMAYY o« « o s o o & & &

Quasilinearization Method . .

Proposed Method
Moving to the Surface . . .
Obtaining the Spline . . .
Jumping ¢ ¢« ¢ ¢ ¢ 0 66 oo
Algorithm

Analysis of Population of Local

SumMmary « « ¢« « o o ¢ o o
Conclusions and Recommendations
Conclusions . « « « « « « &

Recommendations
N-bit Simulator

iv

66

66
68
68
68
73
74
80
81
83

85

101
102

Mathematical Routines
Avionicas Routines « « o « o o« o s o &
Modified Quasilinearization Method .

BIDIEOGEUDRY s « & 5 3 siaw e w e e e e

Appendix C: Mathematical Function Approximations

Vita S s % 2 " e e e * e e e * e e+ e e e s e v

Appendix A: User's Manual for the N-bit Simulator . .

Appendix B: N-bit Simulator Subroutines Source Listing

103
103
103
105
110
116
133

142

List of Figures

Figure Page
1 N-bit Simulator Without Transmitted Errors 5
2 N-bit Simulator With Transmitted Errors 6
3 User Specifications (Options) .« « « o ¢ ¢ o o o o « & 11
4 Nonlinear Relationships Representing Rounding and

Truncation ¢ o ¢ ¢ s o « @ 00 0 s e e s e ww s e 15

5 Radix Effects . . o ¢ o o o o o o o e s o o o o o o = 16
6 ONEERNCG EXamples o ol'v o sisl o o o o oibs o & v & € -oil¥ 23
7 TWOFRNC Fxamples « o ¢ o o o « o o o o 50 o s o & o @ 25
8 ROUNDER Examples . o c o o o o s « s s o o & s & s @ 26
2 Absolute Error of Truncated CDC Square Root 47
10 Relative Error of Truncated CDC Square Root 47
11 Absolute Error of Square Root Solution 2 50
12 Relative Error of Square Root Solution 2 50
13 Absolute Error of Square Root Solution 3 53
14 Relative Error of Square Root Solution 3 53
15 Absolute Error of Sine Approx‘imation on LO, 1\'/2] %L 59
16 Relative Error of Sine Approximation on '0, ﬂ/é] ¢ 59
17 Absolute Error of Sine Approximation on ?, Zw]. ‘ % 60
18 Relative Error of Sine Approximation on b, 2ﬂﬂ. 5 o 60
19 Absolute Error of Truncated CDC Sine on }ZN,Zﬂ] v % 61
20 Relative Error of Truncated CDC Sine on }2“,2“] e 61
21 Absolute Error of Cosine Approximation on [0, Zﬂ] . 64
22 Relative Error of Cosine Approximation on [0, 2ﬂ] . 64
23 PeBrInE Lo U0 « s v s s 5 v e T Ve BV B B E S 67
24 Code to be Compiled Without Being Preprocessed 70

vi

=1

Page
Code to be N-bit Simulated « . ¢« ¢« ¢ & &« o« o« 71
CONPAR Plosr DEBRYRR. « » « o & o ¥ ¢ o o s 58 o % » & A
Absolute Error -vs- BTG Input Variable A 75
Absolute Error -vs- BTG Input Variable A 75
Absolute Error -vs- BTG Input Variable ¢ 76
Absolute Error -vs- BTG Input Variable &T PR ISR, 76
Absolute Error Using 5000 Numbers -vs- A « « . 78
Absolute Error Using 5000 Numbers -vs—= Ap « « « « + . 78

Absolute Error Using 5000 Numbers -vs— ¢ . « « « « « o 79

Absolute Error Using 5000 Numbers -vs- ¢p . « . « . . 19
Absolute Error Bound for Sine (X) on [0, 2n] e R 87
Quasilinearigation JUmpP + « « o o o o ¢ s s ¢« o s s &« I
Quasilineacization Jump Flow Diagram . . « 92

Bupitical DIstribution « « « s s« « o ¢« 5 v &« ¢ 2 6 ¢ &« 99

vii

Table

List of Tables

Results of Kolmogorov-Smir.aov Test

Results of Runs Test ., .

Results of Serial Correlation Test

Minimax Sine Coefficients

viii

Page
33
35
35

58

" " —— e - -
" SR . X . 2 e .

Abstract

Errors due to finite wordlength are unavoidab’e when aircraft
signal processing operations such as flight control, navigation, and
fire control are implemented on a digital computer. To reduce these
errors to tolerable levels, longer wordlengths can sometimes be employed.
The effects of some of the errors, such as those due to afithmetic series
truncation, machine roundoff, and quantization of system coefficients,
can be lessened somewhat by appropriate numerical analysis techmiques.

An n-bit simulator which runs on Control Data Curporation (CDC)

6600/CYBER 74 computer systems was modified and then used to evaluate
the accuracy of a flight navigation routine coded in FORTRAN. The rou-
tines were executed without the simulator to obtain results used for
benchmarking. The n-bit simulator was employed to simulate the numeri-
cal characteristics of the AN/AYK-15A digital processor. Error plots
were constructed which show the maximum errors occurring within small
plotting intervals plotted against each individual input value. These
plots were used to aid visually in analyzing the error characteristics
of the avionics routine as it would be implemented on the AN/AYK-15A.

A critical analysis of the error plots obtained showed that routines
which are coded using single-precision floating-point arithmetic are
prone to errors which exceed the error bounds specified for the routines.
This occurs even though range reductions in the trigonometric function

approximations are accomplished using extended precision.

ix

il oo

w

I Introduction

When aircraft signal processing operations such as flight control,
navigation, and fire control, are implemented on a digital computer,
errors result which are due to finite computer wordlengths. Longer
wordlengths must be employed sometimes to reduce these errors to toler-
able levels. Appropriate numerical analysis and design teéhniques can
reduce the effects of some of the errors, such as those due to arith-
metic series truncation, machine roundoff, and quantization of system
coefficients.

Two basic approaches might be considered when trying to analyze
the numerical error characteristics of a programmed routine. First,
consider the routine as given and determine the wordlength needed to
give a desired accuracy. Second, considering specific hardware charac-
teristics and the associated routine algorithm, attempt to implement a
modified algorithm such that the resulting errors are minimized. 1In
this investigation, the second approach was selected as the primary
mode of analysis.

The Air Force Avionics Laboratory has written a development speci-
fication for the AN/AYK-15A computer processor (Ref 2). This processor
will be used in the Digital Avionics Information System (DAIS) Inte-
grated Test Bed and is a candidate for a follow-on flight test program
in the F-16 aircraft. This specification establishes the performance,
design, development, and test requirements for the Processor prime item.
The instruction set specified is the MIL-STD-1750 airborne computer
instruction set (Ref 49). MIL-STD-1750 defines the instruction set,

mnemonics, and data format requirements for airborne computers.

Purpose

The purpose of this investigation is to develop tools and techniques
which can be used to determine if a given computer can solve a given
avionics signal processing problem within certain specified error and
time tolerances. Specifically, the following goals were defined:

- develop a tool to simulate accurately the computational charac-

teristics of any digital processor being studied

- produce common library routines which are optimal in the sense

that they try to maximize both absolute and relative accuracy
and at the same time minimize the number of instructions
(especially multiplications) required
- demonstrate the effectiveness of the simulation tool mentioned
above to analyze the error characteristics of a given class of
algorithms and associated routines.
Approach

There are four basic requirements which mﬁst be satisfied in order
to meet these goals. The first requirement is that the n-bit simulator
must accurately simulate the numerical properties of processors which
use the airborne computer instruction set defined in the MIL-STD-1750
document. The second requirement is that library routines for sine,
cosine, arctangent, and square root be developed which produce results
as accurately as possible. These routines must reflect the error char-
acteristics they would have if they were implemented on the simulated
computer. The third requirement is to demonstrate how the n-bit simu-
lator can be used to perform an error analysis. This requirement was
constrained to forward error analysis. The fourth requirement is to

indicate how the techniques applied to one program representing an

2

algorithm can be applied to a larger class of programs. 1f the techni-
ques demonstrated can be applied to a larger class of programs, then
programs from this larger class can be analyzed to determine the com-
patibility of the programs with the computer being simulated.

Several procedures or approaches are avaflable for assessing the
quality of floating-pofnt mathematical software. Typical analysis
schemes can be classified as follows:

1) error-bounding schemes (Refs 9; 31; 50; and 53),

2) forward error analysis (Refs 10; 25; 29; 52; and 62),

3) backward error analysis (Refs 48; 59; 62; 65; and 60),

4) multiple~precisfon arithmetic (Refs 5; 17; 35; and 68),

5) perturbation analysis (Ref 63), and

6) significance arithmetic (Refs 3 and 6).
Each of these six approaches was considered, with forward error analysis
being chosen. Forward error analysis requires that computed rvesults be
compared to higher precision reference values. This requirvement was met
by using the Control Data Corporation (CDC) CYBER 74 computer with fts
60-bit wordlength to compute the higher-precision results. These vesults
are then available to be compared to results which would be obtained
using the computer on which the routines would normally be executed.
Thus, the necessary tools and techniques for conducting a forward error
analysis can be developed for use with the CDC CYBER 74 computer. Since
forward error analyses reveal quantization, roundoff, and truncation
errors as they actually occur (as opposed to just giving upper limits),
this method was selected o;er the other error analysis schemes.

There are three primary sources of errors {n any numerical result:

transmitted errors, analytic truncation errors, and genevated ervors

3

a

TS——

ot e s P A v

(Ref 11:125). Transmitted errors are those which occur in the original
input data. Analytic errors occur when finite processes are substituted
for essentially infinite processes in the mathematical algorithm. The
third source of errors, generated errors, represent the errors actually
generated within the computer program if exact input data is entered.
Generated errors reflect the method of rounding or truncation utilized
and other design characteristics such as the number system base, or
machine radix. For the purposes of this investigation, when a program
is being evaluated solely for its accuracy, the transmitted errors are
not considered, since they would normally occur during the conversion
of analog signals to digital signals. A simplified diagram depicting
the method utilized by the n-bit simulator to perform a forward error
analysis is shown in Fig. 1. For simulations where the transmitted
errors are included, the n-bit simulator will be employed as indicated
in Fig. 2. In both diagrams, the area within the dotted lines repre-
sents the phase of analysis using n-bit accuracy. A general discussion
of the philosophical questions concerning the isolation of transmitted
errors is presented by Kuki and Ascoly (Refs 41 and 42).

Tools and Techniques

Several software tools exist to aid the analyst in performing a
forward error analysis. Two of these are an n~bit wordlength simulator
(Ref 37) and a floating-point simulator (Ref 25). The n-bit siﬁulator
was selected as the primary tool for several reasons. First, with a few
modifications it should be able to simulate the numerical properties of
any processor following the MIL-STD-1750 specification; second, it is
well documented; and third, it has been tested on a CDC CYBER 74 com—

puter system, thereby eliminating the need to use multiple-precision

4

e |

INOYI T UO

73eoTTddY IosRINIIC (1NN CT YW

stsATRuy
XoIIy

pIenIOolN

nd3ng

weaxexy
POYENTRAS
pPoAOUISY
SIOXIT
P33 IusSURI]
lllllll lI'J
Lovanooy 319- |
wexloxy _ syndur

petenTeA] ¥12-09

i A NS

OIIF PSFITUSURIL Y3T) U0T3eoTTddy I03eTnuUTs 3IA-i

-

u2x3ox3
d

nding

pajyenTeAl

stsfeuy
IOIXT e
sva-ith {ol{ T
o Lo=Inooy 31g-i
ueIdoxzg
0 pojenTesg
T HO:I X

sqndug
1T94-09

i

packages in order to obtain benchmark data. This also eliminated the
need to use two computers, since the higher-precision results and the
results of the simulated computer can be made available at the same time
for immediate comparison using the accuracy of the CDC CYBER 74 computer.
The n-bit simulator gives the user the option of selecting different
wordlengths within any program, thereby making it a valuable tool for
perturbation analysis, since the processor wordlength is also considered
to be a candidate for perturbations. It is assumed that the reader is
familiar with the work by Klein (Ref 37).

Assumptions/Constraints

Several assumptions were made during the course of conducting this
investigation. Five of these assumptions are the same as the first five
assumptions by Klein (Ref 37:6-8). These five assumptions cover various
aspects of the n-bit simulator such as its capabilities and the environ-
ment in which it is executed. Klein's sixth assumption has been changed
due to the modifications made to the n-bit simulator. The n-bit simu-
lator is now able to simulate computers using one's complement, two's
complement, or sign-magnitude nrfthmofic. Also, binary, quaternary,
octal, or hexadecimal numerical data representations can now be simu-
lated. There is still no provision for simulating decimal representa-
tions. The first part of Klein's sixth assumption, that f{loating-point
mantissas will be normalized, remains the same. Five other assumptions
that were made are:

~ the CDC CYBER 74 mantissa length of 48 bits provides sufficient

accuracy (error less than one tenth of one percent of that pro-
duced by the simulated computer) for benchmarking purposes in a

forward error analysis,

= fixed-point numbers would be used primarily for addressing, sub-

scripting, and logical values, while floating-point numbers would
be used in performing the numerical computations (Ref 2),

- execution time is a "precious resource" on avionics computers,
meaning that flight routines must execute as efficiently as
possible while still maintaining the required accuracy (Ref 57),

- coding an algorithm in FORTRAN for the purpose of executing it
on the n-bit simulator will not significantly alter its error
characteristics from those it would have if implemented on an
avionics computer, since the n-bit simulator modifies all inter-
mediate results as well as the final results, and

- avionics algorithms found in Ref 57 are representative of general
avionics algorithms which might be programmed for use in differ-
ent aircraft and are therefore sufficient to be employed in dev-
eloping a method for evaluating a general class of algorithms.
Since these algorithms are for the F-16 aircraft, they can be
used to test the error characteristics of the AN/AYK-15A avionics
processor which is a candidate for use in F-16 aircraft.

Chapter Synopsis

The second chapter of this investigation contains a summary of the
modifications made to the n-bit simulator to allow it to simulate accur-
ately processors which use the airborne computer instruction set defined
by MIL-STD-1750, and in particular, the AN/AYK-15A processor. The third
chapter contains a discussion of Monte Carlo techniques which were ap-
plied when conducting a forward error analysis. Topics discussed include
generating and testing pseudo-random numbers and obtaining criteria to

use to decide when to stop testing. The fourth chapter contains a

discussion of the procedures used to develop sine, cosine, and square
root function approximations. There was no approximation developed for
the arctangent function. Many different approximations and methods were
tested, with only the "best" being discussed. The fifth chapter con-
tains a detailed discussion of one flight routine (representing a por-
tion of an algorithm) and the associated error analysis conducted. This
chapter presents a method for using the n-bit simulator in forward error
analysis studies on this one flight routine. The techniques discussed
are shown to be applicable for testing other routines as well. The
sixth chapter contains a discussion of the quasilinearization method as
itjmight be applied in a forward error analysis. The last chapter con~

tains the conclusions drawn from the error analyses and associated re-

sults and discusses recommendations for future research.

I1 N-bit Simulator

The n-bit simulator (Ref 37) consists of two major components. The
first, the preprocessor, reads as input a FORTRAN source program repre-
senting an algorithm, translates it into another FORTRAN source program
with all the arithmetic operations replaced by subroutine calls, and
writes it to an output file., The second part i{s a collection of sub-
routines the modified FORTRAN source program calls when executing.
These subroutines perform the arithmetic operation they replaced using
the wordlength of the host computer and then they modify the result to
reflect the properties of the simulated computer processor wordlength,
Some of the important characteristics of the n-bit simulator are its
capabilities to handle both fixed-point (limited) and floating-point
arithmetic, its capability to perform ecither rounding or truncation,
and its documentation and overall design which allowed it to be easily
modified. In this chapter are discussed the original n-bit simulator,
its capabilities, and a series of modifications made to the preprocessor
and selected subroutines. Options were added to allow the user to
specify the machine radix, the number of guard bits used, and the type
of arithmetic performed (one's complement or two's complement). The
user also now has the capability of specifying the tixed-point word-
length separately from the floating-point wordlength., A detalled dis-
cussion of the original n-bit simulator i{s presented by Klein (Ret 37).
An updated user's manual is shown in Appendix A.

Preprocessor
The preprocessor changes all arithmetic assignment statements into

a series of one or more subroutine calls. FEach avithmetic operator

(4, =, *, /, ** and =) is veplaced by one subroutine call, thereby

10

AT AR ANE e b

allowing both intermediate and final results to reflect accurately the
characteristics of the simulated computer. The only change made to the
preprocessor was the addition of one more parameter in the subroutine
calls. This extra parameter, which is the name of an array which holds
the overflow and underflow limits for floating point values, was added
to allow faster checking for floating-point overflow and underflow. The
values in the original simulator were stored in an integer array and the
SHIFT function was used to prevent conversion of the values to fixed-
point format.

SETNBIT Subroutine

SETNBIT is the name of a subroutine which is called as the first
executable statement of the FORTRAN program and wherever else required.
This subroutine takes the input parameters which are the user options
and converts them into values the numerical routines need. The ten user

options associated with any call to the SETNBIT routine are shown in

Fig. 3.
User specifications:
1) NBITS Floating point wordlcngth
2) MANTSA Mantissa length (excluding sign)
3) IGUARD Number of guard digits
4) IEXPNT Exponent length (including sign)
5) IPTPOS Binary point position
6) IRNDTR Round or truncate
7) IONTWO One's complement or two's complement arithmetic
8) ITYPE Machine radix
9) MESSGS Message suppression
10) IFIXD Fixed point wordlength

Fig. 3. VUser Specifications (Options)

Each entry shows the order the option occurs in the parameter list, the

variable name, and its meaning. The variable names will be used in

11

equations later in this chapter. The output values are stored in two
arrays, the first (XEY) holding fixed-point values and the second (TKEY)
holding floating-point values. These arrays are the last two parameters
for SETNBIT. The ten user options will be explained first followed by
the way the two arrays are filled.

Option One. The first option is used to indicate the total number
of bits in a floating-point word. As an example of this, the AN/AYK-15A
digital processor has a machine wordlength of 16 bits, with single pre-
cision fixed-point words being represented by 16 bits, or one machine
word, and single-precision floating-point words being represented by 32
bits, or two machine words. When simulating with single precision
floating-point words, the value of option one would be set to 32, or
the number of bits in the floating-point word. Since some smaller
computers use different numbers of machine words to represent fixed-
point and floating-point words (Ref 49), just as the AN/AYK-15A does,
option ten was added to allow the user to specify a fixed-point word-
length different from the floating-point wordlength specified in option
one,

Option Two. The second option allows the user to specify the
nunber of bits in the mantissa of the floating-point word, not counting
the sign of the mantissa. This is the mantissa length for all final
variable assignments.

Option Three. The third option, which replaces the one in the
original simulator which was used to indicate single, double, or triple
precision computation, is used to indicate the number of guard bits
employed by the simulated computer. The uses of guard digits as defined

by Kuki and Cody (Ref 43:224) are as follows. For addition, guard

12

digits are primarily used to retain shifted digits of the operand with
the smaller exponent at the time of the exponent alignment of the

operands. Quard digits also participate in the right shift of the inter-

mediate sum in case of a carry. Using only one guard digit, the relative
accuracy of the sum of two exactly represented numbers may be protected
to within machine precision. The representation of the product of two
N-digit significands requires 2N digits. 1If, of these 2N digits, N+K
high order digits are actually developed before the postnormalization
of the result, then K guard digits have been used for multiplication.
Since the multiplication of two normalized operands requires postnormal-
ization of at most one digit, there will be either K or K-1 guard digits
available for possible rounding after the postnormalization. 1f no
guard digits are used, a number could be changed by multiplying it by
1.0 (Ref 43:224). 1t is still possible to indicate single, double, or
triple precision computations by setting this option to the required
number of extra bits. As an example of how this option is used, if
MANTSA is assigned the value 23 and 1GUARD the value 2, the multipli-
cation

TEMP = T1 * T2 (v
would be performed using 25-bit mantissas and the result would be stored
in the variable location TEMP using a 23-bit mantissa. For more infor-
matfon on the effects of guard digits see Kuck, Parter, and Sawmeh (Ref
39), Kuki and Cody (Ref 43), and Cody (Ref 12).

Option Four. Option four is the same as one of the options in the
original simulator and is used to show the exponent length for floating-
point words. The sign of the exponent is included in the length of the
exponent, so the condition

13

— e ~J-!lI--llllI-IlIlI-l!-I-HI-v-n-w---n-gnguqq.--—-—u
!:" :

NBITS = MANTSA + IEXPNT + 1 (2)
must hold true.
Option Five. The fifth option is the same as one in the original

simulator and allows the user to specify whether the binary point is to

the left of the mantissa (making the mantissa a fraction) or to the
right of the mantissa (making the mantissa an integer).

Option Six. This option is also the same as one in the original
simulator and is used to specify whether rounding or truncation will be
performed.

Option Seven. This option was added to allow the user to specify
whether the machine being simulated words in sign plus magnitude, sign
plus one's complement, or sign plus two's complement floating-point
arithmetic. When rounding is being performed, the only differences are
in the overflow and underflow values. When truncation is being per-
formed, however, one other rather subtle difference appears, that being
that sign plus two’s complement negative numbers are truncated away
from zero while sign plus magnitude and sign plus one's complement
negative numbers are truncated toward ;ero. This concept, shown gra-
phically in Fig. 4 for fixed-point numbers, is explained in detail for
both fixed-point and floating-point numbers by Oppenheim and Weinstein
(Ref 55:406~413). 1In Fig. 4, x represents the number before truncation
or rounding, Q(x) represents the number after truncation or rounding,
and the variable b represents the wordlength for a fixed-point number.
Rounding and truncation are performed by the special subroutines
ONETRNC, TWOTRNC, and ROUNDER which are explained in detail later in
this chapter. For more information on the effects of rounding and

truncation, see Kuck, Parker, and Sameh (Ref 39), Tsao (Ref 61), Kuki

14

B B T -

(214366 oY) uotjeounz] pue Sutpunoy Jutquessaday sdTysuojieroy IBSUTTUON

o.nN omﬁnm

0>X

0<x ¢

2 =x (s 0

0= x-(X)b >__2-

q
(epn3Tuleu pue

u3{s pue juswardwod s,9uU0)

U020

:

\

(x)®

0 Sx=-(xX)b > q-%"

(usuatduod s,0M3)

UOT4BOUNI],

()

n.uN*m = z-(x)t > q-* o
Sutpunc:
[/
7
7
2 7
- /]
X a-°¢ /
Ve
\
/
P q-°
7/
Ve
(x)e

15

.

and Cody (Ref 43), Cody (Ref 12), and Kaneka and Liu (Ref 36).

Option Eight., Option eight was added to allow the user to specify
the machine base, or radix, of the computer being simulated, provided
the radix is a multiple of two. Binary, octal, and hexadecimal machines
are examples of computers having a machine base which is a multinle of
two. The machine base defines the actual value of the exponent and
affects not only the overflow and underflow limits, but also the way the
mantissa is normalized. In the following examples, the mantissa sign
bit is first, the mantissa is second, and the exponent is last, since
this is the way computers following the MIL-STD-1750 document represent
floating-point numbers. Truncation is assumed, and the four bit pat-
terns in Fig. 5 represent how the result of dividing 127 by 64, or the
number 1.984375, would be represented on binary, quaternary, octal, and

hexadecimal machines respectively.

s
Bit pattern Actual value Radix

0 1111111 0001 1.984375 2

0 0111111 0001 1.96875 4

0 0011111 0001 1.9375 8

0 0001111 0001 1.875 | 16

Fig. 5. Radix Effects

In each case, the wordlength is 12 bits, with 1 bit for the sign, 7
bits for the mantissa, and 4 bits for the exponent. More information
on the effects that the machine radix has on numerical accuracy can be
found in Kuki and Cody (Ref 45), Kuck, Parker, and Sameh (Ref 39),

Goldberg (Ref 27), and Cody (Ref 12).

Option Nine. The ninth option is the same as one in the oviginal

16

TR

simulator and is used to control the printing or suppression of overflow
and underflow messages. 1f, during any part of the simulation, overflow
occurs on the CDC CYBER 74 and the value is used again, the program will
terminate regardless of the value of this flag.

Option Ten, This last option was added to allow the user to specify
the fixed-point wordlength so that correct overflow bounds can be estab-
lished for both fixed-point and floating-point computations. This allows
programs run on computers such as the AN/AYK-15A, where the fixed-point
wordlength is different from the floating-point wordlength, to be
simulated accurately without having to call the SETNBIT subroutine when
changing between fixed-point and floating-point computations.

KEY. The array KEY holds fixed-point values which are used by the
numerical subroutines. The following paragraphs describe how the
elements of the KEY array are filled from the values specified as user
options.

KEY(1). KEY(1l) holds the largest fixed-point positive number
which can be represented on the machine being simulated. Given the
IFIXD input in option ten, KEY(1) may be computed by

KEY (1) = (2%*(IFIXD-1))-1 (3)

KEY(2). KEY(2) holds the largest (magnitude) negative value
of the simulated computer and is used in checking for negative fixed- }
point overflow. For sign plus magnitude and sign plus one's complement
machines, KEY(2) may be computed by

KEY(2) = -KEY(1) (4)

but for sign plus two's complement machines it should be computed by
KEY(2) = =(2¥*(1FIXD-1)) (5)
KEY(3). KEY(3) holds user option six, or IRNDTR, specifying

17 i

rounding or truncation, The use of this field is discussed further
later in this chapter in the section entitled Special Subroutines.

KEY(4). KEY(4) holds user option seven, or TONTWO, speci-
fying one's complement or two's complement arithmetic. The use of this
field is also discussed later in this chapter in the section entitled
Special Subroutines.

KEY(5). KEY(5) holds user option nine, or MESSGS, specifying
print or print suppression.

KEY(6). KEY(6) holds the number of mantissa bits to save on
all final assignments and is filled with the value of MANTSA, or user
option two.

KEY(7). KEY(7) holds the number of extra mantissa bits to
save during intermediate operations and is filled with the value of
IGUARD, or user option three.

KEY(8). KEY(8) holds user option eight, or ITYPE, specifying
the radix of the machine being simulated. The value actually stored is
the exponent of two which would give the desired radix (the value 3
represents octal, since 2*%%3=8),

TKEY. The array named TKEY holds four values used for overflow and
underflow checking. While each element of the array can be represented
by a mathematical expressfion, the actual values are computed using
shift, mask, and addition or subtraction operations. In some instances,
an operand being added or subtracted is unnormalized, with the answer
being normalized by the CDC CYBER 74 computer. If the physical limits
of the CDC computer would be exceeded in trying to represent the over-
flow or underflow values of the computer being simulated, the CDC limits
are used instecad. The documented code to implement the algorithms to

18

fill the TKEY array is shown in Appendix B, Those operands used in
additions or subtractions which are unnormalized are annotated as such.
In the equations which follow, the variables are the same as those
shown in Fig. 3.

TKEY(1). The first element of array TKEY holds the largest
positive floating~point value that can be expressed on the computer
being simulated. If, during any operation, a floating-point result
exceeds this value, positive overflow will be signaled and the result
will be replaced by TKEY(l). The value stored in TKEY(1l) depends upon
the location of the binary point specified by IPTPOS, or user option 5.
If the binary point is on the left, TKEY(l) may be computed using

TKEY (1) = (2*%MANTSA-1) *(2**(ITYPE*((2%*(IEXPNT-1))-1)-
MANTSA)) (6)
If the binary point is on the right, TKEY(l) may be computed using
TKEY (1) = (2*%*MANTSA-1) *(2**(ITYPE*((2**(IEXPNT-1))-1))) (7)

TKEY(2). The second element of TKEY holds the largest
(magnitude) negative floating-point value representable by the computer
being simulated. If any result is les; than TKEY(2), negative overflow
is signaled and the result is replaced by TKEY(2). The value stored in
TKEY(2) depends upon both the location of the binary point specified by
IPTPOS and the type of arithmetic specified by IONTWO, or user option 7.
If the binary point is on the left and sign plus one's complement
arithmetic is specified, TKEY(2) may be computed using

TKEY(2) = -~ (2**MANTSA-1)*(2*%*(ITYPE*((2%*(IEXPNT-1))-1)-
MANTSA)) (8)
If the binary point is on the left and sign plus two's complement arith-

metic is specified, TKEY(2) should be computed using

19

TKEY (2) = =(2**(ITYPEX((2**(IEXPNT-1))-1))) (9)
For the cases where the binary point has been specified to be on the
right,
TKEY (2) = = (2%*MANTSA-1) *(2*%(ITYPE*((2*%*(IEXPNT-1))-1))) (10)
is used for the sign plus one's complement case and
TKEY (2) = =(2**(ITYPEX*((2%%(1EXPNT-1))-1)+MANTSA)) (11)
is used for the sign plus two's complement case.
| TKEY(3). The third element of TKEY holds the smallest posi-

tive floating-point number which is greater than zero and still repre-

sentable on the computer being simulated. If any result is greater than
zero and less than TKEY(3), positive underflow is signaled and the result
is replaced by zero. For the cases where the binary point is specified
to be on the left,
TKEY (3) = 2*%%(-(ITYPE*((2**(IEXPNT-1))-1)+ITYPE)) (12)
is used when sign plus one's complement arithmetic is specified and
TKEY (3) = 2%%(-(ITYPE*(2*%(IEXPNT-1))+ITYPE)) (13)
is used when sign plus two's complement arithmetic is specified. If
the binary point is specified to be on the right, the value for TKEY(3)
is computed using
TKEY(3) = 2%%(-(ITYPE*((2**(IEXPNT-1))-1)+ITYPE-MANTSA)) (14)
for the sign plus one's complement case and using
TKEY(3) = 2%%(~(ITYPE®(2**(TEXPNT-1))+ITYPE-MANTSA)) (15)
for the sign plus two's complement case.

TKEY(4). The fourth element of TKEY holds the smallest
(magnitude) negative floating-point value which is less than zero and
still representable on the computer being simulated. If any result is
greater than TKEY(4) and less than zero, negative underflow is signaled

20

and the result is replaced by zero. If the binary point has been
specified to be on the left,

TKEY (4) = —(2%%(~(ITYPE*((2**(IEXPNT-1))-1)+ITYPE))) (16)
should be used if sign plus one's complement arithmetic has been speci-
fied and

TKEY (4) = ~((2%%(- L1YPE))+(2%*%(~MANTSA))) *(2** (-~ (LTYPE*

(2%*(IEXPNT-1))))) (17)
should be used if sign plus two's complement arithmetic has been speci-
fied, For the cases where the binary point has been specified to be on
the right,

TKEY(4) = —=(2%*(-(11YPE*((2**(IEXPNT-1))~1) +ITYPE-MANTSA))) (18)
is used for the sign plus one's complement case and
TKEY (4) = =((2%%(-17VPE))+(2%%(-MANTSA))) *(2*%* (<~ (ITYPE*
(2%*(IEXPNT-1))-MANTSA))) (19)
is used for the sign plus two's complement case.

Function Subroutines

The function subroutines are called to perform all additions, sub-
tractions, multiplications, divisions, exponentiations, and assignments.
The subroutines, together with the operation they perform and the types
of operands they have, are shown on page 47 of the thesis by Klein
(Ref 37). Although several changes were made to these subroutines,
their basic concept remains the same. The first change is that they all
now have one extra parameter, the array TKEY. The subroutines which
handle only fixed-point operands do not use this parameter, but more
extensive coding changes would have been required in the preprocessor
to differentiate between the subroutines which have at least one

floating-point operand and those which do not. The second change was

21

necessitated when the user option to handle sign pius two's complement
arithmetic was added. Separate checks are made for positive and
negative overflow in all the subroutines, and for those subroutines
having at least one floating-point operand, there are also separate
checks for positive and negative underflow. The code for printing the
overflow and underflow messages was put into the function subroutines,
eliminating the small print subroutine that was part of the original
simulator. The third change is that all the code to accomplish the
rounding and truncation for floating-point operations has been put into
three special subroutines.

Special Subroutines

The three special subroutines, called ROUNDER, ONETRNC, and TWOTRNC,
perform rounding, sign plus one's complement truncation, and sign plus
two's complement truncation on floating-point results. The documented
code for these subroutines is shown in Appendix B. The option which
allows the user to specify the radix of the machine (ITYPE) increased
the complexity of the code considerably. The exponent must be examined
before determining the number of bits to save in the mantissa, since
on a machine with a radix greater than two, the mantissa might be shifted
one or more places to the right. To simulate this happening, the number
of places the mantissa would be shifted must be computed and then sub-
tracted from the number of mantissa bits to save. For intermediate
results, the number of guard digits is added to give the total number
of mantissa bits to save.

ONETRNC. The subroutine ONETRNC performs sign plus one's comple-
ment truncation just as it was performed in the original simulator sub-
routine, except it has added code to handle the machine radix option

22

and the guard bits option. A step-by-step example of how ONETRNC works
is shown below in Fig. 6. This example shows how the result of 1023
divided by 512 would be truncated for an octal machine with a word-
length of 12 bits, 7 of which are mantissa. There is 1 guard bit and

the number being truncated is an intermediate result.

a) 0 0011111 1 0001

b) 17207774000000000000
c) 00000000000000001720
d) 00000000000000172077

e) 17207700000000000000

Fig. 6. ONETRNC Examples

Line (a), which is in binary, shows what the result would look like on
the simulated machine. Line (b) shows what the answer looks like on the
CDC CYBER 74 computer before being manipulated by ONETRNC. Line (c)
shows the first 12 bits of the CDC CYBER 74 word after they have been
shifted right 48 places, putting the exponent into fixed-point position.
The word has been filled with the manéissa sign during the shift, and
following the shift, if the result is negative, it is complemented. The
value at this point represents the biased exponent of the CDC CYBER 74
word. If the sign of the exponent and mantissa are the same, then the
exponent is subtracted from 2056, otherwise the exponent is subtracted
from 2055. This subtraction allows the FORTRAN MOD function to compute
the number of extra mantissa shifts required to compensate for the
machine radix. The MOD function computes the remainder of this dif-
ference divided by the base two logarithm of the machine radix, or ITYPE,

which is stored in KEY (8). 1In this example, the exponent (976) was

23

subtracted from 2055, giving 1079, and 1TYPE is 3, so the number of
extra bits lost is 2, which is 2lso the number of leading zeros in the
mantissa in line (a). The number of bits to truncate for intermediate
results is found by subtracting the number of mantissa bits and guard
bits to save from 48, then adding the number to lose due to the machine
radix. For this example, the final number of bits to lose is 48-(7+1)+2,
or 42 bits, leaving 6 significant bits in the CDC CYBER 74 mantissa.

} The CDC CYBER 74 word is then shifted 42 places, first to the rvight with

a sign extension fill (line d) and then to the left with circular fill

3 (line e). The result has the same numerical value as line (a).
p TWOTRNC. TWOTRNC works just like ONETRNC except that for negative

numbers, TWOTENC truncates them away from zero instead of toward zero.

This is done by adding to the negative number a negative number which

T

is composed of the same exponent value and an unnormalized mantissa
which may be computed by treating the mantissa like a fractional value

and subtracting the smallest non-zero simulated mantissa from the

smallest nonzero unnormalized CDC CYBER 74 mantissa. The example in
Fig. 7 shows the step-by-step two's complement truncation of the result
of dividing -1023 by 512 on a binary machine with a 12-bit wordlength.

The mantissa length is 7 bits, there are no guard bits, and the binary

point is on the left. Line (a), which is in binary, shows what the
result should look like on the simulated computer. Line (b) shows what
the result looks like on the CDC computer before being manipulated by
TWOTRNC. Line (c¢) shows the unnormalized number which is to be added
to the result. Line (d) shows the result of this addition. The next
step is to perform the shifting just as in ONETRNC. Line (e) shows the
result after being shifted right 41 places, and line (f) shows the final

24

-
2 Jans!

a) 1 0111111 (010

b) 60570003777777777777
c) 60577740000000000000
d) 6056376é000000000000
e) 77777777777777413477

f) 605637777777777771777

Fig. 7. TWOTRNC Examples

result after being shifted left 41 places. The values in line (f) and
line (a) are the same.

ROUNDER. The subroutine ROUNDER has been changed from the one in
the original simulator in that now it handles all rounding which needs
to be done. Rounding is accomplished in the same manner for both sign
plus one's complement and sign plus two's complement arithmetic, so no
distinction is made between the two. ROUNDER works the same as ONETKNC
and TWOTRNC in the way that the machine radix ‘and guard digits are
handled. It also performs a sign plus one's complement truncation as
the last step, just as the others do. Before the final shifts are per-
formed, however, ROUNDER rounds by adding to the operand an unnormalized
number which has the same sign and exponent as the operand. The man-
tissa of this number is computed by putting a 1 one place to the right
of the computed end of the simulated mantissa and zeros elsewhere. For

a negative number, this mantissa is then complemented. Fig. 8 shows an

e ——

example of how the result of dividing 1023 by 512 is rounded to a 7-bit
mantissa. No guard digits are used, and the machine is hexadecimal.
Line (a) shows what the result would look like on the simulated computer,

and line (b) shows what the result looks like on the CDC CYBER 74 before

0 0010000 0001

b) 17207774000000000000

¢) 17200200000000000000
d) 17214076000000000000
e) 00000000000000036430

f) 17214000000000000000

Fig. 8. ROUNDER Examples

being manipulated. Line (c) shows the unnormalized number which is
added to the operand before truncation occurs. In this case, only 4
mantissa bits will be saved, since 3 are lost because of the machine
radix., Line (d) shows the result of the addition, with the CDC handling
the special case where the exponent has been changed. Line (e) shows
the result of the left shift of 44 places, and line (f) shows the final

result, which is the same as line (a).

Summary

Several changes were made to the original n-bit simulator to enable
it to simulate more accurately various.computer wordlengths. The pre-
processor was modified so that it builds an extra argument into the
function subroutine calls that it places in the modified FORTRAN source
program. This extra argument, TKEY, is the name of a floating-point
array which holds the floating-point overflow and underflow limits of
the simulated computer. The subroutine SETNBIT was changed to give the
user more flexibility in simulating different computers. Options were
added to allow the user to differentiate between sign plus one's com-
plement and sign plus two's complement machines, to specify the radix

of the machine being simulated, to specify different floating-point and

26

fixed-point wordlengths, and to specify the presence of guard bits. The
insertion of the guard-bit option eliminated the need for the option in
the original simulator which allowed the user to specify whether compu-
tations were performed in single, double, or triple precision. The
function subroutines were changed so that all overflow and undevtlow
checks and messages are handled in the subroutines, and all rounding

and truncation is done by three special routines called ONETRNC, TWOTRNC,
and ROUNDER. Creating these special routines increased the execution
time of the simulator, but at the same time it allowed tor increased

system reliability and maintainability.

27

wr s S

11T Monte Carlo Testing

When evaluating numerical software, one finds a direct relationship
between the effort expended in testing and the confidence in the correct
ness of the software. One way to assure correctness is to test all pos- ‘
sible combinations of inputs. Since this is rarely practical, a common f
practice is to use a limited set of input data for testing. In this E
chapter are discussed techniques for testing pseudo-random number gen- |

k erators and Monte Carlo techniques for testing numerical software. Also

mentioned are testing methods proposed by Cody (Ref 10) and others to
increase the probability that numerical accuracy problems in a given
numerical routine will be discovered. |

Generating Pseudo-Random Samples

Only binary computers which perform two's complement arithuetic are

considered in this ~<hapter, and it is assumed that floating-point man-

tissas are normalized. Floating-point numbers are represented with man-

tissas of length m bits and exponents of length e bits. Since the man-
: m-1 ;

tissas are normalized, there are only 2 unique mantissa values.

There is one extra mantissa representation which is used for the value

0 which is not normalized, since the mantissa is all zeros. Not count-

ing the right endpoint of the interval [9.0,1Jﬂ , there are K unique

numbers expressable where K may be computed by

K = 2™ 2>+ (20)
For the AN/AYK-15A computer, the mantissa length is 23 bits and the

exponent length is 8 bits. Therefore, from (20), K is

K = (223 Lyx28 Ly = 541,065,217 (21)

Thus, when testing even a simple routine such as a sine routine for

28

Ak A r o

sin(mX/2) over the interval ﬁ0.0,].Oﬂ, it becomes impractical to test
using all possible inputs. Therefore, Monte Carlo techniques are often
employed.

When taking samples of input data, Cody (Ref 10) states that the
input interval can be divided into subintervals, with a collection of
random bit patterns tested in each subinterval. Not all numbers in his
subintervals necessarily have the same exponent. For any of his sub-
intervals containing numbers for which the error varies substantially,
the subintervals are broken down further with more random bit patterns
being chosen from each new subinterval.

If a subinterval is considered to contain all representable numbers
with the same exponent, then the numbers are evenly spaced over the sub-
interval. This does not mean that one can take uniform random samples
from the interval [0.0,I.é] and expect to get an unbiased random samp-
ling of all possible values occurring in that interval. If so, half of
the samples would be expected to lie in the interval [b.S,l.q . These
numbers have an exponent of 0 and are uniformly-distributed over the
subinterval [0.5,1.6‘. For the AN/AYK-15A computer, there are 129

e—1+1 where e=8) different exponents which, when combined with man-

(2
tissas, produce aumbers in the interval [0.0,1.0]. Thercfore, less
than one percent of all representable numbers in the interval [0.0,1.(&
actually lie in the subinterval [0.5,1.(%.

Cody recommends using random bit patterns, and these can be ob-
tained easily using the CDC pseudo-rardom number generator. The pseudo-
random number generator returns values which are uniformly-distributed

over the interval [0.0,1.(ﬂ . Those numbers less than 0.5 can be modi-

fied by

29

" I omiage Vi - g -

RpC—— : T

5S<1,0-8 (22)
with the resulting numbers being uniformly-distributed over the sub-
interval [0.5,1.(ﬂ . The exponent can then be modified to provide a
uniformly-distributed pseudo-random sample from any of the 129 subinter-
vals making up the interval D).O,l.qﬂ. Since all subintervals contain
uniformly-distributed numbers, sampling from each subinterval equally
helps ensure that the total sample is close to being uniformly-distri-
buted over the entire population of K representable numbers. Although
this method is not as random as if the exponents were also generated
randomly, it is easier to use when testing numerical software with the
n-bit simulator, since it is easier to construct the sample numbers. In
this investigation, all pseudo-random samples were generated by combin-
ing a pseudo-random normalized mantissa (from the subinterval [O.S,IJﬂ)
with a pseudo-random exponent which was uniformly-distributed over the
population of possible exponents. Resulting samples which fell outside

the variable ranges were discarded.

Testing of Pseudo-Random Number Generators

Three considerations play important roles in determining whether or
not a particular source provides uniformly-distributed random or pseudo-
random numbers which are adequate for use in testing. First, the numbers
must be able to pass statistical tests which reveal departures from uni-
formity and independence. Second, the numbers must be sufficiently dense
over the interval being used, which in this case is the subinterval
[0.5,1.0]. Third, the numbers should be able to be produced efficiently.
Since these three properties rarely characterize any one method of pro-
ducing random numbers, compromises are made. Uniformity and independence

are generally more important than density or efficiency in determining

30

the adequacy of any particular method (Ref 19:169-170). The numbers
returned by the CDC pseudo-random number generator are uniformly-dis-
tributed over the interval [0.0,I.Cﬂ and can be shown to pass the pair
triplet test, the auto-corrclation test with lag <100, and one of the
most powerful tests, the spectral test formulated by R. R. Conveyou and
R. D. MacPherson (Ref 38:82 and 14:82). The CDC pseudo-random number
generator, when used in conjunction with the n-bit simulator and equa-
tion (22), can be used to efficiently produce numbers which are suffic-

iently dense over the interval [0.5,].0]. There are many tests designed

to reveal departures from independence and a uniform distribution.

Knuth (Ref 38) describes ten of them with algorithms, and other tests
can be found in references 34, 45, and 54. The tests discussed here
represent those that were used to test the CDC pscudo-random number gen-
erator when used in conjunction with the n-bit simulator. Tests were
conducted for a wniform distribution, randomness, and correlation.

Uniform Distribution. The Kolmogorov-Smirnov test (Ref 19:187-188)

was usced to test whether or not pscudo-random numbers were uniformly-
distributed over the interval [O.S,I.O]. The sample cumulative distri-

bution function is

0 X< Xl

Fo =41 x <x<x, i=,...,01 (23)
1 X>X
sl

and the theoretical cumulative distribution function is

0 X <0.5
F(X) ={ 2X-1 0.5 < X < 1.0 (24)
1 X3 1.0

The test statistic n“(x) is

D (X) = m;x [F(x) - Fn(x)l (25) |

The null hypothesis that the samples are taken from a uniform distribu-
tion may be rejected with a confidence of 1l-a if Dn(x)lg Da’ and 1if
Dn(x) < Da’ the null hypothesis cannot be rejected. For a = 0.10, 0.05,
and 0.01, the critical Da values were computed using equations (26),

(27), and (28).

1.22

D" "% (26)
1,36

Pos T (27
1.63

D.Ol ;n (28)

The results of Kolmogorov-Smirnov tests of pseudo-random numbers
are shown in Table 1. Colums 1 and 2 show what the numbers were used
for, columm 3 shows the number of samples generated, and column 4 shows
the computed Dn values. These can be compared to values shown in col-
umns 5, 6, and 7 which show the critical Da values used to test with a
level of significance a. These numbers tested were used in evaluating
the square root and sine function approximations which are discussed in
the next chapter. When testing, odd-numbered calls to the pseudo-random
number generator were used to generate the mantissa and the even-num-
bered calls were used to generate the exponents. The mantissas were
modified, if needed, by using equation (22) and were then truncated to
contain 23 significant bits, which is the single-precision mantissa
length of the AN/AYK-15A flight computer. The numbers used to generate
the exponents were tested as returned by the pseudo-random number gen-
erator. The reasons for choosing a particular number of samples to use

will be explained later in this chapter and in the next chapter.

32

NUMBER OF
aa sapLes | Pn(® Po.10
Square Mantissa 600 0.0414 0.0498
b
Root Exponent 600 0.0307 0.0498
Sine Mantissa 25307 0.00470 0.00767
Cosine Exponent 25307 0.00549 0.00767
l
Table 1. Results of Kolmogorov-Smirnov Tests

Independence. Randomness and correlation should be tested for when

evaluating the independence of vandom numbers. Randomness for single
numbers was tested by using the runs test.

Runs Test. The runs test (Ref 47:282-285) is based on the
order in which samples are obtained. The median of the samples is ob-
tained, and then each sample is compared to the median. Numbers less
than the median are given the value 0 and numbers greater than the med-
ian are given the value 1. Numbers which equal the median are not con-
sidered. The number of runs of zeros and ones can be approximated
closely by a normal distribution with mean My and standard deviation o,

as shown in equations (29) and (30).

2n.n
12
no= + 1 (29)
u nl+n2
2n.n,(2n,n_ -n_-n,)
o, = 1221212 (30)
(n1+n2) (n1+n2-l)

The null hypothesis that the sample is random can be based on the sta-

tistic as shown in equation (31), where u is the observed number of runs

U (3])

It is assumed that no more than one value will exactly equal the median,

33

e

thus ny and n, can be computed by

N/2 N even
n, =, = (32)

(N-1)/2 N odd
With this assumption, “u and Ou can be computed by
(N+2)/2 N even

uu = (33)
(N+1) /2 N odd

N even

(34)
N-1) (N-3
Lo """(".""")‘ N odd
4(N-2)

The null hypothesis that the samples are random is rejected with a con-

fidence of 1-a if z falls outside the confidence interval |-z ri, o] [
a/2’“a/2

Results of tests using the same pseudo-random numbers used for the

Kolmogorov=Smirnov test are shown in Table 2. Columns 1 and 2 show what

the numbers were used for and column 3 shows the number of samples gen-

erated. Columns 4 and 5 show the values of the expected mean My and the

standard deviation Gu. Column 6 shows the actual number of runs and

column 7 shows the values of the z statistics computed using equation

(31). These can be compared to the values of za/2 (two~-tailed test) for

a = 0,1, 0.05, and 0.01.

Serial Correlation Test. The serial correlation test (Ref

38:64-65) weasures the amount that U1+1 depends on Uj' where U is an

individual sample. The serial correlation coefficient C is a statistic

which always lies between =1 and +1 and is computed by

9
I 4+U U +... | - T4, ”
& n(U0l1+1112+ +”n-2un—yflu—1uo) (u0+11+ +u“_l) s
R 2 2 ;
vk - vt
n(uo+ul+ +"N—1) (u0+u1+ +ln_1)

When C lies close to zero, then any two consecutive sanples are rela-

34

1531 UOT3BTSi10) TRIISS IO SITNSaY ‘¢ SIQEL
19210°0- 8000°0- £5210°0 62900 "0~ %0000° 0~ L0EST jusuodxgy | 3uFs0)
19210°0- g710°0- £6210°0 6290C"0- 70000" 0~ L0gST essTIUER suts
8T€80°0- £820°0 786L0°0 9£0%0°0- £9700°0- 009 Jusu0dxg 3003
81£80°0- 9€20°0 986L0°0 9L0%0"0- £9100°0~ 009 essjaueg | eaenbg
[w,.® u__u u u ST1AHVS asn
o+ 1 oz- n it
i 5 . g 40 ¥ATAN
3s9] suny 30 s3[nsay 7 °[qEl
€99°T 16570 10L2T 8ES 6L nS9¢T | LOEST jusuodxg | suysop
$99°T 9691 £LL2T 8£S 6L 9S9ZT | LOEST essTIuER su1s
$99°T 290°1 887 L6271 10¢ 009 JusuOdxg 300%
$79°1 668°0 062 L€2°2t T0g 009 essj3uey | aienbg
<00 _ n n STTAAVS asn
n
e 12| 5 = 40 ¥ATOK

35

tively independent of cach other, but when € is +1 {t indicates a total
linear dependence, if.e. U = m + an 1 for all } and for some constants
a and m. "Good" values of C are expected to lie between) ~20 and

n o n

p“+20“ about 95 percent of the time, where u“ and 0“ are computed by

b= (36)

(37)

These two equations are only conjectured by Knuth but are supported by
empirical evidence (Ref 38:64-65). Successive mantissas and successive
exponents were tested separately for correlation, Table 3 shows the
results of tests using the same pseudo-random numbers used for the Kol-
mogorov-Smirnov test, Columns 1 and 2 show the use of numbers and

columm 3 shows the number of samples generated. Cnluﬁn 4 and 5 show

the values of the expected mean Hy and standard deviation u“. Column 6
shows the values of u“-20“, colum 7 shows the values of the C statistics

computed using equation (35), and column 8 shows the values of un+20“.

Termination Criteria for Monte Carlo Testing

Exhaustive testing is prohibitive in time and cost in all but some
special cases. The tester, if he decides to test using random {nput
data, is therefore faced with a decision on when to stop testing. 1t is
assumed that the software, in the state in which it is being tested, will
be rejected if any errvor is encountered, When testing numerical proper-
ties, an error occurs whenever the relative or absolute error exceeds
specified tolerance limits, 1In this seuse, testing stops when the fivst
error occurs. A test is considered to be the act of selecting a random
sample and then determining {f that sample produces an error or not. In

this sense, all tests are assumed to be independent. For each test,

36

. —
R ——" <=2 e T N SR i i

there are only two possible outcomes: an error occurs, Oor no error
occurs. An error occurrence is considered to be a success and no error
occurrence is considered to be a failure. It is also assumed that the
probability of a success, p, is the same for all trials, or tests, since
the test includes the selection of the random sample. If the first suc-
cess occurs on the xth trial, it must be preceded by x-1 failures. The
probability of x-1 failures is (1-p)x-1. and if multiplied by the pro-
bability of a success on the xth trial, p, the probability of getting
the first success on the xth trial is obtained as shown in equation (38)
(Ref 47:54-55,83).
gp) = p(1-p) ™ (38)

This is the geometric distribution, and for the purposes of this inves-
tigation, it is assumed that the testing of numerical software will
follow this distribution.

1f no errors occur, the tester is faced with the decision of when
to stop testing. If it is assumed that the software will not be rejected
unless an ervor is actually detected, then the producer assumes no risk,
and therefore the probability of a Type 1 error is zero. The consumer's
actual risk after n trials is the probability that the software was not
rejected if it contained errors. For the software to have not been re-
Jected, all n tvials would have to produce failures. Since the proba-
bility of a failure on any oune trial is 1l-p, the probability of not
rejecting the software given n trials is (l-p)n. The probability of a
Type 1I error, B, is specified by the consumer (or tester) and is the
maximum risk the tester is willing to take of accepting bad software.
To ensure that the tester's actual risk is less than 8, n must be chosen

n
large enough so that (1-p) <R, Solving for n gives

37

5 P
ot In(1-p) (39)

To get a value for p, some assumptions must be made about numerical
errors in software. The following example is presented to show why
assumptions might be made to compute p. The AN/AYK-15A computer with
its 23-bit mantissa is used in this example. 1f the function sin(nX/2)
is being evaluated over the interval [0.5,1.04, then the exponent of all
possible inputs is always 0, and the values of X are uniformly distri-
buted across the intevrval. However, there are 222, or 4,194,304 of
these values. If the software is rejected with only one error (and it
is assumed that all the rest of the inputs do not produce errors), then
p is the percent of the input tested defective to be used as the rejec-
tion criterion and may be computed by

1

1
P ,22 7 4194304

~ 0.2384%10°° (40)

If the tester wishes to be 95 percent sure he correctly identifies a
piece of software for rejection, then B is 0.05. Using these values,
the tester would have to conduct nearly three times as many tests with
random samples as there are input possibilitics. The value of n is
computed by

O N 1 T - (SR WA,
2 Jop (i=p) — =0.10354%10-6 = 012385010 (41)

This says it would be casier to conduct an exhaustive test. The problem
lies in the assumption of the single error found among all possible in-
puts. It seems highly unlikely that one value would exceed the errvor
tolerances without the two numbers adjacent to it also exhibiting sim-
ilar characteristics. The problem becomes one of specifying a realistic

value for p.

38

—

A simple case of cancellation of terms is presented to show how
relative errors large erough to cause software rejection can occur. In
this example, the binary machine truncates, the mantissa length is m,
and the relative error bound is specified to be 2—k. If, for example,
the relative error bound is specified to be 10_5, then k = 5(In 10)/

(1n 2), or approximately 16.61. The variable Y is computed as shown in
equation (42), and the constant C, which has an exponent e, is assumed
to have a relative error of 2 .

Y=C-X (42)
For all values of X within a distance D of C where D is computed by

(2™ 8 (2% (43)

D =
at least the (m-k+1) most significant bits of the mantissa are lost in
the subtraction, leaving at most k~1 significant bits. If it is assumed
that all values of X which fall within a distance D of C have the same
exponent as C, then the number of unique values of X which lie within a
distance D of C is computed to be Z by

z =1+ 2%k 11y « 2k (44)
Since the total number of possibilities for X (with the same exponent as

C) is 2m~1’ the portion of the subinterval which causes rejection is R.

2k—1

m-1
K z/(2) Zm—l

(45)

For the case of the AN/AYK-15A computer, if k has been specified to be

17 (giving 1073 rojative accuracy), then R may be compnted by

ghi s . a8

R = ;is:i % 2~ = 0,03125 (46)

This value of R says that there is a block of consecutive numbevs cen-

tered about C in one subinterval which cause a relative error greater

39

than 2'17, and that these numbers comprise over three perceant of the
numbers in that subinterval,

In actual situations, it cannot bg assumed that all the numbers
within a distance D of C have the same exponent as C, so Z' must be
computed. 1If the exponent of C is neither the maximum positive nor
negative exponent of the computer being simulated, then for binary com-
puters, 2' falls in the range [32/5,32/2]. If the exponent is the maxi-
mum positive value, then Z' falls in the range [2/2,32/2], and if the
exponent is the maximum negative value, then Z' falls in the range
[2/2,?]. In these special cases, overflow and underflow combined with
the normalization of the mantissa can limit the number of unique values
within a distance D of C, so Z' can take on smaller values. 1f R¥ is
computed as shown in equation (47), then R* gives a minimum proportion
of consecutive numbers in the same subinterval as the value C which

cause too large a relative error.

R* = min(2') /2™ = —;:/2“"1 - ;m = 2%nre@™ (47)

If the gross assumption is made that relative errors 1) propagate through
a piece of software, 2) generally don't diminish, and 3) are caused by

cancellation of terms, then R* can be used to approximate p in equation

(39).

(39)

If the tester is testing over w subintervals, then the probability
of getting a success is p/w and equation (39) can be rewritten to re-
flect the testing over the entire variable range.

n > —~1ng_ (48)

5 2
In(l w)

40

- VI

AT

When a multi-variate function is being evaluated, another assump-
tion is made concerning the proportions of different variables which
can cause a success (an error larger than the specified limits) to occur.
It is assumed that a certain proportion of each variable cause success
and that these proportions are independent of the other variables. Cer-
tain combinations of input values, none of which alone causes a success,
can together also cause a success to occur. However, these cases were
not considered in arriving at the number of random x trials needed,
since they would tend to decrease the number of trials required. As in
the single-variate case, each variable will be sampled from its total
number of possibilities using pseudo-random numbers to generate the man-—
tissa and exponent. The proportion of all possible values of the igl
variable which cause success is represented by Py with the range of the
tgh variable being broken up into vy subintervals. The total number of
variables is denoted by V. The proportion P of all possible multi-

variate inputs is computed by

V p V p.p
P=1Y ;—i—-{ ;1-—-1+03 (49)
=1 "1 1,3 Y1 Y3
i#j

where 03 denotes terms of order three or higher.
The number of input samples (n) which guarantce that the consumer's risk
is not greater than f can then be obtained using

Inf
In(1-P)

n2 (50)

This still does not account for gradual error buildup in which a much
smaller proportion of a subinterval produces a relative error which may
be only one bit short of the required relative accuracy. In these cases,
the error buildup can usually be noticed using error plots, since many

41

other numbers might provide the required relative accuracy with as few
as zero or one bits to spare. Cody (Ref 10) suggest that when this
occurs and it appears likely that the software will fail, more extensive
testing can be conducted over the appropriate subintervals in question.

Anomclies other than cancellation of terms can occur in numerical
software. Cody (Ref 10) also suggests that special inputs be constructed
which will check the boundaries of subintervals, boundaries of the input
variable, and any cross-over and neighboring data points where the rou-
tine changes algorithms. These cases are difficult to construct and
must currently be done manually. When used in conjunction with random
testing using subintervals, they increase the tester's confidence that a
numerical software routine performs correctly.
Summary

A tester using Monte Carlo techniques to test software is faced
with the question of when to stop testing. His maximum risk, B, is
specified, but he may know very little about the error characteristics
of the software. By making an assumption about the nature of the errcr
characteristics, the tester can arrive at a number of trials at which to
stop testing. The tester's confidence in the results (assuming the
tester doesn't get any successes using random inputs) can be increased
by conducting extra tests at the boundaries of the variables and other
special points, by using error plots, and by monitoring the error devi-

ations over small subintervals.

:
|

IS —

|

IV Evaluation of Avionfces Mathemat fcal Rout ines

Many fnertial navigation and five control routines require that
cosine, sine, arctangent, and square root functions be evaluated, Two
basic mothods were consfdorved for simulating the trigonometric funct fons
and the square root function when they ave required by a simulated {1ight
rout fne. The Contrvol Data Corporatfon (CDC) library routines could bhe
used, with the simulator adjusting the function value returned, or now
rout fnes could be constructed which would then be modificed by the n-hit
afmulator, These modified routines would then be compiled along with
the programs which call them, therveby more accurately reflecting the
accuracy obtafnable on the simulated machine, The sine, cosine, arve
tangent, and square root functions were all vvnlu:lh'd. with the trans-
mitted crvor being removed (Ref 11:129). The arctangent function, when
roquired by a sfmulated ({Hight vout{ue, was cvaluated using the CDC
library routine with the result befng truncated by the n=bit simulator,
Other arctangent approximat fons were not analyzed. Sceveral have been
proposed by Hart (Retf 32). The algorithms presented in this chapter for
the square root, sine, and cosine functions arve "optimal' for the AN/
AYR=15A f1ight computer in the sense that they provide the requirved
accuracy speciffed by reference 57 while requiving a minfmum number of
computer fnstructions for fmplementation. Other approximat fons which
were analyzed are presented fn Appendix €. ALl stored constants have
been chosen to miafmize the relative crror, since this {s the same as
maximtzing the number of correct mantissa bits (mant fssa normalized).
In evaluating these functions, the absolute evvor, AF, {s defined asn
the diftference between the approximated solution, W, and the exact sol-

utfon, Y,
43

v
3
|4
5
¥

U N AT k6

By

AE = W - Y (51)
The relative error, RE, is defined to be the absolute error divided by
the exact solution and is not defined when the exact solution equals
zero (Ref 18:5);
RE = AE/Y = (W - Y)/Y (Y # 0) (52)
For the plots shown in this chapter, the horizontal axes arve used to
represent the input arguments and the vertical axes are used to represent
either the absolute error, AE, or the relative error, RE.
Square Root
For the square root function, several approximations were analyzed
in addition to that of truncating the CDC result with the n-bit simula-
tor. The two solutions proposed both use Newton's iterative method for
evaluating ¥X where X > 0 (Ref 18:23). Newton's method is to choose an
initial approximation Yy and then compute Yl‘ Yg, Ygu o o defined by
the recursion formula

] x =
T "7 ARl G LS, (53)

Convergence is quadratic, meaning that: as Yk gets sufficiently close to

VX,

has approximately twice as many correct digits as Y . Range

Ykt k

reduction schemes are commonly employed to reduce the maximum relative
ervor in the first approximation.

Specifications. Specifications for the square root function include
the following:

1) that it not call other subroutines (Ref 23:58 and 57:149)

2) that the maximum output would be 3276.7 (Ref 57:92)

3) that the maximum error was to be 0.01
The number 3276.7 is the maximum aircraft speed which might be encount-

ered vhen computed by
a4

e e U o A MBI s

V=V +¥% (54)

Vx and Vy represent aircraft velocity vectors in an X, Y coordinate
system, and V, represents the aircraft track vector with maximum magni-
tude 3276.7. The maximum errcor of 0.01 corresponds to the resolution of
the aircraft instruments and was assumed to be the maximum absolute

error which would occur at or near the maximum output value. The maxi-

mum relative error, MRE, was therefore assumed to be 3.0*10-6;
-6 -6 0.01
DI * ® e O I o ..,
MRE 3.0*%10 < 3.052%10 3276.7 (55)

Assumptions. For the purpose of measuring absolute and relative
-6 }
errors which were estimated to be on the order of 10 ’, the CDC square

16 (Ref 14:139)

root function with its relative error bound of 3.0%10
was assumed to be accurate enough to use as the standard.

Testing Criteria. FEach solution was evaiuated using Monte Carlo

techniques as described in the previous chapter. B was chosen to be

0.01 and only two subintervals were tested: [O.ZS,O.ﬂﬂ and [0.50,].0@.

This was because only the relative error was being measured. The rela-
-5) n=17
tive accuracy required was 10 7, or approximately 2 . Using values of

17 for k and 23 for m (mantissa length), R* is computed to be 0.015625,

Ré = 2% - Dx@™ (56)

This value is then substituted for p in

n Z ._._.!.“_B__...
1n(1-£) (57)

to obtain a value for n, where n is the number of pscudo-random samples
required to test to a significance level of 1-f (see Chapter 3).

The value of n is computed to be 588;

45

P NN e Y e T W . T (TR e A (3

1‘

n > OO - 587, (58)
In(1 - —--~-—-2~———)
The results of testing 600 random trial numbers for uniformity, random-
ness, and correlation are shown in Tables 1, 2, and 3 of the preceding
chapter. These numbers were supplemented by 10,000 other pscudo-random
numbers when constructing the absolute and relative error plots. The
extra numbers were used to smooth out the error curves. The purpose in
smoothing out the error curves was to show more accurately the nature of
the maximum error. These extra numbers were generated by siné]e calls
to the CDC pseudo-random number generator. Each call returns a value
uniformly-distributed over the interval [0.0,1,(4, and by modifying
those numbers which fall in the interval [0.00,0.25] by
S +0.5-8 (59)

approximately 5000 pscudo-random numbers were obtained for each of the
two subintervals being tested. All the inputs were divided into 100
evenly-spaced intervals for plotting purposes. The plots show the maxi-
mum (positive and negative) absolute qnd relative errors obtained over
each of the 100 plotting intervals.

Solution 1. The first method for approximating the square root
function is to call the CDC square root function and truncate the result
to the desired wordlength., If the computer being simulated has a man-
tissa length of m bits, then the effect of truncating a value such as
that returned from the CDC square root routine is to introduce a negative
relative error (see equation 52) not less than _2—m+1. For the AN/AYK-
15A flight computer, this relative error bound would be -2_22; or approx-
imately —2.4*10~7. The absolute and relative errvor plots over the in-

terval [0.00.IJNﬂ arce shown in Fig. 9 and Fig. 10, with each plot

46

0.00C

x10"°
-0.04

AE
-0.08

h~wr\ﬂ\NJMMM4hmgk
.00 0.40 0.860
INPUT

Fig. 9. Absolute Error of Truncated CDC Square Root

1.20 1.60

o
o
P i it A A" ' i e et
©
¥
Oo
—t |
¥
T R
°:c5-
]
q-
N
C.) i i 1 1
0.00 0.40 0.80 1.20 1.60

INPUT

Fig. 10. Relative Error of Truncated CDC Square Root

47

showing the maxima and minima over the 100 evenly-spaced intervals.
Each break in the lower bound occurs where the exponent of the square
root changes.

Using the CDC square root function is easier than using either of
the other two solutions which follow, since only one line of code is
required in the FORTRAN flight routine. The error bounds are approxi-
mately the same as those produced by solutions 2 and 3, so little can be
gained (in terms of simulation accuracy) by using either solution 2 or 3
when simulating.

Solution 2. The second method for computing the square root func-
tion uses a combination of a linear minimax polynomial and an exponent
shift to get an initial approximation (Ref 33:25). Once the first
approximation has been computed, two iterations of Newton's method are
applied to obtain the desired relative accuracy.

The exponent of the initial approximation is computed by right-
shifting one place the exponent of the input argument. If a 1 is shifted
off (odd exponent), then the shifted exponent is increased by one and
the mantissa is shifted one place to the right. A relative error of
-2—23 can be introduced if, during a mantissa shift, a 1 is shifted off
the end. This mantissa shift then leaves an unnormalized mantissa which
lies in the range [0.25,0.50}. Otherwise the mantissa lies in the nor-
mal range [O.SO,I.Oq]. A linear minimax polynomial,

M

5™ A*™ + B (60)

is used as the first approximation, Mgs to the mantissa of the square
root of the input argument with mantissa M. This is then combined with
the shifted exponent to obtain the first approximation YO for the square

root of X.

48

Since the error measured is the relative error, the minimax property

(that the maximum error is a minimum) should hold for the relative error
of the final output value. Hemker, et al (Ref 33:25), solve for the two
minimax coefficients A and B, giving A = 0.6862915010151 and B = 0.343
1457505076. These coefficients may also be expressed by

A = 2%R : (61)

it

B = 6-4 V2 (62)
The maximum relative error, MRE of the initial approximation, occurs at
both endpoints and at one interior point and may be computed using the

right endpoint;

A*X+B-vVX
X

A+B-1

1 = 17-12 V2 = 0.02944 (63)

MRE = max

X=1
Two iterations of Newton's method carried out on a machine with infinite
precision would give a final maximum relative =2rror less than 9*10-8.
This is only slightly better than the actual relative accuracy obtain-
able using single precision (23-bit mantissa) on the computer being
simulated.
Solution 2 was tested over the interval [0.25,1.0@] with the num-
bers in the interval [0.25,0.54] representing those that would have had
an odd exponent. Hence, their accuracy was truncated to 22 bits, thereby
simulating the extra right shift. The minimax polynomial and the two
Newton iterations were evaluated using a 23-bit mantissa for all cases. '
The absolute and relative error plots are shown in Fig. 11 and Fig. 12.
The effect of the initial minimax approximation for the mantissa
can still be observed in these plots. If another iteration of Newton's
method is performed on the AN/AYK-15A computer, this effect would com-

pletely disappear. However, the maximum (negative) reiative error bound

49

{ o~
-t
ol
? el
e Y
- O
S
L
£ 9
-
v
0.20 0 60 0 80 1.00
INPUT
' Fig. 11. Absolute Error of Square Root Solution 2
{ N
o
o’-

e

%10"°
0.00
(.""

~N
8
. V
| :
1 ? Ll 1 | 1
0.20 0.40 0.60 0.80 1.00

INPUT

Fig. 12. Relative Error of Square Root Solution 2

50

1
. |

e

would not be improved any.

Solution 3. The third method, which also uses a combination of a
linear minimax polynomial and an exponent shift to get an initial approx-
imation, is presented as an alternative to the second solution. The
exponent of the first approximation is computed by right-shifting one
place the exponent of the input argument. 1f a 1 is shifted off (odd
exponent), this method sets a flag to signal a later multiplication by a
pre-stored constant v2. No mantisca shifting is required, so the man-
tissa always lies in the range [0.50,1.0@ . Since the range for the
minimax approximation is smaller, the maximum error using the linear
polynomial is much smaller. The number resulting from the exponent shift
combined with the mantissa from the minimax polynomial is then multiplied
by V2 if the exponent of the input argument was odd (flag set). The

coefficients of the minimax polynomial,

MO = A*M+B (60)
may be expressed by
A=/28B (64)
B = 25—"—5 (65)
a+ "2

A and B, rounded to ten significant digits, have the values A = 0.590162
0671 and B = 0.4173075996. The maximum relative error, MRE, still occurs

at X = 1.0 and two other places and may be expressed by

-0\

ARXHB- VX | _ (1=
=1 \1+2

VX

A+B-1
1

MRE = max < 0.00747 (66)

The maximum relative error, MRE, as shown does not account for the error
introduced by the extra multiplication by v¥2 which is sometimes nceded.

=23
The pre-stored constant v2 has a relative error less than 2 s SO to

51

get the maximum relative error, MRE', of the initial approximation, the
two relative errors must therefore be added.

MRE' = MRE + 223 < 0.00747 (67)

This solution was tested over the interval [O.ZS,l.Oé] with the numbers
in the interval [0.25,0.50] representing those inputs that would have
had an odd exponent (and hence would have been multiplied by v2). The
absolute and relative error plots are shown in Fig. 13 and Fig. 14.

This method has two distinct advantages over the method of Solution
2. First, it does not work with umnormalized numbers, and second, the
initial estimate is much better than that for solution 2, thereby giving
better convergence using Newton's method. The major disadvantage to
this solution is the extra multiplication required whenever the exponent
of the input argument is odd. Both solution 2 and solution 3 should be
coded in an assembly language to facilitate the shifting required to get
the initial approximation.

Recommendations. Two recommendations should be made concerning

these three tests. First, when simulating using the n-bit simulator,

it is easiest to just call the CDC square root function and truncate the
answer to the appropriate accuracy. This also gives an adequate por-
trayal of the errors which would be encountered normally.

Second, when comparing the methods presented in solutions 2 and 3,
the machine wordlength must be considered. The accuracy of the method
presented in solution 2 is limited by the machine wordlength until a
mantissa length of 24 or 25 bits is reached. For longer mantissa
lengths, no significant accuracy is gained since the maximum relative
error bound using only two iterations of Newton's method is approximately

9*10-8, or 2_(23'4). For mantissa lengths longer than 24 bits, solution

52

0.00

*

T s

O o

- |

3

o

LIJ Len]

(o ? o
o
C; ’\WW#HMIV;“WA@MKI .
'0. 40 0.60 0.G80 1.00 1.20

INPUT

Fig. 13. Absolute Error of Square Root Solution 3

o
o
C; 7 g4 7\ T i BB ket s s a0
(00}
L
O o
- |
*
w
Ld =
o c?.
*
o
‘? T T T 1
0.40 0.60 0.80 1.00 1.20

INPUT

Fig. 14. Relative Error of Square Root Solution 3

53

2 could be modified to add more iterations of Newton's method. The
accuracy of the method presented in solution 3 surpasses that of the
method presented in solution 2 around the 24-bit mantissa length. The
accuracy of solution 3 continues to improve significantly until a man-
tissa length of approximately 32 bits is reached, at which time the
dominant error is no longer the machine truncation error. The reason
that the method of solution 3 is able to obtain better accuracy lies in
the fact that a shorter range is considered when using the minimax first
approximation, thereby giving a much better result from the two Newton's
method iterations.

Sine Function

For the sine function, several Taylor series, minimax, and continued
fraction approximations were tested. Each proposed sbdblution was executed
using the n~bit simulator with single precision (23-bit mantissa) being
specified.

Since errors on the order of 10—5 to 10.7 were expected, the CDC
sine function, which has an error less than 10—15 (Ref 14:141), was con-
sidered to be exact in computing the absolute and relative errors of the
proposed solutions. The formula for computing the absolute error AF is

AE = W - Y (68)
and the formula for computing the relative error RE is
RE = AE/Y, (Y # 0) (69)
In these equations, the variable W represents the answer obtained using
the proposed solution and the variable Y represents the answer obtained
from the CDC library sine function.

Specifications. Several conditions for the sine function were

specified by the F-16 Inertial Navigations Specification (Ref 57) and

54

r S S

the F-16 Fire Control Specification (Ref 23)., The first condition was

that the data input range was to be [—Zﬂ,zﬁ]. The second condition was
that the error was to be less than 10-5. There was no indication
whether this error bound was for the absolute error, the relative errvor,
or both, so it was assumed to be the absolute bound for both. The third
condition was that the sine function must not call other subroutines.

Assumptions. Several conditions which were assumed to be advan-
tageous are shown below and are some of those listed by Hemker, et. al.
(Ref 33:39-42):

1) lim ﬂ—‘{—(—‘i) =1

X0

n

sin(X)

2) X

<1 (all X)

3) Optimal relative accuracy is obtained

4) The number of multiplications used is minimal
5) The odd character of the sine function is preserved.

Range Reductions. The primary reason for reducing the argument

range of an approximation is to enable:approximations to be used which
have a small number of terms and can be evaluated quickly. For poly-
nomial approximations, larger variable ranges mean higher order poly-
nomials must be used to obtain the desired accuracy. Beyond some point,
however, the costliness of the range reductions will offset the advan-
tages (Ref 18:39,44).

The first range reduction for the sine approximation uscd the tri-
gonometric identity

sin(X) = -sin(-X) (70)

to reduce the range to [0,2@ . This range reduction also guaranteed

that the odd character of the sine function would be preserved. The
55

v - - - ~ - ———— s o ———— - A ~
he 3 - o e I‘iii‘. -
- Se Y SRR R RO -

identity
sin(X) = -sin(2n-X) (71)
was used to reduce the range further to [O,W], and
sin(X) = sin(w-X) (72)
was used to complete the range reduction, resulting in a final input
range of {O,ﬂ/ﬂ . All range reductions were accomplished using extended
precision to reduce the effects caused by cancellation of terms. Since
the sine approximation must not call other subroutines, the input range
was not further reduced to [0,n/4 using
sin(X) = cos(n/2-X) (73)
Testing Criteria. Solutions were evaluated using Monte Carlo tech-
niques as described in the previous chapter. f was chosen to be 0.05
and for the AN/AYK-15A computer, there are 264 subintervals containing
numbers from the interval [-Zﬂ,qu. Using values of 17 for k (2"k
accuracy - see Ref 23,57) and 23 for m (mantissa length), R* is computed
to be 0.015625;
R = (25 - 1)(2™ = 0.015625 (74)

This valv~ is then substituted for p in

R
n >-——~hhl—~—— (75)
T ln Q1 - %)

to obtain a value for n, where n is the number of pseudo-random samples
required to test to a significance level of 1-8 (see chapter 3).

The value of n is computed to be 50,615;

1n(0.05) %
n > T OOLSET 50614.4 (76)
264

Since the interval [O,Zﬂ] only contains numbers from half as many inter-
vals as the interval [—2ﬁ,2ﬂ does, actual testing occurred over the

56

2 e o dun oo o LA

interval [O,ZN]. The first range reduction in the sine routine uses the
trigonometric identity

sin(X) = -sin(-X) (70)
so the test is just as significant over the reduced range. This allows

w to be set to 132 in equation (69), and now n is computed to be 25307,

In(0.05) . ,s-
2 W ';:’("1-‘- _0_.'0:1*5‘625 =~ 25306.4 (77)
132

thus giving a 50 percent savings.

25307 pseudo-random trials were constructed and the results of
testing these numbers for a uniform distribution, randomness, and cor-
relation are shown in Tables 1, 2, and 3 of the preceding chapter.
Usually, when such large samples are tested, the serial correlation
test can be rewritten to be more efficient (Ref 38:64-65) and the
Kolmogorov-Smirnov and Runs tests can be handled by establishing a
chained list in increasing order of magnitude instead of using arrays
held and sorted in core (Ref 19:188).

Solution. The solution presented is a seventh-order minimax approx-
imation to the sine function with the ;clative errvor exhibiting the mini-
max property. Once the argument X has been reduced to the range [0,“/4,
it is scaled (not reduced) to the range [0,]] by the change of variables

Y = (2/m)*X (78)
so that the sine function is now expressed in terms of the variable Y.
The next step is to compute Z = Y*Y, thereby reducing the number of mul-
tiplications required. The minimax polynomial can then be expressed
using Horner's Rule for nested multiplication;

sin(nY/2) = (((04*2 + c3) X 7 + c2) REXC) Y (79)

The coefficients of this polynomial were computed by Hart, ect. al.

(Ref 32:117-118, 237) and are shown in the second column of Table 4.

These coefficients were rounded to 23-bit accuracy and input in octal

f format.

shown in the

third column of Table 4.

The approximate decimal values of the rounded coefficients are

Coefficients Computed Coefficients Rounded
by Hart to 23-bit Accuracy
C1 1.570794851 1.570794820786
C2 -0.6459209764 -0.6459209918976
03 0.0794876547 0.07948765158653
Cb -0.004362469 -0.004362468607724
Table 4. Minimax Sine Coefficients

Absolute and relative error plots for the approximation to the sine

function on the reduced interval [0,”/4 are shown in Fig. 15 and Fig.
16. The pattern which appears over this interval is found to repeat in
various forms over the other parts of the interval [O,ZH] for both sine
and cosine approximations.

This mirror image effect is caused by the

range reductions. The absolute and relative error plots for the minimax

approximation to the sine function on the interval [O,Zﬂ] (using the
mentioned range reduction techniques) are shown in Fig. 17 and Fig. 18.
These plots can be compared to the absolute and relative error plots
shown in Fig. 19 and Fig. 20 which were obtained by truncating the value
returned from the CDC 6600 library subroutine and using that as the

the differences in the size of the ab-

approximation., As can be seen,

solute and relative errors are on the order of one magnitude. Because

of the difference in the size of the errors, the seventh-order minimax
polynomial was used when analyzing the flight routine in chapter 5,

thereby ensuring that generated and analytic errors would be accurately
58

RE

Fig.

x10¢

co

RE

Fig.

»10°¢

c.ca

e

c.08
2 il

-0.C3

=0.16

1
.00 0.20 0. 40 0.6 . 1.00

INPUT. W/«?

15. Absolute Errvor of Sine Approximation on [0,11/2]

/ J\\

0.00 0.20 0 40 0 60

80
INPUT ¥ ‘ff/3

.18

0.c2
B

c

-0.0%

0.18

——
1.00

16. Relative Error of Sine Approximation on [U.'\/',’J

59

.18

0.038

» 0°

0.Co

RE

-0.08%

59.18

Y Y g =y
.00 ¢.20 0.40 0.60 0.80 1.00

INPUT #*27

Fig. 17. Absolute Error of Sine Approximation on [O,2n]

®

-

? T Y — = 1
0.00 0.20 0.40 0.60 0.80 1.00

INPUT *2T
Fig. 18. Relative Error of Sinc Approximation on [U.‘"]

60

Fig. 1

()

(@]

(8]
d-tj/————‘m‘
©

o

o

|

w

-

? T T T Y -3
~1.00 -0.60 —-0.20 0.20 0.60 1.00

INPUT 27T

9., Absolute Error of Truncated CDC Sine on [—211,211]

8

CN

0.24

1

13,00 -0.60 -0.20 0.20 0.60 1.00

INPUT *&m

Fig. 20. Relative Urror of Truncated CDC Sine on ['-M,E'.'.]

61

represented.

Summary. When constructing polynomial approximations to the sine
function, range reduction techniques using trigonometric identities are
employed. Once the argument range has been reduced, minimax polynomials
can be used to minimize the maximum error (either absolute or relative).
Since the sine function can be used in both additions and multiplica-
tions, both the absolute error and the relative error must be considered.
Error plots can be used to aid visually in determining the error charac-
teristics of the approximation.

Cosine Function

Since the sine and cosine functions are so closely related, (cos
(X) = sin(n/2 - X)), only one routine with two entry points is needed.
Whenever cos(X) is requested, sin(m/2 - X) can be evaluated. One mini-
max polynomial is used in the routine, and the different entry points
facilitated coding for argument reduction.

Specifications. The specifications for the cosine function are the

same as those for the sine function. As for the sine function, the error
bound of 10-5 was assumed to be the bound for both absolute and relative
errors.

Assumptions. Several conditions which were assumed to be advantage-
ous are shown below and are some of those listed by Hemker, et. al. (Ref
33:39-42):

D in cs®) -

X*E 2 -
2) Optimal relative accuracy is obtained
3) The number of multiplications used is minimal

4) The even character of the cosine function be preserved.

62

P

Range Reductions. The first range reduction for the cosine approx-

imation used the trigonometric identity
cos(X) = cos(-X) (80)
to reduce the range to [0,?11. This also guaranteed that the even char-
acter of the cosine function would be preserved. The identity
cos(X) = cos(2m-X) (81)
was used to reduce further the range to [O,ﬂ], and

cos(X) = -cos(1-X) (82)

was used to complete the range reduction, resulting in a final input
range of [0,“/4 . Hemker's first condition for the cosine function meant
that a power series approximation which is expanded about zero could not
be used near m/2, since the relative error exceeds 10—5. A further range
reduction

cos(X) = sin (n/2-X) (83)
allows the minimax polynomial for the sine function to compute the cosine
function also. This has the benefit of requiring only one routine with

two entry points, one minimax polynomial, and one set of coefficients to

compute both the sine and cosine functions.

Testing Criteria. The cosine approximation was tested using the

same criteria as for the sine approximations. The same numbers were
constructed over the interval [0,2@ , and value of £ was 0.05.

Solution. The cosine approximation is computed with the same mini-
max polynomial used to compute the sine approximation. The absolute and

relative error plots for the minimax approximation to the cosine function

on the interval PLZ“] (using the mentioned range reduction techniques)
are shown in Fig. 21 and Fig. 22, Just as for the sine approximation,

the pattern of the minimax polynomial can be seen to repeat, with the

63

" o2 i

Y T T 1
.00 0.20 0.40 0.60 0.80 1.00

INPUT *2T

Fig. 21. Absolute Error of Cosine Approximation on [0,211]

50.18

-'\/\\ A

LKL

.00 0.20 0.40 0.60 0.80 1.00

INPUT *2m

Fig, 22, Relative Error of Cosine Approximation on [0.211]

(4]
-

.
(=]

0.03

0.0C

RE 10~

-0.093

Q.18

64

. — T —_— okl g —

mirror-image effect being caused by the range reductions.

Summary. When constructing polynomial approximations to the cosine
function, range reduction techniques using trigonometric identities are
employed. The cosine function can be evaluated using the sine approxi-
mation if the identity cos(X) = sin(n/2-X) is used. This results in a
savings in core storage and also allows the relative error of cos(X) to
be minimized even when X = m/2. Error plots can be used to determine
visually the error characteristics of the approximation.

Summary

Common mathematical routines such as sine, cosine, and square root
are executed often and need to execute as fast as possible while still
providing sufficient accuracy. Range reduction techniques enable lower-
order polynomials to be used for approximations, thercby reducing the
number of multiplications required. Since cancellation of terms can
occur during range reductions, range reductions are performed using
extended precision. Minimax polynomials can be used to reduce either
the maximum relative or absolute error. Hart, et. al. (Ref 32) gives
an extensive collection of minimax and near-minimax solutions to many
common functions. Sometimes special applications dictate that error
criteria other than the minimax property be used. 1In these cases, it
is usually necessary to know not only the range of the inputs, but also
the distribution. Approximations can be tested using Monte Carlo tech-
niques in conjunction with the n-bit simulator. Error plots showing the
maximum (positive and negative) errors can be used to aid visually in

determining the error characteristics of the approximation.

65

!

vV Analysis of Avionics Routine

When analyzing the error characteristics of any given processor, it
is often helpful to analyze computer programs which would normally be
executed on the processor. This is especially important when trying to
determine if the wordlength of the processor is long encugh to maintain
some specified accuracy for the programs, given that the transmitted
errvor has been vemoved. This chapter contains a detailed discussion of
one approach for analyzing the error characteristics of a computer pro-
gram and the processor on which it is executed. Although only one rou-
tine has been used for demonstration purposes, the method presented can
easily be applied to other single or multi-variate functions. TIn order
to be analyzed using the method described in this chapter, these func-
tions must be capable of being coded in FORTRAN and executed on either a
CDC 6600 or CDC CYBER 74 computer.

A forward error analysis is conducted using the n-bit simulator,
and error plots are utilized to aid visually in determining the error
characteristics of the routine and the computer on which it would nor-
mally be executed. For the purpose of demonstrating this method, the
computer being simulated is the AN/AYK-15A digital processor (Ref 2).
The AN/AYK-15A uses sine plus two's complement representations of float-
ing point numbers. The processor truncates (as opposed to rounding) and
there are no guard bits used.

Bearing To Go Routine

—— ———

The avionics routine analyzed is the part of the steering function
called bearing to go, or desired track (Refs 7 and 57). The steering
function is exercised by the AN/AYK-15A during the navigation mode and

is used for way-point navigation. Bearing to go (BTG) is the angle in
66

W

e S N

-

S

{
; 1
f
ii
14
i1
spherical coordinates between true north and the sclected way-point sub- ;
|
tended at the present position of the aircraft (using great circle navi-
gation).
BTG is depicted in Fig. 23, where the coordinates (A,$) represent |
the present aircraft position and (KT,¢T) represent the selected waypoint. }
N\ |

Fig. 25. Bearing To Go

BTG is computed as

~CT

SR S L= ey
BTG tan (CT (84)
X
where
CTx = s[n(AT)*cos(\)—cos(lT)*sin(k)*cos(éT—¢) (85)
and
CTy == -cos(\T)*s{n(¢T-¢) (86)

A and)\, are latitude readings and may take on values in the interval
[—n/2, n/2], while ¢ and ¢T are longitude readings and may take on values
in the interval [—n, n]. BTG may take on values from the interval [—n,xq
and must have an "accuracy" of 10-5 (Ref 57:96). This means that if),
¢, XT, and ¢T are exactly representable on the AN/AYK-15A (transmitted
error removed), then the absolute error (positive or negative) of BTG

=3 = i i
must not exceed 10 for any combination of \, ¢, \T’ and ¢T.

67

This voutine was chosen for an analysis demonstration for three

reasons:

= it is easy to use Monte Carloe techniques to exercise the code,
since values for A\, ¢, \T’ and QT can be generated using a
pseudo~random nuunber genervator (see chapter 3),

- cosine and sine functions are used both in multiplications and
additions (or subtractions), so the absolute and relative error
characteristics of the sine and cosine approximations must be
considered,

- it is a four-variate function, so techniques demonstrated can
easily be extended to other multivariate functions.

Bearing Te Go Analysis

Objectives., The objectives of this demonstration are to show how
the n-bit simulator can be utilized in a forward errvor analysis and to
show how error plots can be utilized to aid visually in analyzing the
errvor characteristics of a multi-variate function. Error plots are used
to help show the relationships of each variable to the maximum absolute
error. By comparing patterns for different variables, estimates can be
obtained for cach variable which causes certain large errors to occur,
These errors often appear on the plots as prominent spikes.

The n=bit simulator is used in this forwvard error analysis for two

reasons., First, although specifications exist for the ANJAYRK-15A digital

’,
<
§
3
.
¥
¥
.
-
¢
4
3
£
i
1
\ A
%
y
*

processor, none have been constructed yvet; and second, using the n=bit
simulator facilitates comparing results, since data from the simulator
and the benchmark data (from the routine exccuted without the simulator)
can be collected at the same time using a driver module.

Approach. The modules used in analyzing the navigation routine BTG

08

i s AN SO

are shown in Fig. 24 and Fig. 25. The modules shown in Fig. 24 are

compiled directly (without being preprocessed by the n-bit simulator).
The driver module, COMPAR, collects the output from the subroutines SUBI
and SUB2 and computes the absolute and relative errors. COMPAR also
develops the data to be wvsed in building the error plots. The range for
each variable is divided into 100 evenly-spaced intervals, with each in-
terval containing the maximum absolute and relative errors (both positive
and negative). After the simulation has finished, the plot array con-
taining the plot data is written to file TAPE4 to be processed by a
plotting program. A functional flow diagram of the driver module COMPAR
is shown in Fig. 26.

The subroutine SUB! shown in Fig. 24 is used to evaluate BTG using
the accuracy obtainable with a 48-bit mantissa. The value of BTG re-
turned is used in the forward error analysis as that wvhich is assumed to
be without error. Although there is inevitably some error in BTG, it is
assumed that it is enough (three orders of magnitude) less than that
produced using a 23-bit mantissa that it can be considered to be exact.

The subroutine RANDM does not need to be preprocessed by the n-bit
simulator, since it returns valuecs which are exactly representable with
a 23-bit mantissa. RANDM calls the CDC pseudo-random generator eight
times to get values to use in constructing the exponents and mantissas
which make up the four arguments returned. Since RANDM was called many
times (20,000), shift operations were inserted to truncate the mantissa
to the required accuracy instead of preprocessing RANDM with the n-bit
simulator. Therefore, the arrays KEY and TKEY are made available
through the COMMON statement.

The modules shown in Fig. 25 are those which are preprocessed by

69

= = —uemae

PROGRAM COMPAR(INPUT,OQUTTUT,TAPE1=0UTPUT,TAPE4)
COMMON KEY (8),TKEY (4)
CALL SETNBIT(parameters)

CALL RANDM(A,@,AT,¢T)

call subroutine to evaluate BTG using full precision
CALL SUBl(\,¢,AT,¢T,BTG)

call subroutine to evaluate BTG using n-bit simulator
CALL SUBZ(\,¢,AT,¢T,SBTG)

caiculate the absolute and relative errors
AE=SBTG-BTG
RE=0.0
1F (BTG.NE.0.0) RE=AE/BTG

STOP
END

SUBROUTINE SUB1(X,¢,},,d,,BTG)
subroutine which uses full accuracy of CDC CYBER 74

calls are made to CDC library for mathematical functions

CIX = SIN(AT)*COS(A) - cos(AT)*SIN(A)*COS(¢T—¢)
CTY = -COS (X)) *SIN(¢,~¢)

BTG = ATAN2(-CTY,CTX)

RETURN

END

SUBROUTINE RANDM(A,¢,AT,¢T)
subroutine to generate pseudo-random inputs

transmitted errors are removed
COMMON KEY (8), TKEY (4)

RETURN
END

Fig. 24. Code to be Compiled Without Being Preprocessed

70

I .">

{
e R |
SUBROUTINE SUB2 (X, ¢, Ay by SBTG) !
. subroutine which is processed by n-bit sfmulator i
calls are made to specially coded mathematical functions ‘
COMMON KEY (8) , TKEY (4) j
SCTX = SSIN(L) * SCOS(A) - SCOS(N,) * SSIN(A) * SCOS(¢y-¢) |
SCTY + - SCOS(/\T) * SSIN (<b,l‘—¢>)
SBTG = SATAN2(~-SCTY,SCTX)
note - in actual simulation SATAN2 was not used;
l ATAN2 was substituted, and the value returned was truncated
| RETURN ’
END |
FUNCTION SSIN(AVALUE)
specially coded sine approximation (sce previous chapter)
COMMON KEY (8), TKEY (4)
ENTRY SCOS
) special entry point for cosine approximation)
] :
RETURN
END :
1 FUNCTEON SATAN2 (AVAL1,AVAL2) .
3 specially coded inverse tangent approximation :
COMMON KEY (8), TKEY (4)
RETURN ?
END g
¢
|
i
¥
i . .

Fig. 25. Code to be N-bit Simulated

71

Read
Yarameters

Call
RALDII

Call
Sul

all.
U2

I

Conpute
Trrors

|

Change Approrriatle
Flotting Intexrval
iaxima and ldinima

If Regquired

s M)

Fig. 26. CC.YAR Flow Diagram

72

g

e il

the n-bit simulator prior to being compiled. The subroutine SUB2 is
used to evaluate BTG using the accuracy which would be obtainable on the
AN/AYK-15A processor. The sine function is approximated using the func-
tion subprogram SSIN, with an entry point SCOS being used for cosine
approximations. The polynomial used in SSIN is the same as that dis-
cussed in the previous chapter.

The function subprograms SATAN2 is included in Fig. 25 to show
where it would go if it were used. When evaluating the navigation rou-
tine BTG the CDC library routine ATAN2 was used, with the mantissa of
the result being truncated to the number of bits specified (23 bits).
This was because the arctangent function was not analyzed as the sine
and cosine functions were.

Termination Criteria. The procedure used for computing n, the num-

ber of trials to conduct, follows that discussed in chapter 3. The

equation

> In (B)
R < (IEP))

is used to solve for n once B and P have been determined. £, which is

the tester's risk that he accepts bad software, was arbitrarily speci-

P ————

fied to be 0.01. By decreasing B, the tester becomes more confident
that software he accepts actually meets the specifications. However,
decreasing B also increases the computed value of n, the number of

trials he must conduct. To determine P, the equation

e ey

X P v P
P=5,;'—1—- Y ;—i- ‘—’;1+03 (49) -s
ie3 N8 4, j
i#]

is used with all terms of order three or greater being truncated. V, f

the number of variables, is four. The four variables p; are assumed to !

73

;
3

c8

.04

=10

C.00
B
>
>

RE
giok 9,
)

<

<

2 Z
3

}

£

|

3

4

©
©
T T v n
~1.00 -0.60 -0 20 0 20 1.00
INPUT "rr/2
Fig. 27. Absolute Error vs BTG Input Variable A
©
(S}
0'—
<t A
(o}
o]
q I
v hh
-l
S Aw{J\~m~ /N\,~~/\¢¢wJ \/\Au
L) © : NN \'\rw\.-«\/«—v’\W
a
% D
o
1 BIIC ,
© |\
o A
¢ ' .
~1.00 -0.60 "O 20 0 20 1.00
INPUT 7r/2
Fig. 28. Absolute Error vs BTG Input Variable A

75

= A
CH I
q F i
o ‘
»
Lt o7 %
ac
D
-
o
o4 B c
1
©
o
? T | & T T 1
-1.00 -0.60 -0.20 0.20 0.60 1.00
INPUT *TT
Fig. 29. Absolute Error vs BTG Input Variable ¢
)
o
a
S A
ol E
'ID :AJ\
by 8 /s_/\,/\/\A.
Llo
[
D
~+
o
e BYC
©
o
? I L T T ¥
-1.00 -0.60 ~0.20 0.20 0.60 1.00
INPUT *T
Fig. 30. Absolute Error vs BTG Input Variable ¢)T

76

the maxima obtained. These plots are shown in Figs. 31, 32, 33, and 34.
As can be seen, the absolute error maximum (either positive or negative)
is much less than that obtained when the 20,000 bit patterns were used
in conjunction with these 5000 numbers. Realizing that the CDC library
function ATAN? was substituted for an n-bit approximation for the arc-
tangent function, ove might be tempted to accept the BTG function as
meeting the accuracy specifications if only the errorplots using the
5000 trials were considered. However, it can be secen by looking at the
plots constructed using the 25,000 trials that the maximum crror obtained
is at least {ive times larger, and that the BTG routine, if coded in the
same manner as tested, would fail to meet the specifications. For the
duration of this chapter, reference to error plots will mean those con-
structed using the 25,000 trial numbers (Figs. 27, 28, 29, and 30).

Once the routine, as coded, has been determined to fail to meet the
accuracy specifications, it remains to be determined whether a judicious
usage of extended precision might help. As can be seen from the error

- o : =3
plots, most of the values tested fall within the specified limit of 10 .
However, several large spikes exceed the limit by a factor of 2 and
several smaller spikes also exceed the limit., Error values of 0.005 x
10-3, or 0.5 x 10—5, occur very regularly and are to be expected since
there is some error generated within the sine and cosine routines. The
large spikes, however, are not expected. Fach spike which will be ana-
lyzed is marked by a letter on each of the plots. 1t is only conjectured
that the spikes are related on each of the four plots by the letters
assigned them. Although spikes A and B can be clearly identified, since
they are the absolute maxima (positive and negative), the others cannot
be so positively identified without more error trace information provided

77

AE =10

c.08

0.C4

MNWWV\W
AR U i

G.Co

-0.0C4

©
o
; : “ :
--1.00 —-0.60 —0 20 0 20 0.60 1.00
INPUT * /2
Fig. 31. Absolute Error Using 5000 Numbers vs A
o}
o
o‘—
<
(s}
z
o
T MW
o V\ l\
X o
o
Ly ©
= WW\\/’M WN
-
o
D.-q
[
©
o
e T T 1
—1.00 -0.60 —0 20 0 20 0.60 1.00
INPUT #* /2
Fig. 32. Absolute Error Using 5000 Nurbers vs AT
78

L<@¢%NJI

g.c8

0.C4

1

\W/ \z'\f\AMﬂfﬂ.’m /\«Ju A,
/\\\/\ /V\m /\\f/\ W NMWN

=1.00 —U 60 —0 20 0 20 ‘ .00

INPUT »7

Fig. 33. Absolute Error Using 5000 Numbers vs ¢

g.Cc

RE x10~*

-0.04

-0.08

0.04
1

T%? "Mt \/&\N\/&'\J\ﬁ\/\J\N’L/\.ww*ﬁw\f

: W\W\MVVN v\;’\ﬁ\f\»

1.00 —0.60 —0.20 0.20 0. 1.00

INPUT * T

Fig. 34. Aosolute Ervor Using 5000 Numbers vs ¢
79

‘.r

T g

I S
ot

B

by the driver module COMPAR. However, for the purposes of this analysis,
it is assumed that spikes A through F can be identified on each plot and
that the tip of each spike with the same letter identifier is caused by
the same set of trial numbers. This allows each spike to be analyzed
independently of the other five identified. 1In Fig. 30, spikes B and C
occur in neighboring plotting intervals, with spike B occurring to the
left of spike C.

Spike Analysis. Since the BTG function has subtractions, it might

be hypothesized that the spikes are caused by cancellation of terms. If
so, then the values of the input variables which cause the spikes should
clearly show this once extracted from the plots. Each of the six spikes
identified will be analyzed separately.

Spike A. Spike A is the maximum positive error discovered, so
there is no problem identifying the values of A, XT, ¢, and ¢T which
cause spike A to occur. If the plots for A and AT are compared, it can
be seen that the spike actually occurs on the same plotting interval.
This says that AﬁkT. Likewise, the plots of ¢ and ¢T can be compared

with the like conclusion that ¢=¢T. This says that the aircraft position

(A,¢) and the waypoint location (XT,¢T) are approximately the same place.

Since ¢~ ¢, sin ($.-¢)~0, and hence CY_=0. COS (¢.~$)=1, so CT_ reduces
T T ¥ T X

SOy,

(approximately) to CTxﬂsin (AT) cos (A) - cos (AT) sin (A)(1). Now, CTx

has taken the form of sin(kT-A), which is clearly zero. Therefore, the

‘ ‘ ratios —CTy/CTx tends toward 0/0, and tan_l(-CTy/CTx) can be expected to

exhibit large errors.
E ¢ Spike B. For spike B, A#AT’ and ¢#¢T, so each iwust be approx-

f imated to determine why the spike occurred. As can be seen on the plots,

A=1/5, XT=—ﬂ/5, ¢”:%%E, and ¢T:;%ﬂ. For these values ¢T—¢N+ﬂ, and sin

80

T

(¢T=¢)?O, S0 CYy=0. Likewise, cos (¢T-¢)’—l, and CTx is reduced (approx-
imately) to

CTx?sin (AT) cos ()) - cos (AT) sin (X)) (1)
CTx now has the form of sin (lT+X), which also goes to zero since ATH»X.
Thus, spike B is also causced by the instability of the argument --CYy/C'l‘x
approaching 0/0.

Spike C. Spike C exhibits the same characteristics as spike A,
where XNXT and ¢T¢T.

Spike D. Spike D exhibits the same characteristics as spike A,
whera A=AT and ¢?¢T.

Spike E. Spike E exhibits the same characteristics as spike b,
with AZ-XT and ¢2¢T—ﬁ. Therefore, CTyFO and C'l‘x approaches the form sin
(AT+X) as (®T—¢) approaches 7. Since CTXFO, the argument -CTy/C’I‘x
approaches 0/0.

Spike F. Spike F exhibits the same characteristics as spike A,
where lle and ¢ﬁ¢T.

Recommendations

Those conditions which cause spikes A and B to occuar are special
cases which cannot be expected to occur very often in aircraft naviga-
tion. The conditions which cause spike A to occur (\fXT and ¢?¢T) are
similar to the problem of trying to use a magnetic compass when standing
on the magnetic north pole, and the conditions which cause spike B to
occur (X?—XT and ¢=¢T-n) are similar to the problem of finding the
shortest route to the true south pole while standing on the true north
pole. However, these conditions are discovered when testing with pscudo-
random trial numbers.

ec 50 & i & ¢ ¢ £ wting ai ato
To preclude these special occurrences from affecting the simulated

\

81

' o & e
A S e s v

results, two arbitrary "circles" with radii r, and r, should be con-

structed around the point (A,$). The first circle, with radius s is
used to detect the condition when the aircraft location and the waypoint
are approximately the same. This condition is detected by requiring
that the great circle distance between (A,¢) and (XT,¢T) be greater than
r- The second circle is used to detect the condition when the waypoint
is on the opposite side of the earth from the aircraft. This condition
is detected by requiring that the distance between (A,¢) and (AT,¢T) be
less than ye Once these two conditions have been imposed on AT and ¢T
(for a given X and ¢), simulations can be conducted which more accurately
reflect what might actually occur in an aircraft environment.
To compute the distance (DIS) that (AT,¢T) is from (A,¢), the

spherical distancce cquation

DIS = (Rth)*o,, (87)
may be used. R is an approximation (2.0926 * 107 feet) for the radius

of the earth, h is the aircraft altitude in feet, and 0, may be computed

7
by

CT_ * cos (BTG) - CT_* sin (BTG)
~1 X y
0, = tan

T cr
z

(88)

BTG, CTx' and CTy are computed as shown in equations (84), (85), and
(86) respectively, and CTz is computed by

C'I'z = sin(l)*sin(XT) + cos(k)*cos(XT)*cos(¢T—¢) (89)

Once DIS is computed, then those values of A, ¢, AT’ ¢T for which DlS<r1
or DIS>r2 may be discarded. Since BTG must be computed to get DIS,

different error plots can easily be generated using different values of

Ty and r2.

It is conjectured that the BTG routine would actually meet the

82

T T SO T TR T T Y,

o e

accuracy specifications once distance constraints have been levied

against AT and ¢ This conjecture is based solely on the width of the

e
general small error band centered about zero and was not actually tested.
In order to retest the BTG routine incorporating the distance constraints,
those cases where (A,¢) and (XT, ¢T) fail to meet the distance criteria
must be discarded. One method for testing using the distance constraints
would be to pick a value of (A\,$), and then generate (XT,¢T) coordinates
until a set of coordinates is found which meets the distance criteria.
If it is assumed that the proportion of the earth's surface which meets
the distance criteria for any given point is E, then N, the number of
points (AT,¢T) which one might expect to generate for each point (A,9),
may be computed by
N = 1/(2E) ; (99)

To test the BTG routine, n points (A,¢) would be generated, where n is
computed using equation (50). Also, n/(2E) points (XT,¢T) would be gen-—
erated, with the distance formula being computed for each one. Since
the purpose of this investigation was to demonstrate a technique for
analyzing flight routines as opposed to actually conducting a thorough
analysis, the routine BTG was not tested using the distance criteria.
Summary

When conducting a forward error analysis utilizing the n-bit simu-
lator, a driver module can be used to facilitate error data gathering.
Two subroutines can be used, with one being cxecuted using the full
accuracy obtainable on the CDC CYBER 74 and the other being reprocessed
along with any mathematical function approximations needed. The object
decks for the n-bit preprocessed subroutine and mathematical functions,

the n-bit subroutines (see chapter 2), and the driver module and regular

83

function are combined at load time before execution.

Error characteristics can be studied using plots which show the
error maxima (positive and negative). When simulating, it becomes impor-
tant to consider only those values of variables which can actually occur
in an operational environment. When values are arbitrarily chosen from
over the entire range of each variable, errors can sometimes occur which
affect the results of the simulation. Yor this reason, additional con-
straints must be placed on the pseudo-random inputs used. The use of
error plots can sometimes point out these situations, since relationships
which exist between variables can also be observed in addition to the

maximum errors.

84

VI Quasilinearization Method

When numerical software routines are analyzed by Monte Carlo tech-
niques, the tester is faced with determining the number of random sam-
ples to use to ensure that his risk is less than some desired value. No
matter what techrique is employed to compute the number of samples re-
quired, the tester is faced with making assumptions about the error
characteristics of the software.

For any sct of input values for a software routine, the error
(either relative or absolute) can be uniquely determined given the char-
acteristics of tne executing computer. In the following discussion the
term error is considered to mean the absolute error in a function.
Relative errors could also be uced, since they are obtained by dividing
the absolute error by the true value of the function (provided the true
value of the function is not zero). Since the error is uniquely deter-
mined, it can be considered to be a discrete function of the implementa-
tion of some algerithm (A), the characteristics of the machine (M), and
the independent variables (vi).

ER = f(A,M,vl,vz,...,vn) (91)

For the BTG routine, the variables v i=1,2,3,4, would represent the

i)

input variables A,¢,AT, and ¢T. The variables v, can be considered to

form a vector Q, and for the purposes of this discussion, A and M rep-
resent a given algorithm implemented on a given computer. Since A and M
are specified, ER will be written as f(Q). The points (Qi’f(Qi)) are
considered to be a subset of an (n+l) - dimensional vector space.

The quasilinearization method (Ref 67) as proposed in chis chapter

is a suboptimal search technique for finding local maxima of the function

85

AD=A069 299 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO SCH==ETC F/6 9/2
IMPLEMENTATION AND TESTING OF NUMERICAL ANALYSIS TECHNIQUES IN ==ETC(U)
MAR 79 R A ADAMS

UNCLASSIFIED AFIT/GCS/EE/T79-1

END
iLugD
- 79

| O . "”8 "25
—— ;-.: \I\IIJ 122

““I] o
||m 2

IL2s i pis

MICROCOPY RESOLUTION TEST CHARI
NATIONAL BUREAU OF STANDAS

ER. Local maxima which are discovered are entered in a population to

be used in determining the stopping criterion. In the quasilineariza-
tion method, the number of individual tests required is not based on
some hypothesized percentage of successes caused by each variable, but
rather on a statistical analysis of the results of each test. Each test
is a more lengthy process than a simple evaluation of a set of random
inputs, however. In this chapter, the general quasilinearization method
is discussed as it might be applied to software testing. Also discussed
is a way in which test results can be analyzed to arrive at a stopping
criterion.

Proposed Method

The quasilinearization method uses a suboptimum gradient approach
in an attempt to extremize the function ER. If the tester knows the
extremum of ER has been obtained, he can say with certainty whether or
not the routine being tested ever exceeds the error bounds specified.
Since this method is a suboptimal procedure, however, the tester seldom,
if ever, knows when or if the extremum has beer obtained.

Gradients, when used in calculus to extremize multivariate func-
tions, generally required that the function be continuous and that the
first derivative exist (once-differentiable) (Ref 8:349-~404). The func-
tion ER, however, is strictly a discrete-valued function which is non~
differentiable.

It is assumed that the values of the function ER often lie within
well-defined limits as is shown in Fig. 35. The two lines represent
approximations of the upper and lower bounds to the absolute error of
the severnth-order minimax approximation to the sine function executed
on the AN/AYK-15A computer. The upper bound as drawn will be referred

86

P ————

Y T

Mrm : L uo _C., JUTIg JI0F PpunoI Joxxn; o3nyosyy €€ *2tg
1Z % LNGNI

8a°1 c6°0 08°0 0L°0 03'0 0s'0 gr°0 gz°0 20 01°0 00°0,
L Il E | =3 L 1 | L 4 — o
x @
!
13
/ -
| |
W <
o
(Y N ;

ok

\ , /A | IRF 3

gt
“M""“——\
R
P ety W0
.
0o°0
,_0 1»

T T TR N A SR s s oo ~ - " oo o 7 e pazeron MR e e oy S .(:‘i;

to as a continuous and once differentiable function, since a continuous
and once-differentiable upper bound can be shown to exist (although not
necessarily the one drawn). If the equation of the upper bound were
known, then vector analysis and gradients could be applied to extremize
the function. This equation is not known, however. It is assumed that
all that is known or can be discovered arve various values of ER which
lie somewhere between the upper and lower bounds. For two values of ER
(f(Ql) and f(Qz)) wvhich lie arbitrarily close to the upper bound and
which are a "small" distance apart, a straight line, or linear spline,

connecting the two points (Ql,f(Ql)) and (Q

‘Z’f(Q°)) can be obtained.

This spline provides a linear approximation to the upper bound and the
slope of the spline Is used as a divectional difference approximation

M
(with some difficulty) for which f(QJ) and f(Qz) lie arbitrarily close

for the gradients at the two points. ‘Two values Q. and Q2 can be found

to the upper bound. The method of obtaining the values Ql and Q2 will
be explained later. By using the spline and its slope, normal methods
for extremizing continuous and once-differentiable functions can be
applied. The method discussed is a linear exploration in which searches
are conducted only in directions parallel to one axis and perpendicular
to all other axes. Several other methods are discussed by Beveridge

and Schechter (Ref 4) and by Wilde (Ref 64). Before the algorithm is
presented, the concepts of moving to the surface, obtaining a spline,
and jumping are discussed.

Moving to the Surface. The process of determining a point (Q

. i
f(Qj)) for which the function f(Q)) lies arbitrarily close to the upper

bound will be referred to as "moving to the surface". For any set of

variables VisVoseresVy making up Qi‘ the error function ER, or f(Qi) is

88

R o Mt

T

known to lie somewhere between the upper and lower bounds. FEach vari-
able is then perturbed, one at a time, by the smallest amount possible
mj times in both the positive and negative directions (with the other
variables remaining fixed) and ER is evaluated for each perturbation.
The smallest amount poasible means that the new value is the number
which, on the floating-point number line for the given machine, lies
adjacent to the original number. The value of m1 is arbitrary depending
on the effort one is willing to expend. As more effort is expended,
more perturbations are evaluated, thus raising the tester's confidence
that he has obtained a point for which the error is within a specified
distance of the surface. The maximum value of ER obtained from all

these evaluations (at some point (Q ,f(Qj))) is assumed to lie suffic-

J
iently close to the upper bound, and one has thus "moved to the surface'.

Obtaining the Spline. One of the most difficult parts of the
quasilinearization method iz to find two values Ql and Q2 which are
close together (using Fuclidean distance measu;vs for vectors) and for
which I(Ql) and f(Qz) lie arbitrarily close to the upper bound, since
the upper bound is never known. The success of the process described
here is related to the effort expended, just as in the case of moving
to the surface.

Once a point (Ql'f(Ql)) has been obtained, another point (Qz,f(Qz))
must be obtained in ordevr to construct a linear spline, since linear
splines are uniquely determined by two points. To get (Qz,f(QZ)), the
process of moving to the surface is repeated at point (Ql,f(Ql)), with
m, (j=2) perturbations being used in each axis direction. The point
(QZ,E(QZ)) must be different from (Ql,f(Ql)) and f(Qz) must be grecater
than or equal to f(Ql)'

89

v = - T WY o

" ARSI

If a point (Qz,f(Qz)) can be found which satisfies these conditions,

then a linear spline can be constructed between the points (Ql,f(Q]))

and (Qz,((Qz)). 1f d(Ql’Q2) represents the Euclidean distance between

Ql and Q then

\2’

£(Q,) - £(Q))
"":((QZ—"QJ‘)"* = 8(Q,Q,)) (92)
is considered to be the slope of the spline and is used as a directional
difference approximation to the gradient at point (Ql,[(Ql)).
if no point (Qz,f(Qz)) can be found, then the point (QI,I(QI)) is not
assumed to be a true local maximum. The reason for this is that the

point (Ql,f(Ql)) may not actually be a true local maximum, since the

existence of sharp ridge lines can produce false maxima using linear
exploration techniques (Ref 64:65-68). TFor this reason, whenever a
local maximum has been discovered (whether true or false), the linear
exploration can be expanded to search along directions not previously
searched using axis rotations. Although this does not guarantece that
the final local maximum obtained is not a false one, it does provide an
improvement to the basic linear exploration in that problems with ridge
lines will be reduced (but still not eliminated). The trecatment of
local maxima will be discussed later.

Jumping. Once two points (Q],f(Q])) and (QQ’f(QZ)) have been found
and the lincar spline has been constructed, a jump is made to find a new
point which, after moving to the surface to (Q3.I(Q3)), may or may not .
produce a monotone nondecreasing sequence of values of ER. The jump is
made based on the differences in the values of one of the ! variables
(the one which is different between Ql and Q,) and the slope of the

(2

spline (the steeper the slope, the samller the jump). This jump is

90

kit

e g ; it i S R .

shown for a two-dimensional case in Fig. 30. The value "jumped to" is
shown as Y, and Q3 is obtained after moving to the surface from location

Y.

93"20

Junp
el b N Y e

Fig. 36. Quasilincarvization Jump

1f f(Q3) is greater than or equal to f(Qz), then the jump has been suc-
ceseful, and the point (Q3,f(Q3)) becomes the new point (Ql.f(Ql)), with
the process of obtaining a spline and jumping starting again,

1 5 f(Q3) is less than f(Qz). then the jump has not been successful
and a new jump must be made. The length of the jump is cut in half, and
the jump is repcated, followed by the move to the surface to establish
(Qa,f(Q3)). 1f, after some arbitrary number of jumps, no value Q3 can
be found for which f(Q3) is greater than or equal to f(QZ)’ then the
point (Qz,f(Qz)) can become the new point (Ql.f(Ql)), with the process
of obtaining the spline and jumping starting again. This assures the
existence of a monotone nondecreasing sequence of points (Ql.f(Ql))
based on the value of f(Ql). The process of obtaining a spline and
Jumping terminates when a spline cannot be obtained, and the point
(Ql,f(Ql)) is then assumed to be a local maximum. As mentioned pre-

viously, it is possible for (Ql.f(Q])) to be a false local maximum. A

flow diagram for jumping is shown in Fig. 37.
91

Start Jump
Q;,Q, given

Jump to Y
(distance D1S)

Move to
surface(Q3)

DIS«D1S/? "
/ A1 Y

A

DIS :Minimunm
Allowed

Q “Q

Jump
Termination

Fig. 37. Quasilinearization Jump Flow Diagram

92 i

E Algorithm, Each test consists of using Monte Carlo techniques to

| obtain an initial starting point. FEach input variable vy comprising

the vector Q is generated using the entirve variable range to construct
uniformly-distributed pscudo-random values, as opposed to the techniques
discussed in chapter 3. From this point Q, the process of moving to the
surface, obtaining the spline, and jumping is repeated until a local
maximum is obtained. This local maximum is then entered as one value in
a population which is statistically analyzed to determine the stopping

point. As cach local maximum is entered in order in the population, it

is identified as being ecither an "old" sample, meaning that that parti-
cular value (or one arbitrarily close to it) was previously obtained as
a local maximum, or else it is entered as a "new" sample.

Analysis of Population of Maxima. Tt is assumed that there are N
local maxima which can theoretically be found and cach has an equally
likely chance of occurring. The problem of analyzing the population of
"new" and "old" samples to estimate the stopping point for the algorithm
thus becomes one of estimating the value of N. 1t is also assumed that,
of the N local maxima which can be found, one is larger than the rest
and is thervefore identified as the extremum of the function IR over the
ranges of the inputs.

1t the tester has not found a success (value of £(Q) which exceeds
some specified ervor bound) after z "new" samples have been entered in !
the population, the tester would at least like to have a confidence of
1-a that the largest local maximum found is the extremum. For each of
the N local maxima, the probability of it being the extremum is 1/N.
After z new local maxima have been discovered, there arve N-z remaining

to be discovered. The probability § that none of the N-z undiscovered

93 f

local maxima is the extremum is therefore

N--
E-l-—(}:n)=1—p——~5-

(93)
=1 N

Z|N

Because the tester wishes to have a confidence of at least l-a that the

extremum has already been encountered, & must be greater than 1-ua; i.e.

>

> 1-q (94)

Zin

Solving for z in terms of N yields
z > N(1-q) (95)

Thus, the problem becomes one of estimating N given the sequence of
"01d" and "new" samples entered in the sample population of local maxima

Whenever a "new" sample is enterved in the population, the cumula-
tive "time" to that point (one tiwe quantum = one trial) is also entered.
It is assumed that the sample points come from a continuous distribution,
even though the cumulative number of trials is discrete. This allows an
empirical distribution to be constructed. Fof the sample sequence
nnonoonooonooocooon, the empirical distribution looks like that shown in
Fig. 38. 1If the type of distribution and the associated paramcters can
be determined, then ﬁ can be obtained as an estimate for N.

When determining the type of distribution which best fits the sam-
ple data points, many distributions should be tried. "Best" fits can
be obtained using either the Legendre least squares method, the Gregory-
Newton method, the mean average method, or the method of weighted
resicduals. In each case, the parameters of the distributions must be
obtained analytically from the data. Once the distributions have been
fitted to the data, the Kolmogorov-Smirnov goodness-of-fit test can be

used to eliminate those distributions which do not fit the sample data.

94

kit

" A

uor3nqrizsIg Teorardug -gf¢ 814

22Us1Ind0(oTdweS MIN 03 SWI] SATIBInUND

= T " LA T v L] v v

-
saTdues MoON JO aaquny dATIRTNUNY

v a0 e o ol S

95

The likelihood ratio test can then be used to determine which of the
remaining distributions provides the best fit. Using this distribution,
an estimate N for N can be obtained. ﬁ can then be substituted for N in

z > N(1-a) (95)
thereby giving the tester the number of new samples he must obtain to
have a confidence of 1-a that the extremum has been encountered.

Obtaining a '"reliable" estimate N for N can require a great deal of
computation, so it is not recommended that it be done after each sample
is entered in the population of local maxima. Rather, it can be done
after a certain pattern of "o0ld" and "new" samples occurs. Such a pat-
tern might be a "new", followed by at least ten "olds", followed by
another "new'.

If the problem is considered to be one strictly dealing with dis-
crete-valued functions, then the problem is analogous to one of drawing
balls from an urn. The objective is to find an estimate for the number
of balls in the urn using random sampling with replacement. There are
N balls in the urn (N unknown) and initially all the balls are white.

A ball is drawn at random, with the ogder of the draw and the color of
the ball being recorded. The ball is then painted black (regardless of
its color) and replaced in the urn. This process of drawing balls one
at a time, recording their color and the sample order, painting them,
and then returning them to the urn is repeated until, with some level
of confidence 1-a (a different from @), it can be determined that

N(1-e) < N < N(l+e) (96)
where N is an estimate for N. The frequency distribution covering the
pattern of random samples is unknown. Using Monte Carlo techniques, a

good approximation to the distribution can be obtained empirically. To

obtain the estimated frequency distribution, a population with a known
number N of white balls is constructed. Samples are drawn randomly
using the painting and replacement criteria until a epecified number of
white balls have been drawn. Sampling is then terminated and the dis-
tribution estimated. Based on the empirical distribution, ﬁ can bc ob-
tained as an estimate for N, which is known. The process can then be
repeated using different size populations to verify that the method of
determining N still produces a good approximation to N. Once N can be
determined with a confidence of 1l-a, then the calculations for obtaining

~

N can be applied vo the sequence of "new"

and "o0ld" samples in the pop-
ulation of local maxima to determine an 2stimate of the total number of

"nCw"

samples which might occur. Then, using

z > N(1-a) (97)
the stopping criterion of finding at least z "new" samples can be
determined.

Summary. The quasilinearization method ehploys 2 suboptimal search
technique in an attempt to locate the local maxima of the error func-
tion ER. Several important assumptions were made in developing the
quasilinearization method:

- an upper bound exists for the function ER,

- this upper bound can be approximated by constructing linear
spliaes,

- two points can always be found which lie arbitrarily close to
the surface (upper bound),

- there are a finite number of local maxima wnich can be found,

- each local maximum has an equally likely chance of occurring,

and

g7

- one local maximum is larger than the rest and is the extremum.
Local maxima are found by starting at random locations and then

alternately moving to the surface, obtaining splines, and jumping until

splines can no longer be obtained. Each local maximum thus obtained is f
entered into a population of other local maxima and is marked as being

either a "new" maximum or an "o0id" one. Whenever a specified pattern |
of "new" and "0l1d" samples have occurred, the population of local maxima |
is statistically analyzed to obtain an estimate of the total number of

"new" local maxima which can theoretically be found. This estimate,

when multiplied by 1-a, gives the tester the number of 'new'" local
maxima to obtain before stopping. 1f, at any time, a value £(Q) is
obtained which exceeds the specified error bounds, the process stops

and the tester is able to reject the routine being analyzed.

98

VIl Conclusions and Recommendat ions

The purpose of this investigation is to develop tools and teclmiques
which can be used to determine if a given computer can solve a given
avionics signal processing problem within cortain specified error and
time tolervances, Specifically, the folloving goals were defined:

= develop a tool to simulate accurately the computational charac-

teristics of any digital processor
= produce common library routines which ave optimal in the sense
that they try to maximize both absolute and relative accuracy
and at the same time minimize the number of instructions
(especially multiplications) required

= demonstrate the effectivencss of the simulation tool mentioned
above to analyze the ervor characteristics of a glven class of
algorithms and associated routines.

Each of these three goals were met with one exception, Only rou-
tines for the square root, sine, and cosine functions were developed
and analyzed. Avionics algorithms also incovporate the arctangent
function, which was not analyzed.

Conclusions

The n-bit sinulator can be used effectively in a forwvard error
analysis. Several enhancements were made to the n=-bit simulator to
gsimulate more accurately the numerical effects caused by tinite word-
lengths of varfous computers. Numerical routines can be evaluated by
first coding them in FORTRAN as two identical subroutines controtled by
a driver module. The first subroutine uses CDC library routines and,

together with the driver, is compiled without being preprocessed by the

99

n-bit simutator. The second subroutine and the associated function sub-
programs are preprocessed by the n-bit simulator before being compiled.

The driver module determines the ervror charvacteristics by comparing the

values returned from the two subroutines.

A simulation analysis based on Monte Carlo techniques requires that
sequences of events be penerated where cach sequence obeys a probability
law governing a particular component of the random behavior in question.
One law commonly encouwntered fn simulation studies assumes that events
in a sequence are independent and identically distributed (Ref 19:167).
Therefore, when pscudo-random numbers arve utilized, they should be tested
for randomness, corvelation, and goodness of tit to a specitied distri-
but ion.

Since {loating=point numbers are not wmiformly dense on the entire
nunber line, but only over short subintervals, trial numbers are con-
structed which provide a pscudo-random sampling of the representable
numbers, with cach number in the fnterval of consideration being equally—
likely to be drawn., Extra trial numbers can also be constructed to test
the error characteristics near the interval boundarices. Error plots
which plot maximum errvors in short plotting intervals against cach input
variable can also be utilized to aid visually in determining crrov charv-
acteristics,

When testing avionies algorithms, special mathematical approxima-
tions for sine, cosine, and arctangent should be used to reflect morve
accurately the error characteristics of the software as if it weve
actually executed on the computer being simulated. Miniwax polynomial
approximations can be used to minimize the maximum error (efther absol-

ute or relative).

100

Only one avionics routine (Bearing To Go) was analyzed. Since the
Bearing To Go routine is a four-variate function, techniques demonstrated
with this routine can easily be extended to other multivariate function
routines. FError plots clearly show that the specified error bounds were
exceeded., At least some of the input values which cause these error
specifications to be exceeded might be considered as never occurring in
an operational environment. The routine, Bearing To Go, was not evalu-
ated using only those inputs which might be expected to occur in an
operational environment.

The quasilincarization method as proposed is an heuristic approach
to finding local maxima. Since the method uses scarches which are con-
ducted only in directions parallel to the variable axes, the maximum
value of the error function found on any one test may not be a true local
maximum. Sharp ridge lines can prevent the proposed search technique
from finding true local maxima. Each test consists of first determining
a random starting point and then performing a series of events called
moving to the surface, obtaining a spline, and jumping to produce a
monotone nondecreasing sequence of values of the error (either absolute
or relative) function. The maximum value obtained on each test and its
location with respect to the input varfables is entered in a population
to be statistically analyzed to determine the stnpp{ng criteria. Test-
ing stops when the tester reaches a desired level of confidence that
the largest local maximum discovered is the extremum, or when the error
limftations are exceeded.

Recommendat { ons

There are four different arecas which are recommended for further

development, The n=bit simulator needs four enhancements to make it

101

more flexible for use in forward error analyses and perturbation analy-
ses. The special purpose mathematical routines used in avionics pro-
grams merit more study (especially the arctangent function approxima-
tion). The specifications (Ref 57) for the avionics algorithms should
be more explicit in defining accuracy, and once the limits on the input
variables have been more clearly defined, more study needs to be done on
the accuracy attainable in the AN/AYK-15A processor. Extensive work is
needed to develop rigorously the modified quasilinearization method,
with particular emphasis on attaining and then verifying the presence of
local maxima and also on the movement, or jumping, techniques.

N-bit Simulator. The first two enhancements to be considered for

the n-bit simulator are those recommended by Klein (Ref 37). The first
recommendation is to provide more flexibility in handiing overflow, and
the second recommendation is to modify the n-bit preprocessor to sub-
stitute in-line code instead of subroutine calls, thereby improving the
execution time of the n-bit simulated program.

The third enhancement is to add to the existing n-bit simulator
subroutines another subroutine which will generate pseudo-random numbers
which represent a random sampling of all the floating-point numbers
representable in a given range, and therefore are uniformly-distributed
equally over each subinterval which contains numbers with the same expo-
nent,

The fourth recommendation is to add to the n-bit simulator subrou-
tines a subroutine which returns floating-point numbers adjacent to one
which is input. Inputs to this subroutine might be a starting number,
direction to go (positive or negative), and number of values to return.

Outputs from this subroutine would include the values requested and a

102

status flag indicating either no error or overflow (either positive or
negative). The presence of zero as a value returned can also be indi-
cated.

Mathematical Routines. All the special-purpose mathematical rou-

tines investigated used extended-precision to perform argument reduc-
tions and single-precision to perform the polynomial approximations (in
the case of the trigonometric approximations) or Newton iterations (in
the case of the square root approximations). The trigonometric approxi-
mations, and especially the arctangent function, merit further study
using extended precision and/or higher—-order polynomials for use in an
avionics environment.

Avionics Routines. Error tolerance limits need to be defined more

clearly in the specifications. Errors were found which exceeded the
limits in the specifications, and although the inputs used clearly fall
within the variable ranges defined, it is highly unlikely that these
values would occur in an operational environment. Without specifications
which also show the limitations placed on the rclationships between
variables, correct analyses cannot be performed. One example of this
would be specifying certain combinations of inputs which do not need to
meet the normal error specifications. For the Bearing To Go routine,
this might mean that waypoints within a l-mile radius or beyond a 3000-
mile radius of the aircraft would not be subject to the error bounds
specified for those waypoints which lie between 1 and 3000 miles from
the aircraft. The numbers 1 and 3000 are used here strictly for the
purposes of the example.

Quasilinearization Method. The quasilinearization as proposed

should be tested on both single and multivariate functions to determine

103

its merit relative to other optimization and suboptimization techniques,
Various acceleration techniques should be investigated to determine
their effect on the convergence of the proposed method. The concept of
moving to the surface should be examined more closely to determine the
number of points to examine in each direction. As the probability of
being within an arbitrarily small distance from the "surface" increases,
better jumping techniques should be able to be utilized. Searching
techniques should be incorporated which are not limited to directions
parallel to an axis. This would allow ridge-followving algorithms to be
developed, thereby increasing the probability that the extreme value
returned by any single test is in fact a true local maximum. As the
probability of obtaining true local maxima goes up, the number of "new"
samples entered in the sample population should decrease correspondingly,
thereby allowing for fewer tests to be conducted.

Better methods for analyzing the sample population should be in-
vestigated. As searching techniques become more complex, the population
should be analyzed more frequently, hence the need for a more efficient
algorithm to determine the stopping critevia, Methods proposed should

be able to be applied to the ball and urn problem discussed in Chapter 6.

104

"o R4

e

Bibliography

1. Abd=alla, Abd-elfattah M., and Arnold C. Meltzer, Frinciplea of
Digital Computor Design, Vol 1, Eaglewood Clifis, New Jersey;
Prentice~Hail, inc., 1976,

s Air Force Avionics Lab, DALY Prime ltem “\‘\‘!'l‘f‘(‘:"““' ‘ql“\“‘.l fcation
| for AN/AYK-15A Digital Processor, Part 1. Wright=latterson AFR,
Ohiot Ay Force Avionies bLab, 1 September 1978,

3. Ashenhurst, Ro Lo "Numhor Representatfon and Stgnificance Moniton
tng," Mathematical Software, edited by J. R, Rice, New York:
Academic Press, 1971, pp 67-92,

4. Beveridge, Gordon 8, G0 and Robert 8, Schochter. Optimization:
Theory and Practice, New York: MeGraw-Hill Book Company, 1970,

. Rront . Ns P ".\ FORTRAN Mult (}‘ lo=Precision Arit hmet fo “.’l\‘\\ apae ‘“
Report, Depavtment of Computer Science, Cammoegie-Mellon Unfversity,
Pittsburgh, Pennsvlvania, May 1970,

6. Bright, H. S.; and 1. J, Cole, "A Mothod of Testing Programs for
Data Sensttivity," Program Test Methods, odited by W liam G,
Retzel, Englewvood Clifte, New Jersev: Prentice=Nall, Inc., 1973,
pe 14316l

B iritting, Kenneth Ro Inertfal Navigation Systems Analysis, Now
York: Jolm Wilevy & Sons, Ine., 1971,

8 Buck; R. G Advanced Caleunlus, New York: MeCraw-Hill Book Company,
1905, 3

9, Charvtres, Bruce A, "Automatic Contvolled Prectsion Caleulat fons,"
Journal of the Association torv Comput tng Machinery, 130 386403
Gluly, 1960),

10, Cody, W 00 "Porvtormance Testing of Punct fon Subrvout ines "

Proceedings, Spring Joint Computer Contervence, 34, 7502763 (1909)

11, Cody, Wo 0o "The Evaluation of Mathematical Sottwave," Program

Test Methods, odited by William ¢, Hetzel. Faglewood Clitts,
New Jerseyt Prentice-Hall, Inc., 1973, pp 121-133,

12, Cody, W. J. “"sStatic and Dvnamic Numerical Chavactoeoristics of
Float iag-Point Avithmetic," TUEE Transactions on Computers, =22,
SO8- 001 (June, 19713),

13, Cody, W. 0o "The Challenge in Numervical Sottware tor Microcompu
ters," TERE Proceedings, Fivst Amnual Rocky Mountain Svmposium on
;‘|h‘l‘~n‘\‘\~x‘\y\l>(oret .\“\':.(emi, Sottware, A\v ch_i tocture, 123 (September 197 7\

T4, Control Data Corporation, FORTRAN Common Librvavy Mathemat {cal
Rout ines (0038 7000), Sunnvvale, Calitormiadr Control Data Corpors
ation, 1970,

10

15. Control Data Corporation. 6600 Central Processor, Yol. I,
l‘unctwn 1l Units (6()7_59/()0) Sunnyv .1lc .Jlilmm.i: Control Data

(.orlmlatlon, 1976.

16. Dahlquist, Germund, and Ake Bjorck. Numerical Mcthods. Englewood

Cliffs, New Jersey: Prentice-Hall, 1974,

17. Dunham, C. B. "Nonstandard Arithmetic", Mathematical Software,

edited by J. R. Rice, New York: Academic l‘x('w, 9/1 pp 105-111.

18. Fike, C. T. Computer Fvalvation of Mathematical Functions.

Englewood Clifts, New Jersey: Prentice-Hall, Inc., 1968

19. Fishman, George S. Concepts and Methods in Discrete Event Digital
Simulation. New York: John Wiley & Sons, Inc., 1973,

20. Forsythe, George E. Pitfalls in Computation, or Why a Math Book

Isn't Enough. Technical Report No. CS 147. St mfmd California:
Stanford University, January, 1970. (AD 699 897).

21. Forsythe, George E., Michael A. Malcolm, and Cleve B. Moler.
Computer Methods for Mathematical Computations. Englewood Cliffs,

New Jersey: Prentice-Hall, Inc., 1977.

22. Garner, Harvey L. "A Survey of Some Recent Contributions to
Computer Arithmetic", 1EEE Transactions on Computers, C-25, 1277-
1282 (December, 1976).

23. Gencral Dynamies Corporation. Computer Program Development Speci-

fication for the F-16 Fire Control (nnlm(vr Operational Flight

EI.QL“.% CDRL. Ttem ACOE, (_].Q./‘!.(_l_l_.l_i_) Fort Worth, Texas: Fort
Worth Division, General Dynamics Corporation, 1977,

24. Ghosh, B. K. Sequential Tests of Statistical Hypothesis. Reading

Massachusetts: Addison-Wesley Publi ulnnp (nmp My, Inc., 1970,

25. Ginsberg, Myron, and Dennis J. Frailey. "The Design and Use of a
Floating Point (Softwarc) Simulator for Testing the Arithmetic
Behavior of Mathematical Software", TEEE Third Symposium on
Computer Arithmetic, 56-63 (November, l‘)7>)

26. Ginsberg, Myron. "Numerical Influences on the Design of Floating-
Point Arithmetic for Microcomputers', IEFE Proccedings, First
Annual Rocky Mountain Symposjum on \(urou\mynh\) st Systems,

Sof tware, _A_r_(_hltcc ture, 25-72 (Sceptember, 1977)

27. Goldberg, I. Bennett. '"27 Bits Arc Not Enough for 8-Digit
Accuracy", Communications of the Association for Computing
Machinery, 10, 105-106 (February, 1967).

28. Gumbel, E. J. tatistics of Extremes. New York: Columbia
. University l’n\w‘ 1958.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40,

41.

42,

Hammer, C. '"Statistical Validation of Mathematical Computer
Routines", Proceedings, Spring Joint Computer Conference, 30,
331-333 (1967).

Hamming, R. W, Digital Filters. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1977.

Hansen, E. (Ed.). Topics in Interval Analysis. London: Oxford
University Press, 1969.

Hart, J. C., et al. Computer Approximations, New York: John
Wiley & Sons, Inc., 1968.

Hemker, P. W., et al. Single and Double-Length Computation of

Elementary Functions. Amsterdam: Mathematical Centre, October,
1973 (AD 914 647).

Hollander, Myles, and Douglas A. Wolfe. Nonparametric Statistical

Methods. New York: John Wiley & Sons, Inc., 1973.

Hull, T. E., and J. J. Hofbauer. '"Language Facilities for Multiple
Precision Floating Point Computation with Examples and the Descrip-
tion of a Preprocessor", Technical Report No. 63, Department of
Computer Science, University of Toronto, Ontario, Canada, February,
1974, i

Kaneko, Toyohisa, and Bede Liu. '"On Local Roundoff Errors in
Floating Point Arithmetic", Journal of the Association for
Computing Machinery, 20, 391-398 (July, 1973).

Klein, Gary A. Software Tool(s) for Evaluating the Effects of
Finite Wordlength. MS Thesis. Wright-Patterson AFB, Ohio: Air
Force Institute of Technology, December 1977. (AD A055 777).

Knuth, D. E. The Art of Computer Programming: Seminumerical
Algorithms, Vol. 2. Reading, Massachusetts: Addison-Wesley
Publishing Company, Inc., 1969.

Kuck, David J., Douglass S. Parker, and Ahmed H. Sameh. "Analysis
of Rounding Methods in Floating Point Arithmetic', IEEE Transactions
on Computers, C-26, 643-650 (July 1977).

Kuck, D. J., D. S. Parker, and A. H. Sameh. "ROM~Rounding: A New
Rounding Scheme", IEEE Third Symposium on Computer Arithmetic,
67-72 (November, 1975).

Kuki, H. "Comments on the ANL Evaluation of 0S/360 FORTRAN Math
Function Library", SHARE Secretary Distribution 169, C-4773,
47-53 (1967).

Kuki, H., and J. Ascoly. "FORTRAN Extended-Precision Library",
IBM Systems Journal, 10, 39-61 (1971).

107

dka i P G T T SR

43,

45.

46.

47.

54.

55.

58.

Kuki, H., and W. J. Cody. "A Statistical Study of the Accuracy
of Floating Point Number S)’::Lvn::;", (unnvm\i(.l(ions of the Associa-
tion for Computing Machinery, 16, 223-230 (April 1973).

LaFara, Robert L. Computer Methods for Science and Engincering.
Rochelle Park, New Jersey: Ha\ den B unl\ Company, Inc., 1973,

Lewis, T. G. Distribution Sawpling for Computer Simulation.
Lexington, Massachusetts: D, C. Heaton and Company, 1975.

Maehly, Hans J. "Methods for Fitting Rational :\pproxim;\tiuu~:,
Part 1: Telescoping Procedures for Continued Fractions Journal
of the Association of Computing Machincry, 7, 150-162 \\px i1 1960).

Miller, Irwin, and John E. Freund. Probability and Statistics for
Engineers. Englewood Cliffs, New Jersey: Trentice-H 1ll Inc. >
1977,

Miller, Webb, "Computer Scarch for Numerical Instability", Jouwrnal
of the Association for Computing Machinery, 22: 512-521 (October
1975).

MIL-STD-1750 Airborne Computer Iustruction Set. Wright-PFatterson

AFB, Ohio: \cum.m! Heal \\:‘hm‘ Division/ENAI, 1 June 1978.

Moore, Ramon E. Interval Analys is. Eaglevwood Cliffs, New Jderscey:
Prentice-Hall, 1966.

Moore, Ramon E. Mathematical Elements of Scientific Computing.

New York, New mk llol(l\mvhnt, and Winston. Inc. s 1975

Newbery, A. C. R., and A. P. Leigh. "Consistency Tests f{or
Elementary Functiun\;", Proceedings, Fall Joint Computer Conference,

39, 419-422 (1971).

Nickel, K. (Ed.). Interval Mathematics, Vol. 29, lecture Notes

in Computer Science. Berlin: Spr ll\\'t‘l*\\ rlog, 1975.

Noether, G. E. Elements of Nonparametric Statistics. New York:

John Wiley & Sons, Inc., 1967.

Oppenheim, Allan V. and Ronald W. Schafer. Digital Signal Pro-

cessing. Englewood Cliffs, New Jersev: Prentice-Hall, Inc., 1975,

Ruckdeschel, Fred. "Functional Approximations", BYTE,
(November, 1978).

inger Company, The. Computer Program Development Specification
or F-16 Inertial Navigation Set Opomtmnnl Flight Program

(V24008530200) .~ Keartott D

24 0\0%,\0“’00) Keartott l\ivn‘mn, The Singer Company, 1976.

S

Stone, Hareld S., et al. 1Introduction to Computer Avchitecture,

Chicago, [llinois: Science Rescarvch Associates, Inc.y 1973,

108

pane) o a . X e ey W ey "

v T

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Stoutemyer, D. R. "Automatic Error Analysis Using Computer
Algebraic Manipulation', ACM Transactions on Mathematical Software,
3, 26-43 (March, 1977).

Tienari, M. Varying Length Floating Point Arithmetic: A Necessary
Tool for the Numerical Analyst. Technical Report No. 62. Stanford,
California: Computer Science Department, Stanford University, 1967.

Tsao, Nai-Kuan. "On the Distribution of Significant Digits and
Roundoff Errors", Communications of the Association for Computing
Machinery, 17, 269-271 (May 1974).

Tsao, Nai-Kuan. "Some a Posteriori Error Bounds in Floating-Point
Computations", Journal of the Association for Computing Machinery,
21, 6-17 (January 1974).

Vignes, J., and M. LaPorte. "Error Analysis in Computing", IFIP
Congress 74, 3: 610-614 (1974).

Wilde, Douglass J. Optimum Seeking Methods. Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1964.

Wilkinson, J. H. "Modern Error Analysis", SIAM Review, 13, 548-568
(October, 1971).

Wilkinson, J. H. Rounding Errors in Algebraic Processes.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1963.

Wingo, D. R. '"Maximum Likelihood Estimation of the Parameters of
the Weibull Distribution by Modified Quasilinearization'", IEEE
Transactions on Reliability, R-21, 89-93 (1972).

Wyatt, W. T., Jr., D. W. Lozier, and D. J. Orser. "A Portable
Extended Precision Arithmetic Package and Library with FORTRAN
Precompiler", ACM Transactions on Mathematical Software, 2, 209-231
(September 1976).

109

Appendix A

User's Manual for the First Revision

of the N-bit Simulator

By using the first revision of the n-bit simulation tool, a user
can evaluate the numerical effects that various computer architectures
can have upon a FORTRAN-programmed algorithm. The simulator was designed
to be exccuted on either CDC 6600 or CYBER 74 computer systems and re-
quires that programs being executed by the simulator be expressed in the
FORTRAN 1V (extended) programming language with a few restrictions.

This user's manual will describe the ten user options available for
describing different computer architectures and the control cards for
executing the first revision of the n-bit simulator. The programming
restrictions and considerations applicable to the original simulator
still apply (Ref 37).

User Options

To provide the user with greater flexibility in simulating the
effects of various computer architectures, six of the seven options of
the original n-bit simulator and four additionﬁl options, for a total
of ten user options, were incorporated into the first revision of the
simulator. These changes require only minor modifications on the part
of the user.

First, two arrays must now be dimensioned in each routine. The
array named KEY must be dimensioned to eight (e.g. DIMENSION KEY(8)) and
the array named TKEY must be dimensioned to four (e.g. DIMENSION TKEY
(4)). The array TKEY holds the floating point values to be used in the
overflow and underflow checks, and the array KEY holds the fixed point

overflow values and the user options,

110

Second, the SETNBIT routine which is called as the first executable
statement and wherever else desired now has twelve parameters, two of
which are user options, and the two arrays KEY and TKEY. The required
form of the SETNBIT subroutine call is shown below, with each # repre-
senting a user option,

CALL SETNBIT (#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,KEY, TKEY)

Option #1. The first option allous the user to specify the number
of bits per wordlength {(from 4 to 60) used for floating-point arithmetic.

Option #2. The second option allows the user to specify the number
of bits in the mantissa, not counting the sign bit, for floating-point
wvords (from 1 to 48).

Option #3, This option allows the user to specify the number of
guard digits to be used during intermediate floating-point calculations.
This option replaced the single, double, or triple precision option of
the original simulator and has no effect on fixed-point calculations.
All floating-point variable assignments are still made using the word-
length specified in the first option.

Option #4, Option four allows the user to specify the number of
bits to be used in the floating-point exponent, iuncluding the exponent
sign bit (from 2 to 11). The sum the values for option four and option
two must be one less than that for option one.

Option #5, The fifth option all ws the user to specify the position
of the implied binary point with respect to the mantissa. The value 0
positions the point to the left of the mantissa (making the mantissa a
fraction) and the value 1 positions the point to the right of the
mantissa (making the mantissa an integer).

Option #6. Option six allows the uscer to specify whether rounding

111

or truncation will be performed after each operation. The value 0 indi-
cates truncation and the value 1 indicates rounding.

Option #7. This option was added to allow the user to specify
whether the computer being simulated uses sign plus one's complement or
sign plus two's complement arithmetic. Sign-magnitude machines should
be simulated by specifying sign plus one's complement. The value 1 is
used to specify sign plus one's complement and the value 2 is used to
specify sign plus two's complement arithmetic.

Option #8. Option eight was added to allow the user to specify
whether the machine being simulated is a binary, quaternary, octal, or
hexadecimal machine. The value 1 is used to select binary, the value 2
for quaternary, the value 3 for octal, and the value 4 for hexadecimal.

Option #9. The ninth option allows the user to suppress the print-
ing of overflow and underflow messages. These messages specify whether
overflow or underflow occurred, whether positive or negative, and the
routine and line number where it occurred. If overflow occurs on the
actual CDC word, the program will terménate.

Option #10. This option was added to allow the user to specify
the wordlength used for fixed-point calculations. This will allow for
valid overflow checking for both fixed~point and floating-point without
having to call SETNBIT whenever switching from one type to the other.
The maximum value allowed is 48.

An example of a typical SETNBIT subroutine call is

CALL SETNBIT (32,23,0,8,0,0,2,1,1,16,KEY,TKEY)
The argument values shown specify a 32-bit floating-point word, broken
down into 1 sign bit, 8 exponent bits, and 23 mantissa bits, with no

guard bits., The binary point is on the left of the mantissa, and the

112

binary machine does two's complement arithmetic with truncation., Over-
flow and underflow messages are to be printed, and fixed-point calcula-
tions are performed using a 10-bit wordlength, If double-precision
floating-point variables are used, the first and second options should
be changed to veflect the correct wordlength, thus allowing for double-
precision calculation and storage. This must be distinguished from dou-
ble-precision calculation with single-precision storage, which can be
accomplished by specifying the correct number of guard digits.
Control Cards

A very basic understanding o!f how the simulator works helps in con-
structing job control cards to simulate a program., The preprocessor,
which is executed first, rcads as data input the FORTRAN program to be
simulated, modifics the assignment statements, and writes out a file
containing the source of the modified program. The program on this file
must then be compiled and exccuted., As it executes, it will call the
subrout ines which are loaded with the objects of the compiled program.

There ave many different ways to build a deck to execute a program
vsing the n=bit simulator. One very simple deck setup using source
cards for the preprocessor, the subroutines, and the FORTRAN program to
be simulated, is shown below.

FTN, L=DUMMY 1.
1GO, , ,NBIT.
REWIND,NB1T,

FIN, L=DUMMY 2 , B=SUBS
REWIND, SUBS.

FTN, T=NBIT, B=PROG.
REWIND, PROG.

LOAD, PROG, SUBS

EXECUTE.,

113

7/8/9 Card

*%*Preprocessor source cards¥*¥*
7/8/9 cCard

*¥%**FORTRAN program source cards*¥%
7/8/9 cCard

*%*Subroutines source cards¥*#*
7/8/9 card

6/7/8/9 Card

Another simple way to execute a program using the simulator involves
using object decks for the preprocessor and the subroutines. A deck
setup to execute this way is shown below.

INPUT, , ,NBIT.
REWIND,NBIT.

FTN, I=NBIT.
LOAD, LGO, INPUT.

EXECUTE,

\ 7/8/9 Card

***Preprocessor objects¥**
7/8/9 Card

XFORTRAN program source cards#*
7/8/9 Card

Subroutine objects
7/8/9 Card

6/7/8/9 Card

B T a—

e Y T AR ST)

The above shown job setups involve using large card decks which are
rather cumbersome. If several executions are planned, the objects for
i.é the preprocessor and subroutines should be put on permanent files where
they could be accessed using either batch or remote job entry. The deck
setup shown below will store the preprocessor and subroutine objects on

permanent files.

(" REQUEST, OBJECT1, *PF.
REQUEST, OBJECT2 , *PF,

| 114

¥

3
i
3

“ GBI S

COPYBF, INPUT,OBJECT .

COPYBIY, INPUT, OBJIECT 2.

REWIND, OBJECT1.,

REWIND, OBJILCT2,

CATALOG, OBJECT 1 ,NBITSIM,CY=1,RP=120,
CATALOG, OBIECT2 ,NBITSIM, CY=2,RP=120,
7/8/9 Card

*REPreprocessor ohjectshan

7/8/9 Card

MeRSubroutine objectghid

7/8/9 Card

6/7/8/9 Card

Once the preprocessor and subroutine objects are on permanent files,

they can be accessed by using the following deck setup.

ATTACH, OBJECT1,NBITSIM, CY=1.
ATTACH, OBJECT2 ,NBLTSIM, CY=2,
REWIND, OBJECTL.

REWIND, OBJECT2,

oBJECTL, , ,NB1T,

REWIND,NBIT.

FIN, 1=NBIT.

LOAD, LGO, OBJECT2,

EXECUTE.

7/8/9 Card

*XXPORTRAN program source cards¥ds
7/8/9 Card

6/7/8/9 Card

The user options added to the first revision make it even more

costly to simulate a program. Core requircements changed only to the

extent that the subroutines are slightly larger and cach call to the

subroutines contains one additional parameter. It is conjectured that

execution time will increase approximately twenty percent, since the

subroutines are longer and morve complex.

115

ot till

T

NP LPRPP P ——

P —

Appendix B

~bit Simulator Subroutines Source Listing
2t SIMUSAEOT pUDLOULINEs source Liscing

The concept of using 22 n=bit subroutines to handle cach combination
of data types was retained from the oviginal simulator, although the
code in the subroutines was extensively modified. The SETNBIT subroutine
was also extensively modificd to give the user more flexibility with the
simulator. Three other subroutines called ROUNDER, ONETRNC, and TWOTRNC
were added to handle all rounding, sign plus one's complement truncation,
and sign plus two's complement truncation. 1In the program listing below,
the subroutines arce arranged into four major categories. The SETNBIT
subroutine comes first, followed by the special rounding and truncation
routines., The third group is composed of those subroutines which handle
only integer variables, and the fourth group containsg those subroutines

which handle at least one real variable.

116

OO OHOATTOOOD

»

SURFCUTTINE SUTNRYY(NOITS,MANTSAZICHARD,IEXONT,, IPTPOS) TIRNDTR,
JCRINOTTYRE M oSS6S, 1FIXD, KEY,TKEY)

CIMEDSYION XEY (D)

QINENSTION TKEY (&)

OATA YMXPOSZITT7S?T222°27702227°RY
OATA THEXHEG/Zhadtalsanaroqafacceney/
DATA AMNOES/Z0900 019Ga°cQCroCc00NR/
CATA TMNNEG/ZIZTS32™ 270 ¢l TiT7e/

E0ITS SECTION
THIS SECTION EDITS THE INPUT FOR LEGAL vaLues

NETTS NUMAER 0 RTTS IN FLOATING POINT RORD

PARTSA MANTISSA LERGTH W20 STGR OF GUAFD OTGTITS

IGUeRQ NUMREY OF GUAKD PIGITT USEGC FOR YNTE"MEDIATE VALUES
1EXENT EXPONZNT LEKATH W/ SIGH OIT

1F170S 0 = LEFY 1 = RIGHT

IENROTR 0 = TEUNBATE { = ROUMD

1CHwo b OHES COMFLEMYNT 2 = TWCS COHPLEMENT

ITYERL 1 = RINATY 2 = QUATERNARY 3 = OCTAL o= HEXADECIMAL
MESSES 0 = SUFPREGSION 1 = PRINY

1FIX0 NUMBZE OF BITS IN FIXED POINY WCRD

XEY ARFAY TC FTLL FOR OTHYR SURROUYINES

KEY(t) MAX PQSITIVE FIXCO POINY VALUL

KEY(2) MAX NEGATIVE FIXFO POTNT VALUE

KEY (1) IENOTR

KEY (&) I0NI WD

KEY (D) MERSGS

KEY (6D FINAIL MANTTISSA RITS SAvEN (MANTSM)

FEY () INTCEMEOIATE EXTHA BRIYS SAVED (IGUARD) .-
KEY (8) ITYPE

TKEY ARRAY TO FILL FOS QTHTR SURROUTINES
TKEY (1) MAX OCSITIVE FLCATING POINT VALUE
TKEY (2) MAX NEGATIVE FLCATING POINT VALUE
TIKEY (D) MIN PLEITIVE FLCATING POINT VELUE
TREY (L) MIN ST GATIVE FLOATING POINRT vitUc

JF (REITS6TND) GO YO 240

IF CUMANTSAGGT o9E) e 0P (MANTSAGLTG1)) GO T) 215

JF (CIRNDYR NG D) ANDL TIRKNDTRWNTG3)) GO T0 22

IF C(RETISEOET) V' INGLIENDTRVENEY)Y GO T 228

IF (UICNTNOGNE 1) AN CIONTWOGMT42))Y GY TD 230

JF (CYCUARDLT¢T) 00 (TGUACDGT« (LE=VANTEL))) GO TO 235

IF CUTIVPECNLE 1) e AN TTYPE aNEG?2) dANDG(ITYCE ONT ¢ 3) ¢ AND &
(TIYOL JRELLY) GO YO 240

IF CCEPESSESeNI M) AN (MESSOESKEa1)) GO Y0 2¢S

IF CCLEXPNT«GToal1) e ORG (TEXENTWLTe1)) GO 1J 2%0

IF (CIEXPNT & MANTSA # 1) JNEGNAYTIS) GO TO orr

IF LUIFTROS N ¢ M) o AND L (IPTFOSeNYed)) GO T) 2060

IF (JFIX0.GT.46) GO YO 268

END ECITS SECTION

KEY(E) = SHIFT(MASK(1),IFIXD) -1 .

117

———TL R

"

OCO0OO0O0OO0

o & 6 O O o0

o0

be]

a a6 O

KEY(E) = -KEY(1)

IF (CICHTWO.(T.2) s AND W (IFIXDWRELLE)) KEY(2) = KEY(2) -
KEY () = IFNDIR

KEY(L) = TONTWO

YEY(E) = MSSSGS

KLY (E) = MANTSA -
KEY(7)=IGUARD

KEY(E) = XITYPE

FILL FLOATING 2QTHT OVERFLOW AND UNDERFLOM CHECKS
IF UNCERFLOW RELWN 1S, 2ERD MWILL BF US:ED
IF CVERFLON RESULTS, MAX CDC VALUES HILL BE USED

THESE CHECKS ARE GOOD ONLY FCR COMPUTERS WITH UNBIASCD EXPONENTS

STAFT HITH MAX AuD MIN CDC VALUES
TKEY (1) =THXPQS
TREY(2) =V MXNEG
IKEY (1) =THNPOS
TKEY (L) =THINES

CLEATE MASK OF MANTISSA BITS TO SAVE
YEMPA=SHIFT(MASK(MANTSA) 4 H8)

CIEPTE MAX EXPQUENT
ITEUF==HB4ITYREN(2(TUXPNT=1)=1)
ACJUST FCGR LACATION OF RINARY POINT
JF (JFTPOS.EQel) TITEZMP=ITEMP+MANTSA
JTFME=1024

TRANSFER IMCLIES CDC VALUES ARE USED
IF (JTEMPGGELJITENP, GO YO %O

CCDE TO HANDLE CNC FXPONENT HANDLING
I1TERF IS DIMAKY EXPONCNT AS INTEGER
IF (JTEMPWLTD) JTEAP=JTENP =Y
JTEME=TTEMP T EYR

SHIFY EXPONEHT INTOY POSITION
TEPC2=SHIFT(ITF P44 1)

CREATE MAX PASTITTIVE FLOATING POINT VALUE
TREY(L)="EMP2.,0R.TEMP S '
CREATE MAX MSGATIVE FLOATIMNG POINT VALUE
TKEY(2)==T1KEY (1)

SKIP SPECTAL CASE FOP THOS COMPLEMENT
IF (ICNTHOLENGL) GO TO S0

CFEATE UNNORMALY 250 ATJUSTHENT
TEPPI=SHIFT (MASK(1) 44 9=-HANTSA)
TEMNOL=TELP2,ORTENPI

ADJUSY TKEY(D)

TRKEY(2)=TKIY(2) =V EMPY

CEEATE PAMYISSEN FOR UNDERFLOW
TELPL=SHIFT(MASK(1) 46 2)

CRNERTE MIN EXPOYENT (MAX MEGATIVE)
ITEMFPzeQA=TTY Y (2 (I "XPNT-1))

AOJUST FOR TWOS COMPLITMENT

IF (JCATHDGENSY) ITIMP=ITEMLPHITYRF -
AGIVST FC? LICATTON OF RIMARY OOINT
IF (IFTPOSeERe1) ITEMO=ITENP ¢MANTSA : d .
JYENFE=4023

RETURN IMOLIES CNC VALUES ARE USED
IF (JTEMP LT «=JTEMO) ROTURN

e

C CODE 10 MANNLE CNC FXCONENT HAMOLING

¢ ITEFE IS OINARY EXPONENY AS INTEGER
TTL =1V e MparEye

¢ SHIFY EXPONINT TRTQ POSLITION
TJEMFI=SHIFT(ITENN 4t 8) -

C CFEAYE MIN POSTYIVE FLOATING POINT VALUE
IREY(X)=TEMP2,0RTEMPY

C CREATE RIRN MEGAYIVE FLOATING POTNT VALUS
TREY (LY «TRNEY (D)

C SKIF SPECTIAL CASE TOFR THOS COMPLEMENTY
IF (JORTRO.EN. 1) RCTUPL

c CRELTE UNNORMALITED ADJUSTMENT

VERPI=SHIFT(MASK(1)) Q=MANTSA)
TEMPL 2 TENF2.00 TEMP3
C AUJUST IXLY (W)
AKEY () =TV (D)Y =Y EMDE
ROTUEN

; Cc .
i C
t 210 FRYINT®,"™NRBRITS YOO QIG*"™, NBITS
; STOP
1 248 FRINT® ,“AAD0 MANTISSY LERCGIH yMAKYSA
R s10p
220 FRINT? ¢"FAD0 ROUNCZTRUNCATY OPTICH * e IRNDYR
Siop
22% FEINT~,"CANT ROUND W/ €0 BITS “,N91TS
f10P

23C PRINY*¢“MACHINE CGNLY DCES ONES OR THOS COYP STUFF"™
FRINYY 4UFOR SIGN=-MAGNITUDE, USE ONES COMP “,IONTWO
‘ ovop ;
23T FRIYNT*("RAD GUARDC DIGTTS ", IGUARD
STOP
L0 FETHT*y"BRAD MACHINE TYFE STECIFIED “,ITYPE
PRINT ™1 =QINARY Q2=2RUATERNARY 3*0CTAL S=HEXAOFCIMAL®

SYor

205 FEINTY o 8AD MESSAGE OPTION REQUUSTEN **, MESSGS
|IcP

270 FRINT®¢"OA0 EXPONCNT *, IEXONY
STOP

2K FRIMTZ yU“EXPONENT ANDY MANTSA ARE NOT COMPATYIRLE®
PRINTY GUMANTSY ¢ YEXPNT # 1 = N3ITS
PRINTY y“TEXPNT = “,IEXPNT
PRINTY H"MANTSA = “,MARTISA
stToP

Q€0 FEINT® y“RAD POINT PISITION REQUISTED ", YOTRQOS
c10°

268 PRINY®H"PAD FIXED PATNTY ROROLENGTH “,IFIX0
sTop :
END

119

O 0 O O0O00OO0O0

<

0O 606 O O

SUBROUTINE ONETRNC(RRR,IFRL,KEY)

SURBROUTINE TO ANDJUSY ALL MANTISSAS 10 PROPER [ENGTH

USED WHEN STMULATING MACHINGS EMICH USE SYON PLUS ONECS COMPLEMENT

RUPROSENYATION OF FLOATING POINT KUMWERS KITH TRUNCAY1ON

DIHENSION KEY(8)

MASK TO PIGK OFF CDC EXFONENT AND SIGN
DAYA YRNCL/ZY¥77TY000Q000C00000000%7

CHARGE EXPONENY YO INVEGER DISCARD MANTISSA
JAOUST=SHIFT (R, =4 8)

ADJUSY INTEGER FOR SIGN OF MANTISSA
IF (RRRLY.0) TA0USY= NOTLIADUST

ADJUSY INRGEGER FOR COC EXPONENT REPRESENTAYYOQON SCHEME
IF CIADJSTGELL1020) JANIST=208 b=1R048T
IF QQADIST LT 1024) JATIST=2050=YADUST

ADJUSTMENT FOR MACHIND RAQIX
JADUST=HODCJIANIST yREY (8))

COMPUTE RUMBCR OF RITS YO TRUNCATE
KADUST: JAQIST ¢4 8 «XEY (6)

ADJUST FOR KEEPING CUARD BITS ON INTERMEOIATE EXPRESSTONS
IF CIFNLLEQeD) KNADUST=KADUISY=KEV(T)

TYRUNCATE £Y SHIFTING FIRST RIGHT, THEN LEFY
RRR=SHIFT(SHIFY (RRR, =KADJIST) , KADIST)
REVURN
END

N WIS WO A AT e

O O O 0O O O000O0O0

OO0 O OO OO O O o

o

o0

10

i i

SUBROQUTINE THROTRNC(RAR,IFNL, KEY)

SUBROUTIKE TO ADJUST ALL MANTISSAS YO PROPUR LENGYH

USED WHEN SYMULATING MATHINDS NHICH UST SIGN PLUS THOS COMPLEAENT
REPRESENTATION OF FLOATING POINT NUMBERS WITH TRUNCATION

DIMENSION KEY(8)
MASK 10 PICK OFF COC CXPONENT AND SIGN
DATA TRNCHL/Z77272700000000000C000CY/
HMASK TO PICK OFF CODC MANTISSA
DATA TRNC2Z0GQCTZ7TT?27TT2777TTR™/
CHANGE EXPONENT YO INTEGER DISCARD MANRTISSA
JADJSY SHIFTIR IR, 4L 8)
ADJUST INTEGER FOR SIGN OF MANTISSA
IF (FRR.LT40.) JANIST= NOT.YADUST
ADJUST INGEGLR FOR CDC EXPONENT REPRESUNTATION SCHEME
IF CJADJUSTYGEL$I24) JANJIST=20655=1ADJISTY
IF CIADIST LT 1220) JALUST=2095-IADJST
ADJUSTHENT FOR MACHINE RADIX
JADIST=MOD(IADISTY yKEY (8))
COMPUTE KUMBEF OF AITS TO TRUNCATE
KARJUSY =0ADUST 44 i=KPY (6)
ADJUST FOR KEEFPING GUARD BITS ON INTCRYCDIATE EXPRESSIONS
IF CIFNLOENGO) XKADJISY=VADJST=KEY(T)
POSITIVE NUMSBFR IS READY YO "F TRRUNCATED
NEGATIVE NUMIER MUSY BE TRUNCATED TOWARD MORE NEGATIVE
IF (RRR«GE«C) GO YO 12
NEXT & LINES LDJUST RRR SO IT CAN BE YIUNCAYED USING SHIFTS
PICK CFF SIGN ANO EXPONENT WITH MASK
TRNC3I=TRNC1 «AND (RARR
CREATE MASK OF NUMBER OF BIYS YO0 SAVE (POTH EXPONENT AND MANTISSA)
TRNCH =HASK(60=-KAD IST)
MASK RITH MANTISSA FOSITIONS TO GEY A& STRING OF
ONES IN MAMNTISSA POSITICONS TO €% SAvVED
ZEROS IN FOSITIONS 10 BE DISCARDED
TRNCL=TRNCA ANDTRNC2
QR IN SIGH AND EXPOMNONT
TRNCL=TRNCLORLTRNES
SICGN IS NEGATIVFE, SO TRUNCH IS AN UNNORMALIZED NERATIVE NUMBER
ADJUST RRR DOWNWARD (MORE NUGATIVE)

RRR=TRAC4H ¢RRD
TRUNCATE 8Y SH4IFTING FIRST FISHT, T4Th LEFY
RER=SHIFT (SHIFT (RRRy=KADJST) 4 KADIST)
RETUFN
END

121

0O O 0O O O 00000000

QO O O 99 O O O

o

10

20

O o 0 00 O O

SUBROUTINE ROUNDER(RRRIFNL ¢ KEY)
SUBROUTINE TO ADJUST ALL MANTISSAS T0 PROFER LENGIM

USED HHEN STMOLATTING MADHINES MHICH UST SIGN FLUS ORES COMPLEMENT
OR SICGN PLUS TROS CONFLEMENT RIEPRESENIATIONS OF FLOATING POINT
NUNRERS KITH POURDING

ROUNOING IS DONE AY ACDING AND THEN TEUNCATING

DIMENSION KEY ()
MASK YO RICK OFF CDC EXPONFNY AND SIGN
DATA TRNC31/7727273023210Cr00000002R7
MASK TO PICK OFF COC MANTISSA
DATA TRNC2Z200QQF7%cPT? 7Tt 7T\W
CHANGE EXFONENY TO INTEGER OISCARD MANTISSA
JADUST=SHIFT(QRR, =4 S)
ADJUST INTEGER FOR SIGN OF MANYIISSA
JF (FRR..T.0s) YADIST= NOT.IADJIST
ACJUST INGEGEXN FOR COC EXPCONENRY REPRESINTATION SCHENE
IF (TADISTGELLI2H) JAPISI=2C56-TANYST
IF (JADJST LY «$224) JADIST=J00U-120JST
ADJUSTHMERT FO® MACHINE RADIX
JADUIST =NODTJADIST yKEY (5))
COMPUTE NUNBER OF RITS TO TRUNCATE
KADJIST=JADIST 68 =-KEVY (6)
ADJUUST FOR XEEPRIMNG GUARD RITS ON INTERMEDIATYE EXPRESSIONS
IF (IFRLE0.0) XADIST=RADISYT=XKEVL(D)
CREATE MASK OF NUMAER OF BITS 10 USE IN RCUNDING
ONE MORF THMAN MUNRER TO SAVE
STEMF=MASK(GTI=KADIST)
CPEATE MANTISSA JF UNNOSMALITCO NUMBEP TQ ADD
TTEMP=SHIFY (MASK (1), KANJIST) .
SEQARATE CODE FOR NEGATIVE NUMAERS
IF (RRRJLT.C) G0 YO g0
PICK QFF CNC RITS OF KOXD YO USE FOR FROUNDING
RRR=KRRCARNDLSTENP
GO0 TO Q0
CHANGY MANTISSA OF UNNORMALITED NUMBER YO NtGATIVE
TTEMP= NOT L TTL NP
STEMF = ROV ST1EMP
PICK OFF COC AITS OF WORD TO USE FOR ROUNDING WITH TRAILING ONES
RRR=FRRJOR ST EMD
ZERO OUY EXPONENT FIELD
TUEUP=YTEMP JANDQL,TRNG?
CODE FOR ALL NUMRXERS
JSOLATE MANTISSA FIFLD
TRNCI=RAINAND L IRNCYE
OR JIN EXFONENT FIELS
TRNCH=TRNCIORTT EMD
ADD UNNORMALYZED NUMBER
RRR=TKAC« +RRR
ROUND I'SIVE SUTETS Y@ TRUNCATT
TRUNCATE BY SHIFTING FIRST RIGHT, THEN LEFY
RRRESHIFT(SHIFT (AR =KADJIST) , KADUST)
RETURN
END

INTECER FUNCTION YTADND(IL,12,)ROMTINT g LKCNT 3 TFNL yKEY,TKEY)
DIFERSTON THEY (4)

DIMENSICON KEY(6) E i
‘ II/00=T1472 . .

1 JF (LEGVAR(TIADD) NZ.0) GO TO 4110

IF (YIADDJGT.KFY (1)) GN TO 4O = R e LT OR T \
IF (JIADDGLTWXEY(2)) GO YO €0 1
RETUIN - e : L J

L0 YTADC=KEY (1)
IF (KEY(F),EN,0) RETURN RIS e ey
PRINT (1.,24C) P0471VL.anur 4
. - RETURN = kRl NN
60 IILDC=KEY (2)
. IF (KEY(3),50,0) PETURM
! PRINT (1,200) ROUTINE,LNCNTY
| - RETUFN VS b A
100 PRIMT*,“SOPRY,TUSKEY T CANT CONTINUE®
| PRINY (3,150) I1AicO : et L s
i 45C FCrMAT (1HC,020)

240 FORMAT (1H0,"IIALD 20SITIVE OVERFLOM "y k5, LINE = *,16)
260 FORMAY (JHO,“IAS3N NLGATIVE OVERFLON “yA8," LINE = ",15
sTOP o
END

TNTECER FUNCTION TIMHS(I4,I2,ROUTINE,LNCNT,TFNL, KEY,TK&Y)
DINELISION TKEY (4)
DINERSIGH KEY(6)
S 1INNS=11-12 = St et
IF (LEGVAR{ITH4NS) (M3,0) GO TO 170
IF (IINNS.GT.KEY(4)) GO YO &40 P D e
IF (1IFNSLT.KEY(2)) GO TO 60
RETUE N 8 T Z e lrwy s .
60 YIMNS=XKEY (1) .
IF (KEY(S) (EN.0) RETURN
_ PRINT (14240) RIUTINE UNCHT
T RETURN . o TS T o L T s
60 YIMNS=KEY (2)
IF (FEY{5),€0.0) PETUPN o =
PRINT (4,289) ROUTINE,LNCNT
RETURN S
100 PRINT*,"SCFFY,TUSKEY I CANT CONTINUE"™

% . PRINT(1,450) II%4S . s L

| 150 FOFMAT (1H1,02?)

: 260 FOSMAT (1HO,"[IMMS POSTTIVE OVERFLOW *,A3,"™ LINE = *,I5)
{ 260 FCRMAT (1H7,“IIZXP NEGATIVE OVERFLOW *yf3," LINE = *,IF)
i STOP ;

! END

TNTEGER FUNCTION IIMPY(I1,I2,ROUTINE ZLNCNT3IFNL,KEY,TKEY}
DIMERSION TKEY(3)
DIMEL SICHN KEY(S)
IIrPY=14- 12
JF (LEGJAR(ITHYPY) (NZ4G) GO TO 100
IF (TIMPYGT.XKEY(1)) GO TO 40
IF (IIMPY,LLT.XEY(2)) GC TO 60
RETUF R : : - : ;
4C YIFMFY=KEY (1) 3
JF (KEY(:).EN.C) PETHRN A o
FRINT (1,20:0) ROUYINE,LMCNT L
REJURNY . T
60 JIKPY=KEY(2)
IF (VEY(:)EN,O) PETURNM
FRINT (1,26G0) ROUTINZ,LNCHNTY
RETURN
100 PRINT*,“SORRY, TU KLY I CANT CONTINUE®™
PRINT (1,350) I1IMFY
160 FCKMAT (1H%,020)

240 FOLMET (AM,“IIYPY POSTTIVE OVERFLOWN *yA8," LINE = *,I%)
200 FOTMAY (4M0,"1I0VN NEGATIVE OVETFLOW “,A8," LIKE = ",I5)
STCP

END

123 :,

INTEGER FUNCTION ITIVO(IL,12,ROMTINS,LNCNT,TFRL,KEY,TKEY)
DINEESION TKEY (i)
, ! DIMERSTON XEY ()
| J1ovVe=14/712
‘ IF (LEGVARCIIOUN) ¢HEL0) GO TO 100
IF C1I0VDLGT.XKEY (1)) GO TO &40
IF (QICVDLLTKEY(2)) GO YO 60
FETURN ;
LY TIONO=KEY (1)
IF (KEY(D). E0,0) RETURN
PRINT (1,260) KOUTINE,LNCNY
RETURN
C0 TILNE=XKEY ()
IF (KEY(E).EN.0) PETURN
PRINT (1,260) ROUTINTD,LNCNT
PETUEN
160 FRINY®,*SQ0NNY, TU KEY I CANT CONTINUE™
PRINT (1,450) 119V0
150 FORMAT (1HO,020)

250 FOUMAT (IHC,“IYOVD ©OSYTIVE OVERFLOW A3, LINE = ",15)
2€0 FOIMAT (1MO,™II4PY NEG)TIVE OVECFLOW *, A5, LINE = “,I5)
STOP -

END

INVEGEFR FUNCTION ITEXPU(IL1,I2, ROUTTINE,) LNONT,ZIFNL,KEY,TKEY)
CIMENSION TKEY (W)
DIMENSION KEY(S8)
ITEXP=]1 *12
IF (LECVAR(CIIEXP) «NT,0) GO YO 190
IF CLIEXPGTJXEY(1)) GO YO &0
IF (1ICXPLYXKEY(2)) GO YO 60
RETUERN
0 JIEXP=XEY (1)
IF (KEY(%)JEQ«0) RETURN
FRINT (14260) ROUTINECZUNCNT
RETURN
60 ITEXF=KEY(2)
IF (KEY(").EQ.0) RFTURN
PRINT (1,4280) RQUTINTZULNCNT
PETUEN
100 FRIUTH,"“S0ONNY, TUNKEY I CANT CONTINUE"™
PRINT ($,1%0) T1EXP
16C FOSMAT (1MO,020)
263 FORMAY (1HO,“IIZXP ©0STTIVE OVERFLOW “,R8%,™ LINE = “,I%)
260 FORMAT (1H3,"IIMNS NEGATIVE OVERFLON “,43,* LINE = *,I5)
STOP
END
INTECEPR FUNCTION TASGM(I44FOUTINEGLNCNT,TFNL yKEY,,TKEY)
CItENSION TKEY (&)
DIPELSION KEY(8)
JASGAh=11
IF O CLEGVARCIASGID JNELNY GO TO 180
IF IASGNGYeNEY (1)) GO YO 4O
IF (IASGN LT XEY(2)) GO TO GO
FETURN
40 JASGM=KEY (1)
JF (KEY()ENeN) PETUPN
FRINT (1,260) ROUTINE,UNCNT
RETUEN
0 TASAI=KEY (D)
IF (KEY(L)EQeD) FETURN
FRINT (1,259) ROUTINE,LNCNT
FETUEN
400 FRINT*,"SORRY,TUTKEY I CANT CONTINUE"™
CiPiNT(1,18)0) IASCGH .
155 FOFMNAT (1HD,020)
200 FOMIT C4HI,“TASGN POSITIVE OVERFLOM “,A%,* LINE = *,I5)

N

B T G (B B o

280 FPC'MET (AMI ™ ITACD NEGATIVE QVETFLOM woigy™ LINE = 5109 s
£T09 ‘
FND

124

20

Lo

(1]

80

220
eLn
2ro
2&0

20

Lo

€0

eo

ezn
210
2o
280

REAL FUNCTION RRADD(RE,R2,ROUTINE,

DIMENSYO KEY(8)
DINELSION TXKEY (L)
RRADO=FL4R2

IJF (KIY(3)sENe1) CALL FOUNDER(R®ACD, JFNL,XKEY)
IF ((KEY(3)aET40) MNOGIKEY (H) 42N 2)) CALL

IF CUXEY(3)eEQal) o AND G IKEY(L) «ENe1))

JF (FRALDD.GT TKEY(3)) GO T0 23

IF (FRADDJATLTKEY(2))Y O 10 &0

IF C(RRADDLLYSTREV(3)) CAND. (RRADDGT 4 04))

GC 10 €0

GO YO 817
RETUFN
RRADL=TKEY (1)

JF (KEY(5).EN:.D)
FRINY (1,220)
SR EUNY
RRADL=TMEY (D)
IF CX¥eEN(HYEQ.0)
PRINT (1,250)
RETULN
RRAD(O=N,D

IF (XEY(Z)EQ.D)
PRINY (1,260)
RETUCN
FERADI=0.0

IF (VEY(J) . EQ. D)
PRINY (1,200)
RETUEN
FORMAT
FCEMAT
FORMATY
FOLNAT
END

(1HYy AL

(1HYy"IRAT

REAL FUNCTIOH RIAODD(IY,

DIHELSTION KEY(8)
DIMERSION TKEV W)
R1ADC=114R2
IF (KEY(3).E0.1)
IE
IF
IF
IF
IF
GC 10 60
IF
Ge 1C 80
RETUPN
RL{ADD=TKEY (1)
IF (KEY(').£Q.0)

C1HT, "RANT

(1H3,°37\00

FETURN

RAUTING § LNCHT

RETURM

ROUTINE y LNCNT

FETURN

ROUTINE) LNCNY

FETURN

ROUTINE, LNCNY

?\(\t:‘\T : \y:'
N NFGATIVE
SOSEZTIVE

0 NEGATIVE

((KEY () o EQ0M) S AND L (KEY (K)o £72))
COREY () o B0)) WAND L (XEY (L) «ENGT))
(F 140D GV TKEY (1))
(RIADDLTLTXEY (D))
((RIADPD LT« TKEY (1)) ¢ ANDG (RIADDGGT W 00))

co Y0
G0 TO

RETURN

PRINT (41,220) ROUTINE,LNCN

RETURN
RLLO0=TKIY(2)

IF (KEY(2)5040)
PRINT
RETURN
R1AD0=0,0

IF (KfY('Y)'fQ.O)
PRINT (1,250)
RETUREN
F1rDC=C.0

IF (KEY(L).EC40)
PRINT
RETUFN
FCRMAT
FOrM2Y
FOi M1

END

RETHUPN

(14240) ROUTINE, LNCNT

FETUPN

ROUTINE, LNCNT

PETURN

(14259) ROUTINT,LNCNT

(1HN4"21A00D S0STTIVE
CEHD " UATD
(142, AND
FORMET (4MD,"R1AD

NEGUTTVE
2087TIVE
D NEGLTIVE

OVETFLOW
QVESFLOW
UNITOFLOW
URQCTRFLONW

20
L

OVERFLOW
OVETFLOW
UNDTSFLOW
UNOZRELOW

125

CCREADD (GT TREY (4)) W AND. (RRATDLLT . 04))

SRR g
WAR

“ .
g

CORIAND(CTATREY (4D) ¢AND, (R1ADDLTL 04))

A
“ AR,

CALL POUNDER(RLI&NN, TFNL4NEY)
CALL THOTINC(RIADD, IFNL,KIY)
CALL CHETSNC(RLIADDy IFNLyKEY)

CALL ONETRN

LT
L1
L
L

LNCNT IFNL s KEY, TKEY)

THOTPHRT (RRADD,, TFNL , KEY)
DOy IFNL, KEY)

C (RRA

NE = “,1C)
NE = “315)
INE = *,I5)
INE = “,15)

X2 HROUTINEZLNCNT,) IFNL 4KEY, TKEY)

NE = “415)
RE & “p15)
INE = *,15)
INE = ", 1I5)

2t

Lo

€0

&0

220
2Lt
2c¢
2t0

20

(14

Ay

220
2ty
ere
2t

PEAL FUNCTION R2ANN(RL,J2,ROUTINE4LHCNT,IFHL yKEY, TKEY)
DIKERSION KEY(R)
DIMOESLION TKEY(4)
R2ADD=1 14T 2

JF (KEY(3)et041) CALL POUNDER(R2AND, TFNL4KFY)

JF CKEY (3 eENe D) AN INEY (W) «ENe2))
IF ((KEY(3).F7.9) AND L (KEY (L) JEN. 1))

JF (F2aDD.GYLTKEY (1)) O TO
IF (F2AD0LLT.TKEY(2)) GO TO

20
Le

CALL TWOTINC(R2ADD, TFHL, KEY)
CALL ONETFNC (X2ADDyIFHL 4KEY)

JF ((RPADDGLTTKEY(3)) ¢ ALDG (R2ANDGT 4 04))

GC T0 60

IF ((R2ADDCTOTRKEY(4)) dAND(R2ADDLTe 04))

GO TO 817
RETUEN
K2ADD=TKEY (1)
IF (KEY(L).EQ.Q) RFTURN
PRIRT (1,220) ROUTINE,LNCNT
RETULN
C2L00=TKEY (2)
IF (KEY(2)eF0L0) RETURN
PRINT (1424C) ROUTINE,LNCNT
PETUFN
F2400:0.0
IF (KEY(L).F0.0) PETURN
PRINT (1,250) ROUTINE,UNCNY
RETUIN
K2A00=0,0
IF (FEY(")«EQsD) FETURN
PRINT (1,280) ROUTTING,LNCNT
PETUI’N
FOPRMAT (1MH0U,""22A00 °oNSITIVE
FORMAT (1HIZ 2400 NEGATIVE
FORMET (1HA,“2A00 20STVIVE
FCEMAT (1HO,“2ADD NEGATIVE
END

OVERFLOW
CVERFLOA
UNDIZRFLOY
UNOZFFLOW

“yl84* LINE = *,I5)
Uy 83, LINE = ",1%)
“yA8," LINE = *,1I5)
“9A3,*" LINE = “yI3)

REFL FURCTION RRMNS({R1,R2,ROUTINE,LNCNT;IFNL 4KEY, TKEY)

DIMENSION KEY(8)
DIMELSION TKEY (&)
RRMNS=R1-R2

IF (KEY(3)eENe1) CALL COUNDER(RPMNS, IFNL,<EY)
IF ((KEY(2)eEQ47) sAND L (KEY{L) cENG2))
IF (C(KEY(3)eEQ40) JAND (KEY(H) «EN.1))

IF (FRMNSGT.TXZY (1)) FO TC

JF (ERMNS A TL.TKEIY(2)) GO TO

IF ((REMNS.LTWTKEY(3)).AND
GO T0 €0

290
40

« (RRMNSWGT

CALL THOTENC (RRMNS, IFNLyKEY)
CALL CNET2NC (RRMNSyIFNL4KEY)

0))

IF C(RAMNSGT«TKEY(4)) «ANDe (RRHNS LT 0e))

GC TO 8)
FETURN
RRMNE=TKEY (1)
JF (KEY(2)ENGD) FETUPK
PRINT (1,220) ROUTIYE,LNCHT
RETUI N
RRMNS=TKEY(2)
JF (YEY(S).EQ.0) FETHLN
FRINT (14249) POUTINT,LNCNT
PETUFN
ERMNS=C,.D
IF (KEY(!).EQ.C) PETURH
PRINT (14280) ROUTINE,ZLNCHT
RETUFN
PRMNS=0,0
IF (VEY(3).5Q.0) RITURN
PRINT (1,237) ROUTIME,LNCNT
RETURN
FORMET (4HI,""MuS ONSTTIVE
FORMAT (IM24"27MNS HEG/ TIVF
FOL.MPY (IMA™ RIS 2N T veE
FOFMAT (SHI,"RFEANS NFG/TLVE
END

OVE?FLOW
OGVE"FLOY
UND=ZSFLOW
UNDZRFLON

“y834% LINE = *4I5)
w89y LIKE = 415)
"y ey LINE 2 *,15)
“rAiyt LINE = *y15)

nn

126

EELL FUNCTION RAMNS(T1,R2,FOUTINE JLNCNT 3 YFHLKEY, TKLY)
DYMERSTON XKEY(S)
DIMEPSION IRLY ()
RIMRE =) 1=RD
IF (KEYID L I0,1) CALL TOUNDERCUIMNS, TFNL 4 CEY)
JF O COREYCI) b)) AND G (KEY(N) o ENe?)) CALL THOYTHI(RIMNS, TFNL KEY)
| IF CUREYUIIN a0 JAND G IREY(H) ot M 1)) CALL OMTHNOURIMNS; IFNLKEY)
* IF (FINNSGTLTREV(L)) FO YO 20
IF CUAPNS LT TKEY(2)) FO YO &0
; IF COPIMUSLY TR Y 3)) dAND (RIMNSGT 4 042) ~
R GO 10 o0
JF O CORAMAS o OT L TREY ()) G AND (RIMNS (LT 4 04))
. CC 10 &0
FETURN ,
26 FRPNSTREYLY)
IF (XEY() 00,00 FETURN
FRINY (14220) ROUTINI,UNCNT
KETUEN
L0 REDNSHINEY(D)
YF (FEY() [0, 0) RETHURN
i PEINY (142%0) KOUTING ;L HCNT
RETUER
60 RENMS: G40
IF (KFEYUE)LE0,' Y RETURN
PRINY (1,4260) AOUTINE) LNCNY
PETURN
80 RIMES (oD
IF (KEYIU D LEN, D) PFTURN
PRINY (1,230) ROUYINYyLNCNT
FETURN
20 FORMET CIHO™244"S OOSYTIVE OVETFLOW “, A8, (LINE = *“,I5)
E0 FORMET CLIMIH™AUNS NEGATIVE OVEAFLOW “,a3," {INE = *“,16)
'
¢

0 FOFMIY (1HI ™M MOSTTIVE UNOTRPLON - “g88.* LTHE = *,16)
0 FOIMAT CIMI¢"RANMGS NEGATIVE UNDOUSFLOWR *“yany* LINL = *,15)
END
REM FUNSTION RIMHS (0L 3T2,ROUTINCZUNCNTIFNL KIY,TREY)
OITMERNSTION KEY(B)
RINCLSION TREY (')
R2MNE =F1=12

Iy
¢
b4

IF (P2MRSLTLTKEY(2)) GO T0

AR b ol S

. G0 10 6O

. GO 10 80
KETURN
20 F2rNSE=TKLY ()

IF (VEYO) EQ.0) FRETURN

PRINT (1,2720) ROUYINE, LNCNT

REVUEN

4N RZHNE=TKEY (D)

IF (MEY(LY,E0.0) PETURN

FRINT (14240) POUTINE,UNCNT

RETUKN

60 P2MNEE0,.0

JF (REY(")(EQe0) RETURN

PRINT (14260) ROUTINE,UNCNT

FcTURN

80 F2ENE=0,0

JF (KEY(L) ,0Q.0) FETURN

FRINT (1,280) ROUTINE,UNCNT

RETUEN

220 FOLMAT (M0, "2MNS POSITIVE
l Q1Y FOEMAT (IHFH"2MUS NEGI TIV!
R ehF FOLMET UIHO"2MNS "0STTY e
200 FCRY T (AHY"REMNS NEGIY IVt
END

JF (MEY(3)e10e1) CALL TOUNDER(RPMNS, JENL 4<FY)

JE CUKEY U3 o006 0) AN (KEY (L) o ENa2)) CALL TROTVHC(RIUNS,, TERL,KEY)
JF CEREY I of 20 M) G AN EREY(E) o ENe1)) CALL ONSTINGCERIMNSyTERNL o KEY)
JF (FOENS G TXIY (1)) GO 10

o
‘

ho

IF CCRIMNS LT oTREY)) G ANDG (ROHNS.GY 0 04))

IF COROINSCT o TREYCA)) o AND. (R2MNS LT e 04))

OVENFLOR 'y AR, LINE = *,1%)
OVERFLOMW Nyl W™ LIRE & “;1I%)
UHDCRFLON 348, LINE = =31%)
UND RELON "y d5,* LINE = “,1I9)

127

2C

Lo

60

&C

220
21 0
260
&0

20

Lo

Q¢

131

220
20

wy A
i

ety

FEAL FURCTION ROYPY (R1,R2,POUTINE JLNCNT,y XF ML ,KEY, TKEY)

CIMUNSION KEY(R)
OIMENTSTON TKEY(H)
FRIMPY=RER2

IF
1F
IF

IF
1F

IF

1F

(KEY(3)aE0e1) CALL FOUNDOR(RIMEY, IFNL,KEY)
COREY(3) o EQ40) (ANDGUIREY (W) 81, 2)) CALL THOTINC (RRMPY, TFNL ,KEY)
COREYEIY 0 B0) o AND0 (KEYIH) o170 1)) CALL CONETHFNC (REMPY 3 IFNL o KEY)

(FREPY OT.TKTY (1)) GO TO 20

CFRMOY LTLIKEY ()Y AfQ TQ 40

CORRMPY oL T TKEY(5)) o ANDY (RRMHOY 4 GLa 04))
GO T0 6O

COREMPY GTTRKEY (D)) AND. (RRMPY LT e 04))
GO Y0 &0

RETUPRN

RRMPY=TKEY(])

IF (VEY(YL EQ.D) RETURN
FRINY (1,220) ROUTING ZUNCNY
FETURN

RREPY=IKEY (D)

JF

(KEY(D) 0. 0) RETURN

PRINT (14240) ROUTINC,LNCNT
RETUEN
KRMPY=0,0

I1F

(KEY(T) JEDD) RETURN

PRINT (1, 250) ROUTINE,LNCNT
RETUKRN
RREPY=0.0

1F

(KEY (D) EN,0) RITURM

FRINY (1,200) ROUTINUZUNCNT
FETUEN

FOFMET (1MHD,“RRMPY POSTTIVE OVERFLOW **, A8,

FORMAT (LHO,“RPUPY NEG!TYIVE OVETFLOW “,18,*

FORMET C(1HO,"RRMTY SOSTITIVE UNIIRFLOW " 88,*
FOIMAT (LHY,"RRYMPY NOGATIVE UNDURFLOW *“ya8,v
END

FEAL FUNCTTION RIMPY (T1,3R2,ROUTINE,UNCNT, IFNL 4KEY, TKEY)

CILENSION KEY(8)
PINELSION TKEY (&)
PLEPY=T1 R2

IF
IF
1F
1F
1F
IF

IF

(KEY(3).EQe1) CALL FOUNDER(RAMEY, TFNL,KEY)
THOTENCCRIMOY, TFNL, KEY)
COKEY (3 o E2aM AND W (KEY (L) €N 1)) CALL ONSTRNC (RIMPY 3 IFNL,KEY)

CCREY (3 e £040) «AND O UKEY (L) 4 EN.2)) CALL

CFAMPY WGTTREY (1Y) €O T0 20
(FIFPY LT TKEY (D)) GO TO &0

CCEIMPY QLT TKEY (3)) JAND (RIMPY(GT 4 04))
GO 10 b0

((ﬁi\‘f'\oc‘.‘K(Y("b))'ANDc (Ri“n'cLTOOO))
GC TO 80

RETUEN
PAMPY=TKOY (1)

IF

(KEY() £Qs0) KETURN

PRINY (1,220) ROUTING,LNCNT
RETUFN .
RIMPY=TKEY (2)

1F

(KEY(:)«EQ.0) RETURN

PRINT (1,240) ROUTINE,LNCNT
REIUFN
FLVPY=0,0

iF

(FEYU) o E040) RETUPN

FRINT (1,200) ROUTINE,LNCNT
REVUEN
FinPY=0,0

F

(KEY (' 7400400 RETURN

FRINT (1,230) ROUTINEC,UNCNT
RETUEN

FOPMAT (LHY,L4PY BORITIVE OVYVVIOQ “e k8™

Fe

FOIMPT CINGy"RIMPY SOITTIVE UNDTEFLON ™k

MET CIHD,URAMPY EGMTIVE OUrFLON "y he

CCIIAT CAHUG"UIMPY JEGSTAVE UNDERFLONW "y A
£

128

LIRL = *,1%)

NE = “,1I5)

Lo

(14

8o

rady
2La
2t 0
2f 0

tn

€0

ro

FEML FUNCTTION R2ZMPY (R, T2, ROUTYIHT, LHCHTy TFNL KOV IKEY)

CIMENSTON KEY(5)
PIREFSION TXEY ()
FrpPY=f3r 12

IF (FEY(3),F0.1) CALL FOURDER(RIMPY, TFNL,X Y)

T O CKEY (3) B0 1) JAND L (KEYCL) o LN, 2))

TE OCCKEY () o £ JAND (KLY CR) 48N 1)) C

IF (F2MPYGYT . TKIY (1)) €GO TO
IF (F2¥PY LTS TKEY(2)) GO0 T0

&0
Lo

CALL

IF CURTHPY LT« TKEY(3)) e ARDG (K2MPY (T4 04))

GO 70 ©)

I CCE2HPYLOT o TREY Q)) S AND (R2HPYJLT 4 04))

GO 70 @0
REJURN
R21PY=TKOY (1)
IF (KEY()W E0.0) RETURN
FRINT (1,220) ROUTINCE,ULNCNT
RETURN
R2MPY=TIKEY(2)
IF (KEY(.).E2,0) RETURN
FRINT (1,240) RIUTINT, LNCNT
FETURN
R2FPY=(0.0
IF (KEY(2) ., EQ.0) RETURH
FRINT (1,260) ROUTING,ULNCNT
PETUEN
F2HPY=0.0
IF (KEY(H),,E0.0) RETURN
FRINT (1,290) ROUTING, LHCONT
RETUERN
FOLMAT (1M0,%R2'PY POSTTIVE
FOIMAT (1HI,"R247Y NEG/TIVE
FOEMAT (4H2,"REMPY D0STTIV
FORNAT (I1H)p"RUTY NEG/TIVE
ERD

OVESFLONW
OVEDFLON
UNDETFLON
UNDTSFLOW

LT
SRR

g
v AR,

LINE = *,1I5)
LINE = " 1I6)
LINE = **I5)
LINE = ", 15)

KEAL FURCTION waf VoL, R2,FOUTINT JUNTRT, TFHL , XEY,, TXEY)

DIMEPSTON KeY(8)
DIMERSTON TXKEY (&)
FIDVO=R1/R2

IF (KEY(3)eENa1) CALL FOURNER(RTOVI, TFNL,<FY)

IF CUKEV(3) e BN D AN (KEY (L) st e 7)) CALL
JF CEKEY I B0 D) « AN IKEY L) 4 EN0 1))

TF (PROVDLGTLTKOY (1Y) 6O 7O
1F (KROVOSLTLTKEY (2Y)Y €O YO

20
60

1IF COREOVD LY ¢ TKEY (3D) AN (RROVALGT 4 04))

GC 10 60

IF CCRREOVOGGT W TKEY(H)) e ANDY (RROVO (LT «04))

GO TO 80
RETUFN
PRLVD=TREY (1)
IF (VEY(U).EQ.0) FETURN
FOINT (1,22C) ROUTIND,UNCNY
RETUSN
FOQVE=TKEY(2)
IF (KEY(Z) oENG0) RETURN
FEINT (4,240) KOUTINE,LNCNT
RETURN
FSOVE=0,0
1F (KEY(L)EQ.0) RETURN
FIINT (142h0) RIUTINE, LHCNT
FETURN
FROVO=C.0
IF (KEY(D) F0,0) RETURE
FRINT (1,280) ROUTINE,LNCNT
RETUFRN
FOIMET (1HO,"RROVD OOSYTIVE
FOSMPT (LHARBOYD HEGITIVE
FOr MET (IMA¢*UAUnIVD 2QSTTIVS
FCHMET C(1HO"RROVD NG TRIVE
END

ovesrLon
OVENFLOY
UNQITELONR

URG-EFLOK

129

t"“""
u' AY S

o e
i A}

"’\,""

LINE = *,I5)

LINE = “415)
LiltE = *,19)
LINE =, 165)

THOT P NT(R2HDY,, TFNL, KEY)
ALL ONETENC(RONPY p IFNL 3Kt Y)

THOT NS (REDVD TFNL , KEY)
CALL ONETENS(RROVO, IFNL 4 KEY)

~

|

SN

e ey - Wi i

PEAL FUNCTION RADVD(Y4,R2,ROUTINE,LNCRT, IFHL KEY,y TKEY)
I SI0 KEY(Y)

DIMERSTON TKEY(4)

RibVEO=14/R2

TF (VEY(2)EQ,1) CALL FOUNDERIRIDVA, TFNL,,KEY)

IF COREY (3 o B0) JAND L IKEY (L) L0, 0)) CALL THOTENC(RIDVO, YFHNL, KEY)
IF CCKEY (O 810N G AN (KUY () ot e d)) CALL ONETEHC(RIDVD, IFRL ,KEY)
IF (FL0VO BT TKEY (1)) CO YO 20

JF (FAPVOLTLTKEY (7)) (O TO LU

IF C(RIDVOLTTRKEYE3)) AND (RIOVDLGT 4 04)) ~

- GO 10 €0

IF ((RIDVDGOT S TKEY(4)) AND (R1OYD LT 06))

L GC 70 80

KETUFN

20 FAOVO=TKI Y (L)

IF (FEY()LE0.0) RETURM

FRINT (1,220) BOUTING,,UNCNT

RETUFRN :

LD FPLOVO=TKEY ()

IF (KEY(L).00.0) RETURN

PRINT (1,240) ROUTINE,UNCNT

FETUPN . =

60 RiGVO=0,C

IF (KEY(Z)E0,0) RETURN

FRINT (1, 200) ROUTINE, LNCNT

RETUEN

80 RICVC=0.0

JF (KEY(E)oEDG0) RETURN

FRINT (1,280) ROUTING,ULNONT

FETUFN - -

220 FOFMAT (LRI, “RIDVDO POSTTIVE OVERFLOW 724" LINE = “4,I9)

240 FOUMAT (LHT,"R10OVO NEGATIVE OVETFLON *yAR,* LINE Ty 19)
260 FOTMIT (1HI, NV COSTTIVE UNDISFLIW *y88," LINE = *,Y5)
260 FOFMAY (4H3,"19VD MEGAYTIVE UROTRFLON *,A8,* LIRE = *",18)
! END
o RELL FUNCTION R2DVDUIRL,I2,FOUTINE,LNCNT,1FNL ,KEY ,TKEY)

DIFEL SION KEY(R)
PIMELS10N TKEY(h)
KeOVL=R1/12
IF (KEY(Z)eEQW1) CALL FOURDER(RZOVN, TFNL,XEY)
TF COKEY (3) o F200) JAUDGIKEYIL)Y 5N, 2)) CALL THOTTNC (R20VD, IFNLy KEY)
IF COKEY(3)a€040) AND L (KEY (L) o E9,4)) CALL ONETYNCIR20VD, IFNLyKEY)
IF (F20VDLGT.TXIY (1)) S0 TO 20
IF P20V LT TKEY (2)) €0 TO 40
TF (CR20VOLTTKIY(3)) CANG . (R2OVDGT 4 04))
» GC TO &0
IF ((K2DVDGToTKEY(3)) s ANDs (R2OVDLLT 4 04)) ; _
> GO O 80
FETUFN
20 F20Vh=TKEY (1)
TF (KEY(Y).E0,0) PETURN
FRINT (14220) RIUTINE, LNCNT
RETUF N . = ww e . -
40 P2LVR=TKEY(2)
IF (KEY(*),EQ.0) RETURN -
PEIMT (1,240) ROUTINE,LNCNT
FEITURN
€L K2LV0=0.0
1F (FEY(Y).EQ.C) RETURN -
FRINT (£,250) ROUTINE,ULNCNT
RETURN -
€0 R20Vh=0,.0
JF (KEY(') ENGH) RETURYN
PRINT (1,290) ROUTINE,LNCNY

] FETURN ’ 3 Fors ok
} SO FOLMET (140,"R29vD POSTTIVE QVESELOW “y A6, LINE = *,1I5%)
f i 200 FOFYET (LHIMWQ2NVA NTGITIVE OVEVFLOW e N LINE ® TylS)
QPR FIBEET (340" 22OVE0 NSTTIVE UHOTRFLIR "ed@ ™ Wik » “y3%)
288 FCIMET (1M, 2nVD NEGSTIVE UNO-SFLOW A~y LINE = " I1I3)
y END
| 130
-
' W‘

Lo

80

220
2t n
e8¢0
2t

Lo

a9

PEAL FUNCTTION BREXP(RE,R2 ,KOUTINE G LNCNT,, TFRL yKEY , TKEY)
PIMENSION KEY (D)
OIMERSTON TXREY ()
RREXP=k1 *R2
IF (KEY(3).E0.1) CALL PQUEDER(RCEX?, TFNL 4KEY)
IF CEKEY U3 0BT M) JAND L (KEY(H) e E22)) CALL TWOYFNC(RPEXP, TFNL yKEY)
IE CCKEYE3) €207 JAUND L (REY () ¢¥0,3)) CALL CNETENC (PREXP) IFNL) KEY)
IF (FREXPGTLTKEV (1)) /O TO 20
IF (RREXP(LTLTKIY(2)) GO TO &
IF COFPEXPLToTREYE3)) ¢ ANOe (RRENP«GT ¢ 04)) e
GO 10 60
IF CCREEXPeGT IKEY (H)) CARDe (RREXP(LT 0 04))
60 10 80
KEVYURN
PREXP=TKYY (1)
YFOIKEY ()P Qo) PETURN
PRINT (1,220) ROUTING,UNCNT
KETURN ki
FREXP=TKEY(2)
IF (KEY().EQ,0) RETURN
FRINT (14290) ROUTINE,LNCNT
RLTURN
RRUEXP: 0,0
1IF (KEY(')WEQ.0) EETURN
FRINY (14 200) ROUTINE,LNCNY
RETUKN
H‘I XF:-!’.U
IF (KEV() t0.0) RETURN
PRPINY (14267 ROUTING, UNCNT
RETUPN
FCIMAT (1HI,RREXP POSYTIVE OVERFLON “3A5," LINE = “,I5)
FCLHMAT (1R, “IRENP NFRITIVE OVEPTLONW 9 A8y™ LINE = “4I5)
FORMETY CIHU,"RRTXD DOSITIVE UNDTEFLON “,854," LINE “y I5)
FCLUMET (LHO4"RRCXP NEGITIVE UNDTRFLOW *,A8,* LINE “yIt)
END
PEAL FUNSTION RLEXP (Y1 ,R2,KOUTIME W LNCNT,y 1FNL,KEY, TKEY)
PIMERSION REY (D)
CIHE SI0N TXEY (H)
F1EXP=11 ¥R
IF (KEY(3)af0s1) CALL FOUNPER(ROLYD, TFNL 4KFY)
IF CAKEYCD) €00)) (ANDG (KEY (L) «ENe D)) CALL TWOTONC(RLIEXP, IFNL,yKEY)
IF CCREYI) a700M) AN (KEY (L) oEN01)) CALL CONETHNC(RL1EXP,) IFRL,KLY)
IF (F1EXP G TKEY (1)) GO YO 20
IF (FLEXPLTLTKEY(2)) GO 10 40
IF CORIEXPLLTTIKIYE3)) cANDe (RIEXP(GT 4 04)) i
GG 10 62
IF CGRIEYPGT o TKEY(9)) dANNG(RIEXP LT 04))
6C TO 89
RETUPN
FLEXP=TREY ()
IF (KEY(Y).EQ.0) RETURN
FRINT (1,4220) ROUVING,LNCNT
RETULN . . .
FLEXP=TKEY () .
JF (KEY()EQ.D) RETURNM 5
FRINT (1,240) ROUTINE,UNCNT
RETUFN
RIEXF=0.0
IF (KEYU(L).EQ.0) RETURN
PRINT (1,250) POUTINEy LNCNT
PETURN
RIEXP=040
IF (XEY(') ENL0) RETURN
FRINT (1,290) ROUTINE,LNCNY
RETUFN
FOMLT (AMI LEXP OOSTTIVE OVENFLON "o f84*™ LTINE = “IH)
E0; AT (1HYy“21EYP NFGATIVE OQVEOFLON “y83," LTNE “yI5)
FORVAT CIMOG"UIXF PASITIVE UNAEEFLON “yd%,"™ LINE = “415)
FONMAT C(LHI)™ULSXP HEGATIVE URDIRFLOM “yd3¢"™ LIKE = “,15)
END

"N

n "

131

ec

Lo

60

rC

220
ety
200
259

Lo

e

60

REAL FUNCTION R2EXP(R1,12, IOUIINf LNCNT,YFHL,KEY, TIlY)
CIMEpSION XEY(R)

PIMENSTON TKEY (&)

R2EXYI=R1 <12

JF (VEY(3)LEN.1) CALL KOUNDER(RPEYPZ YFNL,,XFY)

TEOCCREY(3) o006 D) o AND W (KEY(L) oENe)) CALL THOTENC(RPEXP,IFNL,KLY)
TF COREY (3 el 0e M) o AN o (KEY(0) o ENe 1)) CALL ORETONC (RZEXPyIFNL,KEY?

IF (F2eXPG1aTKEY (1)) €O Y0 20

IF (R2EXP JLIWTREY(2)) GO TO 40

IF CCRTEXPLToTRKEYOS)) ¢ AND(RIEXPGGT W0 e))
GO 10 ©9

IF ((R2EXP.GTLTREY(N)) o ANDG (R2EXPeLT 4 04))
GO TO0 89

RETUAN

RIEXF=IKEY ()

IF (KEY(S) (EQ,0) RETURN FAla 8

FEINT (1,220) ROUTIHOC, UNCNT

RETULN ; . wismsih

FeXF=KEY (D)

IF (MEY()ED.Q) RETURN

FRINT (1,240) RIVTINT,ULNCNY

FETURN

F2EXP=0.0

JE (FEYC) JEQ.0) RETURN

PRINT (14 200) ROUTINE,UNCNT

RETULN
R2EXF=040
JF (MEY(R) W EN.C) RETURN A
FRINT (1,4°280) ROUTINE,LNCNY -
REIUNH
MET CLHQ,"R2EXP POSYTIVE QVEFLON *“,t8, LINE = "“,1I5)

FC:V'T (IR0, "A2OEXP NEGITIVE QVECFLON “gn’." LING = %,1Y)
FOLMAT (QHO,"R2IXP POSITIVE JUNNDSRAFLOR “yA8*" LIKE = *,15)
FCuBAT (IHD,“R2EXP NEGATIVE UNDTURFLOW ™,A%," LINE = *,I5)
END

FEAL FURCTICH PASGHIRL ROUTINE JLHENT YEHL) KEY, TREY)
PIKEPSION KEY(S8)

CINEESION TKLY(H!

RASGY =Ry

IF (KEY(2)EQe1) CALL FOQUROER(CEASCH, TERL,<EY)

IF COKEY () 06201 o AN (KEY (W) 0 €0 2)) CALL IMOTTNC(RASCENy IFNLKEY)
TF OCUKEY (3) 0 E0e D) W AND L (KEY(L) o ENa 1)) CALL CRETTRCCRASGNy YFRL 3 KEY)

IF (FASGHGGTLTKZY (1)) 0 10 20
IF (FASGNLYWTXEY(2)) €O TO &0
IF CIRESONGLTSTKEY(3)) JAND, (KASOGNGGT 4 04))
GC 10 €0
IF ((RASGNJGTWTKEY (4)) s AND. (RASOGNJLT« 04))
G0 10 80
FETURN
FASGRN=TKEY (1)
JF (KEY(D).EQ.0) RETURN
PRIMYT (1,220) KROUTING) LNCNT
RETUIN
FASGA=TXKEY(2)
IF (KEY(D).E0,0) RETURN
FRINY (1,240) ROUTING,LNCNT
RETUEN
RASGN=C.0
IF (VEY(L)LE0,0) FETURN
PRINY (1,2h0) POUTINE,LNCNT
FETURN
RASGHN=N.D
1F (FEY(D)Y .EN.0) RETURN
PRINY (14233) ROUTINE,LNCNT
PETURN
FOFMAT (1HO,"RASEN DOSYTIVE OVETFLON *yR3, LINE = *,15)
FOFMAT (AN RABGY NTGITIVE OVEFLOW “yR34" LINE = “¢1I%)
FOCMLT CIMO,"“ASEN DOSTTIVE UNDTSFLON “yd8y*" LINE = " I%)
FOUMET CAMI,ASAN NOGATIVE UNJIRFLOW "yff%,*" LINE = *y1I5)
END

132

Appendix C

Mathematical Function Approximations

In chapter 4, routines were presented which were "optimal" for the
AN/AYK-15A flight computer in the sense that they provided the required
accuracy specified by reference 57 while requiring as little execution
time as possible. The routines presented in this appendik were also
analyzed and were deemed to be inferior to those presented in chapter 4
for the AN/AYK-15A digital processor. For other applications, however,
the routines presented in chapter 4 may not be satisfactory. Routines
for approximating the square root, sine, and cosine functions are pre-
sented in this appendix, along with some additional references.

Sine Approximations

For the sine function, Taylor series, minimax, polynomial fraction,
continued fraction, and Chebyshev expansion approximations were tested.
Each proposed solution was executed using the n-bit simulator with a 23-
bit mantissa (single precision for the AN/AYK-15A) being specified.
Where applicable, Horner's Rule for nested multiplications was applied
in evaluating polynomials, even though solutions are not shown as such.

Sine Solution 1. This solution is a truncated Taylor series approx-

imation of degree 7 and is computed by

sin(X) = AX + BX> + CX° + DX’ Xe[o,nlz] (c-15
with the coefficients being shown in column 2 of Table C-1, which fol-
lows the sine solutions. This approximation was not evaluated as a pos-
sitle candidate for use in the F-16 software, but rather because it
appears in software being tested for use in the A-10 aircraft.

Sine Solution 2. This solution is a truncated Taylor series

133

NG WP——

e NN i © 5.

|
|
3
i

B e apar—

approximation of depree 11 which was reduced to degree 9 by power series

economization (Ref 72:75). This approximation is computed by

sin(IX/2) = AX + BXJ 4 CX° 4+ DX/ 4 EX Xn'[(\,l] (C-2)
with the coefticients being shown in column 3 of Table C-1. This ap-
proximation was discarded because 1) it did not minimize either the
maximum relative or absolute errvor, and 2) it requived more multiplica
tions and additions than were required to meet the accurscy specifica-
tions.

Sine Solution 3. This solution is a truncated Tavlor series ap-
proximation of degree 13 which was veduced to degree 7 by three pover

seriecs cconomizations., This approximation fs computed by

sin(uX/2) = AX + BXR + (‘.f\'S + I‘X7 X{‘[O.l] (C-3)
with the coefficients being shown in column 4 of Table C-1. This ap-
proximation was discarded because the maximum absolute and relative
error bounds were greater than those of the minimax approximation pre-
sented in chapter 4.

Sine Solution 4. This solution (Ref 72:82) {s a rational approxi-

mation of the form

sin(ux/2) = &2 X 3'\'-3 ¢ [0,1] (C-4)
1+ CX
where
' A=T1/2 .
- 1-"
@)
1 2
o (3)()
{.: The values for these coefficients ave shown in column 5 of Table C-1.

134

Since this solution was obtained from a truncated fifth-order Taylor

series, the approximate truncation error e, is

; (ﬂ?j,)x’ _ 0.0046815 X ! -

t ¥ 2 2 1 +0.22337 X

1+ i‘o ("2') X

This approximation was evaluated to be used in comparing results ob-
tained from continued fraction representations. Since a fifth-order
Taylor series approximation provided better accuracy than this rational
fraction, and this rational fraction provided better accuracy than its
reprcsentation as a continued fraction, further testing of rational and
continued fraction approximations was not conducted.

Sine Solution 5. This solution is the continued fraction represen-

tation of the rational fraction presented as solution 4. It was assumed
that a floating-point division for the AN/AYK-15A would take approxi-
mately 3/2 as long as a floating-point multiplication, so there would

be no saving in execution time using a continued fraction over a Taylor
series polynomial. This solution (Ref 72:84) is computed as

sin(mX/2)

A/X-B8 Xe[o,l] (C-6)

—

+

>
»io

where

A= ~71/6
7 T
c-= 20(7—5

The values for these coefficients are shown in column 6 of Table C-1.
This solution had larger absolute and relative errors than either a

fifth-order Taylor serics or the corresponding rational approximation

135

presented as solution 4.

Sine Solution 6. This approximation is an expansion in Chebyshev

polynomials up to degree 9, vesulting in an expression of odd powers of
X up to degree 9 (Ref 72:73). This method should be distinguished from
Chebyshev approximation which produce minimax polynomials., This approx-
imation using Chebyshev polynomials provides a near-minimax solution

for the absolute error and is computed as follows:

sin(nX/2) = AX + BX3 + CXs + DX7 + EXg XF[O,l] c-7
The values of the coefficients are shown in column 7 of Table C-1. This
approximation was not recommended for use with the AN/AYK-15A for two
reasons: 1) it did not attempt to minimize the maximum relative error,
and 2) since seventh-order polynomials existed which provided sufficient

accuracy, the ninth-order approximation with the associated extra addi-

tion and multiplication was deemed to require too much execution time.

Sine Solution 7. This solution is a seventh-order minimax approx-

imation which minimizes the maximum absolute error, as opposed to the
solution presented in chapter 4 which minimizes the maximum relative
error. Since the sine function was used in multiplications and divi-
sions, the polynomial which minimized the maximum relative ervor was
chosen. 1In other circumstances, this routine might be preferred. This

approximation (Ref 71:117,202) is computed as
3 > .3 ’5 v7 v o ~
sin(mX/2) = AX + BX~ + CX~ + DX Xe [0,1 (c-8)

where the values of the coefficients are shown in column 8 of Table C-1.

Sine Solution 8. This solution is a ninth-order minimax approxi-

mation which minimizes the maximum relative error. It was tested to

determine whether or not more accuracy could be obtained without using

136

ol

s

Sine Solution 1

Sine Solution 2

Sine Solution 3

Sine Solution 4

A +1.0000000
=-0. 1666667
C +0.0083333
D =0.0001984

w

el R

+1.5707962
~0.64596332
+H0. 079688296
=~0.0046718573
+0. 000150544306

+1.570793344
~0.645920940
10.079471672
-0.004332878

+1.57079633
-0.452174868
+0. 123370055

'able C-1.

Sine Coefficients

Sine Solution 5

Sine Solution 6

Sine Solution 7

Sine Solution 8

-3.66519143 +1.5707963 +1.570791011 | +1.57079631844 |
+11.47221432 -0.64596336 ~0.6458928493 | -0. 645963710599
+8.03055026 +0.079688475 +0.0794343442 | 40.079689678946
-0.0046722203 ~0.004333095 | -0.00467376661
+0.00015081716 +0.000151485129
Table C-1 (cont). Sine Coefficients

137

S

-

$

B

Y-

extended precision. This solution (Ref 71:117,204) is computed as

sin(mX/2) = AX + BX3 + CX5 + DX7 + ng XF[O,]] (c-9)

where the valucs of the cocefficients are shown in column 9 of Table C-1.

Using this solution, the maximum relative error was less than that pro- f
i

duced using the seventh-order polynomial presented in chapter 4.

Machine roundeoff error becomes move apparent, however, since the result

is only better by a factor of approximately 6, instead of giving two !

more decimal digits of accuracy as cited by Hart (Ref 71:117).

Cosine Approximation

Only one cosine solution was tested in addition to that presented
in chapter 4. This solution (Ref 71:118,207) is an eighth-order mini-
max approximation which minimizes the maximum absolute error and is
computed by

cos(X) = A + BX2 =+ CX4 S DX6 + EXS XC[O,H/4 (C-10)

The values of the coefficients are shown in Table C-2. This routine
y . =5
was not chosen because the relative error for X near /2 exceeded 10 ~,

which was the error bound specified.

A +0.999999953464
B ~0.499999053455

c +0. 0416635846769

D -0.0013853704264 i
E +0.00002315393167 7’

Table C-2. Cosine Coefficients

Square Root Approximations

The square root approximations differ in the way in which the
initial approximation to the square root is obtained. The methods

presented use Newton iterations to obtain the desired accuracy. Several

138

.

minimax polynomials are given by Hart (Ref 71:94-95) for use in obtain-
ing an initial approximation. Although these approximations were not
evaluated in this investigation, they merit consideration also.

Square Root Solution 1. The initial estimate \'0 for this method
(Ref 69:31) is accomplished using decinal sga]ing and a rational func-

tion evaluation.

. . o :
A 0.1 < X < 10.0 (C-11)

Since the AN/AYK-15A computer is a binary machine, this soluticn was not
implemented in a test environment using the n-bit sinulator,

Square Root Solution 2. This method (Ref 69:33) uses a Pade
approximation and exponent scaling to obtain an initial estimate. As
in the method proposed as square root solution 2 in chapter 4, this
method shifts the mantissa to obtain an even exponent. The exponent is
then divided by two, and the mantissa f is used in the Pade approximation

B /e i .
= - ———— 4 / =12
f =&~z D (Cc-12)

where |D|, the relative error term, is less than 0.0014. If f([0.25,
0.50], then the coefficients are computed as shown in column 2 of Table
C-3, and if fE[O.S,l.Oﬂ, then the coefficients are computed as shown in
column 3 of Table C-3. This method requires only one iteration of
Newton's method to obtain the desired accuracy (10_5). Since more core
storage and logic are required in the initial Pade approximation, the
method presented as square root solution 2 in chapter 4 was preferred.
Methods such as this one which require only one Newton iteration to

obtain a desired accuracy merit further study, however.

139

0.25 < f < 0,50 0.50 < £ < 1,00 7

-
A 1.792843 2.535463
B 1.707469 4,8294452
C 1.071429 2.142858

Table C=3, Pade Coefficients

Square Root Solution 3. This solution (Ref 56:42) uses two Newton
ftevations to obtain the required accuracy. The initial approximation

YO is obtained using

0.154116 + 1.893872 X T 5V s
Yo 1.0 + 1.047988 X L6 5% <1 1%

with the initial approximat ion \’(having a relative error less than

)
0,025, The errvor after two Newton ficrations is approxinately the same
as that using solution 2 presented in chapter 4. With this solution,
more effort was expended to obtain the initial approximation, and wore
cocfticients are required to be stored, so the method presented in
chapter 4 was preferred.

Square Root Solution 4. This approximation (Ref 70:2-3) for the
square root function uses a relatively poor approximation to the square
root and then rvelies on a sufticient number of Newton fterations to
obtain the required accuracy. This method has one advantage in that no
prestored coefficients are required. The inftial approximation \'0 is
obtained for the square root of X by

Y, = X/2 (C=14)
To find the square root of 3000, however, cight Newton iterations arve

-5
required to yield a relative error less than 10 . Therefore, this

rout ine was discarded.

69.

70.

71,

Additional References Used in Appendix C

Edgar, Elizabeth A. Ceneration of Elementary Functions Using A

Digital Computer. Royal Aircraft Establishment Technical Report
72019, 1972. (AD 903 945).

Grove, Wendell E. Brief Numerical Methods. Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1966.

Hart, J. C., et al. Computer Approximations. Huntington, New
York: Robert E. Kricger Publishing Company, 1978.

McCracken, Daniel S. and William S. Dorn. Numerical Methods and

FORTRAN Programming. New York: John Wiley aund Sons, Inc., 1964.

Vita

Richard Arthur Adams, the son of Ralph W. Adams and (the late)
Constance jT\XEQEET—;;s born in New Hampton, Iowa on 12 December 1951,
and raised on a farm near Waucoma, Iowa. After graduating from Turkey
Valley Community School in 1970, he attended Iowa State University in
Ames, Iowa, receiving a Bachelor of Science degree in Mathematics and
Computer Science and a commission in the USAF through the AFROTC
program. Four months later he entered active duty as a Second Lieutenant
and was stationed at Offutt Air Force Base for three years as a computer
programmer/analyst. In August 1977, he entered the School of Engineering,

Air Force Institute of Technology, to begin graduate studies in Computer

Systems.

Permanent Address:

P.0. Box 201

Waucoma

142

B (39 L0000 0 9 4) S e e

SUCURITY CLASSIFICATION OF THIS PAGE (“Ivn l)ult l,m ed)

. e
d READ INSTRUCTION?
REPORT DOCUMENTATION mcc B T e
VI REPORT NUNMDER 2. GOV ACCESSION NOI 3 RECIPIENT S CATALOG HUME |"n“ ey
AFIT/GCS /BE/ 791 e
L ;I\;i (Ilrlr \A ,‘l;;l(.) R e Tyt (‘l NllORl A P!’Rn‘«"(;‘\ LR “'
Impilemontation and Testing of Numerical Analysis MS Thesis
5 esis
Techniques in Avionics Applicatiops [U S) »
& PERt ()I-Mm(. QRG hc ! nl 1 NUMM "
I"‘A’:‘l’\‘ﬂ‘;)}‘{"’;)--——. =i =i b MR £ -l Sl ey i il l| -(oNY H..AL ‘- (‘?l (‘-‘l‘(kN“&UM’!"l Rs!
Richard A. Adams
Capt USAT
3. PLRFORMING ORGANIZATION NAME AND ADODRESS 777710 PROGRAM FLEMENT, FROIECT, TASK

’ AREA & WORK UNIT NUMBE K
Adlr Force Institute of Technology (AF1T-EN)
Wright-Yatterson AFB, Ohio 45433

11, CONTROLLING OF FICE NAME AND ADORESS 12 REPORT OATE
3 by -
Air Force Avionics Laboratory/AAT-2 __March 1979
Wright-Patterson AFB OH 45433 ol | olafany
TA MONITORING AGENCY NAME & ADDRESS(1f different from Controlling Otfice) | 18, SLCURITY CLASS. (of this report

UNCLASSTFTED

154 DICLASSIFICATION DOWNGRADING
SCHEDOLE

TE. DISTRIBUTION STATEMUN T (of this Report)

Approved for public release; distribution unlimited

17. DISY '\H‘U’ l\')?' ‘T;\Tl \!'NT (af the qu~"n] Anf- red in l?'\.A J(‘ H -i lll'n |l h.m,]‘.,. rl

Vo, s suvv\‘MlN'AR‘NﬂTl Approved for public release IAW AFR 190-17

J. P, }lipps ‘hl:-?m SAF
Director of ln"mm.\t on 1 b MAY \319

9. KLY WORDS (Continue on :r-\.'ﬂu' sf“.ll:- -i)..r:---;;'s;;-;:-;d‘l.;«";;l;\i l: ;_I:; —n:x;"!.n-'r-lr
Numerical Analysis
Avionics
Forvard Ervor Analysis
Simulation

{* Computer Modelling

0

A—E\ YRA(‘T (Continue on rev Mw al-lo Mn-.avmn lmd 1" lrn;rl\ by hi\k num'-.w\

Errors duc to finite wordlenpth are unavoidable when aircraft signal processing
operations such as flight control, navigation, and fire control are implemented
on a digital computer. To reduce these errors to tolerable levels, longer word-
lengths can sometimes be emploved. The effects of some of the errors, such as
those due to arithmetic series truncation, machine roundoff, and quantization of
system coefflicicnts, can be lessened somewhat by appropriate numerical analvsis
techiniques. |

— 1 b Al

N IETA -
pb , Sorm 1473 Foimon 0F T NOY 65 15 ORSOLETE

AN 73

UNCLASSTFTED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Futered)

e INCLASS1FLED

SELCURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

1
I 20, An n-bit simulator which runs on Control Data Corporation (CDC) 6600/CYBER
74 computer systems was medified and then used to evaluate the accuracy of a

5 w5 filght navigation routine coded in FORTRAN. The routines were executed without
e the gimulator to obtain results used for benchmarking. The n-bit simulator was

] enployed to simulate the numerical chavacteristics of the AN/AYK-15A digital
processor. Error plots were constructed which show the maximum errors occurring
b within small plotting iutervals plotted against each individual input value.

"

these plots were used to aid visually in analyzing the error characteristvics of
the avionics routine as it would be implemented on the AN/AYK-15A.

& ¢ritical analysis of the ervor plots obtained showed that routines which are
coded using single-precision floating-point arithmetic are prone to errors which
excecd the ervor bounds specificd for the routines. This occurs even though
range reductions in the trigonometric function approximations are accomplished
using extended precision.

N

\

__UNCLASSTFIED

SECURITY CLASSIFICATION OF Tu'" PAGE(Hhen Dacta Frterad)

